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1 Introduction

Are business cycles driven by fluctuations in credit supply? Recent work in

macroeconomics and finance suggests that they are.1 However, in a frictionless

economy, funds should flow to the highest value projects, and credit market

conditions should not impact real investment and subsequent economic growth.

For a so-called credit cycle to drive recessions, as the literature suggests,

financial frictions need to be severe, or agents irrational.

In this paper, we show how credit cycles can appear to drive asset prices

and real outcomes, when in fact it is only investment opportunities that matter.

We build a frictionless model in which investment opportunities vary over time

and differentially across firms. Taken together, these two plausible assumptions

are enough to generate the observed co-movements between credit variables

and macro aggregates, creating the appearance of a credit cycle.

Our first contribution is empirical and designed to sharpen the implications

of earlier studies. We show that a measure of dispersion in credit quality

across firms is a robust predictor of both asset prices and macroeconomic

aggregates. Specifically, dispersion in credit quality forecasts excess returns

on investment-grade and high-yield corporate bonds as well as output and

investment growth. This joint predictability of bond returns and of economic

outcomes is at the core of the idea of a credit cycle. Previous research has

used the predictability of bond returns to validate various measures as reliable

indicators of credit market conditions, while forecasting power for economic

aggregates suggests that credit market conditions have real consequences.

We base our measure of credit dispersion on the differential observed credit

quality of firms that are repaying their debt versus those that are issuing debt.

Unlike previous studies, we show that this measure is driven almost entirely by

variations in the credit quality of firms repaying debt. This finding plays an

1See, for example, Baron and Xiong (2016), Gilchrist and Zakraǰsek (2012), Greenwood
and Hanson (2013), Muir (2016).

1



important role in our modeling choices.

Our second contribution is to develop a tractable quantitative model of

optimal firm behavior that accounts for these findings. We assume a cross

section of heterogeneous firms making investment decisions under uncertainty.

Shocks that are large and rare impact firms’ capital stocks and productivity

levels. The degree of risk varies both cross-sectionally and in the time series.

These simple assumptions have powerful implications. Periods of elevated

risk co-occur with low investment rates and low valuations in the aggregate.

Moreover, firms with greater risk exposure cut their investments even relative

to the aggregate; when risk increases, their relative valuations and their credit

worthiness declines. These firms optimally repay their debts at the fastest

rates.

We show that, in both model and data, recessions are associated with

spikes in dispersion in credit quality, driven by firms that are repaying their

debt. Moreover, because most firms optimally choose lower investment during

recessions, changes in measured credit quality predict future adverse economic

outcomes, even if a rare shock does not actually occur. When calibrated to

match average investment rates and measures of cross-sectional dispersion,

our model successfully replicates the sign and the magnitude of the predictive

regressions results found in the data.

Our paper relates to an empirical literature that examines credit market

variables as leading indicators of the business cycle. The empirical findings of

Greenwood and Hanson (2013) motivate our focus on the role of time variation

in the cross sectional dispersion in credit quality. However, they use the finding

that increases in their measure of dispersion in credit quality forecasts low

future bond returns to conjecture that dispersion is mostly driven by the

low quality of bond issuers, not repayers, and thus that bond issuer quality

deteriorates over the credit cycle. Unlike us, Greenwood and Hanson also do

not demonstrate the ability of their measure of credit dispersion to predict
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core macro-aggregates like GDP and investment growth. Although we focus

on somewhat different empirical evidence, our model is also consistent with

their main findings.

Similarly, Gilchrist and Zakraǰsek (2012) show that credit spreads, con-

structed using proprietary bond data, forecast recessions. Our measure, though

constructed using only Compustat data, has similar predictive power. While

Gilchrist and Zakraǰsek focus on credit market limitations as an explanation of

their findings, our results show how risk premia measures, based on bond data,

can forecast macro-aggregates even in a frictionless model. 2

The model developed in the paper is related to a now vast literature on

corporate investment, asset prices, and the business cycle, and perhaps more

specifically to recent papers by Gourio (2012) and Kuehn and Schmid (2014).

We deploy the same neoclassical investment approach to address a substantively

different set of questions relating to the credit cycle. Finally, our paper is in

similar spirit to recent work by Santos and Veronesi (2016) who show that

stylized facts about the movements in leverage and asset prices during “credit

booms” arise naturally in a frictionless endowment economy and by Haddad,

Loualiche, and Plosser (2017) who use a reduced-form model to argue that

it is risk premia, combined with optimal decision making of firms, that drive

variation in buyout activity.

The rest of the paper proceeds as follows. Section 2 describes our empirical

results. Section 3 describes the model, and Section 4 discusses the model’s

main implications. Section 5 provides additional evidence, motivated by the

model, concerning investment, payout, and predictability. The final section

summarizes and concludes.

2Bordalo, Gennaioli, and Shleifer (2016) and Lopez-Salido, Stein, and Zakraǰsek (2015)
also use the Greenwood and Hanson measure in making the case for credit cycles. Atkeson,
Eisfeldt, and Weill (2014) use a distance-to-default based measure to forecast recessions.
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2 Empirical Findings

In this section we develop a new indicator of credit market conditions that is

a robust predictor of both macro aggregates and bond excess returns. Our

measure shares several similarities with that of Greenwood and Hanson (2013)

but differs in some key respects discussed below. Crucially, it also suggests a

very different interpretation of the evidence and the role that credit supply

shocks play in business cycle fluctuations. We then show that our measure is a

good predictor of changes in macroeconomic activity and returns on financial

assets at multiple horizons.

The main source of data for firm and portfolio level statistics is the

CRSP/Compustat merged database. We limit the analysis to nonfinancial

firms, excluding regulated and public service firms. To be included in our study,

a firm must have positive sales, assets, and book value of equity. Data for the

relevant macroeconomic aggregates comes from FRED, while our bond indices

are from Barclays. We use quarterly data covering the period between 1976 and

2013. Appendix A provides further details on the definitions and construction

of variables used in the study. We provide several additional empirical results

in an Online Appendix.

2.1 Characteristics of Debt Repayers and Issuers

To document time-variation in credit market conditions we start by sorting

firms into quintiles each quarter according to their net debt repayment. We

define net debt repayment as the change in book value of equity minus the

change in book value of assets, which we normalize by the book value of assets

in the previous quarter. By definition, firms with negative net debt repayment

have issued debt during the quarter.

Table 1 summarizes the cross-sectional distribution of repayment activity

over the sample period. The table shows that there are about as many
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debt issuers as repayers during a typical quarter. Debt issuance is especially

concentrated in quintile 1, while repayments are concentrated in quintile 5.

Henceforth we concentrate on the properties of these extremes and refer to

them as the portfolios of issuers and repayers, respectively.

Table 2 reports statistics for the two extreme portfolios. Beyond their

descriptive value, these results establish an early basis for our subsequent

analysis. We first compute the Expected Default Frequency (EDF) using the

Merton (1974) model. That is, for firm i, we compute:

EDFit = N

− log Vit
Bit
−
(
µVit −

σ2
Vit

2

)
σVit

 , (1)

where Vit is the market value of the firm i’s assets, Bit is the book value of debt,

µVit is the expected asset return, and σVit its asset return volatility. Details on

the computation of these values are included in Appendix A.

Table 2 highlights some important differences and similarities between the

two extreme portfolios. First, net debt repayers have a higher average expected

default frequency than issuers: 0.7% per quarter for repayers versus 0.2% for

issuers.3 Repayers have a strikingly lower investment rate than issuers: 4%

versus 8.5%. Leverage for repayers is slightly higher than for issuers (32% versus

26%). On the other hand, repayers and issuers are of similar size (logarithm of

book assets is about 4.77 for both repayers and issuers).

Its popularity and wide acceptance make EDF a natural benchmark to

measure credit quality. However, as we report in the Online Appendix, the

default probability measure of Campbell, Hilscher, and Szilagyi (2008) leads to

very similar findings.

3EDF is highly positively skewed. Most firms exhibit an EDF that is equal to zero; the
averages are driven by the right tails in both portfolios.
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2.2 Dispersion in Expected Defaults

The previous section shows that an important difference between repayers and

issuers is their Merton (1974) default probability. When measured over the

sample, average EDF for firms in the top debt repayment quintile (the repayers)

is significantly higher than that for firms in the bottom quintile (the issuers).

We now examine time-series properties of these default probabilities.

In each period, we construct a cross-sectional average of EDFs for repayers

and for issuers. Panel A of Figure 1 shows the time series of the cross-sectional

averages. Notably, the average EDF for repayers lies above that for issuers in

nearly every period. That is, the findings in Table 2 hold not only on average

but at each point in time. The average EDF for repayers is also far more

volatile than that for issuers, taking on especially high values during recessions.

For instance, while the average EDF for repayers is below 2% (per quarter) for

most of the sample, it spikes to 6% during the financial crisis.

Motivated by these findings, we define dispersion in credit quality as the

difference between average EDF of repayers and average EDF of issuers:

Dispersion t =
1

N

∑
j∈Repayers

EDFjt −
1

N

∑
i∈Issuers

EDFit, (2)

where N is the number of firms in each quintile. Panel B of Figure 1 shows

the time series of Dispersion. Consistent with the discussion above, Dispersion

is positive throughout the sample, and reflects mainly time-series variation in

the EDFs for repayers.

Our measure recalls the credit quality proxy of Greenwood and Hanson

(2013). One key difference, however, is that Greenwood and Hanson substitute

the EDF actual value for each firm with the NYSE decile of the EDF. Replacing

actual EDFs with NYSE deciles obscures important features of the series; for
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example, the sign.4 As we show in Figure 1, the difference between the average

EDF of repayers and that of issuers is almost always positive. Firms that

repay debt are closer to default, as one might expect from a rational model. A

decile-based measure also obscures asymmetry: namely that it is the EDF of

repayers during recessions that drives the difference in default frequencies.

Significantly, Greenwood and Hanson’s interpretation of variation in credit

dispersion focuses on the behavior of issuers, rather than repayers (they call

their measure “Issuer EDF”). They argue that times when issuers have relatively

high EDFs are times when markets inefficiently oversupply credit. However,

our portfolio EDFs show clearly how the cross-sectional distribution is driven

by repayers that are close to default. While repayers and issuers EDFs are

not dramatically different during booms, the credit worthiness of repayers

deteriorates sharply in recessions. It is this sharply countercyclical behavior

of repayers’ default frequencies that drives the variation in EDF spreads over

time. This evidence is not an easy fit with a narrative based on inefficient

credit booms.

2.3 Predicting Macro Aggregates

A recent influential line of works shows that measures of credit conditions

forecast the business cycle (e.g., Gilchrist and Zakraǰsek, 2012). We now show

that this is also the case for our measure.

Table 3 presents results from fitting an ordinary least squares (OLS) re-

gression of the average k-quarter GDP and investment growth on Dispersion.

Specifically, we estimate the following regression

∆yt→t+k = β0 + β1Dispersiont + εt,t+k, (3)

4Another difference, which at first glance seems trivial but also obscures interpretation, is
that they subtract the average decile for repayers from the average decile for issuers rather
than the other way around.
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where ∆yt→t+k denotes the average GDP or investment growth between period

t and t + k. Panel A shows that Dispersion predicts 1-quarter ahead GDP

growth with a R2 of around 10% and a highly statistically significant coefficient.

Predictability remains statistically significant at horizons up to about one year.

Panel B shows that Dispersion is an even more powerful predictor of

investment growth. At the 1-quarter horizon, a decrease of 1 percentage point in

Dispersion, i.e. a lower spread in cross sectional default risk, is associated with a

1.74 percentage point increase in the future quarterly growth rate in investment

and a 0.41 percentage point quarterly increase in GDP. We conclude that the

cross-sectional dispersion in portfolio EDFs captures important information

about future economic conditions.

2.4 Forecasting Bond Excess Returns

Dispersion also strongly forecasts excess bond returns. Table 4 reports results

from an OLS regression of continuously-compounded realized bond returns

for investment-grade and high-yield bonds, less the continously-compounded

government bond return of comparable maturity. That is, we estimate

rxt→t+k = β0 + β1Dispersiont + εt,t+k (4)

where rxt→t+k denotes the continuously compounded excess return measured

from period t to t+ k, and rxt→t+k is the average, namely this quantity scaled

by k.

Our measure significantly forecasts excess returns on investment-grade and

high-yield bond at horizons ranging from 6 months to 2 years. R2-statistics

are economically significant, for example 14% at the one-year horizon and

11% at the 2-year horizon. For high-yield bonds, results are also strong, with

R2-statistics rising as high as 32% at the 2-year horizon. We find that a

1 percentage-point increase in Dispersion is associated with a 2.3 percentage-
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point increase in the quarterly high-yield bond return.

Researchers often interpret the predictability of excess bond returns as

evidence for periods in which investors over-supply credit (e.g. Greenwood and

Hanson (2013)). However, the time series behavior of Dispersion suggests an

alternative interpretation, which we pursue below.

3 Model

In this section we show how we can interpret the empirical findings above

through the lens of a representative agent asset pricing model with heteroge-

neous firms. The model’s structure is purposefully simple to highlight the key

mechanisms.5

We assume a continuum of firms that produce a common final good and

maximize the value of their assets by making optimal production, investment

and payout decisions. Firms differ in their productivities and in their exposures

to aggregate shocks. They own and accumulate capital by taking advantage of

stochastic investment opportunities while responding to unexpected changes in

the economic environment. In our model, these changes are characterized as

shifts in the probability of an extreme, economy-wide, adverse event.

Perhaps the most striking assumption is that we do not characterize the

firm’s choice of capital structure, relying instead on a setting in which Modigliani

and Miller (1958) holds. While this is an extreme view, it allows us to highlight

the exact the role of real production and investment decisions in generating the

main empirical findings. Importantly, it also makes it clear how credit market

frictions are not essential to replicate the empirical evidence. Methodologically,

5In particular we do not link consumption to output of firms through a market clearing
condition, but rather we value the firms using no-arbitrage. Given that our model has a
cross-section of long-lived firms, imposing market clearing would significantly complicate
the model without affecting the main economic results. Kuehn and Schmid (2014) adopt a
similar approach.
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this approach resembles that in Philippon (2009) who shows how bond prices

are informative about a firm’s investment decisions even in a frictionless setting.

3.1 The Stochastic Discount Factor

We assume all financial claims are owned and priced by an infinitely-lived

representative agent with an Epstein and Zin (1989) utility function. Let

β ∈ (0, 1) be the time-preference rate, γ relative risk aversion and ψ the

elasticity of intertemporal substitution, so that the stochastic discount factor

(SDF) equals

Mt+1 = βθ
(
Ct+1

Ct

)−γ (
St+1 + 1

St

)−1+θ
, (5)

where St is the ex-dividend wealth-consumption ratio at time t and θ = 1−γ
1− 1

ψ

.

The representative agent consumes the endowment Ct. The log of the

endowment follows the stochastic process

logCt+1 − logCt = µc + εc,t+1 + ξt+1xt+1, (6)

where εc,t+1
iid∼ N(0, σ2

c ) is the normal-times shock, and µc is the normal-times

growth rate. Conditional on time-t information, xt+1 is a Bernoulli random

variable which takes on the value 1 with probability pt and 0 otherwise. We

assume ξt+1
iid∼ N(µξ −

σ2
ξ

2
, σ2

ξ ), and independent of εc,t+1. The probability pt

follows a first-order Markov process:

log pt+1 = (1− ρp) log p̃+ ρp log pt + εp,t+1, (7)

where εp,t+1
iid∼ N

(
0, σ2

p

)
and independent of (εt+1, ξt+1, xt+1). Equation (7)

implies that the unconditional expectation of pt equals:

p̄ = exp

{
log p̃+

σ2
p

2(1− ρ2p)

}
. (8)
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In what follows, we refer to the event xt = 1 as a disaster at time t, and pt

as the disaster probability. Wachter (2013) assumes a similar structure in

continuous time.

Under assumptions (5)-(7), the wealth-consumption ratio depends on pt

alone and solves the fixed-point problem

Et

[
βθ
(
Ct+1

Ct

)1−γ (
S(pt+1) + 1

)θ]
= S(pt)

θ. (9)

Note that (9) is a first-order condition for the representative investor.

Following Barro (2006), we use as a reference asset the government bill,

which may default in the case of disaster. Formally, define a random variable

ξg,t such that ξg,t = ξt with probability q and 0 otherwise. That is, if a disaster

occurs (xt = 1), the government partially defaults with probability q, and the

resulting loss in face value is the same, in percentage terms, as the decline in

consumption.6 Under these assumptions, the price of the government bill is

Pgt = Et[Mt+1(1− xt+1 + eξg,t+1xt+1)]

= Et[Mt+1(1− xt+1 + (1− q + qeξt+1)xt+1)], (10)

while the yield is the inverse of (10). The realized return is

Rg,t+1 =
1− xt+1 + eξg,t+1xt+1

Pgt
. (11)

While outright government default is possible, this assumption mainly captures

the tendency of inflation and currency devaluation to lower the real values of

debt in the event of a disaster.

6Conditional on a disaster, the default event is independent of the disaster size.
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3.2 Firms

The production sector comprises a continuum of heterogeneous firms. Firms

maximize the present value of their distributions, taking the investors’ stochastic

discount factor as given.

3.2.1 Technology

Firm i uses capital Kit to produce output Yit according to the Cobb-Douglas

production function

Yit = z1−αit Kα
it, (12)

where α determines the returns to scale of production and zit is the firm-specific

productivity level. We assume zit follows the process

log zi,t+1 = log zit + µi + εc,t+1 + φiξt+1xt+1 + ωi,t+1. (13)

During normal-times, firm-i productivity grows at rate µi and is subject to the

same shocks as consumption (εc,t+1). Idiosyncratic shocks also hit each firm:

we let ωi,t+1
iid∼ N (0, σ2

ω), and assume ωi,t+1 and ωj,t+1 are independent for

i 6= j, and that ωi,t+1 is independent of other t+ 1 shocks for all i. Importantly,

firms are exposed to the same Bernoulli shocks as consumption through the

term φiξt+1xt+1. The term φi captures heterogeneous exposure to these shocks.

We set firm-specific normal-times growth at

µi = µc + log
(
E[eξt+1xt+1 ]

)
− log

(
E[eφiξt+1xt+1 ]

)
, (14)

so that firms grow, on average, at the same rate. For simplicity, we assume

firms have the same exposure to εc,t+1. Note that this structure implies that

firms are subject to common and idiosyncratic productivity shocks, as well as

to a shock that is independent of these, common across firms, and that affects
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the distribution of future productivity.

3.2.2 Investment Opportunities

The law of motion for firm i’s capital stock is:

Ki,t+1 =
[
(1− δ)Kit + Iit

]
eφiξt+1xt+1 , (15)

where δ is depreciation and Iit is firm i’s investment at time t. Equation 15

captures the depreciation cost necessary to maintain existing capital stock. It

also, following the approach of Gourio (2012), captures destruction of capital

that occurs during disasters. This can proxy for either literal capital destruction

(in the case of war), or misallocation of capital due to economic disruption.

Firms face costs when adjusting capital (Hayashi, 1982). We assume that

each dollar of added productive capacity requires 1 + λ(Iit, Kit) dollars of

expenditures, where

λ (Iit, Kit) = η

(
Iit
Kit

)2

Kit, (16)

and where η > 0 determines the severity of the adjustment cost. Firm i’s

payout to investors is thus

Πit = z1−αit Kα
it − Iit − λ (Iit, Kit) . (17)

3.2.3 Firm Value, Optimal Investment and Payout

To solve the firm’s problem, it is helpful to define the planned capital stock,

K̃it = Kit
eφiξtxt

, namely what Kt would be if there were no disaster. Equation 15

implies that planned capital obeys the law of motion

K̃i,t+1 = (1− δ)K̃ite
φiξtxt + Iit. (18)
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Firm i therefore solves the following fixed-point problem:

Vi(K̃ite
φiξtxt , zit, pt) = max

Iit,K̃i,t+1

[
z1−αit

(
K̃ite

φiξtxt
)α
−Iit−λ

(
Iit , K̃ite

φiξtxt
)

+

Et[Mt+1Vi(K̃i,t+1e
φiξt+1xt+1 , zi,t+1, pt+1)]

]
,

subject to (18), where Vi is cum-dividend value for firm i.

Appendix B characterizes the full model solution. Optimal investment for

each firm i satisfies the Euler equation

Et

[
Mt+1R

I
i,t+1

]
= 1, (19)

where the endogenous return to capital accumulation, RI
i,t+1, equals

RI
i,t+1 =

eφiξt+1xt+1

1 + λI (Iit, Kit)

(
α
Yi,t+1

Ki,t+1

− λK (Ii,t+1, Ki,t+1) + (1− δ)
(

1 + λI (Ii,t+1, Ki,t+1)
))

.

(20)

Given this optimal investment choice, investor payout relative to the book

value of assets equals

Πit

Kit

=

(
zit
Kit

)1−α

− Iit
Kit

− λ (Iit, Kit)

Kit

. (21)

The quantity Πit/Kit is the analogue of repayment in the model. Equation

(21) directly links investment and payout choices. In particular, issuers are

firms with negative payout, and thus relatively high investment rates, a feature

evident in the summary statistics reported in Table 2.

3.2.4 Debt Claims

Separating total investor payout between exact debt and equity claims requires

specific assumptions about capital structure. However, virtually all existing
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capital structure models will preserve the strong positive relation between

investment rates and security issuance. We thus choose to abstract from

any specific form of financing frictions driving the choice of leverage and

debt repayments and impose an exogenous capital structure under the classic

Modigliani-Miller paradigm. Abstracting from financing frictions has the

advantage of better highlighting the key role of investment and profitability in

generating the type of phenomena often perceived as an “credit cycle”.

Under the classic Modigliani-Miller irrelevance conditions, financial decisions

do not affect a firm’s real decisions and can be constructed independently from

them. We assume that each firm is endowed with an exogenous amount of debt

with face value of Bit and specify the following partial adjustment model of

leverage

bi,t+1 − bit = κ1i (vit − vi,t−1). (22)

where bit = Bit/zit and vit = Vit/zit and we calibrate the value κ0i to match

observed leverage ratios for each portfolio of firms.

Given the series for Bit and Vit as well as asset returns Vi,t+1/(Vit −Πit) we

can compute the value of EDFit for each firm i at time t using equation (1).

To compute the return on debt we assume that, at time t, firm i repays the

face value Bit unless it defaults, in which case it repays a proportion ν of value

Vit. Default occurs when Vi,t+1 < Bit. We also assume that, if disaster occurs

without default, corporate debt suffers the same loss as government debt (see

Section 3.1). Under these conditions, the price of the debt claim equals:

Dit = Et

[
Mt+1(Bit1Vi,t+1>Bit(1− xt+1) + (1− q + qeξt+1)Bit1Vi,t+1>Bitxt+1

+ νVi,t+11Vi,t+1<Bit)
]
,

while the return is

Rit = (Bit1Vi,t+1>Bit(1−xt+1) + eξg,t+1Bit1Vi,t+1>Bitxt+1 +νVi,t+11Vi,t+1<Bit)
1

Dit

.

Importantly, although bondholders may experience losses on their claims, we
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assume that there is no deadweight loss and the value of the firm remains

unchanged and equal to Vit.

3.2.5 Aggregation and the Cross Section of Firms

Given an exogenous distribution of firms f(φi) it is straightforward to construct

any relevant economy-wide aggregates. Specifically, we compute aggregate

output and investment as

Yt =

∫
Yitdf , It =

∫
Iitdf, (23)

where Iit is the optimal investment for firm i and Yit is the resulting output.

4 Model Implications

We now describe the quantitative implications of our model and compare them

with the empirical results in Section 2. We solve the model using standard

numerical methods and simulate the resulting artificial economy to investigate

its properties. Section 4.1 describes our parameter choices. Section 4.2 compares

summary statistics from the model to those in the data. Section 4.3 describes

the model solution and illustrates its dynamics using impulse-response functions.

We then directly compare regressions in data simulated from the model to

those in the historical data in Section 4.4. Our quantitative results are based

on averaging 400 independent samples with 38 years (152 quarters) of firm-level

data. Each sample path contains 2500 firms. Appendix C provides more

computational details.

4.1 Calibration

To match the sampling frequency in the data, we calibrate the model at a

quarterly frequency. Tables 5 and 7 report the values of our key parameters.
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We choose the normal-times growth rate and volatility, µc and σc to match

post-war U.S. consumption data. Due to their nature as rare events, precise

calculations of the probability and distributions of rare events are not possible.

We choose parameters that are conservative given prior studies. We set the

average probability of a disaster p̄ to be 2% per annum (Barro and Ursua (2008)

estimates 2.9% based on OECD countries and 3.7% based on all countries).

We assume the average consumption lost in a disaster state is 30% with a

volatility of 15% (Backus, Chernov, and Martin, 2011). These values are also

conservative given that 30% is close to the average disaster size, and that the

distribution of disasters appears to have a tail that is much fatter than that

implied by the normal distribution.7

The process for pt is latent to the econometrician. We assume values that

give a reasonable amount of volatility and persistence, while implying stability

of the numerical solution. We set the autoregressive coefficient to be 0.94

(quarterly) with an unconditional standard deviation of 2.13. We solve for

the equilibrium wealth-consumption ratio using (9), assuming a seven-node

Markov chain for pt.

Given the wealth-consumption ratio, the SDF follows from (5). We then

compute yields and returns on the government bill rate from (10) and (11). We

follow Barro (2006) and many subsequent studies, and choose the probability of

government default conditional on disaster to be 40%. We calculate population

moments in simulated data. We calibrate the model so that average yield on

government debt in the model matches the average government bill rate, and so

that the average premium on the consumption claim, E
[
S(pt+1)+1
S(pt)

Ct+1

Ct
−Rg,t+1

]
,

matches the unlevered equity premium. We match the latter with a value of γ

of 3.7, while the former implies a value of β equal to 0.99. Following Gourio

(2012), we set ψ to equal 2. Table 6 reports moments for the government bill

7We use per-capita annualized data on personal consumption expenditures from the BEA.
We compute quarterly values from annual data by dividing by 4 (µc) and by 2 (σc).
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yield and the consumption claim.8

For firms, we set the returns-to-scale parameter α = 0.7 (e.g. Cooper and

Ejarque, 2003). We set depreciation δ = 4% per quarter to match the average

investment-to-capital ratio in the data, and we choose η to match the volatility

of investment growth relative to the volatility of output growth in the data.

The process for firm-specific productivity (13) combines a normal component

with differential sensitivities, φi to disaster realizations. As a result, firm-level

investment and repayment decisions reflect a mixture of temporary variation

in individual investment opportunities and differential exposure to aggregate

shocks. The value of these sensitivities are assumed to be uniformly distributed

between 1 and 1.5. Because our results are based on the highest and lowest

quintiles, they are not particularly sensitive to the form of this distribution.9

We assume a debt recovery rate of 60%, which equals the value-weighted

recovery rate for senior unsecured debt estimated by Moody’s Investor Services

(Ou, Chlu, and Metz, 2011). Finally, the parameters characterizing the exoge-

nous process for debt, κ0i and κ1i , are set to match the average portfolio leverage

ratios. Given this and the different shock sensitivities above, the volatility of

the idiosyncratic shocks is set to match portfolio expected default frequencies.

4.2 Cross-section of Firms

Table 8 shows the characteristics of firms in the two extreme repayment and

issuance portfolios on our simulated data, and compares these with historical

data. Our results are all based on averages across 400 artificial economies with

a long burn-in sample. In each artificial sample, we sort firms based on their

debt repayment activity, defined as in (21). The table shows that, on average,

8We compute the return on the value-weighted CRSP index from 1951 to 2013. Following
Barro and Ursua (2008), we adjust for leverage by dividing by 1.5.

9The average value for φ is chosen so that the firm with this φ has an unlevered equity
premium equal to the consumption claim. Because of the implied dividend policy, this φ is
greater than one.
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repayers have higher default probabilities (EDF) than issuers, with magnitudes

similar to those in the data. Specifically, we find that repayers (firms in the

top repayment quintile) have an average EDF of 0.008, compared with 0.007

in the data, while issuers (firms in the bottom repayment quintile) have an

EDF of 0.001, compared with 0.002 in the data. Repayers have lower rates of

investment — 0.02 versus 0.07 for issuers – and higher (prior) leverage ratios.

These patterns match well with what we found earlier in the data. While

we chose parameters so that firm types would have the correct average lever-

age, it is reassuring that this implies the correct relation between repayment

characteristics, leverage, EDF, and investment.

4.3 Dynamics of Investment, Value, and Credit Quality

To understand the joint dynamics of quantities, firm values, EDF, and risk

premia, we calculate the response of these quantities to an shift in the main

state variable, the probability of a disaster, p.

Figure 2 shows the response of firm value, investment, output, and EDF

to an increase in the probability of a disaster. Specifically, we consider the

effects of a shift in disaster probability from its initial average level to 2.3%

per quarter. Along these simulated paths, we set productivity shocks to zero.10

The figure reports the results for a firm with exposure φi = 1, although the

patterns are identical for all values of φi.

The first panel shows the path of the disaster probability: it increases, and

then mean-reverts to its average level over the subsequent periods. The middle

panel shows the response of the key corporate policies. When the disaster

probability increases, firms reduce their investment immediately. The reason

is that future cash flows produced by investment are now riskier: they have

a lower mean, and are discounted at a higher risk premium. At the same

10To compute EDF values in these figures we set µVi
= µ1 and σVi

= 0.34.
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time, greater risk leads agents to invest more for precautionary reasons. At

our parameter values, the first two effects dominate the second, and the firm

reduces investment. Because of adjustment costs, investment remains depressed

over several years.

For the same set of reasons, namely cash flows from investment are riskier

and lower in expectation, firm value declines. Over the subsequent years, firm

value drifts upward, representing the required compensation to investors for

bearing the risk of a disaster which, in this sample, has not occurred. Because

the firm’s decisions at t− 1 determine capital at time t (in the absence of a

disaster), and because productivity is itself not affected, output responds only

with a lag. Eventually, however, lower levels of investment reduce the stock of

capital and, with it, firm output. We see both of these responses in the middle

panel.

The third panel shows the response of EDF. Because firm value falls when

pt rises, EDF increases on impact. The magnitude of the increase in EDF is

much greater than the decline in firm value. This is because EDF represents

how close the firm is to default. This will be true unless firms implausibly

reduce debt at a faster rate than the decline in total firm value. Over time

firm value rise, debt levels adjust and the probability of default starts to fall.

Figure 3 focuses on our measure of dispersion, and its relation to macro-

aggregates. We calculate Dispersion in the model as in the data: by simulating

a cross-section of firms and sorting them into repayers and issuers. As we have

seen, when the probability of disaster rises, the typical firm’s value falls. Firms

do not suffer this effect equally, however. The values of those that are more

exposed to disaster risk, through high φi, will fall by more, moving these firms

closer to default. However, these firms also suffer from reduced investment

opportunities. As a result these same firms are then much more likely to repay

their debt. This endogenous response of firms leads to a cross section where

debt repayers exhibit especially high values of EDF.
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Putting these facts together, we find that cross sectional dispersion in credit

quality will increase following an increase in the probability of disaster. In

addition, because all firms face lower investment opportunities, investment

falls throughout the economy, and, eventually, so does output. Figure 3 shows

how lower levels of investment, and a slow decline in output, follow a spike in

Dispersion.

Although the model implies that repayers are high EDF firms, they are not

necessarily high φi firms. Improvements in pt, as well as idiosyncratic shocks,

can lead high-sensitivity firms to invest and become net issuers. At these times,

these firms’ value increases and EDF falls. Moreover, the relation between

EDF and economic conditions is asymmetric because EDF cannot go below

zero. In good economic times, all firms are far from their default boundary,

whereas recessions naturally produce a rise in the cross-sectional dispersion of

EDF.

4.4 Predictive Regressions in Model and Data

We now use the intuition developed in Section 4.3 to interpret the predictability

findings in model and data.

4.4.1 Predictability of Macro Aggregates

Table 9 shows not only that the intuition in the model directionally matches

the data, but that the model produces many similar quantitative findings.

Specifically, Table 9 shows how our quantitative model replicates the empirical

finding that an increase in Dispersion predicts a sizable decline in both aggregate

output and investment growth. While R2 coefficients are smaller in the model

at some horizons as compared with the data, the coefficients on Dispersion are

also of a similar magnitude, and the predictability is economically meaningful

in both.
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The reasons for this predictability are already apparent in Figure 3. In

the model, a rise in Dispersion indicates an increase in the probability of

economic disaster. This is because some firms are affected more strongly by

this probability than others, and EDF is very sensitive to fluctuations in overall

firm value. Importantly, because firms that are most affected are also those

repaying debt, a sort based on repayment behavior can have much predictive

value for macro aggregates.

Although the declines in investment and output growth follow a deterioration

in credit quality and create what might appear to an econometrician as a

tightening of credit, this is clearly not the case. This response of output and

investment is driven solely by variation in risk premia and associated investment

opportunities.

4.4.2 Predictability of Bond Returns

Besides capturing the predictive power of Dispersion for macro-aggregates,

our model also explains why Dispersion predicts excess returns on corporate

bonds, the key empirical finding of Greenwood and Hanson (2013). Because

Dispersion predicts excess bond returns, it can be interpreted as risk premium

measure. Hence, by linking a risk premium to future movements in aggregate

output, our model also rationalizes the findings in Gilchrist and Zakraǰsek

(2012) and others.

Table 10 shows the model’s implications for the predictability of bond

returns. To construct theoretical counterparts to the investment-grade and

high-yield portfolios we first sort firms in the model, in every period, according

to their EDF and construct five credit quality portfolios. We label the firms in

the lowest credit quality portfolio as High Yield and the remaining quintiles as

Investment Grade. We then construct bond return indices for both types by

weighting individual firm returns by the face value of their debt.

Table 10 shows that the model can also replicate the economically significant
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R2 and coefficients found in the data. In the model, Dispersion predicts excess

bond returns precisely because it proxies for changes in the probability of a

disaster. In the model, bonds are priced by the same economic agents who

make real investment decisions. When the probability of a disaster rises, bonds

are more likely to default. Moreover, the world has also gotten riskier; the

marginal utility of investors rises, leading investors to demand a greater risk

premium on bonds. These effects cause bond prices to fall, and their required

rates of return to rise. Note that Table 4 does not indicate higher rates of

return due to a Peso problem (namely, investors are simply receiving payments

in states without disasters). Rather, a high disaster probability leads to a

higher population risk premium.

Thus, while Greenwood and Hanson (2013) interpret low values of Dispersion

as a sign of irrational exuberance in credit markets (which is then followed

by low subsequent bond returns), our findings suggest such low values should

instead be viewed as indicators of a period of low aggregate risk. When

Dispersion is low, even firms with poor investment opportunities (repayers)

remain unlikely to default. Periods of low excess returns naturally follow from

this drop in required premia.

Finally, even though true risk premia in our model are always positive, the

OLS regressions predict, at a 1-quarter horizon, negative excess returns on

investment-grade debt for a substantial number of samples. This is because

the relation between the disaster probability, default dispersion, and expected

returns is quite non-linear. Hence, fitted excess returns will sometimes be

negative, even without assuming investors are irrational.

5 Additional Results

Our model raises the question of whether we should distinguish between debt

repayments and total repayments (debt plus equity) to all investors. It is
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interesting to ask whether the predictive power of Dispersion in the data hinges

on this distinction.

To answer this question, we now create portfolios of firms based not on

just their net debt repayment, but instead according to their total security

repayments or, equivalently, (the negative of) asset growth. Asset growth is

defined as the change in book assets, divided by the value of assets in the

previous period; by the firm’s accounting identity. In our model asset growth is

simply equal to the firm’s investment rate. The economic mechanism proposed

in Section 3 then implies that sorts based on asset growth should also identify

risky firms.

Figure 4 displays a reconstructed empirical dispersion measure, but now

computed using the spread in EDF values between the bottom asset growth

quintile and the top one. It is immediately apparent that this time series

behaves very much like our benchmark series that was based on debt repayments

alone. Moreover, as we report in our Online Appendix, the key predictability

regressions for returns and for economic growth obtained using a broader

repayment measure also produce very similar results.

This supports our view that the main driver of fluctuations in credit quality

in the data is the optimal investment response of firms to underlying shocks.

As implied by our model, the behavior of debt repayment, per se, does not

hold any unique predictive power.11

6 Conclusions

This paper makes three contributions. First, we show that firms who are

on average repayers of securities have an Expected Default Frequency (EDF)

11Cooper, Gulen, and Schill (2008) show that, in the cross-section, firms that grow their
assets more earn lower subsequent returns. This finding is in the spirit of our model, which
implies that firms that are growing more are less exposed to disaster risk and have a lower
required rate of return.
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that is both higher and more sensitive to cyclical fluctuations than those who

are issuers of securities. Moreover, we observe that repayers exhibit lower

investment rates and a higher leverage before rebalancing their debt.

Second, the spread between the EDF of repayers and issuers forecasts

movements in key macroeconomic aggregates and bond returns. As a result,

this measure appears as a strong leading indicator for the economic cycle and

for bond returns. Those facts provide the basis for the theoretical analysis

which is perhaps our major contribution.

Finally, we build a rational framework where heterogeneous firms make

optimal investment decisions while facing differential exposures to a rare

economic disaster. What allows us to explain a complicated, and seemingly

unrelated set of facts with a simple model, is that the same mechanism causing

credit quality to fall for repayers also causes lower investment in the aggregate.

Lower investment naturally leads to lower output. This result occurs not only

when a higher disaster probability predicts an actual disaster, but even in the

absence of a disaster. Thus our model provides a basis for fear-driven business

cycles that are predictable, correlated with risk premia, and fully rational.
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Appendix A Variable Definitions and Data

This appendix offers a detailed description of the data sources, and variable

construction.

A.1 U.S. Economic Data

Real GDP per Capita: The data are from FRED and are in chained 2009

dollars. The series is taken from the US. Bureau of Economic Analysis and the

series ID is A939RX0Q048SBEA .

Real Investment per Capita: To compute Investment growth we use the

following data from FRED:

1. Gross private domestic investment, fixed investment, nonresidential and

residential, BEA, NIPA table 1.1.5, line 8, billions of USD, seasonally

adjusted at annual rates.

2. Personal consumption expenditures on durable goods, BEA, NIPA table

1.1.5, line 4, billions of USD, seasonally adjusted at annual rates.

3. Civilian non-institutional population over 16, BLSLNU00000000Q.

4. Gross Domestic Product, BEA, NIPA table 1.1.5, line 1, billions of USD,

seasonally adjusted at annual rates.

5. Real Gross Domestic Product, BEA, NIPA table 1.1.6, line 1, billions of

USD, in 2009 chained dollars.

6. GDP deflator equals to the ratio of 4 to 5
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A.2 Financial Data

US Corporate High Yield Index: The Barclays US Corporate High Yield

Bond Index measures the USD-denominated, high yield, fixed-rate corporate

bond market. Securities are classified as high yield if the middle rating of

Moody’s, Fitch and S&P is Ba1/BB+/BB+ or below. Bonds from issuers

with an emerging markets country of risk, based on Barclays EM country

definition, are excluded. The data range from 1987 to 2013. We use continuously

compounded returns.

US Credit Index (Investment Grade): The Barclays US Credit Index

measures the investment grade, US dollar-denominated, fixed-rate, taxable

corporate and government-related bond markets. It is composed of the US

Corporate Index and a non-corporate component that includes foreign agencies,

sovereigns, supranationals and local authorities. The data range from 1976 to

2013. We use continuously compounded returns.

Intermediate Treasuries - 10 yr constant maturity: Returns for the 10

year constant maturity treasury bonds are from GFD. We use continuously

compounded returns.

Bond Excess Returns: Barclays’ High Yield or Credit Index net of 10 yr

constant maturity Treasury.

Equity returns: Firm level equity returns come from CRSP.

A.3 Firm Characteristics: Definitions and Data

Firm-level data are from CRSP/Compustat merged. We exclude companies if

their primary SIC code is between 4900 and 4999, between 6,000 and 6,999, or

greater than 9,000, as the model is inappropriate for regulated, financial, or

public service firms. Our sample starts from 1976. As regards market-based

firm-level variables, we use only common ordinary shares to compute the market

capitalization.
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Debt Repayment: Debt repayment is the change in equity minus the change

in assets, scaled by lagged assets. Book equity is stockholder’s equity, plus

deferred taxes and investment tax credits (txditcq) when available, minus

preferred stock (pstkq). For stockholder’s equity we use seqq ; if seqq is missing

we use the book value of common equity (ceqq) plus the book value of preferred

stock (pstkq); finally, if still both of those are missing, we use assets (atq) minus

total liabilities (ltq) minus minority interest (mibq). For each year, we compute

debt repayment in the top and in the bottom NYSE quintile and split all the

firms accordingly.

EDF: EDF is computed using the procedure in Bharath and Shumway (2008).

For each firm i and year t, we use the EDF equation (1) where Vit is the

market value of the firm’s equity plus debt, Bit is the face value of the firm

i’s debt computed as one-fourth of its short-term debt (dlcq) plus one-eight

of its long-term debt (dlttq), µVi is the firm’s asset drift and σiV the asset

volatility. Consistent with Merton (1974) model, µVi is the logarithm of

the firm’s average stock (gross) return over the prior 12 months. σVi =

Eit
Eit+Bσit

σEi +
Bσit

Eit+Bσit
(0.05+0.25σEi) where Eit refers to the market capitalization

of firm i at time t, σEi is estimated using the last 12 months and Bσ
it equals

the short-term debt (dlcq) plus half of long-term debt (dlttq), an estimate

commonly used by scholars for the market value of debt.

31



Appendix B Firm’s Problem

We define firm value recursively, using the Bellman equation. The main issue

with the Bellman equation in this setting is that capital at time t+ 1 (Kj,t+1),

which is usually chosen at time t subject to the budget constraint, is stochastic

as of time t on account of the disasters. We therefore define a concept which

we refer to as planned capital, namely the capital that the firm would have in

the absence of disasters. Planned capital is

K̃j,t+1 =
Kj,t+1

eφjξt+1xt+1
.

The value function for firm i then solves

Vj(K̃jte
φjξtxt , zjt, pt) = max

Ijt,K̃i,t+1

[
z1−αjt

(
K̃jte

φjξtxt
)α
− Ijt − λ

(
Ijt , K̃jte

φjξtxt
)

+

+ Et

[
Mt+1Vj(K̃j,t+1e

φjξt+1xt+1 , zj,t+1, pt+1)

]]
(B.1)

s.t. K̃j,t+1 = (1− δ)K̃jte
φjξtxt + Ijt. (B.2)

Let qjt be the Lagrange multiplier on (B.2). The first-order conditions with

respect to the level of investment and next-period planned capital are

[Ijt] qjt = 1 + λI

(
Ijt, K̃jte

φjξtxt
)

(B.3)

[K̃j,t+1] qjt = Et

[
Mt+1e

φjξt+1xt+1
∂Vj,t+1

∂K̃j,t+1

]
. (B.4)

Taking the derivative on both sides of (B.1), we obtain

eφjξtxt
∂Vjt

∂K̃jt

= αz1−αjt K̃α−1
jt eαφjξtxt−λK̃

(
Ijt, K̃jte

φjξtxt
)

+qjt(1−δ)eφjξtxt . (B.5)

The derivatives of the adjustment cost function with respect to investment
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and capital are

λI

(
Ijt, K̃jte

φjξtxt
)

= 2η

(
Ijt

K̃jteφjξtxt

)
(B.6)

λK̃

(
Ijt, K̃jte

φjξtxt
)

= −η

(
Ijt

K̃jt

)2

e−φjξtxt . (B.7)

Substituting (B.5) and (B.7) into (B.4), yields

(B.8)

qjt = Et

Mt+1e
φjξt+1xt+1

αz1−αj,t+1

(
K̃j,t+1e

φjξt+1xt+1

)α−1

+ η

(
Ij,t+1

K̃j,t+1

)2

e−2φjξt+1xt+1 + qj,t+1(1− δ)

 .
Linking actual to planned capital, we rewrite (B.8) in terms of the original

state variables:

(B.9)qjt = Et

[
Mt+1e

φjξt+1xt+1

(
α
Yj,t+1

Kj,t+1

+ η

(
Ij,t+1

Kj,t+1

)2

+ qj,t+1(1− δ)

)]
.

We use (B.3) and (B.6) to find the Euler equation in the text:

Et

Mt+1
eφjξt+1xt+1

1 + 2η
Ijt
Kjt

(
α
Yj,t+1

Kj,t+1

+ η

(
Ij,t+1

Kj,t+1

)2

+ (1− δ)
(

1 + 2η
Ii,t+1

Kj,t+1

))
︸ ︷︷ ︸

RIj,t+1

 = 1.

(B.10)

With no adjustment costs, equation (B.10) simplifies to

Et

Mt+1 e
φjξt+1xt+1

(
α
Yj,t+1

Kj,t+1

+ 1− δ
)

︸ ︷︷ ︸
RIj,t+1

 = 1. (B.11)
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Appendix C Model Solution

We use numerical dynamic programming to obtain approximations of the

Value function V (·) and Investment policy function I(·) which solve the firm’s

optimization problem. However, because our firm-specific productivity is a

random walk, it is useful to scale individual variables so that we work with a

stationary model. Hence, we define the following stationary variables for firm

j:

yjt =
Yjt
zjt
, kjt =

Kjt

zjt
, ijt =

Ijt
zjt
, vjt =

Vjt
zjt

The stationary output and the firm’s capital law of motion now become:

yjt = kαjt (C.1)

kj,t+1 =
(1− δ)kjt + ijt
eµj+εc,t+1+ωj,t+1

(C.2)

The problem is complicated by the fact that the agent does not choose

kt+1, because this object is stochastic. So, we define k̃j,t+1 =
K̃j,t+1

zjt
to be the

level of capital next period that the firm chooses so as to maximize its value.

k̃j,t+1 = kj,t+1e
µj+εc,t+1+σωωj,t+1 = (1− δ)kjt + ijt is known at time t.

The stationary value function then solves:

(C.3)

vj(kjt, pt) = max
ijt,k̃j,t+1

[
kαjt − ijt − λ (ijt, kjt)

+ Et

[
Mt+1 e

µ+εc,t+1+ωj,t+1+φjξt+1xt+1 vj(kj,t+1, pt+1)

]]

where λ (ijt, kjt) = η

(
ijt
kjt

)2

kjt.

We discretize the distributions of the i.i.d. shocks εc,t+1 and ωj,t+1 using

the method of Tauchen (1986). We discretize the process for pt using a 7-
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node Markov chain based on the method of Rouwenhorst (1995), which better

captures persistent processes (Kopecky and Suen, 2010).

For each firm j, we use an iterative procedure to jointly approximate the

value function and the investment policy function on discrete grids for capital

k ∈ [k, k̄] and disaster probability p. For each firm j, we start with an initial

guess for the value function v0j (kj,0, p) and iterate over the Bellman equation

recursively so that after l iterations, firm j solves:

vl+1
j (kjt, pt) = max

ijt,k̃j,t+1

kαjt − ijt(kjt, pt)− λ (ijt(kjt, pt), kjt)

+ Et

[
Mt+1 e

µj+εc,t+1+ωj,t+1+φjξt+1xt+1 vlj(kj,t+1, pt+1)
]

s.t. kj,t+1 =
(1− δ)kjt + ijt(kjt, pt)

eµj+εc,t+1+ωj,t+1

After solving the problem of each individual firm j we obtain model-implied

moments by taking the averages across 400 simulated economies of 38 years

each. Each economy consists of 2500 companies equally distributed across 5

equidistant values of the disaster sensitivity φj ∈ [1, 1.5]. The burn-out sample

for each simulation consists of the first 1000 periods.

35



Table 1. Debt Repayment by Portfolios

Portfolio 10% 50% 90% Average

1 (Issuers) −0.311 −0.092 −0.048 −0.178
2 −0.043 −0.027 −0.015 −0.028
3 −0.015 −0.006 0.001 −0.007
4 0.002 0.010 0.021 0.011
5 (Repayers) 0.024 0.050 0.160 0.080

Source: CRSP/Compustat merged

Notes: Each quarter, we sort firms into quintiles based on debt repayment. We

define debt repayment as the change in book value of equity minus change in book

value of assets over the quarter divided by lagged book value of assets. The table

shows the average debt repayment in each portfolio, as well as the 10th, 50th, and

90th percentile. Negative values imply issuance of debt during the quarter. Data are

from 1976 to 2013.



Table 2. Characteristics of Repayers and Issuers: Data

Variable 10% Median 90% Average Standard Dev.

EDF - Repayerst 0.000 0.000 7.08e−07 0.007 0.062

EDF - Issuerst 0.000 0.000 5.10e−09 0.002 0.035

Investment - Repayerst 0.000 0.024 0.098 0.038 0.067

Investment - Issuerst 0.006 0.044 0.188 0.082 0.137

Leverage - Repayerst−1 0.030 0.275 0.697 0.322 0.248

Leverage - Issuerst−1 0.018 0.211 0.606 0.265 0.224

Size - Repayerst−1 2.224 4.609 7.534 4.766 2.038

Size - Issuerst−1 2.181 4.622 7.565 4.768 2.059

Source: CRSP/Compustat merged, CRSP

Notes: Each quarter, we sort firms into quintiles based on debt repayment. We

define debt repayment as the change in book value of equity minus change in book

value of assets over the quarter divided by lagged book value of assets. Repayers

are the firms in quintile five, while issuers are the firms in quintile one. EDF is the

quarterly expected default frequency from the Merton (1974) model. Investment is

quarterly capital expenditures minus sale of property divided by the book value of

property plant and equipment. Leverage is financial debt in current liabilities plus

long-term debt divided by market value of assets (market value of equity plus book

value of debt). Size is the logarithm of book value of assets in millions of dollars. We

restrict the analysis to companies whose assets are greater than $1 Mln. Investment

is Winsorized at the 1 percent level. Data are from 1976 to 2013.



Table 3. Forecasting Macroeconomic Quantities: Data

Horizon k

1 2 3 4 8

Panel A: GDP

β −0.41∗∗∗ −0.32∗∗∗ −0.25∗∗∗ −0.21∗∗∗ −0.09∗

[−6.42] [−4.69] [−3.85] [−3.30] [−1.59]

R2 0.1128 0.0999 0.0774 0.0622 0.0186

Panel B: Investment

β −1.74∗∗∗ −1.34∗∗∗ −0.94∗∗∗ −0.64∗∗ −0.13
[−6.53] [−4.45] [−3.45] [−2.78] [−0.67]

R2 0.1548 0.1262 0.0762 0.0429 0.0030

Source: Bureau of Economic Analysis, CRSP/Compustat merged, CRSP

Notes: Estimation of

∆yt→t+k = α+ β Dispersiont + εt+k.

The table reports coefficients and R2 statistics from predictive regressions of average

GDP (Panel A) and average investment growth (Panel B) over various horizons onto

dispersion in credit quality (Dispersion). We define dispersion as average EDF of

repayers minus average EDF of issuers. We construct t-statistics from Newey and

West (1987) standard errors, with k− 1 lags, where k is the regression horizon. Data

are quarterly from January 1976 until September 2013. Statistical significance levels

at 5% and 1% are denoted by ** and ***, respectively.



Table 4. Forecasting Excess Returns on Bonds: Data

Horizon k

1 2 3 4 8

Panel A: Investment Grade

β 0.73 0.96∗∗∗ 0.91∗∗∗ 0.81∗∗∗ 0.50∗∗∗

[1.24] [2.87] [3.06] [3.35] [3.04]

R2 0.0323 0.1054 0.1292 0.1363 0.1101

Panel B: High Yield

β 2.28∗∗ 2.50∗∗∗ 2.30∗∗∗ 2.06∗∗∗ 1.56∗∗∗

[2.05] [3.21] [3.48] [3.63] [6.62]

R2 0.0806 0.1589 0.2180 0.2435 0.3221

Source: Barclays Capital, Global Financial Data, CRSP/Compustat merged, CRSP

Notes: Estimation of

rxt→t+k = α+ β Dispersiont + εt+k.

The table reports coefficients and R2 statistics from predictive regressions of average

excess log returns on bonds over various horizons onto dispersion in credit quality

(Dispersion). Panel A reports results for investment grade bonds; panel B reports

results for high yield bonds. We define dispersion as average EDF of repayers minus

average EDF of issuers. We construct t-statistics from Newey and West (1987)

standard errors, with k− 1 lags, where k is the regression horizon. Investment-grade

bond data are quarterly from January 1976 until September 2013. High-yield bond

data are quarterly from January 1987 to June 2013. Statistical significance levels at

5% and 1% are denoted by ** and ***, respectively.



Table 5. Parameter Values for the Aggregate Economy

Description Parameter Value

Relative risk aversion γ 3.67
Rate of time preference β 0.99
Elasticity of intertemporal substitution ψ 2
Persistence of probability of disaster ρp 0.94
Volatility of log probability of disaster σp 0.73
Average probability of disaster p 0.0052
Mean of the disaster distribution µξ log(1− 0.30)
Volatility of the disaster distribution σξ 0.15
Average growth in log consumption (normal times) µc 0.00495
Volatility of log consumption growth (normal times) σc 0.0089
Probability of government default given disaster q 0.40

Notes : The representative agent has Epstein and Zin (1989) utility with risk
aversion γ, elasticity of intertemporal substitution ψ, and time discount factor
β. The aggregate endowment is given by

Ct+1 = Cte
µc+εc,t+1+ξt+1xt+1

where xt+1 is a disaster indicator that takes the value 1 with probability

pt. The variable ξt+1 is normally distributed with mean µξ −
σ2
ξ

2
and standard

deviation σξ. We assume that the logarithm of pt follows a Markov process with
persistence ρp and volatility σp. In the model, we assume that the government
bill experiences a loss, conditional on a disaster, with probability q; in this case
the percentage loss is equal to the percent decline in consumption.
We calibrate the model at a quarterly frequency.



Table 6. The Consumption Claim and the Government Bill Rate

Moment Data Model

Average government bill yield 0.0101 0.0101

Government bill yield volatility 0.0222 0.0243

Average premium on the consumption claim 0.0532 0.0598

Volatility of the consumption claim return 0.1226 0.0903

Notes: This table reports aggregate moments in the data and in simulations
from the model. All data and model moments are in annualized terms. In the
data we compute the average premium and volatility on the consumption claim
using the CRSP value-weighted return, divided by 1.5 to adjust for leverage.
Data are from 1951-2013. Model moments are from a quarterly simulation of
length 250,000 years.



Table 7. Parameter Values for Individual Firms

Description Parameter Value

Returns to scale α 0.70
Depreciation rate δ 0.04
Adjustment cost on capital η 7.5
Volatility of idiosyncratic TFP shock (normal times) σω 0.13
Minimum sensitivity to disasters mini(φi) 1.00
Maximum sensitivity to disasters maxi(φi) 1.50
Recovery value given default ν 0.60

Notes : The table shows parameter values for the firm’s problem. We assume
that each firm i has a Cobb-Douglas production function of the form

Yit = z1−αit Kα
it

where the logarithm of the firm-specific productivity level, zit, follows a random
walk process given by:

log zi,t+1 = log zit + µi + εc,t+1 + φiξt+1xt+1 + ωi,t+1

Firms net cash flows to its investors are given by

Π(Kit, zit) = z1−αit Kα
it − Iit − η

(
Iit
Kit

)2

Kit

and the law of motion for each firm’s capital stock is:

Ki,t+1 =
[
(1− δ)Kit + Iit

]
eφiξt+1xt+1

We calibrate the model at a quarterly frequency. Values for the sensitivity of
disaster are in equal increments starting from the minimum and going to the
maximum.



Table 8. Characteristics of Net Repayers and Issuers

Variable Data Model

EDF - Repayerst 0.007 0.008

EDF - Issuerst 0.002 0.001

Investment - Repayerst 0.038 0.020

Investment - Issuerst 0.082 0.070

Leverage - Repayerst−1 0.322 0.359

Leverage - Issuerst−1 0.265 0.314

Notes : We simulate 400 paths at a quarterly frequency of length equal to the
1976–2013 sample. Each sample path contains 2500 firms. Along each sample
path we follow the procedure for forming repayment-based portfolios described
in Table 2. We report averages for the portfolios over the sample paths and
compare them with averages from the data. EDF, Investment, and Leverage
are computed in a method comparable to the data. For example, investment
is Iit in the model divided by capital Kit. Leverage is defined using the book
value Bit of debt divided by the market value of assets Vit.



Table 9.
Forecasting Macroeconomic Quantities

Horizon k

1 2 3 4 8

Panel A: ∆ GDP t→t+k

β

Data −0.41∗∗∗ −0.32∗∗∗ −0.25∗∗∗ −0.21∗∗∗ −0.09∗

Model −0.52 −0.54 −0.44 −0.42 −0.21

R2

Data 0.1128 0.0999 0.0774 0.0622 0.0186

Model 0.0130 0.0158 0.0172 0.0200 0.0215

Panel B: ∆ Investment t→t+k

β

Data −1.74∗∗∗ −1.34∗∗∗ −0.94∗∗∗ −0.64∗∗ −0.13

Model −6.06 −2.33 −0.89 −0.12 1.87

R2

Data 0.1548 0.1262 0.0762 0.0429 0.0030

Model 0.0920 0.0208 0.0074 0.0071 0.0084

Notes: Estimation of

∆yt→t+k = α+ β Dispersiont + εt+k

The table reports the OLS coefficients and R2 from the predictive regressions of

macroeconomic aggregates onto Dispersion both in the data and (the median values)

within the model. The empirical results were already presented in table 3. The

quarterly empirical sample spans from January 1976 to September 2013. For the

model, simulations are run on N = 400 time-series paths of the same length as the

empirical sample.



Table 10.
Forecasting Excess Returns on Bonds

Horizon k

1 2 3 4 8

Panel A: Investment Grade

β

Data 0.73 0.96∗∗∗ 0.91∗∗∗ 0.81∗∗∗ 0.50∗∗∗

Model 0.20 0.11 0.10 0.08 0.05

R2

Data 0.0323 0.1054 0.1292 0.1363 0.1101

Model 0.5517 0.2511 0.2025 0.1682 0.0937

Panel B: High Yields

β

Data 2.28∗∗ 2.50∗∗∗ 2.30∗∗∗ 2.06∗∗∗ 1.56∗∗∗

Model 2.16 1.55 1.11 0.97 0.68

R2

Data 0.0806 0.1589 0.2180 0.2435 0.3221

Model 0.4835 0.2194 0.1808 0.1577 0.1021

Notes: Estimation of

rxt→t+k = α+ β Dispersiont + εt+k

The table reports the OLS coefficients and R2 from predictive regressions for the

average returns on investment grade and high yield bonds in excess of the government

bond rate both in the data and (the median values) within the model. The empirical

results were already presented in table 4. To construct the investment grade and

high-yield indices within the model, each period we sort companies based on their

expected default frequency. High yield bonds are bonds issued by firms in the top

quintile of EDF. Investment grade bonds are bonds issued by firms in the first quintile

of EDF. Simulations are run on N = 400 time-series paths of the same length as the

sample for January 1976 to September 2013 at the quarterly frequency.



Panel A: Expected default frequency (EDF) of repayers and issuers
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Panel B: Dispersion in credit quality

1980  1985  1990  1995  2000  2005  2010  

0

0.01

0.02

0.03

0.04

0.05

Fig. 1. Expected default frequency and its dispersion. Each quarter, we sort
firms in the data into quintiles based on debt repayment. We define debt repayment
as the change in book value of equity minus change in book value of assets over the
quarter divided by lagged book value of assets. Repayers are the firms in the top
quintile; issuers are the firms in the bottom. EDF is the quarterly expected default
frequency from the Merton (1974) model. Panel A shows the EDF for repayers
(solid line) and for issuers (dashed line). Panel B shows the difference: the EDF for
repayers minus the EDF for issuers. Shaded areas correspond to NBER recessions.



Fig. 2. Impulse response function of investment, output and firm value
(middle) and EDF (right) to an increase in disaster probability (left). The
figure shows the response to a temporary increase in the quarterly disaster probability.
We simulate 20,000 series for the economy. In each series, we enforce the second
observation on pt following the burn-in sample, to equal 2.2%. We set productivity
shocks to zero. We show investment, output, and firm value scaled by firm-specific
productivity. All quantities are for φi = 1.



Fig. 3. Impulse response function of dispersion (right axis), and invest-
ment and output (left axis) to an increase in disaster probability. The
figure shows the response to a temporary increase in the quarterly disaster probabil-
ity from 0.52% to 2.23%. To calculate impulse responses, we repeat the procedure
described in the caption of Figure 2. Given series for firm-level variables, we calculate
debt repayment, EDF, and Dispersion. Dispersion is defined as the average EDF of
repayers minus average EDF of issuers.
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Fig. 4. Dispersion based on asset growth. Each quarter we sort firms in the
data into quintiles based on change in book value of assets divided by total assets.
The figure shows the average EDF of the bottom asset growth quintile minus the
average EDF of the top asset growth quintile. The shaded areas correspond to NBER
recessions.




