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L.Jnt roductio

The production smoothing model of inventories
suggests that firms hold

inventories mainly to smooth production in the face of
random fluctuations in

demand. It is well known,
however, that some stylized

facts appear to be
inconsistent with both the

spirit and the letter of the
model. One such fact is

that in virtually all
manufacturing industries, the

variability of production is
greater than that of shipments

(Blanchard (1983), Blinder (l986a), West (1986)).
A second fact is that

inventories tend to be
accumulated when demand is high and

decumulated when demand is
low, precisely the Opposite of the pattern predicted

by the production smoothing
model (Blinder (l986a), Summers (1981)).

All the studies just cited
assume that physical inventories are the only

buffer between demand and
production. Backlogs of unfilled orders, however,

might also serve as buffers.
They might be built up when demand is high and

drawn down when demand is
low. If so, studies that

ignore backlogs may be
mis leading.

Indeed, in the presence of
backlogs, the anomalous stylized

facts probably
are not even directly relevant

to at least some versions of the production

smoothing model. As initially stated
(Holt et al. (1961)) and

recently

generalized (Blinder (1982)), the model does not impose
a nonnegativity condition

on inventories. If demand is
too high, orders are put on a backlog. Backlogged

orders are implicitly
considered negative inventories. If the model is taken

literally, the implication is that
empirical studies should follow Holt et al.

(1961) and Beisley (1969) and use "nett' inventories, i.e., physical inventories

minus backlogs. If
backlogs are substantial, the bias

from using physical rather
than net inventories may be large.

This paper considers the
anomalous stylized facts for some industries where

backlogs in fact are large. it
assumes a model like that in Holt et al. (1961),



2

Belsley (1969) or Blinder
(1982). The model implies that the variance of

production is less than the variance of new orders (rather than shipments). This

is empiricallY true, for
the data studied here. The model also implies that the

net inventory stock should buffer production from demand.
The stock should be

decumulated when demand is high,
accumulated when demand is low. This, too, holds

empirically, in two senses. First, the covariance between new orders and

investment in net inventories is negative. Second, a positive shock to new

orders causes net inventories to be drawn down, with production rising only

gradually. On the other hand, if one ignores backlogs, and examines physical

inventories and shipments
instead of net inventories and new

orders, the usual

stylized facts result. These facts are, however, irrelevant in the present

production smoothing model.

Net inventories, then, appear to smooth production in the
face of random

fluctuations in demand. This suggests
that production smoothing may indeed be a

central determinant of production.

It should be emphasized, however,
that this paper does not shed direct light

on the determinants of physical
inventories: the model used determines net

inventories, with the individual levels of physical inventories and of backlogs

indeterminate. This is, of course, a
serious drawback in an inventory model.

Noreover, common sense, as well as some formal time series evidence (Reagan and

Sheehan (1985), West (1983b)), suggest
that backlogs are not simply negative

inventories. Further research is required to see whether backlogs and

inventories play their prescribed
roles when one allows them to affect costs in

distinct ways. In addition,
the evidence here is qualitative in the sense that

while broad time series patterns are
established, a precise model is never

estimated, and standard errors are never calculated. I would therefore

characterize the results in this paper as preliminary and suggestive.
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Section II describes the model and tests performed. Section III presents

empirical results. Section IV concludes. An appendix available on request

contains some algebraic details and empirical results omitted to save space.

11. The Model and Tests

The empirical work requires data on backlogs. The Department of Commerce

only collects such data for what are called "production to order" industries.

The model used will therefore be one that is appropriate for such industries.

These are industries in which orders ordinarily arrive before production is

completed. Storage costs for the finished product tend to be
relatively large

and the product line fairly heterogeneous (Abramovitz (1950), Zarnowitz (1973)).

According to Belsley (1969), most two digit industries produce primarily to

order, including virtually all durable goods industries. Backlogs tend to be

substantial, relative either to shipments or to physical inventories. This is

illustrated for aggregate durables in Figure 1, which plots backlogs, shipments,

and two measures of inventories, finished goods and the sum of finished goods and

works in progress. The backlog to shipment ratio, or the (backlog - physical

inventories) to shipment ratio, suggests that customers typically wait anywhere

from one to five months for shipment.

Let be production, I, physical inventories, St shipments, Bt backlogs

(unfilled orders) and new orders. The variables are linked by the identities

(1)

Nt=St+Bt,

Qtt+t, HtIt t

is the net inventory stock, physical inventories minus unfilled orders.
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The model I will use, which is developed in detail in the appendix, is a

slightly modified version of the one in Belsley (1969). The representative firm

minimizes the expected present discounted value of costs,

(2) mm E0 ZbtCt
t=o

E0
is expectations conditional on the firm's period zero information, b is a

discount rate, O<b<l. Apart from inessential constant and linear terms, per

period costs C are

(3) Ct = a0(AQt+uit)2
+ a1(Qt+u2t)2

+ a2(_H_a3Qt+u3t)2.

The u1 are zero mean, white noise cost shocks. Apart, perhaps, from these

shocks, the first two terms are standard. The cost of changing production,

represents, for example, hiring and firing costs. The production

cost, a1(Qt+u2t)2, can be considered a Taylor series approximation to a concave

cost function.

2.
The final term in (3), a2(_Ht_a3Qt+U3t) , is peculiar to a production to

order firm. It balances two costs. The first is a cost of having a lengthy

delivery period (bad customer relations, loss of reputation, etc.). Given the

rate of production this cost increases with _Ht (back1ogsphySiCal

inventories): the bigger the backlog or the smaller the stock of physical

inventories, the lengthier the delivery period. The second is a cost of having

to rush production (inefficient scheduling of batch production runs, etc.) Given

this cost decreases with _Ht: the bigger the backlog or the smaller the stock

of physical inventories, the greater the flexibility in scheduling production.

See Holt et al. (1961), Childs (1967) and Beisley (1969) for further discussion.

It should be noted that all the tests in this paper are robust to the possibility



5

that a3=O, in which case the model is similar to that in Blinder (1982).

I will consider two empirical
implications of the model. The first concerns

production variability. The model implies that net inventories are used to

buffer new orders. If variables
are stationary around trend, this suggests

(4) 0 � var(N)-var(Q),

where ttvartl is an unconditional variance.
Inequality (4) follows under a variety

of assumptions about market structure and
demand, as long as any effects of net

inventories on demand are captured by the a2(.) term in (2). In particular, (4)

is implied even if prices adjust in
response to demand fluctuations. See West

(1986) and the appendix for a precise argument.1

If the variables are not
stationary, var(N) and var(Q) do not exist. Related

literature suggests that empirical tests that nonetheless assume that they exist

may be seriously misleading (Fuller (1976), Marsh and Merton (1986)). By

continuity, this also may be true in a given finite sample, if the variables are

nearly nonstationary. The data used here in fact appear to be nonstationary or

nearly so, even after growth is removed.

Even if the data have unit roots, is stationary. Since
QtNt-AHt, Nt

and are cointegrated (Engle and Granger (1987)), and a slightly more

cumbersome restatement of (4) is valid. We have Qt=Nt-H, so N_Q=_2NtHt_AH.

Let "coy" denote an unconditional
covariance. Under fairly general statistical

conditions, cov(N,AH) exists, even if Nt has a unit root (e.g., if (Nt,H)

follows a finite parameter ARMA
process; see Fuller (1976) and West (1987)).

Whether or not there are unit roots, then, one can test

(5) 0 �
_2cov(Nt,AHt)_var(ML).
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If there are unit roots, one must
not estimate cov(Nt,Ht) as a sample moment in

the usual way. This would just
reduce (5) to (4). Section hA explains how to

get an estimate that (a)is
consistent if Nt has a unit root, and (b)is

asymptotically the same as (4) if the data are stationary.

The second of the model's empirical implications
that I will consider

concerns whether net inventories
buffer production. One test of this is whether

the covariance between new orders and investment in net inventories is negative

(Blinder (1986a)).
If so, inventories tend to be decumulated when demand is

high, accumulated when demand is low. Note, however, that cov(Nt,AHt)<O is

necessary (but not sufficient) for (4) and (5). Since, as we shall see, (4) and

(5) hold in these data, no separate
empirical work will be needed to test this

proposition.

A second test of whether net inventories
buffer production concerns the

response of production
and net inventories to a shock to new orders (Blinder

(1986a)). This is conveniently analyzed under the (over) simplifying assumptions

that the firm uses just lagged new
orders to forecast future new orders, and that

the univariate new order process follows an AR(q):

(6) NtlNtl+... +qNtq+Vt

In (6), unit roots are allowed (e.g., if q1, NtNt_i+Vt is allowed).

Deterministic terms are suppressed in (6) and below, for notational simplicity.

By algebra such as in Blanchard (1983) or Eichenbaum (1984), (2) and (6)

imply that the decision rule for is

(7) Ht = + p2H2 + 5oNt
+ .. + 6q_lNtq+l + Ut.
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The disturbance u is a linear combination of the cost shocks u , 1=1 to 3. Thet
it

p1 depend on b and the ai in a complicated way, the &,
depend on b, the a, and

the . in a complicated way. The exact formulas are not of interest, except

perhaps to note that p2 is zero of the cost of changing production
a0 is zero.

Parameter estimates are consistent
even if the variables have unit roots

(Sims,
Stock and Watson (1986)).

tinder the identifying assumption that the demand shock v and the cost shock

u are uncorrelated, one can estimate not only (6) but (7) as well by least

squares. One can then trace out an impulse
response function, for how production

and net inventories respond to a demand shock
Vt: aH/av=&0, aQ/l÷0,

etc. The model suggests that will be drawn down in

response to a positive demand shock
o<°' with production rising gradually to

meet the increased demand.

XII. Empirical Results

A. Data

The data were monthly and
seasonally adjusted, 1967-1984. (Data that are

not seasonally adjusted might be preferable (Miron and Zeldes (1986)) but are not

available for backlogs.) Nominal
backlog data were conveniently available from

CITIBASE for aggregate durables and six two digit manufacturing industries:

stone, clay and glass (SIC 32), primary metals (SIC 33), fabricated metals (SIC

34), non-electrical machinery (SIC
35), electrical machinery (SIC 36),

transportation equipment (SIC 37), and instruments (SIC 38). BEA constant (1972)

dollar inventory data on finished goods and works in progress inventories and

shipments were kindly supplied by Jeff Miron. Inventory data were converted from

cost to market as in West (l983a) and Blinder and Holtz-Eakin (1983).
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Constant dollar backlog data were
not available. The discussion in Foss et

al. (1980, ppl56-57), as well as a reading of Bureau of the Censuses Form M-3

(Appendix I in Foss et al. (1980)) suggests
that it is reasonable to assume that

firms value the entire backlog at current delivery prices. Real backlogs were

therefore obtained by deflating the
BEA figure for the nominal stock of backlogs

by the ratio of (nominal shipments/real
shipments). New orders were calculated

from the identity NtSt+AUt. Two
net inventory series were used: finished goods

- backlog, and finished goods + works in progress - backlog. Production was

calculated as As a check on the deflation procedure, real backlogs

were also obtained for aggregate durables by deflating by the producer price

index. The resulting second moments
of the data were very similar to those

reported in Table 1 below.

Before any estimation, a common geometric
trend was removed from all

variables. (This is consistent with the model, as shown in the appendix.) The

estimated common growth rates for finished goods inventories, backlogs and

shipments, in percent per month,
for aggregate durables and SIC codes 32 to 38

were: .18, -.01, -.00, -.03
,.29,.38,.04,. 40. The estimated rates for

finished goods + works in progress, backlogs and shipments were: .17, -.01, .01,

-.04 , .28,.40,.07,.42. Before any of the computations reported below were

done, all variables were scaled to remove this growth. For example, all durables

data were divided by (10018)t when net inventories = finished goods inventories

- backlogs, by (1 0017)t when net inventories
= finished goods inventories +

works in progress - backlogs. Variances and covarianceS of the resulting data

were calculated around a constant mean. Constant terms were used in estimation

of (6) and (7). To make sure that
inference was not sensitive to the exact

estimate of growth rates, the second
moments reported in Table 1 below were

recalculated for aggregate durables, with growth
rates half again as big or half
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as small (i.e., for growth rates of .17 (.17/2) and .18 (.18/2)). Results
were similar.

The Durbin-Watson of each of the regressions to estimate a common trend was

very low, typically under .10. This
suggests possible nonstationarity of the

geometrically detrended variables. To
guard against possible

resulting biases,
the cov(N,H) term that

appears in equation (5) was calculated as follows. Let T
be the sample size. Ignore constant terms for

notational simplicity. If has a
unit root, TZNtH has a nondegenerate limiting

distribution, and thus is not a
consistent estimate of

cov(Nt,}r) (Fuller (1976), West (1987)). We have Nt =

ANt + ANt1 + ANt_2 + .... This suggests calculating
cov(Nt,AHt) as cov(AN,AH)

+ cov(ANt i,AHt) + .... Let ê. be an estimate of
cov(ANt.,AH),

a.=T1ETANAH Consider estimating coy (Nt,AHt) as and letting
rn-->.. as T-->... The literature

on estimation of spectral densities
(Hannan

(l97O,p280)) indicates that if (m/T1"2)-->O as m, T --> eo Z0c consistently
estimates cov(N,AH). I set m20 in the results reported below. (If is

stationary, one could of course set
mT, and just calculate T'ZNtAH.)

In equations (6) and (7) the length of the autoregression was set to four.

It should be noted that the
assumption that firms use only lagged new orders to

forecast future new orders is
consistent with a comment in Blinder (1986a)

suggesting that inventories tend not to Granger cause sales.

B. Empjricp]. ResuJ,t

Table 1 contains point estimates
of the right hand sides of (4) and (5) when

net inventories finished goods inventories - backlogs, Table 2 when net

inventories = finished goods + works in progress - backlogs. Units are billions

of 1972 dollars, squared. As may be seen, the production variance is less than

the new order variance, in all
specifications except instruments (columns (4) and

(6)).2 As in Blinder
(l986a), however, the production variance is almost always
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greater than the shipment variance (columns (5) and (7)).

Since column (4) is less than one and column (6) is positive, it follows

that cov(Nt,AHt)<O. Net inventories therefore on average are accumulated during

expansions, decumulated during contractions. This is illustrated in Figure 2,

which plots detrended aggregate durables data, for net inventories = finished

goods + works in progress - backlog. The tendency for H to be built up when N is

low, to be drawn down when N is high, is quite apparent. The plots of B and

works in progress + finished goods inventories indicate that the theoretically

predicted pattern of fluctuations for H essentially reflects procyclical

accumulation of backlogs but not countercyclical accumulation of physical

inventories. It is worth noting that while the model does not formally determine

a level of inventories separate from that of backlogs, the actual inventory

behavior probably is consistent with production smoothing behavior in production

to order industries. Abramowitz (1950) and Belsley (1969) suggest that finished

goods inventories, at least, are built up in part because of unavoidable delays

in transit. One might therefore expect inventories to be built up when shipments

are high.

Additional evidence on the role of net inventories in buffering production

may be found in the impulse response functions in Table 3. The functions are

calculated from estimates of equations (6) and (7). (These estimates are

available on request. Regression estimates and impulse response functions were

also calculated for net inventories = finished good - backlogs, but are not

reported because they were quite similar to those in Table 3.) Since the period

is a month, the entry for period 12 indicates the response one year after the

shock, for 24 two years after, and so on.

The estimates indicate that from 40 to 80 percent of the initial impact of a

demand shock is absorbed by net inventories, with production adjusting gradually.
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Figure 3 contains a plot for the
aggregate durables entry in Table 3. Production

is built up gradually to meet the increased demand. If the data are stationary,

all variables return to their steady state levels, with production meeting the
increased demand (c=o(aQt÷/av) = E°0(aN/ v is the demand shock.)

Note, however, that the return is
painfully slow, indicating the borderline

nonstationary behavior of inventories and
new orders. In fact, the roots of (1-

2 . . .
p1L-p2L ), with

p1 and p2 defined in equation (6), were outside the unit circle

for two data sets (fabricated metals
and transportation).

Figure 4 contains the comparable plot for a shock to shipments, when

physical inventories alone are assumed to buffer production. Little buffering is
evident.

IV.CQnc..lus lpflc

A production smoothing model is qualitatively consistent with some aggregate
data when it is assumed that net

inventories (physical inventories minus

backlogs), rather than physical inventories,
buffer production. The variance of

production is less than that of
new orders, so production is smoother than

demand. The covariance of new orders and investment in net inventories is

negative, so that net inventories are accumulated
during contractions,

decumulated during expansions. A positive shock to new orders is buffered by net

inventories, so that production rises
only gradually to meet increases in demand.

These results are in no sense definitive. The model that I used assumed

rather implausibly that backlogs are negative inventories. No standard errors

were calculated in any of the tests. The data
were purely for production to

order industries.

One therefore cannot jump to the
conclusion that production smoothing is the

major determinant of both backlogs and inventories. Nonetheless, in conjunction
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with the conclusions of other papers, the present results seem highly suggestive.

Theoretical work using more carefully
formulated models than mine indicates that

the presence of backlogs may indeed explain apparently anomalous production

behavior (Kahn (1986), Maccini (1973)). Empirical
work at least since Lovell's

(1961) seminal research has found an important role for backlogs; recent

contributions include Blinder (l986b) and Maccini and Rossana (1984). Large and

volatile backlogs are perhaps more pervasive than many researchers, including

myself (West (1986)) have assumed: of the six two digit manufacturing industries

classified by Belsley (1969) as production to stock, two (apparel [SIC 23] and

chemicals [SIC 281) in fact are or have become largely production to order (Foss

et al. (1980, pplS8)).

The fundamental question is whether firms systematically use backlogs as a

buffer between production and demand. If so, it is premature to conclude from,

say, a comparison of production
and shipment variances that firms do not smooth

production in the face of fluctuations in demand. Whether or not backlogs can

save the production smoothing
model is therefore an important task for future

research.
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QQfle

l.Technically, this requires a3=O and no cost shocks. If, say, the penalty for

having a large backlog is prohibitive, demand shocks may be passed directly to

production. In addition, if costs
vary stochastically, the firm will tend to

produce a relatively large amount when Costs are low, thereby inducing extra

variability in production. The spirit of the model, however, is that the primary

role of net inventories is to buffer production from demand. It therefore seems

reasonable to expect (4) to hold, even if a3O and there are cost shocks.

2.The only reason the entries for var(N) and var(S) are different in the two

tables is the slightly different estimates of growth rates.
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Appendix

This appendix contains algebraic details and empirical results omitted

from the paper to save space. It has three parts:

I. Algebraic details on the model

II. Second moments for aggregate durables, under different growth rates and

different deflator (Table Al)

III. Estimates of equations (6) and (7) (Table A2)
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I. Algebraic details on the model

This considers (A)derivation of (4) and (5); (B)accounting for growth;

and (C)derivatjon of (7).

(A)Let Pt be the real price of output. The firm maximizes

(Al) max
Zbt(ptNt_Ct)

t=o

For simplicity it is assumed that the firms gets revenue when an order is

placed, rather than when it is shipped.

Let C be as in (3), with a3u0u1=u2=O. Assume that all variables

have zero mean. (See West (1986) for why this is an innocuous assumption.)

Let be the value of (Al), under the optimal policy. Consider an

1ternative policy in which QNt and HO for all t. Costs C thus are

a0(AN)2 + a1(N)2. Under the assumption that all effects of net backlogs on

demand are adequately captured by the cost function, it will still be feasible

to obtain revenue pN under this alternative policy. Let be the expected

present discounted value of cash flows under this alternative,

=
EoZbt(ptNtC).

Since the policy actually followed is assumed optimal, we have

A * tA
(A2) V0 � V0 => 0 � E0 Zb (Ct-Ce)

=
E0 Ebta0(AN_Q) + E0 Zbta1(N_Q) - E0 Zbta2H
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The third term is nonnegative by construction, since it is the expectation of

a sum of nonnegative random variables. A necessary condition for (A2), then,

is that

(A3) 0 � E0 Zbta0(AN_AQ) + E0 Xbta1(N_Q)

0 � EZbta0(AN_AQ) + EZbta1(N_Q)
= (l-b)1[ a0[var(AN)-var(AQ)] + a1E(N-Q) I

The first implication follows from the law of iterated expectations, since,

under the assumption that at most one difference is required to induce

stationarity, each term in each infinite sum has a finite unconditional

expectation.

In versions of the model in which 80=0 (e.g., Blinder (l986a)), equations

(4) and (5) follow from (A3). If a00 (e.g., Belsley (1969)), (4) and (5)

follow if 0<var(AN)-var(AQ). Although not reported in the paper, the sample

variances of N and AQ obeyed this inequality for all eight data sets.

(B)As stated in the text, the data actually used in the regressions were

scaled by a growth rate of (l+g)t. It is assumed that b(l+g)<l. In

explaining how this fits into the model, it is convenient to call h, and

the original data in levels and H, and Nt the scaled data (e.g.,

Hh/(l+g)t). The full cost function, including deterministic terms, is

(A4) = kt + c0(Aq_m0) + c1(q_m1) + c2(_h_a3q_m2)
2 2 2

+ a0(Aq_m0) + a1(q_m1) + a2(_h_a3q_m2)
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kt is a purely deterministic term that grows no faster than (l+g)t.
The m.

shift the minimum cost points for each of the three types of costs. Each m.
t thas both deterministic and stochastic components, m. = (l+g) m. - (l+g) u.

The are the white noise cost shocks in equation (2). The grow

deterministically, c.=(l+g)tc,.

Using the (A4) definition of costs, differentiate (Al) with respect to

ht, divide by 2 and rearrange to get

(A5) 0 =
EtE b2a0h÷2 - [a0(2b+2b2)+ba1+baa(1+a)Jh

+

- [a0(2+2b)+a1-I-a2a(1+a)]h + a0h2
+

b2a0n÷2
-

[a0(b2+2b)+ba1+baa2]n
+

[a0(l+2b)+a1+a2a3(1+a)]n -

a0n1
+ (l+g)tc + (l+g)tm - (l+g)tv J,

c c0(l-2b+b2) + c1(l-b) +

rn a0m0[l-2b(l+g)+b2(1+g)2] + a1m1[l-b(l-1-g)]
+

a2m2[-(l+a3)+ba3(1+g)J,

a0u0 + a1u1 - a2(l+a3)u2.

Dividing by (l+g)t and rearranging terms gives

(A6) Et( [(l+g)bJ2a0H2 - (l+g)[a0(2b+2b2)+ba1+baa(1+a)]H
+ [aO(l+4b+b2)+al(14.b)+a(1+a)2+baa2]H

-
(l+g)[a0(2+2b)+a1+a2a(l+)J + (l+g)2a0H2 =

Zt+2},
-

[(l+g)bJ2a0N÷2 +

-
[a0(l+2b)-J-81+a2a(1+a)]N + (l+g)a0N1
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- c - m + v

It follows from algebra in part (C) below that if Nt is stationary in levels

or some difference, then so is Ht. Thus, if Nt grows at rate l+g, so does Ht.

(C)Call A1 and A2 the two smallest (in modulus) roots to the fourth degree

(A5) lag polynomial in Ht. The comparable polynomial in (A6) has roots

X1/(l+g), X2/(1+g), 1/fb(l+g)X1]
and l/[b(l+g)A2]. So if A1)<l and

the (A6) lag polynomial has exactly two stable and two unstable roots. Let

p1-(A1+A2)/(l+g), p2(A1A2)/(l+g)2.
Solving the stable roots backwards, the

unstable roots forwards, we obtain

(A7) Ht = piHt + p2Ht 2
+ dE1 b(l+g)A1E[b(l+g)X1]JZj2

-
b(l+g)X2Z[b(l+g)X2]JZj h

d
X1X2/[(X1-X2)b(l+g)a0].

It follows from the argument in Blanchard (1983) that if the firm uses only

past new orders to forecast future new orders, and that equation (6)

represents the univariate new orders process, then equation (7) is the closed

form solution to (A7).
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Table Al

Second Moments for Aggregate Durables

(1) (2) (3) (4) (5) (6) (7)
var(O) -2cov(N,H) -2cov(S,AI)Specification var(Q) var(N) var(S) var(N) var(S) - var(AH) - var(I)

(1) 5.170 9.084 5.008 .57 1.03 6.733 -.172
(2) 6.161 9.235 5.124 .67 1.20 5.433 -1.502
(3) 6.157 9.498 5.989 .65 1.03 5.765 -.105

(4) 9.046 14.324 8.922 .63 1.01 8.264 -.225

(5) 6.743 9.322 5.778 .72 1.17 4.752 -1.147
(6) 10.198 14.534 9.106 .70 1.12 6.720 -1.764

Lines (1) and (2) are as in the first lines of Tables 1 and 2, except that the PPI is usedto deflate. Lines (3) and (4) are the same as the first line of Table
1, except that thegrowth rates used in scaling the variables

are .27 percent (line (3)) and .09 percent(line (4)) per month. Lines (5) and (6) are the same as the first line in Table 2, exceptthat the growth rates used in scaling the variables are .26 percent (line (5)) and .09 percent (line (6)).
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Table A2

Estimates of Equations (6) and (7)

1 CONSTANT
2 N
3 N
4 N
5 N

12
DEGREES OF
RBAR'2
SEE

SIGNIFICANCE LEVEL

LAG COEFFICIENT
*** ************

0 2163.817
1 .6543254
2 .2730040
3 .1941789
4 -.1919794

FREEDOM 207
84647302

1181. 2340

185298
STAND. ERROR
** * **** ** ** *

867. 3513
• 6801315E-01

• 8212626E-O1
8545563E-01
• 7082341E-O1

2. 494741

9. 620572

3. 324199

2.272278
-2. 710678

AGGREGATE DURABLES

FROM 1967: 5 UNTIL 1984: 12
OBSERVATIONS 212
R**2 .99597896

SSR 57702705.
DURBIN-WATSON 2. 15804691

Q( 42) 50.4496

NO. LABEL VAR LAG
*** ******* *** ***

DEGREES OF
RBAR** 2

SEE

SIGNIFICANCE LEVEL
COEFFICIENT

** ** *** * * * * *

FREEDOM 205
.99586127

530. 54369

• 174082
STAND. ERROR
*** * * **** * * *

542.2134
5888146E-O1

• 5744315E-O1
3195819E-O1

.5204124E-01
• 3824902E-O1
3628758E-O1

1 CONSTANT 0 0 2926.664

2 H 26 1 1.494685

3 H 26 2 - .5053061

4 N 27 0 -.6382120
5 N 27 1 .4695861
6 N 27 2 .5072586E-O1
7 N 27 3 .8775555E-02

T-STATISTIC
** ** *** * *** *

5. 397623
25.38464
-8. 796629

-19.97022
9.023346
1. 326200

.2418336

T-STATISTIC
*** * ** ***** *

FROM 1967: 5 UNTIL 1984:
OBSERVATIONS 212

R**2 .84938348

SSR .28882997E+09
DURBIN-WATSON 1.99959603

Q( 42) 50.0075

NO. LABEL VAR
*** ******* ***

0
27
27

27
27



SIC 32

FROM 1967: 5

OBSERVATIONS
R**2

1 CONSTANT
2 H
3 H
4 N
5 N
6 N
7 N

DEGREES OF
RBAR**2
SEE

COEFFICIENT
************

0 18. 16011
1 1.273020
2 -.2726517
0 -.4229396
1 .2513702
2 .9339714E-O1
3 .7285187E-O1

FREEDOM 205
99693286

42.638049

• 246478

STAND. ERROR
** * **** *** * *

25.5 1898
• 6586822E-o1

6617350E-01
3846323E -0 1.

.532 79O3E-01

4593459E-O1
• 4042233E-O1

T-STATISTIC
** * *** * * *** *

.7116314
19.32678

-4. 120255

-10. 99595

4.717996
2. 033264

1. 802268

FROM 1967: 5 UNTIL 1984: 12
OBSERVATIONS 212
R**2 .90009804
SSR 1247176.8
DURBIN-WATSON 1.99274176
Q( 42)= 59.2499
NO. LABEL VAR
*** ******* ***

LAG
***

-A8 -

UNTIL 1984: 12
212

• 99702008
SSR 372690.67
DtJRBIN-WATSON 2.07243596
Q( 42)= 47.8775
NO. LABEL VAR LAG
*** ******* *** ***

SIGNIFICANCE LEVEL

0
26
26
27
27
27
27

DEGREES OF FREEDOM 207
RBAR**2 .89816757
SEE 77.620929

SIGNIFICANCE LEVEL .406397E-o].
COEFFICIENT STAND. ERROR

************ ************
1 CONSTANT 0 0 83.88150 43.86879
2 N 27 1 .6228767 .6930236E-o].

1.912100

3 N 27 2 .2304147
8.987814

4 N 27 3 .3109415E-o1
.8169732E-Oj.

.8174648E-o1
2.820346

5 N 27 4
.3803730

T-STATISTIC
** ** *** ** ** *
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FROM 1967: 5 UNTIL 1984: 12
OBSERVATIONS
R**2

212
.99708798

SSR 4188275.7
DURBIN-WATSON 1.96751237

Q( 42) 30.0658
NO.
***

CONSTANT
H
H
N
N
N
N

FROM 1967: 5 UNTIL 1984: 12
OBSERVATIONS 212

R**2 .83239651

SSR 18817841.

DURB IN-WATSON 1. 98682059

Q( 42)= 38.4423
NO. LABEL VAR
**, ******* ***

1 CONSTANT 0

2 N 27

3 N 27

4 N 27

5 N 27

127. 0239

• 4558927E-01
• 4318655E-O1
3301801E-O1
5584720E-O1
• 4478908E-O1
3827991E-01

3.067097
35.42 758

-14.63681
-22. 65311

10. 83114

.1652132
1. 356205

T-STATIS'i
**** * ** ** * * *

-A9 -

FREEDOM 205
99700275

142. 93570

DEGREES OF
RBAR**2
SEE

LABEL VAR
******* ***

LAG
***

SIGNIFICANCE LEVEL .915647
COEFFICIENT

************

1

2

4
5
6

7

STAND. ERROR
***** ** * ** * *

T-STATISTIC
**** ** * ** * * *

O 0 389.5945
26 1 1.615117
26 2 - .6321131
27 0 -. 7479607
27 1 .6048886
27 2 .7399748E-02
27 3 .5191541E-O1

DEGREES
RBAR'2
SEE

OF FREEDOM 207
.82915779

301. 50861

SIGNIFICANCE LEVEL .627928
LAG COEFFICIENT STAND. ERROR
*** ************ ***********
0 389.6951
1 .8844811 •6997483E-O1 12.63999

2 .4174468E-01 .9333905E-O1 .4472370

3 .3522219E-03 .9360508E-O1 .376285OE-02



SIC 34

FROM 1967: 5
OBSERVATIONS
R**2 .99713524
SSR 5985290.7
DURBIN-WATSON 2. 15419265
Q( 42)= 80.7023
NO. LABEL VAR LAG
*** ******* *** ***

1 CONSTANT
2 H
3 H
4 N
5 N
6 N
7 N

12

DEGREES OF
RBAR**2
SEE

SIGNIFICANCE LEVEL
COEFFICIENT

**** * * * ** * **

FREEDOM 205
.99705140

170. 86995

• 306484E-.03

STAND. ERROR
*** * * ** ** * * *

FROM 1967: 5 UNTIL 1984: 12
OBSERVATIONS 212
R**2 .78432160
SSR 12807049.
DURBIN-WATSON 1.98017670
Q( 42)= 58.0853
NO. LABEL VAR LAG
*** ******* *** ***

-A 10-

UNTIL 1984:
212

T-STATISTIC
** * ** ** ** * * *

26 1 1.292611
26 2 -.2798400

19.19201

27 0 -.6198806 .4908722E-O1
-4.081322

27 1 .4213045 .6884974E-01
-12.62815

27 2 .6018794E-o].
6.119188

27
1.079793

DEGREES OF
RBAR**2
SEE

FREEDOM 207
.78015390

248. 73641

SIGNIFICANCE LEVEL .503526E-o].
COEFFICIENT STAND. ERROR

************ ************
2 N 27 1 .5082484 .6945684E-o1
3 N 27 2 .3246834

7.317471

4 N 27 3 •7831119E-0].
4.129917

5 N 27 4
1.000341

T- STAT I STIC
************



1 CONSTANT

2 H

3 H
4 N
5 N
6 N
7 N

12
DEGREES OF
RBAR**2
SEE

COEFFICIENT
************

0 0 400.9500

26 1 1.552202

26 2 -.5584924
27 0 -.8110167
27 1 .5822032

27 2 .1105920

27 3 .2834249E-O1

FREEDOM 205
.99729182

154. 11487

STAND. ERROR
** * * * ** ** * * *

117. 5866
.5292 142E-01

• 5199758E-O1
• 2884205E-01
.4756996E-O1
• 3076776E-O1

3410362E-O1

3. 409826

29. 33033

-10. 74074

-28. 11924

12. 23888

3. 594412

.8310699

FROM 1967: 5 UNTIL 1984:
OBSERVATIONS 212

R**2 .65350319

SSR 28852582.
DURBIN-WATSON 1.99459187

Q( 42)= 78.3388

NO. LABEL VAR
*** ******* ***

1 CONSTANT 0
2 N 27
3 N 27
4 N 27

5 N 27

12
DEGREES OF
RBAR2
SEE

FREEDOM 207
.64680760

373.34228

• 565677E-03

STAND. ERROR
** ** * ***** * *

-A 11-

SIC 35

FROM 1967: 5 UNTIL 1984:
OBSERVATIONS 212

R**2 .99736883

SSR 4869035.8

DURBIN-WATSON 2.43301991
Q( 42)= 80.3215

NO. LABEL VAR LAG
*** ******* *** ***

SIGNIFICANCE LEVEL .33865 1E-03
T-STATISTIC
*** ** * * **** *

SIGNIFICANCE LEVEL
LAG COEFFICIENT
*** ************

T-STATISTIC
** ** ** *** ** *

0 491.6597
2.1206471 .1479388 .6976116E-01
5.4461202 .3613292 .6634616E-01
5.8871713 .4032880

1213699E-O1 .7279230E-01 -.16673464 -.



1 CONSTANT
2 H
3 H
4 N
5 N
6 N
7 N

DEGREES
RBAR**2
SEE

O 0 242.1957
26 1 1.409585
26 2 -.4097124
27 0 -. 7465420
27 1 .4398262
27 2 .1140802
27 3 .1209181

OF FREEDOM 205
.99606760

110. 15389

88. 4 1002

6329802E-01
• 6373124E-01
• 4002698E-O1
• 6106390E-O1
4285989E-01
4388313E-o1

2.739460
22. 26901

-6.428753
-18. 65097
7. 202720
2. 661701
2.755457

-A 12-

SIC 36

FROM 1967: 5 UNTIL 1984: 12
OBSERVATIONS 212
R**2 .99617943
SSR 2487445.1
DURBIN-WATSON 2.20857829
Q( 42)= 59.0752
NO. LABEL VAR LAG
*** ******* *** ***

SIGNIFICANCE LEVEL .419842E-01
COEFFICIENT STAND. ERROR T-STATISTIC

************ ************

FROM 1967:
OBSERVATIONS
R**2

5 UNTIL 1984: 12
212

.71028777
DEGREES
RBAR**2
SEESSR 7909549.4

DURB IN-WATSON 1.98392087
Q( 42)= 46.2011
NO. LABEL VAR
*** ******* ***

OF FREEDOM 207
70468947

195. 47476

SIGNIFICANCE LEVEL .302871
LAG COEFFICIENT STAND. ERROR
*** ************ *,**********

1 CONSTANT
2 N
3 N
4 N
5 N

0
27
27
27
27

0
1

2
3

4

328.7746
.3953073
.2638675
.2418712
• 5811976E-02

144.8035
• 6968295E-o1

726399 1E-Ol
• 7373056E-0i.
7037213E-o1

T-STATISTIC
* ** * * * *** * *

2.270488
5. 6 72942

3. 632541
3.280473
82589 18E-01



1 CONSTANT
2 H
3 H
4 N
5 N
6 N
7 N

12
DEGREE S

RBAR**2
SEE

0 0 1294.413

26 1 1.441687
26 2 -.4391590
27 0 -. 7982100
27 1 .5295063

27 2 .7459051E-01

27 3 .3475817E-01

OF FREEDOM 205
.99635248

363.04476

186699
STAND. ERROR
*** * ** ** ** * *

237. 0771
.660547 1E-Ol

6620127E-01
27352 19E-01
.575287 1E-Ol

• 2926520E-01
.284209 1E-Ol

5. 459882

21. 82564

-6.633695
-29. 18268

9. 204209

2. 5487 78

1. 222979

-A 13-

SIC 37

FROM 1967: 5

OBSERVATIONS
R**2

UNTIL 1984:
212

.99645620

SSR 27019308.
DURBIN-WATSON 2.00011997

Q( 42)= 49.9536

NO. LABEL VAR LAG
*** ******* *** ***

SIGNIFICANCE LEVEL
COEFFICIENT
***** * * * * ** *

T-STATISTIC
***** * **** * *

FROM 1967: 5 UNTIL 1984: 12

OBSERVATIONS 212 DEGREES OF

R**2 .52107518 RBAR**2

SSR .20287503E+09 SEE

DURBIN-WATSON 2.00436204

Q( 42) 54.7768 SIGNIFICANCE LEVEL

NO. LABEL VAR LAG COEFFICIENT
*** ******* *** *** ************

FREEDOM 207
.51182060

989.98617

893759E-01
STAND. ERROR
************

440.2129
• 6970998E-01
.729 1481E-O1

7344729E-O1
7032173E-01

1 CONSTANT 0 0 1310.556
2 N 27 1 .3818978

3 N 27 2 .1742641

4 N 27 3 .2243827

5 N 27 4 .5057087E-O1

T- STATISTIC
************

2.977096
5. 478381

2. 389969

3. 055017

.7191357



R**2
SSR
DURB IN-WATSON
Q( 42)= 31.4343
NO. LABEL VAR
*** ******* ***

1 CONSTANT
2 H
3 H
4 N
5 N
6 N
7 N

LAG

DEGREES
RBAR**2
SEE

o 43.19661
1 .9647422
2 .2419852E-0].
0 -.5624113
1 . 1549046
2 .2177688
3 .1603241

OF FREEDOM 205
.96092198

46. 927807

STAND. ERROR
** * * * **** *

54. 68571
6952590E-o1
7009648E-oj
720 1133E-01

7995057E-01
717 1438E-01

7323630E -0 1

7899068
13. 87601

3452173
7.81004O
1. 937505

3.036613
2.189134

FROM 1967: 5
OBSERVATIONS
R**2

1 CONSTANT
2 N
3 N
4 N
5 N

UNTIL 1984: 12
212

70981433

0 0 88. 12154
27 1 .2539888
27 2 .3422988
27 3 .3102004
27 4 .8778049E-02

OF FREEDOM 207
70420687

45.619870

42. 76069

• 6927458E-01

6833741E-O1
6820658E -0 1

687 1102E-01

T-STATISTIC
*** ***** ** * *

2. 060807
3. 666407

5. 008952

4. 547953

1277531

U4-

SIC 38

FROM 1967: 5 UNTIL 1984: 12
OBSERVATIoNS 212

96203321
451454.92

2.01439173

SIGNIFICANCE LEVEL .883422
COEFFICIENT

***** * * *
0

26
26
27
27
27
27

T-STATISTIC
************

DEGREE S

RBAR**2
SEESSR 430802.71

DURBIN-WATSON 1.99710127
Q( 42)= 39.5400
NO. LABEL VAR LAG
*** ******* *** ***

SIGNIFICANCE LEVEL .579515
COEFFICIENT STAND. ERROR

************ ************



Table 1

Second Moments, H = Finished goods - Backlogs

Second Moments, H = Finished goods + WIP - Backlogs

In Tables 1 and 2, columns (6) and (7) essentially calculate var(N)-var(Q) and var(S)-

var(Q) in a fashion that is robust to the presence of unit roots. See the text.

(1) (2)
var(01
var(S)var(Q) var(N) var(S) var(N)

4.709 8.856 4.540 .53 1.04

(6) (7)

.359 .525

.167 .272 .160

.177 .375 .161

.081 .143 .076

.880 2.161 .866

-2cov(N,AH) -2cov(S,M)
- var(H) - var(M)

Industry

Aggregate
6.875 -.156

Stone, Clay
.006 -.002

Glass
.98 .303 .017

Primary
.68

Metals
1.04 .196 -.012

Fabricated
.62

Metals
1.10 .372 -.021

Non-electrical
.47

Machinery
.57 1.06 .061 .008

Electrical
Machinery

.41 1.02 1.305 -.011
Transportation
Equipment .78 1.08 .000 -.001
InstrumentS

Table 2

(1) (2) (3) (4)
var(0l
var(N)

(5)
var(0)

var(S)

(6)

-2cov(N,AH)
- var(H)

(7)

-2cov(S,I)
- var(M)

Industry var(Q) var(N) var(S)

Aggregate 5.604 8.940 4.585 .63 1.22 5.631 -1.417

Stone, Clay .060 .062 .058 .97 1.03 .006 -.002

Glass
.72 1.01 .280 .008

Primary .375 .525 .370

Metals
.164 -.044

Fabricated .193 .279 .168
.

.69

Metals
1.35 .290 -.108

Non-electrical .232 .388 .172 .60

Machinery
.74 1.35 .049 -.034

Electrical .094 .128 .070

Machinery
.46 1.14 1.115 -.146

Transportation .904 1.983 .791

Equipment
.007 .005 1.11 1.57 -.000 -.004

Instruments .008



Table 3

Response to Unit Demand Shock, H Finished goods + WIP - Backlogs

Period
Durables
N Q H

Stone, Clay and Glass

0 1.00 .36 -.64 0
1 .65 .39 -.90 1

1.00 .58 -.42

12 .42 .40 -1.92 12
.65 .50 -.55

24 .19 .20 -1.91 24
.47 .47 -.49

60 .02 .04 -1.07 60
.34 .35 -.41

120 .00 .01
.13 .13 -.28

Primary Metals
Period N Q H

Fabricated Metals
Period N Q H

0 1.00 .25 -.75
1 .89 .37 -1.26 1

1.00 .38 -.62

12 .36 .42 -1.74 12
.51 .43 -.70

24 .13 .18 -1.03 24
.38 .27 -1.98

60 .01 .02 -.18 60
.23 .13 -3.24

120 .00 .00
.06 -.09 -7.36

Machinery
Period N Q H

0
1

12
24
60
120

1.00
15

• 25

• 15

.03

Electrical Machinery
Period N Q

• 19

16
24
15

.04

-.81
-.80

-1.27
-1.31
-.98

H

.00 .01 -.43

-.75
.40 .23 -.91

12 .28 .28 -1.16
24 .15 .15 -1.23

.02 .02 -1.28

Transportation
Period N Q H Period

Instruments
N Q H

0 1.00 .20 -.80
1 .38 .25 -.92

1.00 .44 -.56

12 .16 .13 -1.49 12
.25 .29 -.53

24 .05 .04 -1.74 24
.29 .30 -.40

60 .00 -.00 -2.14 60
.17 .18 -.30

120 .00 -.00 -2.80
.04 .04 -.16
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