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I Introduction 
 
Linking individuals across datasets offers rich possibilities for economic history research.1 

However, because historical data often lack identifiers such as a Social Security Number, linking 

individuals relies on personal information such as names and reported ages that is prone to 

enumeration and transcription errors. These errors make it impossible to find the correct match 

with certainty. Furthermore, multiple individuals with identical names and reported ages introduce 

the problem of non-unique matches. Economic historians have developed useful ways to link 

individuals across historical datasets in the presence of such issues (for example, Atack et al. 

[1992], Ferrie [1996], Abramitzky et al. [2012, 2013, 2014, 2016] and Feigenbaum [2016a]; 

Massey [2017], Bailey et al. [2017], and Abramitzky et al. [2018] compare various matching 

algorithms). 

A record matching method should aim to trade-off three goals. First, make as few false matches 

as possible (minimize type I errors). Second, make as many true matches as possible (minimize 

type II errors). Third, for given levels of type I and type II errors, create linked samples that 

resemble the population of interest as closely as possible. Different research projects may have 

different implications for compromising on each of these three goals. 

In the first part of the paper, we suggest a fully automated method for linking historical datasets 

that enables researchers to create samples at the frontier of these three goals. The method has three 

steps. In the first step, we guide researchers in the choice of which variables to use for linking. In 

the second step, we combine distances in reported names and ages between each two potential 

records into a single score, roughly corresponding to the probability that both records belong to 

the same individual. We estimate these probabilities using the Expectation-Maximization (EM) 

algorithm, a standard technique in the statistical literature (Dempster et al., 1977, Winkler. 1989). 

In the third step, we suggest a number of decision rules that use these estimated probabilities to 

determine which records to use in the analysis. 
 
                                                             
1 Recent examples include Abramitzky et al. [2012, 2014, 2017]; Aizer et al. [2016], Bleakley and Ferrie [2016, 2013], 
Collins and Wanamaker [2014, 2015, 2017], Eli et al. [2016], Eriksson [2015], Feigenbaum [2016b, 2017], Ferrie 
[1997], Fouka [2016], Long [2006], Long and Ferrie [2013], Hornbeck and Naidu [2014], Mill and Stein [2016], 
Kosack and Ward [2014], Modalsli [2017], Parman [2015], Perez [2017], Salisbury [2014]. 
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Although there is a large literature that uses linked historical records, existing linking methods 

either do not use insights from statistics or are not easily replicable. Specifically, existing 

automated methods (e.g. Ferrie, [1996]; Abramitzky, Boustan and Eriksson, [2012, 2014, 2017]) 

are replicable but they rely on common sense rather than formal statistics. Existing hand-linking 

(e.g. Bailey et al, [2017], Costa et al, [2018]) and semi-automated methods (e.g. Feigenbaum, 

[2016a]; Ruggles et al., [2011]) rely on hand coders and may not be fully replicable. Unlike 

automated methods, it is unlikely that any two hand coders that started from the same raw data 

sources (for example, the 1920 and 1940 censuses) will make the exact same choices and generate 

the exact same training samples. Hence, relying on hand coders or on a training sample implies 

that two researchers starting from the same underlying data might end up building different linked 

samples. We suggest a method that is estimated in a fully automated way that is both grounded in 

statistics and is easily replicable.  

In addition, while the EM algorithm is a standard method used in statistics for record linkage, 

this method has not been used for linking historical records (other than by the coauthors of this 

paper). Hence, our aim is to bring together practitioner experience of economic historians with 

insights from statistics for record linking.  

It is an empirical question whether this method can generate meaningful samples when linking 

historical records, where there are unique challenges such as enumeration error, transcription error, 

mortality, return migration, and under-enumeration between Census years. In the second part of 

the paper, we test how our suggested method performs by using it to link fathers and sons across 

the US 1850-1880 and the Norwegian 1865-1900 censuses of population. We use these data to 

construct father-sons occupational transition matrices and to compute summary measures of 

intergenerational occupational mobility. We then compare our results to those obtained when using 

the widely-used linked samples constructed by IPUMS [Goeken et al., 2011]. These samples were 

constructed by first manually linking a subset of the records and then using this training sample to 

predict the linking status of the remaining records. For both countries, we document that the 
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patterns of intergenerational occupational mobility that we find using our linked samples are 

remarkably similar to those that we find when using the samples created by IPUMS.  
 

This new method for historical record linking helps address concerns about false positives. 

Moreover, the method is flexible in that it can accommodate different researchers' preferences with 

respect to the trade-off between match quality and sample size. To facilitate the use of the method 

by practitioners, we have developed an R code and a Stata command that implement it. We provide 

the program and its corresponding documentation on our website: 

https://people.stanford.edu/ranabr/matching-codes 
 
II The matching problem 
 
Imagine you are a researcher who wants to link people from the 1900 to the 1910 census. Imagine 

that one observation in 1900 is “Ran Abramitzky” who is reported being 10 years old. When you 

look up this record in 1910, you are looking for a “Ran Abramitzky” who is reported to be a 20 

year old. However, when you search the 1910 census, you find three potential matches. One is a 

“Ran Abramitzky” who is reported to be a 21 year old. One is a “Ran Abramtziky” who is reported 

to be a 20 year old. And one is a “Ran Abramitzky” who is reported to be a 20 year old. 
 

How would you know which one is the true match? It may be tempting to choose the exact 

match (third record). However, the other two may as well be the right one given that enumerators 

can easily make spelling errors and people may not report their exact age but rather round it up or 

down. An alternative is to declare this record as an impossible to match and drop it from the 

analysis, but this will result in a smaller sample size.  

This problem of record linkage in the presence of errors in identifying information was already 

discussed 50 years ago in statistics [Fellegi and Sunter, 1969]. Much of this paper simply translates 

the insights from the statistics literature to the problem of historical record linking.  
 

There are three goals that need to be taken into account when linking records: 
 

1. Make as few false matches as possible: This corresponds to minimizing type I errors 

(minimizing false positives). In other words, we want the least number of cases where the 

potential match is a false match but we deem it as matched. 
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2. Make as many true matches as possible: This corresponds to minimizing type II errors 

(minimizing false negatives). In other words, we want the least number of cases where the 

potential match is a true match but we deem it as unmatched. 

 
3. Create a sample that is as representative as possible: For given levels of type I and type II 

errors, we want the linked sample to resemble the population from which we draw matches 

as much as possible. 

 
The first two goals describe a standard type I versus type II error trade-off, and are the ones 

emphasized in the Fellegi and Sunter [1969] framework. The third goal is an additional challenge 

that is faced by researchers in the social sciences who are interested in creating linked samples. 

 
III Selecting identifying and blocking variables and measuring string distances 
 
Before calculating probabilities that each two records are a true match (section IV) and choosing 

a match to be used in the analysis (section V), there are three main decisions that the researcher 

has to make. This section discusses these three decisions in turn. 

 
Selecting identifying variables 
 
The first decision is to choose which identifying variables to use in the matching procedure. The 

“Ran Abramitzky” example used name and age as identifying variables, but historical datasets 

often contain other potentially identifying information such as gender, occupation, race, place of 

birth and place of residence.  

Here statistics theory does not provide a guidance, and instead the economics research 

question should guide the decision of which variables to use in the linking procedure. The 

selection of identifying variables will affect all three goals of the match. As we use more variables, 

we are better able to distinguish between otherwise equally-likely matches. For example, adding 

age to the list of identifying variables we are potentially able to distinguish between two different 

Ran Abramitzkys. If we use county of residence, we can distinguish between two Ran 

Abramitzkys who have the same age.  
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While adding variables to the list of identifying variables may increase the match rates and 

decrease false match rates, it may also introduce non-representativeness. For instance, a variable 

like county of residence appears in all censuses and can significantly increase match rates and 

even help us identify the true individual. However, using such a variable would result in excluding 

those who switched their county of residence from the analysis. This exclusion will be an issue 

in a study on geographical mobility, but will not be an issue in a study of fertility among residents 

who stay in Indiana. Similarly, using occupation for matching will bias any analysis of 

occupational mobility, but may not be an issue when studying outcomes unrelated to occupations.  

The decision of whether to use a variable as an identifying variable thus depends on the 

research question at hand. In most economics applications, using outcome variables such as 

occupation or place of residence may be problematic. We suggest following standard practice in 

economic history and only use predetermined individual level characteristics in the matching 

procedure. Usually, this restriction reduces the matching variables to names, age and place of 

birth, which will be the focus of the rest of the paper.2 

 
Blocking 
 
The second decision has to do with reducing the computational requirements. In principle, we 

might want to compare every individual in dataset A to every individual in dataset B. In practice, 

this is currently not possible computationally unless the size of datasets A and B is very small. The 

reason is that we would need to perform nAXnB comparisons, where nA and nB are the sizes of 

datasets A and B, respectively. For example, if you need to match 100 records in dataset A to 100 

records in dataset B, you will need to make 100*100 = 10,000 comparisons and assign 10,000 

probabilities. In a census of millions of people, this can be computationally impractical. The 

solution to this computational issue is to only compare individuals who agree on certain blocking 

variables. Ideal blocking variables are those for which mistakes are very unlikely. For instance, if 

individuals rarely misreport their state of birth, we would be unlikely to miss any true matches by 

not comparing individuals who declared different states of birth. Further reductions in 

computational time can be obtained by blocking on gender, or the first letter of the last name. 

Nevertheless, even though finer blocking results in a lower number of comparisons, blocking is 

                                                             
2Another variable that could potentially be used in linking is race. However, using this variable could be problematic 
if individuals selectively report a different race in different historical sources, a pattern documented in Mill  
and Stein [2016] and Nix and Qian [2015]. 
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not an innocuous process because it rules out any potential matches across blocks. For instance, if 

we block by the first letter of the first name, we rule out the name Emmanuel from ever matching 

to the name Immanuel. 

 Similar to the choice of identifying variables, the decision on which variables to block on 

depends on the research question. For example, it will not make sense to block on race in a study 

of racial passing. Current applications of this method (Mill and Stein, [2016]; Perez, [2017]) 

restrict the set of comparisons to individuals who are: (1) born on the same state, (2) have the same 

first letter in first and last names and, (3) have an age difference no larger than five years in absolute 

value. 

 
Measuring string distances 
 
The third decision is how to map differences in name spellings into a numerical distance.3 There 

is more than one way to compare two strings to each other. One straightforward option is to use 

an indicator of whether the names are exactly the same. In our example, 1910 “Ran Abramitzky” 

will have a distance of 0 and 1910 “Ran Abramtziky” will have a distance of 1 from 1900 “Ran 

Abramitzky”. Another option is to use a phonetic algorithm such as NYSIIS instead of the exact 

name. When using a phonetic algorithm, words that have a similar pronunciation are assigned the 

same phonetic code. These phonetic codes are designed to overcome name spelling discrepancies 

that stem from the translation of a heard name to a written name.4 A third option is to use a 

continuous string distance measure. When discrepancies in names stem mainly from hearing a 

name to writing it down, then using phonetic codes such as NYSIIS is a reasonable solution. When 

the discrepancies come from the exact spelling or digitization of the handwritten record, then string 

distances can produce better results. Phonetic code match can be used in addition to string 

distances. 

                                                             
3  A related decision is how to map numerical distances (for instance, age differences) into a distance metric. We 
usually use the absolute difference in reported  age, but we note that other distance metrics are also possible (for 
instance, an indicator that takes a value of one if both ages agree and is zero otherwise). 
4 Recent economic history papers use the NYSIIS algorithm. Other examples of phonetic algorithms include Soundex 
[Odell and Russell, 1918] and Metaphone [Philips, 1990]. Some phonetic algorithms are better suited for dealing with 
languages other than English. For example, the Spanish Metaphone algorithm is designed to match Spanish names 
[Mosquera et al., 2012]. 
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There are many string distance measures available in the literature. We use the Jaro-Winkler 

string distance (Jaro [1989]; Winkler [2006]) since it is specifically designed for the comparison 

of names and was developed in the context of record linking. We note, however, that the method 

that we discuss in this paper (and the Stata command we provide) is more general and does not 

require using the Jaro-Winkler distance as its input. In principle, other string distance measures 

could be used as inputs in the estimation procedure. The Jaro-Winkler string distance calculates a 

function of the number of matching characters and required transpositions between the two 

compared strings (names). It gives a higher weight to discrepancies in the first part of the string, 

where errors are less likely to be made. The original measure is a measure of agreement spanning 

between 0 (no common characters) and 1 (exact string match). Since we want to treat all 

discrepancies in identifying variables as distances, we actually calculate 1 minus the Jaro-Winkler 

distance as originally defined, thereby having 0 as the distance between two exact names and 1 as 

the distance between two strings with no common characters.  

In the Ran Abramitzky example, “Abramtziky” will be coded as a different name than 

“Abramitzky” using the NYIIS algorithm, but the Jaro-Winkler distance between these two names 

will be very low (0.02). At the same time, there are examples in which names have the same NYIIS 

code but a high Jaro-Winkler distance.5  

IV Assigning a probability that each two records are a true match 
 
After calculating name and other distances such as distances in reported age, we want to combine 

them into a single distance metric. A natural meaningful measure is the probability that a record 

pair is a true match. Several ways to estimate this probability have been suggested in non-historical 

settings (see Winkler [2006] for a rich survey of literature on the subject). In historical settings, 

Ruggles [2011] and Feigenbaum [2016a] estimate these probabilities using a training sample of 

manually classified records. We suggest an alternative method that does not rely on a training 

sample, which has the advantage of making the matching easier to replicate by other researchers. 

The method has been widely used for record linkage in non-historical contexts and is an application 

                                                             
5 For instance, “James Tennes” and “James Thomas” have the same NYSIIS code, but the Jaro-Winkler distance 
between “Tennes” and “Thomas” is 0.4. 
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of the Expectation-Maximization (EM) algorithm.6  This section describes how to apply the EM 

algorithm to the problem of matching historical records. 

To gain intuition about the method, imagine that there are 10 Ran Abramitzkys in the 1900 

census, and 10 Ran Abramitzkys in the 1910 census. Each Ran Abramitzky in 1900 is aged from 

1 to 10 year old. Our goal is to link these two datasets using information on reported ages, but the 

challenge is that age is potentially misreported in the 1910 census. For example, somebody who is 

reported to be 11 in 1900 is reported to be 20 in 1910 instead of 21. This misreporting implies that 

the age distance will sometimes be greater than zero when comparing two records that belong to 

the same Ran Abramitzky. Each Ran Abramitzky in 1900 has 10 potential matches in 1910, so we 

would like to assign a probability that each of these 10 potential matches is the true one. There are 

10 Ran Abramitzkys, so there are 100 such probabilities to assign. 
 

To illustrate this example, we simulate 100 age distances. We assume that 10 of these distances 

correspond to a comparison of true matches, while 90 of them correspond to a comparison of true 

non-matches. The distances that correspond to true matches are drawn from a normal distribution 

with mean 0 and standard deviation of 1. The distances that correspond to true non-matches are 

drawn from a normal distribution with mean 5 and a standard deviation of 1. Panel (a) of figure 1 

shows the distribution of observed age distances in this example, if we knew what are true matches 

and what are non-matches. There are 100 such distances drawn in this graph, each represented as 

a circle. These age distances come from two different populations: “matches” (that is, the 

observations belong to the same individual, corresponding to the 10 circles drawn in red) and “non-

matches” (that is, the observations do not belong to the same individual, corresponding to the 90 

circles drawn in blue). 
 

However, the challenge is that in reality we do not know whether each distance belongs to a 

comparison of true matches (red) or to a comparison of non-matches (blue). Instead, our actual 

                                                             
6 The general EM algorithm was described in Dempster et al. [1977]. The specific use of the EM algorithm for record 
linkage problems was developed by Winkler [1989]. For a Bayesian approach to record linkage problems see Larsen 
[2005]. 
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data look like panel (b) in figure 1. The goal is to use these data to estimate the likelihood that each 

distance corresponds to a true match, even though we do now know for sure what records are a 

true match and what records are a non-match. 

The EM algorithm starts from assuming that distances between records follow a particular type 

of distribution, and allowing two different distributions for matches and non-matches. For instance, 

one possible assumption is that, with probability pM, distances are distributed normally with mean 

µM and standard deviation sM and, with probability (1- pM), distances are distributed normally with 

mean µU and standard deviation sU. The procedure then estimates pM, µM, µU, sM and sU, and uses 

the parameter estimates to identify two separate clusters (one from which true matches are more 

likely to come and one from which non-matches are more likely to come).  

Intuitively, we expect age distances to be on average smaller when comparing the same 

individual than when comparing different individuals. Panel (c) shows the estimated distributions 

under the assumption that distances are normally distributed. Given these estimated distributions, 

it is clear that observations that are closer to zero are going to be predicted to be more likely to 

belong to the population of true matches. In addition, it is clear given the size of each of the clusters 

that the fraction of true matches (pM,) is smaller than the fraction of true non-matches (1-pM,). At 

the same time, the degree of confidence on each of the links will depend on how informative the 

identifying information (in this case, reported ages) is. The further apart µM is from µU, the more 

confident we will be in distinguishing matches and non-matches. Similarly, when sM and sU are 

small (that is, if there is very little noise in the identifying information), then we will have more 

confidence in distinguishing matches and non-matches (there will be less overlap between the 

estimated distributions). 

Imagine now that you try to link both Ran Abramitzky and Santiago Pérez. This will add to the 

problem the string distance dimension in addition to the difference in reported age. The intuition 

remains the same, but clustering will be two-dimensional in this case. Figure 2 shows an example 

in which records differ both with respect to their reported names (x-axis) and ages (y-axis). In 

panel (a), each data point is labelled as if we knew which records belong to true matches. Panel 
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(b) is how our actual data look like: observations are not labelled as belonging to a comparison of 

true matches or as a comparison of true non-matches.  

More generally, consider the set of ordered pairs of records A´B and partition this set to the set 

of true matches (M), if the records in A and B describe the same person, and the complementing 

set of true non-matches (U). Suppose that the distance, or the degree of non-agreement, in 

identifying variable k for pair i Î A´B is given by gik, and the vector of such distance measures for 

pair i is gi. Our goal is to estimate for each pair how likely it is to be a true match given the vector 

of distances in the identifying variables. A pair with shorter distances should be more likely to be 

a match relative to a non-match. 

The probability that a pair i in A´B is a true match conditional on the distances in the identifying 

variables gi (in our case, reported names and year of birth) can be inferred from Bayes Rule as: 

 Pr#$ ∈ & ∕ g() =
Pr	(g( ∩ 	$ ∈ &)

Pr	(g()
	 (1) 

 
However, we obviously do not really know if pairs are true matches (in M) or non-matches 

(in U). In other words, pairs are not labeled as being in M or in U. In the data, we just observe a 

sample analogue of Pr	(g() (that is, we observe the empirical distribution of distances across pairs 

of records, which in our previous example corresponds to panel (b) of figure 1). At the same time, 

we know that: 

 Pr#g() = Pr(/( ∕ $ ∈ &)01 + Pr(/( $⁄ ∈ 4) (1 − 01) (2) 

where pM is the unconditional probability that a pair is a match. 

The method requires that we assume a statistical distribution for Pr(/( ∕ $ ∈ &) and 

Pr(/( $⁄ ∈ 4). We can then use maximum likelihood to find the parameters of the statistical 

distribution that maximize the likelihood of observing the observed distances. Once we find these 

parameters, we can compute an estimate of: 

 Pr#$ ∈ & ∕ g() =
Pr(/( ∕ $ ∈ &)01

Pr(/( ∕ $ ∈ &)01 + Pr(/( $⁄ ∈ 4) (1 − 01)
	 (3) 

That is, the probability that a pair of observations is a match given the observed distances in 

identifying variables. 
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If we observed true match status, finding the parameters that maximize the likelihood function 

would be a straightforward exercise. The reason why we need the EM algorithm to estimate these 

parameters is because we do not observe true match status, which makes the direct maximization 

of the likelihood function complicated computationally. The EM algorithm is just a numerical tool 

that enables us to estimate these parameters without information on true match status. Indeed, in 

the original Fellegi and Sunter [1969] introduction of the problem of record linkage, estimation 

was conducted through the method of moments. We use the EM algorithm as it has been shown to 

have better convergence properties than other numerical optimization tools (see, for example, 

Meilijson, [1989]; Xu and Jordan, [1996]).  
 

In particular, the EM algorithm suggests an iterative process to estimate the parameters of the 

distributions above. It starts by calculating the probability of being a true match (left-hand-side of 

(1)) given a guess of the distributions of distances conditional on being a match or a non-match 

(right-hand-side of (1)). Then, based on these probabilities it makes a better guess of the same 

conditional distribution for another iteration. This process is repeated until the parameters 

converge. According to Dempster et al. [1977] (and specifically in this context according to 

Winkler [1989]) the algorithm reaches a local maximum of the likelihood function. 

The EM algorithm 

1.  Define a distribution family for Pr(γ8 ∕ i ∈ M) and Pr(γ8 i⁄ ∈ U). The algorithm will 

estimate the parameters of the distributions. Denote the vectors of unknown distributional 

parameters as qS , where sÎ{M,U}.. 

2. Guess initial values for parameters of the conditional distributions <=
(>) and the 

unconditional probability to be a true match 01
(>)

. 

3. Loop over steps E and M until convergence: 

E-step: Given <=
(?) and 01

(?) infer @(
(?) according to Equation 1: 
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@(
(?) = PrA$ ∈ & g(⁄ , <1

(?), 01
(?)C

=
PrA/( ∕ <1

(?)C 01
(?)

PrA/( ∕ <1
(?)C 01

(?) + PrA/( <D
(?)⁄ C (1 − 01

(?))
	 

(4) 

 M-step: Given @(
(?), infer <=

(?EF) and 01
(?EF) using Maximum Likelihood. The distribution 

of g(	(an observable measure) is given by: 

 Pr#g() = Pr(/( ∕ $ ∈ &)0G + Pr(/( $⁄ ∈ 4) (1 − 0G) (5) 

i. Hypothetically, if the classification of pairs to true matches and nonmatches was 

known and denoted by zi=I{iÎM},. then we could have estimated qM and qU from 

the subsets of true matches and nonmatches: 

 

HIJ		K(/, L, <, 01)

=M[L(	HIJ	01Pr	(/(/<1) + (1 − L()	HIJ	(1 − 01)Pr	(/(/<D)]
Q

(RF

 
(6) 

ii. Since the classification zi is unknown we replace it with @(
(?).The maximum 

likelihood estimates are then: 

 01
(?EF) =

1
TM@(

(?)
Q

(RF
  

 <1
(?EF) = UVJmax

Z
M@(

(?)
Q

(RF

HIJ	Pr	(/(/<) (7) 

 <D
(?EF) = UVJmax

Z
M(1 − @(

(?))
Q

(RF

HIJ	Pr	(/(/<)  

After obtaining the maximum likelihood estimates, we can then compute, for any given pair i in 

AXB an estimate of Pr($ ∈ &//().  
 

The procedure described above requires assuming a statistical distribution for the observed 

distances in identifying variables. In most applications of the EM algorithm, a conditional 

independence assumption is invoked: distances in each identifying variable are assumed to be 

independent of distances in the other variables, conditional on being a match/non-match. Thus, a 
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distribution can be defined separately for each variable k: Pr	(g([ ∩ 	$ ∈ &) and Pr	(g([ ∩ 	$ ∈ 4). 

Such an assumption greatly simplifies the estimation, as it reduces the number of parameters that 

need to estimated. Although this assumption is unlikely to exactly hold in real-world data, practical 

matching projects have shown that it is possible to still achieve high quality matches under this 

assumption (e.g. Herzog et al. [2007]; Christen, [2012]).  

In the empirical applications discussed below, the distribution selected for the birth year 

distance was multinomial with six possible outcomes, each corresponding to an age difference 

ranging from 0 to 5 years in absolute value. Name distances, which are spanning the [0,1] range, 

were grouped in four ranges following Winkler [1988], roughly corresponding to agreement, 

partial agreement, partial disagreement, and disagreement: [0, 0.067], (0.067,0.12], (0.12, 0.25], 

and (0.25,1]. We then assumed a multinomial distribution of which range a name distance falls 

into. 
 

Discretizing the string distance information into bins has a key practical advantage. With this 

approach, each pair of records can fall into a finite number of bins. For instance, if there are 6 

possible age differences, 4 possible first name distances and 4 possible last name distances, there 

are just 6´4´4 = 96 possible combinations of distances. The properties of the multinomial 

distribution then imply that one just needs to store 96 numbers to run the EM algorithm, instead 

of storing a potentially very large matrix with all possible combinations. This simplification 

dramatically improves computational time. In other words, it is sufficient to know how many of 

the pairs fall into each of the bins to estimate the parameters of the multinomial model.7 Recent 

applications of the EM algorithm for large-scale record linkage also adopt this simplification (see, 

for example, Enamorado et al, [2017]).  

 

Intuition of the approach and further limitations 

 

                                                             
7 This reasoning is analogous to the one that indicates that to estimate the probability of heads for a coin using N 
tosses, one just needs to have information on the number of tosses that resulted in heads. So, instead of storing N 
numbers, it is enough to know just one.  
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As described above, the goal of the method is to split the full set of pairs of records into two 

groups (“clusters”): matches and non-matches. The simplest way of thinking about this grouping 

problem would be to use k-means clustering. In this approach, the data are split into k clusters so 

as to (1) minimize the within-cluster differences across observations and (2) maximize the 

between-clusters differences. Intuitively, pairs of records that are closer to each other with respect 

to their name and age distances should be grouped together in the cluster of “matches”, and 

observations that are further away should be grouped together in the cluster of “non-matches”. The 

EM algorithm instead computes probabilities of observations belonging to each of the clusters. 

The goal of the method is to maximize the overall probability or likelihood of the data, given the 

assigned clusters. 
 

Ideally, we would like pairs of records that are close to each other in terms of identifying 

information to belong to the cluster of matches, while observations that are further apart to belong 

to the cluster of non-matches. However, a limitation of the approach is that there is no guarantee 

that the parameters that locally maximize the likelihood function will split the sample into matches 

and non-matches. Given this, one important sanity check is that the estimated match probabilities 

are indeed decreasing in the distance between observations. Formally, we want that: 

/( ≤ /] ⟹ Pr($ ∈ &//() ≥ Pr($ ∈ &//]) 

 
In the case of conditional independent distributions, this will be satisfied by a monotone 

likelihood ratio in each of the distances. That is, for each of the distances we want that: 

/( ≤ /] ⟹
Pr(/( $⁄ ∈ &)
Pr(/( $⁄ ∈ 4) ≥

Pr#/] $⁄ ∈ &)
Pr#/] $⁄ ∈ 4)  

In addition, note that if there are no duplicates in either datasets A and B, the unconditional 

match probability pM cannot be higher than `8a	(bc,bd)
bc×bd

. Hence, another restriction on the parameters 

that should be checked is whether the condition 0G ≤ `8a	(bc,bd)
bc×bd

 holds. 
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 When initializing the EM algorithm, we impose these two constraints into our initial parameter 

guesses. A more sophisticated version of the code could impose this sanity check as further 

restrictions on the probabilities (rather than just checking ex post that they are satisfied). 

One case in which the algorithm typically fails is when the fraction of true matches (pm) is very 

small. One fix to this issue is to use what Yancey [2002] calls a “match enriched sample”: a sample 

in which we oversample observations that are ex-ante more likely to be a true match. One 

adjustment that works well in practice is to restrict the set of comparisons to individuals who match 

on place of birth, and first letter of the first and last names. This adjustment (“blocking”) largely 

excludes pairs of records who are very unlikely to belong to the same individual. This issue with 

the EM algorithm is an additional reason why blocking on some identifying variables is useful. 

Finally, note that if the proportion of matches in the data (pm) is relatively low, then it will be 

the case that: 

Pr(/( $⁄ ∈ 4) » Pr(/() 

Hence, it is possible to obtain a close approximation of Pr(/( $⁄ ∈ 4)	by using the observed 

frequencies of  /( in the data. For instance, if we observe that 20% of the age distances are equal 

to 0, we can say that Pr(fJg	h$ijUklg( = 0 $⁄ ∈ 4)»20%.  It is possible to directly incorporate 

this insight into the procedure.   

 
V Choosing records to use in the analysis 
 
Now that we have estimates of the probabilities that each two records are a true match, we can use 

these probabilities to choose which matches to use in the analysis. There are several ways to choose 

a match. One option, for example, is to just choose the match that yields the highest probability of 

being true. One issue with this approach, however, is that the highest probability can be low, for 

example 30% of being the true match. Even if the match with the highest probability is very likely 

(say 90% chance of being the true match), another issue is that there could be a second best match 

with very similar probability to be the true match (say 80%). A better option is thus to only choose 

matches with high enough probability to be the true match (say 90%), for which the second best 
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match is unlikely to be the true one (say below 15%). This option will also exclude observations 

that are non-unique, i.e. observations that have the exact same name and age combination. 

Formally, this decision rule can be stated in the following way: To be considered a unique 

match for a record in dataset A, a record in dataset B has to satisfy three conditions. Specifically, 

the researcher should: 

1. choose the match with highest probability of being a true match out of all potential matches 
for the record in A. 
 

2. choose a match that is true with a sufficiently high probability, i.e. a match with a 
probability p1 that satisfies p1>p for a given p in (0; 1] chosen by the researcher. 

 
3. choose a match for which the second best match is unlikely, i.e. the match score of the next 

best match, denoted as p2, satisfies p2<l for a given l in (0,p] chosen by the researcher.  
Similarly, to be considered a unique match for a record in dataset B, a record in dataset A has 

to satisfy these three conditions.8 Our linked sample is the set of pairs of records (a, b) in A´B for 

which: (1) a matches uniquely to b, and (2) b matches uniquely to a. 

An additional assumption of the maximum likelihood procedure described above is that the 

observed distances are independently distributed from each other. In many economic history 

settings, this assumption will be violated because each observation in dataset A can be a match for 

at most one observation in dataset B (for instance, a one-to-one matching such as linking 

individuals across censuses). As a consequence, the algorithm does not require these probabilities 

to add up to 1. That is, for a given record in A, the sum of the probabilities across all potential 

matches in B will not in general add up to one. Hence, it is possible, for instance, to have a first 

best score of 0.8 and a second best score of 0.7. Indeed, in the empirical application below we will 

show the empirical distribution of estimated linking scores and show instances of second-best 

scores above 0.5 (which would be inconsistent with probabilities adding up to 1). This assumption 

can be relaxed, but doing so makes the estimation significantly more complex (Enamorado et al, 

2017). Note that, even if the independence assumption does not hold in practice, the estimated 

                                                             
8 We impose this symmetry condition because linking historical censuses is an example of one-to-one linking. 
Imposing this condition prevents situations in which a record b in B is the best candidate for a record a in A, but the 
best candidate for b in B is a different record a’ in A. 
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linking scores are still useful as they guide researchers regarding how much weight each of the 

identifying variables (in our case, names and age distances) should have when classifying records 

as matches or non-matches. Moreover, as mentioned above, even if this assumption does not 

exactly hold in the data, high quality matches can still be achieved under this assumption (Herzog 

et al., 2007; Christen, 2012).  
 

Which set of parameters should a researcher choose? Depending on the choice of values for 

the first- and second- best matches (p and l), it is possible to generate samples with more or less 

confidence on the links. Intuitively, higher values of p and lower values of l will yield samples 

with fewer observations but higher average quality of the links. This possibility enables researchers 

to assess the robustness of their findings to the quality of the links.  

When the main concern is to avoid false positives, we suggest two rules of thumb. First, we 

suggest researchers to choose l to be close to zero. This is a conservative choice because it implies 

that the second best match is very unlikely (probability close to zero). Second, because names are 

the most important source of identifying information, we suggest choosing p such that only records 

in which there is at least “partial agreement” (Jaro-Winkler distance below 0.12, as discussed 

above) in both first and last name will be linked. In any case, one useful tool (as shown by the 

empirical application below) to guide the choice of parameters is to plot a histogram of the 

estimated first and second-best probabilities. Such a histogram enables a visualization of where 

the mass of the distribution of first and second-best scores is located.  

There are analogies between these decision rules and existing automated linking methods in 

economic history, such as Ferrie [1996] and Abramitzky et al. [2012, 2014, 2017]. When a method 

requires exact match of the names, it essentially requires that the first best match will have a high 

enough probability. Similarly, when a method requires uniqueness of the names within a five years 

window, it essentially requires that the second-best match will be unlikely. Requiring both exact 

match of names and uniqueness within a five years window is parallel to requiring both that the 

first best match has a high probability and that the second-best match is unlikely. 
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Indeed, the three steps described above allow researchers to make specific choices that will 

generate similar samples as other existing fully automated methods in economic history. 

Specifically, if: (1) in the first step of our method we block on a phonetic version (SOUNDEX or 

NYSIIS) of the first and last name, and (2) in the second step we use the EM algorithm to estimate 

probabilities based on age alone, and (3) in the third step we use a decision rule that picks the 

match with the highest probability (or, to mimic the more conservative approach, pick a match for 

which the second closest age is larger than two), then we are back to the traditional automated 

approaches.   
 

One promising direction not discussed in this paper is how to adjust regression coefficients 

when dealing with imperfectly linked data. While there is a literature in statistics on this topic (see, 

for instance, Lahiri and Larsen [2005]), these methods are unfortunately still not directly applicable 

to the situations that typically arise in historical linkage problems. For instance, Lahiri and Larsen 

[2005] assume that all of the observations in one dataset have a potential link in the other, which 

does not hold when linking historical censuses due to mortality and underenumeration. 

 
VI Application: Linking the US and Norwegian censuses using our method and IPUMS’  
 
Next, we apply the method to create two linked samples: one linking the 1850 and 1880 US 

censuses of population, and one linking the 1865 and 1900 Norwegian censuses of population. We 

then use these data to construct father-son occupational transition matrices and to compute 

summary measures of intergenerational occupational mobility. 

We chose to create these samples for three primary reasons. First, the most common datasets 

economic history papers attempt to link are historical censuses of population, making them 

especially attractive to test our methods.  Second, IPUMS has constructed widely-used linked 

samples for both the US and Norway for these census years [Ruggles et al., 2011] using the exact 

same identifying information that we use to create our samples, hence enabling us to compare two 

algorithms that use the same information. Finally, testing the method in two different countries 



 

20 

enables us to assess how well our method does in two countries with different naming conventions, 

enumeration quality, outmigration rates, etc.  

 

Creating linked samples 

 

To create the US sample, we followed white males across the 1850 and 1880 US censuses of 

population.9 To do so, we used the 1850 and 1880 full count US censuses available through the 

North Atlantic Population Project [Ruggles et al., 2011]. To construct the Norwegian sample, we 

followed males through the 1865 and 1900 Norwegian full count censuses. These two censuses 

are also available through the North Atlantic Population Project. In both cases, and as we discussed 

in section III, our linking was based only on predetermined characteristics: first and last names, 

place of birth and predicted year of birth. 
 

As discussed above, to reduce the computational burden, we restricted our attention to pairs of 

individuals who: (1) reported the same place of birth10, (2) had a predicted age difference of no 

more than five years in absolute value, and (3) had first and last names starting with the same letter. 

This blocking strategy attempted to avoid unnecessary comparisons between observations that 

were very unlikely to belong to the same individual.  

Figure 3 shows the empirical distribution of the first best and second-best scores, both for the 

US (top panel) and Norway (bottom panel). There are three things worth noticing about these 

figures. First, the maximum estimated probability (which corresponds to two observations that 

agree exactly on all of their identifying information) is in both cases below one. Hence, a decision 

rule that imposes a very high level of p would essentially result in a sample with no observations. 

This is expected since, given that one observation can have multiple exact matches, no method can 

be sure about whether two observations are a match or not. Second, note that in a high fraction of 

the cases the first best probability is quite close to zero, indicating that all of the potential matches 

are quite unlikely. Third, note that the place of birth information is more detailed for Norway 

(municipalities) than for the US (states). This more detailed birthplace information makes multiple 

                                                             
9 The sample is restricted to whites because slaves, who constituted the majority of the US black population at the 
time, were not individually listed in the 1850 population census. 
10 Place of birth corresponded to states in the case of the US, municipalities in the case of Norway, country of birth 
for the foreign born in both countries. 
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candidates for a match less likely in Norway, which explains why there is a sharper difference 

between the distribution of first-best matches and the distribution of second-best matches in 

Norway than in the US.  More generally, this illustrates how having more detailed information on 

identifying variables facilitates uniquely linking individuals. 

Figure 4 illustrate how our method can generate samples that are on different points of the type 

I vs. type II errors frontier. In this figure, we present the matching rate as a function of the cutoff 

for the first (x-axis) and second-best (y-axis) linking scores.  The figure shows that our match rates 

can range from very low (less than 5%) to high (above 30%) depending on the choice of 

parameters.  

With this trade off in mind, we created two linked samples, one using a more conservative 

choice of parameters and one using a less conservative choice. As our less conservative choice of 

parameters, we adopted the following decision rule: (1) we only kept observations for which the 

best match had a value of at least 0.6 and (2) the second-best match had a value of at most 0.3.  As 

our more conservative choice, we only kept observations for which the best match is at least 0.7 

and the second-best match is at most 0.1. These levels are indicated by the blue (less conservative) 

and red (more conservative) vertical bars in each panel of the figure.  We note that there is little 

mass in the distribution of first-best scores between 0.3 and 0.6 and, similarly, there is little mass 

in the distribution of second-best scores between 0.3 and 0.6. Hence, the samples will be similar 

if we move the cutoffs up or down within that range. 
 

When linking the Norwegian data, we had to deal with the fact that the patronymic naming 

scheme was still in place in Norway in the 19th century. Under this naming scheme, an individual 

received a last name based on the name of his or her father. For instance, the sons of William 

would receive the surname Williamson. We followed IPUMS in truncating the suffix in the 

patronymic surnames to minimize inconsistencies in the spelling of these suffixes. 

 
 

Similarities and differences with IPUMS’ linking method 
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The method used by IPUMS to generate their linked samples shares some similarities with 

the one proposed in this paper, but there are also some important differences.11 Similar to us, the 

method starts by identifying a set of potential matches for each individual record12, and then 

creates age and name similarity scores for each pair of potential links.  
 

The key distinction with respect to our proposed method is that, after computing the similarity 

scores, IPUMS constructed a training sample of manually classified records.13 In particular, data 

entry operators from the Minnesota Population Center classified a random subsample of potential 

links into matches and non-matches. Then, the remaining potential links were classified using a 

machine learning tool called Support Vector Machine, or SVM.14 This tool uses information from 

the training sample to predict the classification status (matches or non-matches) of the remaining 

records. In this regard, the method used by IPUMS is close in spirit to the method discussed in 

Feigenbaum [2016a]. In contrast, our method does not rely on a training sample, and is thus 

cheaper and replicable. 

The second distinction with respect to our samples is that, in the case of the US (but not in 

Norway), the IPUMS method started from a 1% sample rather than from the full 100% population 

data. That is, the IPUMS sample links a 1% sample of the 1850 census to the full count 1880 

census, whereas we link a full count version of the 1850 census to a full count version of the 

1880 census. Starting from a sample might be problematic. Assume there are two Ran 

                                                             
11 This method is described in detail in Goeken et al. [2011]. 
12 Unlike in our case, the method used by IPUMS does not block on first letter of first and last names, but rather just 
restricts the comparisons to individuals with a given race and birthplace. This coarser blocking dramatically increases 
the number of calculations that need to be made. Nevertheless, in the IPUMS samples, about 98% of the individuals 
in the linked US data and about 92% in the Norwegian data agree on the first letter of both the first and last names. 
Hence, although the method does not explicitly block on these characteristics, in practice there are only few individuals 
in the resulting samples for which these characteristics do not agree. This is expected because the Jaro-Winkler 
similarity score, which is used as an input in the construction of the linked samples, has a larger penalty for mistakes 
that take place in the first letter of a word. Hence, names with such mistakes are unlikely to have a high estimated 
probability of being a true link. 
13 The procedure used to create the training sample is described in the following way: “For our project, we selected a 
random sample of potential links, and had a group of MPC data entry operators code each potential link as a “yes” or 
“no” based on a visual examination of names and ages of potential links (with yes indicating that it was in their opinion 
a true link). If a majority had the potential link as a “yes”, then it was coded as a “yes” in the training data (with the 
remainder coded as “no”)”. 
14 As described in Goeken et al. (2011), “The SVM classifier analyzes the training data, plots them in a 
multidimensional space, and then constructs a boundary between the two classes of records that maximizes the 
distance from the hyperplane and the nearest data points in both of the classes (i.e., between the true and false links).” 
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Abramitzkys in 1850 US, but only one of them in the 1% sample. In 1860, one of the Ran 

Abramitzkys (the one who was originally in the 1% sample) decides to move outside of the US. 

By 1880, there will be just one Ran Abramitzky in the census, so a linking method that starts 

from a sample will likely link the unique (in the 1% sample) 1850 Ran Abramitzky to the unique 

1880 full count Ran Abramitzky, even though the two are different people. Note that immigration 

is not the only issue with a sample to population linking; any source of attrition from one census 

to the other (mortality, underenumeration) can generate a similar problem.  

 

Comparison of match rates and representativeness 

 

We next compare our linked samples to the IPUMS linked samples with respect to matching rates 

and  representativeness. The IPUMS website does not explicitly report the matching rates for either 

the US or Norway, but we calculate these rates to be around 8% for the US and 15% for Norway.15 

As we discussed, the match rate in our case depends on the choice of parameters for the first- and 

second-best matches and can range from  less than 5% to more than 30% (see Figure 4).  In our 

more conservative sample (first best match at least 70% and second best at most 10%), our match 

rate is quite close to IPUMS’ at 5% for the US and 12% for Norway. In our less conservative 

sample (first best match at least 60% and second best at most 30%), the match rate is 15% in the 

US and 24% in Norway.  

 To check representativeness, we compare our resulting linked samples to the population 

(using the non-linked cross sectional census data). In this exercise, we focused on our less 

conservative samples, but results are similar when focusing on the more conservative one. 

Specifically, we calculated the proportion in each occupational category of fathers in 1850 US and 

1865 Norway. For example, in the entire US population 8.1% of fathers worked in white collar 

occupations and 59% were farmers. In our matched sample, these numbers are 9 and 66%, 

respectively, whereas in the IPUMS linked sample they are 9 and 64%. More generally, Figure 5 

                                                             
15 There are about 45,000 males aged 16 or less in the 1850 US  census 1% sample, and about 3,500 in the 1850-1880 
US linked sample. There are about 340,000 males aged 16 or less in the 1865 Norwegian census, and about 51,000 in 
the Norway 1865-1900 linked sample. 
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shows that while our linked sample is not completely representative of the population, it is very 

close. Moreover, the figure suggests that our linked sample is similarly representative as 

IPUMS’.16   

 

Comparison of estimated intergenerational occupational mobility 

 

We next use our data and IPUMS to compute rates of intergenerational occupational mobility. 

Specifically, we ask whether a researcher using linked samples constructed using these two 

different methodologies would have arrived to substantively different conclusion with respect to 

patterns of intergenerational mobility in this time period.  

Tables 1 and 2 show the father-son occupational transition matrices constructed using our 

linked samples and the IPUMS linked samples. Table 1 shows the data for the US 1850-1880 links, 

whereas Table 2 shows the corresponding Norway 1865-1900 links. As can be seen from the 

tables, both methods produce quite similar occupational transition matrices, both when linking US 

records and when linking Norwegian records. In most cases, the estimated percentage of sons who 

are in each occupational category is very similar across methods. As a result, both methods also 

generate a very similar occupational structure among sons in the later census year (last row of each 

matrix in each of the tables). 

In table 3, we create summary measures of intergenerational occupational mobility using the 

linked samples. In panel (a), we report the simplest measure of occupational mobility: the fraction 

of sons working on a different occupational category than their father. In panel (b), we use instead 

the Altham statistic [Altham, 1970], which measures the distance of each occupational transition 

matrix with respect to a matrix representing independence (so that larger values imply higher 

departures from independence, that is, less mobility). This approach for measuring mobility is 

the one used in some recent economic history papers and is more appropriate when comparing 

                                                             
16 The linked samples (both ours and the one built by IPUMS) might differ from the cross-section for reasons unrelated 
to the linking procedure. For instance, if there is differential mortality or outmigration by father’s occupational 
category, the occupational distribution in the initial census year will differ from the cross section even if the method 
linked everyone who was still in the US by 1880/Norway in 1900. 
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countries with different occupational structures (see Long and Ferrie [2013] and Modalsli [2017] 

for further details). 
 

In both the US and Norway, the fraction of sons working in a different occupational category 

than their father is similar when using the IPUMS linked samples than when using our linked 

samples (both in their more and less conservative versions). In the US, we estimate that about 45% 

of sons worked in a differential occupational category when using the less conservative sample, 

and 44% when using the more conservative sample (compared to 44% when using the IPUMS 

sample). In Norway, when using our linked samples we estimate that between 44 and 45% of sons 

in a different occupational category than their father, compared to 44% when using the IPUMS 

sample. 
 

We next turn to analyze differences in estimated mobility across methods when using the 

measures based on the Altham statistic. The distance with respect to a matrix representing full 

independence is similar regardless of the linked samples that we use, both for the US and Norway. 

For the US, the estimated departure with respect to independence is 14.67 when using our linked 

sample, 15.18 when using our more conservative sample and of 17.37 when using the IPUMS 

sample. For Norway, the departure from independence is 25.94 when using our less conservative 

sample, 26.08 when using our more conservative sample, and of 25.01 when using the IPUMS 

sample.  

Overall, while there are small differences in the magnitudes, the evidence indicates that 

researchers using any combination of these datasets would have arrived to the same conclusion: 

that the US had higher rates of intergenerational occupational mobility than Norway in the second 

half of the 19th century (as measured by the Altham statistic). 

 
VII Conclusion 
 
Fully-automated methods for linking historical records are transparent and easy to replicate. We 

suggest a fully automated method that adapts standard techniques from the statistical literature to 

the problem of historical record linkage. While this method is more computationally expensive 
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than automated methods based on simple name and age comparisons, it enables researchers to 

create samples at the frontier of minimizing type I and type II errors. A researcher can choose to 

create a sample with very low rates of false positives (at the cost of more false negatives), a sample 

with very low rates of false negatives (at the cost of more false positives), or anything in between. 

When applying our method to measure rates of intergenerational occupational mobility in 

historical US and Norway, we find that the estimates using our fully-automated method are 

remarkably similar to the ones using IPUMS’ widely-used linked data.  



References

1. Abramitzky, R., Boustan, L. P. & Eriksson, K. A Nation of Immigrants: Assimilation and

Economic Outcomes in the Age of Mass Migration. Journal of Political Economy 122

(2014).

2. Abramitzky, R., Boustan, L. P. & Eriksson, K. Cultural assimilation during the age of mass

migration. National Bureau of Economic Research (2016).

3. Abramitzky, R., Boustan, L. P. & Eriksson, K. Europe’s Tired, Poor, HuddledMasses: Self-

Selection and Economic Outcomes in the Age of Mass Migration. American Economic

Review 102, 1832–1856 (2012).

4. Abramitzky, R., Boustan, L. P. & Eriksson, K. Have the poor always been less likely to

migrate? Evidence from inheritance practices during the Age of Mass Migration. Journal

of Development Economics 102, 2–14 (2013).

5. Abramitzky, R., Boustan, L. P., Eriksson, K. & Feigenbaum James J.and Pérez, S. Auto-

mated Linking of Historical Data (2018).

6. Aizer, A., Eli, S., Ferrie, J. P. & Lleras-Muney, A. The long-run impact of cash transfers

to poor families. The American Economic Review 106, 935–971 (2016).

7. Altham, P. M. The Measurement of Association of Rows and Columns for an rXs Con-

tingency Table. Journal of the Royal Statistical Society. Series B (Methodological), 63–73

(1970).

8. Atack, J., Bateman, F. &Gregson,M. E. “Matchmaker,Matchmaker,MakeMe aMatch”A

General Personal Computer-Based Matching Program for Historical Research. Historical

Methods: A Journal of Quantitative and Interdisciplinary History 25, 53–65 (1992).

9. Bailey, M., Cole, C., Henderson, M. & Massey, C. How Well Do Automated Methods Per-

form in Historical Samples? Evidence from New Ground Truth tech. rep. (National Bureau

of Economic Research, 2017).



10. Bleakley, H. & Ferrie. Shocking behavior: Random wealth in antebellum Georgia and

human capital across generations. The Quarterly Journal of Economics 131, 1455–1495

(2016).

11. Bleakley, H. & Ferrie. Up from poverty? The 1832 Cherokee Land Lottery and the long-

run distribution of wealth. National Bureau of Economic Research (2013).

12. Christen, P. Data matching: concepts and techniques for record linkage, entity resolution,

and duplicate detection (Springer Science & Business Media, 2012).

13. Collins, W. J. & Wanamaker, M. H. Selection and Economic Gains in the Great Migra-

tion of African Americans: New Evidence from Linked Census Data. American Economic

Journal: Applied Economics 6, 220–252 (2014).

14. Collins, W. J. & Wanamaker, M. H. The Great Migration in Black and White: New Evi-

dence on the Selection and Sorting of SouthernMigrants. The Journal of Economic History

75, 947–992 (2015).

15. Collins, W. J. &Wanamaker, M. H. Up from Slavery? African American Intergenerational

Economic Mobility Since 1880. National Bureau of Economic Research (2017).

16. Costa, D. L., Kahn,M. E., Roudiez, C. &Wilson, S. Data set from the UnionArmy samples

to study locational choice and social networks. Data in brief 17, 226–233 (2018).

17. Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum Likelihood from Incomplete Data

via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological)

39, 1–38 (1977).

18. Eli, S., Salisbury, L. & Shertzer, A. Migration responses to conflict: evidence from the

border of the American Civil war (2016).

19. Enamorado, T., Fifield, B. & Imai, K. Using a probabilistic model to assist merging of

large-scale administrative records tech. rep. (Technical Report. Department of Politics,

Princeton University, 2017).



20. Eriksson, K. Access to Schooling and the Black-White Incarceration Gap in the Early

20th Century US South: Evidence fromRosenwald Schools.National Bureau of Economic

Research (2015).

21. Feigenbaum, J. J. Automated Census Record Linking: A Machine Learning Approach.

mimeo (2016).

22. Feigenbaum, J. J. Intergenerational Mobility during the Great Depression. mimeo (2016).

23. Feigenbaum, J. J. Multiple Measures of Historical Intergenerational Mobility: Iowa 1915

to 1940. Economic Journal (2017).

24. Fellegi, I. P. & Sunter, A. B. A Theory for Record Linkage. Journal of the American Sta-

tistical Association 64, 1183–1210 (Dec. 1969).

25. Ferrie. A New Sample of Males Linked from the Public Use Micro Sample of the 1850

U.S. Federal Census of Population to the 1860 U.S. Federal CensusManuscript Schedules.

Historical Methods: A Journal of Quantitative and Interdisciplinary History 29, 141–156

(1996).

26. Ferrie. The entry into the US labor market of antebellum European immigrants, 1840–

1860. Explorations in Economic History 34, 295–330 (1997).

27. Fouka, V. Backlash: The Unintended Effects of Language Prohibition in US Schools after

World War I. Stanford Center for International Development Working Paper 591 (2016).

28. Herzog, T. N., Scheuren, F. J. &Winkler, W. E.Data quality and record linkage techniques

(Springer Science & Business Media, 2007).

29. Hornbeck, R. & Naidu, S. When the levee breaks: black migration and economic devel-

opment in the American South. The American Economic Review 104, 963–990 (2014).

30. IPUMS. IPUMS Linked Representative Samples, 1850-1930 Final Data Release Min-

nesota Population Center, University of Minnesota.



31. Jaro, M. A. Advances in Record-Linkage Methodology as Applied to Matching the 1985

Census of Tampa, Florida. Journal of the American Statistical Association 84, 414–420

(June 1989).

32. Kosack, E. & Ward, Z. Who Crossed the Border? Self-Selection of Mexican Migrants in

the Early Twentieth Century. The Journal of Economic History 74, 1015–1044 (2014).

33. Lahiri, P. & Larsen, M. D. Regression Analysis with Linked Data. Journal of the American

Statistical Association 100, 222–230 (Mar. 2005).

34. Larsen, M. D. Hierarchical Bayesian Record Linkage Theory Aug. 2005.

35. Long, J. The Socioeconomic Return to Primary Schooling in Victorian England. Journal

of Economic History 66, 1026–1053 (Dec. 2006).

36. Long, J. & Ferrie. Intergenerational occupational mobility in Great Britain and the United

States since 1850. The American Economic Review 103, 1109–1137 (2013).

37. Massey, C. G. Playing with matches: An assessment of accuracy in linked historical data.

Historical Methods: A Journal of Quantitative and Interdisciplinary History 50, 129–143

(2017).

38. Meilijson, I. A fast improvement to the EM algorithm on its own terms. Journal of the

Royal Statistical Society. Series B (Methodological), 127–138 (1989).

39. Mill, R. & Stein, L. C. Race, Skin Color, and Economic Outcomes in Early Twentieth-

Century America. Working Paper, Stanford University (2016).

40. Modalsli, J. Intergenerational Mobility in Norway, 1865–2011. The Scandinavian Journal

of Economics 119, 34–71 (2017).

41. Mosquera, A., Lloret, E. & Moreda, P. Towards facilitating the accessibility of web 2.0

texts through text normalisation in Proceedings of the LREC workshop: Natural Language

Processing for Improving Textual Accessibility (NLP4ITA) (2012), 9–14.



42. Nix, E. & Qian, N. The Fluidity of Race:“Passing” in the United States, 1880-1940. Na-

tional Bureau of Economic Research (2015).

43. Odell, M. & Russell, R. The soundex coding system. US Patents 1261167 (1918).

44. Parman, J. Childhood health and sibling outcomes: Nurture Reinforcing nature during the

1918 influenza pandemic. Explorations in Economic History 58, 22–43 (2015).

45. Pérez, S. The (South) American Dream: Mobility and Economic Outcomes of First-and

Second-Generation Immigrants in Nineteenth-Century Argentina. The Journal of Eco-

nomic History 77, 971–1006 (2017).

46. Philips, L. Hanging on the metaphone. Computer Language 7 (1990).

47. Ruggles, S. Intergenerational Coresidence and Family Transitions in the United States,

1850–1880. Journal of Marriage and Family 73, 136–148 (2011).

48. Ruggles, S., Roberts, E., Sarkar, S. & Sobek, M. The North Atlantic population project:

Progress and prospects. Historical methods 44, 1–6 (2011).

49. Salisbury, L. Selective migration, wages, and occupational mobility in nineteenth century

America. Explorations in Economic History 53, 40–63 (2014).

50. Winkler,W. E.Near Automatic Weight Computation in the Fellegi-Sunter Model of Record

Linkage in Proceedings of the Fifth Annual Census Bureau Research Conference (1989).

51. Winkler, W. E. Overview of Record Linkage and Current Research Directions.U.S Bureau

Statistical Research Division Research Report Series 2 (2006).

52. Winkler,W. E.Using the EMalgorithm for weight computation in the Fellegi-Sunter model

of record linkage in Proceedings of the Section on Survey Research Methods, American

Statistical Association 667 (1988), 671.

53. Xu, L. & Jordan, M. I. On convergence properties of the EM algorithm for Gaussian mix-

tures. Neural computation 8, 129–151 (1996).



54. Yancey, W. E. Improving EM Algorithm Estimates for Record Linkage Parameters in Pro-

ceedings of the Section on Survey Research Methods, American Statistical Association

(2002).



Figure 1: Illustration of the EM algorithm

(a) If true matches were known
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(b) Actual data (true matches are unknown)
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Notes: This figure shows an hypothetical example that illustrates the EM algorithm. Panel (a) shows the situation in
which the researchers knows whether the distances correspond to truematches or to true non-matches. Panel (b) shows
the actual data, in which true matches are unknown. Panel (c) shows the estimated distributions under the assumption
that the distances observed in panel (b) stem from two normal distributions, one corresponding to true matches and one
corresponding to true non-matches.



Figure 2: Illustration of the EM algorithm, two-dimensional case

(a) If true matches were known
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(b) Actual data (true matches are unknown)
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Notes: This figure shows the case in which observations are compared to each other along two dimensions instead:
reported ages and names. Panel (a) shows the situation in which the researchers knows whether the distances
correspond to true matches or to true non-matches. Panel (b) shows the actual data, in which true matches are
unknown.



Figure 3: Empirical distribution of estimated linking scores
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(c) Norway, first best match
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(d) Norway, second best match
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Panels (a) and (b) show the empirical distribution of the first best and second best linking scores when linking the 1850-
1880 US censuses. Panels (c) and (d) correspond to the respective figures when linking the 1865-1900 Norwegian
censuses. The vertical bars represent our parameter choices in the more (red) and less (blue) conservatively linked
samples.



Figure 4: Matching rates as a function of first and second-best cutoffs
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(b) Norway
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Notes: This figure shows the matching rates in our linked samples as function of the cutoff first and second-best
probability scores. A linking approach is more conservative the higher the first-best cutoff and the lower the second
best cutoff.

Figure 5: Representativeness, comparison of our samples and IPUMS

(a) US
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(b) Norway
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Notes: This figure shows the occupational structure among fathers in the initial census year (US 1850, Norway 1865) in
our less conservative linked sample and in the linked samples compiled by IPUMS. Each proportion is reported around
a 95% confidence interval.



Table 1: Comparison of occupational transition matrices, US 1850-1880

Son’s occupation
Father’s occupation White collar Farmer Skilled/semi-skilled Unskilled Row total
Less conservative
White-collar 0.53 0.21 0.19 0.08 1

(7798) (3094) (2792) (1129) (14813)
Farmer 0.13 0.62 0.13 0.12 1

(15282) (72296) (15470) (13785) (116833)
Skilled/semi-skilled 0.23 0.24 0.41 0.12 1

(7881) (8374) (14084) (4312) (34651)
Unskilled 0.13 0.29 0.32 0.25 1

(1601) (3512) (3903) (3067) (12083)
Column total 0.18 0.49 0.20 0.12 1

(32562) (87276) (36249) (22293) (178380)
More conservative
White-collar 0.56 0.21 0.16 0.07 1

(2028) (771) (590) (254) (3643)
Farmer 0.13 0.64 0.12 0.11 1

(3612) (17198) (3295) (2941) (27046)
Skilled/semi-skilled 0.24 0.25 0.40 0.11 1

(1768) (1835) (2917) (799) (7319)
Unskilled 0.14 0.31 0.30 0.25 1

(319) (734) (709) (584) (2346)
Column total 0.19 0.51 0.19 0.11 1

(7727) (20538) (7511) (4578) (40354)
IPUMS
White-collar 0.52 0.21 0.23 0.04 1

(121) (49) (52) (9) (231)
Farmer 0.14 0.62 0.14 0.10 1

(233) (1035) (232) (166) (1666)
Skilled/semi-skilled 0.23 0.26 0.40 0.11 1

(127) (140) (219) (60) (546)
Unskilled 0.09 0.33 0.29 0.28 1

(14) (51) (45) (43) (153)
Column total 0.19 0.49 0.21 0.11 1

(495) (1275) (548) (278) (2596)

Notes: This table shows father-son occupational transitions constructed using our linked samples and the linked samples
created by IPUMS.



Table 2: Comparison of occupational transition matrices, Norway 1865-1900

Son’s occupation
Father’s occupation White collar Farmer Skilled/semi-skilled Unskilled Row total
Less conservative
White-collar 0.80 0.05 0.11 0.05 1

(1455) (84) (191) (84) (1814)
Farmer 0.09 0.62 0.14 0.15 1

(813) (5799) (1325) (1454) (9391)
Skilled/semi-skilled 0.30 0.06 0.52 0.13 1

(640) (129) (1116) (277) (2162)
Unskilled 0.10 0.24 0.30 0.36 1

(481) (1211) (1473) (1801) (4966)
Column total 0.18 0.39 0.22 0.20 1

(3389) (7223) (4105) (3616) (18333)
Conservative
White-collar 0.82 0.04 0.09 0.04 1

(1050) (55) (119) (56) (1280)
Farmer 0.09 0.61 0.14 0.15 1

(491) (3310) (760) (825) (5386)
Skilled/semi-skilled 0.32 0.06 0.51 0.11 1

(415) (77) (665) (144) (1301)
Unskilled 0.11 0.24 0.29 0.36 1

(291) (669) (806) (989) (2755)
Column total 0.21 0.38 0.22 0.19 1

(2247) (4111) (2350) (2014) (10722)
IPUMS
White-collar 0.77 0.04 0.13 0.06 1

(2192) (126) (358) (173) (2849)
Farmer 0.09 0.59 0.14 0.18 1

(1645) (11005) (2595) (3251) (18496)
Skilled/semi-skilled 0.27 0.06 0.52 0.15 1

(1133) (267) (2188) (643) (4231)
Unskilled 0.09 0.23 0.30 0.37 1

(1028) (2585) (3309) (4119) (11041)
Column total 0.16 0.38 0.23 0.22 1

(5998) (13983) (8450) (8186) (36617)

Notes: This table shows father-son occupational transitions constructed using our linked samples and the linked samples
created by IPUMS.



Table 3: Comparison of summary measures of intergenerational occupational mobility

(a) Fraction working in different occupational category than father

US Norway
Less conservative Conservative IPUMS Less conservative Conservative IPUMS

0.45 0.44 0.45 0.45 0.44 0.47

(b) Distance with respect to independence

US Norway
Less conservative Conservative IPUMS Less conservative Conservative IPUMS

14.67 ∗∗∗ 15.18 ∗∗∗ 17.37 ∗∗∗ 25.94 ∗∗∗ 26.09 ∗∗∗ 25.01 ∗∗∗

Notes: This table reports summary measures of mobility computed using the our linked samples and the linked samples
created by IPUMS. Panel (a) reports the fraction of sons who worked in a different occupational category than their father
(that is, the fraction of sons outside of the main diagonal in the transition matrix(. Panel (b) reports the mobility measures
based on the Altham statistic. Higher distance with respect to independence indicates lower mobility. Significance levels
are indicated by *** p<0.01, ** p<0.05, * p<0.1.




