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ABSTRACT

Researchers use a variety of methods to estimate total factor productivity (TFP) at the firm level and,
while these may seem broadly equivalent, how the resulting measures relate to the TFP concept in
theoretical models depends on the assumptions about the environment in which firms operate.  Interpreting
these measures and drawing insights based upon their characteristics thus must take into account these
conceptual differences. Absent data on prices and quantities, most methods yield ``revenue productivity"
measures. We focus on two broad classes of revenue productivity measures in our examination of
the relationship between measured and conceptual TFP (TFPQ). The first measure  has been increasingly
used as a measure of idiosyncratic distortions and to assess the degree of misallocation. The second
measure is, under standard assumptions, a function of fundamentals (e.g., TFPQ). Using plant-level
U.S. manufacturing data, we find these alternative measures are (i) highly correlated; (ii) exhibit similar
dispersion; and (iii) have similar relationships with growth and survival. These findings raise questions
about interpreting the first measure as a measure of idiosyncratic distortions. We also explore the sensitivity
of estimates of the contribution of reallocation to aggregate productivity growth to these alternative
approaches. We use recently developed structural decompositions of aggregate productivity growth
that depend critically on estimates of output versus revenue elasticities. We find alternative approaches
all yield a significant contribution of reallocation to productivity growth (although the quantitative
contribution varies across approaches).
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1 Introduction

A ubiquitous and influential finding in the empirical literature on firm dynamics is that there
is large dispersion in measured productivity across establishments within narrowly defined
industries. This finding has generated much analysis of the causes and consequences of such
dispersion. Explanations of possible causes include curvature in the profit function that prevents
the most productive firm from taking over an industry, frictions in adjustment of factors and
the entry and exit of plants, and distortions that drive wedges in the forces pushing towards the
equalization of marginal products across plants. In terms of consequences, there is a burgeoning
literature on the connection between reallocation dynamics, growth and productivity. Many
papers have found that more productive plants are more likely to grow and less likely to exit,
implying that the reallocation of inputs observed across plants is productivity enhancing. In
like fashion, there is increased attention to reasons why these reallocation dynamics may vary
over the business cycle and across countries and in turn how these account for differences in
economic performance across time and countries. In an important related area of inquiry, a
recent theoretical and empirical literature hypothesizes that gains from opening markets to
trade are due to the improved allocation of resources induced by trade.1

While there is considerable consensus that accounting for the dispersion of productivity
and its connection to the allocation of activity are important for understanding differences
in economic performance, there is not a consensus about the basics of estimating plant-level
productivity. Given that typical micro datasets contain information about revenues and input
expenditures but not quantities, the majority of results are based on what have become known as
revenue productivity measures. How these measures are related to TFPQ, the standard concept
in theoretical models of technical efficiency, depends on the assumptions about the environment
in which establishments operate. It has become increasingly recognized that there is firm-level
price heterogeneity within narrow sectors reflecting at least in part product differentiation and
thus some degree of market power at the firm level. In the presence of such heterogeneity, the
relationship between TFPQ and revenue productivity reflects the nature and extent to which
firm-level prices are endogenous.

A variety of methods are available to researchers to estimate firm-level revenue productivity
in the absence of direct measures of prices and quantities. One approach, actively used by the
statistical agencies in official aggregate and industry-level productivity statistics, is based on the
cost-shares of input expenditures. We call the productivity measure implied by this approach
tfprcs (where cs denotes cost-shares). If plants are cost-minimizing and the assumption of
constant returns to scale holds, then cost-shares are valid estimates of output elasticities and
the implied revenue productivity measure will be a product of output prices and physical
productivity. Other approaches estimate elasticities using regression techniques. We call the
implied revenue productivity measure tfprrr (where rr denotes regression residual). Econometric
issues aside2, the most important property that distinguishes cost-share-based methods from
regression-based techniques is the fact that absent data on quantities or further assumptions
about demand, the latter yields revenue elasticities of the revenue function, while the former
yields output elasticities of the production function.

While the point that regression methods identify revenue elasticities has been recognized

1See the survey in Syverson (2011) for relevant cites to the findings in the literature and the theoretical and
empirical literature that has developed in light of the large dispersion in productivity and its relationship to
reallocation, growth and aggregate productivity.

2We discuss these issues in detail below.
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before, the implications for the conceptual differences in the interpretation of revenue produc-
tivity measures that emerge from these alternatives have not been widely recognized.3 In a
highly influential paper that has led to a burgeoning literature on measuring and exploring the
implications of misallocation, Hsieh and Klenow (2009) show, under specific assumptions about
demand and production technology, that tfprcs should exhibit no dispersion if marginal revenue
products are being equalized.4 This insight led to the identifying assumption that tfprcs can
be interpreted as a measure of idiosyncratic firm-level distortions. That is, dispersion in such
distortions can be used to measure the extent of misallocation – more dispersion in tfprcs trans-
lates into lower allocative efficiency and productivity. In contrast, we show below that, under
the same assumptions that yields this interpretation of tfprcs, tfprrr is conceptually different.
Specifically, tfprrr is a measure reflecting fundamentals – for example, TFPQ.

Since both of these approaches are empirically implementable with firm-level data on rev-
enues and inputs, exploring the relationship between these alternative measures provides a
means for evaluating the relationship between what has increasingly been used as a measure
of distortions and a measure of fundamentals.5 We find that that tfprcs and tfprrr are highly
correlated and exhibit similar dispersion. In addition, we explore the relationship between
both measures and survival and growth. Theory implies that firms with higher realizations of
fundamentals in a period should, holding initial employment in the period constant, be less
likely to exit and more likely to exhibit employment growth. Hence the relationship between
survival and growth and realizations of productivity should hold for tfprrr. However, under the
interpretation that tfprcs reflects distortions there is no inherent reason that these predictions
carry over to this measure. We find the relationship between productivity, growth and survival
holds equally well for both measures.

These findings raise questions about the interpretation of tfprcs as an idiosycratic measure
of firm-level distortions. Under this interpretation, our findings imply that firms with high id-
iosyncratic distortions must also have high idiosyncratic fundamentals. In turn, firms with high
idiosyncratic distortions are more likely to survive and grow. Indeed, tfprcs predicts growth and
survival at least as well as tfprrr. There are some antecendents for our findings in the literature.
Using price and quantity data for a small number of products in the U.S., Foster, Haltiwanger,

3De Loecker (2011) amongst others has noted the factor versus revenue elasticity distinction. A few recent
papers provide some discussion and evidence on these issues, see Foster, Grim, Haltiwanger, and Wolf (2016b),
Haltiwanger (2016) and Decker, Haltiwanger, Jarmin, and Miranda (2017). Foster, Grim, Haltiwanger, and Wolf
(2016b) is a short companion paper that focuses on the relationship between tfprrr and the measure of tfpr that
uses output elasticities without imposing constant returns to scale. Haltiwanger (2016) develops the theoretical
relationship between tfprcs and tfprrr but has no independent empirical analysis. Decker, Haltiwanger, Jarmin,
and Miranda (2017) investigate the declining business dynamism as possibly being driven by a rise in adjustment
costs. They show that their findings are robust to using either tfprcs or tfprrr.

4The connection between idiosyncratic distortions and misallocation has been pursued by many researchers.
The framework itself was developed by Restuccia and Rogerson (2008). However, Hsieh and Klenow (2009)
developed the identifying assumption that tfprcs reflects distortions. Others have used alternative identification
assumptions. For example, see Bartelsman, Haltiwanger, and Scarpetta (2013). By far the most popular
methodology for identifying distortions is that developed by Hsieh and Klenow (2009). See, for example, recent
work using this approach to understand the slowdown in productivity in Europe (Gopinath, Kalemli-Ozcan,
Karabarbounis, and Villegas-Sanchez (2015)).

5A related but distinct approach to explore these issues is taken by Haltiwanger, Kulick, and Syverson
(2017) who use the Foster, Haltiwanger, and Syverson (2008) data on prices and quantities for a selected set of
products to measure tfprcs, TFPQ and demand shocks directly. The direct approach has many advantages but
can only be explored for a limited set of products in the U.S. Haltiwanger, Kulick, and Syverson (2017) also
take advantage of the price and quantity data to test the demand and technology assumptions of Hsieh and
Klenow (2009). Their findings raise further questions about interpreting tfprcs as a measure of distortions.

3



and Syverson (2008), Foster, Haltiwanger, and Syverson (2016c) and Haltiwanger, Kulick, and
Syverson (2017) find that tfprcs is highly correlated with direct measures of TFPQ and demand
shocks. These studies also find that survival is increasing in tfprcs.6 A core contribution of this
paper is our use of methods that can be widely applied to firm-level databases in many coun-
tries since our approach only requires revenue productivity measures. Specifically, our approach
focuses on the distinction between tfprcs and tfprrr. Given this focus, we conduct extensive
sensitivity and robustness analysis to estimating revenue productivity under these approaches.

While our broad conclusion is that tfprcs and tfprrr are closely connected with similar prop-
erties and implications, there are non-trivial differences in the estimated revenue elasticities
across estimation methods. Moreover, examination of the differences between the factor vs.
revenue elasticities yields additional insights. Under constant returns to scale (CRTS) and
isoelastic demand (common assumptions in the literature), output elasticities estimated via
cost shares should exceed revenue elasticities. However, this pattern does not hold generally.
We investigate this further by using the methods described in Klette and Griliches (1996) to
determine output elasticities by jointly estimating revenue elasticities and demand elasticities.
Although this approach is pushing the data quite hard (given that we do not observe plant-level
prices and quantities), we find output elasticities do exceed revenue elasticities. Reconciling
these disparate findings requires that there be evidence of increasing returns. While the es-
timates of returns to scale vary substantially across industries, we find that for the average
industry there is mild increasing returns. Note this finding does not invalidate the interpre-
tation of tfprrr as a measure of fundamentals, but it does raise further questions about the
interpretation of tfprcs as a measure of misallocation.

We develop further insights about the importance of these alternative estimation methods
by exploring their implications for the contribution of reallocation to productivity growth. For
this purpose, we use the structural decompositions developed and implemented by Petrin and
Levinsohn (2012) and Petrin, White, and Reiter (2011) (PWR hereafter). These structural de-
compositions are an ideal setting for this purpose. In these decompositions, the contribution of
reallocation to aggregate productivity growth (APG) depends on the relationship between input
growth and gaps between marginal value products and marginal costs across firms. In turn, the
empirical measurement of these gaps depends critically on the estimated output versus revenue
elasticities. In particular, Petrin and Levinsohn (2012) and PWR estimate revenue functions
and revenue elasticities rather than output elasticities while their decomposition requires esti-
mates of output elasticities. Moreover, the measure of within plant productivity growth requires
adjustment for the presence of the demand elasticity in the tfprrr measure that emerges from the
revenue function estimation. We explore the sensitivity of these decompositions to these issues.
Empirically, we find that all methods yield a substantial contribution of reallocation to APG.
However, given quantitative differences in the estimated revenue elasticities across methods, we
find the quantitative contribution of reallocation, within-plant productivity growth and fixed
costs and frictions varies across specifications. In addition, we find that the implementation
that makes the adjustment from revenue to output elasticities increases the contribution of the
reallocation components. That is, the exact quantitative contribution of reallocation depends
critically on these devilish details.

The paper is organized as follows. We discuss our methodology and data in Sections 2 and 3.
Section 4 describes the effect of estimation methods on the distribution of elasticity estimates.
Section 5 describes the implications of the differences in elasticity distributions on productiv-

6Eslava (2013) finds similar results using price and quantity data for Columbia.
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ity dispersion, plant growth and survival, and aggregate productivity growth decompositions.
Section 6 concludes.

2 Methodology

2.1 Productivity measures

A useful starting point is a conceptual measure of revenue per composite input under Cobb-
Douglas technology, allowing the decomposition of demand side and supply side factors. This
measure can be written in logs as

tfpri =pi + qi −
∑
j

αjxij = pi + tfpqi, (1)

where i indexes plants, p, q and x denote output prices, quantities and inputs, respectively (with
lower case indicating logs of all of the variables), and αj are the output elasticities of the Cobb-
Douglas production function. Time subscripts are omitted in this and subsequent equations for
expositional convenience. Equation (1) makes explicit that tfpri confounds the effect of output
prices and physical productivity, denoted by tfpqi. Given that typical micro datasets contain
information about revenues and input expenditures but not quantities, this property has the
important implication that the majority of results in the empirical productivity literature are
based on what have become known as revenue productivity measures.

One typical measure is equivalent to tfpri if one is willing to assume that plants minimize
costs under constant returns to scale technology. Under these assumptions, the shares of input
expenditures in total costs, or cost shares, equal their respective output elasticities at least on
average across plants and in the long run.7 Formally,

tfprcsi =pi + qi −
∑
j

αcsj xij = tfpri. (2)

Other estimation methods rely on regression techniques to obtain revenue productivity. We
denote these measures by tfprrri in order to distinguish them from tfprcsi . Absent data on prices
and/or quantities, these methods yield revenue function estimates or elasticities, which are a
function of output elasticities and demand parameters, in general. As a result, tfprrri depends
on physical productivity (and if present demand shocks) and is not equal to either tfpri or its
estimate, tfprcsi :

tfprrri = pi + qi −
∑
j

βjxij 6=

{
tfpri
tfprcsi .

(3)

To highlight the importance of the difference relative to tfprcsi and tfpri, we denote revenue
elasticities by βj in equation (3). To gain insight into the differences, it is instructive to assume
a constant elasticity of substitution (CES) demand structure which is a key assumption in the
Hsieh and Klenow (2009) identification approach. Specifically, assume firms are not price takers
in output markets but instead operate under isoelastic, downward sloping demand conditions.
The inverse demand function can be written as Pi = Qρ−1

i where ρ − 1 is the inverse of the

7We discuss how reasonable these assumptions are below.
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price elasticity of demand with ρ < 1.8 Also, let the firm-level production function be given
by Qit = AiΠjX

αj

ij . tfpqi (the log of TFPQi) is equal to ai in this notation. Under these
assumptions, revenue elasticities are equal to product of output elasticities and ρ: βj = αjρ,
implying revenue elasticities are lower than output elasticities.

In this CES demand case, there are also implications for the interpretation of the relation-
ship between tfprcsi and tfprrri . In the absence of any frictions or distortions, marginal revenue
products for each factor will be equalized, and there will be no dispersion in tfprcsi within sectors.
Since the latter is counterfactual, Hsieh and Klenow (2009) posit the presence of idiosyncratic
distortions that can account for such dispersion. Such idiosyncratic distortions reflect firm-
specific factors that prevent the equalization of marginal revenue products. To illustrate this
point, we consider scale (output) idiosyncratic distortions such that firms are maximizing static
profits given by (1− τQi)PitQit−

∑
j wjxij and neglect relative input distortions. This implies:9

tfprcsi = ln (1/(1− τQi
)) . (4)

In contrast, these same assumptions imply:10

tfprrri = ρai. (5)

The key implication for our purposes is that under these assumptions tfprcsi is not inher-
ently a function of idiosyncratic firm-level fundamentals but tfprrri is only a function of such
fundamentals.11 It is this conceptual difference that motivates much of the empirical analysis
below. Specifically, we investigate the empirical relationship between tfprcsi and tfprrri . Doing
so requires constructing empirical estimates of these two measures to which we turn in the next
section.

Before proceeding, we note that the assumptions under which tfprcsi reflects only distortions
are very strong. If returns to scale are not constant or demand is not CES, this finding does
not hold (see, e.g., Haltiwanger, Kulick, and Syverson (2017), Haltiwanger (2016) and Foster,
Grim, Haltiwanger, and Wolf (2016b)). In contrast, the finding that tfprrri is only a function
of fundamentals is robust to allowing returns to scale to differ from one. In the empirical
analysis that follows, we explore the issue of constant returns to scale in this context. We do
not explicitly explore non-CES demand structures but discuss our findings below in light of the

8This is a simplified version of a more general specification given by Pi=P (Qi/Q)
ρ−1

ξi, where ξi is an
idiosyncratic demand shifter, P and Pi denote aggregate and plant-level product prices, and Q and Qi denote
aggregate and plant-level product quantitites, respectively. This specification is consistent with assuming that
the final good is a CES aggregator of intermediate goods produced by individual firms. The final goods sector is
perfectly competitive with the only inputs coming from intermediate goods. See Bartelsman, Haltiwanger, and
Scarpetta (2013) and Foster, Grim, Haltiwanger, and Wolf (2016b) for more details. The specification in the
main text abstracts from idiosyncratic demand shifters and also terms that vary at the industry and aggregate.
The latter terms are not important for the analysis in this paper since we typically control for industry by year
effects.

9This is consistent with footnote 10 of Hsieh and Klenow (2009) with only scale distortions. Our specification
neglects industry-level factors of proportionality that don’t matter for our analysis.

10See appendix A.1. We again are neglecting industry-level factors of proportionality that are present in a
more general specification. These industry-level factors include input prices assumed to be the same at the
industry or even the economy-wide level. If they are idiosyncratic then they are another possible source of
idiosyncratic firm-level fundamentals. They can also lead to dispersion in the tfprcsi measures.

11In a more general specification, tfprrri is also a function of idiosyncratic demand shocks.
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studies that consider this possibility.

2.2 Estimation methods

There are various estimation methods available to researchers; table 1 summarizes the pro-
cedures we use throughout the paper. We discuss the strengths and weaknesses of the most
popular methods from a practical point of view.

Table 1: Estimation methods.
Method Description Proxy Estimator Productivity

measure
GA Foster, Haltiwanger, and Krizan (2001) Cost-shares tfprcs

OLS Ordinary Least Squares LS tfprrr

OP Olley and Pakes (1996) Investment NLS tfprrr

LPGR Levinsohn and Petrin (2003) Materials GMM tfprrr

WLPE Wooldridge (2009) Energy Efficient GMM tfprrr

WLPM Wooldridge (2009) Materials Efficient GMM tfprrr

All productivity measures in the table are estimated using an output-based production function.

Cost-share-based or growth accounting methods (GA) exploit first order conditions from
the firm’s cost-minimization problem. There are several advantages to this procedure. For
example, this is the only estimator that - conditional on an assumption about returns to scale -
provides direct estimates of output elasticities without data on prices and quantities. This is a
useful property because it implies cost-share-based elasticities are robust to alternative demand
structures. In addition, using the share of input expenditures in total costs rather than in
value added has the advantage that the assumption of perfectly competitive markets is not
required. In addition, it allows the exact shape of technology to vary down to the plant-level.12

A potential caveat is that an estimate of, or an assumption about, returns to scale is necessary.
In addition, this cost share approach requires an assumption that first order conditions hold
at least on average. This property is relevant because it is unlikely that first order conditions
hold for every plant at all points in time. Therefore, common output elasticities across plants
in the same industry and/or over time are frequently imposed (see Syverson (2011)), which is
the approach we take in this paper. We explore the implications of these assumptions further
in appendix A.7.3 and note that all alternative estimation methods discussed in this paper also
require such restrictions.

Ordinary least squares (OLS) estimates of elasticities are inconsistent because unobserved
productivity shocks affect the decision problem of plants, see Marschak and Andrews (1944).
Additional biases may result if prices are unobserved and correlated with factor inputs, see
Klette and Griliches (1996). We include OLS in our analysis as a point of reference but focus
on regression methods that are often referred to as proxy methods. They are denoted as such
because they use firm-level indicators to control for the effect of unobserved productivity during
estimation. The original logic, developed in Olley and Pakes (1996) (OP hereafter), is based
on assuming a monotonic and increasing relationship between the proxy and productivity. On
condition that productivity is the only unobserved state variable, plant-level variation in the
proxy can be interpreted as a reflection of the variation in productivity shocks. This conclusion

12Further, evidence in Van Biesebroeck (2007) suggests that this method is accurate if the data are not subject
to much measurement error.
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together with timing assumptions about the plant’s decisions, can be used to recover all the
elasticities.13 OP propose investment as a proxy. There is ample evidence that plant-level
investment is lumpy (see for example Cooper and Haltiwanger (2006)), and lumpiness means
bursts of investment activity are followed by inactive periods where observed net investment is
zero rendering these observations uninformative for OP. To avoid the resulting drop in sample
size, Levinsohn and Petrin (2003) (LP hereafter) advocate using intermediate input expen-
ditures or energy costs.14 LP argue that if adjusting intermediate inputs is less costly, then
they are likely to be more responsive to productivity shocks. This is especially relevant in the
presence of non-convexities in capital adjustment.

The identifying assumptions regarding the timing of plants’ input decisions have been crit-
icized by Ackerberg, Caves, and Frazer (2015) (ACF hereafter). ACF argue that the optimal
labor allocation is also a deterministic function of productivity and therefore the labor elasticity
is not identified in the first step. They approach the identification problem by applying a two
step procedure that does not try to identify any of the elasticities in the first stage. Wooldridge
(2009) proposed to circumvent the identification problem by estimating all the coefficients in a
single GMM step and using earlier outcomes of both capital and variable inputs as instrumental
variables. His approach is advantageous because it is robust to the ACF critique and because
the efficiency loss that arises from two-step estimation is eliminated.

In closing this section, we note that estimating output elasticities under endogenous plant-
level prices requires additional assumptions about demand, see Klette and Griliches (1996) or
De Loecker (2011) as examples. Section 4 shows such considerations are empirically relevant
for inferences about returns to scale.

3 Data

3.1 Source data

Our industry-level data, including deflators, capital rental prices and depreciation rates, are
taken from the NBER-CES Manufacturing database15, the Bureau of Labor Statistics and the
Bureau of Economic Analysis. We use establishment-level information from the Annual Survey
of Manufactures (ASM), Census of Manufactures (CM) and the Longitudinal Business Database
(LBD).

The CM collects data in years ending in ’2’ and ’7’ for roughly 180,000 - 240,000 plants.
Establishments with less than five employees are not sent forms. Payroll and employment
data for these very small plants are imputed using administrative records.16 The ASM surveys
50,000-70,000 establishments in non-Census years and is part of the CM in Census years. It is
a rotating panel re-defined two years after the latest Census. The LBD contains the universe
of non-agricultural business establishments with paid employees and is based on both survey
information and administrative records. Appendix A in Foster, Grim, and Haltiwanger (2016a)
(FGH, hereafter) describes these data in more detail. Our initial dataset includes approximately
3.5 million plant-year observations between 1972-2010.

We use the ASM and CM to construct plant-level measures of inputs and output. Output

13More details on these estimation methods can be found in appendix A.2.
14LP highlight that firms almost always report positive use of these variables in their data implying truncation

due to zero proxy values is less severe.
15The NBER-CES Manufacturing Industry database is available at http://www.nber.org/nberces. An

earlier version is documented in Bartelsman and Gray (1996).
16We drop administrative records cases.
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is measured as a deflated value of total value of shipments, corrected for the change in finished
goods and work-in-process inventories. Labor input, total hours worked, is constructed as the
product of production worker hours and the ratio of the total wage bill to production worker
wages. Our intermediate input variable is given by the the sum of three items: cost of parts,
contracted work and goods resold. The energy input consists of deflated electricity and fuel
costs. We create establishment-level capital stock measures using a version of the Perpetual
Inventory Method, which calculates current capital as a sum of the depreciated stock and
current investment. We set plants’ initial capital stock to a deflated book value taken from
the ASM and CM. More details on the construction of input and output measures can be
found in appendix B of FGH. The LBD serves two purposes in our analysis. First, high-quality
longitudinal identifiers help us determine the accurate time of establishments’ exit which is
needed to estimate the relationship between productivity, growth and exit. Second, the LBD
acts as a universe file; we use employment and establishment age data from the LBD to construct
inverse propensity score weights that control for non-randomness in our sample.17

3.2 Analysis samples

The analyses in this paper exploit three different samples. For questions about the distributions
of elasticities, productivity dispersion and growth and survival, we look simultaneously at two
samples, which we refer to as the 10 and 50 largest industry samples. These samples need to
fulfill two potentially contradicting requirements. First, the number of plant-year observations
within each industry should be large enough so that elasticities can be estimated by all reviewed
methods. Second, industries should be defined narrowly enough so that we can plausibly assume
elasticities are constant across establishments.

Changes in industry classification systems over time make defining these samples more
complicated than simply choosing the 10 and 50 industries with the largest number of plant-
year observations. Since we estimate elasticities on an industry-by-industry basis, changes in
the classification system entail spurious breaks in plant-level time series and a drop in sample
size. In the first part of the analysis we address these issues by selecting sets of 4-digit SIC
industries which were not affected by classification changes or which were mapped one-to-one
into another industry. There are 292 such industries of which we selected the first 10 and 50
based on the number of observations.

We create a third dataset to test whether the implications of the decomposition of aggre-
gate productivity growth described in PWR are sensitive to the way productivity is estimated.
Since we are attempting in part to replicate the results in PWR, we create a roughly com-
parable dataset. PWR’s data spans the period between 1976-1996 so the 1987 change in SIC
classification is relevant. To correct for these breaks, we follow the first step of PWR’s proce-
dure and assign the SIC code to any establishment observed between 1987-1996. However, we
deviate from their approach for cases only observed prior to 1987. If a plant is not assigned
an industry code in the previous step, we apply a random assignment procedure based on the
share of shipments mapped from the 1972 to 1987 SIC industry code. More details about the

17Employment data is useful to determine the probability of size-based selection into the ASM and CM.
Establishment age is an important determinant of the probability that the productivity level of an establishment
is calculated from imputed data. The use of inverse propensity score weights has advantages relative to ASM
sample weights. It is important to note that using sample weighted totals does not correspond to published ASM
totals. There are further adjustments for the non-mail universe and other factors. In addition, the treatment
of the latter has varied over time so the relationship between sample weighted and published totals varies over
time.
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assignment procedure can be found in appendix A.3.

4 Elasticity distributions

We start by discussing differences in the distribution of capital elasticities. Next, we check
whether the elasticity-rank of industries varies with estimator choice. We conclude the section
by looking at the implications of estimator choice on returns to scale.

Figure 1 plots the density estimates of capital elasticities in the 50 most populous industries
and table 2 shows basic descriptive statistics. There are non-trivial differences in the mean,
dispersion and general shape of the distributions. Most notably, GA-based estimates tend to
be generally smaller than the rest. At first glance, this is contrary to expectations since under
CRTS technology and CES demand the cost share output elasticities should exceed revenue
elasticities. We explore this issue further below.

We now turn our attention to the revenue elasticity distributions and focus on indications
of possible biases. Unfortunately, the differences in estimated distributions alone do not tell
much about the direction, much less the magnitude, of any bias. However, in light of what
we know about the way these methods address endogeneity, the differences may give us clues
as to whether or not they correct it in the right direction. The direction of the bias in OLS-
estimates is determined by several factors. First, since input demand functions are increasing
in productivity, OLS estimates are biased upward. If this is important in our data and proxy
methods correct for it, then we should see proxy-based distributions to the left of OLS. Figure
1 suggests that only LPGR is likely to yield lower β̂k. However, the direction of the bias
depends on additional factors. For example, Levinsohn and Petrin (2003) show that positive
correlation between capital and labor may cause β̂k to be biased downward, implying the
elasticity distribution may emerge to the left of OLS not because LP corrects an upward bias
but because it includes a downward bias. A further complicating factor is selection. OP argue
that since plants’ profit and value functions are increasing in capital, larger establishments
anticipate larger future returns and therefore can operate at lower current productivity levels,
which also entails a negative bias in OLS. If OP corrects for such selection-induced negative
bias, and this effect is important in our data, then the OP-based β̂k distribution should be to
the right of OLS.

Table 2: Descriptive statistics of the between-industry distribution of β̂k.
Mean Median IQR Mean Median IQR

50 largest industries 10 largest industries
OLS .13 .10 .10 .14 .12 .15
OP .19 .14 .10 .21 .15 .27
LPGR .09 .06 .09 .11 .06 .09
WLPE .16 .15 .11 .17 .14 .07
WLPM .16 .12 .14 .15 .09 .14
GA .08 .07 .05 .09 .10 .06

See notes to table 1 for method definitions. 10 and 50 largest industries: most populous 4-digit industries
industries which were mapped 1-to-1 between classification systems.

We find that OP tends to result in higher β̂k than OLS suggesting that controlling for
selection-induced bias may be important. As for other proxy methods, WLPE and WLPM are
more likely to yield extreme β̂k even though the typical elasticities under these methods are
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Figure 1: Cross-industry distributions of β̂k.
The sample is 50 largest industries, estimators are described in table 1.

similar to those under OP. These results tell us that, in addition to proxy choice and addressing
selection, the structure of the estimator - non-parametric two-step estimator versus efficient
GMM - may also have important consequences for capital elasticities. Similar conclusions hold
for the second moments of β̂k. The interquartile range measures, see the last column of table 2,
suggest differences in the dispersion of these distributions are also non-trivial. For example, the
means of GA and LPGR are very close (.08 and .09 among the 50 largest industries) but the
dispersion of the latter is almost twofold (.05 and .09). Finally, the elasticities of variable inputs
show stronger clustering, especially β̂l (figure 2). This is partly explained by the fact that proxy
methods estimate βl in an OLS step (the exception is the Wooldridge GMM method). The
main conclusions about β̂e and β̂m are the same, (figure A4): there are numerical differences
in these distributions but they look generally similar across estimation methods. For both β̂l
and β̂m, the estimates of the revenue elasticities tend to be lower than the cost shares based
estimates of output elasticities consistent with the hypothesis discussed above.18

In closing this section, we highlight the different implications estimation methods have
for returns to scale. GA-based elasticities are consistent with constant returns to scale by
construction. In contrast, regression based revenue function estimators do not impose constant
returns to scale but do not provide direct returns to scale estimates either. However, if one is
willing to accept the assumption that plants face isoelastic product demand, joint estimation
of revenue elasticities (βj) and demand characteristics (ρ) can be used to make inference about
output elasticities and therefore returns to scale. We follow Klette and Griliches (1996), and
jointly estimate βj and ρ by regressing plant-level revenues on plant-level inputs and an indicator
of industry-level output. This approach, while feasible, has relatively low power for estimating

18We did some further exploration of the sensitivity of the patterns of the estimators by examining how
the estimator choice affects the ranking of industries by β̂k/β̂l. We find there is a positive probability that
different estimators imply different industry rankings, see table A10 for details. We further investigate the
empirical properties of elasticity distributions in Appendix A.4. Those findings highlight that some methods
yield systematically more zero/negative elasticities than others. We find evidence that, in certain cases, this
can be attributed to small sample size and/or proxy choice.
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Figure 2: Cross-industry distributions of β̂l.
The sample is 50 largest industries, estimators are described in table 1.

demand parameters compared to methods that can be used when both price and quantity
data are available, see Foster, Haltiwanger, and Syverson (2008). Our results, based on OP’s
method,19 indicate that the elasticity of firm revenues with respect to aggregate demand is a
small positive number, implying a negative average price elasticity and greater-than-1 markup
value, see table A11 for details. To further illustrate the variation in these parameters, we
compared the densities of the sums of revenue and output elasticities, see figure 3. The sum
of the revenue elasticities has a mean of 0.97 while the sum of the output elasticities has
a mean of 1.09. The latter suggests mild increasing returns. However, the sum of estimated
output elasticities shows large dispersion reflecting the variation both in revenue elasticities and
demand parameters suggesting that appropriate caution is needed when interpreting results,
especially on an industry-by-industry basis.

19We chose OP because adding more state variables for this procedure is straightforward.
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β̂j and the demand parameter are jointly estimated using the method described in Olley-Pakes (1996).

5 Implications of the differences in elasticity distributions

In this section, we turn to the main questions of interest. Specifically, we examine the re-
lationship between the alternative measures of revenue productivity in terms of dispersion,
correlations and the relationship between between productivity, growth and survival. We use
this investigation to assess the extent to which these conceptually different measures are indeed
different empirically. We also explore the sensitivity of structural decompositions of aggre-
gate productivity growth (APG) to these different approaches to estimating factor and revenue
elasticties.

5.1 Productivity dispersion

Does the choice of estimator affect the second moment of the within-industry productivity
distribution? The interquartile range (IQR) and standard deviation, averaged over industries
and time, are presented in table 3.20 The average IQR of the log-productivity distribution varies
between 0.24 and 0.40 across methods. The dispersion in tfprcsi is lower than the dispersion in
tfprrri (from the alternative proxy methods). The WLPM method yields the highest dispersion.
Recall from figure 1 that WLPM has the most extreme outliers for βk. These outliers mean
WLPM is a repeated outlier in the following analyses. The proxy methods including WLPM
yield less variation in dispersion for the ten largest industries compared to the fifty largest
industries.

Table 3 demonstrates that all methods yield substantial within industry dispersion in rev-
enue productivity but there are numerical differences. Should we think of these as substan-
tial? One way to answer this question is to test their equality by comparing confidence bands
around average dispersion or comparing industry-specific results. Figure 4 shows simulated
two-standard-error-wide confidence bands (narrow bars) around our dispersion estimates. If
we interpret the narrow bars as approximately 95% confidence intervals, we can conclude that

20More details are available in table A12.

13



Table 3: Descriptive statistics of productivity distributions.
N (1000) IQR SD N (1000) IQR SD

50 largest industries 10 largest industries
OLS 455 0.26 0.26 185 0.22 0.20
OP 380 0.32 0.38 152 0.31 0.39
LPGR 457 0.29 0.31 188 0.29 0.28
WLPE 457 0.34 0.36 187 0.31 0.28
WLPM 457 0.40 1.88 188 0.33 0.35
GA 433 0.24 0.22 177 0.23 0.21

See notes to tables 1 and 2 for the description of methods and samples. All statistics are based on deviations
of plant-level log-productivity from industry- and time-specific means. All results shown were calculated using
non-outlier observations only (pre-, post-estimation). A version of the table including pre-estimation outlier
observations can be found in the appendix (table A12); the results show little change.

dispersion measures under proxy methods are not significantly different from each other.21 In
other words, the sampling variation in revenue function estimates has similar effects across
proxy-based estimates.22 The exception is GA, which generally yields lower dispersion.
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Figure 4: Bootstrapped standard errors of dispersion under selected methods.
The black bars are mean dispersion estimates from table 3, the narrow bars represent confidence bands based

on bootstrapped standard errors of dispersion statistics, see also table A16. GA has no interval around the
mean because coefficients are estimated using industry-level data on input costs.

We next investigate whether the choice of estimation method has consequences also for
the within-industry productivity rank of establishments. Table 4 shows both the Pearson and
Spearman rank correlations. Of particular interest is the correlation between tfprcsi and tfprrri .
Using the Spearman (rank) correlations, all pairwise correlations except for the WLPM are 0.60
or higher. All Pearson correlations exceed 0.46 except for WLPM.23 In general, there is weaker

21Further analysis shows that differences may be greater at the industry-level, see figure A1 in Appendix A.6.
22More details can be found in figure A16.
23We put little weight on the patterns for the WLPM since this procedure, as noted earlier, exhibits large

outliers in revenue elasticities.
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pairwise correlation across the proxy methods than between each of the proxy methods and the
GA approach. For example, the LPGR has a Pearson correlation with WLPE of 0.52 and a
0.68 correlation with the GA approach (this pattern carries over to the Spearman correlations).

We interpret these initial exercises as implying that tfprcsi and tfprrri exhibit broadly similar
within industry dispersion and are strongly correlated. The dispersion in tfprrri tends to be
somewhat larger than tfprcsi . The pairwise correlations are quite strong particularly for the
rank (Spearman) correlations. Under the assumption of isoelastic (CES) demand, tfprrri is a
measure of fundamentals. Our findings imply that whether or not tfprcsi is an appropriate
measure of distortions, it is positively correlated to, and similarly dispersed as, fundamentals.

Our findings are consistent with the recent literature using direct measures of prices and
quantities. Foster, Haltiwanger, and Syverson (2008), Foster, Haltiwanger, and Syverson
(2016c), Haltiwanger, Kulick, and Syverson (2017), and Eslava (2013) provide evidence that
tfprcsi is highly correlated with direct measures of tfpqi and positively correlated with demand
shock measures that can be estimated with price and quantity data. Moreover, these studies
find the dispersion of tfprcsi is slightly lower than tfpqi. For the US, these findings are restricted
to a relatively small (11) number of products.

Table 4: Correlations among within-industry productivity distributions, 50 largest industries.
OLS OP LPGR WLPE WLPM GA

Pearson
OLS 1
OP 0.51 1

LPGR 0.82 0.43 1
WLPE 0.51 0.46 0.52 1
WLPM 0.02 0.02 -0.15 0.15 1

GA 0.79 0.46 0.68 0.51 0.09 1
Spearman

OLS 1
OP 0.68 1

LPGR 0.87 0.61 1
WLPE 0.59 0.61 0.56 1
WLPM 0.35 0.36 0.26 0.49 1

GA 0.81 0.63 0.70 0.60 0.43 1

Correlations reflect distributional differences discussed above: proxy methods show greater similarity, while
WLPM seems more different. Rank correlations confirm. Including pre-estimation outliers has a minor effect
on correlations (see table A13).

5.2 Growth and survival

In this section, we explore whether one of the most important predictions from standard mod-
els of firm dynamics is robust to the way productivity is estimated. For this purpose, we are
particularly interested in models where firms face adjustment frictions on both the entry/exit
margins as well as on the intensive margin.24 We focus our attention on incumbents (existing
firms) and thus on the exit and intensive margin of adjustment where firms face fixed costs of
operating each period and adjustment costs for changing the scale of operations. For purposes

24For example, on the entry/exit margins see, e.g., Hopenhayn (1992) and Hopenhayn and Rogerson (1993).
For adjustment cost models at the firm-level on employment, see, e.g., Cooper, Haltiwanger, and Wiliis (2007)
and Elsby and Michaels (2013).
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of exposition, we focus on describing the implications of these models with one factor of produc-
tion subject to adjustment costs: employment. In this class of models, incumbent firms have
two key state variables each period: the prior period level of employment and the realization
of productivity/profitability in the period. Relating this to the discussion above, the latter
are the realizations of TFPQ (and potentially demand shocks) in the period. These models
predict that firms with sufficiently low draws of productivity/profitablity shocks should exit.
Moreover, holding the prior period level of employment constant, firms with higher realizations
of productivity/profitability should grow.

Syverson (2011) highlights that these broad predictions of growth and survival being closely
related to productivity are ubiquitious findings in the literature. However, in the context of
the above briefly described models, these predictions should hold with respect to measures of
revenue productivity that reflect fundamentals. That is, the predictions should hold for tfprrri
but there is no inherent reason that the predictions should hold for tfprcsi . To investigate these
issues, we consider the relationship between productivity and growth of all establishments,
exiters and incumbents separately. We estimate specifications given by:25

Yit+1 = γ1ωit + γ2θsizeit +X ′itβ + εit+1, (6)

where Yit+1 is the outcome of interest such as growth between periods t and t + 1 at plant i,
ω is a plant-level measure of productivity, θsize is the control for the initial size (employment)
in the period, and Xit is a vector of additional controls including year effects, state effects, and
cyclical controls (the change in the unemployment rate at the state level).26

Table 5 shows γ̂1 from equation (6) using our sample of the 50 most populous industries.
Each row lists the effect of productivity on a specific outcome, shown in the row header.
The three outcomes are: employment growth among all establishments, the probability of
exit, and employment growth among continuers. The columns show results under productivity
estimator variants. For example, the first entry in column 1 says that a plant is estimated to
grow approximately 0.16% faster if it is 1% more productive under an OLS-based estimator.
All other entries are analogous. Point estimates suggest there are non-trivial differences in
the productivity effect. For example, the first entry in column 2 shows that the OP-based
productivity effect is less than half of the OLS-based one. The difference between the results
of these two estimators encompasses the variation in coefficients, ignoring for now WLPE and
WLPM. Despite these non-negligible differences, the estimates support the earlier finding that
more productive plants grow significantly faster than their less productive competitors. The
estimates in row 3 show low-productivity establishments are significantly more likely to exit
than high-productivity establishments.

The results in Panels B and C highlight the sensitivity of some methods to changes in
sample definition. Panel B shows results when elasticities are estimated pooling data from
all 4-digit industries within the same 3-digit industry. Pooling amounts to allowing stricter
assumptions about the homogeneity of elasticities, which may be justified in order to increase
precision. Comparing estimates between the top and middle panels suggests that some methods
are sensitive to such changes. For instance, the absolute values of OP-based coefficients of
all three regressions increase indicating that pooling may be beneficial because if there is no

25This is a simplified version of the specification considered by FGH.
26We follow FGH by using the integrated LBD with the ASM data for this analysis. The ASM provides

the distribution of plant-level productivity in any given year and the LBD provides the growth and survival
outcomes for the full set of plants in the ASM in that year between t and t+ 1.
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Table 5: The effect of productivity on outcomes, sample is 50 largest industries. Outcomes are:
employment growth among all establishments (row 1), exit (row 2), employment growth among
continuers (row 3).

OLS OP LPGR WLPE WLPM GA

Panel A. 4-digit elasticities

overall growth 0.163*** 0.072*** 0.139*** 0.06*** -0.006*** 0.190***
exit -0.050*** -0.018*** -0.046*** -0.020*** 0.002** -0.064***
conditional growth 0.068*** 0.039*** 0.053*** 0.022*** -0.003*** 0.067***

Panel B. 3-digit elasticities

overall growth 0.190*** 0.155*** 0.152*** 0.100*** -0.017*** 0.183***
exit -0.066*** -0.048*** -0.030*** -0.030*** 0.005** -0.062***
conditional growth 0.061*** 0.065*** 0.071*** 0.043*** -0.008*** 0.064***

Panel C. 3-digit elasticities, industries with negative or non-estimable elasticities dropped

overall growth 0.197*** 0.153*** 0.164*** 0.104*** 0.076*** 0.183***
exit -0.069*** -0.044*** -0.030*** -0.036*** -0.028*** -0.062***
conditional growth 0.064*** 0.072*** 0.074*** 0.035*** 0.023** 0.064***

Estimates are taken from regressions of three outcomes (employment growth among all establishments, exit,
and employment growth among continuers) on a plant-level measure of productivity (columns), a state-level
measure of unemployment growth, year-, sizeclass- and state-fixed effects, see equation (6). Standard errors
are clustered at the state level.
** and *** denote 5% and 1% significance levels, respectively. All regressions are based on trimmed
productivity distributions. Sample size information can be found in table A17. Results for two additional
industry sets can be found in tables A18-A19.

statistical association between two variables, their partial correlation coefficient would tend
towards zero. Other estimators seem less prone to such changes and remain in a comparable
range. WLPM yields the counter-intuitive result that more productive plants are less likely to
grow and more likely to exit. Increasing sample size by pooling data does not reverse this result.
However, our earlier results already highlight that WLPM produces in some cases extreme
values of elasticities (see figure 1). As further sensitivity analysis, Panel C drops industries
with negative revenue elasticities. This has a modest impact on all methods except for the
results using the WLPM. In Panel C, the estimated marginal effects of revenue productivity on
growth and survival are more in line with the other methods.27

To sum up, our estimates show positive (negative) and significant association between pro-
ductivity and growth (exit), irrespective of how productivity is estimated. Some methods yield
outlier elasticities that weaken the estimated relationship between productivity, growth and
survival. In these cases, increasing sample size by using broader industry definitions yields
results that line up better across methods.28 The similarity of conclusions discussed in this

27We carried out similar exercises using other samples from our default industry set. Without discussing them
in detail, we note a combination of using 3-digit elasticities and dropping industries with implausible elasticities
yields expected growth and exit coefficients under all estimation methods in all the samples we considered. See
tables A18-A19 for more details.

28A related question concerns the effects of allowing for not less but more heterogeneity in elasticities. Ap-
pendix A.7.3 shows that using productivity numbers that are based on plant-specific elasticities result in sig-
nificantly higher productivity dispersion. The increase also implies weaker relationships between productivity,
growth and survival. We interpret the latter finding as indirect evidence that the increased dispersion is due at
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section is a good example of the reasons why researchers have not focused on the differences
between estimation methods.

5.3 TFPR: Fundamentals versus Distortions?

Taking stock of the results so far, tfprcsi and tfprrri (i) exhibit similar dispersion, (ii) are strongly
positively correlated and (iii) exhibit very similar relationships with growth and survival. In
many cases, the quantitative differences in results are greater across methods for estimating
tfprrri than between tfprrri and tfprcsi . This is partly because the proxy methods in some cases
yield extreme estimates of elasticities. Our findings suggest that pooling data across plants
within the broader industry categories (e.g., estimating elasticities at the 3-digit as opposed to
the 4-digit level) mitigates this problem.

What do these results imply about interpreting tfprcsi as a measure of idiosyncratic distor-
tions? To maintain that assumption, idiosyncratic distortions would need to exhibit similar
dispersion and be highly correlated with idiosyncratic fundamentals. Moreover, idiosyncratic
distortions would need to be as tightly connected to survival and growth as idiosyncratic fun-
damentals. Indeed, our findings suggest that growth and survival are as closely linked to tfprcsi
as to tfprrri . It might be feasible to reconcile these findings with a particular pattern of idiosyn-
cratic distortions. However, there are alternative interpretations of these measures that are
arguably more plausible. Specifically, adjustment frictions of capital and labor can potentially
reconcile these findings as well as departures from the Cobb-Douglas CRTS technology and
CES demand.

We do not formally develop these alternatives here since our focus is on estimating and in-
vestigating the empirical properties of the alternative revenue productivity measures. However,
there are a number of studies exploring these alternatives and we summarize the intuition from
one of the leading alternatives that has been suggested. Specifically, consider the potential
role of adjustment costs for employment that we used to motivate the empirical specifications
above. A firm with a positive realization of log-TFPQi (ai) will exhibit an increase in desired
employment. In a frictionless environment the firm increases employment to the point where
marginal revenue products are equal to the input factor cost (assumed to be the same across
firms). The increase in employment (and other factors) will yield an increase in firm-level output
and a decline in firm-level prices. The firm-level full adjustment in a frictionless environment
implies that prices will decline just enough so that tfprcsi = pi + ai will remain unchanged. But
in the presence of adjustment frictions, the increase in inputs and output will be smaller so
the decline in prices will be smaller. Accordingly, the positive realization of ai will yield an
increase in tfprcsi . It can be shown that this positive correlation also implies that realizations of
tfprcsi will be related to input growth in a very similar manner as tfprrri .29 In short, adjustment
frictions have implications that match the core findings of our analysis.

One possible perspective is that interpreting dispersion of TFPR as reflecting distortions is
a reduced-form means of capturing sources of dispersion in marginal revenue products across
firms including the role of adjustment costs. This perspective has a number of limitations. First,
distinguishing between frictions that the social planner cannot avoid (such as some aspects of

least partly to measurement error implying that using plant-level shares is unlikely to be optimal. The effect of
imputation on these coefficients is similar. However, despite attenuated coefficients, the main conclusions hold;
see appendix A.7.2 for more details.

29See Haltiwanger, Kulick, and Syverson (2017) and Decker, Haltiwanger, Jarmin, and Miranda (2017) for
formal development of this intuition. Asker, Collard-Wexler, and De Loecker (2014) also explore the role of
adjustment frictions in accounting for dispersion in firm-level productivity measures.
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adjustment frictions of capital and labor) and distortions seems important. Second, adjustment
frictions have inherently dynamic implications while a distribution of idiosyncratic distortions
does not. That is, with adjustment frictions, firms will be adjusting to their optimal level
of activity over time while with idiosyncratic distortions this is not inherently apparent. An
associated implication is the point made above – adjustment frictions inherently yield a strong
positive correlation between fundamentals and marginal revenue products as well as TFPR.
This strong positive correlation arguably underlies many of the findings in the literature using
TFPR as a proxy for fundamentals (see Syverson (2011)).

5.4 Structural decompositions of aggregate productivity growth

We now examine whether the estimation method affects the results from structural decomposi-
tions of aggregate productivity growth (APG). We focus on these structural decompositions for
a number of reasons. First, they provide a decomposition of the contribution of within firm ver-
sus reallocation for productivity growth using an internally consistent theoretical framework.
Second, these decompositions rely critically on estimates of output and revenue elasticities.
Petrin and Levinsohn (2012) and PWR show that the reallocation contribution terms depend
on the relationship between input growth and gaps between marginal value products of inputs
and the marginal cost of inputs. Measurement of these gaps depends directly on the estimation
of output elasticities. Using the proxy methods estimation of revenue functions (as Petrin and
Levinsohn (2012) and PWR do) yields revenue instead of output elasticities. Moreover, the
residual from the revenue function is a function of fundamentals like TFPQ but its variation
(and therefore its growth) is scaled by a demand elasticity parameter. Thus, in principle, both
the within and reallocation components in these decompositions require taking these issues into
account.

An attractive property of this approach is that the measure of APG itself does not depend
on the way productivity is estimated nor on the presence of imperfect competition because APG
is defined as the growth in final demand in excess of capital and labor growth.30 This implies
that we can readily compare the contribution of within and reallocation components across
estimation methods and across assumptions about price taking versus price setting behavior.

The implementation of these decompositions by Petrin and Levinsohn (2012) and PWR
requires no adjustment if one assumes homogenous products within industries and price taking
behavior. Under these assumptions, revenue elasticities are equal to output elasticities. Even
though much of this paper has focused on exploring departures from this assumption, we
begin by considering this case. This is a useful starting point because then our results can be
directly compared to PWR and also we can assess how the different methods yield differences
in contributions even under this assumption.

Table 6 summarizes our results under the price taking assumption. Panel A shows the
elements of the APG definition in PWR. The annual average growth rate for labor (-0.3%)
in our sample is similar to that in PWR (-0.2%) but our value added and capital growth
rates are smaller. These differences are due partly to measurement differences and partly to
an issue with PWR’s source data for implicit deflators (see the notes to table 6 for more
details). However, value added growth is closer to PWR’s measure if we ignore the first years
of ASM panels, where calculating aggregate growth is problematic given panel rotation issues

30Since final demand is not observed, PWR measure its growth using value added. This approximation is
exact only at the level of the total economy. It is therefore important to realize that by implementing the
decomposition for a subset of plants we compute the contribution of the subset to APG, not the APG of the
subset. To calculate the subset’s exact APG, we would have to observe final demand for that subset.
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Table 6: Aggregate productivity growth and its decomposition. Annual averages calculated
between 1977 and 1996 using ASM continuers.

Panel A. APG definition (%)
All years Ignoring first years*

Our sample PWR Our sample PWR
VA 1.9 2.3 1.4 1.6
Capital 0.0 0.3 0.0 0.4
Labor -0.3 -0.2 -0.5 -0.4
APG 2.2 2.2 1.9 1.6

Panel B. Annual average contributions by components, ignoring first years.
OLS OP LPGR WLPE** WLPM** GA PWR

(1) (2) (3) (4) (5) (6) (7)
Total RE: 0.8 0.7 0.7 1.3 1.3 0.5 2

Capital 0.2 0.2 0.3 0.8 0.6 0.1 0.9
Labor 0.0 0.0 -0.1 0.0 0.0 0.1 0.4
Materials 0.4 0.4 0.4 0.5 0.5 0.3 0.4
Energy 0.2 0.1 0.1 0.0 0.1 0.0 0.3

Within 0.8 0.7 1.4 -0.1 -0.1 1.1 -0.1
Fixed costs 0.3 0.5 -0.2 0.8 0.7 0.3 -0.2
σRE 0.8 0.5 0.7 0.9 0.8 1.2 1.7
σWithin 2.3 2.8 3.1 2.5 2.5 2.4 2.7

*Measuring growth in first years of ASM panels is problematic because weighted growth rates are based on
only large plants since growth rates do not exist for establishments just rotated in. **Instruments as in PWR:
second and third lags. The last column in each panel is based on tables 1, 2 and 3a in PWR.
PWR generate data on non-production worker hours using variation in the average number of non-production
workers and assuming a 40-hour working week and 50 weeks, while we estimate total hours as a function of
production worker hours and the ratio of the total wage bill to the wages of production workers. The
difference in capital growth is explained by a labeling issue in PWR’s source data for implicit deflators. As a
last point, we note there is a small difference in the way we calculate value added. While we use energy
deflators to calculate constant-dollar energy costs, PWR deflate energy costs together with other intermediate
inputs using material deflators, which may affect aggregate growth rates.

in the ASM (see the rightmost columns in Panel A of table 6). Panel B lists the results
of decomposing APG ignoring the first years of ASM panels. Each row corresponds to the
contribution by a distinct component, calculated as an annual average between 1977 and 1996.
The contribution of reallocation is shown in the row labeled as Total RE. Our estimate of the
annual contribution by reallocation falls between 0.7-1.3 percentage points. These numbers
imply that approximately 25-70% of annual APG is attributed to reallocation, depending on
the chosen estimation method. The contribution of within-plant growth, shown in the row
labeled as Within, is at most 1.4 percentage points, about 74% of total APG.31 While there is
quantitative variation in these results all of the approaches yield a substantial contribution of
reallocation to productivity growth.32

We now turn to consider price setting behavior with markups. As Petrin and Levinsohn
(2012) and PWR highlight, one possible source of gaps between the value of marginal products
and marginal costs is markups. As they note, moving resources from low markup plants to

31Including the first years of ASM panels yield similar results for reallocation and somewhat lower contribu-
tions by within-plant growth.

32The time series underlying table 6 indicate the contribution of reallocation is positive in the majority of
years which reinforces what our annual average results suggest. In addition, the time series standard deviation
of the total reallocation contribution is small relative to the within-plant productivity contribution.
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high markup plants will increase APG through the reallocation components. Also, as is evident
from equation (5), under CES demand, tfprrr is a function of technical efficiency but that term
is scaled by ρ. This implies that the within plant productivity growth measured by changes in
tfprrr needs to be adjusted for ρ.33 The contribution of fixed costs (residual) also needs to be
adjusted accordingly.

To explore these issues, we consider two approaches. First, to illustrate the impact of the
scaling issue, we consider two common values of ρ: 0.9 and 0.8 corresponding to markups
of about 10 percent and 25 percent.34 Second, we consider the more interesting case where
markups that vary across plants. We explore this issue using the tools introduced in section
4. Particularly, we can estimate ρ at the detailed industry-level and apply the appropriate
adjustments. Table 7 shows the results using the estimation with such adjustments. The ρ = 1
column shows the results of using the OP method presuming price taking behavior and the
other columns show the results of the decomposition using the alternative estimates of ρ and
appropriate adjustments. As the table shows, such distinctions can be relevant empirically.

For common markups, the within and reallocation terms tend to be scaled up and the fixed
costs term becomes less important the larger the markup. For the estimated markups case,
reallocation is also scaled up, while the within term is significantly lower. The latter finding
reflects the combined effect of the variation and interaction in estimated ρ’s and tfprrri growth
rates. In general, incorporating the markup adjustment makes the within plant component
more volatile over time. Moreover, with estimates of ρ that vary across industries, the increase
in this volatility does not need to be symmetric across upturns and downturns. In unreported
results, we find that the early 1980s downturn has an especially large decline in measured within
plant productivity growth with the variable markups. This finding accounts for the large decline
in the within plant productivity growth contribution under this approach. These findings on
the within plant contribution with variable markups are interesting but caution should be used
in this assessment since the estimates of ρ without price and quantity data are noisy. Put
differently, this highlights the need for precise estimates of demand elasticities. In addition,
measuring and considering plant-specific markups within industries would be interesting in this
setting. In spite of this sensitivity, one robust implication of this analysis is that adjusting
revenue elasticities to output elasticities increases the reallocation contribution.

33See appendix A.5 for more details.
34Basu, Pascali, Schiantarelli, and Serven (2010) suggest that with common markups it is not clear that the

reallocation terms should be adjusted upwards but rather separate terms included in this type of decomposition.
With a common markup, these extra terms would capture the fact that inputs and outputs are too low under
imperfect competition so input growth adds to APG.
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Table 7: The effect of controlling for demand characteristics in PWR’s decomposition of APG.
ρ = 1 ρ = 0.9 ρ = 0.8 ρ=KG estimates

Total RE 0.7 0.9 1.1 1.4
Capital RE 0.2 0.3 0.3 0.3
Labor RE 0.0 -0.1 -0.1 0.0
Materials RE 0.4 0.5 0.7 0.9
Energy RE 0.1 0.2 0.2 0.2

Within 0.7 0.8 0.9 -2.7
Fixed costs 0.5 0.1 -0.1 3.1
σRE 0.5 1.0 1.8 1.3
σWithin 2.8 3.1 3.5 5.7

Results are based on OP and using data between 1977-1996, ignoring first years of ASM panels. Entries in the
column labeled ρ are identical to those in column 2 of Panel B in table 6. The remaining columns show results
permitting markups. The KG estimates are the Klette-Griliches estimates under joint estimation of revenue
elasticities and demand parameters, see section 4.

6 Concluding remarks

Researchers have been using a variety of methods for estimating productivity at the firm-level.
Absent data on prices and quantities, these methods yield what have become known as rev-
enue productivity measures. How these measures are related to physical productivity depends
on the assumptions about the environment in which establishments operate. It is perhaps
less recognized that the differences across estimation methods have important consequences
for interpretation since the alternative measures are different conceptually. Cost-share-based
coefficients are, in principle, equivalent to output elasticities, while regression-based estimates
are revenue elasticities reflecting both output elasticities and demand parameters. This implies
that revenue residuals are conceptually different under these two broad approaches. One mea-
sure, tfprcs, has increasingly become used as a measure of distortions. Alternatively, under the
same assumptions that yield this interpretation of tfprcs, tfprrr will reflect fundamentals such
as TFPQ and demand shocks.

In spite of these conceptual differences, we find that these alternative measures (i) exhibit
similar dispersion, (ii) are strongly positively correlated and (iii) exhibit very similar relation-
ships with growth and survival. What do these results imply about interpreting tfprcs as a
measure of idiosyncratic distortions? To maintain that assumption, idiosyncratic distortions
would need to exhibit similar dispersion and be highly correlated with idiosyncratic funda-
mentals. Given the tight relationship between tfprcs and growth and survival, this poses the
challenge of explaining why the most distorted firms are the most likely to grow and survive.

In developing these findings, we conduct an in-depth sensitivity analysis of the methods used
to estimate tfprrr. We find the alternative estimation methods yield broadly similar results but
there are some non-trivial quantitative differences. Interestingly, we find that the variation in
patterns for tfprrr are at least as great as the variation in patterns between tfprcs and tfprrr.
Partly this reflects the fact that the proxy methods use higher order polynomials. Our findings
suggest these methods are more robust with large sample sizes. This pattern is consistent with
the observation that many researchers using these methods pool data across plants within a 2
or 3-digit level of industry aggregation in the estimation.

We also use this in-depth analysis of sensitivity to estimation methodologies to quantify the
sensitivity of the contribution of reallocation to productivity growth to alternative approaches.
We use the structural decompositions that have been developed recently for this purpose. This
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is an ideal setting for exploring sensitivity to alternative methods for revenue and output elas-
ticities because the reallocation terms in the structural decompositions depend critically on
these estimates. With these methods, the gap between the value of the marginal product and
marginal costs depend on the estimates of such elasticities. Implementation of these decompo-
sitions in the literature has typically not taken into account the distinction between revenue
and output elasticities. We find that adjusting the revenue elasticities so that the appropriate
output elasticities are used tends to increase the contribution of the reallocation component.
Moreover, while there is non-trivial quantiative variation in the implied contribution of real-
location to aggregate productivity growth aross methods, we find all methods yield a sizable
contribution.

In sum, it is important to understand when the devil is in the details. One potential
remaining devil in the details is the impact of heterogeneous and endogenous plant-level product
and input prices. The results from our (admittedly restrictive) demand analysis can be used
to make inferences about output elasticities and returns to scale; however, without plant-
level data on prices and/or quantities, the effects of prices on other key stylized facts are
difficult to quantify. We have commented on the likely impact of endogenous demand-side
factors throughout but it would be of interest to consider this issue in more depth. We think
that exploring the role of endogenous demand-side factors in the current context will require
comparing and contrasting approaches that include direct measures of prices and quantities
(for the limited number of products with such information) with methods that impose strong
functional form assumptions (e.g., isoelastic demand structures) to deal with these issues. We
also neglect the impact of input price heterogeneity which may be another source of dispersion
in micro-level productivity measures.
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A Appendix

A.1 tfprrr and fundamentals

We derive the properties of tfprrr under the more general specification of demand given by
PiQi = PsQ

1−ρ
s Qρ−1

i ξiQi = PsQ
1−ρ
s Qρ

i ξi. In this case, log plant level revenues can be written as

pi + qi =ρqi + (1− ρ)qs + ps + ln ξi = ρ

(∑
j

αjxij + ai

)
+ (1− ρ)qs + ps + ln ξi.

This permits characterizing tfprrri as:

pi + qi − ρ
∑
j

αjxij = pi + qi −
∑
j

βjxij = ρai + ln ξi + (1− ρ)qs + ps,

which says that tfprrri is a function of tfpqi (ai), demand shocks (ξi) and sectoral level
factors (qs, ps and ρ). In the main text, we abstract from idiosyncratic demand shocks and
sectoral level factors for transparency. We estimate the βj using regression (proxy) methods.
In some robustness analysis, we also use the Klette and Griliches (1996) approach to jointly
estimate βj and ρ by including a measure of industry-level output as a regressor. This permits
us to back out the αj from the combined estimates and provides an alternative method to cost
shares for estimatin αj. The advantage of this approach is that is does not impose CRTS. The
disadvantage of this approach is that in the absence of data on plant level prices and quantitites,
this is pushing the data quite hard. Foster, Grim, Haltiwanger, and Wolf (2016b) discuss the
latter limitations in more depth.

A.2 Remarks on proxy methods

The details of the procedures described in Olley and Pakes (1996) and Levinsohn and Petrin
(2003) have been discussed in the literature, see for example Ackerberg, Caves, and Frazer
(2015). Caveats notwithstanding, these procedures have become widely used among practition-
ers in the past decade.

Most proxy methods are multi-step procedures (the exception being the Wooldridge GMM
procedure as discussed in the main text), where the first-step-estimates of variable input elas-
ticities are determined by OLS and the coefficients of quasi-fixed inputs such as capital are
separately identified using moment conditions formed by estimated productivity innovations
and lagged capital values. These methods rely on polynomial approximations at two points of
the estimation algorithm. First, a polynomial of the state variables and the proxy is included to
approximate unobserved productivity. Second, the algorithm exploits a Markovian assumption
about the plant-level productivity process in order to extract productivity innovations. It is
important to note that while polynomial series approximations are flexible, higher order terms
may exacerbate measurement error likely present in microdata.

The available empirical implementations differ according to the production function type
and the numerical procedure used to minimize the objective function. For example, the Stata
implementation of OP’s approach is based on nonlinear least squares; while LP’s implementation
offers three options to minimize the GMM criterion function. If the dependent variable is
value added then the golden section search algorithm (GSS) is applied.35 For output-based

35The idea of GSS is successively narrowing the range of values inside which the extremum is known to exist.
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specifications, either a gradient-based or a grid search based routine may be chosen. Both the
gradient-based and the golden section search guarantee to find optimum points if the objective
function is unimodal. If the criterion function has multiple modes, grid-based search procedures
can be used to confirm global optimum but often at the cost of computational burden, especially
if one intends to estimate elasticities for many industries.36 Our results in section 4 suggest
these choices entail non-trivial differences in the distributions of elasticities.

Table A1: Variants of LP.
Method Description Dependent Proxy Estimator Numerical

variable procedure*

LPVA Levinsohn and Petrin (2003) Value Added Materials GMM GSS

LPNL Levinsohn and Petrin (2003) Output Materials GMM NL

LPGR Levinsohn and Petrin (2003) Output Materials GMM GR

LPGSS Levinsohn and Petrin (2003) Output Materials GMM GSS

*NL: gradient-based technique, GSS: Golden Section Search, GR: Grid Search.

A.3 Random assignment of industry codes

As described in Section 3.2, we correct for the 1972 to 1987 SIC change in our third analysis
sample by following PWR by assigning the observed 1987 SIC code to the 1976-1986 observation
for any establishment observed between 1987-1996. However, we deviate from their approach
for cases only observed prior to 1987. If a plant is not assigned an industry code in the first
step, we apply a random assignment procedure. The basic idea of the random assignment
procedure is to choose from among plants such that the share of reassigned plants matches
the appropriate share in the concordance. Randomness is necessary to ensure the procedure
is not dominated by a few large establishments. As an illustration, suppose the mapping says
10% of industry i’s (SIC 1972) total value of shipments should be mapped into industry j (SIC
1987). First, we compute the time-average of each plant’s share in the shipments of industry i
and then we randomly sort them by these averages. Next, we calculate the cumulative sum of
shares and find the first n plants for which the sum does not exceed 10%. These establishments
are classified in industry j.

Table A2 shows frequency counts from the assignment. Panel 1 summarizes the initial
sample. About 66% of establishments show up in the years between 1987-1996, the remaining
observations need industry assignment (about 34%). Panel 2 shows statistics about instances
where we observed a switch in the industry identifier. Our assignment procedure implies that
approximately 29% of the 130,000 original switching instances disappear. As a cross-check, we
compared the average shares our procedure implies to those in the crosswalk. The results of
this latter exercise, not shown here, suggest that random assignment approximately replicates
mappings in available concordances.

A.4 Empirical properties of estimators

The distributions discussed in section 4 are based on elasticities from the 50 most populous 4-
digit industries. While 50 observations may seem sufficient to estimate cross-industry elasticity

The name of the algorithm sources from the fact that the procedure maintains the function values for triples of
points whose distances form a golden ratio.

36Estimating the elasticities by grid-search for all 459 industries in section 5.4 took about 28 days given our
computing resources.
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Table A2: Descriptive statistics on industry assigment.
Panel 1. Distribution of plants, by year.
Observed year Frequency (1000) Percent
1987 1156 51.3
1988 5.1 0.2
1989 7.6 0.3
1990 9.8 0.4
1991 3.5 0.2
1992 230 10.2
1993 20.8 0.9
1994 30.3 1.3
1995 19.4 0.9
1996 15.1 0.7
1987-1996 1499 66.5
1972-1986 (random assignment) 754 33.5
Total 2252 100

Panel 2. The effect of industry assignment on switchers.
Assigned industry

Original industry no switch switch Total

frequency (1000) 38 92 130
percent 29 71 100

Panel 1 shows frequency counts of time periods which were used to assign plants into industries. Panel 2
breaks down switching instances (plants with 2 or more SIC codes in their time series) under the original
classification. The first entry in the last row says that 29% of the switching instances in the original
classification system disappear under random assignment.

distributions, it also means estimates are based on varying sample size. This is important
because the estimates from smaller industries are more likely to be less precise. Table A3 shows
that the sample size drops by more than 50% in the 10th, and by 80% in the 50th most populous
industry. What is the consequence of such variation? Are some methods more likely to yield
non-positive β̂-s than others?

Table A3: Descriptive statistics of 50 largest industries ordered by the within-industry number
of plant-year observations between 1976-1996. The industry classification contains SIC 1987
industry codes concorded 1-to-1 SIC 1972 and NAICS 1997.

(1) (2) (3) (4) (5)
rank SIC 1987 N(1000) T i Nj

1 2711 39 9.9 3.9
2 3273 37 10.1 3.7
3 2411 37 4.8 7.6
4 3441 32 11.8 2.6
5 2653 30 22.1 1.3

10 3442 16 12.4 1.3
20 3231 12 11.9 1
50 3613 8 18 0.4

1-50 total 710 11 67

Column 1: rank; column 2: SIC 1987 code; column 3: number of plant-year observations in thousands; column
4: average number of observations per plant; column 5: number of plants in thousands.
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In order to answer these questions, we re-estimate the above elasticity distributions using
all 459 industries and count the cases with positive, zero, and negative elasticities for every
method.37 All methods result in positive β̂l and β̂m in most industries (table A4, columns 6
and 9). Negative βk and βe estimates are generally more likely to occur, as shown by smaller
percentages in columns 3 and 12. There are differences across estimation methods, as well.
For example, LPGR always delivers positive β̂k, while other methods yield negative β̂k with a
positive probability. OP’s algorithm stops in 18% of the industries (columns 2, 5, 8 and 11) due
to the lack of information on exiters and LPNL yields zero β̂k in 16% of the industries (column
2). We obtain negative β̂e-s with especially high probability when using WLPE (column 10).

Can the variation in sample size explain these patterns? Comparing the average number of
plant-year observations in the problematic group (negative, zero or non-estimable) to that of the
positive group suggest the answer is at least partially yes. Problematic industries are generally
smaller, their average size is between 26-70% of the positive group (see table A5 for more
details). For example, in the industries where OP stops the average number of observations is
less than half of that in the positive group. However, we find two distinct cases where erratic
estimates are unlikely to be related to sample size. First, the zero-β̂k group for LPNL is of
very similar size as the positive group (second entry in column 2 of table A5). It is likely that
LPNL’s gradient-based numerical procedure stops at a local optimum point at zero. The second
exception is the negative β̂e group for WLPE where average sample size is similar to that in the
positive group (column 7 of table A5). These results suggest outliers may arise more frequently
from some methods than others. In practice, what should be done with negative elasticity
estimates that emerge from some methods? One approach would be to exclude industries with
negative elasticity estimates since such estimates are implausible but that would raise issues of
selection bias. An alternative is to make stronger assumptions of homogeneity – for example,
assuming plants within 3-digit SIC industries share the same output elasticities. We explore
this approach in section 5.2 and show that this approach leads to more plausible elasticity
estimates and implied firm dynamics in many cases.

37The sample for this exercise is described in more detail at the end of section 3.2.
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Table A4: The number of industries with positive, negative and non-estimable elasticities, in
percent of the total number of industries. Results are based on 459 4-digit industries between
1972-2010, see section 3 for more details.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

β̂k β̂l β̂m β̂e
− 0* or + − 0 or + − 0 or + − 0 or +

n.e.** n.e. n.e. n.e.
OLS 2 98 2 98 100 4 96
OP 3 18* 79 2 18* 80 18* 82 3 18* 79
LPVA 4 96 3 97
LPNL 16** 84 4 96 100 6 94
LPGSS 8 92 4 96 100 6 94
LPGR 100 4 96 100 6 94
WLPE 10 90 6 94 100 32 68
WLPM 16 84 7 93 2 98 11 89

0*: β̂ is zero. n.e.**: β̂ could not be estimated.
For example, the first entry in column (2) says OP delivers error in 18% of industries. This happens because
the algorithm stops in industries with insufficient information on exit (or investment). The second entry in

column (2) says gradient-based optimization in LPNL yields β̂k = 0 in 16% of the industries.

Table A5: Average number of within-industry observations by groups, as in table A4.
(1) (2) (3) (4) (5) (6) (7) (8)

β̂k β̂L β̂M β̂E
- 0 or n.e. - 0 or n.e. - 0 or n.e. - 0 or n.e.

OLS 0.59 0.46 0.32
OP 0.56 0.39 0.58 0.39 0.4 0.42 0.39
LPVA 0.26 0.29
LPNL 0.96 0.55 0.42
LPGSS 0.35 0.55 0.42
LPGR 0.55 0.42
WLPE 0.4 0.56 0.14 0.93
WLPM 0.7 0.52 0.61 0.44

All entries are calculated respectively as N̄−/N̄+ and N̄0 or n.e./N̄+, where N̄−, N̄0 or n.e. and N̄+ denote the

average number of observations in industries with negative, zero or non-estimable and positive β̂j . See also the
notes below table A4.
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A.5 APG decomposition under downward sloping isoelastic demand

In this section we discuss the adjustments to the implementation of Petrin and Levinsohn
(2012) and PWR’s APG decomposition required when using revenue function estimates of the
revenue elasticities and the residual from this function under CES demand. APG is measured
as the change in the value of final demand minus the value of the change in primary inputs.
Specifically:

APG =
∑
i

dVAi −
∑
i

∑
k

WikdlnXik

where V Ai is value added, Xik are the primary inputs and Wik are the factor prices of the
primary inputs. The APG decomposition is given by (using the notation from section 2):

∑
i

Didlnai +
∑
i

Di

∑
k

(αk − srevik ) dlnXik +
∑
i

Di

∑
j

(
αj − srevij

)
dlnMij −

∑
i

DidlnFi

where Mij are the intermediate inputs, sik and sij are the revenue shares of the primary and
intermediate inputs respectively, Di are domar weights and Fi denote fixed costs. To implement
this decomposition empirically requires measures of APG, the output elasticities (αk), the domar
weights, the revenue shares and the within plant growth in productivity (dlnai). With these
measures, the contribution of fixed costs to APG can be measured as a residual. Estimating
the revenue function yields estimates of βk which with CES demand imply that αk = βk/ρ.
Thus, the revenue elasticities need to be adjusted by the scaling factor ρ to recover the output
elasticities. Moreover, the within plant growth in the revenue residual is given by ρdlnai so that
to recover the within plant growth in productivity the growth of the residual must be adjusted
accordingly. These adjustments require estimates of ρ. This is the approach taken in the main
text. We also note that in a more general specification that permitted demand shocks that
further adjustments would be required depending on the properties of these demand shocks.

A.6 Industry comparisons of dispersion

Note that even if different methods yield similar average dispersion, industry-specific impli-
cations may differ. To highlight the implications of estimators in economic analyses where
differences in magnitudes may matter a lot, we compare these measures across a selected set
of estimators in figure A1. In panels (a)-(b), almost all points are located above the 45-degree
line, which means that proxy methods (OP, LPGR) yield systematically larger dispersion than
cost-share-based methods (GA). One explanation behind such divergence may be related to
the conceptual differences mentioned earlier. On the other hand, comparing dispersion under
LPGR and OP suggests that differences between two methods of the same class may also exist,
see panel (c). These differences, smaller and less clear-cut than in the previous two panels, are
still non-negligible. They can be attributed to technical aspects like the chosen econometric
procedure, and/or more substantive factors like the choice of proxy.

A.7 Robustness

We next examine the robustness of our results about productivity dispersion and growth and
survival to concerns about imputation methods used in the underlying microdata and our
assumption that elasticities are homogeneous within industries. In contrast to previous exer-
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Figure A1: Industry-specific dispersion under selected methods.
Each point shows a pair of industry-specific dispersion measures and the line represents the 45-degree line in

each chart.

cises, our approach here is to compare the same productivity measure across completed and
non-imputed samples rather than different productivity measures in the same sample.
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A.7.1 Imputation and plant characteristics

U.S. Manufacturing data collected by the Census Bureau is subject to item nonresponse where
respondents answer some questions but not others. Such missing values are imputed by the
Census Bureau. Recent research found that certain imputation methods can impact analyses
that use completed data because imputation is non-random (see White, Reiter, and Petrin
(2012), WRP hereafter). Some of the imputation methods employed use industry level data
or fitted values from regression models implying that the variation in completed data can be
assumed to be smaller relative to what observed responses would imply. One consequence of this
is that within industry dispersion statistics based on completed data may be biased downward
(see WRP for an example). The presence or direction of possible biases is less clear for the
relationship between productivity, growth and survival for reasons we will outline shortly.

The effect of imputation on dispersion is easiest to illustrate by considering the results of
regression-based imputation, which also happens to be one of the most frequently used methods
at the Census Bureau to impute the components of productivity, see table A6 for more details.38

Regression-based imputation amounts to substituting fitted values of a regression for values of
the underlying distribution. That is, using the regression line, E(yi|xi), instead of draws from
the conditional distribution of yi. This essentially means a collapse in variation in the data.

Table A6: Estimated rates of imputation models within the most frequent impute types, as
a percentage of the total number of observations, ASM-CM 2007. The most frequent impute
types are based on linear regressions (flagged ’B’) and/or historical (flagged ’H’) information.

tvs ph cm
ASM CM
Overall imputation rate (fact) 28.5 58.8 41.1
Types: B or H flags (fact) 20.6 55.1 33.3

Models (estimate)*
multivariate regression 4.1 12.4 6.3
univariate regression 15 44.8 26.6
historical 0.9 5.8 0.5
total 20 62.9 33.4

ASM cases only
Overall imputation rate (fact) 24.1 39 34.3
Types: B or H flags (fact) 18.2 36.1 25.7

Models (estimate)*
multivariate regression 10.5 14.4 14.4
univariate regression 8.1 13.5 11.6
historical 1 9.7 1.4
total 19.6 37.6 27.4

*Census data indicates the impute type but not the model and there are more than one impute models within
a type. For example, within type-B imputes, both univariate and multivariate regression models are used. We
estimate impute model instances by evaluating the restriction each impute model implies. These results show
regression-based imputes are most common. In the ASM-CM, imputes are typically based on univariate
regressions, while ASM imputes are much more likely to be based multivariate regressions.

How can we approximate the unobserved conditional distribution of yi? One way is to use
a known distribution to simulate data from it. Another is to draw from the set of non-imputed
observations with similar characteristics to the ones in the imputed sample, which is what clas-
sification and regression tree (CART) methods do (see WRP). Yet another approach is to use

38We do not discuss individual imputation models further but more details are available upon request.
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non-imputed observations only, which works if imputation is random. However, if the prob-
ability of imputation is correlated with plant characteristics, excluding imputed observations
generates selection issues. Both earlier evidence and our analysis - as we will see shortly -
indicate that imputation is not random in our data. Consequently, empirical models based on
non-imputed data must take this issue into account otherwise selection renders results biased.

We address imputation in two steps. First, we use a logistic regression to describe the
relationship between plant characteristics and the probability that productivity is calculated
using non-imputed data. Next, we use inverse propensity scores to weight observations in the
non-imputed sample to calculate dispersion statistics and growth coefficients. To be specific,
we estimate the following equation separately for each year between 2002 and 2010:

log
p(Xit)

1− p(Xit)
= Xitθt + εit,

which amounts modeling the probability Pr(Iit = 1|Xt) = E[Iit|Xit] = F (Xitθt) + εit, where
F (x) = 1

1+e−x and Iit denotes an indicator variable equal to 1 if any of the components of plant-
level productivity is non-imputed. The main components are: plants’ total value of shipments
(TVS), production hours (PH), salaries and wages (SW), production workers wages (WW),
cost of parts (CP). Xit and θt denote a vector of controls and coefficients. Control variables Xit

are included to capture plant characteristics: industry effects, employment size class, payroll
deciles and age class fixed effects. We have 86 4-digit NAICS industries. To control for size, we
define 10 size classes based on employment (1-9, 10-109, 20-29, 30-49, 50-99, 100-149 150-249,
250-499, 500-999, 1000+) in addition to the payroll deciles. Finally, we classify establishments
into 9 age classes (births, 1, 2, 3, 4, 5, 6-10, 11-15, 16+ years). As mentioned in the main
text, data for these variables source from the LBD. We use the Census Bureau’s impute flags to
determine whether an item is imputed. More details on imputation procedures at the Census
Bureau are available from the authors. See also table A1 in WPR.

Imputation rates differ across variables. The upper panel of table A7 shows that from
among the main components of productivity, PH and CP are imputed the most, and SW the
least frequently. Imputation rates vary not only with variables but also sample definition.39

The last row in the upper panel indicates imputation tends to be less frequent among ASM
establishments. Overall, less frequent imputation implies almost 10-percentage-point smaller
imputation rate for productivity (last column in the lower panel). This suggests it may be
worth exploring the effects of restricting ourselves to ASM cases when estimating propensity
scores. Therefore, we present results also for a scenario where only ASM establishments are
included in the analysis.

Comparing size-, age-, and payroll distributions across non-imputed and completed samples
suggests imputation instances are correlated with plant characteristics.40 Productivity compo-
nents are more likely to be imputed for smaller and younger establishments with less payroll.
These three characteristics give a multitude of possible regressor sets for the probability model.
We experimented with six of those ([1] employment size; [2] payroll; [3] employment size, pay-
roll; [4] employment size, age; [5] payroll, age; [6] employment size, payroll, age) and found that
the basic implications do not change. However, we also found that including all three variables

39We can measure imputation rates in the entire ASM/CM (row 1), restricting ourselves to using observations
for which there exists size and age information in the LBD (row 2), in the ASM only (row 3).

40These results are not shown here.
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Table A7: Imputation rates of the main components of productivity in the ASM/CM, as a per
cent of plant-year observations between 2002-2010.

Average imputation rates (2002-2010)
productivity TVS PH SW WW CP CM

ASM/CM* 59.1 28.1 42.6 14.2 29.2 42.6 37.5
ASM/CM/LBD** 58.3 27.6 42 14.1 28.5 41.7 36.3
ASM/LBD*** 48.9 25.5 35.3 13.2 25.1 34 31.9

Yearly imputation rates of productivity, per cent of plant-year observations
2002 2003 2004 2005 2006 2007 2008 2009 2010 Total

ASM/CM 68.8 45.8 42.6 43.8 49.9 69.2 53.2 52.4 53.9 59.1
ASM/CM/LBD 68 45.1 41.5 42.8 49.1 68.1 52.7 52 53.7 58.3
ASM/LBD 48.1 52.8 48.9

Productivity is considered imputed if at least one of its components is imputed by the Census Bureau.
Components: total value of shipments (TV S - changes in inventories are not considered here); total hours,
calculated as a product of production worker hours (PH) and the ratio of salaries and wages (SW ) and
production worker wages (WW ); cost of materials (CM), calculated as a sum of the cost of parts (CP ),
resales (CR) and contract work (CW ), but only CM and CP are included in the table. We excluded capital
from the analysis because plants’ time series on capital are created using the perpetual inventory method.
*ASM/CM: ASM and CM combined. **ASM/CM/LBD: observations in ASM and CM for which we observe
employment in the LBD. ***ASM/LBD: observations in ASM for which observe employment in the LBD.

provides a somewhat better fit41 than any of the remaining five. Therefore, we present results
based on propensity scores from a model with establishment size, payroll and age.

Figure A5 plots the point estimates from this model. We conclude that productivity data
for smaller and younger plants with less payroll are significantly more likely to be imputed.42 In
section A.7.2, when calculating weighted dispersion measures and regression coefficients, we use
the inverse of probabilities implied by these models as weights. As a final point, we mention
that diagnostics indicate logistic regressions fit ASM establishments better than ASM/CM
establishments.43 The difference in the AIC is about a factor of 3 and 2 in 2002 and 2007,
respectively.

A.7.2 Imputation, dispersion and growth

One may address imputation in a variety of ways. One approach is to drop imputed observa-
tions, but this results in selection bias if the probability of imputation instances is correlated
with establishment characteristics. We take this approach below and attempt to correct for
selection bias by using inverse propensity score weights discussed in section A.7.1. Another op-
tion is to use multiple imputation methods (e.g., the classification and regression tree method
(CART) used by WRP) to improve on the methods that have been used to impute the plant-
level data. Calculating our results in this manner is beyond the scope of this paper but we do
compare the patterns of our findings to those in WRP.

We carry out two exercises to assess the effect of imputation. First, we compare dispersion in
the completed sample to statistics which are based on non-imputed observations only. Second,

41As measured by the AIC, not shown here.
42Point estimates are precise enough such that we can confirm the positive relationship between plant-size,

-age and the probability of productivity being non-imputed. More details on point estimates and standard
errors are available upon request.

43Available upon request.
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we assess whether accounting for imputation affects our results on the relationship between
productivity, growth and survival. We address imputation by first constructing a set of propen-
sity score weights, which are inversely proportional to the probability of imputation and then
using these weights to calculate weighted dispersion measures. Note that we use another set of
weights to control for the fact that selection into the ASM is also non-random. We distinguish
between the two sets by labeling non-impute weights as ipw2 and the ASM-weights as ipw1.
Appendix A.7.1 describes how ipw2 was constructed. More details about ipw1 can be found in
Foster, Grim, and Haltiwanger (2016a).

Figure A2 summarizes the results of the first exercise. We find that the interquartile range
seems to be smaller in non-inputed data. This can be seen in panel (a) of A2 by comparing the
dotted and solid lines. However, if we weight non-imputed observations by the composite weight
[ipw1*ipw2], measured dispersion is higher.44 This is an important finding because results using
the CART multiple imputation method in WRP suggest dispersion measures based on imputed
data tend to be smaller than those that take imputation into account.45 If imputation causes
a downward bias in dispersion, our weighting scheme corrects for it in the right direction. We
note that imputation has similar effects on the standard deviation but this measure seems to
be less sensitive to these issues (see panel b of figure A2).

In the second exercise, we revisit the relationship between productivity, growth and survival
and re-estimate the growth and exit regressions using non-imputed data between 2002 and
2010. The empirical model is the same as that described in section 5.2. We consider three
samples. In the first one, we use all observations from the CM.46 In the second case, only
non-imputed observations are included but our non-impute weighting scheme is not applied. In
the last regressions we weight non-imputed observations by [ipw1*ipw2]. Table A8 summarizes
our results. The effect of productivity on growth among all establishments (column 1) and
on the probability of exit (column 2) seems smaller in the non-imputed sample, regardless of
weighting. Point estimates of the effect on growth (exit) in the non-imputed sample are about
half (third) the size of those in the completed data. We do not detect such attenuation among
continuers (column 3). Such variation in the coefficients is by no means negligible, particularly
for economic analyses where differences in magnitudes may matter a lot. But it is also familiar
from earlier tables. Similarly to the results in section 5.2 our last exercise offers evidence that,
at least in terms of sign and order of magnitude, this relationship is robust to imputation issues.

A.7.3 Homogeneity, dispersion and growth

Throughout this paper, we assume that elasticities are homogeneous within industries and
constant over time. Whether or not such an assumption is restrictive depends on at least two
properties: the underlying within-industry differences in technology and sample size.47 If there
are within-industry differences in technology then pooling the data from an entire industry of
establishments may be too restrictive. In this case, allowing for plant-level heterogeneity in the
elasticities, empirical feasibility aside, better accounts for within-industry differences in factor
intensities. On the other hand, pooling data may be necessary to increase sample size in order to

44Similar patterns hold for the 90-10 ratio, not shown here.
45See columns 1 and 2 of table 4 in their paper.
46Note that as the estimates in section 5.2 were calculated using ipw1 weights, all regressions in this exercise

- based on either completed or non-imputed observations - are also weighted by ipw1.
47It is not straightforward to test for the true degree of heterogeneity because the results on which we base

inference about heterogeneity are endogenous to both the estimation method and the homogeneity assumption.
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Figure A2: Time series of average within-industry dispersion measures in various samples, ASM
2002-2010, all industries.
Solid and dotted lines denote statistics which are calculated using completed and non-imputed data, respectively.
In the completed sample, weighted statistics are based on weights which account for the fact that selection into
the ASM and CM is non-random (ipw1). In the non-imputed sample, the weights are a composite of ipw1
and a weight that is inversely proportional to the probability that the plant’s productivity is calculated using
non-imputed data (ipw2).
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Table A8: The effect of productivity on outcomes between 2002-2010 in the ASM/CM, various
samples within the ASM/CM, growth accounting based productivity.

sample overall growth exit conditional growth
(1) (2) (3)

ASM-CM
Completed [ipw1]† 0.165*** -0.065*** 0.04***
Non-imputed [ipw1]†† 0.083*** -0.019*** 0.047***
Non-imputed [ipw1*ipw2]††† 0.079*** -0.021*** 0.041***

ASM cases only
Completed [ipw1] 0.149*** -0.06*** 0.035***
Non-imputed [ipw1] 0.086*** -0.022*** 0.044***
Non-imputed [ipw1*ipw2] 0.086*** -0.024*** 0.041***

Sample size (in thousands)
ASM-CM

Completed data [ipw1] 594 594 570
Non-imputed data [ipw1] 263 263 258
Non-imputed data [ipw1*ipw2] 263 263 258

ASM cases only
Completed data [ipw1] 400 400 386
Non-imputed data [ipw1] 218 218 214
Non-imputed data [ipw1*ipw2] 218 218 213

Triple-asterisks denote 1% significance levels. †Weighted Census data [ipw1]: All observations, propensity
score weighted, where the weight is inversely proportional to the probability that the plant is selected into the
ASM/CM (see FGH). ††Non-imputed [ipw1]: non-imputed subset of the same sample. †††Non-imputed
[ipw1*ipw2]: non-imputed subset of the sample, where observations are weighted by a composite propensity
score, where ipw2 is inversely proportional to the probability that a plant’s productivity is calculated using
non-imputed data. Probabilities were estimated separately for each year and are based on industry-, size-,
age-class and payroll-decile fixed effects.

reduce finite-sample bias and increase precision.48 A more general but equally important point
in this regard is that pooling also implies results are less likely to be sensitive to measurement
error, which is typically present in micro data.

In this section, we relax the homogeneity assumption and assess the consequences for pro-
ductivity dispersion and growth and exit regressions. Figure A3 shows that dispersion is sub-
stantially higher if we allow cost-shares to vary across establishments compared to when it is
constant within an industry. In particular, plant-specific shares increase the interquartile range
by a factor of almost two (see the difference between the thin and thick lines in the figure).
Results also indicate that allowing for time varying elasticities affects only the volatility of
dispersion but not its level. In figure A3 this is shown by observing the difference between the
thin dashed and solid lines. There is no significant difference in variation with industry-level
shares implying the overall conclusion that the effect of time series smoothing is dwarfed by
that of cross-section smoothing.

Both theory and earlier research49 indicate that part of this increase in dispersion may
be spurious. Our own analysis also offers indirect evidence that the increased variation is at
least partly noise. Table A9 shows results from growth and exit regressions based on growth

48Moreover, for some of the estimators reviewed in this paper whether one pools data from different industries
is not a matter of bias and precision but feasibility. See sections 4 and 5.2 for examples.

49See, for example, Syverson (2004).
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Figure A3: Within-industry interquartile range measures of growth accounting based log-
productivity. Sample: 10 largest industries. Thin and thick lines denote dispersion measures based on
shares calculated at the establishment- and industry-levels, using the growth accounting framework. Solid lines
denote dispersion measures based on cost shares that are constant over time. Dashed lines denote statistics
calculated using time-varying cost shares.

accounting productivity estimates. Comparing columns 1-2 shows that using time-varying
industry-level shares leaves the effect of productivity virtually unchanged. In contrast, using
plant-level shares (columns 3-5) reduces the magnitude of estimates, although they remain
statistically significant. The consequence of using plant-level shares is that the growth effect of
productivity drops by almost 50% (columns 1 and 3) among all establishments (first row) or
continuers (last row). Among continuers, an additional 25% of this effect disappears if we also
allow for time series variation in the shares (columns 3-4). The effect on the exit probability
is smaller, about 33%. We interpret this attenuation as a sign that the data contains more
noise with respect to the relationship between productivity and growth. Note that constant
plant-level shares imply a higher point estimate among continuers (column 3 relative to 4 and 5)
suggesting there may be noise not only in the cross-section but also in the time series variation
of establishment-specific cost shares. Our overall conclusion is that calculating cost shares at
the plant level is unlikely to be optimal. Although plant-level shares may better capture within-
industry differences in technology, they are also prone to measurement error. This is reflected
in the smaller partial correlations between productivity, growth and the survival probability of
establishments.
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Table A9: The effect of growth accounting productivity variants on outcomes, 50 largest indus-
tries.

Industry-level shares Plant-level shares
(1) (2) (3) (4) (5)

constant time-varying constant time-varying time-varying

[s̄j] [
sjt+s

j
t−1

2 ] [s̄ji ] [sjit] [
sjit+s

j
it−1

2 ]
overall growth 0.190*** 0.193*** 0.114*** 0.1*** 0.096***
exit -0.064*** -0.066*** -0.042*** -0.041*** -0.039***
conditional growth 0.067*** 0.067*** 0.032*** 0.018*** 0.018***

Outcomes are: employment growth among all establishments (rows 1-2), exit (rows 3-4), employment growth
among continuers (rows 5-6). Estimates are based on the same 50 largest industries used to generate the
results in table 5. The entries in column 1 above are identical to the last column of the first panel in table 5.
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A.8 Additional Tables
Table A10: Conditional probabilities of an industry moving from quintile i (row) to quintile j
(column) of the β̂K/β̂L-distribution, 50 largest industries.

OP 1 2 3 4 5
LPGR 1 0.5 0.2 0.1 0.1 0.1

2 0.3 0.3 0.2 0.2 0
3 0.1 0.3 0.3 0.1 0.2
4 0.1 0.1 0.3 0.2 0.3
5 0.1 0.1 0.4 0.3 0

GA 1 2 3 4 5
LPGR 1 0.1 0.2 0.3 0.2 0.2

2 0.3 0.2 0.3 0.2 0
3 0.3 0.2 0.2 0.2 0.1
4 0.2 0.3 0.1 0.3 0.1
5 0.1 0.1 0.1 0.3 0.4

WLPM 1 2 3 4 5
LPGR 1 0.4 0.3 0.1 0.1 0

2 0.2 0.1 0.3 0.2 0.1
3 0.3 0.2 0.3 0.1 0.1
4 0.1 0.3 0.2 0.2 0.2
5 0.1 0.3 0.6 0 0

See notes to table 1 for legends. The first entry in the table says that half of the industries in the lowest
quintile under LPGR (row) are also classified in the lowest quintile under OP (column). All other entries are
analogous.

Table A11: Descriptive statistics of parameter estimates under isoelastic demand.
Panel A. Demand parameters.

β̂q ρ̂ = 1− β̂q εQi

Pi
= 1

ρ−1 = − 1
β̂q

1
ρ = 1

1−β̂q

OLS OP OLS OP OLS OP OLS OP
mean 0.09 0.05 0.91 0.95 -11.83 -19.53 1.2 1.11
stdev 0.19 0.16 0.19 0.16 46.26 126.2 0.51 0.45

Panel B. Revenue elasticities: β̂j
β̂K β̂L β̂M β̂E

OLS OP OLS OP OLS OP OLS OP
mean 0.1 0.11 0.29 0.27 0.5 0.49 0.11 0.1
stdev 0.06 0.09 0.1 0.09 0.13 0.13 0.05 0.05

Panel C. output elasticities: α̂j = β̂j/ρ̂ = β̂j/(1− β̂q)
α̂K α̂L α̂M α̂E

OLS OP OLS OP OLS OP OLS OP
mean 0.13 0.13 0.35 0.31 0.58 0.54 0.14 0.11
stdev 0.12 0.14 0.2 0.2 0.23 0.23 0.12 0.07

We assume Pi=P (Q/Qi)
1−ρ in the estimation. The parameters related to demand exhibit large standard

deviation which is a sign that these parameters are poorly estimated in a non-trivial number of industries
(Panel A). The elasticity of plant-level revenues with respect to industry-revenues (β̂q) is on average a small

positive number, but varies a lot across industries. Consequently, ρ̂ and the demand elasticity (ε̂Qi

Pi
) and the

markup (1/ρ̂), also exhibit large variation. α̂j-s are greater than β̂j-s in the average industry (see Panels B

and C), which is to be expected under isoelastic demand. However, sd(α̂j) > sd(β̂j). Overall, these patterns

suggests that although the variation in output elasticities reflects var(β̂j) and var(ρ̂), the contribution of the
latter likely dominates.
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Table A12: Descriptive statistics of productivity distributions. Estimators are described in
table 1, pre-estimation outliers included.

N (1000) IQR SD N (1000) IQR SD
50 largest industries 10 largest industries

OLS 568 0.29 0.28 230 0.23 0.21
OP 567 0.35 0.41 233 0.34 0.41

LPGR 572 0.33 0.35 235 0.32 0.31
WLPE 575 0.37 0.41 236 0.34 0.30
WLPM 575 0.46 2.21 236 0.37 0.39

GA 561 0.25 0.24 231 0.25 0.22

Table A13: Correlations among within-industry tfp-distributions, 50 largest 4-digit industries.
Pre-estimation outliers included.

OLS OP LPGR WLPE WLPM GA
Pearson

OLS 1
OP 0.52 1

LPGR 0.8 0.42 1
WLPE 0.49 0.47 0.5 1
WLPM 0.01 0.02 -0.15 0.15 1

GA 0.77 0.47 0.63 0.49 0.09
Spearman

OLS 1
OP 0.67 1

LPGR 0.86 0.6 1
WLPE 0.58 0.61 0.55 1
WLPM 0.34 0.36 0.25 0.48 1

GA 0.8 0.62 0.67 0.58 0.42 1

This table differs from table 4 in that we computed correlations including pre-estimation outlier observations.

Table A14: Correlations among within-industry tfp-distributions, 10 largest 4-digit industries.
OLS OP LPGR WLPE WLPM GA

Pearson
OLS 1
OP 0.48 1

LPGR 0.71 0.43 1
WLPE 0.71 0.54 0.8 1
WLPM 0.52 0.27 0.41 0.66 1

GA 0.88 0.42 0.68 0.66 0.5 1
Spearman

OP 0.71 1
LPGR 0.71 0.65 1
WLPE 0.71 0.73 0.79 1
WLPM 0.6 0.49 0.51 0.69 1

GA 0.88 0.63 0.68 0.67 0.56 1

Including pre-estimation outliers barely changes correlations.
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Table A15: Correlations among within-industry tfp-distributions, 10 largest 4-digit industries.
Pre-estimation outliers included.

OLS OP LPGR WLPE WLPM GA
Pearson

OLS 1
OP 0.51 1

LPGR 0.69 0.43 1
WLPE 0.69 0.57 0.78 1
WLPM 0.5 0.27 0.37 0.64 1

GA 0.85 0.43 0.64 0.63 0.48 1
Spearman

OLS 1
OP 0.7 1

LPGR 0.71 0.63 1
WLPE 0.7 0.73 0.78 1
WLPM 0.58 0.48 0.47 0.67 1

GA 0.86 0.61 0.66 0.65 0.54 1

This table differs from table A14 in that we computed correlations including pre-estimation outlier
observations.

Table A16: Monte Carlo results on productivity dispersion. Dispersion is measured using the
interquartile range. Standard errors of iqr measures are bootstrapped and are in parentheses.

Panel 1. Pooled data Panel 2. Unweighted cross-industry average
orig. smpl R=50 R=100 orig. smpl R=50 R=100

OLS 0.22 0.22 0.22 OLS 0.26 0.26 0.26
(0.0004) (0.0004) (0.0009) (0.0008)

OP 0.32 0.78 0.68 OP 0.36 0.39 0.39
(0.1014) (0.0933) (0.0145) (0.0203)

LPGR 0.29 0.60 0.65 LPGR 0.36 0.38 0.38
(0.0706) (0.0691) (0.0099) (0.0111)

WLPE 0.34 0.75 0.75 WLPE 0.58 1.02 1.05
(0.0794) (0.0817) (0.4614) (0.5588)

WLPM 0.42 1.82 1.80 WLPM 1.37 1.94 1.95
(0.3788) (0.3449) (1.1976) (1.0269)

GA 0.23 0.23 0.23 GA 0.26 0.26 0.26
(0.001) (0.001) (0.0011) (0.0011)

The moments of dispersion statistics in Panel 1 are calculated pooling data from all industries. Mean dispersion
calculated in this manner can be interpreted as a weighted average across industries where the weights depend on the
number of plant-year observations in an industry. This procedure is consistent with the way we calculate dispersion
statistics in table 3. In Panel 2, dispersion is calculated as an unweighted cross-industry average of within-industry
dispersion measures. Interestingly if we bootstrap dispersion statistics industry-by-industry and then calculate average
dispersion (Panel 2), simulated results under proxy methods are closer to those in the original sample. Our MC
approach implies that in this setup, larger and more heterogenous industries have smaller influence. The only
exceptions are WLPM and WLPE, which are more likely to yield extreme elasticity estimates (see section 4) and
therefore dispersion. For GA, coefficients are held constant while input and output observations vary across bootstrap
replications. This exercise helps us assess the effect of the variation in input and output observations. It is natural to
use GA coefficients for this exercise because the cost-shares are calculated using industry level information.
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Table A17: Sample size in the specifications shown in table 5. Sample size is measured as the
total number of plant-year observations used in a regression (in thousands).

OLS OP LPGR WLPE WLPM GA
4-digit elasticities
dlnE 410 415 413 414 414 405
exit 410 415 413 414 414 405
dlnEcont 393 398 396 397 397 388
3-digit elasticities
dlnE 405 413 414 413 413 405
exit 405 413 414 413 413 405
dlnEcont 389 396 398 396 396 388
3-digit elasticities, industries with negative
or non-estimable elasticities are dropped
dlnE 391 406 408 289 310 405
exit 391 406 408 289 310 405
dlnEcont 375 390 391 277 298 388
Total N 440 440 440 440 440 440

Total N denotes the original number of plant-year observations before estimation and post-estimation outlier
trimming.

Table A18: The effect of productivity on outcomes, all (292) largest industries. Outcomes are:
employment growth among all establishments, exit and employment growth among continuers

OLS OP LPGR WLPE WLPM GA
4-digit elasticities
dlnE 0.183*** 0.001 0.128*** 0.004** -0.004*** 0.203***
exit -0.066*** 0.001 -0.041*** -0.002* 0.001** -0.068***
dlnEcont 0.055*** 0.002*** 0.05*** 0.001 -0.001* 0.071***
3-digit elasticities
dlnE 0.202*** 0.115*** 0.15*** 0.001 -0.012*** 0.193***
exit -0.072*** -0.037*** -0.045*** 0.000 0.004** -0.066***
dlnEcont 0.062*** 0.046*** 0.067*** 0.000 -0.005*** 0.066***
3-digit elasticities, industries with negative or non-estimable
elasticities are dropped
dlnE 0.207*** 0.159*** 0.169*** 0.078*** 0.06*** 0.193***
exit -0.073*** -0.05*** -0.05*** -0.031*** -0.022*** -0.066***
dlnEcont 0.065*** 0.065*** 0.075*** 0.017*** 0.017*** 0.066***

Estimates are taken from equations of three outcomes on plant-level measure of productivity, state-level
measure of unemployment growth, and year-, sizeclass- and state-fixed effects. Standard errors are clustered at
the state level, asterisks denote standard significance levels.
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Table A19: The effect of productivity on outcomes, 10 largest industries. Outcomes are: em-
ployment growth among all establishments, exit and employment growth among continuers

OLS OP LPGR WLPE WLPM
4-digit elasticities
dlnE 0.206*** 0.051*** 0.154*** 0.099*** -0.027**
exit -0.067*** -0.002 -0.046*** -0.022*** 0.014***
dlnEcont 0.076*** 0.054*** 0.066*** 0.06*** 0.003
3-digit elasticities
dlnE 0.208*** 0.158*** 0.164*** 0.109*** 0.016
exit -0.068*** -0.032*** -0.049*** -0.026*** 0.002
dlnEcont 0.075*** 0.102*** 0.07*** 0.061*** 0.023*
3-digit elasticities, industries with negative or non-estimable
elasticities are dropped
dlnE 0.208*** 0.158*** 0.164*** 0.13*** 0.061***
exit -0.068*** -0.032*** -0.049*** -0.043*** -0.018***
dlnEcont 0.075*** 0.102*** 0.07*** 0.046*** 0.027*

Estimates are taken from equations of three outcomes on plant-level measure of productivity, state-level
measure of unemployment growth, and year-, sizeclass- and state-fixed effects. Standard errors are clustered at
the state level. *, ** and *** denote 10%, 5% and 1% significance levels.
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A.9 Additional Figures
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Figure A4: Cross-industry distributions of elasticities of β̂m and β̂e.
The sample is 50 largest industries, estimators are described in table 1. β̂m-s show similar general shape but

differences exist. For β̂e, results are also more similar except GA and WLPE.
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Figure A5: Point estimates from a logistic regression of the probability of productivity being
non-imputed.
Regressors: industry fixed effects, employment-, payroll-size and age classes. ASM cases only. We defined 10

size classes based on employment (1-9, 10-109, 20-29, 30-49, 50-99, 100-149 150-249, 250-499, 500-999, 1000+)
in addition to the payroll deciles. Finally, we classified establishments into 9 age classes (births, 1, 2, 3, 4, 5,

6-10, 11-15, 16+ years).
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