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1 Introduction

A central observation in asset-pricing research is that aggregate asset returns are predictable
over time, in particular by current aggregate valuations (e.g., Shiller 1981, Fama and French
1988, Fama and Bliss 1987). For instance, when the price-dividend ratio of the market
portfolio is large, subsequent stock returns are lower than when it is small. Going further,
the cross-section of valuations contains additional information about aggregate returns (e.g.,
Cochrane and Piazzesi 2005, Kelly and Pruitt 2013). In this paper we study the time series
properties of cross-sections of returns. Across multiple asset classes, we find that relative
returns exhibit substantial predictability, more so than aggregate returns. The observation of
aggregate predictability has been variously interpreted as evidence of variation in economic
risk, risk aversion, or irrational exuberance among others. Distinguishing these theories is
challenging based on aggregate facts alone. Our findings offer a way forward by documenting
robust stylized facts on predictability in the cross-section.

For each asset class, we reduce the cross-section of assets to a few portfolios along dimen-
sions suggested by economic analysis, statistics, or both. We then study the predictability of
these portfolios following standard methods for aggregate returns. We apply this approach
to Treasury bonds, stocks and exchange rates. For bonds, a number of common predictors
put forward in previous literature forecast the average level of returns with R2’s around 20%.
We show that a portfolio trading long against short maturities exhibits a similar degree of
predictability, predictability that would be missed by looking at the standard individual
asset-level regressions. For stocks we also find strong predictability beyond the market re-
turn. Long-short portfolios of so-called anomalies exhibit common variation that we extract
using principal components (PCs). These components are also predictable, more so than the
market. Finally, currency returns, sorted by interest rate differentials, are more predictable
than a strategy of trading all currencies against the dollar. Across all of these asset classes,
predictability of relative returns is also more robust than of aggregate returns, with stark
differences in out-of-sample R2’s.

The starting point of our analysis is to reduce the dimensionality of the cross-section. To
understand the importance of doing so, consider first running individual predictive regressi-
ons,

Ri,t+1 = ai + b′iXt + εi,t+1.

The broad question we wish to answer is whether Xt predicts returns; do risk premia vary
with Xt? If we impose no structure on the problem, we can perform a standard Wald test
of joint significance of the bi’s. A significant Wald test identifies that there exists a linear
combination of returns which is predictable; that is, Xt predicts “something”. The problem
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is this test might capture predictability arising from smaller components of the data. These
components are likely unstable and economically uninteresting. The other extreme is to
impose the restriction that Xt predicts “everything”, or that all coefficients bi have a similar
pattern and are statistically distinct from 0. We show that such a test is too stringent
since it is likely to uncover aggregate patterns, but tends to ignore predictability of relative
returns. Our approach fits between those two extremes by judging whether Xt predicts
“something important”. We operationalize the notion of importance by choosing specific
linear combinations of returns, implemented as portfolios. When possible, these portfolios
are simply economically motivated, for instance sorted on maturity for bonds. In the absence
of clear guidance, we favor the use of principal components. Beyond preventing overfitting,
our methodology allows us to naturally adapt the large body of work developed to study
predictability of aggregate returns to relative returns.

Given their well-known strong and stable factor structure, Treasury bond returns consti-
tute a natural empirical setting for our approach. Cochrane and Piazzesi (2005) find that
the same combination of yields predicts bond returns at all maturities; that is, bi is approx-
imately proportional across maturities. Given the strong factor structure of returns, this
joint predictive success is actually equivalent to univariate success in predicting the level
factor of returns. To explore predictability of relative returns, we consider a maturity sorted
portfolio, which is approximately the mimicking portfolio for changes in the slope of the
yield curve. We find that yields forecast returns on this slope portfolio with similar explana-
tory power to level, but this predictability is only evident upon direct examination of slope.
We further illustrate how individual tests can fail to capture patterns of predictability by
considering the Chicago Fed National Activity Index (CFNAI).1 Whereas CFNAI doesn’t
significantly predict any individual bond return, it predicts the second principal component
of returns with a similar magnitude as bond yields. Further, the out-of-sample R2 is negative
for predicting level, whereas for slope it is only moderately lower than in full sample. This
difference highlights the greater stability of predicting relative returns. Also, even though
the unconditional Sharpe ratio on the slope portfolio is not significantly different from zero, a
managed portfolio with weights proportional to expected returns earns an annualized Sharpe
ratio of about 0.7, both in and out-of-sample. This result shows that focusing first on un-
conditional differences in expected returns can hide some important sources of variation in
expected returns in the cross-section.

We next apply our method to stocks, an asset class with weaker factor structure and
where “important” relative returns are less obvious. Rather than forecasting individual
stock returns, we consider 50 well-known anomaly long-short portfolios, which we orthogo-

1Joslin et al. (2014) include CFNAI as an “unspanned” factor in an affine term structure model.
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nalize with respect to the aggregate market return. The residuals exhibit a moderate factor
structure, with two components explaining close to 40% of the remaining variation. Again,
we find evidence that these additional dimensions —relative returns— are also highly and
robustly predictable. Using the cross-section of book-to-market ratios as predictors, we find
an out-of-sample R2 of 42% for relative returns when predicting the first component of long-
short anomalies. In contrast this statistic is negative for the aggregate market. This result
mimics the unreliability of aggregate predictability in bonds. In contrast, relative returns in
both asset classes show robust out-of-sample forecastability. Strong predictability of large
common components of stock returns also imply substantial levels of predictability of in-
dividual equity anomalies, stemming from their loading on these highly predictable PCs.
We show that most anomalies are indeed robustly predictable in the time-series when using
our restricted estimation method. On the contrary, naive methods which ignore the factor
structure typically suffer from overwhelming spurious in-sample predictability.

Finally, we consider the returns of currency strategies. Following the literature on the
carry trade, we use interest rate differentials as predictors (Lustig et al., 2014). We find that
an index of all currencies against the dollar is less predictable than a portfolio of currencies
sorted by interest rate differential. Specifically, whereas the out-of-sample R2 is negative
when predicting the aggregate dollar carry portfolio, it is reliably around 5% for the relative
carry returns of high against low interest rate differential currencies.

Taken together, these results illustrate that our approach provides a simple organizing
framework to establish stylized facts on predictability for multiple assets. In particular we
highlight that relative returns are systematically more predictable than aggregate returns.
Further the dynamics of expected relative returns often appear only weakly related to those
of aggregate expected returns, suggesting that there are multiple sources of time-varying
expected returns within each asset class we study. The next step is, of course, to bring
these facts closer to theory. In the context of no arbitrage models, once one has selected
a set of predictors, she can estimate and test models of stochastic discount factors. We
provide guidance how to proceed in this direction by showing a formal argument linking
our approach to predictability to an SDF-based estimation approach with time-varying risk
prices (Appendix A). Alternatively, one can derive the implications of specific theories for
predictability of aggregate as well as relative returns and confront them to our stylized facts.

The remainder of the paper proceeds as follows. We next situate our findings in the
existing literature. We present our methodology and contrasts it with the main existing
approaches in Section 2. In Section 3, we use our framework to study the expected returns
of Treasury bonds. Section 4 and Section 5 study stock anomalies and currency portfolios
respectively. Section 6 derives ways to quantify the relation between individual predictability
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and predictability of important components. Section 7 concludes.

Related literature

This paper builds on the long literature which studies time series predictability of returns,
starting from Shiller (1981) and Fama and French (1988) for stocks, or Fama and Bliss
(1987) for bonds.2 While the early evidence is mostly about aggregate returns, our main
focus is on understanding predictability of cross-sections of returns. Vuolteenaho (2002)
studies the properties of firm-level returns using a VAR and present-value restrictions. While
he notices common variation in estimated expected returns, his analysis does not provide
a way to characterize these underlying common forces. Cochrane (2011) summarizes this
challenge, arguing that one should ask “what is the linear combination of forecasting variables
that captures common movement in expected returns across assets”. Cochrane and Piazzesi
(2005) propose one way to do so, by estimating a single combination of yields which predicts
bonds at all maturities. Our evidence suggests that there is interesting common variation
in expected returns beyond only one common predictor. Lochstoer and Tetlock (2016) use
a bottom-up approach of aggregating firm-level estimates to anomaly portfolios in order to
decompose variation in returns into discount rate and cash-flow news. To focus directly
on common variation in risk premia, we use a more top-down methodology. We directly
measure the predictability of aggregate components and then project it back onto individual
assets.

Interestingly, predictability of relative returns sometimes arises in the context of diffe-
rent exercises. For instance, Akbas et al. (2015), Stambaugh et al. (2012) study whether
investor sentiment or fund flows, respectively, drive common variation in stock anomaly ex-
pected returns. Brooks and Moskowitz (2017) study the predictability of bond returns across
countries, summarizing them by factors similar to our important components, rather than
considering individual bonds. Finally, predictability arising from a few factors is also so-
metimes a part of completely specified models of stochastic discount factors. Dynamic term
structure models—e.g., Joslin et al. (2014)—or dynamic asset pricing models—e.g., Adrian
et al. (2015)—can include and estimate this predictability. Because the focus of our paper
is on predictability alone, we favor a more reduced-form approach.

2See Koijen and Van Nieuwerburgh (2011) for a survey of recent work on the topic.
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2 Methodology

We start by reviewing two standard approaches to predictability with multiple returns,
highlighting their limitations, then move on to our proposed approach. The problem we are
interested in is the time-series predictability of a family of N returns, Rt = {Ri,t}, where i
is an asset and t is time. That is, we are interested in estimating time-varying risk premia.
We take as given a set of candidate predictors, captured by the vector Xt. We focus on the
case of linear predictability, summarized by the equation

Ri,t+1 = ai + b′iXt + εi,t+1, (1)

for each return. This linear representation is preserved by rotation into the space of principal
components of returns, which offers an alternative revealing point of view. The principal
component portfolios are Ft = Q′Rt where Q is the matrix of eigenvectors of the covariance
matrix of returns Σ, Σ = QΛQ′. Rewriting Equation 1 in terms of PC portfolios gives:

Fi,t+1 = αi + β′iXt + ei,t+1. (2)

There are multiple ways to aggregate the information in the estimated coefficients of interest,
bi, to judge the success of Xt as a predictor, which we discuss now. Given the equivalence
of Equation 1 and Equation 2, any method of aggregating the bi implies an aggregation of
the βi.3

2.1 Standard Approaches and Limitations

Predict “something”: spurious predictability. We could test whether there exists a
linear combination of the coefficients bi — or equivalently βi — that is statistically distinct
from 0. This corresponds exactly to a standard Wald test. This notion of predictability,
just asking if Xt predicts “something”, is intuitively too lax. For instance, our conclusion
about the predictive value of Xt could be driven by its ability to predict the lowest variance
PC portfolios, or only a few assets. We show in Section 6.3 that a small amount of noise in
measured returns can lead to significant spurious predictability of the smallest PC portfolios
in population. This issue is exacerbated in small samples. Finding this type of predictability
is at odds with our goal of finding economically interesting variation in risk premia.

3The mapping between the two representation is given by: αi = q′ia, βi = q′ib and ei,t+1 = q′iεi.
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Predict “everything”: low power beyond the first component. The other extreme
is to impose the restriction that Xt predicts “everything”, or that all coefficients bi are
statistically distinct from zero. For instance Cochrane and Piazzesi (2005) obtain such
a pattern predicting Treasury bond returns of various maturities using the cross-section
of yields, concluding to the presence of one common factor in expected returns. While
this approach can uncover interesting patterns, it is likely to be too stringent and ignores
predictability of relative returns. We show in Section 6.1 that such a test is often equivalent
to testing whether Xt predicts the first component of return, that is β1 = 0. In other words,
finding uniform predictability across all assets simply finds predictability of the “level” factor
in returns. In contrast, we show in Section 6.2 that if a predictor is useful for forecasting
relative returns, captured by a long-short portfolio, but not for aggregate returns, individual
asset predictive regressions are unlikely to uncover such predictability.

2.2 Our Approach: Predict “Something Important”

To strike a balance between those two notions, we focus on particular linear combinations
of the coefficients bi. We form a few portfolios — in practice two or three — of the returns,
Rp,t = ∑

i ωiRi,t. We then estimate individually whether each portfolio is predictable by Xt:

Rp,t+1 = ηp + δ′pXt + νp,t+1.

Testing for the significance of δp is exactly equivalent to testing significance of ∑i ωibi. The-
refore we restrict our attention to whether Xt predicts “something important”. Restricting
to a low-dimensional set of portfolios avoids the issue of the Wald test by focusing on the
main dimensions of the data. But it also avoids the other extreme of only focusing on the
first component of returns, and allows us to study patterns of relative returns.

Of course the choice of portfolio weights ωi is somewhat arbitrary. A natural choice for
these portfolios are long-short strategies formed by sorting returns based on characteristics,
such as maturity for bonds, where characteristic selection is driven by economic motiva-
tion. Alternatively one can use guidance from statistical analysis, focusing on the largest
principal components of the family of returns. In our applications, it turns out that these
two approaches are closely related. For instance, for bonds, we consider the average return
across maturity and a long-short strategy across maturities, the most natural dimension of
heterogeneity in bonds. These two portfolios correspond closely to the first two principal
components of bond returns.

Our approach of treating small principal components of returns as unpredictable can also
be motivated by recent papers addressing issues related to large cross-sections of returns.
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Kozak et al. (2017a,b) argue that for typical families of returns, a stochastic discount factor
that prices these portfolios should be well approximated by the first few PCs if there are no
near-arbitrage opportunities.4 We show in Appendix A that imposing this restriction on the
SDF is equivalent to imposing that small PCs of returns have zero conditional mean; that
is, they are unpredictable.

In the remainder of the paper, we implement this simple approach successively to Tre-
asury bond returns, stocks, and exchange rate strategies. We document the predictability
of important components of the cross-section. In addition we revisit the discussion of this
section in the context of these applications. Finally, in Section 6 we show ways to quantify
the statistical properties that lead us to favor this methodology.

3 Predicting Bond Returns

In this section we study the predictability of Treasury bond returns. We find substantial
predictability of relative bond returns across maturities in addition to the existing evidence
on aggregate predictability. We show this relative predictability is masked when forecasting
individual bond returns. In contrast, it is substantial and clearly visible when directly
forecasting relative returns.

3.1 Data

We obtain yields on zero-coupon Treasury bonds with maturities from 1 to 15 years from
Gürkaynak et al. (2006). Following Joslin et al. (2014), the sample is 1985-2015 to exclude
the early 1980s when the Federal Reserve “changed its policy rule . . . following a significant
policy experiment.” We calculate log excess returns from yields.5 We then rescale the excess
returns of bonds of maturity n by dividing them by n− 1. Therefore we study

rx
(n)
t+1 ≡ −y

(n−1)
t+1 + n

n− 1y
(n)
t −

1
n− 1y

(1)
t .

Table 1 shows summary statistics for rescaled returns. The table shows that our rescaling
largely eliminates scale effects across bond returns. Scaled returns have approximately equal
standard deviation whereas this statistic varies by a factor of 10 for unscaled returns. The
transformed excess returns all have modified duration equal to unity. Additionally, our

4Giglio and Xiu (2017), Kelly et al. (2017) also argue in favor of low-dimensional stochastic discount
factors.

5As standard for one-year holding period returns, we use the one-year zero-coupon yield as the risk-free
rate. See Cochrane and Piazzesi (2008) for a comprehensive exposition of bond yields, forward rates, and
returns.
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Table 1: Bond Return Summary Statistics

The table shows mean, standard deviation, skewness and Sharpe ratio for annual zero-coupon
Treasury bonds excess returns with the indicated maturities. All bond returns are first normalized
to have unit duration.

3Y 5Y 7Y 9Y 11Y 13Y 15Y
Mean (%) 0.79 0.72 0.66 0.60 0.55 0.51 0.47
Std. Dev. (%) 1.26 1.15 1.07 1.01 0.97 0.94 0.92
Skewness 0.12 0.12 0.17 0.25 0.35 0.47 0.60
Sharpe Ratio 0.62 0.63 0.62 0.59 0.57 0.54 0.51

sample exhibits the well-known phenomenon of Sharpe ratios which slightly decline with
maturity.

Following Cochrane and Piazzesi (2008), we define log forward rates as

f
(n)
t ≡ p

(n−1)
t − p(n)

t ,

where p(n)
t denotes the time t log price of an n-year bond. Likewise, log forward spreads are

fs
(n)
t ≡ f

(n)
t − y

(1)
t ,

where y(1)
t is the time t yield on a one-year zero-coupon bond. Given the strong factor

structure in forward spreads, we use only the first three principal components of spreads as
predictive variables. We denote these by FS1, FS2, and FS3. For ease of comparison we
rescale each predictive variable to have 1% standard deviation.

3.2 Principal Components of Returns

Figure 1 plots the first three eigenvectors of the covariance matrix of returns. We obtain
“level”, “slope”, and “curve” factors for returns. The inset table shows that the first two
factors, LevelR and SlopeR, capture more than 99% of the variation in realized bond returns.
There are essentially only two uncorrelated portfolios that can be formed from bond returns.
This suggests we should take advantage of this strong factor structure when forecasting
returns.

We use these first two PCs of returns as important components. Though these are
statistically derived, they are in fact economically interesting. LevelR has 100% correlation
with the average return portfolio, formed by equally weighting all maturities. Further, it
has -97% correlation with changes in the level of the yield curve and nearly zero correlation
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Figure 1: Factor Structure in Realized Returns. The top panel plots the first three eigenvec-
tors of realized zero-coupon bond excess returns, termed LevelR, SlopeR, and CurveR. The bottom
panel shows the percent of total variance contributed by each factor.

with changes in the slope of the yield curve.6 Hence it is approximately the level-mimicking
portfolio, which captures duration risk. Similarly, SlopeR has 94% correlation with a long-
short portfolio which has weights that are linear in maturity and that sum to zero.7 SlopeR
has 95% correlation with changes in the slope of yields and nearly zero correlation with
changes in the level. Therefore it is the mimicking portfolio for changes in the slope of the
yield curve and captures convexity risk.8

3.3 Predicting Aggregate and Relative Bond Returns

Individual bonds. We first forecast scaled excess bond returns with maturities 2 to 15
years using forward spreads. Table 2 shows the estimated coefficients, circular block boot-
strapped t-statistics (Politis and Romano, 1992), and R2.9 We find R2s around 20% at all
maturities, which is substantial and similar to results in other studies.10 Coefficients on

6The level of yields is their first principal component.
7The weight of a bond with maturity n is n− 17

2 .
8The slope of yields is their second principal component.
9We use thirty-six month block length. Results are robust to choice of block size. HAC (Newey-West)

t-statistics are generally slightly larger.
10See for instance Cieslak and Povala (2015), Cochrane and Piazzesi (2005), Cooper and Priestley (2008),

Haddad and Sraer (2017).
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Table 2: Predicting Bond Returns with Forward Spreads

We report predictive coefficients and absolute t-statistics (in parentheses) from predictive regres-
sions of zero-coupon bond excess returns on the the first three principal components of lagged
forward spreads. Each column presents results for the indicated maturity (in years).

3Y 5Y 7Y 9Y 11Y 13Y 15Y
FS1 0.06 0.19 0.25 0.29 0.30 0.30 0.29

(0.34) (1.20) (1.85) (2.29) (2.54) (2.63) (2.62)

FS2 -0.43 -0.40 -0.37 -0.34 -0.32 -0.30 -0.29
(2.63) (2.83) (2.98) (3.05) (3.04) (3.01) (2.97)

FS3 -0.38 -0.32 -0.26 -0.20 -0.15 -0.10 -0.06
(2.23) (2.20) (2.02) (1.72) (1.34) (0.95) (0.58)

R2 0.20 0.21 0.23 0.23 0.23 0.23 0.22

Table 3: Bond PC Portfolios Summary Statistics

The table shows mean, standard deviation, skewness and Sharpe ratio of returns on Base and
Dynamic managed portfolio strategies for the first two principal component portfolios of zero-
coupon Treasury bond returns, LevelR and SlopeR.

Base Portfolios Dynamic Strategies

LevelR SlopeR LevelR SlopeR

Mean (%) 3.11 -0.73 0.06 0.09
Std. Dev. (%) 5.00 5.00 0.16 0.15
Skewness 0.16 -0.00 2.07 1.10
Sharpe Ratio 0.62 -0.15 0.35 0.60

the second PC of forward spreads, FS2, are all significant and are similar across maturities.
Coefficients on FS1 and FS3 show a nearly monotone pattern across maturities, but have
mixed significance. These patterns suggest there are not fourteen independent left-hand-side
variables. There is clearly cross-maturity structure, which can be exploited to improve power
and reduce noise by focusing on important components.

PC portfolios. We repeat the above forecasting exercise, except we now directly forecast
the first two PCs of returns, LevelR and SlopeR. For ease of comparison, we normalize each
portfolio return to have 5% standard deviation in the full sample. Table 3 shows summary
statistics for these PC portfolios. The first two columns are for the base, static portfolios.
The last two characterize dynamic managed portfolio returns, which we discuss further below.
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Table 4: Predicting PC Returns with Forward Spreads

We report predictive coefficients and absolute t-statistics (in parentheses) from predictive regressi-
ons of the first two principal components of zero-coupon bond excess returns on the the first three
principal components of lagged forward spreads.

LevelR SlopeR
FS1 1.08 1.88

(1.69) (2.64)

FS2 -1.79 0.22
(2.96) (0.34)

FS3 -1.16 1.28
(1.93) (1.96)

R2 0.22 0.22

The important takeaway from the table is that LevelR has a large unconditional Sharpe ratio,
while the Sharpe ratio of SlopeR is nearly zero economically and statistically. Focusing only
on unconditional pricing, it would seem that SlopeR is unimportant. Finally, remember that
LevelR and SlopeR are uncorrelated by construction.

Table 4 reports the estimated coefficients and R2 from predictive regressions of these
first two principal components on the first three PCs of lagged forward spreads. Measured
by R2, the long-short portfolio, SlopeR, is as predictable as the aggregate portfolio, LevelR.
Interestingly, the correlation of their estimated expected returns, which we denote Et [LevelR]
and Et [SlopeR], is only 8%. More than half of the total R2 for LevelR is generated by FS2,
which is irrelevant for predicting SlopeR. FS1 positively predicts both portfolio returns, but
with nearly twice the magnitude for SlopeR. Finally, LevelR and SlopeR load on FS3 with
equal magnitude, but opposite sign. We conclude that relative returns are as predictable
as aggregate returns, and there are at least two independent drivers of time-varying risk
premia.

Detecting predictability using individual bonds. In Section 2.1 we argue that infe-
rence regarding a variable which predicts SlopeR but not LevelR is difficult using individual
bond regressions. As a first empirical analysis of this point, consider forecasting individual
bond returns with the estimated forecasts Et [LevelR] and Et [SlopeR]. We know from Ta-
ble 4 these predictive variables forecast LevelR and SlopeR with equal R2. Do they forecast
individual bond returns? Table 5 shows the estimation results. The first row is the R2 from
the unrestricted regressions reported in Table 3. The next two rows show that Et [LevelR]
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Table 5: Predicting Bond Returns with Expected PC Return

We report predictive coefficients and absolute t-statistics (in parentheses) from predictive regres-
sions of bond PC returns on various predictors. The first row reports the unrestricted R2 from
Table 2 using three principal components of forward spreads as forecasting variables. The next
block shows the results using Et [LevelR], the expected return on LevelR based on the coefficients
reported in Table 4 to forecast individual bonds. The last block gives the results from including
Et [SlopeR] as an additional predictor.

3Y 5Y 7Y 9Y 11Y 13Y 15Y

Unrestricted — Predictors: FS1, FS2, FS3
R2 0.20 0.21 0.23 0.23 0.23 0.23 0.22

Predictors: Et [LevelR]
Et [LevelR] -0.29 -0.29 -0.29 -0.27 -0.25 -0.24 -0.22

(-2.79) (-3.40) (-3.76) (-3.88) (-3.82) (-3.66) (-3.47)

R2 0.17 0.21 0.23 0.23 0.22 0.20 0.18
Predictors: Et [LevelR], Et [SlopeR]

Et [LevelR] -0.30 -0.30 -0.29 -0.28 -0.26 -0.24 -0.22
(2.85) (3.32) (3.68) (3.83) (3.81) (3.67) (3.48)

Et [SlopeR] -0.58 -0.25 -0.05 0.09 0.18 0.25 0.29
(1.68) (0.83) (0.19) (0.38) (0.85) (1.22) (1.49)

R2 0.20 0.21 0.23 0.23 0.23 0.23 0.22

predicts all individual returns nearly as well as the unrestricted regressions. All estima-
ted coefficients are statistically significant; this is essentially the finding in Cochrane and
Piazzesi (2005). The last block shows the result of including Et [SlopeR] as an additional
predictor. Since the correlation between Et [LevelR] and Et [SlopeR] is only 8%, the coeffi-
cients on Et [LevelR] are nearly unchanged. R2 values barely improve. Importantly, none
of the estimated slopes with respect to Et [SlopeR] are significant.11 Therefore, a researcher
who forecasts bond returns equation-by-equation would conclude Et [SlopeR] is not an im-
portant predictor of excess returns though it obviously significantly predicts the return on
an interesting maturity-sorted portfolio.

11This is result could be affected by the fact that we estimate Et [SlopeR] in sample. However, the absolute
t-stats are biased upward, increasing the probability of rejecting the null. Furthermore, simulation analysis
in Section 6.2 shows the same result holds when the researcher has an economically motivated predictor,
which happens to be Et [SlopeR].
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Table 6: Predicting PC Returns with Forward Spreads and GRO

We report predictive coefficients and absolute t-statistics (in parentheses) from predictive regressi-
ons of the first two principal components of zero-coupon bond excess returns on the the first three
principal components of lagged forward spreads and GRO (Chicago Fed National Activity Index).

LevelR SlopeR
FS1 1.08 0.98 - 1.88 2.36 -

(1.69) (1.52) (2.63) (3.99)

FS2 -1.79 -1.92 - 0.22 0.81 -
(2.95) (3.13) (0.34) (1.49)

FS3 -1.16 -0.94 - 1.28 0.27 -
(1.92) (1.49) (1.98) (0.47)

GRO - -0.71 -0.78 - 3.32 2.53
(0.70) (0.82) (3.62) (2.56)

R2 0.22 0.23 0.01 0.22 0.37 0.13
Wald test p-value 0.01 0.01 0.72 0.02 0.00 0.04

Revisiting the role of economic activity in bond risk premia. There is a long
literature arguing for a relationship between economic growth and bond returns, with a
number of other papers highlighting issues related to these findings.12 We revisit this issue
with a focus on predicting relative, rather than aggregate, returns. Our analysis reveals
that economic growth is an important predictor of SlopeR, but not of LevelR, explaining the
fragility of the relationship when using standard reduced-form methods.

Following Joslin et al. (2014) we proxy for macroeconomic conditions with GRO, the
Chicago Fed National Activity Index. Table 6 shows the estimates from adding GRO as
an additional predictive variable. GRO is statistically insignificant and does not improve
R2 when forecasting LevelR. In contrast, GRO dramatically increases the predictive R2

for SlopeR. Lack of predictive power for LevelR but significant incremental predictability
of SlopeR suggests GRO will not be statistically significant in individual bond regressions.
Figure 2 shows the estimated coefficient on GRO by bond maturity with ±2 standard errors.
The coefficients show an upward sloping pattern across maturity, as expected based on the
results in Table 6, but none of the coefficients are statistically significant at conventional
levels, except for the 2-year bond. This demonstrates again that individual bond forecasting

12See Ang and Piazzesi (2003), Bikbov and Chernov (2010), Cooper and Priestley (2008), Estrella and
Mishkin (1997), Evans and Marshall (1998, 2001), Joslin et al. (2014), Ludvigson and Ng (2009) among
others. Issues are pointed out in Bauer and Rudebusch (2016), Duffee (2013).
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Figure 2: Predicting Bond Returns with Economic Activity. We plot predictive coefficients
on the Chicago Fed National Activity Index GRO (and ±2 standard error bands) by maturity from
predictive regressions of zero-coupon bond excess returns on GRO and the first three principal
components of lagged forward spreads.

regressions often miss predictability which is statistically and economically significant.
The predictability of SlopeR can have multiple economic reasons. SlopeR experiences poor

performance following a steepening in the yield curve. In periods where such a steepening
is likely to be good economic news, the risk premium of SlopeR should be lower as it acts
as a hedge. This may be more likely during recessions when growth is low and a steepening
of the yield curve indicates increased expectations of future growth and the accompanying
inflation. Changes in reach-for-yield behavior (see e.g., Hanson and Stein 2015) could also
create predictable changes in the relative returns of long- and short-maturity bonds.

3.4 Expected Returns Dynamics

We now turn to the dynamic behavior of our return forecasts and their robustness. Figure 3
plots predicted and realized returns for the first two PCs of bond returns, LevelR and SlopeR,
with predictions formed using the estimated coefficients from Table 6. We perform an out-
of-sample (OOS) exercise to assess the robustness and usefulness of return predictability.
Specifically, we split the sample into two equal halves, estimate regression coefficients in the
first period and use these to forecast returns in the second period. The red-dashed lines
indicate the OOS forecasts. For LevelR, the OOS forecasts are quite different from the full-
sample predicted returns, suggestive of spurious predictability or parameter uncertainty. R2

during the OOS period drops from 24% using full-sample estimated parameters to -198%

15



1987 1990 1992 1995 1997 2000 2002 2005 2007 2010 2012

-10

0

10

20

(a) LevelR

1987 1990 1992 1995 1997 2000 2002 2005 2007 2010 2012

-10

0

10

(b) SlopeR

Figure 3: Predicted and Realized Returns. The top and bottom panels shows predicted and
realized returns of LevelR and SlopeR, the 1st and 2nd PCs of bond excess returns, respectively.
The solid line represents forecasts using parameters estimated with the full sample. The dashed
line give forecasts using parameters estimated in the first half (pre-2000) and the dotted line gives
realized returns.

OOS.13 For SlopeR, in contrast, the OOS forecasts are nearly unchanged relative to the
full-sample. Further, the R2 declines from 38% to 18% with the reduction mostly due to an
extreme outlier during the financial crisis when GRO declined dramatically. These findings
suggest that predictability of SlopeR is exploitable by investors.

We assess these benefits by comparing two strategies: (1) a static strategy which invests a
constant fraction of wealth proportional to an asset’s unconditional mean and (2) a dynamic
strategy which invests proportional to the conditional mean. For full sample results, we
construct conditional means using parameter estimates from Table 6. For OOS, we use
parameters estimated using the first half of the data. For ease of comparison, we plot the
difference between the returns on the static and dynamic strategies. This is equivalent to
the return on a strategy with zero weight on average, but which is sometimes long and
other times short. Hence, it measures the relative gains and losses from using conditioning
information.

13We define OOS R2 as 1− var(ε)
var(r) .
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Figure 4 shows realized returns for the managed portfolios with NBER recessions indi-
cated by gray bars. The full-sample Sharpe ratio for LevelR is 0.35 compared to 0.60 for
SlopeR. Recall from Table 3 that SlopeR has nearly zero unconditional Sharpe ratio, whereas
it is 0.6 for LevelR. This result is reversed for conditional Sharpe ratios. For LevelR it is quite
small whereas the Sharpe ratio of the SlopeR managed portfolio is substantial. Furthermore,
dynamic SlopeR tends to have high returns just before and during recessions, whereas dy-
namic LevelR profits mainly during economic post-recession recoveries. The cyclicality of
SlopeR returns echoes our potential theoretical justifications.

Out-of-sample Sharpe ratios mimic the findings for R2; during the OOS period, the
Sharpe ratio falls from 0.20 to 0.12 for LevelR.14 For SlopeR, in contrast, it barely declines
from 0.67 to 0.59 indicating predictability which is valuable in real-time. Beyond Sharpe
ratios, we can examine the distribution of managed portfolio returns. Figure 5 shows kernel
density estimates for LevelR and SlopeR, both for full- and out-of-sample. In full-sample,
both exhibit significant right-skewness, which is to be expected. Out of sample, however, Le-
velR is nearly symmetric whereas SlopeR remains highly positively skewed, which is desirable
to investors.

4 Predicting Stock Returns

We now turn our attention to equity returns. Stock returns have a weaker factor structure
than bonds, with more PCs having meaningful variance and therefore potentially implying
a richer structure of expected returns in the time-series. We proceed with predicting two
PCs of long-short equity anomaly strategies in addition to the market and show that their
predictability is stronger and more robust than the predictability of the aggregate market
return. Strong predictability of these important components of stock returns also leads
to substantial implied predictability of individual equity anomalies which stems from their
loading on these components. We show that most anomalies are indeed highly predictable in
the time-series when using our restricted estimation method, even though unrestricted naïve
methods typically suffer from overwhelming spurious in-sample predictability.

4.1 Data

We use the universe of CRSP and COMPUSTAT stocks and sort them into 10 portfolios
for each of the 50 characteristics studied in Kozak et al. (2017b) and listed in Table 16 in

14For OOS evaluation, we normalize the static and dynamic strategies so the difference between their
weights has zero mean.
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Figure 4: Dynamic Strategy Returns. The figure reports realized returns on dynamic relative
to static strategies of LevelR and SlopeR, the 1st and 2nd PCs of bond excess returns.

the Appendix. Their dataset is primarily based on anomaly definitions in Novy-Marx and
Velikov (2014), Kogan and Tian (2015), and McLean and Pontiff (2016). Portfolios include
all NYSE, AMEX, and NASDAQ firms; however, the breakpoints use only NYSE firms as
in Fama and French, 2016. The sample is monthly from November 1973 to December 2015.

We construct long-short anomalies as differences between each anomaly’s return on port-
folio 10 minus the returns on portfolio 1. For each anomaly strategy we also construct its
corresponding measure of relative valuation based on book-to-market ratios of the underlying
stocks. We define this measure as the difference in log book-to-market ratios of portfolio 10
and portfolio 1.15

Most of these portfolio sorts exhibit a significant spread in average returns and CAPM
alphas. This finding has been documented in the vast literature on the cross-section of returns
and can be verified in Table 16 in the Appendix. In this time period, most anomalies show
a large, nearly monotonic pattern in average returns across decile portfolios, consistent with
prior research. Rather than studying unconditional mean returns, our primary focus in this
paper is on time variation in conditional expected returns, which has received considerably

15The book-to-market ratio of a portfolio is defined as the sum of book equity relative to the total market
capitalization of all firms in that portfolio. Equivalenty, it is the market-capitalization weighted average of
individual stocks book-to-market ratios.
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Figure 5: Dynamic Strategy Return Distribution. The figure shows kernel densities of
realized returns on dynamic (relative to static) strategies of LevelR and SlopeR, 1st and 2nd PCs
of bond excess returns.

less attention in the literature.

4.2 Portfolios and Predictors

PC portfolios. We are interested in the joint predictability of anomaly portfolio returns.
Based on the logic of Section 2 we construct PCs from the 50 anomaly long-short (decile 10
- decile 1) portfolios and study their predictability. Table 7 shows that anomaly portfolio
returns exhibit a relatively weaker factor structure than Treasury bonds. In the top panel
we pool all long and short ends of each strategy (portfolios 1 and 10, that is, 100 portfolios
in total). The first PC in the top panel, thus, roughly corresponds to the aggregate market.
We see that it accounts for about 80% of the total return variation. The second and third
principal components account for a much smaller but similar percentage of total variance.

The bottom panel focuses on our primary dataset — 50 long-short anomaly strategies.
To focus purely on relative returns, we first orthogonalize each anomaly strategy with respect
to the market portfolio by subtracting its market beta times the return on the market each
period.16 The factor structure of the market-neutral anomalies is weaker than for bond
returns: the first three PCs account for about 50% of the total variation. There is, therefore,
more potential for predicting higher-order PCs than there is with bond returns. In our
analysis we focus on predicting the market and the first two PCs of long-short strategies.

16We estimate the market beta using the full sample.
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Table 7: Percentage of variance explained by anomaly PCs

Percentage of variance explained by each PC of pooled anomaly portfolio returns. The top panel
shows PC1-PC10 of both long and short ends of anomalies (100 portfolios). The bottom panel
focuses on 50 long-short market-neutral strategies.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

PCs of pooled P1, P10 portfolios
% var. explained 80.8 3.3 3.0 2.1 0.9 0.7 0.6 0.5 0.5 0.4
Cumulative 80.8 84.2 87.2 89.3 90.1 90.8 91.4 91.9 92.4 92.8

PCs of Long-Short strategies
% var. explained 19.6 17.5 10.9 5.6 4.2 3.7 3.3 3.2 2.1 2.1
Cumulative 19.6 37.1 48.0 53.6 57.8 61.4 64.8 68.0 70.1 72.1

In Figure 11 in the Appendix, we explore the eigenvector loadings of these PCs. The
loadings have a natural interpretation. We can broadly view PC1 portfolio as long half of
the anomalies and short the other half. PC2 is essentially long most of the anomalies besides
momentum and profitability-like strategies. Notably, the two PCs span 82% of the return
variation of the average anomaly strategy that equal-weights all anomalies. PC2 alone is
responsible for 77% of that variation, while PC1 explains the remaining 5%.

Predictors. To predict these important components we also need to focus on a low-
dimensional set of predictors. We construct an aggregate BE/ME ratio as well as two
restricted linear combinations of log BE/ME ratios of anomaly returns to construct our two
cross-sectional predictors. We combine the individual anomaly BE/ME ratios with weights
matching their loading in the two portfolios we predict. For example, if PC1 of long-short
anomalies is long all strategies with equal weights, our predictor becomes an average of all
anomalies’ log BE/ME ratios. Recall that an anomaly’s log BE/ME ratio is the difference
of log BE/ME of its portfolios 10 and 1. The predictor is then simply the sum of all log
BE/ME of portfolios 10 — long ends of each strategy — minus the sum of all BE/ME ratios
of portfolios 1 — short ends of each strategy.

Formally, consider the eigenvalue decomposition of anomaly excess returns, cov (R) =
QΛQ′ , where Q is a matrix of eigenvectors and Λ is a diagonal matrix of eigenvalues. Let
Bt be a vector of log BE/ME values of long-short anomaly strategies. We form the two
forecasting variables as bm1,t ≡ q

′
1Bt and bm2,t ≡ q

′
2Bt, where the eigenvectors q1 and q2 are

the first and second columns of Q, respectively.
Finally, our last candidate predictor is the log of the aggregate book-to-market ratio,
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Table 8: Summary Statistics of Stock PC portfolios

The table shows mean, standard deviation, skewness and Sharpe ratio of returns on Base and
Dynamic managed portfolio strategies for the market and first two PCs of anomalies.

Base Portfolios Dynamic Strategies

MKT PC1 PC2 MKT PC1 PC2

Mean (%) 1.89 1.52 2.94 0.02 0.11 0.06
Std. Dev. (%) 5.00 5.00 5.00 0.10 0.21 0.20
Skewness -0.95 -0.14 0.30 2.98 3.17 3.72
Sharpe Ratio 0.38 0.30 0.59 0.24 0.51 0.31

which we denote by bmt.
The advantage of such an approach is that we significantly reduce the dimensionality

of the space of predictors while imposing intuitive restrictions on how to combine many
valuation ratios. Using eigenvectors of strategy returns rather than eigenvectors of BE/ME
ratios in constructing our predictors is more robust due to the high persistence of BE/ME
ratios in our sample. There is no such distinction for bonds, for instance, because their
dominant yield-based and return-based eigenvectors effectively coincide.

4.3 Predicting Aggregate and Relative Stock Returns

PC portfolios. We now analyze the predictability of anomaly PC portfolios and the aggre-
gate market. Table 8 shows summary statistics for these variables. For ease of comparison,
we normalize each portfolio return to have 5% standard deviation in the full sample. Unlike
for bonds, both PC1 and PC2 of anomaly strategies exhibit high unconditional Sharpe ratios
in our sample, comparable to the Sharpe ratio of the aggregate market return.

Table 9 shows the results of the three predictive regressions. Column 1 shows that the
market is slightly predictable in sample, with an R2 of 9%, consistent with prior evidence
(e.g., see Cochrane, 2008, 2011). The two restricted linear combinations of BE/ME ratios
are insignificant in predicting the aggregate market. These variables, however, are highly
significant in forecasting PC1 and PC2 of anomalies, respectively. The PC1-restricted li-
near combination of log BE/ME ratios, bm1, forecasts PC1 with a t-statistic of 6.18 and
contributes much of the total R2 of 42%. Similarly, the PC2-restricted linear combination
of BE/ME ratios, bm2, has a t-statistic of 3.48 in forecasting PC2 of long-short anomaly
returns and obtains a R2 of 25%. The Wald test of joint significance of the three predictors
(last row of the table) rejects the null of no predictability when predicting returns on PC1
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Table 9: Predicting PC returns of all anomalies with BE/ME ratios

We report predictive coefficients and absolute t-statistics (in parentheses) from predictive regressi-
ons of excess market returns and two PCs of long-short anomaly returns on three predictors: (i)
log of the aggregate BE/ME (bm), (ii) a restricted linear combination of anomalies’ log BE/ME
ratios with weights given by the first eigenvector of pooled long-short strategy returns (bm1); and
(iii) a restricted linear combination of anomalies’ log BE/ME ratios with weights given by the
second eigenvector of pooled long-short strategy returns (bm2). The last two rows show regression
R2 and p-value of the Wald test of joint significance of all regression coefficients. Circular block
bootstrapped standard errors in parentheses.

MKT PC1 PC2
bm 0.024 -0.026 0.032

(1.36) (1.92) (1.99)

bm1 -0.006 0.036 0.002
(0.80) (6.18) (0.23)

bm2 -0.012 0.010 0.026
(1.65) (1.51) (3.48)

R2 0.092 0.423 0.246
Wald test p-value 0.246 0.000 0.004

and PC2, but not the aggregate market. Based on this evidence we conclude that PC1 and
PC2 of long-short anomaly portfolio returns are highly forecastable, much more so than the
aggregate market.

The correlation of the estimated expected returns on PC1 and PC2 with the aggregate
market are 0.48 and 0.39, respectively. This suggests that more than 75% of variance
of expected returns on either of the two PCs is unexplained by market expected returns.
Expected returns on two PCs are nearly uncorrelated with each other; their correlation is
0.04. Overall, this evidence indicates that there are multiple sources of time-varying expected
returns in equities.

Individual anomalies. We now study the implications of these results for the predictabi-
lity of individual anomalies. A naïve approach would be to forecast each anomaly individually
using our three predictors from Table 9. Throughout this paper we argued, however, that
such an approach is sub-optimal in light of the issues of spurious predictability of small
economically irrelevant components of returns and low power in detecting predictability of
important but not dominant sources of return variation.

Columns 1 and 3 of Table 10 illustrate these issues. We show the R2 of predicting

22



Table 10: Part I: Predicting individual anomaly returns: R2 (%)

Predictive R2 of individual anomalies returns using three forecasting variables from Table 9 (co-
lumns 1 and 3) and implied fitted values based on PC forecasts (columns 2 and 4). Columns 1 and
2 provide estimates in full sample. Columns 3 and 4 show out-of-sample R2.

Unrestricted
IS

Restricted
IS

Unrestricted
OOS

Restricted
OOS

1. Size 30.7 27.3 -68.4 35.3
2. Value (A) 18.2 17.8 4.8 8.8
3. Gross Profitability 5.3 -1.5 -119.5 -40.1
4. Value-Profitablity 17.6 10.7 13.5 19.7
5. F-score 13.5 5.0 -58.2 5.5
6. Debt Issuance 17.1 15.1 10.5 13.6
7. Share Repurchases 29.9 28.0 -1.0 20.1
8. Net Issuance (A) 34.7 16.0 3.9 14.5
9. Accruals 2.2 0.5 -2.0 -0.2
10. Asset Growth 15.6 12.9 7.3 17.7
11. Asset Turnover 7.2 2.2 -18.0 0.2
12. Gross Margins 9.1 7.3 -69.2 -8.2
13. Dividend/Price 14.9 13.2 -16.1 11.9
14. Earnings/Price 12.7 12.5 -2.7 19.3
15. Cash Flows/Price 13.8 9.9 9.3 -1.5
16. Net Operating Assets 20.6 17.5 -27.9 25.8
17. Investment/Assets 21.8 15.6 -18.2 14.3
18. Investment/Capital 10.5 1.0 7.2 -1.5
19. Investment Growth 20.0 14.0 12.3 13.5
20. Sales Growth 10.7 6.1 10.5 5.7
21. Leverage 25.6 21.3 19.7 25.8
22. Return on Assets (A) 32.4 29.2 39.0 24.2
23. Return on Book Equity (A) 29.4 27.7 29.5 23.1
24. Sales/Price 16.9 15.5 12.7 17.3
25. Growth in LTNOA 7.1 -7.7 -91.6 -2.5
26. Momentum (6m) 21.0 13.6 -26.4 10.6
27. Value-Momentum 3.8 3.0 -27.4 2.9
28. Value-Momentum-Prof. 11.1 -0.7 -42.3 -0.4
29. Short Interest 16.4 8.4 -3.9 15.5
30. Momentum (12m) 16.3 10.2 -40.1 15.1
31. Industry Momentum 11.5 7.3 -75.0 0.6
32. Momentum-Reversals 33.5 6.9 29.3 16.2
33. Long Run Reversals 34.4 29.0 26.0 30.3
34. Value (M) 30.1 29.6 7.9 25.0
35. Net Issuance (M) 15.4 12.1 -42.4 12.7
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Table 10: Part II: Predicting individual returns: R2 (%)

Unrestricted
IS

Restricted
IS

Unrestricted
OOS

Restricted
OOS

36. Earnings Surprises 6.8 -9.6 -180.6 -2.4
37. Return on Book Equity (Q) 23.3 23.0 -13.1 16.7
38. Return on Market Equity 18.0 15.0 -45.1 18.4
39. Return on Assets (Q) 27.9 25.4 9.7 18.0
40. Short-Term Reversals 10.1 6.6 5.1 11.1
41. Idiosyncratic Volatility 40.7 38.2 29.0 38.8
42. Beta Arbitrage 16.3 10.2 15.8 9.9
43. Seasonality 0.9 -2.2 -112.4 -2.1
44. Industry Rel. Reversals 31.1 9.0 8.4 14.3
45. Industry Rel. Rev. (L.V.) 42.5 13.0 19.3 19.9
46. Ind. Mom-Reversals 11.8 -1.8 -37.1 -5.0
47. Composite Issuance 10.5 8.2 -52.2 7.7
48. Price 42.7 38.3 5.0 41.2
49. Age 32.2 25.8 32.8 28.5
50. Share Volume 15.3 11.5 9.7 11.0

Mean R2 19.2 12.9 -16.3 12.3
Median R2 16.7 12.3 1.5 14.0
Std. Dev. of R2 10.7 11.0 44.3 13.7

each anomaly individually with the three predictors. Column 1 focuses on the in-sample
predictability. Not surprisingly, the in-sample R2 reported in this column are high, but
deteriorate drastically in the out-of-sample test shown in column 3, consistent with our
argument above. The results demonstrate clear evidence of spurious predictability which
does not generalize well to other samples.

In columns 2 and 4 we show the IS and OOS R2 of predicting individual anomalies by
imposing restrictions that any predictability comes only from forecasting PC1 and PC2.
Concretely, we start with the estimated expected returns on PC1 and PC2 from Table 9.
Next, we combine these forecasts using the loadings of each anomaly on the principal compo-
nents. This individual forecast, therefore, is fully restricted; the only additional parameter
we estimate for each anomaly is an intercept, to allow for time-invariant heterogeneity in
expected returns not captured by the first two PCs. Column 2 confirms that imposing this
restriction leads to a mechanically lower in-sample R2 relative to unrestricted regression fo-
recasts, but nonetheless a large fraction of the predictability for many of the anomalies is
preserved.

The pattern is vastly different out of sample, shown in the last column. By comparing
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columns 3 and 4 we see that imposing the restrictions leads to a drastic improvement in
OOS predictability. In fact, we are able to predict most of the anomalies, with an average
R2 across all anomalies of 12%, compared to -16% for the unrestricted regressions. We
conclude that many individual anomalies are highly predictable out of sample and that
our method of restricting predictability to only large PCs helps detect such predictability
robustly. On the contrary, if one forecasts each anomaly separately without imposing cross-
sectional restrictions, the results are dominated by spurious predictability.

Table 17 in the Appendix decomposes the IS and OOS R2 of the restricted predictability
relation into components that come separately from forecasting PC1 or PC2. Overall, the
table illustrates that predictability of PC1 is slightly more important than that of PC2. The
average R2 of predicting individual anomalies by imposing restrictions that any predictability
comes only from forecasting PC1 is 7.7%; for PC2 it is 4.5%. PC1 helps explain most of
the time-variation in expected returns of momentum, value, reversals, size, ROE/ROA,
investment, short interest, and idiosyncratic volatility anomalies. PC2 is responsible for
much of the R2 in forecasting many other anomalies, including beta arbitrage, debt and net
issuance, share repurchases, net operating assets, share volume, and some measures of value
— dividends/price, earnings/price, sales/price, momentum-reversals.

4.4 Expected Returns Dynamics

Figure 6 shows the estimated expected returns on the market and the two PCs of long-
short strategies, in and out of sample. These forecasts for the two principal components
are remarkably similar in and out of sample. The R2 confirms this impression with similar
values IS and OOS: 42% and 23%, respectively. The OOS prediction for the market, however,
substantially deviates from the IS prediction and results in a poor OOS R2 of -5%. Based
on this evidence we conclude that the aggregate market is not reliably predictable out of
sample, while relative returns exhibit substantial and robust time-series predictability.

Finally, Figure 7 shows realized returns on dynamic strategies for the market, PC1, and
PC2. The full-sample Sharpe ratio for the market is 0.24 compared to Sharpe ratios of 0.51
and 0.31 for PC1 and PC2 respectively. Out-of-sample Sharpe ratio are similar to their in-
sample counterparts. The OOS Sharpe ratio of the aggregate market is 0.26. OOS Sharpe
ratios of PC1 and PC2 are 0.54 and 0.23, respectively. These numbers suggest there is a
substantial amount of time-series variation in expected relative returns, independently of any
unconditional premium. An investor can therefore substantially enhance her Sharpe ratio
by varying exposures to anomaly strategies over time compared to simply passively holding
the anomalies and collecting their unconditional risk premia.
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Figure 6: Equities Predicted and Realized Returns. The plots show predicted and realized
returns of the market (Panel a), PC1 (Panel b), and PC2 (Panel c). The solid line represents
forecasts using parameters estimated with the full sample. The dashed line give forecasts using
parameters estimated in the first half (pre-2000) and the dotted line gives realized returns.
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Figure 7: Equities Dynamic Strategy Returns. The figure shows realized returns on dynamic
(relative to static) strategies of the market (Panel a), PC1 (Panel b), and PC2 (Panel c).
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Table 11: FX portfolios summary statistics

Average forward discounts (row 1), average changes in spot rates (row 2), and excess returns (row 3)
for five portfolios (P1–P5) are shown. Hansen-Hodrick standard errors in paratheses. The sample
is daily from December 1975 till December 2016.

P1 P2 P3 P4 P5

Forward spread, ft − st -1.69 -0.12 1.25 2.92 6.42
(0.35) (0.32) (0.30) (0.31) (0.53)

Change in spot rates, ∆st+1 -2.10 -1.53 -1.22 -0.23 2.12
(1.74) (1.74) (1.54) (1.64) (1.63)

Excess return, ft − st+1 0.40 1.42 2.47 3.16 4.30
(1.83) (1.78) (1.66) (1.69) (1.61)

5 Predicting Foreign Exchange Returns

In this section we study the predictability of foreign exchange (FX) returns. Similarly to
previous sections, we find that a relative carry portfolio is more predictable than a basket of
all currencies against the dollar.

5.1 Data

We construct a panel of daily foreign exchange returns from Datastream. We compute the
annual holding period excess return to investing in each currency j as follows:

rj,t+1 = fj,t − sj,t −∆sj,t+1,

where sj,t is the spot exchange rate between currency j and the dollar and fj,t is the corre-
sponding forward exchange rate. We also use Eurocurrency Financial Times interest rates
and substitute them in place of forward rates according to covered interest rate parity when
longer data series are available.17 Spots, forwards and interest rates come from various
datasets: WM/Reuters dataset for spots; WM/Reuters dataset for forwards; BBI/Reuters
dataset for developed countries (spots and forwards); Financial Times Eurocurrency for in-
terest rates. We combine all series country by country in order to obtain the longest time
series possible. Each country is added to the sample as its data become available. Euro area
countries are removed at the dates when the Euro is adopted in each individual country.

We sort the individual currencies into five portfolios based on their forward spread with

17Covered interest parity gives:fj,t − sj,t = ij,t − i$,t, the difference between forward and spot is equal to
the difference between foreign and domestic rates.
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Figure 8: Factor Structure in Realized Returns and Forward Spreads. The top panel
plots the first two eigenvectors of realized currency portfolio returns, termed Dollar-Carry, Relative-
Carry, and Curve as well as the first two eigenvectors of forward differentials (FS1 and FS2). The
bottom panel shows the percent of total variance contributed by each factor.

the US— or equivalently their interest rate differential by covered interest parity —, following
Lustig et al. (2011). Portfolios are rebalanced daily based on the average of the forward
spread in the recent month. We add and drop countries to portfolios as new data becomes
available. The sample is from January 1985 until January 2017. In the beginning of the
sample we have about three countries per portfolio and about ten per portfolio in the second
half of sample. Table 11 shows summary statistics for the sorted portfolios. Similarly to
Lustig et al. (2011), the portfolios with higher forward spreads experience higher average
returns.

5.2 Portfolios and Predictors

PC portfolios. Figure 8 plots the first two eigenvectors of the covariance matrix of re-
turns.18 The inset table shows that these first two factors capture more than 90% of the
variation in realized currency portfolio returns. Given this strong factor structure, we choose
these two PCs as important components, which we denote as Dollar-Carry and Relative-
Carry. Dollar-Carry is effectively the return of investing in a basket of all currencies against

18As usual, we obtain a “level”, “slope”, and “curve” type factors from characteristic sorted portfolios.
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Table 12: Summary Statistics of FX PC portfolios

The table shows mean, standard deviation, skewness and Sharpe ratio of returns on Base and
Dynamic managed portfolio strategies for the Dollar-Carry and Relative-Carry.

Base Portfolios Dynamic Strategies

Dollar-Carry Relative-Carry Dollar-Carry Relative-Carry

Mean (%) 1.32 2.21 0.01 0.05
Std. Dev. (%) 5.00 5.00 0.05 0.13
Skewness -0.05 -0.44 0.37 1.25
Sharpe Ratio 0.26 0.44 0.20 0.38

the U.S. Dollar. Relative-Carry is the return of a portfolio long currencies with high forward
spread and short currencies with low forward spread.

Predictors. We use log forward-spreads as forecasting variables. First we average the
forward spread across portfolio components at each point in time. This generates five time-
series predictors. To reduce the risk of overfitting with relatively short time-series, we use
only the first two principal components of forward spreads, which we denote by FS1 and
FS2.19 Figure 8 also shows the first two eigenvectors of forward spreads; they are remarkably
similar to the eigenvectors of returns. Lustig et al. (2014) predict Dollar-Carry returns using
the average forward differential. As seen from Figure 8, this is essentially equivalent to
predicting the first PC of currency returns with FS1.

5.3 Predicting Aggregate and Relative FX Returns

We now analyze the predictability of Dollar-Carry and Relative-Carry portfolios. Table 12
reports their summary statistics. For ease of comparison, we normalize each portfolio return
to have 5% standard deviation in the full sample. Both Dollar-Carry and Relative-Carry
exhibit high unconditional Sharpe Ratios in our sample, Notably, the Sharpe ratio of the
Relative-Carry strategy is more than 50% larger than that of the Dollar-Carry strategy.

Estimation results are shown in Table 13. For Dollar-Carry, the R2 is small, neither
predictive variable is individually significant, and a joint Wald test fails to reject the null
of no predictability.20 For Relative-Carry, in contrast, the R2 is economically large, both
predictors are individually significant, and a joint test convincingly rejects the null. This

19As with the other asset classes, we first equalize variance across the predictors before performing PCA.
20Standard errors are estimated using a circular block bootstrap with 36 month block length. Results are

robust to varying block length or using HAC (Newey-West) estimation.
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Table 13: Predicting PC returns of Foreign Exchange rates

Forecasting regression coefficient estimates. We forecast the first two PC portfolios of currencies
sorted on forward spreads (Dollar-Carry and Relative-Carry) using the first two PCs of forward
spreads (FS1 and FS2). Circular block bootstrapped standard errors in paratheses. The sample is
daily from January 1985 until January 2017.

Dollar-Carry Relative-Carry
FS1 0.52 -0.89

(1.23) (2.76)

FS2 0.07 1.30
(0.11) (2.50)

R2 0.04 0.19
Wald test p-value 0.67 0.00

evidence is in line with our previous findings in other asset classes: relative returns are more
predictable in the time series than aggregate returns.

The correlation of expected returns on Dollar-Carry and Relative-Carry is 0.69, sugges-
ting that more than 50% of variance of expected returns of each of the two PCs is unexplained
by the other PC. Again, we conclude that there are multiple sources of time-varying expected
returns.

5.4 Expected Returns Dynamics

Figure 9 plots predicted and realized returns for both PC portfolios. As before, OOS re-
presents out-of-sample forecasts based on coefficients estimated using the first half of the
data (1975 - 1999). For both portfolios, there is little evidence of estimation uncertainty,
as the OOS forecasts are highly correlated with full sample forecasts. R2 during the OOS
period drops to -6% for Dollar-Carry and to 5% for Relative-Carry. The Relative-Carry
premium tends to be low just after recessions, gradually rising to peak one or two years prior
to the next recession. Expected returns are significantly less volatile in the OOS period for
both portfolios, due to reduced volatility of forward spread differentials.21 This result is one
caution against overemphasis on OOS R2, since the amount of predictability can be time
varying.

Figure 10 shows realized returns on the corresponding dynamic strategies with NBER
recessions indicated by gray bars. The full-sample Sharpe ratio for Dollar-Carry is 0.20
compared to 0.38 for Relative-Carry. Relative-Carry managed portfolio are significantly

21Variances of FS1 and FS2 are lower by a factor of three in the second half of the full sample.
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Figure 9: FX Expected Returns. The figure shows predictability of the Dollar-Carry and
Relative-Carry strategies using forward differentials.

more volatile due to the higher predictive R2, which leads to more volatile portfolio weights.
Lower predictability in the latter half leads to lower volatility of expected returns, and hence
less volatility for the managed portfolio returns.

6 Statistical Properties

Our approach to the predictability of cross-sections of returns is focused on predicting impor-
tant dimensions of the data rather than considering regressions at the individual asset level.
In this section, we study more systematically the relation between predicting important
components of returns and predicting individual returns.

We consider three features that were relevant in our empirical applications and provide
ways to quantify them more generally. First, there is a strong link between predicting the
first principal component of returns and predicting each individual return. Second, it is
difficult to detect predictability of the second or higher components of returns in individual
regressions when the first component is large. Third, joint tests of significance in individual
regressions are susceptible to picking up small unimportant patterns of predictability. All
derivations are in Appendix B.
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Figure 10: FX Dynamic Strategy Returns. The figure shows realized returns on dynamic
(relative to static) strategies of the Dollar-Carry and Relative-Carry (1st and 2nd PCs of FX excess
returns).
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6.1 First Principal Component and Individual Regressions

A common empirical situation is that a family of returns {Ri,t+1}i∈I has a strong common
component Ft+1. When this component is predictable by a variable Xt, does this imply that
the individual returns are predictable by Xt? We answer this question quantitatively by
deriving a series of bounds linking the predictability of Ft+1 with the individual predictability
of asset returns. We first zoom in on one particular return before considering properties for
an entire family of returns.

One individual return: a purely statistical bound. Define R2
1,i as the population R-

squared of the contemporaneous regression of an individual asset on the common component,

Ri,t+1 = λiFt+1 + εi,t+1,

and R2
X as the R-squared of the predictive regression of the factor,

Ft+1 = β1Xt + ut+1.

We are interested in R2
X,i, the R-squared of the predictive regression

Ri,t+1 = biXt + vt+1.

The following proposition characterizes a lower bound on this quantity.

Proposition 1. If a variable Xt predicts a factor Ft+1 with R-squared R2
X and an individual

return is explained by this factor with R-squared R2
1,i, then a lower bound for the R-squared

R2
X,i of predicting this return using Xt is given by:

R2
X,i ≥ max

(√
R2

1,iR2
X −

√(
1− R2

1,i

) (
1− R2

X

)
, 0
)2

.

Intuitively, if Xt strongly predicts the factor, and the factor has high explanatory power
for individual returns, then Xt should predict the individual returns as well. The bound is
indeed increasing in the R-squared of these two steps. However, it is lower than the product
of the two R-squared — a naive guess that assumes “transitivity” of predictability. This
is because the predictor Xt might also predict the residual εi,t+1 in a way that offsets the
predictability coming from the factor. The orthogonality of Ft+1 and εi,t+1 limits this force,
but does not eliminate it.

To get a quantitative sense of the tightness of this bound, consider the case of bond
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returns. The level factor explains about 90% of the variation in individual returns, and it
can be predicted with an R-squared around 25%. Plugging into our bound, this implies a
predictive R-squared of at least 4% for a typical individual bond return . This is a sizeable
number, but also much less than the 22.5% implied by a naive approach.

One individual return: a bound with an economic restriction. One reason this
bound is relatively lax is that it does not take into account the nature of the variable εi,t+1.
Indeed, if, as is the case in our setting, the component Ft+1 is itself an excess return, the
residual εi,t+1 is one too. It is therefore natural to make the economic assumption that it
cannot be “too”’ predictable by the variable Xt. This corresponds to imposing an upper
bound R2

max on the R-squared of the predictive regression of εi,t+1 by Xt+1. In this case, our
bound becomes:

R2
X,i ≥ max

(√
R2

1,iR2
X −

√
R2

max

(
1− R2

X

)
, 0
)2

.

Such an approach can considerably tighten the bound. For instance, in our example for
treasuries, one could impose an upper bound of 25% for predicting the residual. This yields
a lower bound on predicting the return Ri,t+1 of 10%, a much larger number, statistically
and economically.

Family of returns: the symmetric case. Another reason that predictability of the
common factor must transmit to predictability of individual returns is that by design it
absorbs common variation across all those returns. To highlight this point, we consider
the following simple symmetric case. We assume that the factor is the average of all the
individual returns, Ft+1 = 1

N

∑
iRi,t+1. We also assume that the factor receives the same

loading for all assets and has the same explanatory power. This corresponds to constant λi,
and R2

1i across assets. In this case, we obtain that:

Ei
[
R2
X,i

]
= R2

1R2
X + vari

(
R2
X,i

)
,

where Ei(·) and vari(·) are the mean and variance in the cross section of individual returns.
This formula implies that the average explanatory power is now at least as large as given
by the transitive formula. This would correspond to 22.5% in our example, almost the same
value as the predictive R-squared for the common factor. Furthermore, the more unequal
this predictive power is across assets, the stronger it must be on average. That is, if the
variable Xt does less well than the transitive R-squared for some particular returns, it must
compensate more than one-to-one for the other assets.
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6.2 Low Power of Individual Tests

While individual regressions are strongly related to predicting the first common component
of returns, they can face challenges in detecting predictability of other factors. We provide
a way to quantify this issue by characterizing the statistical power of a test of significance
for a predictor that only predicts one particular component of returns.

I.i.d. predictor. Consider first the case where the forecasting variable Xt+1 has i.i.d.
draws.22 Suppose that Xt forecasts only one particular principal component j with popula-
tion R-squared R2

X and the remaining principal component returns are i.i.d. Gaussian with
known mean.23 For power analysis, we consider repeated samples of length T .24

When directly forecasting the principal component return, Fj,t+1, the power to correctly
reject the null with test of nominal size α is

power (F2) = G
(
−tα/2,T − z

)
+
[
1−G

(
tα/2,T − z

)]
,

where G is the CDF of a t-distribution with T degrees of freedom, z =
√
R2
X

√
T
(
1− R2

X

)− 1
2 ,

and tα/2,T is the α
2 critical value from the t-distribution.

In contrast, when directly forecasting an individual return, Ri,t+1, the power is

power (Ri) = G
(
−tα/2,T − ζ

)
+
(
1−G

(
tα/2,T − ζ

))
,

where ζ =
√
R2
X

√
T
((

1− R2
X

)
+ 1−R2

j,i

R2
ji

)− 1
2
.

Because ζ ≤ z, we immediately obtain that power (F2) is larger than power (Ri) for all
assets. Therefore, there is always more information about predictability of the important
component by studying it directly.

Persistent predictor. To understand whether these results are a useful approximation
for the more general case of a persistent predictor, we turn to simulation. We model X as
an AR (1) process,

Xt+1 = φXt + νt+1,

22The formulas hereafter admit simple generalizations to multivariate prediction.
23More generally, the components need not be principal components. They must be uncorrelated and

only one particular component must be forecastable by our predictor. If the mean is unknown, the results
below are unchanged except that the degrees of freedom are T − 1 instead of T .

24The analysis treats X as stochastic. With fixed X the distribution is normal instead of a Student t.
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with the normalization vart [νt+1] = 1
1−φ2 , so that X has unit unconditional variance. Simu-

lated returns have the same unconditional covariance as in the bond data, but we assume the
second principal component is forecastable by X. We simulate 30-year histories and forecast
returns of PCs and individual bonds in each simulated sample. We compute the sampling
variance of an estimator from the simulated distribution and construct relevant t-statistics.25

Table 14 shows the probability of rejecting the null of no predictability under the true
distribution. Panels A, B, and C correspond to a persistence of the predictor, φ, equal to 0,
0.3 and 0.6, respectively. Each row corresponds to a simulations with the indicated value of
R2
X , the population R-squared obtained when forecasting the second PC of returns with Xt.

The first column shows the probability of rejecting the null when forecasting the first principal
component of returns. Since it is not predictable by construction, the rejection probability
should be 5% for a test with that nominal size. The simulated rejection probabilities are
all close to 5%, indicating the t-test has approximately correct rejection probability even
when the predictor is persistent. In fact, the values are very similar across panels: the t-
distribution provides a close approximation even when not exact. For individual bonds, we
see that power is much lower than for the second principal component for all values of the
persistence parameters.26 These results suggest that the closed form formulas for the i.i.d.
case (panel A) constitute a good approximation for settings with persistent predictors.

6.3 Spurious Predictability in Joint Tests

Finally, we consider the issue of spurious predictability likely to be picked up by the Wald
test. The Wald test assesses joint significance of the predictive coefficients for individual
returns bi, or equivalently joint significance of the predictive coefficients for all the principal
components of the family βi. Very small components are likely to pick up spurious patterns
of predictability, or predictability originating from minor measurement error in prices. This
would lead to a rejection of the Wald test, even though there is no economically interesting
predictability.

To get a sense of the importance of this issue, we study a simple simulation. We present
here an application to the case of Treasury bond returns, but this approach can be adapted
to other settings. In the simulation, we introduce a tiny amount of noise in prices, i.e. yields,
then predict bond returns. We assume there is no true predictability but observed yields, ỹ,

25We assume the researcher knows the sampling variance. This circumvents known small-sample issues
with HAC variance estimators.

26Across simulations, the power is U-shaped in maturity. This is to be expected for our particular setting
since squared loadings on the second principal component are also u-shaped.
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Table 14: Power of Predictive Regressions when Only Slope is Predictable

The table gives probability (in %) of rejecting the null hypothesis of no predictability given the
alternative hypothesis. φ is the annual auto-correlation of the predictive variable. Each row gives
results for the indicated theoretical R2 when forecasting Slope. Level and Slope are the first and
second principal components, respectively, of bond returns. The remaining columns are for zero-
coupon bonds with the indicated maturity (in years). We compute the probabilities from 100,000
simulations, each of thirty years.

(a) No Persistence, φ = 0

R2 Level Slope 3Y 6Y 9Y 12Y 15Y

10% 5 39 9 5 6 8 10
20% 5 74 14 5 7 12 16
30% 5 93 19 5 8 15 21
40% 5 99 25 6 9 18 26

(b) φ = 0.3

R2 Level Slope 3Y 6Y 9Y 12Y 15Y

10% 6 40 10 6 7 9 11
20% 6 73 15 6 8 12 16
30% 6 92 20 6 8 15 21
40% 6 99 25 6 9 19 27

(c) φ = 0.6

R2 Level Slope 3Y 6Y 9Y 12Y 15Y

10% 7 41 12 7 8 10 11
20% 7 74 16 7 9 14 17
30% 7 91 21 8 10 17 23
40% 7 98 27 8 11 20 29

38



Table 15: Predicting PC Returns with Noise

The table gives the population R2 and probability (in %) of rejecting the null of no predictability
when forecasting principal components of bond returns with lagged bond yields. The last row
reports the size of a Wald test over the first few principal components. We compute these values
from 100,000 simulations of 30 years, with yields contaminated by i.i.d. noise with 5bp standard
deviation.

PC1 PC2 PC3 PC4
population R2 (%) 0 4 40 46
5% Wald test size (%) 6 11 70 83
Joint 5% Wald test size (%) 6 10 51 75

have i.i.d noise with standard deviation of σε:

ỹn,τ = yn,τ + εn,τ .

We construct observed returns from observed yields,

r̃n,τ+1 = − (n− 1) ỹn−1,τ + nỹn,τ − ỹ1,τ (3)

= rn,τ+1 − (n− 1) εn−1,τ+1 + nεn,τ − ε1,τ ,

and simulate 30-year histories of “observed” returns based on the sample covariance ma-
trix of realized bond returns and set σε = 5bp. For context, annual yield changes have
approximately 1% standard deviation. We then consider forecasting returns in the presence
of these errors. For each PC portfolio we compute the true — in a simulated sample —
size of a nominal 5% Wald test of the null hypothesis of no predictability. Table 15 shows
the population R2 of the predictive regression and probability of rejecting the null for each
principal component. The first two PC portfolios have R-squared close to zero, and the test
size is somewhat higher than the nominal 5%. The second two PCs, on the other hand,
have large R-squared and the size of the test is of an order of magnitude larger than 5%.
The last row shows the rejection probability for a test that “large” PCs are not predictable,
that is a Wald test over the first few principal components. For example, the second column
gives the rejection probability for a joint test that PC1 and PC2 are not predictable. The
high individual test size for the smaller PCs contaminates thisjoint Wald test. Indeed, while
the size of the test is 10% for the first couple of PCs, it then jumps up and is as high as
75% for the first four PCs. This result exemplifies well the issue with the Wald test: very
small, economically meaningless variation in prices tends to get captured in small principal
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components and generates uninteresting or spurious predictability. Because the Wald test
puts them on the same footing as the larger, more interesting sources of variation, it tends
to reject the null too often.

7 Conclusion

We have proposed and implemented a systematic approach to study the time-series predic-
tability for cross-sections of assets. Our method relies on estimating the predictability of
important components of each family of assets. Across Treasury bonds, stocks, and curren-
cies, a common set of facts emerges, facts that are obscured by standard approaches. First,
relative returns—the components of returns beyond the index—are highly predictable, ty-
pically more so than the index. Second, this variation in expected relative returns is more
robust out of sample than that of expected index returns, making it exploitable by investors
in real time. Third, the risk premia of relative returns appear to be only weakly related to
aggregate risk premia, suggesting the presence of multiple sources of variation in expected
returns.

Our findings constitute a novel robust set of facts against which to evaluate theories of
asset pricing. In particular, these results highlight the importance of going beyond aggregate
predictability to understand common movements in risk premia over time. The next step,
which we leave for future work, is to build and test specific models of these facts.
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Appendix

A An SDF-based argument for predicting PCs
We provide a formal argument linking time-series predictability regressions of dominant PCs to
an SDF-based estimation approach with time-varying risk prices, which achieves regularization by
limiting the number of factors in the SDF representation.

Let Xt be a (P + 1)×1 vector of common predictors. The first element of Xt is unity.

Naive predictability approach of all assets. Consider a simple time-series predictability
regression for each asset i:

Rei,t+1 = a′iXt + εt+1,

where ai is (P + 1) × 1. Stack all regressions together to get the following multivariate regression
(with no restrictions across ai’s):

Ret+1 = a′Xt + εt+1, (4)

where a′ is N × (P + 1) and Ret+1 is N × 1.
N × (P + 1) OLS moment conditions for an estimate of a are:

gTS reg.
T (a) = ET

[(
Ret+1 − a′Xt

)
⊗Xt

]
= 0, (5)

where ⊗ denotes the Kronecker product.

SDF approach. Consider now an SDF that prices all excess returns,

Mt+1 = 1− b′t (Ft+1 − EtFt+1) ,

where Ft+1 are pricing factors. Kozak et al. (2017a,b) show that for typical sets of portfolios, an
SDF that prices those portfolios should be well approximated by the first few PCs. We will therefore
assume that Ft+1 is aK×1 vector of largestK PCs of returns formed using the eigenvalue decompo-
sition of the conditional covariance matrix of returns, Ω = Et

[(
Ret+1 − EtRet+1

) (
Ret+1 − EtRet+1

)′] =
QΛQ′, which we assume is constant. Λ is an N ×N diagonal matrix of eigenvalues of Ω, and Q is
a N ×N column matrix of eigenvectors.

Assume Equation 4 holds and the set of predictors Xt fully exhausts all return predictability.
Applying the pricing equation Et

(
Mt+1R

e
t+1
)

= 0 for factors Ft gives,

a′FXt − b′tΣ = 0,

where Σ ≡ covt (Ft+1) = ΛK since Ft+1 = Q′KR
e
t+1 are orthogonal, where QK is a matrix formed

from first K columns of Q and ΛK is K ×K principal submatrix of Λ.
We therefore obtain that b′t is linear in Xt,

b′t = b′Xt,

where b′ = Σ−1a′F is an K × (P + 1) matrix.
Plugging b′t into the SDF yields:

Mt+1 = 1−
(
b′Xt

)′ (Ft+1 − EtFt+1) .
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Apply the pricing equation, use all Xt as instruments, and replace expectations with sample
moments ET (·) to get K × (P + 1) GLS moment conditions (GLS puts all weights on factors
themselves to estimate all parameters) for an estimate of b:

ET (Ft+1 ⊗Xt)− ET
[
ΛKb′Xt ⊗Xt

]
= 0,

We can rewrite the moment conditions as follows,

gSDF
T (b) = ET

[(
Ft+1 − ΛKb′Xt

)
⊗Xt

]
= 0. (6)

PC-based predictability approach. Consider now our PC-based approach which prescribes
estimating Equation 4 only for factors (dominant PCs), Ft+1. Pre-multiply equation (4) by Q′K :

Ft+1 ≡ Q′KRet+1 = Q′Ka
′Xt +Q′Kεt+1

= b̃′Xt + ε̃t+1, (7)

where Ft+1 denotes a vector of excess returns of K largest principal components and b̃′ is an
K × (P + 1) matrix of coefficients. In the case of this PC-based regression, we use the following
K × (P + 1) OLS moments:

gPC TS reg.
T (b) = ET

[(
Ft+1 − b̃′Xt

)
⊗Xt

]
= 0. (8)

Equivalency. Comparing equations (8) and (6), we get that two sets of moment conditions
corresponding to pricing factors (PCs) are equivalent iff

b̃′ ≡ Q′Ka′ = ΛKb′. (9)

Note that a′ is of size N × (P + 1) while b′ is K × (P + 1), where K is the number of factors in the
SDF andK � N . The SDF approach (Equation 6) therefore imposes restrictions on the coefficients
relative to the naive equation-by-equation predictive regression approach (Equation 5). Predicting
only K large PCs and ignoring the rest, as in PC-based predictability approach in Equation 8,
respects those restrictions and provides an alternative regression-based method of estimating the
SDF. On the contratry, in the naive predictive regression setting these restrictions end up being
approximately satisfied for large PCs but might be drastically violated for small PCs.

Therefore, by regressingK PCs of returns on predictive variables Xt, we are recovering re-scaled
SDF coefficients ΛKb′ in a “robust” fashion (by ignoring predictability of smallest PCs).27 Our
PC-based regression approach therefore effectively imposes SDF-implied restrictions on predictive
coefficients in a simple time-series predictability regression setting (applies coefficient shrinkage).

Our method can be also viewed as an economically motivated alternative to the reduced rank
regression (RRR)28 — a regularization method in statistics and machine learning designed for
dimensionality reduction in the multivariate regression setting. Similar to ridge regression, LASSO,
principal-component regression, etc., RRR introduces a shrinkage penalty on the OLS estimate of
a in (4), but derives its strength by combining signals from multiple responses (LHS variables).
The classical RRR (Izenman 1975) uses eigenvectors derived from the eigenvalue decomposition of
the covariance matrix of fitted responses (expected returns). Our approach is to use eigenvectors of

27If, instead, we standardized all PC returns by dividing them by their respective variances (eigenvalues),
we would directly obtain SDF coefficients b.

28See HTF (2008).
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realized returns, which makes the method more robust to the choice of predictors and to spurious
predictability in low-order PCs when signals are weak (expected returns account for a tiny amount
of variation of outcome variables). In light of this, our method is particularly suitable in the
time-series predictability regression setting studied in this paper.

B Statistical Properties: Derivations
B.1 First Principal Component and Individual Regressions
A bound on individual R-squared. Define R2

1,i the R-squared of the regression of an indi-
vidual asset on the factor

Ri,t+1 = λiFt+1 + ui,t+1,

and R2
X the R-squared of the predictive regression of the factor

Ft+1 = β1Xt + et+1.

Without loss of generality, we assume that the predictor Xt has unit variance.
We have:

R2
1,i = λ2

i var (Ft+1)
var (Ri,t+1)

R2
X = β2

1
var (Ft+1)

We are interested in R2
X,i the R-squared of the predictive regression

Ri,t+1 = biXt + εi,t+1,

which is equal to:

R2
X,i = b2

i

var (Ri,t+1) .

By linearity of the regression, we immediately have:

bi = λiβ1 + cov (Xt, ui,t+1) .

We can bound the second term:

|cov (Xt, ui,t+1)| = |corr (Xt, ui,t+1)|
√
var (ui,t+1)

≤
√

1− R2
1,i

√
var (ui,t+1),

where the bound comes from the fact that the correlation matrix of ui,t+1, Ft+1 and Xt+1 has to
be semidefinite positive and therefore have a positive determinant.

If |λiβi| ≤
√

1− R2
1,i

√
var (ui,t+1), then 0 is a lower bound for R2

X,i. In the other case, we obtain
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the following bound:

R2
X,i ≥

(
λiβ1 −

√
1− R2

1,ivar (ui,t+1)
)2

var (Ri,t+1)

≥
(√

λ2
iβ

2
1

var (Ri,t+1) −
√

1− R2
1,i

√
var (ui,t+1)
var (Ri,t+1)

)2

≥
(√

R2
1,iR2

X −
√(

1− R2
1,i

) (
1− R2

X

))2

Putting the two cases together, we have:

R2
X,i ≥ max

(√
R2

1,iR2
X −

√(
1− R2

1,i

) (
1− R2

X

)
, 0
)2

In the case where Ft+1 is the returns of a tradable portfolio, ui,t+1 is too. It is natural to
consider upper bounds on the R-squared of predicting ui,t+1 with Xt, R2

X,ui. If for instance, one
believes that predictive regression R-squared are bounded above by a value R2

max, then our original
bound becomes:

R2
X,i ≥ max

(√
R2

1,iR2
X −

√
R2
max

(
1− R2

X

)
, 0
)2

Bound for a family of returns. To understand how these relations affect a whole family of
returns, consider the following simple symmetric case. Assume the factor Ft+1 is the equal-weighted
mean of these returns and all returns have the same exposure and R-squared with this factor, that
is λi and R2

1,i do not depend of i. We then immediately have:∑
i

ui,t+1 = 0∑
i

cov (Xt, ui,t+1) = 0

Let us write γi = cov (Xt, ui,t+1). We then have:

R2
X,i = (λiβ1 + γi)2

var (Ri,t+1)

= R2
1R2

X + γ2
i

var (Ri,t+1) + 2γi
λiβ1

var (Ri,t+1)

Then

Ei
[
R2
X,i

]
= R2

1R2
X + Ei

[
γ2
i

]
var (Ri,t+1)

Ei
[
R2
X,i

]
= R2

1R2
X + var

(
R2
X,i

)
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B.2 Low Power of Individual Tests
A further reason for directly forecasting PC portfolios rather than individual returns is that tests
of predictability of the former have significantly higher power than test of the latter. For simplicity,
consider a scalar forecasting variable, x. The following results easily generalize to multivariate
prediction. Suppose x forecasts only the second PC portfolio and the remaining PC returns are
i.i.d Gaussian with zero mean:

cov [Fi, x] = 0 ∀i 6= 2 (10)
F2,τ = β2xτ−1 + ε2,t

β2 = θ
√
d2

⇒ σ2
ε = d2

(
1− θ2

)
φ = 0

⇒ x is i.i.d N (0, 1)

This implies that x forecasts F2 with R2 = θ2. Consider a sample forecast regression. pre-
dicting F2 with x (no constant). By usual OLS formulas,

(
β̂2 − β2

∣∣∣x) ∼ N (0, σ2
ε

X
′
X

)
where

X
′ =

[
x1 · · · xT

]
. For power analysis, consider repeated samples of length T . Since x

is stochastic (in this thought experiment), we must compute the unconditional distribution of
b̂. As shown below,

√
T
σε

(
β̂2 − β2

)
∼ t (T ); the unconditional distribution of β̂2 (after normali-

zation) is t with T degrees of freedom.29 Suppose our researcher knows σε and uses a typical
two-sided t-test of null hypothesis β2 = 0 with size α. We compute the power of such as test as
Prob

[∥∥∥√T
σε

(
β̂2 − β2

)∥∥∥ > tα/2,T
]
:

power (F2) = G

(
−tα/2,T −

β2
√
T

σε

)
+
(

1−G
(
tα/2,T −

β2
√
T

σε

))

= G

(
−tα/2,T −

θ
√
d2
√
T√

d2 (1− θ2)

)
+
(

1−G
(
tα/2,T −

θ
√
d2
√
T√

d2 (1− θ2)

))

= G

(
−tα/2,T −

θ
√
T√

(1− θ2)

)
+
(

1−G
(
tα/2,T −

θ
√
T√

(1− θ2)

))

where G is the CDF of a t-distribution with T degrees of freedom (with associated PDF g).
Now consider forecasting an individual return, ri,τ = q

′
iFτ , with x. We can write

ri,τ = qi,2P2,τ + (qi,1P1,τ + qi,3P3,τ + · · · qi,NPN,τ )
= qi,2bxτ−1 + (qi,2ε2,τ + qi,1P1,τ + qi,3P3,τ + · · · qi,NPN,τ )
= bixτ−1 + νi,τ

where βi = qi,2b. We know cov [νi,t, xt−1] = 0 by inspection. Similarly to above,
√
T
σν

(
b̂i − bi

)
∼

29When including a constant in the regression,
√
T−1
σε

(
b̂2 − b2

)
∼ t (T − 1)
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t (T ) and we again perform a t-test. What is the power?

power (ri) = G

(
−tα/2,T −

bi
√
T

σν

)
+
(

1−G
(
tα/2,T −

bi
√
T

σν

))

= G

−tα/2,T −
qi,2b2

√
T√

q2
i,2σ

2
ε +

∑
j 6=2 q

2
i,jdj

+
(
1−G

(
tα/2,T − 〈·〉

))

= G

−tα/2,T −
qi,2θ
√
d2
√
T√

q2
i,2d2 (1− θ2) +

∑
j 6=2 q

2
i,jdj

+
(
1−G

(
tα/2,T − 〈·〉

))

= G

−tα/2,T −
θ
√
T√

(1− θ2) + 1
d2q2

i,2

∑
j 6=2 q

2
i,jdj

+
(
1−G

(
tα/2,T − 〈·〉

))
.

Since dj ≥ 0,
√

(1− θ2) + 1
d2q2

i,2

∑
j 6=2 q

2
i,jdj >

√
(1− θ2).

Consider the function h (ξ) for θ > 0:

h (ξ) = G

(
−tα/2,T −

θ
√
T

ξ

)
+
(

1−G
(
tα/2,T −

θ
√
T

ξ

))
∂h

∂ξ
=
(
θ
√
T

ξ2

)
g

(
−tα/2,T −

θ
√
T

ξ

)
−
(
θ
√
T

ξ2

)
g

(
tα/2,T −

θ
√
T

ξ

)

=
(
θ
√
T

ξ2

)[
g

(
−tα/2,T −

θ
√
T

ξ

)
− g

(
tα/2,T −

θ
√
T

ξ

)]
< 0

since

0 <
(
θ
√
T

ξ2

)
and

0 < g

(
−tα/2,T −

θ
√
T

ξ

)
< g

(
tα/2,T −

θ
√
T

ξ

)

where the last inequality comes from symmetry of g around 0. A similar argument shows ∂h
∂ξ < 0

when θ < 0. Then by inspection, ∀θ, power (f2) > power (ri). In fact the same argument shows
that if a predictor x forecasts only one PC portfolio, directly forecasting that PC has higher power
than forecasting any individual return.

In the simple case where the persistence of x is zero the OLS sampling distribution has a known
distribution with analytic density (t). Otherwise, however, the exact distribution is unknown. We
study this issue further through simulation of the system in Equation 10 except we allow x to follow
an AR(1) process: xτ = φxτ−1 + ν, varτ−1 [ντ ] = 1

1−φ2 . We calibrate the simulation as follows:

1. Obtain annual returns of bonds with maturities 2 . . . 15 years from the yields provided in
GSW, 2007. Estimate the covariance matrix Ω = QΛQ′ . Let Λ̃ = Λ except Λ̃2,2 =(
1− θ2)Λ2,2.

2. We set T = 30 years to match the post-1985 sample commonly used (JPS)
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3. We vary θ2 from 10% to 40%, consistent with R2 values obtained in recent research (Cieslak
and Povala, 2015, Cochrane and Piazzesi, 2008, Joslin et al., 2014)

4. We use three values of φ: 0, 0.3, and 0.6

5. The stationary mean and variance of x are 0 and 1, respectively

For each simulation:

1. Draw x1 from N (0, 1). Simulate x2 · · ·x30 according to the specified AR(1)

2. Draw PC returns as Fτ =
[

0 b 0 · · · 0
]′

xτ−1 + ετ , ετ ∼ N
(
0, Λ̃

)
. Construct “primi-

tive” bond returns as Rτ = QFτ

3. Forecast all returns with x

As before, we compute the sampling variance of an estimator from the simulated distribution and
construct relevant t-statistics.

B.3 Noisy Yields
We study spurious predictability in the setting of= bond anomaly returns. We do so by introducing
a tiny amount of proportionate noise in yields. The simulated data comes from a no-arbitrage
calibration with constant expected returns. We proceed as follows:

1. Estimate Ω = cov (R) from realized annual returns (assuming no predictability). This slightly
overstates the true conditional variances (by law of total covariance) and hence biases against
finding predictability

2. We set σε = 5bp. Context: annual yield changes have ~1% standard deviation.

Given the calibrated parameters, we simulate 100,000 realizations of 30-year histories:

1. For each simulation

(a) Draw Rτ from N (0, Ω)
(b) Draw measurement error εn,τ from N

(
0, σ2

ε

)
with n = 1 . . . 5

(c) Construct observed returns from Equation 3
(d) Form PC portfolios from standardized returns
(e) Forecast each PC returns using five measurement errors fi,τ = a+ b

′
xτ−1 + νi,τ where

xτ = [ε1,τ · · · εN,τ ]
′

2. From the distribution of simulated predictive coefficients, compute cov [b]

3. For each simulation, compute Wald statistics for relevant tests using cov [b] from previous
step

C Anomalies
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Table 16: Part I: Anomaly porfolios mean excess returns, %, annualized

Columns P1 through P10 show mean annualized returns (in %) on each anomaly portfolio net of risk-free rate. The column P10-P1
lists mean returns on the strategy which is long portfolio 10 and short portfolio 1. Excess returns on beta arbitrage portfolios are scaled
by their respective betas. F-score, Debt Issuance, and Share Repurchases are binary sorts; therefore only returns on P1 and P10 are
reported for these characteristics. Portfolios include all NYSE, AMEX, and NASDAQ firms; however, the breakpoints use only NYSE
firms. Monthly data from November 1973 to December 2015.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P10-P1
1. Size 5.8 7.7 8.2 8.8 8.6 9.2 8.9 9.5 9.0 8.9 3.2
2. Value (A) 5.0 7.0 7.9 7.2 8.3 8.3 8.8 8.5 8.5 11.9 6.9
3. Gross Profitability 5.4 5.8 6.3 5.8 7.7 6.7 7.1 6.4 7.0 9.2 3.8
4. Value-Profitablity 4.2 5.5 4.3 6.2 8.5 8.1 10.3 11.3 11.3 13.2 9.0
5. F-score 6.1 - - - - - - - - 7.0 0.9
6. Debt Issuance 7.9 - - - - - - - - 6.2 -1.6
7. Share Repurchases 6.2 - - - - - - - - 7.7 1.5
8. Net Issuance (A) 2.6 5.0 8.4 7.8 7.8 7.2 6.4 8.7 8.1 11.3 8.7
9. Accruals 3.8 6.0 5.0 7.0 6.9 7.2 8.1 7.3 9.4 8.1 4.4
10. Asset Growth 4.9 6.6 7.2 7.2 6.9 7.5 7.3 8.8 10.0 9.8 5.0
11. Asset Turnover 4.5 6.9 6.0 6.3 7.5 7.9 8.4 6.7 9.4 9.2 4.7
12. Gross Margins 6.6 6.8 7.9 7.0 8.4 6.2 7.3 6.7 5.9 6.8 0.2
13. Dividend/Price 5.5 4.8 6.7 6.9 7.1 9.0 9.5 7.9 7.8 8.6 3.1
14. Earnings/Price 4.0 4.8 6.5 7.3 7.1 7.7 9.4 9.0 8.7 11.6 7.6
15. Cash Flows/Price 4.5 7.3 5.9 7.9 8.4 8.2 7.7 9.0 10.8 10.5 6.0
16. Net Operating Assets 6.1 7.1 7.5 7.8 8.3 8.7 8.3 8.5 7.9 7.3 1.1
17. Investment/Assets 4.2 5.1 7.4 6.2 8.1 6.1 8.0 8.4 8.6 10.3 6.0
18. Investment/Capital 5.8 6.7 6.1 7.2 6.9 8.4 7.8 7.7 8.6 9.1 3.3
19. Investment Growth 4.5 7.9 6.5 6.6 6.1 7.3 7.8 8.0 9.8 8.2 3.6
20. Sales Growth 6.8 6.8 7.1 6.5 7.6 8.7 6.6 7.7 8.9 6.8 -0.0
21. Leverage 5.3 6.4 6.7 10.2 7.4 8.3 8.6 8.6 8.8 8.1 2.8
22. Return on Assets (A) 4.1 8.5 7.2 7.1 7.3 7.1 7.1 7.7 6.1 6.8 2.8
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Table 16: Part II: Anomaly porfolios mean excess returns, %, annualized

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P10-P1
23. Return on Book Equity (A) 5.9 6.9 6.7 7.6 6.4 7.0 6.4 7.0 6.3 7.5 1.6
24. Sales/Price 4.6 6.1 6.6 8.3 8.9 8.6 9.1 10.7 10.7 12.9 8.2
25. Growth in LTNOA 6.5 6.3 6.7 8.2 5.9 7.0 6.5 7.6 7.8 7.7 1.1
26. Momentum (6m) 8.9 8.8 8.4 8.5 7.5 8.1 6.6 5.3 7.2 10.5 1.6
27. Value-Momentum 6.1 7.6 6.9 6.9 8.3 9.4 9.8 8.4 8.1 11.0 4.8
28. Value-Momentum-Prof. 5.9 7.6 7.5 8.0 7.1 5.5 7.5 8.5 11.6 14.4 8.5
29. Short Interest 6.3 5.7 8.5 8.5 8.0 6.2 6.7 5.9 4.3 5.2 -1.1
30. Momentum (12m) -2.2 4.2 5.6 6.8 5.5 6.9 6.9 9.1 9.0 12.4 14.6
31. Industry Momentum 5.9 4.6 6.6 7.1 6.0 9.4 9.3 6.3 8.4 9.6 3.8
32. Momentum-Reversals 5.1 6.8 7.2 6.7 7.5 8.6 7.2 8.9 8.7 11.4 6.3
33. Long Run Reversals 6.6 6.9 7.3 8.1 8.1 8.5 8.3 9.5 9.8 11.1 4.5
34. Value (M) 5.5 6.3 6.4 7.0 7.9 7.5 9.0 7.2 11.6 11.7 6.1
35. Net Issuance (M) 3.5 5.2 10.0 8.1 8.7 7.3 7.4 8.0 9.9 10.5 6.9
36. Earnings Surprises 4.0 4.0 4.9 7.2 6.6 7.8 7.1 7.4 8.1 10.8 6.8
37. Return on Book Equity (Q) 1.1 3.8 4.7 6.5 7.1 6.3 7.4 6.9 7.9 8.4 7.3
38. Return on Market Equity 0.1 1.5 6.3 5.9 7.2 7.0 8.0 10.6 11.4 15.6 15.5
39. Return on Assets (Q) 1.8 4.5 6.8 7.1 7.4 6.6 8.0 7.4 6.7 7.6 5.8
40. Short-Term Reversals 3.0 4.3 6.8 6.5 6.9 7.7 8.5 9.1 9.6 7.2 4.2
41. Idiosyncratic Volatility -0.6 7.8 10.7 7.6 9.8 8.5 7.5 7.3 7.4 6.9 7.5
42. Beta Arbitrage 3.1 3.1 4.1 6.6 8.1 9.3 10.7 11.4 14.3 16.7 13.6
43. Seasonality 3.0 3.4 5.7 5.2 7.6 6.7 7.7 7.1 9.3 12.8 9.8
44. Industry Rel. Reversals 1.5 3.2 4.2 6.0 6.2 7.5 8.6 11.1 12.4 12.3 10.8
45. Industry Rel. Rev. (L.V.) 0.5 4.0 4.6 7.1 5.4 6.5 9.4 10.6 12.7 15.2 14.6
46. Ind. Mom-Reversals 2.6 4.8 5.5 6.1 7.1 7.6 7.9 8.5 10.3 14.1 11.5
47. Composite Issuance 4.0 5.6 5.9 6.1 7.3 7.2 6.9 7.6 9.9 10.2 6.2
48. Price 5.5 8.1 8.4 9.7 8.3 8.2 7.1 7.1 7.3 5.8 0.3
49. Age 6.5 7.9 5.6 9.6 5.6 7.8 9.0 7.4 7.0 6.6 0.1
50. Share Volume 6.2 7.8 6.6 6.4 7.6 6.0 7.6 6.6 6.2 6.2 0.0
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Figure 11: Anomalies Eigenvector Loadings. The figure plots eigenvector loadings of 50
long-short anomalies.
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Table 17: Part I: Implied anomaly returns by PC: R2 (%)

Predictive R2 of individual anomalies returns implied by PC forecasts. Columns labeled “Full” com-
bine forecasts of both PCs; “PC1/PC2 only” focus only on predictability stemming from PC1/PC2.

IS
(Full)

IS
(PC1
only)

IS
(PC2
only)

OOS
(Full)

OOS
(PC1
only)

OOS
(PC2
only)

1. Size 27.3 28.4 -1.0 35.3 35.6 0.6
2. Value (A) 17.8 8.3 8.6 8.8 12.4 -9.0
3. Gross Profitability -1.5 1.0 -2.8 -40.1 -22.3 -20.0
4. Value-Profitablity 10.7 -0.4 10.8 19.7 7.2 10.7
5. F-score 5.0 4.7 0.0 5.5 9.4 -5.5
6. Debt Issuance 15.1 7.0 8.7 13.6 5.7 11.2
7. Share Repurchases 28.0 9.8 19.0 20.1 -5.4 29.4
8. Net Issuance (A) 16.0 1.4 14.8 14.5 -5.9 21.5
9. Accruals 0.5 -0.1 0.7 -0.2 -0.1 -0.1
10. Asset Growth 12.9 5.7 6.9 17.7 10.5 5.5
11. Asset Turnover 2.2 1.7 0.5 0.2 -0.8 1.0
12. Gross Margins 7.3 3.7 3.1 -8.2 -8.1 -2.9
13. Dividend/Price 13.2 -0.6 13.3 11.9 -0.3 9.0
14. Earnings/Price 12.5 2.8 10.2 19.3 3.9 17.8
15. Cash Flows/Price 9.9 4.9 4.3 -1.5 7.4 -13.8
16. Net Operating Assets 17.5 16.8 1.7 25.8 10.5 20.3
17. Investment/Assets 15.6 6.6 8.8 14.3 18.2 -5.7
18. Investment/Capital 1.0 0.1 1.2 -1.5 0.0 -0.3
19. Investment Growth 14.0 5.9 7.9 13.5 9.2 3.2
20. Sales Growth 6.1 2.3 3.5 5.7 4.3 -0.8
21. Leverage 21.3 2.4 18.5 25.8 5.0 18.9
22. Return on Assets (A) 29.2 28.1 1.2 24.2 21.1 3.9
23. Return on Book Equity (A) 27.7 26.5 1.5 23.1 16.8 7.9
24. Sales/Price 15.5 1.7 13.1 17.3 2.0 11.6
25. Growth in LTNOA -7.7 -7.9 0.2 -2.5 -3.4 0.7
26. Momentum (6m) 13.6 14.7 -1.2 10.6 13.3 -3.2
27. Value-Momentum 3.0 -0.6 3.6 2.9 0.2 2.3
28. Value-Momentum-Prof. -0.7 -0.6 -0.2 -0.4 0.2 -0.6
29. Short Interest 8.4 9.2 -0.5 15.5 14.8 2.1
30. Momentum (12m) 10.2 13.3 -3.3 15.1 17.4 -3.2
31. Industry Momentum 7.3 8.5 -1.3 0.6 5.0 -5.0
32. Momentum-Reversals 6.9 -7.2 13.7 16.2 -0.8 15.3
33. Long Run Reversals 29.0 20.0 8.4 30.3 27.0 -0.4
34. Value (M) 29.6 19.3 9.4 25.0 27.8 -7.8
35. Net Issuance (M) 12.1 5.0 7.7 12.7 -7.9 23.4
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Table 17: Part II: Implied anomaly returns by PC: R2 (%)

IS
(Full)

IS
(PC1
only)

IS
(PC2
only)

OOS
(Full)

OOS
(PC1
only)

OOS
(PC2
only)

36. Earnings Surprises -9.6 -0.3 -9.6 -2.4 10.0 -14.9
37. Return on Book Equity (Q) 23.0 22.5 0.7 16.7 14.0 3.6
38. Return on Market Equity 15.0 4.5 11.0 18.4 6.8 13.6
39. Return on Assets (Q) 25.4 24.8 0.6 18.0 16.8 1.6
40. Short-Term Reversals 6.6 4.5 2.0 11.1 10.8 -0.3
41. Idiosyncratic Volatility 38.2 30.2 8.9 38.8 27.3 16.1
42. Beta Arbitrage 10.2 1.1 9.1 9.9 1.9 8.5
43. Seasonality -2.2 -1.1 -1.2 -2.1 -0.9 -1.7
44. Industry Rel. Reversals 9.0 5.2 3.7 14.3 12.3 1.5
45. Industry Rel. Rev. (L.V.) 13.0 4.7 8.2 19.9 14.2 5.1
46. Ind. Mom-Reversals -1.8 0.1 -2.0 -5.0 -4.1 -1.1
47. Composite Issuance 8.2 2.6 5.8 7.7 -0.1 9.8
48. Price 38.3 38.3 0.0 41.2 41.2 -0.0
49. Age 25.8 11.7 15.2 28.5 1.7 31.2
50. Share Volume 11.5 5.0 7.1 11.0 1.4 12.1

Mean R2 12.9 7.9 5.0 12.3 7.7 4.5
Median R2 12.3 4.8 3.6 14.0 6.2 1.8
Std. Dev. of R2 11.0 10.2 6.1 13.7 11.6 10.7
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