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I. Introduction 
Macroeconomists have been long interested in estimating dynamic responses of output, inflation and 

other aggregates to structural shocks. While many analyses use vector autoregressions (VARs) or 

dynamic stochastic general equilibrium (DSGE) models to construct estimated responses, an 

increasing number of researchers focus on a single structural shock and employ single-equation 

methods to study the dynamic responses. This approach allows concentrating on well-identified 

shocks and leaving other sources of variation unspecified. In addition, these approaches often impose 

no restrictions on the shape of the impulse response function. As a result, the local projections method 

(Jordà 2005, Stock and Watson 2007) has gained prominence in applied macroeconomic research.  

The properties of impulse responses estimated with these methods are well studied (see 

e.g. Coibion 2012) but little is known about how one can estimate quantitative significance of 

shocks in the single-equation framework. Specifically, the vast majority of studies using single-

equation approaches do not report variance decomposition for the variable of interest and hence 

one does not know if a given shock accounts for a large share of variation for the variable.1 This 

practice contrasts sharply with the nearly universal convention to report variance decompositions 

in VARs and DSGE models. In this paper, we propose several methods to construct variance 

decomposition in the local projection framework.   

We show that local projections lead to a simple and intuitive way to assess the contribution 

of identified shocks to variation at different horizons. However, there are several options to 

implement this insight. While the details of implementation do not matter in large samples, we 

observe heterogeneity in the performance of various options in small, empirically relevant samples. 

To illustrate the properties of various methods, we use several data generating processes which cover 

main profiles of variance decompositions documented in previous works. We show that estimated 

contributions to variation may be biased in small samples and one should use bootstrap to correct 

for possible biases in the local projections’ estimates of variation decompositions. We also 

demonstrate how our method works in settings with multiple identified shocks. We illustrate the 

performance of our method using actual data and commonly used identified shocks as well as data 

simulated according to the Smets and Wouters (2007) DSGE model. Our work is concurrent and 

                                                            
1 Coibion et al. (2017) is among the very few papers reporting variance decomposition in the local projection method. 
More precisely, if we use definitions of Plagborg-Møller and Wolf (2017), the object of our analysis is forecast 
variance ratio.  
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complementary to Plagborg-Møller and Wolf (2017) who provide set-identified variance 

decompositions in the local projections framework.  

The rest of the paper is structured as follows. Section II lays out a basic setting to derive 

the estimators. Section III presents simulation results for bivariate and multivariate settings. 

Section IV provide an application of our estimators to estimate the contribution of monetary policy 

and productivity shocks to variation of output and inflation in the local projections framework. 

Section V concludes.  

II. Basics of variance decomposition  
Consider a generic setup encountered in studies using local projections. Let 𝑦𝑦𝑡𝑡 be an endogenous 

variable of interest. We assume that variation in 𝑦𝑦𝑡𝑡 has two components: an identified white-noise 

shocks series 𝑥𝑥𝑡𝑡 with mean zero and variance 𝜎𝜎𝑥𝑥2 and the “rest” captured by series 𝑧𝑧𝑡𝑡 so that  

𝑦𝑦𝑡𝑡 = ∑ 𝜓𝜓𝑥𝑥,𝑖𝑖𝑥𝑥𝑡𝑡−𝑖𝑖∞
𝑖𝑖=0 + 𝑧𝑧𝑡𝑡 =  𝜓𝜓𝑥𝑥(𝐿𝐿)𝑥𝑥𝑡𝑡 + 𝑧𝑧𝑡𝑡 .                                                                    (1)  

We are interested in estimating coefficients in the lag polynomial 𝜓𝜓𝑥𝑥(𝐿𝐿) which provides us with the 

impulse response function of variable 𝑦𝑦𝑡𝑡  to shock 𝑥𝑥𝑡𝑡 . We make only a few assumptions about 

properties of 𝑥𝑥𝑡𝑡 and 𝑧𝑧𝑡𝑡. Specifically, we assume that 𝑧𝑧𝑡𝑡 admits an integrated 𝑀𝑀𝑀𝑀(∞) representation,  

Δ𝑧𝑧𝑡𝑡 = 𝑔𝑔𝑦𝑦 + 𝜓𝜓𝑒𝑒(𝐿𝐿)𝑒𝑒𝑡𝑡                                                                                                         (2) 

where 𝑒𝑒𝑡𝑡 is a zero-mean white noise series with variance 𝜎𝜎𝑒𝑒2. Following the conventions of local 

projection applications, we assume that  𝑥𝑥𝑡𝑡 and 𝑒𝑒𝑡𝑡 are uncorrelated and that  ∑ 𝜓𝜓𝑥𝑥,𝑖𝑖
2∞

𝑖𝑖=0 < ∞ and 

∑ 𝜓𝜓𝑒𝑒,𝑖𝑖
2∞

𝑖𝑖=0 < ∞ . Without loss of generality we set 𝜓𝜓𝑒𝑒,0 = 1 . We assume that {(𝑥𝑥𝑡𝑡 ,Δ𝑦𝑦𝑡𝑡):  𝑡𝑡 =

1, … ,𝑇𝑇 } is observable. 

Forecast error for h-period ahead value of the endogenous variable is given by 

𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 ≡ 𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡+ℎ|𝑡𝑡−1 = (𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1) − 𝐸𝐸[𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1|Ω𝑡𝑡−1]  

where 𝑦𝑦𝑡𝑡+ℎ|𝑡𝑡−1 ≡ 𝐸𝐸[𝑦𝑦𝑡𝑡+ℎ|Ω𝑡𝑡−1]  is the prediction of 𝑦𝑦𝑡𝑡+ℎ  given information set Ω𝑡𝑡−1 ≡

{Δ𝑦𝑦𝑡𝑡−1, 𝑥𝑥𝑡𝑡−1,Δ𝑦𝑦𝑡𝑡−2, 𝑥𝑥𝑡𝑡−2, … }. We can decompose forecast error due to innovations in 𝑥𝑥𝑡𝑡 and other 

sources of variation as follows2  

𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 = 𝜓𝜓𝑥𝑥,0𝑥𝑥𝑡𝑡+ℎ + ⋯+ 𝜓𝜓𝑥𝑥,ℎ𝑥𝑥𝑡𝑡 + 𝑣𝑣𝑡𝑡+ℎ|𝑡𝑡−1.                                                                (3) 

                                                            
2  If 𝜓𝜓𝑒𝑒(𝐿𝐿)  is invertible, 𝑣𝑣𝑡𝑡+ℎ|𝑡𝑡−1  is equal to 𝜓𝜓𝑒𝑒,0𝑒𝑒𝑡𝑡+ℎ + ⋯+ �𝜓𝜓𝑒𝑒,0 + ⋯+ 𝜓𝜓𝑒𝑒,ℎ�𝑒𝑒𝑡𝑡 . This representation in 𝑒𝑒𝑡𝑡 ’s is 
obtained, because 𝑒𝑒𝑡𝑡 ∈ Ω𝑡𝑡. See Appendix A for details. Note that we do not need invertibility of 𝜓𝜓𝑒𝑒(𝐿𝐿) to construct 
the contribution of 𝑥𝑥𝑡𝑡 to variability in 𝑦𝑦𝑡𝑡. Intuitively, we only need an estimate of either 𝑉𝑉𝑉𝑉𝑉𝑉�𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1� in equations 
(4) and (4’), or 𝑉𝑉𝑉𝑉𝑉𝑉�𝑣𝑣𝑡𝑡+ℎ|𝑡𝑡−1� in equation (4’’) which does not require us separating 𝜓𝜓𝑒𝑒(𝐿𝐿) and 𝑒𝑒𝑡𝑡.  
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Following Sims (1980), we can define the population share of variance explained by the future 

innovations in 𝑥𝑥𝑡𝑡 to the total variations in 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1: 

𝑠𝑠ℎ =
𝑉𝑉𝑉𝑉𝑉𝑉�𝜓𝜓𝑥𝑥,0𝑥𝑥𝑡𝑡+ℎ + ⋯+ 𝜓𝜓𝑥𝑥,ℎ𝑥𝑥𝑡𝑡�

𝑉𝑉𝑉𝑉𝑉𝑉�𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1�
                                                                                   (4) 

     =
�∑ 𝜓𝜓𝑥𝑥,𝑖𝑖

2ℎ
𝑖𝑖=0 �𝜎𝜎𝑥𝑥2

𝑉𝑉𝑉𝑉𝑉𝑉�𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1�
                                                                                                                (4′) 

=
�∑ 𝜓𝜓𝑥𝑥,𝑖𝑖

2ℎ
𝑖𝑖=0 �𝜎𝜎𝑥𝑥2

�∑ 𝜓𝜓𝑥𝑥,𝑖𝑖
2ℎ

𝑖𝑖=0 �𝜎𝜎𝑥𝑥2 + 𝑉𝑉𝑉𝑉𝑉𝑉�𝑣𝑣𝑡𝑡+ℎ|𝑡𝑡−1�
.                                                                                (4′′) 

Equation (4) demonstrates that we have several options for estimating 𝑠𝑠ℎ and these options vary 

in their reliance on imposing parametric structure. In what follows, we propose and evaluate 

several methods to estimate 𝑠𝑠ℎ.  

A. 𝑅𝑅2 method 
Let 𝑋𝑋𝑡𝑡ℎ = (𝑥𝑥𝑡𝑡+ℎ, … , 𝑥𝑥𝑡𝑡)′. It can be shown with some algebra that equation (4) can be written as 

𝑠𝑠ℎ =
𝐶𝐶𝐶𝐶𝑣𝑣�𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1,𝑋𝑋𝑡𝑡ℎ��𝑉𝑉𝑉𝑉𝑉𝑉�𝑋𝑋𝑡𝑡ℎ��

−1𝐶𝐶𝐶𝐶𝑣𝑣(𝑋𝑋𝑡𝑡ℎ,𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1) 

.                                                   (5) 

This quantity can be understood as an 𝑅𝑅2  of the population projection of 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1  on 𝑋𝑋𝑡𝑡ℎ , or 

probability limit of sample 𝑅𝑅2. This observation suggests a natural estimator for 𝑠𝑠ℎ . First, the 

forecast errors for each horizon ℎ are estimated using local projections. Second, forecast error for 

horizon ℎ at time 𝑡𝑡 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 is regressed on shocks 𝑥𝑥 that happen between 𝑡𝑡 and 𝑡𝑡 + ℎ. The 𝑅𝑅2 in 

this regression is an estimate of 𝑠𝑠ℎ.  

More precisely, the estimated forecast error 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1  is the residual of the following 

regression: 

𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1 = 𝑐𝑐ℎ + �𝛾𝛾𝑖𝑖ℎ
𝐿𝐿𝑦𝑦

𝑖𝑖=1

Δ𝑦𝑦𝑡𝑡−𝑖𝑖 + �𝛽𝛽𝑖𝑖ℎ
𝐿𝐿𝑥𝑥

𝑖𝑖=1

𝑥𝑥𝑡𝑡−𝑖𝑖 + 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1,                                            (6) 

which is an approximation to 𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1 = 𝑐𝑐ℎ + ∑ 𝛾𝛾𝑖𝑖∞
𝑖𝑖=1 Δ𝑦𝑦𝑡𝑡−𝑖𝑖 + ∑ 𝛽𝛽𝑖𝑖ℎ∞

𝑖𝑖=1 𝑥𝑥𝑡𝑡−𝑖𝑖 + 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1  in 

population. Then we run the following regression and calculate its 𝑅𝑅2: 

𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 = 𝛼𝛼𝑥𝑥,0𝑥𝑥𝑡𝑡+ℎ + ⋯+ 𝛼𝛼𝑥𝑥,ℎ𝑥𝑥𝑡𝑡 + 𝑣𝑣�𝑡𝑡+ℎ|𝑡𝑡−1.                                                               (7) 

Thus, our first estimator is �̂�𝑠ℎ𝑅𝑅2 = 𝑅𝑅2 which, by construction, is between 0 and 1. Note that 𝛼𝛼𝑥𝑥,𝑖𝑖 in 

equation (7) corresponds to 𝜓𝜓𝑥𝑥,𝑖𝑖 in equation (1). Because 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 in equation (7) is a residual of 

an OLS regression with the intercept in equation (6) and 𝑥𝑥𝑡𝑡  is assumed to be zero mean, an 
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intercept term in equation (7) is not required. Moreover, the population mean of both 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 and 

𝑋𝑋𝑡𝑡ℎ are zeros, so both centered and non-centered 𝑅𝑅2’s are the same in population. We report results 

for the non-centered 𝑅𝑅2, but properties are similar when we use the centered 𝑅𝑅2. The following 

proposition derives the asymptotic distribution of the estimator.  

 

Proposition 1. Suppose 𝑓𝑓ℎ = �𝑓𝑓𝑇𝑇|𝑇𝑇−ℎ−1,𝑓𝑓𝑇𝑇−1|𝑇𝑇−ℎ−2, … , 𝑓𝑓𝐿𝐿𝑚𝑚𝑚𝑚𝑥𝑥+ℎ+1 |𝐿𝐿𝑚𝑚𝑚𝑚𝑥𝑥 �
′

 and 𝑋𝑋ℎ =

�𝑋𝑋𝑇𝑇−ℎℎ ,𝑋𝑋𝑇𝑇−1ℎ , … ,𝑋𝑋𝐿𝐿𝑚𝑚𝑚𝑚𝑥𝑥+1
ℎ �′  for all ℎ ≥ 0  where 𝐿𝐿𝑚𝑚𝑚𝑚𝑥𝑥 = max�𝐿𝐿𝑥𝑥, 𝐿𝐿𝑦𝑦� . Then the 𝑅𝑅2  of the 

regression of 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 on 𝑋𝑋𝑡𝑡ℎ, given by  �𝑓𝑓ℎ′𝑃𝑃𝑋𝑋ℎ𝑓𝑓ℎ�/(𝑓𝑓ℎ′𝑓𝑓ℎ) where 𝑃𝑃𝑋𝑋ℎ = 𝑋𝑋ℎ(𝑋𝑋ℎ′ 𝑋𝑋ℎ)−1𝑋𝑋ℎ′ , has the 

following asymptotic distribution for some 𝑉𝑉ℎ,𝑅𝑅2: 

√𝑇𝑇 �
𝑓𝑓ℎ′𝑃𝑃𝑋𝑋ℎ𝑓𝑓ℎ
𝑓𝑓ℎ′𝑓𝑓ℎ

− 𝑠𝑠ℎ�  
𝑑𝑑
→  𝒩𝒩�0,     𝑉𝑉ℎ,𝑅𝑅2�. 

Proof. See Appendix B1.  

In practice, we may plug the estimated forecast errors from equation (6) in the place of 𝑓𝑓ℎ . 

Appendix B1 contains details of implementation. Note that, instead of using shocks 𝑥𝑥𝑡𝑡 , … , 𝑥𝑥𝑡𝑡+ℎ in 

equation (7), one may want to use residuals from projecting 𝑥𝑥𝑡𝑡 , … , 𝑥𝑥𝑡𝑡+ℎ on lags of 𝑥𝑥𝑡𝑡 and Δ𝑦𝑦𝑡𝑡 from 

equation (6) to guarantee that one does not use forecastable movements in 𝑥𝑥𝑡𝑡 , … , 𝑥𝑥𝑡𝑡+ℎ to account 

for variation in 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1. In practice, however, shocks 𝑥𝑥𝑡𝑡 are constructed in ways to ensure that 𝑥𝑥𝑡𝑡 

is not predictable by lags of macroeconomic variables. As a result, we find in our simulations and 

applications that purifying structural shocks make little difference. Relatedly, one may implement 

this estimator by augmenting equation (6) with shocks 𝑥𝑥𝑡𝑡 , … , 𝑥𝑥𝑡𝑡+ℎ and calculating partial R2. This 

insight also justifies using 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 instead of 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 in Proposition 1.  

B. Local projection based methods  
The 𝑅𝑅2 approach requires estimation of two regressions for each horizon (first, construct forecast 

errors; second, compute the contribution of shocks 𝑥𝑥 between 𝑡𝑡 and 𝑡𝑡 + ℎ). However, one can 

estimate variance decomposition from the local projection directly. Following Jordà (2005), we 

can estimate 𝜓𝜓𝑥𝑥,ℎ from the following equation: 

𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1 = 𝑐𝑐ℎLP + �𝛾𝛾𝑖𝑖
ℎ,𝐿𝐿𝐿𝐿

𝐿𝐿𝑦𝑦

𝑖𝑖=1

Δ𝑦𝑦𝑡𝑡−𝑖𝑖 + �𝛽𝛽𝑖𝑖
ℎ,𝐿𝐿𝐿𝐿

𝐿𝐿𝑥𝑥

𝑖𝑖=0

𝑥𝑥𝑡𝑡−𝑖𝑖 + 𝑉𝑉𝑡𝑡+ℎ|𝑡𝑡−1                         (8) 
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where �̂�𝛽0
ℎ,𝐿𝐿𝐿𝐿 is an estimate of  𝜓𝜓𝑥𝑥,ℎ. Since we can estimate 𝜎𝜎𝑥𝑥2 directly from 𝑥𝑥𝑡𝑡, we can calculate 

�∑ 𝜓𝜓𝑥𝑥,𝑖𝑖
2ℎ

𝑖𝑖=0 �𝜎𝜎𝑥𝑥2 in the numerator of equation (4’). To compute the denominator in equation (4’), we 

note that the residual in equation (8) can be related to the forecast error 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 in equation (6). 

For example, 𝑓𝑓𝑡𝑡|𝑡𝑡−1 = �̂�𝛽0
0,𝐿𝐿𝐿𝐿𝑥𝑥𝑡𝑡 + �̂�𝑉𝑡𝑡|𝑡𝑡−1, that is, a part of forecast error 𝑓𝑓𝑡𝑡|𝑡𝑡−1 is explained by shock 

𝑥𝑥 happening at time 𝑡𝑡 which is now included as one of the regressors in equation (8). In a similar 

spirit, we can use equation (3) to compute 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 = �̂�𝛽0
ℎ,𝐿𝐿𝐿𝐿𝑥𝑥𝑡𝑡 + �̂�𝑉𝑡𝑡+ℎ|𝑡𝑡−1. With these estimates of 

𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1, we can compute 𝑉𝑉𝑉𝑉𝑉𝑉� (𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1) where 𝑉𝑉𝑉𝑉𝑉𝑉� (⋅) denotes a sample variance. Using these 

insights, we define a local projection estimator of variance decomposition “LPA” as  

𝑠𝑠ℎ𝐿𝐿𝐿𝐿𝐿𝐿 =
�∑ ��̂�𝛽0

𝑖𝑖,𝐿𝐿𝐿𝐿�
2ℎ

𝑖𝑖=0 � 𝜎𝜎�𝑥𝑥2

𝑉𝑉𝑉𝑉𝑉𝑉� ��̂�𝛽0
ℎ,𝐿𝐿𝐿𝐿𝑥𝑥𝑡𝑡 + �̂�𝑉𝑡𝑡+ℎ|𝑡𝑡−1�

                                                                          (9) 

where 𝜎𝜎�𝑥𝑥2 ≡ 𝑉𝑉𝑉𝑉𝑉𝑉� (𝑥𝑥𝑡𝑡). 

Although simple, LPA estimator does not guarantee that in small samples the estimated 𝑠𝑠ℎ 

is between 0 and 1. A simple solution to this issue is to split the denominator into variation due to 

𝑥𝑥 and due to 𝑣𝑣 so that �∑ 𝜓𝜓𝑥𝑥,𝑖𝑖
2ℎ

𝑖𝑖=0 �𝜎𝜎𝑥𝑥2 appears in both the numerator and denominator as in equation 

(4’’). Note that    

𝑣𝑣�𝑡𝑡+ℎ|𝑡𝑡−1 =  𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 − �̂�𝛽0
ℎ,𝐿𝐿𝐿𝐿𝑥𝑥𝑡𝑡 − �̂�𝛽0

ℎ−1,𝐿𝐿𝐿𝐿𝑥𝑥𝑡𝑡+1 − ⋯− �̂�𝛽0
0,𝐿𝐿𝐿𝐿𝑥𝑥𝑡𝑡+ℎ  

               =  �̂�𝑉𝑡𝑡+ℎ|𝑡𝑡−1 − �̂�𝛽0
ℎ−1,𝐿𝐿𝐿𝐿𝑥𝑥𝑡𝑡+1 − ⋯− �̂�𝛽0

0,𝐿𝐿𝐿𝐿𝑥𝑥𝑡𝑡+ℎ   

so that  

𝑉𝑉𝑉𝑉𝑉𝑉� �𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1� = 𝑉𝑉𝑉𝑉𝑉𝑉� ��̂�𝑉𝑡𝑡+ℎ|𝑡𝑡−1 − �̂�𝛽0
ℎ−1,𝐿𝐿𝐿𝐿𝑥𝑥𝑡𝑡+1 − ⋯− �̂�𝛽0

0,𝐿𝐿𝐿𝐿𝑥𝑥𝑡𝑡+ℎ � + ∑ ��̂�𝛽0
𝑖𝑖,𝐿𝐿𝐿𝐿�

2
𝜎𝜎�𝑥𝑥2ℎ

𝑖𝑖=0   

which we use to define another local projection estimator of variance decomposition “LPB”:  

𝑠𝑠ℎ𝐿𝐿𝐿𝐿𝐿𝐿 =
�∑ ��̂�𝛽0

𝑖𝑖,𝐿𝐿𝐿𝐿�
2ℎ

𝑖𝑖=0 � 𝜎𝜎�𝑥𝑥2

∑ ��̂�𝛽0
𝑖𝑖,𝐿𝐿𝐿𝐿�

2
𝜎𝜎�𝑥𝑥2ℎ

𝑖𝑖=0 + 𝑉𝑉𝑉𝑉𝑉𝑉� ��̂�𝑉𝑡𝑡+ℎ|𝑡𝑡−1 − �̂�𝛽0
ℎ−1,𝐿𝐿𝐿𝐿𝑥𝑥𝑡𝑡+1 − ⋯− �̂�𝛽0

0,𝐿𝐿𝐿𝐿𝑥𝑥𝑡𝑡+ℎ �
.              (9′) 

Using tools from Proposition 1, we can derive the asymptotic distribution of the LPA and LPB 

estimators.  

 

Proposition 2. The local projections based estimators when 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1  is observable have the 

following asymptotic distributions for some 𝑉𝑉ℎ,𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑉𝑉ℎ,𝐿𝐿𝐿𝐿𝐿𝐿: 



6 
 

√𝑇𝑇 �
∑ ��̂�𝛽0

𝑖𝑖,𝐿𝐿𝐿𝐿�
2
𝜎𝜎�𝑥𝑥2ℎ

𝑖𝑖=0

𝑉𝑉𝑉𝑉𝑉𝑉� (𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1)
− 𝑠𝑠ℎ�

𝑑𝑑
→𝒩𝒩�0,   𝑉𝑉ℎ,𝐿𝐿𝐿𝐿𝐿𝐿�,     and 

√𝑇𝑇�
∑ ��̂�𝛽0

𝑖𝑖,𝐿𝐿𝐿𝐿�
2ℎ

𝑖𝑖=0 𝜎𝜎�𝑥𝑥2

∑ ��̂�𝛽0
𝑖𝑖,𝐿𝐿𝐿𝐿�

2ℎ
𝑖𝑖=0 𝜎𝜎�𝑥𝑥2 + 𝑉𝑉𝑉𝑉𝑉𝑉� �𝑉𝑉𝑡𝑡+ℎ|𝑡𝑡−1 − ∑ �̂�𝛽0

𝑖𝑖,𝐿𝐿𝐿𝐿ℎ−1
𝑖𝑖=0 𝑥𝑥𝑡𝑡+ℎ−𝑖𝑖�

− 𝑠𝑠ℎ�  
𝑑𝑑
→  𝒩𝒩�0,     𝑉𝑉ℎ,𝐿𝐿𝐿𝐿𝐿𝐿�. 

Proof. See Appendix B2. 

C. Small-sample refinements 
To correct for potential small-sample biases in the estimates of 𝑠𝑠ℎ and to enhance coverage rates for 

confidence bands, we bootstrap �̂�𝑠ℎ𝑅𝑅2,  �̂�𝑠ℎ𝐿𝐿𝐿𝐿𝐿𝐿, and �̂�𝑠ℎ𝐿𝐿𝐿𝐿𝐿𝐿 using an estimated VAR model which includes 

two variables {𝑥𝑥𝑡𝑡 ,Δ𝑦𝑦𝑡𝑡}. While our implementation of bootstrap is aimed to remove potential biases, 

alternative implementations may also refine asymptotic inference. Details on how bootstrap is 

implemented are relegated to Appendix E.  

D. Extension  
While our analysis has focused on the bivariate case, the framework can be easily generalized to 

include more controls in equation (6):  

𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1 = �𝛽𝛽𝑖𝑖ℎ
𝐿𝐿𝑥𝑥

𝑖𝑖=1

𝑥𝑥𝑡𝑡−𝑖𝑖 + �𝐶𝐶𝑡𝑡−𝑖𝑖′ 𝛤𝛤𝑖𝑖ℎ
𝐿𝐿𝐶𝐶

𝑖𝑖=1

+ 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1                                                            (10) 

where 𝐶𝐶𝑡𝑡 is the vector of control variables which may include structural shocks other than 𝑥𝑥𝑡𝑡. In the 

base case, 𝐶𝐶𝑡𝑡 consists only of Δ𝑦𝑦𝑡𝑡. Note that for VAR-based bootstrap, one has to include 𝑥𝑥𝑡𝑡 and all 

variables in 𝐶𝐶𝑡𝑡 to simulate data.3 Similar adjustments are also possible for LPA and LPB methods. 

One should bear in mind that, although including or excluding 𝐶𝐶𝑡𝑡  or changing the 

composition of variables in 𝐶𝐶𝑡𝑡 should make little difference of impulse responses estimated with 

local projections (provided 𝑥𝑥 is uncorrelated with other shocks), what goes in 𝐶𝐶𝑡𝑡  is potentially 

important for variance decomposition. Intuitively, by including more controls in 𝐶𝐶𝑡𝑡, we (weakly) 

reduce the size of the forecast error (that is, information set Ω𝑡𝑡 expands) and hence the amount of 

variation to be explained shrinks. In other words, the regressand in equation (7) and therefore 𝑠𝑠ℎ 

                                                            
3 As the number of variables in 𝐶𝐶𝑡𝑡 increases, the number of parameters in the VAR increases rapidly. When 𝐶𝐶𝑡𝑡 is a large 
vector, or when a VAR is not a good representation of the DGP for control variables, VAR-based bootstrap might not be 
an appealing option. In such a case, one may correct for biases by simulating asymptotic distribution of primitive quantities 
in (4) such as 𝜓𝜓�𝑥𝑥,𝑖𝑖 ,𝜎𝜎�𝑥𝑥2, and  𝑉𝑉𝑉𝑉𝑉𝑉� �𝑣𝑣�𝑡𝑡+ℎ|𝑡𝑡−1�.  By considering 𝑠𝑠ℎ  as a non-linear function of those parameters, such 
simulations would detect biases due to the non-linearity. See Appendix B for implementation and E and F for the results.   
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change with a change in the list of variables included in 𝐶𝐶𝑡𝑡. Thus, one should not be surprised to 

observe that the share of variation explained by 𝑥𝑥 may be sensitive to changes in 𝐶𝐶𝑡𝑡.  

III. Simulations 
This section presents two sets of simulations. The first set shows results for the baseline bivariate 

case and studies the performances of the three estimators for various profiles of contribution of 𝑥𝑥 

to variance of 𝑦𝑦 at different horizons. The second set uses the estimated Smets and Wouters (2007) 

model to investigate the performance in a setting with many control variables.  

For each data generating process (DGP), we simulate data 2,000 times. When we employ 

bootstrap to correct for biases, the number of bootstrap replications is set to B=2,000. As a 

benchmark, we report results based on a corresponding VAR. This benchmark corresponds to the 

practice of including shocks into VARs directly (e.g., Basu et al. 2006, Ramey 2011, Barakchian 

and Crowe 2013, Romer and Romer 2004, 2010).  We choose the Hannan-Quinn information 

criterion (HQIC) as our benchmark criterion to determine the number of lags in VAR. To make 

VAR and LP models comparable, we use HQIC number of lags in the VAR to set 𝐿𝐿𝑥𝑥 and 𝐿𝐿𝑦𝑦. 

Results are similar when we use AIC instead of HQIC. 

The sample size for simulated data is 𝑇𝑇 = 160. Results for other sample sizes are reported 

in Appendices E and F. Standard errors are computed as the standard deviation of estimates across 

bootstrapped samples. The coverage rates are calculated as Pr �� �̂�𝑠ℎ−𝑠𝑠ℎ
𝑠𝑠.𝑒𝑒.(�̂�𝑠ℎ)

�� ≤ 1.65.  

A. Bivariate Data Generating Processes 
We study three DGPs to cover different shapes of 𝑠𝑠ℎ. The basic structure is as follows:  

𝑦𝑦𝑡𝑡 = 𝜓𝜓𝑥𝑥(𝐿𝐿)𝑥𝑥𝑡𝑡 + 𝑧𝑧𝑡𝑡        
𝑧𝑧𝑡𝑡 = 𝑝𝑝𝑡𝑡 + 𝑉𝑉𝑡𝑡, 
�Δ𝑝𝑝𝑡𝑡 − 𝑔𝑔𝑦𝑦� = 𝜌𝜌𝑝𝑝�Δ𝑝𝑝𝑡𝑡−1 − 𝑔𝑔𝑦𝑦� + 𝑒𝑒𝑡𝑡

𝑝𝑝, 𝑒𝑒𝑡𝑡
𝑝𝑝 ~ 𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁�0,𝜎𝜎𝑝𝑝2�, 

𝑉𝑉𝑡𝑡 = 𝜌𝜌𝑚𝑚𝑉𝑉𝑡𝑡−1 + 𝑒𝑒𝑡𝑡𝑚𝑚,         𝑒𝑒𝑡𝑡𝑚𝑚 ~ 𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁(0,𝜎𝜎𝑚𝑚2), 
𝑥𝑥𝑡𝑡 ~ 𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁(0,𝜎𝜎𝑥𝑥2), 

where 𝑥𝑥𝑡𝑡 , 𝑒𝑒𝑡𝑡
𝑝𝑝  and 𝑒𝑒𝑡𝑡𝑚𝑚  are mutually independent, 𝑝𝑝𝑡𝑡  and 𝑉𝑉𝑡𝑡  are permanent and transitory 

components of 𝑧𝑧𝑡𝑡. Appendix C derives the population 𝑀𝑀𝑀𝑀(∞) representation of Δ𝑧𝑧𝑡𝑡.  
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DGP1 is characterized by hump-shaped 𝜓𝜓𝑥𝑥 and 𝑠𝑠ℎ. We assume that 𝜓𝜓𝑥𝑥(𝐿𝐿)𝑥𝑥𝑡𝑡 follows an 

𝑀𝑀𝑀𝑀(100) process with the maximum response set to 3 after 8 periods.4 DGP2 has a strong 

response of 𝑦𝑦 to 𝑥𝑥 only in the short-run and thus the shape of 𝑠𝑠ℎ is downward-sloping. Finally, 

DGP3 assumes that 𝜓𝜓𝑥𝑥(𝐿𝐿) has a unit root so that 𝑥𝑥 has persistent effects on 𝑦𝑦 and the shape of 𝑠𝑠ℎ 

is upward-sloping. Table 1 reports parameter values for each DGP. Figure 1 plots true impulse 

responses of 𝑦𝑦 to 𝑥𝑥 (Panel A) and the contribution of 𝑥𝑥 to variation in 𝑦𝑦 (Panel B).  

For DGP1, we find (Table 2) that local projections capture the hump-shaped impulse 

response correctly but 𝑠𝑠𝑅𝑅2, 𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿 fail to match the hump-share dynamics of 𝑠𝑠ℎ. 𝑠𝑠𝑅𝑅2, 𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿 

and 𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿 tend to monotonically increase with the horizon. The VAR misses the hump both in the 

impulse response and variance decomposition as HQIC selects too few lags (on average the 

number of lags is 1.27).  Confidence bands yield poor coverage rates. This performance reflects 

the fact that, by construction, shock 𝑥𝑥  contributes zero variation in 𝑦𝑦  for this DGP at short 

horizons. Since 𝑠𝑠ℎ is between zero and one, we effectively have estimates close to the boundary 

and, therefore, standard methods are likely to fail. While bootstrap appears to provide some 

improvement (e.g., the bias at long horizons when 𝑥𝑥 accounts for a larger share of variance in 𝑦𝑦 is 

corrected) 5, it does not perform consistently better because the parameter is at the boundary. When 

we allow 𝑥𝑥 to explain 5 percent or more of the variation in 𝑦𝑦 at short horizons, bootstrap brings 

coverage rates close to nominal (results are available upon request). Note that, although VAR is 

strongly biased, the VAR estimates tend to have smaller variance so that the root mean squared 

error (RMSE) is similar in magnitude to RMSE of the 𝑠𝑠𝑅𝑅2, 𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿 estimators. Finally, we 

observe that the 𝑠𝑠𝑅𝑅2, 𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿 estimators have similar performance.  

Because DGP2 permits an exact, finite-order VAR representation, 6  VAR has good 

properties in terms of bias, RMSE and coverage rates (Table 3). The local projections recover the 

share of the impulse response correct, but the estimates of contribution of 𝑥𝑥 to variance of 𝑦𝑦 again 

overstate the contribution at long horizons. Bootstrap can correct this bias. Given that VAR nests 

                                                            
4 This value and pattern is motivated by a 3 percent response of real GDP to a 100bp monetary policy shock estimated 
in Coibion (2012).  
5 The bias can be further reduced by using higher values of 𝐿𝐿𝑥𝑥  and 𝐿𝐿𝑦𝑦  by reducing errors in 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1  due to the 
truncation.  
6 Given the parameter values in Table 1, Δ𝑦𝑦𝑡𝑡 = 𝑔𝑔𝑦𝑦 + (1 − 𝐿𝐿)(1 − 0.9𝐿𝐿)−1𝑥𝑥𝑡𝑡 + (1 − 0.9𝐿𝐿)−1𝑒𝑒𝑡𝑡

𝑝𝑝. By pre-multiplying 
(1 − 0.9𝐿𝐿), we have Δ𝑦𝑦𝑡𝑡 = 0.1𝑔𝑔𝑦𝑦 + 0.9Δ𝑦𝑦𝑡𝑡−1 − 𝑥𝑥𝑡𝑡−1 + 𝑥𝑥𝑡𝑡 + 𝑒𝑒𝑡𝑡

𝑝𝑝. 
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the DGP and that VAR is more parsimonious than local projections, VAR has a better performance 

than the 𝑠𝑠𝑅𝑅2, 𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿 estimators. 

Because 𝑥𝑥 has long-lasting effects on 𝑦𝑦 in DGP3, the VAR underestimates the responses at 

long horizons in small samples. Impulse responses estimated with local projections perform better 

but also exhibit a downward bias at long horizons. In a similar spirit, �̂�𝑠ℎ shows a strong downward 

bias for VAR and a smaller, but still considerable bias for the 𝑠𝑠𝑅𝑅2, 𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿 estimators (this is 

the case even after we use bootstrap to correct for possible biases). This performance reflects the fact 

that HQIC chooses a low number of lags (1.34 lags on average across simulations). As a result, 

VARs used to simulate bootstrap samples fail to capture the degree of persistence in the data. To 

demonstrate the importance of the lag order, we report results (Table 4) when we use VAR(5) and 

VAR(10) for bootstrap. As the number of lags increases, we observe some improvement but these 

enhancements are achieved at the price of higher variance in the estimates. These results suggest that 

one may want to overfit VAR for persistent processes at the bootstrap stage.  

In summary, we find for small samples that the 𝑠𝑠𝑅𝑅2, 𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿  estimators perform 

reasonably well across the DGPs and that bootstrap helps to improve the estimators’ properties. In 

addition, there is relatively little difference between the 𝑠𝑠𝑅𝑅2, 𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿 estimators. In contrast, 

VARs that include structural shock 𝑥𝑥 tend to perform poorly when a DGP is not nested in a small-

order VAR.   

B. Smets-Wouters model 
While the bivariate DGPs provide important insights about how the 𝑅𝑅2, 𝐿𝐿𝑃𝑃𝑀𝑀 and 𝐿𝐿𝑃𝑃𝐿𝐿 estimators 

perform, researchers face potentially more complex DGPs and often have more information in 

practice. In this section, we use the Smets and Wouters (2007) model to study performance of our 

estimators in an environment with multiple shocks and many control variables.  

As discussed above, different information sets determine different population 𝑠𝑠ℎ. In the 

simulations, we assume that the researcher is interested in explaining variation in output and that 

the researcher observes output growth rate, inflation, federal funds rate, and monetary policy 

shocks.7 This choice of variables is motivated by the popularity of small VARs which include 

                                                            
7 For this information set, we construct the true variance decomposition using a stationary Kalman filter similar to the 
method in Appendix C. We also tried various combinations of shocks and endogenous variables and found similar 
results. Figures for inflation and results with large samples are in Appendix F. Note that monetary policy shocks are 
nearly invertible in the Smets-Wouters model (see Wolf (2017) for more details). While this may be a problem if we 
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output, inflation and a policy rate to study effects of monetary policy on the economy. In this 

exercise, the shock is ordered first because the Smets-Wouters model allows contemporaneous 

responses of macroeconomic variables to policy shocks. When estimating impulse responses using 

local projections, we augment equation (8) with inflation and federal funds rate as controls.  

We find (Figure 2) that local projections correctly recover the response of output to 

monetary policy shocks, while a low order VAR (lag length is chosen with HQIC) fails to capture 

the transitory effect of monetary shocks on output. Consistent with our bivariate analysis, �̂�𝑠ℎ𝑅𝑅2, 

�̂�𝑠ℎ𝐿𝐿𝐿𝐿𝐿𝐿 and �̂�𝑠ℎ𝐿𝐿𝐿𝐿𝐿𝐿 increase with the horizons while the true 𝑠𝑠ℎ exhibits hump-shaped dynamics. 𝑠𝑠ℎ 

estimated with a VAR also fails to capture the true dynamics as �̂�𝑠ℎ flattens out after about ℎ = 5. 

Similar to our results in the previous section, we find that bias correction helps �̂�𝑠ℎ𝑅𝑅2, �̂�𝑠ℎ𝐿𝐿𝐿𝐿𝐿𝐿 and �̂�𝑠ℎ𝐿𝐿𝐿𝐿𝐿𝐿 

to recover the true hump-shaped profile of 𝑠𝑠ℎ . Coverage rates (after bias correction) are 10 

percentage points lower their nominal values at short horizons (ℎ ≤ 5) but the coverage rates are 

close to nominal at longer horizons. Again, although VAR estimates of 𝑠𝑠ℎ are strongly biased, the 

variance of estimates is low so that RMSE is broadly similar cross methods. We conclude that our 

proposed methods to estimate variance decomposition work well in more complex settings.  

IV. Application 
To illustrate the properties our estimators, we use two structural shocks identified in the literature. 

The first shock is the monetary policy innovation identified as in Romer and Romer (2004) and 

extended in Coibion et al. (2017). The second shock is the total factor productivity (TFP) shock 

identified as in Fernald (2014).8 The correlation between the shocks is -0.059. Our objective is to 

quantify the contribution of these shocks to variation of output and inflation. The sample covers 

1969Q1-2007Q4 which excludes the period of binding zero lower bound. The set of variables for 

local projections includes inflation (annualized growth rate of GDP deflator, i.e. 400Δln (𝑃𝑃𝑡𝑡)), 

annual GDP growth rate (400Δ ln(𝑌𝑌𝑡𝑡)), federal funds rate, and the two-shock series. We set 𝐿𝐿𝐶𝐶 =

𝐿𝐿𝑥𝑥 = 4 in equation (10) and add control variables similarly when estimating impulse responses. In 

the benchmark VAR, we have all five variables and allow four lags.9  

                                                            
use shocks identified and recovered from a DSGE model, the spirit of our exercise is to assume that we have access 
to other information (as in e.g. Romer and Romer (2004)) so that we can observe monetary policy shocks directly.   
8 When we use empirically identified shocks, measurement errors might be an issue. Given measurement errors, we 
show that asymptotic biases of our estimators are negative in Appendix D. Therefore, results here can be understood 
as conservative estimates. In addition, shocks are often estimated and thus are generated regressors, but if the 
researcher is interested in testing the null of no response then there is no need to adjust inference (Pagan 1984).  
9 The ordering of shocks in the VAR is TFP shock, output growth rate, inflation, monetary policy shock, fed funds rate.  
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Consistent with previous studies, we find (Figures 3 and 4) that a contractionary monetary 

policy shocks lowers output and prices, and that a positive TFP shock raises output and lowers prices. 

Impulse responses estimated with VAR and local projections are similar. VAR estimates for variance 

decomposition suggest that each of the shocks accounts for approximately 10 percent of variation in 

output. According to the VAR estimates, monetary policy shocks account for approximately 25 

percent of variation in inflation at long horizons and little variation at short horizons while the 

contribution of TFP shocks is generally small. Bias correction makes no material difference for the 

variance decomposition estimates for all cases but one: the bias-corrected estimate of the contribution 

of monetary policy shocks to variation of inflation at long horizons is reduced to about 10 percent.  

Local projections estimate that the contribution of the two shocks to variation of output is 

approximately twice as large as the contribution in VAR estimates. Consistent with simulations, 

bias correction tends to generate lower contributions but generally the magnitudes are similar. 

Specifically, when we use the 𝑠𝑠𝑅𝑅2 estimator, monetary policy shocks account for approximately 

20 percent of variation in output according to local projection estimates (25 percent without bias 

correction) and approximately 10 percent according to VAR estimates. While the 𝐿𝐿𝑃𝑃𝐿𝐿 estimator 

yields similar results, the 𝐿𝐿𝑃𝑃𝑀𝑀 estimator assigns a much larger role to the monetary policy shocks. 

This pattern reflects the fact that �̂�𝑠ℎ𝐿𝐿𝐿𝐿𝐿𝐿 may be greater than 1 in finite samples. Also, note that, in 

contrast to the profile of 𝑠𝑠ℎ estimated with VAR for output (which is generally flat after ℎ = 5), 

�̂�𝑠ℎ𝑅𝑅2, �̂�𝑠ℎ𝐿𝐿𝐿𝐿𝐿𝐿 and �̂�𝑠ℎ𝐿𝐿𝐿𝐿𝐿𝐿 have richer dynamics.  

In a similar spirit, the contribution of TFP and monetary policy shocks to variation in 

inflation is much greater according to our local-projections estimates. The difference is particularly 

large for monetary shocks: �̂�𝑠ℎ𝑅𝑅2 and �̂�𝑠ℎ𝐿𝐿𝐿𝐿𝐿𝐿 are close to 40 percent (after bias correction) and �̂�𝑠ℎ𝑉𝑉𝐿𝐿𝑅𝑅 is 

about 10 percent at long horizons. Again, �̂�𝑠ℎ𝐿𝐿𝐿𝐿𝐿𝐿 estimates an even greater contribution of monetary 

shocks and confidence intervals are much wider for �̂�𝑠𝐿𝐿𝐿𝐿𝐿𝐿 than for �̂�𝑠𝐿𝐿𝐿𝐿𝐿𝐿 or �̂�𝑠𝑅𝑅2. Again, this stems 

from the fact that  �̂�𝑠ℎ𝐿𝐿𝐿𝐿𝐿𝐿 may be greater than 1 in finite samples. 

V. Concluding remarks 
Single-equation methods can offer flexibility and parsimony that many economists seek. The 

increasing popularity of these methods, specifically the local projections, calls for further 

development of these tools. An important limitation for practitioners using this framework has 

been a lack of simple tools to assess quantitative significance of a given set of shocks, that is, the 
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contribution of the shocks to variance of the variable of interest. We propose several methods to 

provide such a metric. In a series of simulation exercises, we document that these methods have 

good small-sample properties. We also show that conventional approaches to assess the 

quantitative significance of two popular structural shocks (monetary policy shocks and total factor 

productivity shocks) could have been understated the importance of these two shocks.   
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Table 1. Parameter values for data generating processes (DGPs) used in simulations.  

 𝜓𝜓𝑥𝑥(𝐿𝐿) 𝜎𝜎𝑥𝑥 𝑔𝑔𝑦𝑦 𝜌𝜌𝑝𝑝 𝜎𝜎𝑝𝑝 𝜌𝜌𝑚𝑚 𝜎𝜎𝑚𝑚 

DGP1 Hump-shaped 1 0.5 0.9 0.5 0.9 3 

DGP2 (1 − 0.9L)−1 3 0.5 0.9 1.5 - - 

DGP3 (1 − L)−1(1 − 0.9L)−1 1 0.5 0.5 2 0.9 3 
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Table 2. Simulation results for DGP 1. 

 Horizon ℎ 
 0 4 8 12 16 20 

       
Impulse response       

True 0.00 1.39 3.00 2.06 0.88 0.29 
Local projections 0.00 1.36 2.99 2.03 0.85 0.29 
VAR(HQIC) 0.00 0.18 0.26 0.27 0.27 0.27 

       
Variance decomposition       

True 0.00 0.04 0.19 0.21 0.18 0.14 
Average estimate       

R2 0.01 0.06 0.20 0.25 0.26 0.27 
LP A 0.01 0.04 0.18 0.23 0.23 0.23 
LP B 0.01 0.04 0.17 0.22 0.21 0.21 
VAR(HQIC) 0.01 0.02 0.02 0.03 0.03 0.03 

       
Root mean squared error       

R2 0.01 0.05 0.11 0.16 0.19 0.22 
LP A 0.01 0.04 0.11 0.15 0.18 0.20 
LP B 0.01 0.04 0.10 0.14 0.15 0.15 
VAR(HQIC) 0.01 0.03 0.17 0.20 0.16 0.14 

       
Coverage (90 % level) (asymptotic)       

R2 1.00 0.94 0.74 0.71 0.75 0.73 
LP A 1.00 0.94 0.53 0.57 0.74 0.80 
LP B 1.00 0.93 0.53 0.55 0.70 0.78 
VAR(HQIC) 1.00 0.57 0.06 0.05 0.07 0.09 

       
Variance decomposition (bias corrected, VAR(HQIC))      

True 0.00 0.04 0.19 0.21 0.18 0.14 
Average estimate       

R2 0.00 0.02 0.13 0.16 0.13 0.11 
LP A 0.00 0.02 0.14 0.17 0.16 0.14 
LP B 0.00 0.02 0.14 0.17 0.15 0.13 
VAR(HQIC) 0.00 0.00 0.01 0.02 0.02 0.02 

       
Root mean squared error       

R2 0.01 0.05 0.13 0.16 0.17 0.18 
LP A 0.01 0.04 0.12 0.16 0.17 0.18 
LP B 0.01 0.04 0.12 0.14 0.15 0.15 
VAR(HQIC) 0.01 0.04 0.19 0.21 0.18 0.15 

       
Coverage (90 % level)       

R2 1.00 0.93 0.59 0.61 0.67 0.79 
LP A 1.00 0.82 0.45 0.49 0.59 0.79 
LP B 1.00 0.81 0.46 0.47 0.57 0.73 
VAR(HQIC) 1.00 0.41 0.05 0.05 0.06 0.08 
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Table 3. Simulation results for DGP 2 

 Horizon ℎ 
 0 4 8 12 16 20 

       
Impulse response       

True 3.00 1.97 1.29 0.85 0.56 0.36 
Local projections 2.99 1.88 1.18 0.71 0.43 0.22 
VAR(HQIC) 2.96 1.98 1.40 1.04 0.82 0.67 

       
Variance decomposition       

True 0.80 0.25 0.10 0.05 0.03 0.02 
Average estimate       

R2 0.79 0.27 0.15 0.14 0.15 0.18 
LP A 0.80 0.27 0.13 0.10 0.09 0.09 
LP B 0.79 0.26 0.13 0.09 0.09 0.09 
VAR(HQIC) 0.80 0.27 0.13 0.08 0.06 0.05 

       
Root mean squared error       

R2 0.03 0.11 0.12 0.14 0.17 0.21 
LP A 0.03 0.09 0.08 0.08 0.09 0.11 
LP B 0.03 0.08 0.07 0.08 0.09 0.10 
VAR(HQIC) 0.03 0.08 0.07 0.06 0.05 0.05 

       
Coverage (90 % level) (asymptotic)       

R2 0.92 0.87 0.92 0.89 0.85 0.80 
LP A 0.93 0.90 0.94 0.95 0.93 0.93 
LP B 0.90 0.88 0.93 0.94 0.92 0.90 
VAR(HQIC) 0.90 0.88 0.91 0.97 0.99 0.99 

       
Variance decomposition (bias corrected, VAR(HQIC))      

True 0.80 0.25 0.10 0.05 0.03 0.02 
Average estimate       

R2 0.81 0.25 0.09 0.04 0.01 0.00 
LP A 0.79 0.25 0.10 0.05 0.03 0.02 
LP B 0.81 0.25 0.10 0.05 0.03 0.02 
VAR(HQIC) 0.80 0.25 0.10 0.05 0.03 0.02 

       
Root mean squared error       

R2 0.03 0.10 0.09 0.09 0.11 0.13 
LP A 0.03 0.08 0.07 0.07 0.07 0.08 
LP B 0.03 0.08 0.07 0.07 0.07 0.08 
VAR(HQIC) 0.03 0.08 0.06 0.05 0.04 0.04 

       
Coverage (90 % level)       

R2 0.91 0.90 0.97 0.98 0.98 0.97 
LP A 0.93 0.88 0.91 0.98 0.97 0.97 
LP B 0.89 0.83 0.89 0.97 0.97 0.96 
VAR(HQIC) 0.89 0.88 0.89 0.92 0.99 1.00 
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Table 4. Simulation results for DGP 3 with alternative lag orders in VARs. 

 Horizon ℎ 
 0 4 8 12 16 20 
       
Impulse response       

True 1.00 4.10 6.13 7.46 8.33 8.91 
Local projections 0.99 3.96 5.78 6.86 7.44 7.66 
VAR(5) 0.93 3.74 4.76 5.01 5.10 5.14 
VAR(10) 0.92 3.65 5.34 6.05 6.17 6.23 

       
Variance decomposition (bias corrected, VAR(5))      

True 0.06 0.29 0.47 0.58 0.65 0.70 
Average estimate       

R2 0.06 0.26 0.41 0.50 0.55 0.58 
LP A 0.05 0.24 0.38 0.48 0.54 0.58 
LP B 0.06 0.25 0.40 0.49 0.54 0.57 
VAR(5) 0.06 0.24 0.33 0.36 0.38 0.39 

       
Root mean squared error       

R2 0.04 0.11 0.16 0.19 0.21 0.23 
LP A 0.04 0.11 0.17 0.21 0.25 0.28 
LP B 0.04 0.11 0.16 0.19 0.20 0.22 
VAR(5) 0.04 0.11 0.19 0.26 0.31 0.34 

       
Coverage (90 % level) (asymptotic)       

R2 0.77 0.80 0.80 0.81 0.82 0.83 
LP A 0.85 0.83 0.82 0.83 0.84 0.85 
LP B 0.84 0.79 0.78 0.78 0.79 0.80 
VAR(5) 0.83 0.78 0.66 0.51 0.40 0.33 

       
Variance decomposition (bias corrected, VAR(10))      

True 0.06 0.29 0.47 0.58 0.65 0.70 
Average estimate       

R2 0.07 0.30 0.47 0.57 0.63 0.66 
LP A 0.05 0.23 0.37 0.47 0.52 0.55 
LP B 0.05 0.27 0.44 0.54 0.60 0.63 
VAR(10) 0.06 0.27 0.42 0.50 0.54 0.56 

       
Root mean squared error       

R2 0.05 0.12 0.16 0.19 0.21 0.22 
LP A 0.04 0.12 0.17 0.21 0.25 0.29 
LP B 0.04 0.12 0.16 0.18 0.20 0.21 
VAR(10) 0.04 0.11 0.15 0.19 0.21 0.23 

       
Coverage (90 % level)       

R2 0.72 0.76 0.78 0.80 0.82 0.83 
LP A 0.87 0.87 0.89 0.90 0.91 0.92 
LP B 0.85 0.77 0.75 0.76 0.78 0.79 
VAR(10) 0.83 0.83 0.81 0.79 0.77 0.74 
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Figure 1. Population impulse responses and variance decomposition for each DGP 

 
Notes: the left panel shows the impulse response functions for three bivariate data generating processes (DGPs). The right 

panel shows the contribution of the identified shock to variation of an outcome variable for the DGPs.  
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Figure 2: Smets and Wouters (2007) model, real GDP and monetary policy shock, T = 160. 
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Figure 3 Real GDP. 1969:Q1-2007:Q4. 
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Figure 4. Inflation. 1969:Q1-2007:Q4. 
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Appendix A. Identification of 𝑒𝑒𝑡𝑡 
In Section II, we derive the ℎ-period ahead forecast error as following: 

𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 = 𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡+ℎ|𝑡𝑡−1 = (𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1) − 𝐸𝐸[𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1|Ω𝑡𝑡−1] 

= 𝜓𝜓𝑥𝑥,𝑜𝑜𝑥𝑥𝑡𝑡+ℎ + ⋯+ 𝜓𝜓𝑥𝑥,ℎ𝑥𝑥𝑡𝑡 + 𝑣𝑣𝑡𝑡+ℎ|𝑡𝑡−1  

where 𝑦𝑦𝑡𝑡+ℎ|𝑡𝑡−1 ≡ 𝐸𝐸[𝑦𝑦𝑡𝑡+ℎ|Ω𝑡𝑡−1] and Ω𝑡𝑡−1 = {Δ𝑦𝑦𝑡𝑡−1, 𝑥𝑥𝑡𝑡−1,Δ𝑦𝑦𝑡𝑡−2, 𝑥𝑥𝑡𝑡−2, … }. In the footnote 2, we 

argue that given invertibility of 𝜓𝜓𝑒𝑒(𝐿𝐿), 𝑣𝑣𝑡𝑡+ℎ|𝑡𝑡−1 =  𝜓𝜓𝑒𝑒,0𝑒𝑒𝑡𝑡+ℎ + ⋯+ �𝜓𝜓𝑒𝑒,0 + ⋯+ 𝜓𝜓𝑒𝑒,ℎ�𝑒𝑒𝑡𝑡 . 

There is a technically subtle issue that the above forecast error seems to be based on the 

information set Ω𝑡𝑡−1 ∪ {𝑒𝑒𝑡𝑡−1, … }, not the set of observables Ω𝑡𝑡−1. Thus, we need to prove that 

knowing 𝑒𝑒𝑡𝑡  is redundant, once we have Ω𝑡𝑡 . In other words, {𝑒𝑒𝑡𝑡−1, 𝑒𝑒𝑡𝑡−2, … } ⊂

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒�𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(Ω𝑡𝑡−1)�.  

Let’s assume that we have only Ω𝑡𝑡. Following the idea of Jordà (2005), 𝜓𝜓𝑥𝑥,ℎ is identified 

as 𝐶𝐶𝑜𝑜𝐶𝐶(𝑦𝑦𝑡𝑡−𝑦𝑦𝑡𝑡−ℎ−1,   𝑥𝑥𝑡𝑡−ℎ)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥𝑡𝑡)

 for all ℎ. This implies that Δ𝑧𝑧𝑡𝑡 is identified, because 

Δ𝑧𝑧𝑡𝑡 = Δ𝑦𝑦𝑡𝑡 − (1 − 𝐿𝐿)𝜓𝜓𝑥𝑥(𝐿𝐿)𝑥𝑥𝑡𝑡 . 

The drift term of 𝑧𝑧𝑡𝑡  is also easily identified because 𝑔𝑔𝑦𝑦 = 𝐸𝐸[Δ𝑧𝑧𝑡𝑡] = 𝐸𝐸[Δ𝑦𝑦𝑡𝑡], where 𝐸𝐸[⋅] is the 

unconditional expectation operator. Therefore, 

𝑤𝑤𝑡𝑡 ≡ 𝜓𝜓𝑒𝑒(𝐿𝐿)𝑒𝑒𝑡𝑡 = Δ𝑧𝑧𝑡𝑡 − 𝑔𝑔𝑦𝑦 ∈ closure�span(Ω𝑡𝑡)�. 

Finally, it follows from the uniqueness of the Wold decomposition1 that 

𝑒𝑒𝑡𝑡 = 𝑤𝑤𝑡𝑡 − 𝑃𝑃𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑠𝑠(𝑤𝑤𝑡𝑡|𝑤𝑤𝑡𝑡−1,𝑤𝑤𝑡𝑡−2, … ) 

and 𝜓𝜓𝑒𝑒,ℎ = 𝐶𝐶𝑜𝑜𝐶𝐶(𝑤𝑤𝑡𝑡−𝑤𝑤𝑡𝑡−ℎ−1,𝑒𝑒𝑡𝑡−ℎ)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑒𝑒𝑡𝑡)

 for all ℎ , where 𝑃𝑃𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑠𝑠(𝑠𝑠|𝐴𝐴)  is defined by the orthogonal 

projection of a vector 𝑠𝑠 in a Hibert space to a closed subspace generated by a set of vectors 𝐴𝐴, 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒�span(𝐴𝐴)� . 2  Therefore, {𝑒𝑒𝑡𝑡 , 𝑒𝑒𝑡𝑡−1, … } ⊂ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒�𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(Ω𝑡𝑡)� , and specifically, 

𝐸𝐸[𝑦𝑦𝑡𝑡+ℎ|Ω𝑡𝑡−1] = E[𝑦𝑦𝑡𝑡+ℎ|Ω𝑡𝑡−1 ∪ {𝑒𝑒𝑡𝑡−1, 𝑒𝑒𝑡𝑡−2, … }]. 

This result illustrates how we can back out 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 in practice. First, we consider 𝑦𝑦𝑡𝑡+ℎ −

𝑦𝑦𝑡𝑡−1: 

y𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1 =  𝜓𝜓𝑥𝑥,0𝑥𝑥𝑡𝑡+ℎ + 𝜓𝜓𝑥𝑥,1𝑥𝑥𝑡𝑡+ℎ−1 + ⋯+ 𝜓𝜓𝑥𝑥,ℎ𝑥𝑥𝑡𝑡 + [(𝑆𝑆∗)ℎ+1 − 𝐼𝐼]𝜓𝜓𝑥𝑥(𝐿𝐿)𝑥𝑥𝑡𝑡−1 + 𝑧𝑧𝑡𝑡+ℎ − 𝑧𝑧𝑡𝑡−1, 

                                                            
1 See Brockwell and Davis (1991) for details. 
2 See Conway (1990) for details on projections. 

https://scholar.google.com/citations?user=ItC_LPgAAAAJ&hl=ko&oi=sra
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where 𝑆𝑆∗ is the adjoint operator of the unilateral shift on 𝑐𝑐2(𝑁𝑁) and 𝐼𝐼 is the identity operator. In 

other words,  

𝑆𝑆(𝜓𝜓0,𝜓𝜓1, … ) = (0,𝜓𝜓0,𝜓𝜓1, … ),      𝑠𝑠𝑠𝑠𝑎𝑎        𝑆𝑆∗(𝜓𝜓0,𝜓𝜓1, … ) = (𝜓𝜓1,𝜓𝜓2, … ). 

For simple notations, we additionally assume that ∑ 𝑟𝑟 ⋅ �𝜓𝜓𝑒𝑒,𝑗𝑗� < ∞∞
j=0 . This condition holds 

for any stationary ARMA processes. By applying the Beveridge-Nelson decomposition, we obtain 

the followings: 

𝑧𝑧𝑡𝑡 = Δ𝑧𝑧𝑡𝑡 + ⋯+ Δ𝑧𝑧1 + 𝑧𝑧0 = 𝑔𝑔𝑦𝑦 ⋅ 𝑟𝑟 + 𝜓𝜓𝑒𝑒(1) ⋅ (𝑒𝑒𝑡𝑡 + ⋯+ 𝑒𝑒1) + 𝜁𝜁𝑡𝑡 − 𝜁𝜁0 + 𝑧𝑧0, 

where 𝜓𝜓𝑒𝑒(1) =  ∑ 𝜓𝜓𝑒𝑒,𝑗𝑗
∞
𝑗𝑗=0 , 𝜁𝜁𝑡𝑡 =  ∑ 𝜓𝜓�𝑗𝑗𝑒𝑒𝑡𝑡−𝑗𝑗∞

𝑗𝑗=0 , 𝜓𝜓𝚥𝚥��� = −(𝜓𝜓𝑗𝑗+1 + 𝜓𝜓𝑗𝑗+2 + ⋯ ), and ∑ |𝜓𝜓𝚥𝚥���|∞
𝑗𝑗=0 < ∞. 

Thus, we can rewrite 𝑧𝑧𝑡𝑡+ℎ − 𝑧𝑧𝑡𝑡−1 by 𝜓𝜓𝑒𝑒(1) ⋅ (𝑒𝑒𝑡𝑡+ℎ + ⋯+ 𝑒𝑒𝑡𝑡) + 𝜁𝜁𝑡𝑡+ℎ − 𝜁𝜁𝑡𝑡−1.3 Finally, 

𝐸𝐸(𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1|Ω𝑡𝑡−1) = �𝜓𝜓𝑥𝑥,ℎ+1 − 𝜓𝜓𝑥𝑥,0�𝑥𝑥𝑡𝑡−1 + �𝜓𝜓𝑥𝑥,ℎ+2 − 𝜓𝜓𝑥𝑥,1�𝑥𝑥𝑡𝑡−2 + ⋯+

𝐸𝐸(𝜁𝜁𝑡𝑡+ℎ − 𝜁𝜁𝑡𝑡−1|Ω𝑡𝑡−1). 

This illustrates what we actually do when we try to estimate the forecast errors by taking 

residuals after regressing 𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1 on Δ𝑦𝑦𝑡𝑡−1, 𝑥𝑥𝑡𝑡−1 and their lagged values. In the regression, 

𝑥𝑥𝑡𝑡−1 and its lagged values control for two things. First thing to be captured is the component 

directly related to {𝑥𝑥𝑡𝑡−1}  through 𝜓𝜓𝑥𝑥(𝐿𝐿) , which is [(𝑆𝑆∗)ℎ+1 − 𝐼𝐼]𝜓𝜓𝑥𝑥(𝐿𝐿)𝑥𝑥𝑡𝑡−1 = �𝜓𝜓𝑥𝑥,ℎ+1 −

𝜓𝜓𝑥𝑥,0�𝑥𝑥𝑡𝑡−1 + �𝜓𝜓𝑥𝑥,ℎ+2 − 𝜓𝜓𝑥𝑥,1�𝑥𝑥𝑡𝑡−2 + ⋯ in the above expression. Moreover, (1 − 𝐿𝐿)𝜓𝜓𝑥𝑥(𝐿𝐿)𝑥𝑥𝑡𝑡−1 in 

Δ𝑦𝑦𝑡𝑡−1 is also controlled, generating 𝑤𝑤𝑡𝑡−1 = 𝜓𝜓𝑒𝑒(𝐿𝐿)𝑒𝑒𝑡𝑡−1. A closed subspace generated by 𝑤𝑤𝑡𝑡−1 and 

its lagged values will be the same as that by 𝑒𝑒𝑡𝑡−1, 𝑒𝑒𝑡𝑡−2, …. Finally, this part of the projection will 

control for 𝐸𝐸(𝜁𝜁𝑡𝑡+ℎ − 𝜁𝜁𝑡𝑡−1|Ω𝑡𝑡−1) because 𝜁𝜁𝑡𝑡−1 is a limit of linear combinations of {𝑒𝑒𝑡𝑡−1, 𝑒𝑒𝑡𝑡−2, … }. 

This completes purification of the 𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1 to 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1. 

  

                                                            
3 Of course, we can proceed without the additional assumption. In that case, notations become messy because 
everything should be written in terms of 𝑒𝑒𝑡𝑡’s instead of 𝜁𝜁𝑡𝑡+ℎ − 𝜁𝜁𝑡𝑡−1. 
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Appendix B1. Proof of Proposition 1 and implementation detail 

Proposition 1. Suppose 𝑓𝑓ℎ = �𝑓𝑓𝑇𝑇|𝑇𝑇−ℎ−1,𝑓𝑓𝑇𝑇−1|𝑇𝑇−ℎ−2, … , 𝑓𝑓𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚+ℎ+1 |𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 �
′

 and 𝑋𝑋ℎ =

�𝑋𝑋𝑇𝑇−ℎℎ ,𝑋𝑋𝑇𝑇−1ℎ , … ,𝑋𝑋𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚+1
ℎ �′  for all ℎ ≥ 0  where 𝐿𝐿𝑚𝑚𝑉𝑉𝑥𝑥 = max�𝐿𝐿𝑥𝑥, 𝐿𝐿𝑦𝑦� . Then the 𝑅𝑅2  of the 

regression of 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 on 𝑋𝑋𝑡𝑡ℎ, given by  �𝑓𝑓ℎ′𝑃𝑃𝑋𝑋ℎ𝑓𝑓ℎ�/(𝑓𝑓ℎ′𝑓𝑓ℎ) where 𝑃𝑃𝑋𝑋ℎ = 𝑋𝑋ℎ(𝑋𝑋ℎ′ 𝑋𝑋ℎ)−1𝑋𝑋ℎ′ , has the 

following asymptotic distribution for some 𝑉𝑉ℎ,𝑅𝑅2: 

√𝑇𝑇 �
𝑓𝑓ℎ′𝑃𝑃𝑋𝑋ℎ𝑓𝑓ℎ
𝑓𝑓ℎ′𝑓𝑓ℎ

− 𝑐𝑐ℎ�  
𝑑𝑑
→  𝒩𝒩�0,     𝑉𝑉ℎ,𝑅𝑅2�. 

Proof. Although 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1  is a time 𝑟𝑟 + ℎ variable, not time 𝑟𝑟 , we can proceed without loss of 

validity of the results below by considering the moment conditions below as time 𝑟𝑟 + ℎ conditions, 

not 𝑟𝑟. We use this notation instead of 𝑓𝑓𝑡𝑡|𝑡𝑡−ℎ−1 for consistency of the presentation.  

 Let 𝜃𝜃0 = �𝜃𝜃1,0
′ ,𝜃𝜃2,0

′ ,𝜃𝜃3,0
′ �′ where  

𝑋𝑋𝑡𝑡ℎ = (𝑥𝑥𝑡𝑡+ℎ, … , 𝑥𝑥𝑡𝑡)′, 

𝜃𝜃1,0 = �𝐸𝐸[𝑋𝑋𝑡𝑡ℎ𝑋𝑋𝑡𝑡ℎ′]�
−1�𝐸𝐸�𝑋𝑋𝑡𝑡ℎ𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1�� = �𝜓𝜓𝑥𝑥,0,𝜓𝜓𝑥𝑥,1, … ,𝜓𝜓𝑥𝑥,ℎ�

′, 

𝜃𝜃2,0 = 𝐸𝐸�𝑋𝑋𝑡𝑡ℎ𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1� = 𝜃𝜃1,0𝜎𝜎𝑥𝑥2, 

𝜃𝜃3,0 = 𝐸𝐸�𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1
2 � ≡ 𝜎𝜎𝑓𝑓,ℎ

2 . 

We define the method of moments estimator 𝜃𝜃� = �𝜃𝜃�1′ ,𝜃𝜃�2′ ,𝜃𝜃�3′�
′
 as following: 

𝜃𝜃�1 = (𝑋𝑋ℎ′ 𝑋𝑋ℎ)−1(𝑋𝑋ℎ′ 𝑓𝑓ℎ), 𝜃𝜃�2 =
𝑋𝑋ℎ′ 𝑓𝑓ℎ
𝑇𝑇ℎ

, 𝜃𝜃�3 =
𝑓𝑓ℎ′𝑓𝑓ℎ
𝑇𝑇ℎ

 

where 𝑇𝑇ℎ = 𝑇𝑇 − (𝐿𝐿𝑚𝑚𝑉𝑉𝑥𝑥 + 1) . It follows that 𝑐𝑐ℎ = 𝜉𝜉(𝜃𝜃0)  and 
𝑓𝑓ℎ
′𝑃𝑃𝑋𝑋ℎ𝑓𝑓ℎ
𝑓𝑓ℎ
′𝑓𝑓ℎ

= 𝜉𝜉�𝜃𝜃��  where 𝜉𝜉(𝜃𝜃) =

𝜉𝜉(𝜃𝜃1, 𝜃𝜃2,𝜃𝜃3) = 𝜃𝜃2′𝜃𝜃1
𝜃𝜃3

. Therefore, we first derive the asymptotic distribution of √𝑇𝑇�𝜃𝜃� − 𝜃𝜃0� and then 

apply the delta method. 

 To begin, we consider the moment conditions that 𝐸𝐸�𝑔𝑔�𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1,𝑋𝑋𝑡𝑡ℎ,𝜃𝜃�� = 0 where 

𝑔𝑔𝑡𝑡+ℎ(𝜃𝜃) ≡ 𝑔𝑔�𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1,𝑋𝑋𝑡𝑡ℎ,𝜃𝜃� = �
𝑋𝑋𝑡𝑡ℎ �𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 − �𝑋𝑋𝑡𝑡ℎ�

′𝜃𝜃1�

𝑋𝑋𝑡𝑡ℎ𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 − 𝜃𝜃2
𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1
2 − 𝜃𝜃3

�. 

It is clear that the conditions are satisfied only when 𝜃𝜃 = 𝜃𝜃0 and the system is just-identified. As 

shown by Hansen (1982), we know that 
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√𝑇𝑇�𝜃𝜃� − 𝜃𝜃0�  
𝑑𝑑
→  𝒩𝒩(0,     𝐺𝐺−1Ω(𝐺𝐺′)−1) 

where 𝐺𝐺 = 𝐸𝐸[∇θ𝑔𝑔𝑡𝑡+ℎ(𝜃𝜃0)] and Ω = ∑ Γ(𝑐𝑐)∞
𝑙𝑙=−∞  and Γ(𝑐𝑐) is the autocovariance of 𝑔𝑔𝑡𝑡+ℎ(𝜃𝜃0) at lag 

𝑐𝑐. With some algebra, we can show that 𝐺𝐺 = −𝑎𝑎𝑟𝑟𝑠𝑠𝑔𝑔 �𝐸𝐸 �𝑋𝑋𝑡𝑡ℎ�𝑋𝑋𝑡𝑡ℎ�
′� , 𝐼𝐼ℎ+2� where 𝑎𝑎𝑟𝑟𝑠𝑠𝑔𝑔(𝐴𝐴,𝐵𝐵) is the 

block diagonal matrix whose diagonal components are 𝐴𝐴 and 𝐵𝐵 in order. 

 Regarding the delta method, we define Δ ≡ 𝜕𝜕𝜕𝜕(𝜃𝜃0)
𝜕𝜕𝜃𝜃′

= 1
𝜃𝜃3,0

�𝜃𝜃2,0
′ ,𝜃𝜃1,0

′ ,−𝑐𝑐ℎ�. Combining the 

above derivations, and being explicit about the fact that the moment conditions 𝑔𝑔𝑡𝑡+ℎ(⋅) are for the 

𝑅𝑅2 approach at horizon ℎ, we have the desired result.  

√𝑇𝑇 �
𝑓𝑓ℎ′𝑃𝑃𝑋𝑋ℎ𝑓𝑓ℎ
𝑓𝑓ℎ′𝑓𝑓ℎ

− 𝑐𝑐ℎ�  
𝑑𝑑
→  𝒩𝒩�0,     𝑉𝑉ℎ,𝑅𝑅2� 

where 𝑉𝑉ℎ,𝑅𝑅2 = Δℎ,𝑅𝑅2�𝐺𝐺ℎ,𝑅𝑅2�
−1Ωℎ,𝑅𝑅2�𝐺𝐺ℎ,𝑅𝑅2

′ �−1Δℎ,𝑅𝑅2
′ .  □ 

 

Implementation. We discuss how to implement Proposition 1. First of all, we use 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 

obtained from Equation (6) instead of 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1  in practice, because 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1  is not observable. 

Then 𝑓𝑓ℎ = �𝑓𝑓𝑇𝑇|𝑇𝑇−ℎ−1, … , 𝑓𝑓𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚+ℎ+1 |𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 �
′
, and �̂�𝑐ℎ𝑅𝑅2 is given by �𝑓𝑓ℎ′𝑃𝑃𝑋𝑋ℎ𝑓𝑓ℎ�/(𝑓𝑓ℎ′𝑓𝑓ℎ).  

 We also need to estimate 𝑉𝑉ℎ,𝑅𝑅2  because it depends on the population parameters. Let’s 

begin with Δℎ,𝑅𝑅2. A practically feasible estimator of 𝜃𝜃 we use is 𝜃𝜃� = �𝜃𝜃�1′ , 𝜃𝜃�2′ ,𝜃𝜃�3′�
′
 where 

𝜃𝜃�1 = (𝑋𝑋ℎ′𝑋𝑋ℎ)−1�𝑋𝑋ℎ′ 𝑓𝑓ℎ�, 𝜃𝜃�2 =
𝑋𝑋ℎ′ 𝑓𝑓ℎ
𝑇𝑇ℎ

, 𝜃𝜃�3 =
𝑓𝑓ℎ′𝑓𝑓ℎ
𝑇𝑇ℎ

. 

A natural estimator of Δℎ,𝑅𝑅2  is Δ�ℎ,𝑅𝑅2 ≡  𝜕𝜕𝜕𝜕�𝜃𝜃
��

𝜕𝜕𝜃𝜃′
= 1

𝜃𝜃�3
�𝜃𝜃�2′ ,𝜃𝜃�1′ ,−�̂�𝑐ℎ𝑅𝑅2�. The last element is based on a 

bias-corrected estimates instead of 𝜉𝜉�𝜃𝜃�� because we find that this specification provides better 

performances in simulations.4 How to obtain the bias-corrected estimator �̂�𝑐ℎ𝑅𝑅2 in this set-up will be 

discussed later. 

 We next turn to 𝐺𝐺 = −𝑎𝑎𝑟𝑟𝑠𝑠𝑔𝑔 �𝐸𝐸 �𝑋𝑋𝑡𝑡ℎ�𝑋𝑋𝑡𝑡ℎ�
′� , 𝐼𝐼ℎ+2�. It can be easily estimated by 𝐺𝐺�ℎ,𝑅𝑅2 =

−𝑎𝑎𝑟𝑟𝑠𝑠𝑔𝑔(𝑋𝑋ℎ′𝑋𝑋ℎ/𝑇𝑇ℎ, 𝐼𝐼ℎ+2) = −𝑎𝑎𝑟𝑟𝑠𝑠𝑔𝑔 �∑ 𝑋𝑋𝑡𝑡ℎ�𝑋𝑋𝑡𝑡ℎ�
′𝑇𝑇−ℎ

𝑡𝑡=𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚+1 /𝑇𝑇ℎ, 𝐼𝐼ℎ+2�. 

 It remains to estimate Ωℎ,𝑅𝑅2 = ∑ Γ(𝑐𝑐)∞
𝑙𝑙=−∞  where Γ(𝑐𝑐) is the autocovariance of 𝑔𝑔𝑡𝑡(𝜃𝜃0) at 

lag 𝑐𝑐 . We use the pre-whitening procedure following Andrews and Monahan (1992) to avoid 

                                                            
4 Results are available upon requests. 
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underestimation problem of the long-run variance of 𝑔𝑔𝑡𝑡+ℎ(𝜃𝜃0). To that end, we define a 2ℎ + 3 

dimensional vector 𝑍𝑍𝑡𝑡+ℎ as following: 

𝑍𝑍𝑡𝑡+ℎ ≡

⎝

⎛
𝑋𝑋𝑡𝑡ℎ �𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 − �𝑋𝑋𝑡𝑡ℎ�

′𝜃𝜃�1�

𝑋𝑋𝑡𝑡ℎ𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 − 𝜃𝜃�2
𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1
2 − 𝜃𝜃�3 ⎠

⎞. 

It is worth noting that the sample average of 𝑍𝑍𝑡𝑡 is a zero vector, i.e. 1
𝑇𝑇ℎ
∑ 𝑍𝑍𝑡𝑡𝑇𝑇−ℎ
𝑡𝑡=𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚+1 = 0 given the 

definition of 𝜃𝜃� . To whiten the series, we use a VAR(1) that 𝑍𝑍𝑡𝑡 = 𝐴𝐴𝑍𝑍𝑡𝑡−1 + 𝑈𝑈𝑡𝑡 . The estimated 

autoregressive matrix and the residual are denoted by �̂�𝐴 and 𝑈𝑈�𝑡𝑡 . Then we estimate the long-run 

variance of 𝑈𝑈�𝑡𝑡 by applying the method suggested by Newey and West (1987) with the Bartlett kernel 

to the residuals �𝑈𝑈�𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚+2, … ,𝑈𝑈�𝑇𝑇−ℎ�. Specifically, the estimated long-run variance is given by 

𝐿𝐿𝑅𝑅𝑉𝑉� �𝑈𝑈�𝑡𝑡� = Γ�𝑈𝑈,0 +
1

𝐿𝐿𝑁𝑁𝑁𝑁 + 1
�Γ�𝑈𝑈,1 + Γ�𝑈𝑈,−1� + ⋯+

𝐿𝐿𝑁𝑁𝑁𝑁
𝐿𝐿𝑁𝑁𝑁𝑁 + 1

�Γ�𝑈𝑈,𝐿𝐿𝑁𝑁𝑁𝑁 + Γ�𝑈𝑈,−𝐿𝐿𝑁𝑁𝑁𝑁� 

where Γ�𝑈𝑈,𝑙𝑙 is the estimated autocovariance matrix of 𝑈𝑈𝑡𝑡 at lag 𝑐𝑐. We use a simple rule suggested 

by Stock and Watson (2011) to select the number of autocovariance matrices to be included in the 

estimation. Following the rule, 𝐿𝐿𝑁𝑁𝑁𝑁 + 1 is the closest natural number of 0.75𝑇𝑇ℎ
1/3. Finally, Ω�ℎ,𝑅𝑅2 

is obtained by �𝐼𝐼2ℎ+3 − �̂�𝐴�−1𝐿𝐿𝑅𝑅𝑉𝑉� �𝑈𝑈�𝑡𝑡��𝐼𝐼2ℎ+3 − �̂�𝐴′�−1.  

 In sum, the asymptotic standard error of �̂�𝑐ℎ𝑅𝑅2 is given by 

[𝑐𝑐. 𝑒𝑒. (�̂�𝑐ℎ𝑅𝑅2)]2 =
1
𝑇𝑇ℎ
Δ�ℎ,𝑅𝑅2�𝐺𝐺�ℎ,𝑅𝑅2�

−1Ω�ℎ,𝑅𝑅2�𝐺𝐺�ℎ,𝑅𝑅2
′ �−1Δ�ℎ,𝑅𝑅2

′  

where   Δ�ℎ,𝑅𝑅2 =
1
𝜃𝜃�3
�𝜃𝜃�2′ ,𝜃𝜃�1′ ,−�̂�𝑐ℎ𝑅𝑅2�, 

𝐺𝐺�ℎ,𝑅𝑅2 = −𝑎𝑎𝑟𝑟𝑠𝑠𝑔𝑔 �
𝑋𝑋ℎ′𝑋𝑋ℎ
𝑇𝑇ℎ

, 𝐼𝐼ℎ+1�, 

Ω�ℎ,𝑅𝑅2 = �𝐼𝐼2ℎ+3 − �̂�𝐴�−1𝐿𝐿𝑅𝑅𝑉𝑉� �𝑈𝑈�𝑡𝑡��𝐼𝐼2ℎ+3 − �̂�𝐴′�−1. 

 

Bias-correction. We conjecture that most of the finite sample bias is due to the non-linear 

transformation 𝜉𝜉(⋅), not estimation of 𝜃𝜃. Note that 𝜃𝜃 consists of projection coefficients of 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 on 

𝑋𝑋𝑡𝑡ℎ, covariance between 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 and 𝑋𝑋𝑡𝑡ℎ, and variance of 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1. Estimation of all three quantities 

are rather standard, and significant biases regarding the method of moments estimator have not been 

reported. Below we suggest a method to capture biases originating from 𝜉𝜉(⋅) in small samples. 
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Because √𝑇𝑇�𝜃𝜃� − 𝜃𝜃0�  
𝑑𝑑
→  𝒩𝒩(0,     𝐺𝐺−1Ω(𝐺𝐺′)−1) , we can approximate the asymptotic 

variance of the feasible estimator 𝜃𝜃� by 1
𝑇𝑇ℎ
�𝐺𝐺�ℎ,𝑅𝑅2�

−1Ω�ℎ,𝑅𝑅2�𝐺𝐺�ℎ,𝑅𝑅2
′ �−1. We simulate 𝜃𝜃𝑏𝑏 for 𝐵𝐵 times 

from the following normal distribution: 

𝜃𝜃𝑏𝑏 ∼ 𝒩𝒩 �𝜃𝜃�,
1
𝑇𝑇ℎ
�𝐺𝐺�ℎ,𝑅𝑅2�

−1Ω�ℎ,𝑅𝑅2�𝐺𝐺�ℎ,𝑅𝑅2
′ �−1�. 

 We discard cases with 𝜃𝜃3𝑏𝑏 ≤ 0 while drawing 𝜃𝜃𝑏𝑏’s, because 𝜃𝜃3 = 𝑉𝑉𝑠𝑠𝑐𝑐�𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1�.  Then 

the bias is estimated by 

𝑏𝑏𝑟𝑟𝑠𝑠𝑐𝑐ℎ𝑅𝑅2 ≡ 𝜉𝜉(𝜃𝜃𝑏𝑏)������� − 𝜉𝜉�𝜃𝜃��,      where      𝜉𝜉(𝜃𝜃𝑏𝑏)������� ≡
1
𝐵𝐵
�𝜉𝜉(𝜃𝜃𝑏𝑏)
𝐵𝐵

𝑏𝑏=1

. 

Finally, the bias-corrected estimator is given by 

�̂�𝑐ℎ𝑅𝑅2 = 𝜉𝜉�𝜃𝜃�� − 𝑏𝑏𝑟𝑟𝑠𝑠𝑐𝑐ℎ𝑅𝑅2 = 2𝜉𝜉�𝜃𝜃�� − 𝜉𝜉(𝜃𝜃𝑏𝑏)�������.   
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Appendix B2. Proof of Proposition 2 and implementation details 
Proposition 2. The local projections based estimators when 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1  is observable have the 

following asymptotic distributions for some 𝑉𝑉ℎ,𝐿𝐿𝑃𝑃𝐿𝐿 and 𝑉𝑉ℎ,𝐿𝐿𝑃𝑃𝐵𝐵: 

√𝑇𝑇 �
∑ ��̂�𝛽0

𝑖𝑖,𝐿𝐿𝑃𝑃�
2
𝜎𝜎�𝑥𝑥2ℎ

𝑖𝑖=0

𝑉𝑉𝑠𝑠𝑐𝑐� (𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1)
− 𝑐𝑐ℎ�

𝑑𝑑
→𝒩𝒩�0,   𝑉𝑉ℎ,𝐿𝐿𝑃𝑃𝐿𝐿�,     and 

√𝑇𝑇�
∑ ��̂�𝛽0

𝑖𝑖,𝐿𝐿𝑃𝑃�
2ℎ

𝑖𝑖=0 𝜎𝜎�𝑥𝑥2

∑ ��̂�𝛽0
𝑖𝑖,𝐿𝐿𝑃𝑃�

2ℎ
𝑖𝑖=0 𝜎𝜎�𝑥𝑥2 + 𝑉𝑉𝑠𝑠𝑐𝑐� �𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 − ∑ �̂�𝛽0

𝑖𝑖,𝐿𝐿𝑃𝑃ℎ
𝑖𝑖=0 𝑥𝑥𝑡𝑡+ℎ−𝑖𝑖�

− 𝑐𝑐ℎ�  
𝑑𝑑
→  𝒩𝒩�0,     𝑉𝑉ℎ,𝐿𝐿𝑃𝑃𝐵𝐵� 

Proof. Similar to Proposition 1, the moment conditions below should be understood as time 𝑟𝑟 + ℎ 

conditions, not time 𝑟𝑟. 

(i) LP-A estimator 

We first derive the joint distribution of 𝜓𝜓�𝑥𝑥,𝑖𝑖’s, 𝜎𝜎�𝑥𝑥2, and 𝜎𝜎�𝑓𝑓,ℎ
2 ≡ 𝑉𝑉𝑠𝑠𝑐𝑐� �𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1�. Then we will use the 

delta method to find 𝑉𝑉ℎ,𝐿𝐿𝑃𝑃𝐿𝐿. 

 To begin, we describe the moment conditions for the local projections for 𝜓𝜓�𝑥𝑥,𝑖𝑖’s. We run 

the following OLS regression and take the coefficient on 𝑥𝑥𝑡𝑡: 

𝑦𝑦𝑡𝑡+𝑖𝑖 − 𝑦𝑦𝑡𝑡−1 = 𝛽𝛽0𝑖𝑖𝑥𝑥𝑡𝑡 + ⋯+ 𝛽𝛽𝐽𝐽𝐿𝐿𝐿𝐿
𝑖𝑖 𝑥𝑥𝑡𝑡−𝐽𝐽𝐿𝐿𝐿𝐿 + 𝛾𝛾1𝑖𝑖Δ𝑦𝑦𝑡𝑡−1 + ⋯+ 𝛾𝛾𝐼𝐼𝐿𝐿𝐿𝐿

𝑖𝑖 Δ𝑦𝑦𝑡𝑡−𝐼𝐼𝐿𝐿𝐿𝐿 + 𝑐𝑐𝑖𝑖 + 𝑐𝑐𝑡𝑡+𝑖𝑖|𝑡𝑡−1 

for all 𝑟𝑟 = 0,1, … ,ℎ. In the above representation, 𝛽𝛽0𝑖𝑖 = 𝜓𝜓𝑥𝑥,𝑖𝑖. For a simple notation, we rewrite the 

above equation by  

𝑠𝑠𝑖𝑖,𝑡𝑡 = 𝑞𝑞𝑡𝑡′Β𝑖𝑖 + 𝑐𝑐𝑡𝑡+𝑖𝑖|𝑡𝑡−1 

where    𝑠𝑠𝑖𝑖,𝑡𝑡 = 𝑦𝑦𝑡𝑡+𝑖𝑖 − 𝑦𝑦𝑡𝑡−1,  

𝑞𝑞𝑡𝑡 = �1, 𝑥𝑥𝑡𝑡 , … , 𝑥𝑥𝑡𝑡−𝐽𝐽𝐿𝐿𝐿𝐿 ,Δ𝑦𝑦𝑡𝑡−1, … ,Δ𝑦𝑦𝑡𝑡−𝐼𝐼𝐿𝐿𝐿𝐿�
′,  

Β𝑖𝑖 = �𝑐𝑐𝑖𝑖 ,𝛽𝛽0𝑖𝑖 , … ,𝛽𝛽𝐽𝐽𝐿𝐿𝐿𝐿
𝑖𝑖 , 𝛾𝛾1𝑖𝑖 , … , 𝛾𝛾𝐼𝐼𝐿𝐿𝐿𝐿

𝑖𝑖 �
′
. 

Then the OLS estimator Β�𝑖𝑖 becomes the method of moments estimator of the following moment 

conditions that 

𝐸𝐸�𝑞𝑞𝑡𝑡�𝑠𝑠𝑖𝑖,𝑡𝑡 − 𝑞𝑞𝑡𝑡′Β𝑖𝑖�� = 0. 

Also, 𝜓𝜓�𝑥𝑥,𝑖𝑖 is given by 𝜄𝜄1′ Β�𝑖𝑖 where 𝜄𝜄1 is a 𝐼𝐼𝐿𝐿𝑃𝑃 + 𝐽𝐽𝐿𝐿𝑃𝑃 + 2 dimensional vector whose first element is 

one and the others are zero.  
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 To study all parameters required simultaneously, we let 𝜃𝜃0 = �Β0′ , … ,Βℎ′ ,𝜎𝜎𝑥𝑥2,𝜎𝜎𝑓𝑓,ℎ
2 �′ where 

𝜎𝜎𝑓𝑓,ℎ
2 ≡ 𝑉𝑉𝑠𝑠𝑐𝑐�𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1�. We use the moment conditions such that 𝐸𝐸[𝑔𝑔𝑡𝑡+ℎ(𝜃𝜃0)] = 0 where 𝑔𝑔𝑡𝑡+ℎ(𝜃𝜃0) 

is given as following: 

𝑔𝑔𝑡𝑡+ℎ(𝜃𝜃0) =

⎝

⎜⎜
⎛
𝑞𝑞𝑡𝑡�𝑠𝑠0,𝑡𝑡 − 𝑞𝑞𝑡𝑡′Β0�

⋮
𝑞𝑞𝑡𝑡�𝑠𝑠ℎ,𝑡𝑡 − 𝑞𝑞𝑡𝑡′Βℎ�

𝑥𝑥𝑡𝑡2 − 𝜎𝜎𝑥𝑥2

𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1
2 − 𝜎𝜎𝑓𝑓,ℎ

2 ⎠

⎟⎟
⎞

. 

We define 𝑔𝑔𝑡𝑡+ℎ(𝜃𝜃) similarly. It is clear that it is a just-identified system. Similar to the proof of 

Proposition 1, we know that 

√𝑇𝑇�𝜃𝜃� − 𝜃𝜃0�  
𝑑𝑑
→  𝒩𝒩(0,     𝐺𝐺−1Ω(𝐺𝐺′)−1) 

where 𝐺𝐺 = 𝐸𝐸[∇θ𝑔𝑔𝑡𝑡+ℎ(𝜃𝜃0)] and Ω = ∑ Γ(𝑐𝑐)∞
𝑙𝑙=−∞  and Γ(𝑐𝑐) is the autocovariance of 𝑔𝑔𝑡𝑡+ℎ(𝜃𝜃0) at lag 

𝑐𝑐. With some algebra, we can show that  

𝐺𝐺 = −𝐸𝐸 �𝐼𝐼ℎ+1 ⊗ 𝑞𝑞𝑡𝑡𝑞𝑞𝑡𝑡′ 0
0 𝐼𝐼2

� 

where ⊗ is the Kronecker’s product.  

 A transformation 𝜉𝜉 is required to connect 𝜃𝜃 with 𝑐𝑐ℎ. We define 

𝜉𝜉(𝜃𝜃0) = 𝑐𝑐ℎ =
∑ (𝜄𝜄1′ Β𝑖𝑖)2ℎ
𝑖𝑖=0  𝜎𝜎𝑥𝑥2

𝜎𝜎𝑓𝑓,ℎ
2 . 

𝜉𝜉(𝜃𝜃) is also defined similarly.  

Regarding the delta method, we need Δ ≡ 𝜕𝜕𝜕𝜕(𝜃𝜃0)
𝜕𝜕𝜃𝜃′

. With some algebra, we show that 

Δ =
1
𝜎𝜎𝑓𝑓,ℎ
2

⎝

⎜
⎜
⎜
⎛

2𝜓𝜓𝑥𝑥,0𝜎𝜎𝑥𝑥2𝜄𝜄1
⋮

2𝜓𝜓𝑥𝑥,ℎ𝜎𝜎𝑥𝑥2𝜄𝜄1

�𝜓𝜓𝑥𝑥,𝑖𝑖
2

ℎ

𝑖𝑖=0
−𝑐𝑐ℎ ⎠

⎟
⎟
⎟
⎞

′

. 

Combining the above derivations, and being explicit about the fact that the moment 

conditions 𝑔𝑔𝑡𝑡+ℎ(⋅) are for the LP-A approach at horizon ℎ, we have the desired result.  

√𝑇𝑇 �
∑ �𝜓𝜓�𝑥𝑥,𝑖𝑖�

2ℎ
𝑖𝑖=0 𝜎𝜎�𝑥𝑥2

𝑉𝑉𝑠𝑠𝑐𝑐� �𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1�
− 𝑐𝑐ℎ�  

𝑑𝑑
→  𝒩𝒩�0,     𝑉𝑉ℎ,𝐿𝐿𝑃𝑃𝐿𝐿�. 
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where 𝑉𝑉ℎ,𝐿𝐿𝑃𝑃𝐿𝐿 = Δℎ,𝐿𝐿𝑃𝑃𝐿𝐿�𝐺𝐺ℎ,𝐿𝐿𝑃𝑃𝐿𝐿�
−1Ωℎ,𝐿𝐿𝑃𝑃𝐿𝐿�𝐺𝐺ℎ,𝐿𝐿𝑃𝑃𝐿𝐿

′ �−1Δℎ,𝐿𝐿𝑃𝑃𝐿𝐿
′ .  □ 

 

(ii) LP-B estimator 

 The joint distribution of 𝜓𝜓�𝑥𝑥,𝑖𝑖 ’s is obtained similarly. To study all parameters required 

simultaneously, we let 𝜃𝜃0 = �Β0′ , … ,Βℎ′ ,𝜎𝜎𝑥𝑥2,𝜎𝜎𝐶𝐶,ℎ
2 �′  where 𝜎𝜎𝐶𝐶,ℎ

2 ≡ 𝑉𝑉𝑠𝑠𝑐𝑐�𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 −

∑ 𝜓𝜓𝑥𝑥,𝑖𝑖
ℎ
𝑖𝑖=0 𝑥𝑥𝑡𝑡+ℎ−𝑖𝑖�. We use the moment conditions such that 𝐸𝐸[𝑔𝑔𝑡𝑡+ℎ(𝜃𝜃0)] = 0 where 𝑔𝑔𝑡𝑡+ℎ(𝜃𝜃0) is 

given as following: 

𝑔𝑔𝑡𝑡+ℎ(𝜃𝜃0) =

⎝

⎜
⎜
⎜
⎜
⎛

𝑞𝑞𝑡𝑡�𝑠𝑠0,𝑡𝑡 − 𝑞𝑞𝑡𝑡′Β0�
⋮

𝑞𝑞𝑡𝑡�𝑠𝑠ℎ,𝑡𝑡 − 𝑞𝑞𝑡𝑡′Βℎ�
𝑥𝑥𝑡𝑡2 − 𝜎𝜎𝑥𝑥2

�𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 −�(𝜄𝜄1′ Β𝑖𝑖)
ℎ

𝑖𝑖=0

𝑥𝑥𝑡𝑡+ℎ−𝑖𝑖�

2

− 𝜎𝜎𝐶𝐶,ℎ
2

⎠

⎟
⎟
⎟
⎟
⎞

. 

We define 𝑔𝑔𝑡𝑡+ℎ(𝜃𝜃) similarly. It is clear that it is a just-identified system. In such a case, the method 

of moments estimator 𝜃𝜃� can be understood as a two-step estimator. It first find Β�𝑖𝑖’s using the OLS 

moment conditions and then plug the estimates into the remaining conditions. Then 𝜎𝜎�𝑥𝑥2 and 𝜎𝜎�𝐶𝐶,ℎ
2  

are derived given Β�𝑖𝑖’s. It is worth noting that this is the same procedure we follow when we define 

�̂�𝑐ℎ𝐿𝐿𝑃𝑃𝐵𝐵. The only difference is that we are using here 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 instead of its estimate. 

Similar to the proof of Proposition 1, we know that 

√𝑇𝑇�𝜃𝜃� − 𝜃𝜃0�  
𝑑𝑑
→  𝒩𝒩(0,     𝐺𝐺−1Ω(𝐺𝐺′)−1) 

where 𝐺𝐺 = 𝐸𝐸[∇θ𝑔𝑔𝑡𝑡+ℎ(𝜃𝜃0)] and Ω = ∑ Γ(𝑐𝑐)∞
𝑙𝑙=−∞  and Γ(𝑐𝑐) is the autocovariance of 𝑔𝑔𝑡𝑡+ℎ(𝜃𝜃0) at lag 

𝑐𝑐. With some algebra, we can show that  

𝐺𝐺 = −𝐸𝐸

⎝

⎜
⎜
⎛

𝐼𝐼ℎ+1 ⊗ 𝑞𝑞𝑡𝑡𝑞𝑞𝑡𝑡′

0 ⋯ 0
2𝑣𝑣𝑡𝑡+ℎ|𝑡𝑡−1𝑥𝑥𝑡𝑡+ℎ𝜄𝜄1′ ⋯ 2𝑣𝑣𝑡𝑡+ℎ|𝑡𝑡−1𝑥𝑥𝑡𝑡+1𝜄𝜄1′

�

�
0

𝐼𝐼2
⎠

⎟
⎟
⎞

 

where ⊗ is the Kronecker’s product. For the bottom left part, we use the fact that 𝜄𝜄1′ Β𝑖𝑖 = 𝜓𝜓𝑥𝑥,𝑖𝑖 and 

𝑣𝑣𝑡𝑡+ℎ|𝑡𝑡−1 = 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 − ∑ 𝜓𝜓𝑥𝑥,𝑖𝑖𝑥𝑥𝑡𝑡+ℎ−𝑖𝑖ℎ
𝑖𝑖=0 . Because 𝑣𝑣𝑡𝑡+ℎ|𝑡𝑡−1 = 𝜓𝜓𝑒𝑒,0𝑒𝑒𝑡𝑡+ℎ + ⋯+ �𝜓𝜓𝑒𝑒,0 + ⋯+

𝜓𝜓𝑒𝑒,ℎ�𝑒𝑒𝑡𝑡 is orthogonal to {𝑥𝑥𝑡𝑡}, the bottom left block of 𝐺𝐺 becomes a zero matrix. 
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 A transformation 𝜉𝜉 is required to connect 𝜃𝜃 with 𝑐𝑐ℎ. We define 

𝜉𝜉(𝜃𝜃0) = 𝑐𝑐ℎ =
∑ (𝜄𝜄1′ Β𝑖𝑖)2ℎ
𝑖𝑖=0  𝜎𝜎𝑥𝑥2

∑ (𝜄𝜄1′ Β𝑖𝑖)2ℎ
𝑖𝑖=0  𝜎𝜎𝑥𝑥2 + 𝜎𝜎𝐶𝐶,ℎ

2 . 

𝜉𝜉(𝜃𝜃) is also defined similarly.  

Regarding the delta method, we need Δ ≡ 𝜕𝜕𝜕𝜕(𝜃𝜃0)
𝜕𝜕𝜃𝜃′

. For a simple notation, we write 𝜎𝜎𝑓𝑓,ℎ
2 ≡

𝑉𝑉𝑠𝑠𝑐𝑐�𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1� = ∑ 𝜓𝜓𝑥𝑥,𝑖𝑖
2ℎ

𝑖𝑖=0 𝜎𝜎𝑥𝑥2 + 𝜎𝜎𝐶𝐶,ℎ
2 . With some algebra, we show that 

Δ =
1 − 𝑐𝑐ℎ
𝜎𝜎𝑓𝑓,ℎ
2

⎝

⎜
⎜
⎜
⎜
⎛

2𝜓𝜓𝑥𝑥,0𝜎𝜎𝑥𝑥2𝜄𝜄1
⋮

2𝜓𝜓𝑥𝑥,ℎ𝜎𝜎𝑥𝑥2𝜄𝜄1

�𝜓𝜓𝑥𝑥,𝑖𝑖
2

ℎ

𝑖𝑖=0
−𝑐𝑐ℎ/(1 − 𝑐𝑐ℎ)⎠

⎟
⎟
⎟
⎟
⎞

′

. 

Combining the above derivations, and being explicit about the fact that the moment 

conditions 𝑔𝑔𝑡𝑡+ℎ(⋅) are for the LPB approach at horizon ℎ, we have the desired result.  

√𝑇𝑇�
∑ ��̂�𝛽0

𝑖𝑖,𝐿𝐿𝑃𝑃�
2ℎ

𝑖𝑖=0 𝜎𝜎�𝑥𝑥2

∑ ��̂�𝛽0
𝑖𝑖,𝐿𝐿𝑃𝑃�

2ℎ
𝑖𝑖=0 𝜎𝜎�𝑥𝑥2 + 𝑉𝑉𝑠𝑠𝑐𝑐� �𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 − ∑ �̂�𝛽0

𝑖𝑖,𝐿𝐿𝑃𝑃ℎ
𝑖𝑖=0 𝑥𝑥𝑡𝑡+ℎ−𝑖𝑖�

− 𝑐𝑐ℎ�  
𝑑𝑑
→  𝒩𝒩�0,     𝑉𝑉ℎ,𝐿𝐿𝑃𝑃𝐵𝐵�. 

where 𝑉𝑉ℎ,𝐿𝐿𝑃𝑃𝐵𝐵 = Δℎ,𝐿𝐿𝑃𝑃𝐵𝐵�𝐺𝐺ℎ,𝐿𝐿𝑃𝑃𝐵𝐵�
−1Ωℎ,𝐿𝐿𝑃𝑃𝐵𝐵�𝐺𝐺ℎ,𝐿𝐿𝑃𝑃𝐵𝐵

′ �−1Δℎ,𝐿𝐿𝑃𝑃𝐵𝐵
′ .  □ 

 

Joint inference. In the below, we explain how to obtain joint distribution of the LP-B estimator 

(�̂�𝑐0𝐿𝐿𝑃𝑃𝐵𝐵, �̂�𝑐1𝐿𝐿𝑃𝑃𝐵𝐵, … , �̂�𝑐𝐻𝐻𝐿𝐿𝑃𝑃𝐵𝐵)′. Results for the LP-A estimator can be obtained similarly.  

We consider augmented moment conditions that 𝐸𝐸�𝑔𝑔𝑡𝑡+𝐻𝐻
𝐽𝐽𝑜𝑜𝑖𝑖𝐽𝐽𝑡𝑡(𝜃𝜃0)� = 0  where 𝜃𝜃0 =

(Β0′ , … ,Β𝐻𝐻′ ,𝜎𝜎𝑥𝑥2,𝜎𝜎𝐶𝐶,0
2 , … ,𝜎𝜎𝐶𝐶,𝐻𝐻

2 )′ is a (𝐻𝐻 + 1) ∗ (𝐼𝐼𝐿𝐿𝑃𝑃 + 𝐽𝐽𝐿𝐿𝑃𝑃 + 3) + 1 dimensional vector, and 

𝑔𝑔𝑡𝑡+𝐻𝐻
𝐽𝐽𝑜𝑜𝑖𝑖𝐽𝐽𝑡𝑡(𝜃𝜃0) =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑞𝑞𝑡𝑡�𝑠𝑠0,𝑡𝑡 − 𝑞𝑞𝑡𝑡′Β0�
⋮

𝑞𝑞𝑡𝑡�𝑠𝑠𝐻𝐻,𝑡𝑡 − 𝑞𝑞𝑡𝑡′Β𝐻𝐻�
𝑥𝑥𝑡𝑡2 − 𝜎𝜎𝑥𝑥2

�𝑓𝑓𝑡𝑡|𝑡𝑡−1 −�(𝜄𝜄1′ Β𝑖𝑖)
0

𝑖𝑖=0

𝑥𝑥𝑡𝑡−𝑖𝑖�

2

− 𝜎𝜎𝐶𝐶,0
2

⋮

�𝑓𝑓𝑡𝑡+𝐻𝐻|𝑡𝑡−1 −�(𝜄𝜄1′ Β𝑖𝑖)
𝐻𝐻

𝑖𝑖=0

𝑥𝑥𝑡𝑡+𝐻𝐻−𝑖𝑖�

2

− 𝜎𝜎𝐶𝐶,𝐻𝐻
2

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

. 
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Then it is straightforward to extend Proposition 2 to the joint distribution of (�̂�𝑐0𝐿𝐿𝑃𝑃, �̂�𝑐1𝐿𝐿𝑃𝑃, … , �̂�𝑐𝐻𝐻𝐿𝐿𝑃𝑃)′. In 

practice, both 𝐼𝐼𝐿𝐿𝑃𝑃 and 𝐽𝐽𝐿𝐿𝑃𝑃 should be small not to make (𝐻𝐻 + 1) ∗ (𝐼𝐼𝐿𝐿𝑃𝑃 + 𝐽𝐽𝐿𝐿𝑃𝑃 + 3) + 1 too large 

relative to available sample sizes.  

 

Implementation. We discuss how to implement Proposition 2. In the below, we focus on the LP-

B estimator. Again, the LP-A estimator can be implemented in a similar way.  

First of all, we use 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 from Equation (6) instead of 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 in practice. 

 We also need to estimate 𝑉𝑉ℎ,𝐿𝐿𝑃𝑃𝐵𝐵 because it depends on population parameters. Let’s begin 

with Gℎ,𝐿𝐿𝑃𝑃𝐵𝐵 = −𝑎𝑎𝑟𝑟𝑠𝑠𝑔𝑔(𝐼𝐼ℎ+1 ⊗ 𝐸𝐸[𝑞𝑞𝑡𝑡𝑞𝑞𝑡𝑡′], 𝐼𝐼2). It is natural to have 

𝐺𝐺�ℎ,𝐿𝐿𝑃𝑃𝐵𝐵 = −𝑎𝑎𝑟𝑟𝑠𝑠𝑔𝑔�𝐼𝐼ℎ+1 ⊗
1
𝑇𝑇ℎ

� 𝑞𝑞𝑡𝑡𝑞𝑞𝑡𝑡′
𝑇𝑇−ℎ

𝑡𝑡=𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚+1

, 𝐼𝐼2�. 

 The feasible estimator of 𝜃𝜃  is denoted by 𝜃𝜃� ≡ �Β�0′ , … ,Β�ℎ′ ,𝜎𝜎�𝑥𝑥2,𝜎𝜎�𝐶𝐶,ℎ
2 �′  where 𝜎𝜎�𝑥𝑥2 =

1
𝑇𝑇
∑ 𝑥𝑥𝑡𝑡2𝑇𝑇
𝑡𝑡=1 , and 𝜎𝜎�𝐶𝐶,ℎ

2 = 1
𝑇𝑇ℎ
∑ �𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 − ∑ 𝜄𝜄1′ Β�𝑖𝑖ℎ

𝑖𝑖=0 𝑥𝑥𝑡𝑡+ℎ−𝑖𝑖�
2𝑇𝑇−ℎ

𝑡𝑡=𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚+1 . 5 We define (𝐻𝐻 + 1) ∗ (𝐼𝐼𝐿𝐿𝑃𝑃 +

𝐽𝐽𝐿𝐿𝑃𝑃 + 2) + 2 dimensional vector 𝑍𝑍𝑡𝑡+ℎ as following: 

𝑍𝑍𝑡𝑡+ℎ ≡

⎝

⎜
⎜
⎜
⎜
⎛

𝑞𝑞𝑡𝑡�𝑠𝑠0,𝑡𝑡 − 𝑞𝑞𝑡𝑡′Β�0�
⋮

𝑞𝑞𝑡𝑡�𝑠𝑠ℎ,𝑡𝑡 − 𝑞𝑞𝑡𝑡′Β�ℎ�
𝑥𝑥𝑡𝑡2 − 𝜎𝜎�𝑥𝑥2

�𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 −��𝜄𝜄1′ Β�𝑖𝑖�
ℎ

𝑖𝑖=0

𝑥𝑥𝑡𝑡+ℎ−𝑖𝑖�

2

− 𝜎𝜎�𝐶𝐶,ℎ
2

⎠

⎟
⎟
⎟
⎟
⎞

. 

Then Ω�ℎ,𝐿𝐿𝑃𝑃𝐵𝐵  is obtained by applying the Newey-West estimator to 𝑍𝑍𝑡𝑡+ℎ  with pre-whitening 

similar to Proposition 1.  

 It remains to estimate Δℎ,𝐿𝐿𝑃𝑃𝐵𝐵. It is straightforward to define 

Δ�ℎ.𝐿𝐿𝑃𝑃𝐵𝐵 =
1 − �̂�𝑐ℎ𝐿𝐿𝑃𝑃𝐵𝐵

𝜎𝜎�𝑓𝑓,ℎ
2

⎝

⎜
⎜
⎜
⎜
⎛

2𝜓𝜓�𝑥𝑥,0𝜎𝜎�𝑥𝑥2𝜄𝜄1
⋮

2𝜓𝜓�𝑥𝑥,ℎ𝜎𝜎�𝑥𝑥2𝜄𝜄1

�𝜓𝜓�𝑥𝑥,𝑖𝑖
2

ℎ

𝑖𝑖=0
−�̂�𝑐ℎ𝐿𝐿𝑃𝑃𝐵𝐵/(1 − �̂�𝑐ℎ𝐿𝐿𝑃𝑃𝐵𝐵)⎠

⎟
⎟
⎟
⎟
⎞

′

 

                                                            
5 The denominator 𝑇𝑇ℎ ight be adjusted according to the degrees of freedom without affecting the asymptotics. 
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where 𝜎𝜎�𝑓𝑓,ℎ
2 = 1

𝑇𝑇ℎ
∑  𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1

2𝑇𝑇−ℎ
𝑡𝑡=𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚+1 . We plug the bias-corrected �̂�𝑐ℎ𝐿𝐿𝑃𝑃𝐵𝐵 in the place of 𝑐𝑐ℎ. How to 

obtain a bias-corrected estimator �̂�𝑐ℎ𝐿𝐿𝑃𝑃𝐵𝐵 in this set-up will be discussed later. 

 Given Δ�ℎ.𝐿𝐿𝑃𝑃𝐵𝐵, the standard error of �̂�𝑐ℎ𝐿𝐿𝑃𝑃𝐵𝐵 is given as following: 

[𝑐𝑐. 𝑒𝑒. (�̂�𝑐ℎ𝐿𝐿𝑃𝑃𝐵𝐵)]2  =
1
𝑇𝑇ℎ
Δ�ℎ,𝐿𝐿𝑃𝑃𝐵𝐵�𝐺𝐺�ℎ,𝐿𝐿𝑃𝑃𝐵𝐵�

−1Ω�ℎ,𝐿𝐿𝑃𝑃𝐵𝐵�𝐺𝐺�ℎ,𝐿𝐿𝑃𝑃𝐵𝐵
′ �−1Δ�ℎ,𝐿𝐿𝑃𝑃𝐵𝐵

′ . 

 

Bias-correction. Similar to discussion regarding Proposition 1, we conjecture that most of the 

finite sample bias is due to the non-linear transformation 𝜉𝜉(⋅).  

We approximate the asymptotic variance of the feasible estimator 𝜃𝜃�  by 
1
𝑇𝑇ℎ
�𝐺𝐺�ℎ,𝐿𝐿𝑃𝑃𝐵𝐵�

−1Ω�ℎ,𝐿𝐿𝑃𝑃𝐵𝐵�𝐺𝐺�ℎ,𝐿𝐿𝑃𝑃𝐵𝐵
′ �−1.  Then we simulate 𝜃𝜃𝑏𝑏  for 𝐵𝐵  times from the following normal 

distribution: 

𝜃𝜃𝑏𝑏 ∼ 𝒩𝒩 �𝜃𝜃�,
1
𝑇𝑇ℎ
�𝐺𝐺�ℎ,𝐿𝐿𝑃𝑃𝐵𝐵�

−1Ω�ℎ,𝐿𝐿𝑃𝑃𝐵𝐵�𝐺𝐺�ℎ,𝐿𝐿𝑃𝑃𝐵𝐵
′ �−1�. 

 We drop cases when simulated 𝜎𝜎�𝑥𝑥2 and 𝜎𝜎�𝐶𝐶,ℎ
2  are negative. The bias is estimated by 

𝑏𝑏𝑟𝑟𝑠𝑠𝑐𝑐ℎ𝐿𝐿𝑃𝑃 ≡ 𝜉𝜉(𝜃𝜃𝑏𝑏)������� − 𝜉𝜉�𝜃𝜃��, where      𝜉𝜉(𝜃𝜃𝑏𝑏)������� ≡
1
𝐵𝐵
�𝜉𝜉(𝜃𝜃𝑏𝑏)
𝐵𝐵

𝑏𝑏=1

. 

Finally, the bias-corrected estimator is given by 

�̂�𝑐ℎ𝐿𝐿𝑃𝑃 = 𝜉𝜉�𝜃𝜃�� − 𝑏𝑏𝑟𝑟𝑠𝑠𝑐𝑐ℎ𝐿𝐿𝑃𝑃 = 2𝜉𝜉�𝜃𝜃�� − 𝜉𝜉(𝜃𝜃𝑏𝑏)�������.  
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Appendix C. Finding a MA(∞) representation for a process driven by 

multiple underlying shocks 
Suppose the following data generating process as in Section II. In this section, we explain how an 

infinite-order MA representation driven by a single white noise process is obtained for the residual 

process Δ𝑠𝑠𝑡𝑡 + Δ𝑠𝑠𝑡𝑡. 

𝑦𝑦𝑡𝑡 = 𝜓𝜓𝑥𝑥(𝐿𝐿)𝑥𝑥𝑡𝑡 + 𝑧𝑧𝑡𝑡       where      𝑧𝑧𝑡𝑡 = 𝑠𝑠𝑡𝑡 + 𝑠𝑠𝑡𝑡, 

�Δ𝑠𝑠𝑡𝑡 − 𝑔𝑔𝑦𝑦� = 𝜌𝜌𝑝𝑝�Δ𝑠𝑠𝑡𝑡−1 − 𝑔𝑔𝑦𝑦� + 𝜎𝜎𝑝𝑝𝑒𝑒𝑡𝑡
𝑝𝑝, 𝑒𝑒𝑡𝑡

𝑝𝑝 ~ 𝑟𝑟𝑟𝑟𝑎𝑎 𝑁𝑁(0,1), 

𝑠𝑠𝑡𝑡 = 𝜌𝜌𝑉𝑉𝑠𝑠𝑡𝑡−1 + 𝜎𝜎𝑉𝑉𝑒𝑒𝑡𝑡𝑉𝑉,         𝑒𝑒𝑡𝑡𝑉𝑉 ~ 𝑟𝑟𝑟𝑟𝑎𝑎 𝑁𝑁(0,1), 

𝑥𝑥𝑡𝑡 ~ 𝑟𝑟𝑟𝑟𝑎𝑎 𝑁𝑁(0,𝜎𝜎𝑥𝑥2),          and  {𝑥𝑥𝑡𝑡}, �𝑒𝑒𝑡𝑡
𝑝𝑝� and {𝑒𝑒𝑡𝑡𝑉𝑉} are mutually independent. 

 We first show why having a representation 𝑔𝑔𝑦𝑦 + 𝜓𝜓𝑒𝑒(𝐿𝐿)𝑒𝑒𝑡𝑡 of Δ𝑠𝑠𝑡𝑡 + Δ𝑠𝑠𝑡𝑡 is needed. When 

all three shocks are in the information set, then the corresponding forecast error with Ω�t =

{𝑥𝑥𝑡𝑡 ,Δ𝑦𝑦𝑡𝑡 , 𝑒𝑒𝑡𝑡
𝑝𝑝, 𝑒𝑒𝑡𝑡𝑉𝑉, … } is 

𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 = 𝑦𝑦𝑡𝑡+ℎ − E�𝑦𝑦𝑡𝑡+ℎ|Ω�𝑡𝑡−1� =  𝜓𝜓𝑥𝑥,0𝑥𝑥𝑡𝑡+ℎ + ⋯+ 𝜓𝜓𝑥𝑥,ℎ𝑥𝑥𝑡𝑡 

+𝜎𝜎𝑝𝑝𝑒𝑒𝑡𝑡+ℎ
𝑝𝑝 + �1 + 𝜌𝜌𝑝𝑝�𝜎𝜎𝑝𝑝𝑒𝑒𝑡𝑡+ℎ−1

𝑝𝑝 + ⋯+ �1 + 𝜌𝜌𝑝𝑝 + ⋯+ 𝜌𝜌𝑝𝑝ℎ�𝜎𝜎𝑝𝑝𝑒𝑒𝑡𝑡
𝑝𝑝 

+𝜎𝜎𝑉𝑉𝑒𝑒𝑡𝑡+ℎ𝑉𝑉 + 𝜌𝜌𝑉𝑉𝜎𝜎𝑉𝑉𝑒𝑒𝑡𝑡+ℎ−1𝑉𝑉 + ⋯+ 𝜌𝜌𝑉𝑉ℎ𝜎𝜎𝑉𝑉𝑒𝑒𝑡𝑡𝑉𝑉 . 

Then 

�̃�𝑐ℎ =
�∑ 𝜓𝜓𝑥𝑥,𝑖𝑖

2ℎ
𝑖𝑖=0 � 𝜎𝜎𝑥𝑥2

�∑ 𝜓𝜓𝑥𝑥,𝑖𝑖
2ℎ

𝑖𝑖=0 � 𝜎𝜎𝑥𝑥2 +  ∑ �∑ 𝜌𝜌𝑝𝑝
𝑗𝑗𝑖𝑖

𝑗𝑗=0 �
2ℎ

𝑖𝑖=0 𝜎𝜎𝑝𝑝2 + ∑ 𝜌𝜌𝑉𝑉2𝑖𝑖ℎ
𝑖𝑖=0 𝜎𝜎𝑉𝑉2

. 

However, what we estimate in the simulations using Δ𝑦𝑦𝑡𝑡 and 𝑥𝑥𝑡𝑡 is 𝑐𝑐ℎ, not �̃�𝑐ℎ. It is because 

our information set is Ω𝑡𝑡, not the augmented one Ω�𝑡𝑡 . Because Ω𝑡𝑡 is coarser than Ω�𝑡𝑡, 𝑐𝑐ℎ ≤ �̃�𝑐ℎ. To 

obtain the true value of 𝑐𝑐ℎ, we need 𝜓𝜓𝑒𝑒(𝐿𝐿) and 𝜎𝜎𝑒𝑒. 

We use a stationary Kalman filter (Hamilton (1994), pp.391-394) to that end. We cast the 

above process in a form of state-space representation. 

State equation:        

𝑐𝑐𝑡𝑡 = 𝐹𝐹𝑐𝑐𝑡𝑡−1 + 𝐵𝐵𝑐𝑐𝑡𝑡, 

where         𝑐𝑐𝑡𝑡 = (𝛥𝛥𝑠𝑠𝑡𝑡 − 𝑔𝑔𝑦𝑦,𝛥𝛥𝑠𝑠𝑡𝑡 , 𝑒𝑒𝑡𝑡𝑉𝑉)′,     

𝑐𝑐𝑡𝑡 = �𝑒𝑒𝑡𝑡
𝑝𝑝, 𝑒𝑒𝑡𝑡𝑉𝑉�

′~(0, 𝐼𝐼), 

F = �
𝜌𝜌𝑝𝑝 0 0
0 𝜌𝜌𝑉𝑉 −𝜎𝜎𝑉𝑉
0 0 0

�, 
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B = �
𝜎𝜎𝑝𝑝 0
0 𝜎𝜎𝑉𝑉
0 1

�. 

Measurement equation:   Δ𝑧𝑧𝑡𝑡 = 𝑔𝑔𝑦𝑦 + 𝐻𝐻′𝑐𝑐𝑡𝑡          where 𝐻𝐻 = (1,1,0)′. 

By defining 𝑄𝑄 = 𝐵𝐵𝐼𝐼𝐵𝐵′ = 𝐵𝐵𝐵𝐵′ and 𝑅𝑅 = 0, the stationary 𝑃𝑃 and 𝐾𝐾  are obtained from the 

matrix equation (13.5.3) and (13.5.4) on Hamilton (1994). 

𝑃𝑃 = 𝐹𝐹[𝑃𝑃 − 𝑃𝑃𝐻𝐻(𝐻𝐻′𝑃𝑃𝐻𝐻 + 𝑅𝑅)−1𝐻𝐻′𝑃𝑃]𝐹𝐹′ + 𝑄𝑄, 

𝐾𝐾 = 𝐹𝐹𝑃𝑃𝐻𝐻(𝐻𝐻′𝑃𝑃𝐻𝐻 + 𝑅𝑅)−1. 

This is a discrete time algebraic Riccati equation for 𝑃𝑃 which can be solved numerically. Then 

deriving 𝐾𝐾 is straightforward from the second equation. Given 𝐾𝐾, it is known that  

Δ𝑧𝑧𝑡𝑡 = 𝑔𝑔𝑦𝑦 + (𝐼𝐼 + 𝐻𝐻′(𝐼𝐼 − 𝐹𝐹𝐿𝐿)−1𝐾𝐾𝐿𝐿)𝑒𝑒𝑡𝑡,  𝑒𝑒𝑡𝑡~𝑊𝑊𝑁𝑁(𝜎𝜎𝑒𝑒2),        and       𝜎𝜎𝑒𝑒 = √𝐻𝐻′𝑃𝑃𝐻𝐻 + 𝑅𝑅. 

 To convert (𝐼𝐼 + 𝐻𝐻′(𝐼𝐼 − 𝐹𝐹𝐿𝐿)−1𝐾𝐾𝐿𝐿) into 𝜓𝜓𝑒𝑒(𝐿𝐿), we use the identity that (𝐼𝐼 − 𝐹𝐹𝐿𝐿)−1 = 𝐼𝐼 +

𝐹𝐹𝐿𝐿 + 𝐹𝐹2𝐿𝐿2 + ⋯. Note all three eigenvalues of 𝐹𝐹, 𝜌𝜌𝑝𝑝, 𝜌𝜌𝑉𝑉 and 0, are less than one in absolute values. 

 Given the MA representation of Δ𝑧𝑧𝑡𝑡, we can find 𝑐𝑐ℎ accordingly. 

 In Section III.B, the model of Smets and Wouters (2007) is analyzed. We find the 𝑐𝑐ℎ under 

the assumed information set in a similar way. 

  



16 
 

Appendix D. Unobservable Shocks and Measurement Errors 
In some cases, an estimated structural shock is only a part of the true shock that can be identified 

with high confidences. For example, unexplained innovations in the Federal Funds Rates from 

Romer and Romer (2004) may be a part of the entire change in the monetary policy including 

changes in members on the board of governors, change in institutional details, or regime shifts as 

in the Volcker periods. Similarly, legislative tax changes identified from narratives by Romer and 

Romer (2010) would be understood as a part of the whole fiscal policy shocks affecting the U.S. 

economy. The measurement error is yet another potential issue. It is unavoidable in practical 

studies, especially when shocks are generated from narratives like Ramey (2011) and Romer and 

Romer (2010). In this section, we show that our approach can still provide interesting and 

meaningful quantities, because the estimates can be understood as a conservative estimate of the 

‘true’ estimates available only when all hidden confounding factors are observable.  

 We decompose the true shock into two components 𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡𝑜𝑜 + 𝑥𝑥𝑡𝑡𝑢𝑢. The superscript o means 

observable, and u unobservable. We understand the vector process of two components has a 

representation as 

�
𝑥𝑥𝑡𝑡𝑜𝑜
𝑥𝑥𝑡𝑡𝑢𝑢
� = �

𝜎𝜎𝑜𝑜 0

𝜌𝜌𝑜𝑜,𝑢𝑢𝜎𝜎𝑢𝑢 �1 − 𝜌𝜌𝑜𝑜,𝑢𝑢
2  𝜎𝜎𝑢𝑢

�𝛿𝛿𝑡𝑡, 

where 𝛿𝛿𝑡𝑡 ~ 𝑤𝑤𝑠𝑠(𝐼𝐼2), 𝛿𝛿𝑡𝑡 ⊥ 𝑒𝑒𝑡𝑡 , 𝜎𝜎𝑜𝑜 = �𝑉𝑉𝑠𝑠𝑐𝑐(𝑥𝑥𝑡𝑡𝑜𝑜)�1/2,   𝜎𝜎𝑢𝑢 = �𝑉𝑉𝑠𝑠𝑐𝑐(𝑥𝑥𝑡𝑡𝑢𝑢)�1/2
, and 𝜌𝜌𝑜𝑜,𝑢𝑢 =

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑡𝑡𝑜𝑜, 𝑥𝑥𝑡𝑡𝑢𝑢). 

 Three different situations are possible for the sign of correlation between two components, 

(1) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑡𝑡𝑜𝑜, 𝑥𝑥𝑡𝑡𝑢𝑢) = 0: they are orthogonal, (2) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑡𝑡𝑜𝑜, 𝑥𝑥𝑡𝑡𝑢𝑢) > 0: this might be the case when we 

are able to observe only some parts of the true shock, and (3) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑡𝑡𝑜𝑜, 𝑥𝑥𝑡𝑡𝑢𝑢) < 0: the presence of 

measurement error 𝑚𝑚𝑡𝑡 might impose such a correlation structure, since 𝑥𝑥𝑡𝑡𝑜𝑜 = 𝑥𝑥𝑡𝑡 + 𝑚𝑚𝑡𝑡, and 𝑥𝑥𝑡𝑡𝑢𝑢 =

−𝑚𝑚𝑡𝑡. Narrative approaches might be exposed to such a concern. 

 Our claim is that the suggested estimators have a negative asymptotic bias, regardless of 

the sign of correlation between two components.6 The population variance share can be written as 

a fraction of the amount explained by the innovations in {𝑥𝑥𝑡𝑡} to the variance of forecast error, 𝑐𝑐ℎ =

                                                            
6 All of our estimators have the same probability limit. So, the discussion in this section applies to R2, LP-A, and 
LP-B estimators. 
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∑ 𝜓𝜓𝑚𝑚,𝑖𝑖
2ℎ

𝑖𝑖=0  𝜎𝜎𝑚𝑚2

𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1)
. We argue that there are (1) a positive asymptotic bias for the denominator, and (2) a 

negative asymptotic bias for the numerator when we apply our method to {𝑥𝑥𝑡𝑡𝑜𝑜} only while ignoring 

the existence of {𝑥𝑥𝑡𝑡𝑢𝑢}. Therefore, the estimated share can be understood as a conservative estimate 

for the population quantity with the full information about {𝑥𝑥𝑡𝑡𝑜𝑜} and {𝑥𝑥𝑡𝑡𝑢𝑢}.  

 Let’s start with the denominator. The first problem we encounter is about recovering the 

forecast errors. It will be proven that the estimated forecast error without information on {𝑥𝑥𝑡𝑡𝑢𝑢} will 

have larger variances than the ‘true’ forecast error 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1. With the full information, we can back 

out the forecast error as a difference between 𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1  and its projected values on the 

information set at time 𝑟𝑟 − 1 where Ω𝑡𝑡−1 = {Δ𝑦𝑦𝑡𝑡−1, 𝑥𝑥𝑡𝑡−1𝑜𝑜 , 𝑥𝑥𝑡𝑡−1𝑢𝑢 ,Δ𝑦𝑦𝑡𝑡−2, 𝑥𝑥𝑡𝑡−2𝑜𝑜 , 𝑥𝑥𝑡𝑡−2𝑢𝑢 , … } as 

𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 = 𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1 − 𝐸𝐸(𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1|Ω𝑡𝑡−1) 

where the latter conditional expectation is the projection of 𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1  on the closed subspace 

spanned by Ω𝑡𝑡−1. However, an econometrician has only Ω𝑡𝑡−1𝑒𝑒 = {𝑥𝑥𝑡𝑡−1𝑜𝑜 ,𝛥𝛥𝑦𝑦𝑡𝑡−1, 𝑥𝑥𝑡𝑡−2𝑜𝑜 ,𝛥𝛥𝑦𝑦𝑡𝑡−2, … }. It is 

evident that Ω𝑡𝑡𝑒𝑒 ⊂ Ω𝑡𝑡. We define the closed subspaces spanned by variables in each information set as 

𝑉𝑉𝑡𝑡 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒(𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(Ω𝑡𝑡) ), 

𝑉𝑉𝑡𝑡𝑒𝑒 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒�𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(Ω𝑡𝑡𝑒𝑒)�. 

 We now compare the true forecast errors and identifiable ones to econometricians having 

Ω𝑡𝑡−1𝑒𝑒 . By using a notation of 𝑃𝑃𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑠𝑠(𝑐𝑐|𝑆𝑆) to denote the population least square projection of 

the element s on the closed subspace 𝑆𝑆, we can rewrite 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 as 

𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 = 𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1  −  𝑃𝑃𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑠𝑠(𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1|𝑉𝑉𝑡𝑡−1) = 𝑃𝑃𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑠𝑠(𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1|(𝑉𝑉𝑡𝑡−1)⊥) 

where 𝑉𝑉𝑡𝑡⊥ is the orthogonal complement of 𝑉𝑉𝑡𝑡.  

 On the other hand, the econometrician’s forecast error 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1
𝑒𝑒  is given by 

𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1
𝑒𝑒 = 𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1  −  𝑃𝑃𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑠𝑠(𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1|𝑉𝑉𝑡𝑡−1𝑒𝑒 ) = 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1  + 𝑐𝑐𝑡𝑡+ℎ|𝑡𝑡−1

𝑒𝑒  

where    𝑐𝑐𝑡𝑡+ℎ|𝑡𝑡−1
𝑒𝑒 ≡  𝑃𝑃𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑠𝑠(𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1|𝑉𝑉𝑡𝑡−1) − 𝑃𝑃𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑠𝑠(𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1|𝑉𝑉𝑡𝑡−1𝑒𝑒 ). 

 It is worth to mention that 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 and 𝑐𝑐𝑡𝑡+ℎ|𝑡𝑡−1
𝑒𝑒  are orthogonal, because the first term is an 

element of (𝑉𝑉𝑡𝑡−1)⊥ , and the second of 𝑉𝑉𝑡𝑡−1 . 7  Therefore, 𝑉𝑉𝑠𝑠𝑐𝑐�𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1
𝑒𝑒 � = 𝑉𝑉𝑠𝑠𝑐𝑐�𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1�  +

                                                            
7 This result is in fact due to a decomposition of the entire vector space, V, into a direct sum of three mutually 
orthogonal closed subspaces as V = 𝑉𝑉𝑡𝑡−1𝑒𝑒 ⊕ (𝑉𝑉𝑡𝑡−1 ∩ (𝑉𝑉𝑡𝑡−1𝑒𝑒 )⊥) ⊕ (𝑉𝑉 ∩ (𝑉𝑉𝑡𝑡−1)⊥), where the symbol ‘⊕’ means a 
direct sum. From the representation, it directly follows that 𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1 = 𝑃𝑃𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑠𝑠(𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1|𝑉𝑉) =
𝑃𝑃𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑠𝑠(𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1|𝑉𝑉𝑡𝑡−1𝑒𝑒 ) + 𝑃𝑃𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑠𝑠(𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1|𝑉𝑉𝑡𝑡−1 ∩ (𝑉𝑉𝑡𝑡−1𝑒𝑒 )⊥) +
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𝑉𝑉𝑠𝑠𝑐𝑐�𝑐𝑐𝑡𝑡+ℎ|𝑡𝑡−1
𝑒𝑒 � ≥ 𝑉𝑉𝑠𝑠𝑐𝑐�𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1�. Also, the equality holds only when 𝑥𝑥𝑡𝑡𝑢𝑢 and its lagged values have 

no additional power in explaining 𝑦𝑦𝑡𝑡+ℎ  given 𝑉𝑉𝑡𝑡−1𝑒𝑒  implying 𝑃𝑃𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑠𝑠(𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1|𝑉𝑉𝑡𝑡−1) =

𝑃𝑃𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑠𝑠(𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1|𝑉𝑉𝑡𝑡−1𝑒𝑒 ). This is not true except for some uninteresting special situations 

such as 𝜓𝜓𝑥𝑥(𝐿𝐿) = 0 or 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑡𝑡𝑜𝑜, 𝑥𝑥𝑡𝑡𝑢𝑢) = ±1. 

 The second step is to show the econometrician’s numerator converges to a values less than 

the true numerator in probability. The true numerator is ∑ 𝜓𝜓𝑥𝑥,𝑖𝑖
2ℎ

𝑖𝑖=0 𝜎𝜎𝑥𝑥2 as before. Defining 𝑋𝑋𝑡𝑡ℎ =

(𝑥𝑥𝑡𝑡+ℎ, … , 𝑥𝑥𝑡𝑡)′,  we can write it as following: 

𝐸𝐸�𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 ⋅ 𝑋𝑋𝑡𝑡ℎ
′�𝐸𝐸�𝑋𝑋𝑡𝑡ℎ 𝑋𝑋𝑡𝑡ℎ

′�
−1
𝐸𝐸�𝑋𝑋𝑡𝑡ℎ  ⋅ 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1� 

= �𝐸𝐸�𝑋𝑋𝑡𝑡ℎ𝑋𝑋𝑡𝑡ℎ
′�
−1
𝐸𝐸�𝑋𝑋𝑡𝑡ℎ  ⋅ 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1��

′
�𝐸𝐸�𝑋𝑋𝑡𝑡ℎ 𝑋𝑋𝑡𝑡ℎ

′�� �𝐸𝐸�𝑋𝑋𝑡𝑡ℎ𝑋𝑋𝑡𝑡ℎ
′�
−1
𝐸𝐸�𝑋𝑋𝑡𝑡ℎ  ⋅ 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1��. 

The term inside the last square bracket is a vector of population regression coefficients of 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 

on 𝑋𝑋𝑡𝑡ℎ. By the specification, we know that it is equal to Ψℎ = �𝜓𝜓𝑥𝑥,0, … ,𝜓𝜓𝑥𝑥,ℎ�
′.  

 Now we investigate the econometrician’s numerator 𝐸𝐸 �𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1
𝑒𝑒 ⋅

𝑋𝑋𝑡𝑡
ℎ,𝑒𝑒′� 𝐸𝐸 �𝑋𝑋𝑡𝑡

ℎ,𝑒𝑒 𝑋𝑋𝑡𝑡
ℎ,𝑒𝑒′�

−1
𝐸𝐸�𝑋𝑋𝑡𝑡

ℎ,𝑒𝑒  ⋅ 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1
𝑒𝑒 �  where 𝑋𝑋𝑡𝑡

ℎ,𝑒𝑒 = (𝑥𝑥𝑡𝑡+ℎ𝑜𝑜 , … , 𝑥𝑥𝑡𝑡𝑜𝑜)′.  Because 𝑐𝑐𝑡𝑡+ℎ|𝑡𝑡−1
𝑒𝑒 =

 𝑃𝑃𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑠𝑠( 𝑃𝑃𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑠𝑠(𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1|𝑉𝑉𝑡𝑡−1) | (𝑉𝑉𝑡𝑡−1𝑒𝑒 )⊥ ) ∈ (𝑉𝑉𝑡𝑡−1𝑒𝑒 )⊥ , 𝐸𝐸�𝑋𝑋𝑡𝑡
ℎ,𝑒𝑒 ⋅ 𝑓𝑓𝑡𝑡+𝑡𝑡|𝑡𝑡−1

𝑒𝑒 � =

𝐸𝐸�𝑋𝑋𝑡𝑡
ℎ,𝑒𝑒 ⋅ 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1�. The corresponding projection coefficient is   

𝐸𝐸 �𝑋𝑋𝑡𝑡
ℎ,𝑒𝑒 𝑋𝑋𝑡𝑡

ℎ,𝑒𝑒′�
−1
𝐸𝐸�𝑋𝑋𝑡𝑡

ℎ,𝑒𝑒  ⋅ 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1� = �1 +
𝐶𝐶𝑐𝑐𝑣𝑣(𝑥𝑥𝑡𝑡𝑜𝑜, 𝑥𝑥𝑡𝑡𝑢𝑢)
𝑉𝑉𝑠𝑠𝑐𝑐(𝑥𝑥𝑡𝑡𝑜𝑜) �Ψℎ =

�𝜎𝜎𝑜𝑜 + 𝜌𝜌𝑜𝑜,𝑢𝑢 ⋅ 𝜎𝜎𝑢𝑢�
𝜎𝜎𝑜𝑜

Ψℎ. 

We used the fact that 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 = ∑ 𝜓𝜓𝑥𝑥,𝑖𝑖𝑥𝑥𝑡𝑡+ℎ−𝑖𝑖ℎ
𝑖𝑖=0 + ∑ ∑ (𝜓𝜓𝑒𝑒.𝑗𝑗)𝑖𝑖

𝑗𝑗=0
ℎ
𝑖𝑖=0  𝑒𝑒𝑡𝑡+ℎ−𝑖𝑖.  

 Finally, the econometrician’s numerator becomes  

�𝐸𝐸 �𝑋𝑋𝑡𝑡
ℎ,𝑒𝑒 𝑋𝑋𝑡𝑡

ℎ,𝑒𝑒′�
−1
𝐸𝐸�𝑋𝑋𝑡𝑡

ℎ,𝑒𝑒  ⋅ 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1��
′
�𝐸𝐸 �𝑋𝑋𝑡𝑡

ℎ,𝑒𝑒 𝑋𝑋𝑡𝑡
ℎ,𝑒𝑒′�� �𝐸𝐸 �𝑋𝑋𝑡𝑡

ℎ,𝑒𝑒 𝑋𝑋𝑡𝑡
ℎ,𝑒𝑒′�

−1
𝐸𝐸�𝑋𝑋𝑡𝑡

ℎ,𝑒𝑒  ⋅ 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1�� 

=
�𝜎𝜎𝑜𝑜 + 𝜌𝜌𝑜𝑜,𝑢𝑢 ⋅ 𝜎𝜎𝑢𝑢�

𝜎𝜎𝑜𝑜
𝛹𝛹ℎ′ ⋅  𝜎𝜎𝑜𝑜2𝐼𝐼 ⋅

�𝜎𝜎𝑜𝑜 + 𝜌𝜌𝑜𝑜,𝑢𝑢 ⋅ 𝜎𝜎𝑢𝑢�
𝜎𝜎𝑜𝑜

𝛹𝛹ℎ = �𝜓𝜓𝑥𝑥,𝑖𝑖
2

ℎ

𝑖𝑖=0

�𝜎𝜎𝑜𝑜 + 𝜌𝜌𝑜𝑜,𝑢𝑢 ⋅ 𝜎𝜎𝑢𝑢�
2. 

Thus, any asymptotic bias in the numerators are from the differences between 𝜎𝜎𝑥𝑥2  and 

�𝜎𝜎𝑜𝑜 + 𝜌𝜌𝑜𝑜,𝑢𝑢 ⋅ 𝜎𝜎𝑢𝑢�
2
. Because 𝜎𝜎𝑥𝑥2 − �𝜎𝜎𝑜𝑜 + 𝜌𝜌𝑜𝑜,𝑢𝑢 ⋅ 𝜎𝜎𝑢𝑢�

2 = �1 − 𝜌𝜌𝑜𝑜,𝑢𝑢
2 �𝜎𝜎𝑢𝑢2,  

                                                            
𝑃𝑃𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑠𝑠(𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1|𝑉𝑉 ∩ (𝑉𝑉𝑡𝑡−1)⊥) = 𝑃𝑃𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑠𝑠(𝑦𝑦𝑡𝑡+ℎ − 𝑦𝑦𝑡𝑡−1|𝑉𝑉𝑡𝑡−1𝑒𝑒 ) + 𝑐𝑐𝑡𝑡+ℎ|𝑡𝑡−1

𝑒𝑒 + 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 , and the last three 
terms are mutually orthogonal. 
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𝐸𝐸�𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1 ⋅ 𝑋𝑋𝑡𝑡ℎ
′�𝐸𝐸�𝑋𝑋𝑡𝑡ℎ 𝑋𝑋𝑡𝑡ℎ

′�
−1
𝐸𝐸�𝑋𝑋𝑡𝑡ℎ  ⋅ 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1� 

= 𝐸𝐸 �𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1
𝑒𝑒 ⋅ 𝑋𝑋𝑡𝑡

ℎ,𝑒𝑒′� 𝐸𝐸 �𝑋𝑋𝑡𝑡
ℎ,𝑒𝑒 𝑋𝑋𝑡𝑡

ℎ,𝑒𝑒′�
−1
𝐸𝐸�𝑋𝑋𝑡𝑡

ℎ,𝑒𝑒  ⋅ 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡−1
𝑒𝑒 � + �𝜓𝜓𝑥𝑥,𝑖𝑖

2
ℎ

𝑖𝑖=0

 �1 − 𝜌𝜌𝑜𝑜,𝑢𝑢
2 �𝜎𝜎𝑢𝑢2. 

 As claimed, the econometrician’s numerator is asymptotically less and denominator is 

asymptotically greater than their full information counterparts. Thus, we have a negative 

asymptotic bias. So, we can understand our method as a conservative estimator for the true 𝑐𝑐ℎ. 

Moreover, the size of bias becomes small when the observed and unobserved parts are highly 

correlated, or variance of the unobserved parts is small. In such a case, both biases for the 

denominator 𝑉𝑉𝑠𝑠𝑐𝑐�𝑐𝑐𝑡𝑡+ℎ|𝑡𝑡−1
𝑒𝑒 �, and the numerator ∑ 𝜓𝜓𝑥𝑥,𝑖𝑖

2ℎ
𝑖𝑖=0  �1 − 𝜌𝜌𝑜𝑜,𝑢𝑢

2 �𝜎𝜎𝑢𝑢2 are small.8 

  

                                                            
8 In the above, we assume that 𝑥𝑥𝑡𝑡𝑜𝑜 and 𝑥𝑥𝑡𝑡𝑢𝑢 have the sample impulse response polynomial 𝜓𝜓𝑥𝑥(𝐿𝐿) for simplicity. Instead, 
we may consider 𝜓𝜓𝑥𝑥𝑜𝑜(𝐿𝐿)𝑥𝑥𝑡𝑡𝑜𝑜 + 𝜓𝜓𝑥𝑥𝑢𝑢(𝐿𝐿)𝑥𝑥𝑡𝑡𝑢𝑢.  This does not change our result, and the above derivations admit a straight-
forward extension to the general case. In such a case, the difference between two numerators becomes 
∑ �𝜓𝜓𝑥𝑥,𝑖𝑖

𝑢𝑢 �2ℎ
𝑖𝑖=0 �1 − 𝜌𝜌𝑜𝑜,𝑢𝑢

2 �𝜎𝜎𝑢𝑢2. Therefore, we can conclude that if the unobservable component has a less contribution to 
the endogenous variable than the observable component, the bias in the numerator would be small. 
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Appendix E. Supplementary Figures for Univariate Simulations 
 

Details on VAR-based Bootstrap 

We first choose 𝐿𝐿𝑉𝑉𝐿𝐿𝑅𝑅 using the HQIC. VAR models for (𝑥𝑥𝑡𝑡 ,Δ𝑦𝑦𝑡𝑡)′ are estimated for different lag 

lengths between 1 and 10. The information criterion is given by 

log(𝑎𝑎𝑒𝑒𝑟𝑟(𝑉𝑉)) +
2𝑘𝑘 log(log(𝑇𝑇))

𝑇𝑇
 

where 𝑉𝑉 is the estimated variance matrix of the reduced-form residual process, 𝑘𝑘 is the number of 

parameters, in this bi-variate case, 4 times lag length, and 𝑇𝑇 is the sample size. For a fair comparison, 

we adjust the initial observation across 𝐿𝐿𝑉𝑉𝐿𝐿𝑅𝑅 and make the effective sample sizes same. Once it is 

selected as a minimizer of the HQIC, both 𝐿𝐿𝑥𝑥 and 𝐿𝐿𝑦𝑦 are set to 𝐿𝐿𝑉𝑉𝐿𝐿𝑅𝑅.  

We use the estimated 𝑉𝑉𝐴𝐴𝑅𝑅(𝐿𝐿𝑉𝑉𝐿𝐿𝑅𝑅) model to bootstrap. First of all, we randomly choose 𝑟𝑟 

between 1 and 𝑇𝑇 − 𝐿𝐿𝑉𝑉𝐿𝐿𝑅𝑅. Then (𝑥𝑥𝑡𝑡 ,Δ𝑦𝑦𝑡𝑡)′, … , �𝑥𝑥𝑡𝑡+𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉 ,Δ𝑦𝑦𝑡𝑡+𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉�
′
 are used as an initial condition 

when simulating the bootstrapped time series.  

Second, we randomly draw the reduced form residuals with replacement. Using the 

estimated model with the above initial conditions and shuffled residuals, artificial data points are 

generated. The first 𝑇𝑇𝐵𝐵𝑢𝑢𝐽𝐽𝐼𝐼𝐽𝐽 number of observations are discarded as burn-in. 𝑇𝑇𝐵𝐵𝑢𝑢𝑉𝑉𝐽𝐽𝐼𝐼𝐽𝐽 = 100 in all 

simulations. 

 We apply our estimators to the bootstrapped time series obtaining �̂�𝑐ℎ
𝑅𝑅2,𝑏𝑏, �̂�𝑐ℎ

𝐿𝐿𝑃𝑃𝐿𝐿,𝑏𝑏, and �̂�𝑐ℎ
𝐿𝐿𝑃𝑃𝐵𝐵,𝑏𝑏 

for 𝑏𝑏 = 1, … , 2000. Given �̂�𝑐ℎ𝑉𝑉𝐿𝐿𝑅𝑅  obtained from the estimated 𝑉𝑉𝐴𝐴𝑅𝑅(𝐿𝐿𝑉𝑉𝐿𝐿𝑅𝑅) model, the biases for 

local projection-based estimators are obtained by 

1
𝐵𝐵
� �̂�𝑐ℎ

𝑚𝑚,𝑏𝑏
𝐵𝐵

𝑏𝑏=1

− �̂�𝑐ℎ𝑉𝑉𝐿𝐿𝑅𝑅 

for 𝑚𝑚 = 𝑅𝑅2, 𝐿𝐿𝑃𝑃𝐴𝐴, and 𝐿𝐿𝑃𝑃𝐵𝐵.  

 For other details regarding simulations, see Section III.  
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How to read the legend: 

1. Impulse response 

- The 90% bands are based on 5% and 95% quantiles of estimates across 2,000 

replications.  

 

2. Variance decomposition, Coverage probability, and Root MSE 

- ‘R2-VAR’ means the bias-corrected R2 estimator by bootstrapping an estimated VAR 

model. Its standard error is the standard deviation across bootstrap estimates.  

-  ‘R2-Sim’ uses the method discussed in Appendix B. The coverage probability is based 

on the asymptotic standard error with pre-whitening as discussed in Appendix B. 

-  ‘R2’ denotes for the estimator without any finite sample correction. It uses the same 

standard error as ‘R2-VAR.’ 

- ‘LP A/B-VAR’, ‘LP A/B-Sim’, ‘LP A/B’, ‘VAR-VAR’, and ‘VAR’ are defined 

similarly. 
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DGP 1, T = 160. 
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DGP1, T = 500. 
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DGP2, T = 160. 
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DGP2, T= 500. 
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DGP3, T = 160, VAR(HQIC). 
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DGP3, T = 160, VAR(5). 
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DGP3, T = 160, VAR(10). 
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DGP3, T = 500, VAR(HQIC). 

   



30 
 

Appendix F. Supplementary Figures for Multivariate Simulations 
 

For details regarding simulations, see Section III.  

How to read the legend: 

1. Impulse response 

- The 90% bands are based on 5% and 95% quantiles of estimates across 2,000 

replications.  

 

2. Variance decomposition, Coverage probability, and Root MSE 

- ‘R2-VAR’ means the bias-corrected R2 estimator by bootstrapping an estimated VAR 

model. Its standard error is the standard deviation across bootstrap estimates.  

-  ‘R2-Sim’ uses the method discussed in Appendix B. The coverage probability is 

based on the asymptotic standard error with pre-whitening as discussed in Appendix 

B. 

-  ‘R2’ denotes for the estimator without any finite sample correction. It uses the same 

standard error as ‘R2-VAR.’ 

- ‘LP A/B-VAR’, ‘LP A/B-Sim’, ‘LP A/B’, ‘VAR-VAR’, and ‘VAR’ are defined 

similarly. 
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Real GDP and monetary policy shock, T = 160 
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Real GDP and monetary policy shock, T = 500. 
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Price inflation and monetary policy shock, T = 160 
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Price inflation and monetary policy shock, T = 500. 
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Appendix G. Applications to Real GDP and Inflation 
For the LP method, we use different local projections for bias-correction depending on whether 

the estimated VAR or simulations are used. For example, suppose that 𝑥𝑥𝑡𝑡 is the monetary policy 

shock, and 𝑦𝑦𝑡𝑡  is the real GDP. When we bootstrap the estimated VAR, the following local 

projection is estimated to have bootstrap impulse responses.   

𝑦𝑦𝑡𝑡+ℎb − 𝑦𝑦𝑡𝑡−1b = 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟 + �𝛽𝛽𝑖𝑖ℎ
3

𝑖𝑖=0

𝑥𝑥𝑡𝑡−𝑖𝑖b + 𝐶𝐶0,1 ⋅ 𝑇𝑇𝐹𝐹𝑃𝑃𝑡𝑡𝑏𝑏 + 𝐶𝐶0,2 ⋅ 𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑐𝑐𝑟𝑟 𝑔𝑔𝑐𝑐𝑐𝑐𝑤𝑤𝑟𝑟ℎ𝑟𝑟
𝑏𝑏

+ 𝐶𝐶0,3 ⋅ 𝑟𝑟𝑠𝑠𝑓𝑓𝑐𝑐𝑠𝑠𝑟𝑟𝑟𝑟𝑐𝑐𝑠𝑠𝑟𝑟
b + ��𝐶𝐶𝑡𝑡−𝑖𝑖𝑏𝑏 �′𝛤𝛤𝑖𝑖ℎ

3

𝑖𝑖=1

+ 𝑐𝑐𝑡𝑡+ℎ|𝑡𝑡−1
𝑏𝑏 , 

where 𝐶𝐶𝑡𝑡 includes 𝑇𝑇𝐹𝐹𝑃𝑃𝑡𝑡 , 𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑐𝑐𝑟𝑟 𝑔𝑔𝑐𝑐𝑐𝑐𝑤𝑤𝑟𝑟ℎ𝑡𝑡 , 𝑟𝑟𝑠𝑠𝑓𝑓𝑐𝑐𝑠𝑠𝑟𝑟𝑟𝑟𝑐𝑐𝑠𝑠𝑡𝑡 and 𝑓𝑓𝑒𝑒𝑎𝑎𝑒𝑒𝑐𝑐𝑠𝑠𝑐𝑐 𝑓𝑓𝑐𝑐𝑠𝑠𝑎𝑎𝑐𝑐 𝑐𝑐𝑠𝑠𝑟𝑟𝑒𝑒𝑡𝑡. It corresponds 

to VAR(4) with the vector of TFP, output growth, inflation, monetary policy shock, and federal 

funds rate. 

 On the other hand, we cannot include many variables when we need asymptotic (joint) 

variance estimated. In this case, the following regression is estimated. 

𝑦𝑦𝑡𝑡+ℎb − 𝑦𝑦𝑡𝑡−1b = 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟 + 𝛽𝛽0ℎ𝑥𝑥𝑡𝑡b + 𝐶𝐶0,1 ⋅ 𝑇𝑇𝐹𝐹𝑃𝑃𝑡𝑡𝑏𝑏 + 𝐶𝐶0,2 ⋅ 𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑐𝑐𝑟𝑟 𝑔𝑔𝑐𝑐𝑐𝑐𝑤𝑤𝑟𝑟ℎ𝑟𝑟
𝑏𝑏 + 𝐶𝐶0,3 ⋅ 𝑟𝑟𝑠𝑠𝑓𝑓𝑐𝑐𝑠𝑠𝑟𝑟𝑟𝑟𝑐𝑐𝑠𝑠𝑟𝑟

b

+ 𝑐𝑐𝑡𝑡+ℎ|𝑡𝑡−1
𝑏𝑏 . 

In a similar logic, it corresponds to VAR(1) with the same ordering. Therefore, we preserve the 

assumed ordering of variables in both cases. 

 When 𝑥𝑥𝑡𝑡 is 𝑇𝑇𝐹𝐹𝑃𝑃𝑡𝑡, 𝑥𝑥𝑡𝑡 is the only time t variables on the right-hand side making it consistent 

to the ordering. 

 Figures below show the results for simulation based bias-corrections. Results are similar 

to VAR-based ones.  
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1969:Q1-2007:Q4. Real GDP.  
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1969:Q1-2007:Q4, Inflation. 
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