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1 Introduction

At the core of Bitcoin (the first peer-to-peer electronic payments network)
is the “blockchain”, a decentralized public ledger on which transactions
are recorded (Nakamoto, 2008). Decentralization prevents control of the
blockchain by an individual agent making manipulation of the ledger virtu-
ally impossible (à la Kocherlakota (1998)). This relies on ensuring that there
are sufficient independent nodes participating that incur the costs of storing
and verifying the blockchain.

The incentive for decentralized nodes to do these tasks arises from their
participation in what is essentially a “mining” game to add new transactions
(grouped into blocks) to the blockchain. This competition between users
on the network known as “miners” involves solving a computational puzzle
and is embedded into the Bitcoin protocol. Transactions are recorded on the
blockchain each time a puzzle is solved, with the solver being rewarded with
newly issued bitcoins and any transaction fees offered. Finding the puzzle’s
solution does not require strategy but brute force in the form of guessing.
The more guesses are made, the more likely a miner will be the first to solve
the puzzle. In other words, it is computational strength – increasing the
speed of guessing – that drives who is likely to win the game. However, the
process is not deterministic so there is no guarantee that the miner in the
network with the most computational power will solve the puzzle first.

Having participants play this game resolves two important issues. First,
it ensures that only one suggested block of transactions will be sent to the
network for verification. Second, it reduces the probability that a bad ac-
tor can suggest a block of transactions that, say, takes back currency that
they have already spent. The only way one might conceivably distort the
blockchain is to control the game, but to do that requires proof-of-work –
solving the puzzle – which is costly. The expenditure of real resources is,
therefore, key to the integrity of the network.

A feature of the Bitcoin protocol is to allow anyone to expend those re-
sources and, indeed, encourage it. Each time the game is run, it is essentially
an all-pay tournament to win. Not surprisingly, concern has developed re-
garding the consumption of real resources. Computational effort in mining
relies upon sophisticated processors and the energy to power them. As the
value of bitcoins has risen, the reward from the mining game has become
larger, with consequent entry increasing energy usage. As of January 2018,
it is estimated that the Bitcoin network uses 40.64 TWh of energy to oper-
ate annually, slightly more than Hungary, the world’s 57th largest consumer
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of energy.1 This is 75 times higher than the annual energy consumption of
the centralized Visa network, which processed an average 150 million trans-
actions per day in 2016, compared to the 44 million transactions processed
on the Bitcoin network for the whole of 2017.2 This has caught the atten-
tion of policy-makers with China, which controls 75 per cent of total mining
power, moving in 2018 to tax bitcoin miners’ energy usage.3 Consequently,
it is important to understand what drives both competition and the flow of
resources into the Bitcoin network.

This paper provides the first model of Bitcoin mining with a view to
understanding how it can lead to intense resource usage. Using the stochastic
process described by the cryptographic function, we derive the full game
being played by miners showing that it is essentially an extension of the
R&D racing game analyzed by Loury (1979). The extensions reflect the
occurrence of multiple events before a reward is attained in Bitcoin mining
and the endogenous determination of computational difficulty in the Bitcoin
protocol. Our aim is to investigate the elements of the protocol that have
intensified resource usage and identify ways by which a decentralized proof-
of-work system can operate without incurring such costs.

Our contribution is, primarily, technical. We show how the Bitcoin pro-
tocol maps into formal game played between miners, that an equilibrium
exists and that free entry determines key outcomes. Importantly, we show
that the difficulty of the computational puzzle is not an instrument that can
regulate resource usage and that, instead, direct targeting of a desired num-
ber of competing nodes would allow the costs of the system to be aligned
with potential benefits. We believe that this provides an important foun-
dation for both further theoretical and empirical work on blockchains and
cryptocurrency networks.

To date, there exist a few formal economic models to understand the
operation of digital cryptocurrency systems. Gans and Halaburda (2015)
examine how digital currencies can support platform operations while Athey
et.al. (2016) examine the use of digital currencies to improve the efficiency
of payments. Huberman et.al. (2017) provide an analysis of Bitcoin focus-
ing on the protocols surrounding the determination of transaction fees that

1Digiconomist. “Bitcoin Energy Consumption Index.” 2018. Accessed January 13.
https://digiconomist.net/bitcoin-energy-consumption.

2 Visa.“Visa acceptance for retailers.” 2018. Accessed January 13. https://

usa.visa.com/run-your-business/small-business-tools/retail.html; Blockchain.
“Confirmed Transactions Per Day.” 2018. Accessed January 13 https://blockchain.

info/charts/n-transactions.
3Wildau, Gabriel. 2018. “China moves to shutter bitcoin mines.” Financial Times,

January 9, 2018.
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are part of the rewards miners receive. They show that the Bitcoin proto-
col provides an equilibrium outcomes that mimics a Vickery-Groves-Clark
mechanism for the determination of transaction fees when there is competi-
tion amongst miners. While they rely on miner free entry, they do not model
the impact of miners on the “proof of work” protocol at the heart of the
Bitcoin system. Our paper is focused upon miner competition as mediated
by the Bitcoin protocol while keeping the reward (from both newly minted
coins and transaction fees) as exogenous.

In the following section, we provide an overview of Bitcoin mining and
how its market structure has evolved in practice. We describe the model in
section 3, and show that the mining game has a unique and stable equilibrium
in section 4 when the number of miners is fixed. The proof is technically
challenging because the difficulty of the computational puzzle changes with
the choices of miners. In section 5, we allow for free entry and examine the
long-run outcomes of the game. We discuss the implications of free entry on
social welfare in section 6, and show that it requires more intensive resource
usage than a regulated monopoly outcome.

2 An Overview of Bitcoin Mining

The puzzle that Bitcoin miners work on is a cryptographic proof-of-work
function which requires significant effort in computational time and power
to solve. The proof-of-work puzzle is based on the Hashcash proof-of-work
proposed in Back (2002), the details of which we return to below. Solving the
puzzle requires a set number of computations to be completed. This threshold
is determined by the difficulty level of the puzzle, which is dynamically set by
the network. The level of difficulty is adjusted every 2016 blocks according to
an algorithm, such that a new block of transactions is added to the network
every 10 minutes on average. If the mean time for the addition of previous
2016 blocks falls below this, the difficulty level is increased for the next 2016
blocks. In practice, this means that difficulty is adjusted approximately every
two weeks.

Each miner chooses a computing technology (notably computer hardware)
which they use in their attempt to solve the puzzle. The greater their com-
putational power, the greater the number of calculations they can compute
within a given time interval. Therefore, the probability of being the first to
solve the puzzle increases with the amount of computing technology a miner
possesses. As the proof-of-work function is a random process, solving the
puzzle involves brute force trial and error computations. As a result, there
is no guarantee that the miner in the network with the most computational
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power will be the first to solve the puzzle. Once a miner proposes that they
have solved the puzzle, it only requires one calculation to verify if they are
correct. The work is expensive while proving that it has been done is cheap.

There is no inherent value is solving the computational puzzle itself. The
miners’ incentives to engage in the proof-of-work exercise and process trans-
actions is driven by an allocation of newly issued bitcoins along with any
transaction fees that might be submitted by users. Bitcoins are issued for
each block at a diminishing rate over time. The reward of newly minted
bitcoins prescribed by the network halves for every 210,000 blocks until the
total supply of 21 million bitcoins has been exhausted. Thus, mining has
an incidental role in issuing new currency in the absence of a centralized
authority.

Transaction fees provide a similar incentive and are intended to become
more important as the rate of bitcoin issuance falls. Such fees are offered by
users when they want to impact upon the speed at which their transaction is
processed. Miners will observe transaction fees when determining the set of
transactions that will comprise a block they process for the network. Their
incentive is to prioritize the highest value transactions according to fees and it
is this that determines users’ price for priority. Transaction fees have become
more common in recent times as demand for transactions on the network has
rapidly increased, causing delays in the processing of transactions. These
delays are a result of the 1 megabyte limit on block size. When demand for
transactions on the network increases above the 1 megabyte block size, the
time in between the proposal of a transaction by a user and its assembly into
a block lengthens. Thus, these delays occur independently of the Bitcoin
mining network, since the protocol mandates that a transaction should take
an average of 10 minutes to be processed once it has been assembled into
a block through its dynamic adjustments to difficulty. Accordingly, there is
no incentive for miners to deliberately slow mining activity to create delay
and gain additional transaction fees in the long run due to the dynamic
adjustment of the puzzle’s difficulty.4

Why does the Bitcoin protocol target a 10 minute block processing time?
The rationale for having some period of time between when a miner wins
the game and the processing of the next block is to ensure that there is time
to communicate the winning block to the network and network participants
to support adding it to the blockchain. The 10 minutes appeared to be
arbitrarily listed as an example in Nakamoto (2008), which had the virtue
of being far quicker than the day or more it takes for ordinary bank-to-

4Huberman et al. (2017) presents a detailed examination of the determination of trans-
action fees.
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bank transfers. Other cryptocurrencies such as Ethereum now have block
processing times of around 20 seconds.

In summary, the net payoff to the winning miner is the total reward
(newly minted coins plus transaction fees) less the cost of their computing
technology. Miners who are unsuccessful at solving a computational puzzle
incur the cost of their computing technology. Once a computational puzzle
has been solved and the associated block of transactions recorded on the
network, the miners move on to compete on processing the next block of
transactions.

2.1 Hashcash Cryptographic Proof-of-Work

We now turn to focus on the puzzle at the heart of Bitcoin, which is based on
the Hashcash cryptographic proof-of-work proposed by Back (2002). Hash-
cash was initially proposed as a solution to prevent bulk email spam. To send
an email, the sender must first complete a proof-of-work to show the email
is legitimate as they have exerted some effort. The computing power and
cost required to complete the proof-of-work is negligible for a single email.
However, these costs become a deterrent when multiple proofs are required
to be completed in order to send bulk email spam. Bitcoin mining uses a
variation of the Hashcash proof-of-work to verify transactions and to secure
the blockchain.

The Hashcash proof-of-work is a cost function that describes the amount
of effort required to solve a puzzle. In Bitcoin mining, it gives the number
of computations a miner must complete before they find the solution of the
puzzle. The function takes an input of some arbitrary length and maps it
into an output of a fixed length, which is referred to as a “hash”. The cost
function has the following properties:

1. The solution is difficult and costly to compute, but easily verifiable
once found.

2. The output of the function is random.

3. It is a one-to-one function.

4. It is practically impossible to invert.

Since the function is difficult to invert, it is often referred to as a one way
function. We now describe the proof-of-work cost function.

Let h : S → S be a cryptographic cost function, where S represents a
sequence of alphanumeric characters. Given an output h, the proof-of-work
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puzzle requires an input m to be found, such that h(m) = h. It becomes
evident from this why the cost function should not be invertible, since the
solution m to the proof-of-work would be straightforward to find it if were.

Each block of the Bitcoin blockchain contains the “challenge” string of the
puzzle, which includes the output h of the previous block. This feature links
all previously verified blocks in historical order. The miners in the network
compete to be the first to find the “proof” string, which when concatenated
with the challenge string, gives the required input m of the cost function
such that h(m) = h.

Bitcoin uses the SHA-256 function, which gives an output that is 256
bits in length. The output h is a string of numbers that is preceded by K
zeros. The string of zeros represents the difficulty of the proof-of-work, and
represents the computational cost required to solve the puzzle. Since the
output of the cost function is random, the only way to find the proof string
to m is through brute force trial and error computations.

The cost function returns a random number between 0 and the 256 bit
number for each computation. Once a miner achieves an output preceded
by the required K zeros, they have solved the proof. This is simple to verify
by others on the network once they have the proposed input m of the cost
function. As K increases, the computational cost required to solve the puzzle
increases exponentially (Nakamoto, 2008). Specifically, to find an output
preceded by K zeros requires 2K computations on average.

Once a solution is proposed to the network, it requires at least 50 per cent
of the network to agree that the proposed solution is correct. The longest
chain in the blockchain represents the majority decision since it represents
the greatest proof-of-work effort. As long as the majority of computing power
is controlled by honest users, the honest chain forms the blockchain.

The cost function between blocks on the blockchain are independent.
Thus, solving one puzzle does not affect one’s ability to solve subsequent
puzzles. The proof-of-work function prevents double spending by making it
difficult and impractical for transactions to be reversed once they are recorded
on the network. It is designed such that the incentive to verify transactions
on the network is greater than that to attack the network since it is costly to
redo a proof-of-work and difficult to then keep up with the rest of the honest
network.

2.2 Mining Pools

Nakamoto (2008) appeared to envisage a purely peer-to-peer system in which
mining could be performed on off-the-shelf computers. However, as Bitcoin
gained popularity and its value appreciated, miners began to invest in more
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powerful computers to increase their computational power, and hence their
probability of winning the Bitcoin mining race. Although miners could per-
form a higher number of computations, the average time taken to complete
each mining race did not change due to the dynamic adjustment of difficulty
by the protocol in response to changes in technology. As the difficulty of
these puzzles increased, mining became infeasible and unprofitable for indi-
vidual miners on regular computers, whose probability of winning effectively
fell to zero. Bitcoin mining is now essentially an arms race, with the majority
of mining activity taking place in large purpose built warehouses using dedi-
cated mining equipment. This gave rise to the formation of mining pools, in
which individual miners pool their processing power to increase their proba-
bility of winning. The method of sharing mining revenue amongst a mining
pool differs between pools, but rewards are generally distributed proportion-
ately to the effort contributed by each miner. Some pools charge fees to
miners in order to participate in the pool.

The hashing power controlled by each mining pool is highly volatile as
it depends on the number of active nodes in the system at a given point in
time. However, the largest mining pools by active hashing power have been
fairly consistent in recent times. The largest pools are based in China and
include AntPool, BTC.com, BTC.top, and ViaBTC.5

In 2014, the Ghash.io mining pool approached 51 per cent of the overall
hash rate in the Bitcoin network, raising concerns amongst users. This is
because a miner or mining pool who holds 51 per cent or more of computing
power in the network can potentially double spend if they are able to solve
consecutive blocks and prevent transfers between other users, effectively “at-
tacking” the network. However, the nature of the proof-of-work as a random
process mitigates this concern to a certain extent, as controlling the majority
of hashing power does not guarantee winning.

3 The Model

We now take this underlying computational process and use it to derive,
formally, the Bitcoin mining game. Consider a network with N identical
miners, indexed i ∈ {1, 2, . . . , N}, competing to be the first to solve a com-
putational puzzle. Each miner i chooses a computing technology xi ∈ R+ at
a cost of c(xi) at time t = 0 to compete in the race. The network determines
a difficulty level K ∈ R++, representing the threshold number of computa-
tions required to solve the puzzle, and sets the target puzzle solution time as

5Blockchain. “Hashrate Distribution.” 2018. Accessed January 13. https://

blockchain.info/pools.
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δ∗ ∈ R+. The difficulty of the puzzle adjusts dynamically to ensure that δ∗

is realized on average. All miners face the same cost function c : R+ → R+,
where c(xi) is an analytic strictly increasing convex function. A miner i
chooses some technology xi > 0 only if they can meet the minimum effort
cost required to complete K computations, otherwise they do not compete
and choose xi = 0.

The technology for solving computational puzzles is formally equivalent
to a stochastic Poisson process

Xi(t) ∼ Poisson(xi) ,

where xi gives the expected number of computations miner i will complete
in a time interval t given their choice of technology. We assume that the
Poisson processes over miners are independent and operate in parallel.6

The Poisson process Xi(t) gives a random time ti ∈ R+ at which K
computations are completed by miner i that is independent between the
miners. The distribution of the random variable ti is

ti ∼ Gamma(K, xi) .

We denote the probability density function of this random variable by

γK,xi(ti) =
tK−1
i

Γ(K)
xKi e

−xiti ,

where Γ(·) is the Gamma function. The probability that miner i completes
K computations within time ti increases with their technology xi.

The network determines a reward of newly minted bitcoins B ∈ R+ won
by the first miner to complete the threshold of K computations. Additionally,
the winning miner receives the aggregate of the transaction fees f ∈ R+

offered with the transactions in the associated block.7 If t = (t1, t2, . . . , tN)
is a realization of the success times of miners and ti < tj for all j 6= i, then
miner i receives a payoff

P − c(xi) ,
6If miners are organized into pools, they could potentially coordinate their computa-

tions and so there would be an economy between them. Nonetheless, so long as mining
pools are of equal size, the independence assumption would still hold.

7Each user determines their transaction fee in a first price sealed bid auction. As miners
are profit maximizing, they assemble transactions into blocks to maximize f , which is the
sum of the highest transaction fees offered at that fit within maximum block size, and is
also an equilibrium in the first price sealed bid auction amongst users. This fee f is fixed
in bitcoin, but varies in dollar terms due to exchange rate fluctuations when the network
is in disequilibrium. See Huberman et al. (2017) for more details.
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where P = B + f .
All other miners j 6= i receive a payoff of −c(xj). Let Wi ⊆ RN

+ be the
set of time realizations for which miner i is the first to solve the puzzle

Wi = {t ∈ RN
+ : ti < tj, for all j 6= i} .

The probability of miner i winning by realizing a time profile t ∈ Wi given
the strategy profile (xi, x−i) is given by the cumulative density function of
the minimum order statistic of the gamma random variable ti, across all N
miners

π(Wi;K, xi, x−i) := P(t ∈ Wi) =
∏
−i

[
1−

∫ ti

0

γK,x−i(ti) dti

]
.

We note π(Wi;K, xi, x−i) is an infinitely differentiable function.
The expected payoff of a strategy profile x = (x1, x2, . . . , xN) for miner i,

is therefore

Ui(xi) = Pπ(Wi;K, xi, x−i)− c(xi) = E(P )− c(xi) . (1)

Each miner i chooses the technology xi that maximizes their expected payoff.

Definition 3.1. A Nash equilibrium is an action profile x∗ = (x∗1, x
∗
2, . . . , x

∗
N)

representing the technology for each miner i = 1, 2, . . . , N given a fixed
difficulty level K of the computational puzzle if

1. Ui(x
∗
i , x
∗
−i) ≥ Ui(xi, x

∗
−i) for all miners i = 1, 2, . . . , N , where x∗i 6= xi,

and

2. The expected time required to solve the computational puzzle given
(K, x∗) is δK ∈ R+, where

δK := EK(t) = EK(min{t1, t2, . . . , tN}) . (2)

It is worth emphasizing that this definition has an implicit assumption
that each miner has no impact on K. In effect, it is assumed that N is suffi-
ciently large that no such impact arises. Below we discuss the implications
of relaxing this assumption.

Definition 3.2. A symmetric equilibrium is a pair (K∗, x∗) ∈ R2
+ , K ≥ 1

such that

1. (K∗, x∗) is a Nash equilibrium for all i by Definition 3.1, and

2. The expected time of completion is δ∗, where δ∗ is the target solution
time set by the network.
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4 Results

We now analyze the game described in the previous section.

4.1 Stage game

First, we show that an equilibrium of the stage game exists. This we do in
steps with two important lemmas.

Lemma 4.1. Holding the choices of other miners fixed at x−i, the probability
of miner i winning is increasing in xi.

Proof. The expected time for miner i to successfully complete the puzzle is
E(ti) = K

xi
. The first derivative of the probability of winning with respect to

xi is

∂π(Wi;K, xi, x−i)

∂xi
=
∂π(Wi;K, xi, x−i)

∂E(ti)

∂E(ti)

∂xi

=
∂π(Wi;K, xi, x−i)

∂E(ti)

(
−K
x2
i

)
> 0 ,

since we know the first term is negative from (11).

However, if N > 1, there is no choice of technology for which winning is
guaranteed, since the proof-of-work is a random process

π(Wi;K, xi, x−i) < 1 for all xi .

Although greater computing technology increases the rate at which compu-
tations can be completed and the probability that a miner will win, it does
not guarantee that the miner with the most technology will be first to reach
K computations.

Lemma 4.2. Holding the choices of other miners fixed at x−i, the probability
of miner i winning increases in xi at a decreasing rate.

Proof. The second derivative of π(Wi;K, xi, x−i) with respect to xi is

∂2π

∂x2
i

=
∂2π

∂E(ti)2

(
∂E(ti)

∂xi

)2

+
∂π

∂E(ti)

∂2E(ti)

∂x2
i

=
∂2π

∂E(ti)2

(
−K
x2
i

)2

+
∂π

∂E(ti)

(
2K

x3
i

)
.
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The second term is always negative by (11). By (12), we know that ∂2π
∂E(ti)2

is

negative on x̂i <
K

E(t̂i)
. Therefore, the sign of the second derivative is negative

on xi < x̂i, noting that x̂i ≥ 0.
For xi > x̂i, the first term is always positive. Since π(Wi;K, xi, x−i) < 1

for all xi, it must be the case that

∂2π

∂E(ti)2

(
−K
x2
i

)2

<
∂π

∂E(ti)

(
2K

x3
i

)
,

for xi > x̂i. If not, then this implies that π(Wi;K, xi, x−i) is increasing and
convex in the region. This contradicts the fact that probability can never
exceed 1. Therefore, it must be the case that π(Wi;K, xi, x−i) is strictly
concave on xi

∂2π(Wi;K, xi, x−i)

∂x2
i

< 0 .

Using these lemmas we can now prove the following:

Proposition 4.1. There exists a unique interior Nash equilibrium solution
x∗ > 0 to (1) if Ui(x) ≥ 0 for some x > 0.

Proof. The necessary conditions for x∗ to be a unique interior Nash equilib-
rium solution to (1) are

∂Ui(x
∗)

∂xi
= P

∂π(Wi;K, x
∗)

∂xi
− ∂c(x∗)

∂xi
= 0 (3)

∂2Ui(x
∗)

∂xi2
= P

∂2π(Wi;K, x
∗)

∂xi2
− ∂2c(x∗)

∂xi2
< 0 . (4)

The first term of (3) is positive by Lemma 4.1 and is concave in xi by
Lemma 4.2. The second term is positive and convex in xi by assumption.
Therefore, there must exist some point x∗ for which the first order condition
in (3) holds.

To show that x∗ is a unique solution, we note that the first term of (4) is
negative by Lemma 4.2, and the second term is positive by assumption for
all xi. Therefore, the second order condition in (4) is satisfied. Since Ui(xi)
is strictly concave on xi, the interior Nash equilibrium solution x∗ is a unique
maximum.

We have shown that there exists a unique interior Nash equilibrium so-
lution x∗ = (x∗1, x

∗
2, . . . , x

∗
N) for every difficulty level K, where the number of

miners in the network is fixed. Each Nash equilibrium (K, x∗) gives a unique
expected time for completion of the puzzle δK . Therefore, at each stage of
the Bitcoin mining game, there exists a unique Nash equilibrium.

12



4.2 Dynamic game

To achieve the target time of δ∗ on average, the network periodically adjusts
the difficulty level K of the computational puzzle in each stage of the exten-
sive game. If the average time at which the computational puzzles have been
solved in the previous period is below the target δ∗, then the difficulty level
K increases, and vice versa.

Proposition 4.2. Ceteris paribus, the expected time required to solve a puzzle
δK is strictly monotonically increasing in the difficulty level K.

Proof. The expected time for the puzzle to be solved by the network for the
same K is

EK(t) = EK(min{t1, t2, . . . , tN}) =

∫ ∞
0

[
1−

∫ t

0

γK,x∗(t) dt

]N
dt .

The cumulative density function of the Gamma distribution decreases in
its shape parameter, which is given by the difficulty level K. Thus, the term
in the square brackets becomes larger as K increases, such that the expected
time for the puzzle to be solved by the network increases.

As miners need to complete more computations before finding a solution
for the puzzle, the expected time taken for the network to solve the puzzle
increases. This is intuitive since the expected time for a given miner i to
solve the puzzle is EK(ti) = K

xi
.

Proposition 4.3. The Nash equilibrium technology x∗ is increasing in the
difficulty level K.

Proof. Suppose we are initially at some Nash equilibrium (K, x∗) which has
an expected solution time of δK . Each miner i has an equal probability of
winning since they all choose the same technology x∗ at the Nash equilibrium

π(Wi;K, x
∗) =

[
1−

∫ ti

0

γK,x∗(ti) dti

]N−1

=
1

N
. (5)

Now suppose we increase the difficulty level from K to K + ε, where ε > 0.
In the short run, miners cannot re-optimize immediately, so their technology
remains as x∗. The miners still have an equal probability of winning at the
new difficulty level K + ε. Therefore, the integrand of (5) must be the same
for γK,x∗(t) and γK+ε,x∗(t).
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Solving for the Nash equilibrium technology x∗,

γK,x∗(t) = γK+ε,x∗(t)

tK−1

Γ(K)
(x∗)Ke−x

∗t =
tK+ε−1

Γ(K + ε)
(x∗)K+εe−x

∗t

1

Γ(K)
=

tε

Γ(K + ε)
(x∗)ε

∴ x∗ =

[
1

tε
Γ(K + ε)

Γ(K)

] 1
ε

.

(6)

Since Γ(·) is convex on R++, Γ(K+ε)
Γ(K)

is increasing in K. Furthermore, as

ε→ 1, x∗ → K+1
t

. As the target puzzle solution time is fixed by the protocol
at δ∗, givenK, the equilibrium technology is given by x∗ = K

δ∗
, which increases

linearly in K.

With a fixed number of miners, miners compete away part of their profits
by increasing their mining power as difficulty adjusts to maintain the target
puzzle solution time. This is a competitive externality that, if they could,
miners would want to internalize so as to operate with a lower technology
(and cost). Individual and aggregate technology increases until the difficulty
level which gives the target solution time for the puzzle is reached.8

Proposition 4.4. There exists a unique symmetric equilibrium (K∗, x∗) given
a fixed number of miners N and fixed target solution time δ∗.

Proof. Fix δ∗. By Proposition 4.2, EK(t) is strictly monotonically increasing
in K. Hence, the K which is associated with δ∗ must be unique. Fixing the
K = K∗ where K∗ gives δ∗, there exists some unique Nash equilibrium level
of technology x∗ by Proposition 4.1.

Hence, (K∗, x∗) is a unique symmetric equilibrium with an average target
solution time of δ∗.

Allowing K to vary over time in order to maintain a target solution time
δ∗ on average, we showed that for each N and P , there exists a difficulty
level K∗ and a Nash equilibrium x∗ given K∗ that form a unique equilibrium
of the dynamic game. Therefore, with a fixed number of miners N , there is
exists a symmetric subgame perfect equilibrium in which each miner plays
their Nash equilibrium strategy at every stage of the game.

8Dimitri (2017) also notes the existence of this competitive externality albeit for a game
with a more abstract and simplified structure than the one presented here.
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With a fixed prize and a fixed market structure, the gross expected payoff
is constant at every Nash equilibrium due to the symmetry of the game. Since
the Nash equilibrium technology x∗ is increasing in the difficulty level K, the
cost of mining increases in K. Miners earn positive profits in equilibrium if
given K∗, the equilibrium technology satisfies

x∗ < c−1

(
P

N

)
.

This will be true for N low or P high.

5 Free entry

A key feature of the Bitcoin protocol is that anyone can become a miner.
Thus, there is free entry and here we examine the long-run outcomes of the
game when N is endogenous. In equilibrium, the symmetry of the game
means that all miners must choose the same technology x∗. Therefore, the
probability of a miner i being the first to solve the puzzle and win the prize
is

π(Wi;K
∗, x∗) =

1

N
.

Allowing free entry into the game drives expected profits to zero in equi-
librium, with miners indifferent between entering and exiting

Ui(x
∗) =

P

N
− c(x∗) = 0 ,

where x∗ satisfies (3) for all i. There are zero aggregate profits in equilib-
rium, since competition drives up the social cost of mining. Social costs are
independent of market structure, and solely dependent on the prize.

Nc(x∗) = P . (7)

The equilibrium technology when there is free entry is characterized by

x∗ = c−1

(
P

N

)
. (8)

This gives a useful comparative static result.

Proposition 5.1. The equilibrium technology decreases with N .
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Proof. Recall that c′(·) > 0 by assumption, which implies (c−1)′(·) > 0.
Differentiating (8) with respect to N

∂x∗

∂N
=
∂c−1

(
P
N

)
∂ P
N

∂ P
N

∂N
=
∂c−1

(
P
N

)
∂ P
N

(
−P
N2

)
< 0 ,

for N, P
N
6= 0 .

The incentive to rent technology decreases with increased competition in
the network. As more miners enter the race, the probability that a miner i
will be the first to solve the puzzle falls, decreasing the expected value of the
winning.

Proposition 5.2. Under free entry, the equilibrium social cost of mining
Nc(x∗) equals P .

Proof. Miners enter if P > Nc(x), and will choose the same optimal technol-
ogy as the existing miners did in the previous period since they are identical.
That is, xi,t+1 = x∗i,t for all i. Therefore, Nt+1c(x

∗
t ) > Ntc(x

∗
t ).

Since aggregate technology has increased in period t+1, the average time
taken to solve the puzzle falls by Proposition 4.2, such that δt+1 < δ∗. The
average solution time falls in subsequent periods as miners continue entering,
until the protocol increases the difficulty of the puzzle K to regulate the
network back towards δ∗. By Proposition 4.3, miners respond to the increased
level of difficulty by increasing their technology, again raising the aggregate
cost of technology. This adjustment continues until the free entry number of
miners is reached.

This result shows that free entry causes rents from mining to dissipate
in terms of increased resource costs. Interestingly, it also means that the
level computational difficulty does not impact on resource usage. That is,
those costs are driven solely by P so that changes in K are solely for the
purposes of determining the targeted block processing time. Indeed, if the
targeted block time were reduced, K would be lower but resource use per unit
of time would increase as the relevant period for the stage game would be
compressed. That is, reducing the Bitcoin protocol target from 600 seconds
to 300 seconds would double expected resource usage.

Once the network is at some long run equilibrium (K∗, x∗), miners are
indifferent between entering and exiting the mining race since there are zero
expected profits. Therefore, any movements away from an equilibrium will
be due to changes in the prize P . We can now investigate what happens
when the reward, P , from mining changes.
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Proposition 5.3. The equilibrium technology, x∗, and the equilibrium diffi-
culty level, K∗, are increasing in P .

Proof. For x∗, differentiating (8) with respect to P

∂x∗

∂P
=
∂c−1

(
P
N

)
∂ P
N

∂ P
N

∂P
=
∂c−1

(
P
N

)
∂ P
N

1

N
> 0

since (c−1)′(·) > 0 for N, P
N
6= 0. For K, by Proposition 5.3, the equilibrium

technology x∗ is increasing in P , and by Lemma 4.3, x∗ is increasing in the
difficulty level K given a fixed N . Therefore, it must be the case that the
unique equilibrium difficulty level K∗ is higher for a larger prize P , holding
N constant.

This proposition shows that investment in computational power increases
as the expected value of the prize increases, raising the cost of mining. The
part of the prize prescribed by the network of newly minted bitcoins halves
for every 210,000 blocks that are verified until the supply of all 21 million
bitcoins has been exhausted. When the prize next halves, short-run profits
will fall below zero and we would expect to see, in the absence of an increase
in transaction fees or an appreciation of the exchange rate to compensate for
the difference, miners respond by decreasing their computing technology and
others exiting the mining race. Since social costs are equal to the prize in
equilibrium, the network becomes less resource consuming as block reward
falls to zero.

Absent supply changes, appreciation in the bitcoin exchange rate causes
the prize to increase. When this happens it is likely that technology cannot
increase immediately in the short run and there are positive profits. In the
long run, by Proposition 5.3, an increase in the prize, causes the equilibrium
technology and cost to increase. Subsequently, the rate at which puzzles
are solved increases until the next period when the difficulty level increases
to maintain the solution target δ∗. The difficulty level in the network has
consistently trended upward since it began. As can be seen in Figure 1, this
is highly positively correlated with the bitcoin exchange rate. That figure
demonstrates that the mechanism by which this occurs is an increase in the
hash rate induced by the stronger economic incentives to mine bitcoin.

6 Welfare analysis

Even though the endogenous computational difficulty changes with economic
conditions in the Bitcoin network, the analysis has demonstrated that total
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Figure 1: Bitcoin market price and mining activity

resource usage is determined by those economic conditions with computa-
tional difficulty only playing a role in setting the processing time for individ-
ual blocks. The Bitcoin protocol was designed to be open in that anybody
could become a node and/or miner with more competition seen as a virtue
in increasing the security and robustness of the network.

The problem is that this very openness also contributes to the overall
social cost of the network. As the following proposition demonstrates, an
increase in the number of miners raises both the technological and overall
costs of the network.

Proposition 6.1. As the number of miners increases, the aggregate equilib-
rium technology, Nx∗, and the aggregate equilibrium cost, Nc(x∗), increase.

Proof. By (8), the aggregate level of technology is given by Nx∗ = Nc−1
(
P
N

)
.

∂Nx∗

∂N
= c−1

(
P

N

)
− P

N

∂c−1
(
P
N

)
∂N

,

which is positive since
∂c−1( P

N )
∂N

= ∂x∗

∂N
< 0 by Proposition 5.1.

By Proposition (4.4), there exists a unique equilibrium (K∗, x∗) for every
N . If at any stage of the game, there is entry or exit, the long run equilibrium
of Bitcoin mining game changes. For instance, if the number of miners in-
creases to N ′, then the network moves towards a new equilibrium (K ′∗, x′∗).
Although entry leads to each miner reducing their technology, the aggregate
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level of technology Nx′∗ increases. Since c(·) is convex and increasing in x,
this implies that the social cost of mining increases with the number of min-
ers in the network. As noted above, the endogeneity of K does not prevent
this outcome.

By contrast, when there is a single miner, the costs of operating the
network are minimized. While this is seemingly an implication of Proposition
6.1, when there is a single miner, that agent will understand the impact of
their own choices on K. To see this, note that when N = 1, that miner
receives the prize, P , with probability 1. Therefore, it is guaranteed the
payoff

Um(xm) = P − c(xm) .

To maximize its payoff, the monopolist miner chooses the minimum amount
of technology required to solve the puzzle. Since the monopolist’s choice of
technology influences the dynamic difficulty of the puzzle, it chooses the min-
imum technology required to perform a single computation, such that K = 1.
If the target time is δ∗, then

δ∗1 = E1(t) =
1

xm
.

Hence, the monopolist’s optimal technology is

x∗m =
1

δ∗1
.

Free entry prevents this outcome. However, it is worthwhile noting that
rather than the cost of running the network being in the billions of dollars
per year, a monopoly miner could operate the network on a laptop. In effect,
a monopolist provides a centralized public ledger, something that was only
possible privately through trusted third parties prior to the invention of Bit-
coin. The benefits of the blockchain are said to arise from its decentralized
nature. But as more competition has clear costs in the protocol, our analysis
highlights the need to be more precise about the benefits of that compe-
tition, which are as yet unmodeled. This can be nuanced. For instance,
Nakamoto (2008) argued that the ability of a monopoly miner to undermine
the network’s operation in their own interests was limited. A nefarious miner
would not be able to appropriate currency owned by others, but would only
be able to double or multi-spend currency they already owned. Moreover,
any instances of multi-spending would be visible on the blockchain, and could
undermine confidence in the network. From an economics perspective, there-
fore, it is far from clear that a monopolist would have an incentive to attack
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its own network as this would deny it a stream of future returns. Our fo-
cus here has been on the mining operation of the Bitcoin protocol and to
highlight potential welfare losses arising from competition. How to properly
model and consider the security and stability of the network as it relates to
competition is something we leave for future research.

7 Conclusion

The fact that the Bitcoin network consumes a large amount of energy (and
computational) resources, highlights its significance as a phenomenon of in-
terest for further economic research. This paper has provided a foundation
for that research by mapping the Bitcoin protocol itself into a game between
miners and how these relate to key parameters that are potentially observ-
able by researchers. In doing so, it highlights the role of competition in
driving those costs and suggests that absent clear benefits to more compe-
tition, the resources miners are expending in the Bitcoin system are likely
to be wasteful. This highlights the importance of modeling and examining
those benefits something that we have not done in this paper. Such an anal-
ysis would require understanding the importance of decentralization in the
integrity of peer-to-peer payment systems as well as other benefits blockchain
technologies might bring.9

Our model highlights that free entry is the cause of resource usage by the
Bitcoin that is related to the prize in the game in terms of the value of newly
minted bitcoins. In terms of what might reduce that resource usage we can
point to several opportunities. First, a network could provide a means of
ensuring that only a limited number of miners play the game at any stage.
Rather than having free entry determine that number, the number could be
the minimum necessary to achieve integrity and other goals. However, if
this number were small, one would have to investigate whether individual
miners had an incentive and ability to influence the computational difficulty
of the puzzle in equilibrium. Second, a network could issue its currency
upfront and rely exclusively on user-generated transaction fees as the reward
for running the network. Presumably, the rationale for a slower release of
currency was stabilization of the currency’s value. However, experience with
bitcoin suggests that rationale is been undermined.

9For instance, in terms of verification (Catalini and Gans (2017)).
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A Appendix

We derive the minimum order statistic for the independent random variables
t1, t2, . . . , tN , where ti ∼ Gamma(K, xi).

We note the cumulative density function of the gamma distribution is

F (t;K, x) =

∫ t

0

f(t;K, x) dt =

∫ t

0

tK−1

Γ(K)
xKe−xt dt .

Without loss of generality, suppose we wish to find the probability that
i = 1 will reach the threshold of K Poisson events in the fastest time. Let
T = min(t2, t3, . . . , tN). Then, the cumulative density function of t1 is

P(T > t1) = P(T2 > t1, T3 > t1, . . . , TN > t1)

= P(T2 > t1)P(T3 > t1) · · ·P(TN > t1)

= [1− F2(t1)] [1− F3(t1)] · · · [1− FN(t1)]

=
N∏
i=2

[1− Fi(t1)] .

(9)

This gives the probability that the t1 is the fastest realized time for all ti.
The probability density function of t1 is

P(T = t1) =
d

dti
[1− P(T > t1)]

=
N∑
i=2

fi(t1)
N∏
j=2
j 6=i

[1− Fj(t1)] .

Now, suppose that the random variables ti are i.i.d. to Gamma(K, x),
(9) becomes

P(T > t1) = [1− F (t1)]N−1 . (10)

Taking the first order derivative of (10) with respect to the realized time
t1

∂P(T > t1)

∂t1
= −(N − 1)f(t1)[1− F (t1)]N−2 < 0 , (11)

for all t1 > 0. The probability that i = 1 realizes the fastest time for all i is
decreasing in the actual time realized.

The second derivative with respect to t1 is

∂2P(T > t1)

∂t21
= −(N − 1)

[
f ′(t1)[1− F (t1)]N−2 − (N − 2)f(t1)2[1− F (t1)]N−3

]
.
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We note that f ′(t1) > 0 for t1 <
K−1
x

and f ′(t1) < 0 for t1 >
K−1
x

, where
K−1
x

is the mode of f(t1;K, x). Furthermore, f ′′(t1) < 0. All other terms are
positive for all t1.

The sign of the second derivative on t1 <
K−1
x

depends on the relative
size of the terms in the square bracket. If

|f ′(t1)[1− F (t1)]N−2| > |(N − 2)f(t1)2[1− F (t1)]N−3| ,

then the second derivative will be negative for some t̂1 ≤ K−1
x

. If not, then
the second derivative is positive on t1 <

K−1
x

.
For t1 >

K−1
x

, the term in square brackets is always negative, so the sign
of the second derivative is always positive in this region.

In summary, the cumulative density function is concave when t1 < t̂1,
and convex when t1 > t̂1, where t̂1 ≥ 0.

∂2P(T>t1)

∂t21
< 0 , t1 < t̂1

∂2P(T>t1)

∂t21
= 0 , t1 = t̂1

∂2P(T>t1)

∂t21
> 0 , t1 > t̂1 .

(12)
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