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1. Introduction

Non-significant empirical results (usually in the form of t-statistics smaller than 1.96) relative

to some null hypotheses of interest (usually zero coefficients) are notoriously hard to publish

in professional/scientific journals (see, e.g., Andrews and Kasy, 2017; Ziliak and McCloskey,

2008). This state of affairs is in part maintained by the widespread notion that non-significant

results are non-informative. After all, lack of statistical significance derives from the absence

of extreme or surprising outcomes under the null hypothesis. In this article, we argue that this

view of statistical inference is misguided. In particular, we show that non-significant results are

informative, and argue that they are more informative than significant results in scenarios that

are common, even prevalent, in empirical practice in economics.

To discuss the informational content of different statistical procedures, we formally adopt a

limited information Bayes perspective. In this setting, agents representing journal readership or

the scientific community have priors, P , over some parameters of interests, θ ∈ Θ. That is, a

member p of P is a probability density function (with respect to some appropriate measure) on Θ.

While agents are Bayesian, we will consider a setting where journals report frequentist results, in

particular, statistical significance. Agents construct limited information Bayes posteriors based

on the reported results of significance tests. We will deem a statistical result informative when

it has the potential to substantially change the prior of the agents over a large range of values

for θ.

Notice that, like Ioannidis (2005) and others, we restrict our attention to the effect of statistical

significance on beliefs. We adopt this framework not because we believe it is (always) repre-

sentative of empirical practice (in fact, journals typically report additional statistics, beyond

statistical significance), but because isolating the informational content of statistical significance

has immediate implications for how we should interpret its occurrence or lack of it. Correct inter-

pretation of statistical significance is important because, while many other statistics are reported

in practice, the scientific discussion of empirical results is often framed in terms of statistical sig-

nificance of some parameters of interest and non-significant results may be under-reported as
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discussed above.

2. A Simple Example

In this section, we consider a simple example with Normal priors and data that captures the

essence of our argument. In section 3 we will consider the case where the priors and the distribu-

tion of the data are not restricted to be in a particular parametric family. Assume an agent has

a prior θ ∼ N(µ, σ2) on θ, with σ2 > 0. A researcher observes n independent measurement of θ

with Normal errors mutually independent and independent of θ, and with variance normalized

to one. That is, x1, . . . , xn are independent N(θ, 1). Let

θ̂ =
1

n

n∑
i=1

xi ∼ N(θ, 1/n).

θ is deemed significant if
√
n|θ̂| > c, for some c > 0. In empirical practice, c is often equal to 1.96,

the 0.975-quantile of the Standard Normal distribution. Suppose a journal reports on statistical

significance. We will calculate the limited information posteriors of the agents conditional on

significance and lack thereof. These posteriors are the distributions of θ conditional on
√
n|θ̂| > c

and
√
n|θ̂| ≤ c. First, notice that

Pr(
√
n|θ̂| > c|θ) = Pr(θ̂ > c/

√
n|θ) + Pr(−θ̂ > c/

√
n|θ)

= Φ(
√
nθ − c) + Φ(−

√
nθ − c).

Therefore,1

Pr(
√
n|θ̂| > c) = Φ

( √
nµ− c√
1 + nσ2

)
+ Φ

(
−
√
nµ− c√

1 + nσ2

)
. (1)

1This calculation uses the following fact of integration∫
Φ

(
λ− θ
ξ

)
1

σ
φ

(
θ − µ
σ

)
dθ = Φ

(
λ− µ√
σ2 + ξ2

)

for arbitrary real λ and µ and positive σ and ξ. Alternatively, the result can be easily derived after noticing that
the distribution of θ̂ integrated over the prior is Normal with mean µ and variance σ2 + 1/n.
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The limited information posteriors given significance and non-significance are:

p
(
θ
∣∣√n|θ̂| > c

)
=

1

σ
φ

(
θ − µ
σ

)(
Φ(
√
nθ − c) + Φ(−

√
nθ − c)

)
Φ

( √
nµ− c√
1 + nσ2

)
+ Φ

(
−
√
nµ− c√

1 + nσ2

) ,

and

p
(
θ
∣∣√n|θ̂| ≤ c

)
=

1

σ
φ

(
θ − µ
σ

)(
1− Φ(

√
nθ − c)− Φ(−

√
nθ − c)

)
1− Φ

( √
nµ− c√
1 + nσ2

)
− Φ

(
−
√
nµ− c√

1 + nσ2

) .

The two posteriors, along with the Normal prior, are plotted in Figure 1 for µ = 1, σ = 1,

c = 1.96, and n = 10. This figure illustrates the informational value of a significance test.

Rejection of the null carves probability mass around zero in the limited information posterior,

while failure to reject concentrates probability mass around zero. Notice that failure to reject

carries substantial information, even in the rather under-powered setting generated by the values

of µ, σ, c, and n adopted for Figure 1, which imply Pr(
√
n|θ̂| > c

)
= 0.7028.

Figure 2 shows how prior and posteriors after significance compare as a function of the sample

size. When n is small, significance affects the posterior over a large range of values. When n is

large, significance provides only local to zero information. That is, significance is not informative

in large samples. This is explained by the fact that the probability of rejection in equation (1)

converges to one as the sample size increases. By the law of total probability, it follows that

conditional on non-significance probability mass concentrates around zero as n increases. That

is, the occurrence of an event that is very unlikely given the prior has a large effect on beliefs.

The full information posterior is

p
(
θ|x1, . . . , xn

)
=

1

σn
φ

(
θ − µn
σn

)
,

where

µn =
µ+ nσ2θ̂

1 + nσ2
,

4



-4 -3 -2 -1 0 1 2 3 4

 

prior
posterior with significance
posterior with no significance

Figure 1: Posterior Distributions After a Significance Test
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Figure 2: Prior and Posterior with Significance for Different Sample Sizes
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and

σ2
n =

σ2

1 + nσ2
.

So, in this very particular context, knowledge of the t-ratio (
√
nθ̂) is sufficient to go back to the

full information posterior. The same is true for the combined information given by the P -value,

2Φ(−
√
n|θ̂|), and the sign of θ̂.

These results have immediate counterparts in in large samples settings with asymptotically Nor-

mal distributions. They can also be generalized to non-parametric settings, as we demonstrate

in the next section.

3. General Case

3.1. Finite Sample Results

Results like that in Figure 1 are rather general and do not depend on Normal priors or data.

Consider a test statistic, T̂n, such that rejection of the null is given by T̂n > c. Let p(·) be a prior

on θ, and p(·|T̂n > c) and p(·|T̂n ≤ c) be the limited information posteriors under significance

and non-significance, respectively. Regardless of the shape of the prior and/or the distribution

of the data, by the law of total probability we obtain∣∣∣∣1− p(θ|Tn ≤ c)

p(θ)

∣∣∣∣ =

(
Pr(T̂n > c)

Pr(T̂n ≤ c)

)∣∣∣∣1− p(θ|Tn > c)

p(θ)

∣∣∣∣ (2)

for Pr(T̂n ≤ c) > 0 and θ such that p(θ) > 0. The absolute value expressions on both sides of

Equation (2) provide a measure of informativeness of significance (right) and non-significance

(left). For a rather underpowered setting with Pr(T̂n > c) = 1/2, Equation (2) implies that

non-significant is exactly as informative as significance. Moreover, the relative informativeness

of non-significance increases with the statistical power of the test. Next section provides large

sample calculations.
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3.2. Large Sample Analysis

To extend the large sample results of the previous section beyond Normal priors and data, we

will consider a test statistic, T̂n, such that

Pr
(
T̂n > c

∣∣θ = 0
)
→ α,

and

Pr
(
T̂n > c

∣∣θ, θ 6= 0
)
→ 1.

That is, we consider significance tests that are consistent under fixed alternatives and have

asymptotic size equal to α. .

3.2.1. Continuous Prior

We will first assume a prior that is absolutely continuous with respect to the Lebesgue measure,

with a version of the density that is positive and continuous at zero. By dominated convergence,

we obtain:

Pr
(
T̂n > c

)
→ 1.

We first derive the posterior densities under significance,

p(0|T̂n > c) =
Pr
(
T̂n > c

∣∣θ = 0
)

Pr
(
T̂n > c

) p(0)→ α p(0),

and

p(θ|T̂n > c) =
Pr
(
T̂n > c

∣∣θ)
Pr
(
T̂n > c

) p(θ)→ p(θ),

for θ 6= 0. So, again, significance only changes beliefs locally around zero. The posterior densities

after non-significance are

p(0|T̂n ≤ c) =
Pr
(
T̂n ≤ c

∣∣θ = 0
)

Pr
(
T̂n ≤ c

) p(0)→∞,
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and

p(θ|T̂n ≤ c) =
Pr
(
T̂n ≤ c

∣∣θ)
Pr
(
T̂n ≤ c

) p(θ)
for θ 6= 0. Typically, for θ 6= 0 (using large deviation results)

− 1

n
log
(

Pr
(
T̂n ≤ c

∣∣θ))→ dθ,

with 0 < dθ <∞. Therefore, Pr
(
T̂n ≤ c

∣∣θ) converges to zero exponentially for θ 6= 0. Let

βn(θ) = Pr(T̂n ≤ c|θ)

be the probability of Type II error (one minus the power). Assume that∫
lim inf
n→∞

βn(z/
√
n) dz > 0.

This rules out perfect local asymptotic power. Then, by change of variable z = n1/2θ and Fatou’s

lemma, we obtain2

lim inf
n→∞

n1/2 Pr(T̂n ≤ c) = lim inf
n→∞

n1/2

∫
βn(θ) p(θ) dθ

= lim inf
n→∞

∫
βn(z/

√
n) p(z/

√
n) dz

≥
∫

lim inf
n→∞

(βn(z/
√
n) p(z/

√
n)) dz

=

∫
lim inf
n→∞

βn(z/
√
n) lim

n→∞
p(z/
√
n) dz

= p(0)

∫
lim inf
n→∞

βn(z/
√
n) dz > 0.

It follows that

p(θ|T̂n ≤ c)→ 0,

for θ 6= 0.

That is, like in the Normal case of section 2, conditional on non-significance the posterior con-

verges to a degenerate distribution at zero.

2For the second to last equality, notice that if an ≥ 0 and bn → b > 0 as n→∞, then

lim inf
n→∞

(anbn) = lim inf
n→∞

an lim
n→∞

bn.
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Figure 3: Limit of p(θ|T̂n > c)/p(θ) as a function of q (θ 6= 0, α = 0.05)

3.3. Prior with Probability Mass at Zero

We now consider the case when the prior has probability mass q at zero, with 0 < q < 1. Then

Pr
(
T̂n > c

)
→ qα + (1− q) ∈ (α, 1).

Now, the posterior after significance is,

p(0|T̂n > c) =
Pr
(
T̂n > c

∣∣θ = 0
)

Pr
(
T̂n > c

) p(0)→
(

α

qα + (1− q)

)
q ≤ q,

and

p(θ|T̂n > c) =
Pr
(
T̂n > c

∣∣θ)
Pr
(
T̂n > c

) p(θ)→ (
1

qα + (1− q)

)
p(θ) ≥ p(θ),

for θ 6= 0. Now, in contrast to the continuous prior case, significance changes beliefs away from

zero in large samples In particular, if we start with a prior that assigns a large probability to

θ = 0, then significance greatly affects beliefs for values of θ different from zero. Notice, however,
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that for moderate values of q the effect of significance on beliefs may be negligible. Figure 3

show the limit of p(θ|T̂n > c)/p(θ) as a function of q, for θ 6= 0 and α = 0.05. This limit is close

to one for modest values of q. In order for significance to at least double the probability of θ 6= 0

we need q ≥ 1/(2(1 − α)) = 0.5263. Notice that reducing the value of α does not substantially

change the value of the limit of p(θ|T̂n > c)/p(θ), except for very large values of q. For example,

with α = 0.005 (as advocated in Benjamin et al., 2017), for significance to at least double the

probability of θ 6= 0 we need q ≥ 1/(2(1−α)) = 0.5025. In fact, regardless of the size of the test,

q needs to be bigger than 0.5 in order for significance to double the probability density function

of beliefs at non-zero values of θ.

The posterior after non-significance is,

p(0|T̂n ≤ c) =
Pr
(
T̂n ≤ c

∣∣θ = 0
)

Pr
(
T̂n ≤ c

) p(0)→ 1− α
q(1− α)

q = 1,

and for θ 6= 0,

p(θ|T̂n ≤ c) =
Pr
(
T̂n ≤ c

∣∣θ)
Pr
(
T̂n ≤ c

) p(θ)→ 0.

Again, non-significance seems to have a stronger effect on beliefs than significance.

Some remarks about priors with probability mass at a point null are in order. First, it is

difficult to think of relevant settings in empirical economics where reasonable prior beliefs assign

probability mass to point nulls. For example, beliefs on the causal effect of a policy intervention

may sometimes concentrate probability smoothly around zero, but more rarely in such a way

that a large probability mass at zero is a good description of a reasonable prior. Moreover, priors

with probability mass at a point null generate a drastic discrepancy, know as Lindley’s paradox,

between frequentist and Bayesian testing procedures (see, e.g., Berger, 1985). Lindley’s paradox

arises in settings with a fixed value of T̂n and a large n. In those settings, frequentists would reject

the null hypothesis when T̂n > c. Bayesians, however, would typically find that the posterior

probability of the point null far exceeds the posterior probability of the alternative. Lindley’s

paradox can be explained by the fact that, as n increases, the distribution of the test statistic

under the alternative diverges. Therefore, a fixed value of the test statistic as n increases can
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only be explained by the null hypothesis. Notice that conditioning on the event {T̂n ≤ c} (as

opposed to conditioning on the value of T̂n) is not subject to Lindley’s paradox and it may be

the natural choice to evaluate a testing procedure for which significance depends on the value of

{T̂n ≤ c} only.

4. Testing an Interval Null

In view of the lack of informativeness of non-significance in large samples (under a point null),

one could instead try to reinterpret significance tests as tests of the implicit null “θ is close to

zero”.

To accommodate this possibility, we will now concentrate in the problem of testing the null that

the parameter θ is in some interval around zero. Under the null hypothesis, θ ∈ [−δ, δ], where

δ is some positive number. Under the alternative hypothesis, θ 6∈ [−δ, δ]. Consider the Normal

model of section 2. To obtain a test of size α we control the supremum of the probability of

Type I error:

Pr(
√
n|θ̂| > c | |θ| = δ) = Φ(

√
nδ − c) + Φ(−

√
nδ − c).

Therefore, we choose c such that Φ(
√
nδ− c) + Φ(−

√
nδ− c) = α. While there is no closed-form

solution for c, its value can be calculated numerically for any given value of
√
nδ, and a very

accurate approximation for large
√
nδ is given by

c = Φ−1(1− α) +
√
nδ.

That is, controlling size in this setting implies that the critical value has to increase with the

sample size at a root-n rate. In turn, this implies that the probability of rejection, Pr(
√
n|θ̂| >

c|θ) = Φ(
√
nθ − c) + Φ(−

√
nθ − c) converges to one if θ 6∈ [−δ, δ], and converges to zero if

θ ∈ (−δ, δ). As a result, the large sample posterior distributions with and without significance

are truncated versions of the prior, with the prior truncated at (−δ, δ) under significance, and

at (−∞,−δ) ∪ (δ,∞) under no significance. If δ is large both significance and non-significance

are informative. If, however, δ is small, we go back to the setting where significance carries only
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local-to-zero information. Figure 4 reports posterior distributions for δ = {0.5, 1, 2}, α = 0.05

and n = 10000.

5. Conditioning on the sign of the estimated coefficient

In previous sections we have shown that statistical significance may carry very little information

in large samples. As a result, the values of other statistics should be taken into account along

with significance when the null is rejected in a significance test. As discussed above, in a Normal

(or asymptotically Normal) setting it does not take much to go back to full information (e.g.,

P -value and the sign of θ̂). Here we consider the question of whether minimally augmenting the

information on significance with the sign of θ̂ results in informativeness when the null is rejected.

This exercise is motivated by the possibility that the sign of the estimated coefficient is implicitly

taken into account in many discussions of results from significance tests.

For concreteness, we will concentrate on the case of a positive coefficient estimate, θ̂ > 0. That

is, the limited information posterior under significance and positive θ̂ conditions on the event
√
nθ̂ > c. The case with negative θ̂ is analogous. Using similar calculations as in section 1, we

obtain:

p
(
θ
∣∣√nθ̂ > c

)
=

1

σ
φ

(
θ − µ
σ

)
Φ(
√
nθ − c)

Φ

( √
nµ− c√
1 + nσ2

) ,

and

p
(
θ
∣∣0 < √nθ̂ ≤ c

)
=

1

σ
φ

(
θ − µ
σ

)(
1− Φ(

√
nθ − c)− Φ(−

√
nθ)
)

1− Φ

( √
nµ− c√
1 + nσ2

)
− Φ

(
−
√
nµ√

1 + nσ2

) .

Figure 5 reproduces the setting of Figure 1 but for the case when the posterior is conditional on

sign of the estimate in addition to significance. Like in Figure 1, failure to reject carries subtantial
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Figure 4: Posterior After a Test of the Null θ ∈ [−δ, δ] (n = 10000, α = 0.05)
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Figure 5: Posterior Distributions Conditional of Significance and Coefficient Sign

information. In fact, both outcomes of the significance test carry additional information, with

respect to the setting in Figure 1, which of course is explained by the additional information in

the sign of θ̂.

Notice that, in this case, under significance, the ratio between the posterior and the prior con-

verges to

lim
n→∞

p(θ|
√
nθ̂ > c)

p(θ)
=


0 if θ < 0,
Φ(−c)/Φ(µ/σ) if θ = 0,
1/Φ(µ/σ) if θ > 0.

Without significance, the ratio between the posterior and the prior converges to

lim
n→∞

p(θ|0 <
√
nθ̂ ≤ c)

p(θ)
=

{
0 if θ 6= 0,
∞ if θ = 0.

That is, as n→∞ non-significance is highly informative. Under significance, the posterior of θ

converges to the prior truncated at zero. As a result, in this case the informational content of

significance depends on the value of Pr(θ > 0) = Φ(µ/σ). If this quantity is small, significance
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with a positive sign is highly informative. Unsurprisingly, when µ/σ is large (that is, in cases

where there is little uncertainty about the sign of the parameter of interest), a positive sign of θ̂

does not add much to the informational content of the test. Moreover, the limit of p(θ|
√
nθ̂ > c)

cannot be more than double the value of p(θ) as long as µ is non-negative. This is relevant to many

instances in economics where there are strong belief about the sign of the estimated coefficients

(e.g., the slope of the demand function, or the effect of schooling on wages) and specifications

reporting “wrong” signs for the coefficients of interest are rarely reported or published.3

6. Conclusions

Significance testing on a point null is the most extended form of inference in empirical economics.

In this article, we have shown that rejection of a point null often carries very little information,

while failure to reject is highly informative. This is especially true in empirical contexts that

are typical in economics, where data sets are large (and, if anything, are becoming larger)

and where there are rarely reasons to put substantial prior probability on a point null. Our

results challenge the usual practice of conferring point null rejections a higher level of scientific

significance than non-rejections. In consequence, we advocate a visible reporting and discussion

of non-significant results in empirical practice (e.g., as in Angrist et al., 2017; Cantoni, 2018;

Krueger and Malečková, 2003).
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