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Rationally Inattentive Behavior: Characterizing and Generalizing
Shannon Entropy∗

Andrew Caplin†, Mark Dean‡, and John Leahy§

July 2017

Abstract

We provide a full behavioral characterization of the standard Shannon model of rational
inattention. The key axiom is “Invariance under Compression”, which identifies this model as
capturing an ideal form of attention-constrained choice. We introduce tractable generalizations
that allow for many of the known behavioral violations from this ideal, including asymmetries
and complementarities in learning, context effects, and low responsiveness to incentives. We
provide an even more general method of recovering attention costs from behavioral data. The
data set in which we characterize all behavioral patterns is “state dependent”stochastic choice
data.

1 Introduction

Understanding limits on private information has been central to economic analysis since the pio-
neering work of Hayek [1937, 1945]. While there are many models of information acquisition in
use (see Hellwig et al. [2012]), a major new route to such understanding was initiated by Sims
[1998, 2003], who introduced the theory of rational inattention. He considered the implications of
attention costs based on Shannon mutual information for macroeconomic dynamics. The ensuing
period has seen applications of the Shannon cost function to such diverse subjects as stochastic
choice (Matejka and McKay [2015]), investment decisions (Mondria [2010]), global games (Yang
[2015]), pricing decisions (Woodford [2009], Mackowiak and Wiederholt [2009], Martin [2017] and
Matějka [2015]), dynamic learning (Steiner et al. [2015]) and social learning (Caplin et al. [2015]).

One reason for the appeal of the Shannon cost function is analytic tractability. A second lies
is its connection to optimal coding (Shannon [1948], Sims [2003], Cover and Thomas [2012]). Yet
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Implications of Rational Inattention with Shannon Entropy”by Andrew Caplin and Mark Dean [2013], and subsumes
all common parts.
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these do not imply behavioral validity. Indeed it is now known that behavior often violates key
features of the Shannon model. These include: its implication that all states are equally easy to
identify and to discriminate among (see Dewan and Neligh [2017] for behavioral counterexamples);
the implied flexibility of response to payoff incentives (see Caplin and Dean [2013] for behavioral
counterexamples); and essential independence of behavior from event likelihoods (see Woodford
[2012] for behavioral counter examples).

At this stage there are two related open questions. First, while various features of the behavior
associated with the Shannon model are known, there is as yet no full behavioral characterization.
What precisely are the behavioral characteristics of the Shannon model? Second, what workable
alternative models allow for the complex behavioral patterns identified in practice?

In this paper we address both questions. We provide a full behavioral characterization of
the Shannon model. This characterization pinpoints it as defining an “ideal” form of attention-
constrained choice, in which choices depend only on the probabilistic structure of payoffs. We
also introduce two tractable generalizations that allow for many observed behavioral departures
from the Shannon model. The first involves Uniformly Posterior-Separable (UPS) models, in which
attention costs depend on the expectation of a general convex function of the posterior beliefs.
One particular example uses Tsallis entropy instead of Shannon entropy. UPS models allow for
such factors as: asymmetric costs of learning about distinct states; differing perceptual distance
between distinct states; complementarities in learning about distinct states; and complex responses
to payoff incentives. Posterior-separable (PS) models are even more flexible as they allow the cost
of attention to depend on prior beliefs and hence vary from context to context. The tractability of
PS and UPS models derives from the fact that, as in the Shannon model, attention costs depend
on the expectation of a strictly convex function of posterior beliefs so that standard Lagrangian
optimization methods are available. These generalizations are already gaining traction in the
literature (see Caplin and Dean [2013], Gentzkow and Kamenica [2014], Steiner et al. [2015], Clark
[2016] and Morris and Strack [2017]).

In addition to answering open questions, our analysis produces an unexpected bonus. We
provide a constructive method of recovering attention costs from behavioral data. This method is
both general and intuitively reasonable, resting as it does on standard balancing of marginal costs
and marginal utility.

Our first result starts from behavioral patterns induced by a general UPS cost function and
identifies additional restrictions that ensure that this function is of the Shannon form. UPS cost
functions are characterized by a general strictly convex function of posterior beliefs. The Shannon
model specializes to a particular one parameter family of such functions. Hence the gap between
the UPS model and the Shannon model can be analogized to that between a general strictly concave
utility function and Cobb-Douglas utility.

Just as constancy of expenditure shares pins down the Cobb-Douglas form, we identify a single
behavioral axiom that defines the Shannon model. Invariance Under Compression (IUC) makes
choices invariant to changes in the underlying state space that do not impact the probabilistic
structure of payoffs. In this sense, the Shannon model alone produces an idealized form of attention-
constrained behavior in which only payoff relevant information matters.

Our remaining results establish necessary and suffi cient conditions for a UPS representation.
They do this in three stages, with each stage being of independent interest. The first stage intro-
duces axioms for recoverability of the cost function. The second introduces additional axioms and
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characterizes the PS model. The third adds one final axiom that specializes the PS to the UPS
model.

With regard to recoverability, we show that the cost function is fully pinned down by three
behavioral axioms. The first two are necessary for existence of a rationalizing cost function of
any form: no improving action switches (NIAS: see Caplin and Martin [2015]) and no improving
attention cycles (NIAC; see Caplin and Dean [2015]). The final axiom requires “completeness”of
the behavioral data, in a sense to be made precise.

The PS characterization relies mainly on a behavioral invariance axiom, Separability, that is
less restrictive than IUC. It enables one to replace any action in a given decision problem without
disturbing the behavior associated with common actions. There are also three axioms that address
technical issues in the representation.

The UPS characterization rests on a third behavioral invariance property, Locally Invariant
Posteriors (LIP), intermediate in generality between Separability and IUC. LIP insists that behav-
ioral data derived from any given decision problem can be used to characterize data for a wide class
of related problems, subject to Bayesian consistency.

Central to our approach is a particular specification of the choice data available to an ideal
observer, such as an econometrician or economic theorist. One key feature is stochasticity. That
cognitive constraints produce stochasticity in choice has been a commonplace in psychometrics ever
since the pioneering perceptual experiments of Weber [1834] and the formal models of Thurstone
[1927] and Luce [1959]. Stochasticity is also a feature in all models of rational inattention which
focus on cognitively constrained updating. Yet standard stochastic choice data is fundamentally
inadequate to capture attention, since it does not measure the degree of match between behavior
and reality. As Block and Marschak [1960] (p. 98-99) presciently noted, the path forward in testing
theories of attention lies in data enrichment.

The data set that we study is “state-dependent”stochastic choice (SDSC) data, as introduced
in Caplin and Martin [2015] and Caplin and Dean [2015]. This treats both the payoff determining
states of the world and the behavioral choice as observable. It rests on the idea that attentional
constraints do not apply to an ideal observer. While consumers may have diffi culty assessing
whether or not sales tax is included in the price paid at the register, the econometrician knows
(Chetty et al. [2009]). The resulting data strongly reflects the match between perception and reality.
In fact our results show that SDSC data can capture the full behavioral footprint of attention costs,
in stark contrast with standard stochastic choice data.

Our work is related to a growing recent literature aimed at understanding the behavioral im-
plications of models with limited attention. Notable recent contributions include Masatlioglu et al.
[2012], Manzini and Mariotti [2014], Oliveira et al. [2017] and Steiner and Stewart [2016]. More
specifically, there have been several recent papers which have used first order conditions to solve
the Shannon model (for example Stevens [2014], Matejka and McKay [2015], Steiner et al. [2015],
Caplin et al. [2016]). Unlike these papers, we provide a set of easily interpretable axioms which give
insight into the type of behavioral patterns that the Shannon model predicts. de Oliveira [2013]
considers the behavioral implications of the Shannon model, but for a data set which consists of
observed choices over different menus of alternatives. Instead, our work uses SDSC, and therefore
links in with the recent renewed interest in modelling random choice in general (e.g. Agranov and
Ortoleva [2015], Manzini and Mariotti [2016], Apesteguia and Ballester [2016]), and it’s relationship
to information acquisition in particular (e.g. Krajbich and Rangel [2011]).
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Section 2 defines attention strategies in analytically appropriate form, and introduces the var-
ious classes of attention cost functions. Section 3 establishes general applicability of Lagrangian
methods of identifying optimal strategies. Section 4 introduces SDSC data and links it to atten-
tion strategies. Section 5 introduces our IUC axiom and the associated characterization theorem.
Section 6 introduces the recoverability result. Our characterizations of the PS and UPS models
are in Section 7. Section 8 provides additional analyses concerning alternative formulations of the
representation theorems and the properties of our axioms. Section 9 relates our work to the existing
literature on attention. Section 10 concludes. Throughout the paper we present the main Theorems
and discuss informally why they are true. Formal proofs are in the Appendix.

2 Attention Strategies and Costs

2.1 Posterior-Based Attention Strategies

We consider a decision maker (DM) who faces a large class of decision problems related to an infinite
(countable or uncountable) underlying set Ω of conceivable states of the world and an uncountably
infinite set of potentially available actions, A. In a given decision problem, the DM is endowed
with a prior with finite support as well as a finite set of available actions. The DM receives known
expected utility u(a, ω) when action a ∈ A is chosen in state ω ∈ Ω. We assume that A is rich
enough that values u(a, ω) ∈ R are unrestricted.

Definition 1 Given µ ∈ ∆(Ω) ≡ Γ, Ω(µ) ≡ {ω ∈ Ω|µ(ω) > 0} specifies possible states (where ∆
denote simple distributions over the space); Γ(µ) = {γ ∈ Γ|Ω(γ) ⊂ Ω(µ)} possible posteriors; and
Γ̃(µ) = {γ ∈ Γ(µ)|Ω(γ) = Ω(µ)} interior posteriors with precisely the same support as µ.

Definition 2 A decision problem comprises a pair (µ,A) ∈ Γ×A with A finite. D is the set of
such decision problems.

The central decision that we model concerns how much to learn. The DM decides this by
comparing the incremental improvement in decision quality associated with improved information
with the cost of incremental information. In formalizing the cost of learning, we will focus on the
outcome of the learning process and assign costs directly to each Bayes-consistent distribution of
posteriors, as in Caplin and Dean (2013). To this end, we define an attention strategy in terms of
the resulting posteriors and their implications for choice.

Definition 3 Given (µ,A) ∈ D, the set of posterior-based attention strategies comprises all
simple probability distributions over posteriors and corresponding mixed action strategies,

Λ (µ,A) ≡ {λ = (Qλ, qλ)|Qλ ∈ Q(µ), qλ : Γ(Qλ)→ ∆(A)} ,

with A(λ) ⊂ A the chosen actions, and Q(µ) the Bayes-consistent distributions,

Q(µ) = {Q ∈ ∆(Γ(µ))| µ =
∑

γ∈Γ(Q)

γQ(γ)}.
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We define corresponding unions Λ (µ) and Λ, and also define ΛI(µ) ⊂ Λ(µ) as the set of inattentive
strategies such that Γ(Qλ) = µ.

This posterior-based approach departs from the standard signal-based approach which specifies
the cost of an available set of signals correlated with the true state of the world (see for example
Caplin and Dean [2015]). There are two key advantages of the posterior-based formulation. First,
our behavioral characterizations are more naturally stated in terms of posteriors. Second, this
formulation allows for several interesting generalizations of the Shannon cost function. Of course,
there is in general a mapping between signals and posteriors. We discuss in Section 8 why behavioral
results are independent of how strategies are formulated.

Figure 1 illustrates the strategy λ∗ which we use as a running example. The underlying decision
problem consists of a prior µ with two states in its support, Ω(µ) = {ω1, ω2}, each of which is equally
likely.1 The support of the strategy comprises two posteriors, Γ(Qλ∗) =

{
γa, γb

}
:

γa =

(
0.8
0.2

)
γb =

(
0.4
0.6

)
;

and specifies Qλ∗(γa) = 0.25 and Qλ∗(γb) = 0.75. Actions a and b are chosen deterministically
from γa and γb respectively, qλ∗(a|γa) = qλ∗(b|γb) = 1.

Figure 1: Strategy λ∗

1We use the notation

γ =

(
γ(ω1)
γ(ω2)

)
to describe probability distributions.
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2.2 Utility and Costs

The goal of the DM is to maximize prize-based expected utility (EU) net of additively separable
attention costs. Given λ ∈ Λ, prize based EU is computed in the standard manner,

U(λ) ≡
∑

γ∈Γ(Qλ)

∑
a∈A

Qλ(γ)qλ(a|γ)ū(γ, a),

where ū(γ, a) is expected utility conditional on the posterior γ

ū(γ, a) ≡
∑

ω∈Ω(µ)

γ(ω)u(a, ω). (1)

Attention costs for strategy λ ∈ Λ(µ) depend only on the distribution of posteriors Qλ ∈ Q(µ).
We assume that inattention is always possible, and normalize its cost to zero. We allow for the
possibility that some distributions of posteriors are infeasible by setting their costs to infinity. For
example, there are interesting cases in which it is prohibitively costly to entirely rule out ex ante
possible states, so that it is infeasible to choose posteriors on the boundary of Γ(µ).

Definition 4 We define F as the set of all priors and Bayes’consistent posterior distributions,

F = {(µ,Q)|µ ∈ Γ, Q ∈ Q(µ)}. (2)

We define K as the set of all attention cost functions K : F → R̄ such that K(µ,Qλ) = 0 for
λ ∈ ΛI(µ).

2.3 The Shannon Cost Function

By far the best studied cost function that can be expressed directly in terms of priors and posteriors
is the Shannon function, in which the costs are linear in the mutual information between prior and
posteriors. It is standard that one can compute mutual information by comparing the Shannon
entropy of the prior, H(µ) = −

∑
ω∈Ω(γ) µ(ω) lnµ(ω), to the expected Shannon entropy of the

posteriors. In translating this into an attention cost function, note that what is costly is increasing
predictability, or reducing entropy. Given (µ,Q) ∈ F , the Shannon attention cost function KS

κ

with multiplicative factor κ > 0 is therefore specified as,

KS
κ (µ,Q) ≡ κ

 ∑
γ∈Γ(Q)

Q(γ) [−H(γ)]− [−H(µ)]

 = κ

 ∑
γ∈Γ(Q)

−Q(γ)H(γ) +H(µ)

 . (3)

By way of illustration, consider attention strategy λ∗ from Figure 1. Figure 2 records the
probability of state ω1 on the horizontal axis. The Figure reflects the fact that Shannon entropy is
strictly concave and symmetric around its maximized value at uniformity and that it is zero at the
end-points of the interval (since limx↓0 x lnx = 0), at which it has unbounded derivative. Following
(3), we shift up the negative of the entropy function, which is strictly convex, to zero at the prior
of 0.5. The cost of strategy λ∗ is then found as the height of the chord joining the points on the
function corresponding to the two possible posterior likelihoods of ω1 (0.4 and 0.8) as it passes over
the prior, as Figure 2 illustrates.
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Figure 2: Cost of Strategy λ∗

Note that the Figure shows that all attentive strategies have strictly positive cost.

2.4 PS Cost Functions

The posterior-separable (PS) cost functions we study have the same form as (3), yet generalize the
underlying measure of disorder, or “entropy”, of the probability distribution over prior possible
states of the world. The only properties that are retained relate to the strict convexity of this
function and the specification of inattention as feasible and free.

Definition 5 An attention cost function is posterior-separable (PS), K ∈ KPS , if, given µ ∈
Γ, there exists a strictly convex function Tµ : Γ(µ) → R̄, real-valued on Γ̃(µ), such that, given
Q ∈ Q(µ),

K(µ,Q) =
∑

γ∈Γ(Q)

Q(γ)Tµ(γ)− Tµ(µ), (4)

and such that the optimal posterior set Γ̂(µ|K),

Γ̂(µ|K) = {γ ∈ Γ|∃ (µ,A) ∈ D and λ ∈ Λ̂(µ,A|K) with γ ∈ Γ(Qλ)}, (5)

is convex.

To clarify fine points in the definition, note that allowing Tµ to take infinite values for boundary
posteriors both covers various interesting forms of entropy (see section 8.3) and simplifies our
behavioral characterization. Strict convexity in this case means that, given distinct posteriors
γ1,γ2 at which Tµ is real-valued (the set dom Tµ in the notation of Rockafellar [1970] p. 23),

Tµ(αγ1 + (1− α)γ2) < αTµ(γ1) + (1− α)Tµ(γ2),
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all α ∈ (0, 1): hence dom Tµ itself is a convex set. Our insistence that Γ̂(µ|K) is also convex avoids
complications associated with possible non-existence of sub-differentials on the boundary.2

As noted in Section 9, functions of the PS form have featured in the literature on measures
of the information content of experiments following Blackwell [1951]. A straight forward result
with this functional form is that the strict convexity of Tµ ensures that the corresponding measure
strictly respects the Blackwell partial ordering of information content (see Torgersen [1991]).

In addition to allowing for general convex cost functions, note that this definition allows costs
to differ arbitrarily across priors, e.g. according to the cardinality of the state space. Subtraction
of Tµ(µ) is a normalization which ensures that inattentive strategies are free as per the general
definition. Note that there are many different T functions that give rise to precisely the same cost
function. In particular, we show in the Appendix that K is invariant to affi ne transforms of Tµ
(Lemma 4.3).

2.5 UPS Cost Functions

While the PS case allows for arbitrary dependence of the cost function on the prior, the Shannon
model does not exploit this freedom. Given distinct priors µ, µ′ ∈ Γ, the function Tµ(γ) and Tµ′(γ)
can be written in a manner that is independent of the prior. A fine point relates to the possibly
infinite costs of ruling out ex ante possible states. Note that even with Shannon cost functions, the
incremental cost of fully ruling out any prior possible state is unbounded at the margin. This means
that there is not full independence between the prior and the cost of the corresponding posterior.
However this dependence is limited. We can cover all such cases by insisting on a common T function
only for posteriors consistent with optimality.

Definition 6 A PS cost function K ∈ KPS is uniformly posterior-separable (UPS), K ∈
KUPS, if there exists a strictly convex function T : Γ→ R such that,

K(µ,Q) =
∑

γ∈Γ(Q)

Q(γ)T (γ)− T (µ). (6)

all (µ,Q) ∈ F such that Q ∈ Q̂(µ|K) ≡ Q(µ) ∩∆(Γ̂(µ|K)).

Examples of cost functions which fall into the UPS category are those based on alternative
measures of entropy, such as that introduced by Tsallis [1988]. We discuss the relationship between
Tsallis and Shannon costs in Section 8.3.

3 PS Models, Optimal Strategies, and Lagrangians

In this section we identify optimal strategies using Lagrangian methods. We develop the geometric
intuition in the body of the text, with technical arguments in Appendix 1.

2 In general, the set of posteriors at which sub-differentials exist (dom ∂Tµ in the notation of Rockafellar [1970],
p. 227) need not be convex in particular contrived cases. Our results are most straight forward with Γ̂(µ|K) convex,
which holds for all standard forms of entropy. While both are convex, note that Γ̂(µ|K) may be a strict subset of
dom Tµ. For example, the Shannon cost function is real-valued on the convex set Γ(µ), while Γ̂(µ|KS

κ ) comprises
only interior posteriors, Γ̂(µ|KS

κ ) = Γ̃(µ).
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3.1 Optimal Strategies

The value of strategy λ ∈ Λ (µ) is computed based on additive separability of prize utility and
attention costs.

V (µ, λ|K) ≡ U(λ)−K(µ,Qλ).

The value function and corresponding optimal strategies are then defined as:

V̂ (µ,A|K) ≡ sup
{λ∈Λ(µ,A)}

V (µ, λ|K);

Λ̂(µ,A|K) ≡
{
λ ∈ Λ (µ,A) |V (µ, λ|K) = V̂ (µ,A|K)

}
.

3.2 Net Utility

There are Lagrangian methods of characterizing optimal strategies in the PS model. Yet the fact
that costs can depend on the prior in the PS model gives rise to certain notational complexities.
Hence for expository purposes, we focus on the UPS case, noting at the end that the approach
generalizes to the PS case.

The key geometric observation is that the value of any given strategy, modulo the normalizing
factor T (µ), can be decomposed into action specific net utilities, Na(γ),

Na(γ) ≡ ū(γ, a)− T (γ). (7)

To confirm, note that since
∑
a∈A

qλ(a|γ) = 1 all γ ∈ Γ(Qλ),

V (µ, λ|K) + T (µ) =
∑

γ∈Γ(Qλ)

∑
a∈A

Qλ(γ)qλ(a|γ)ū(γ, a)−
∑

γ∈Γ(Qλ)

Qλ(γ)
∑
a∈A

qλ(a|γ)T (γ)

=
∑

γ∈Γ(Qλ)

∑
a∈A

Qλ(γ)qλ(a|γ)Na(γ).

Hence optimal strategies can be identified as those that maximize the weighted averages of net
utilities.

The net utility approach has simple geometric content. In Figure 3 we illustrate action-specific
net utilities in a simple two-state case with Ω(µ) = {ω1, ω2} and µ(ω1) = 0.5. The probability of
state 1 is on the horizontal axis. The red, dashed line graphs T (γ) as a function of γ(ω1). The
green line represents the prize-based expected utility of an action a in which we have assumed that:
u(a, ω1) = 1 and u(a, ω2) = 0. To compute net utility we simply subtract the cost from the benefit
(for clarity in the Figure we illustrate Na(γ) + T (µ) which allows us to see the tangency of net
costs with gross costs when γ = µ). The result is the blue line in the Figure. Note that since net
utility is the difference between a line and a strictly convex function, it is strictly concave.
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Figure 3: Net Utility of Action a.

Figure 4 illustrates net utilities for a decision problem (µ,A) with two equiprobable states and
two actions, A = {a, b}. The second action is the mirror image of the first, with u(b, ω1) = 0 and
u(b, ω2) = 1. We illustrate in the Figure computation of the net utility of strategy λ∗. Precisely
as when computing the cost, the value is found by joining the points on the net utility function
corresponding to possible posteriors with a chord, and finding the value of the chord as it passes
over the prior. Thinking of all such chords identifies optimal strategies as defined by the posteriors
that support the highest chord passing over the prior. In Figure 4 posteriors γ̂a and γ̂b have this
property, and so form the support of an optimal strategy for this decision problem. Note that our
example strategy λ∗ is non-optimal, since the corresponding chord passes strictly below the top
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chord.

Figure 4: Net Utility of Strategy λ∗

3.3 Lagrange Multipliers and the PS model

The shaded area in Figure 4 is the lower epigraph of the concavified net utility function, defined as
the minimal concave function that majorizes all net utilities (Rockafellar [1970]). The applicability
of Lagrangian methods rests on the fact that the lower epigraph is always a convex set. This is
geometrically clear in the simple case illustrated in Figure 4, and applies quite generally. Indeed,
the same geometric approach works not only for UPS cost functions, but also for PS cost functions,
in which net utilities are specific to the prior. For PS cost functions, we fix the prior µ and again
define action-specific net utilities as Na

µ(γ),

Na
µ(γ) ≡ ū(γ, a)− Tµ(γ). (8)

The key geometric observation is that one can still compute optimal strategies by appropriately
averaging these action and prior specific net utilities. Hence identical convex analytic methods
apply.

The geometric approach in Figure 4 is completely general. There is one important point to
note in so generalizing, which derives from the adding up constraint on probabilities. Given this
constraint, Figure 4 represents a two-dimensional state space in one dimension. This transformation
is of great general value. Given µ ∈ Γ with |Ω(µ)| = J , we transform Ω(µ) into the equivalent
subspace of RJ−1. To simplify, we give all states distinct integer labels 1 ≤ j ≤ J , and let ΓJ−1
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denote the corresponding space of probability distributions:

ΓJ−1 =

µ ∈ RJ−1
+

∣∣∣∣∣∣
J−1∑
j=1

µ(j) ≤ 1

 ; (9)

with µ(J) = 1−
∑J−1

j=1 µ(j) left as implicit.

In Appendix 2 we establish a “Lagrangian”lemma that shows that there is always a supporting
hyperplane to the lower epigraph of the convexified net utility function (Lemma 2.6). The analytic
translation of this geometrically clear result is that optimal attention strategies are characterized by
Lagrange multipliers θ(j) conveying the change in net utility as each posterior γ(j) for 1 ≤ j ≤ J−1
is raised at the expense of reducing γ(J). The Lagrange multipliers define the slope of the supporting
hyperplane at the optimum. All chosen actions have net utilities that lie on this hyperplane at
the corresponding chosen posterior, while no net utility function breaches the hyperplane for any
posterior.

Lagrangean Lemma: Given K ∈ KPS and (µ̄, A) ∈ D, λ ∈ Λ̂(µ̄, A|K) if and only if ∃θ ∈ RJ−1

s.t.,

Na
µ̄(γ)−

J−1∑
j=1

θ(j)γ(j) ≤ sup
a′∈A,γ′∈Γ(µ̄)

Na′
µ̄ (γ′)−

J−1∑
j=1

θ(j)γ′(j),

all γ ∈ Γ(µ̄) and a ∈ A, with equality if γ ∈ Γ(Qλ) and qλ(a|γ) > 0.

Note that this lemma characterizes optimal strategies, and opens up standard methods of model
solution. In addition, it conveys important qualitative features of the behavior implied by PS and
UPS models. We return to this in later sections.

4 SDSC and Representations

In this section we introduce the data set and the sought after representations.

4.1 State Dependent Stochastic Choice Data

The key question in applied work on attention is the extent to which DMs internalize the actual
decision making environment in which they find themselves. Do they notice whether or not a sales
tax is included in the price paid at the register (Chetty et al. [2009])? Do they notice fluctuating
prices of the same good in a supermarket (Matějka [2015])? Essentially all such situations can be
captured using the general model above, by appropriately specifying available actions, the various
factors (states of the world) that determine their payoffs, and prior beliefs about how likely is each
such state.

Our goal is to specify observable patterns in choice data that narrow down the theories of
inattentive choice. Before we begin, however, we must first specify exactly what sort of data is
suffi cient for this task. An important first point is that standard stochastic choice data, in which one
only observes the unconditional likelihood of each choice, is fundamentally inadequate for capturing
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attentional constraints. To see this, consider the two action decision problem illustrated in Figure
4. Note that the symmetry of the decision problem implies that the optimal strategy results in each
action being chosen equally often. In the particular strategy chosen, this reflects partial information.
Yet the same unconditional probabilities are also consistent with perfect information, with each
action chosen precisely when it is optimal. These probabilities are also consistent with completely
inattentive choice, with a fair coin flipped to decide which action is taken. Unconditional choice
probabilities in no way reflect the extent to which behavioral patterns are impacted by reality. One
must also know how well the action suited reality.

As first noted by Block and Marschak [1960] (p. 98-99), the way forward lies in realistically
enriching the ideal behavioral data available to an ideal observer (IO), such as an econometrician or
economic theorist, in which of costs of attention are to be identified. The key to our data enrichment
is the observation that the information constraints that impact the DM do not apply to the IO.
For example, while the DM may have diffi culty assessing whether or not a sales tax is included in
the purchase price or what the actual price of each good is in a supermarket, the IO with access
to the underlying reality does not. In defining our data, we therefore specify that the IO observes
both the state of the world as well as the action.

In formal terms, our behavioral data set is state dependent stochastic choice (SDSC) data,
as in Caplin and Martin [2015] and Caplin and Dean [2015]. We specify both states and actions
as being fully observed by the IO. We further specify our IO as able to watch this DM facing
this same decision infinitely often, with precisely this strategy used each time.3 For the IO to
treat repeated observations of the DM as deriving from the same decision problem implies that
the set of available actions, A, is the same. It requires also that the DM is seen as having the
same prior µ over possible states of the world. We assume that the IO then observes the full
distribution of actual state realizations and action choices. In terms of interpreting the data as
revealing of patterns of attentional choice, we make the simplifying assumption that there are
common probability assessments between IO and DM. We call this “rational expectations”with
which it has spiritual commonalities.

A key observation is that rationality of expectations enables the IO to infer the DM’s presumed
prior as the actual proportion of times each state is realized. We therefore treat the prior itself as
observable in specifying our behavioral data set in its most general form.

Definition 7 Given (µ,A) ∈ D, we define state dependent stochastic choice (SDSC) data
as mapping from possible states to action probabilities,

P(µ,A) ≡ {P : Ω(µ)→ ∆(A)} ,

with P (a|ω) the probability of action a in state ω. We define P(µ) as the union over all corre-
sponding decision problems and P ≡ ∪µ∈ΓP(µ).

Implicit in this definition is the assumption that the expected utility function of the DM is part
of the data. One could readily replace this assumption with an enrichment of the data set that
allowed for utilities to be recovered from behavior, as discussed in Caplin and Dean [2015].4

3 In practice one might apply a model of this form to a population rather than an individual, as in the literature
on discrete choice following McFadden [2005].

4One could replace the “Savage style”actions we use in this paper with “Anscombe-Aumann”acts that map states
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While only recently introduced in economics, SDSC data has a long and storied history in psy-
chometrics. The Weber-Fechner laws, which are based on corresponding data, identify regularities
in how well humans perceive objective differences in the strength of various external stimuli.

There are two key differences between our approach and the standard psychometric approach.
First, we follow classical economic logic, so that the stimuli are levels of utility, or reward. Second,
we model perceptual effort as chosen in light of potential rewards. Given this, we will show that
rich behavioral data has patterns in it that fully reveal costs of accurately recognizing external
reward stimuli.

4.2 From Strategy to Data

We illustrate in Figure 5 how seeing data on states and actions captures the behavioral imprint of
our running example, strategy λ∗. Given the assumed rationality of expectations, the subjective
probabilities of the DM agree with the data frequencies as seen by the IO. What the IO will then
see is a joint distribution of states and actions with precise probabilities determined by the prior,
the posteriors, and the mixed action strategy.

Figure 5: Data Generated by Strategy λ∗

The fact that action a is chosen if and only if the DM receives γa, and that Qλ∗(γa) = 0.25
means that action a will be chosen 25% of the time (and b the remaining 75% of the time). Because
γa is associated with an 80% probability of ω1 (and a 20% probability of ω2), the resulting joint
probability of a and ω1 is 20%. All other joint probabilities can be calculated in a similar way, as
shown in Figure 5. These joint probabilities can be converted into conditional probabilities using
Bayes’rule, giving the SDSC P ∗ associated with λ∗:

P ∗(a|ω1) = 0.4; P ∗(b|ω1) = 0.6;

P ∗(a|ω2) = 0.1; P ∗(b|ω2) = 0.9.

of the world to probability distributions over the prize space. Assuming the DM does maximize expected utility, u
could then be recovered by observing choices over degenerate acts (i.e. acts whose payoffs are state independent).
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This method for generating data from strategies is more general. Following the logic of Figure 5,
we translate each strategy λ ∈ Λ (µ,A) into its observable counterpart in SDSC data, Pλ, assuming
rational expectations. With this notation, note that P ∗ = Pλ∗ .

Definition 8 Given λ ∈ Λ (µ,A) we define the generated SDSC data Pλ : Ω(µ)→ ∆(A) and the
corresponding action choice probabilities Pλ(a) on a ∈ A(λ) by:

Pλ(a|ω) =

∑
γ∈Γ(Qλ)

Qλ(γ)qλ(a|γ)γ(ω)

µ(ω)
;

Pλ(a) =
∑

γ∈Γ(Qλ)

Qλ(γ)qλ(a|γ).

4.3 Choice Correspondence and Representations

In the idealized data set that we consider, SDSC data is available for all decision problems. As
indicated, and as in Caplin and Dean [2015], we assume that the IO knows all details of the decision
problem faced by the DM, which includes the prior and the payoffs to all available actions. For
technical reasons, it simplifies the statement of our representation theorems to imagine that the IO
sees a data set that is deep as well as broad. It specifies for each decision problem a corresponding
set of qualifying SDSC functions - i.e. all such functions used by the DM in that decision problem.
Following Richter [1966], this is in the spirit of standard choice analysis based on a correspondence
mapping a choice set to a subset of suitable alternatives. C is the set of such data sets:

C ≡
{
C : D → 2P/∅|C(µ,A) ⊂ P(µ,A)

}
.

This level of artificiality turns out to be substantively irrelevant. We discuss in Section 8 how our
results extend to cases in which one sees only a selection from this data correspondence.

We say that a data set C has a costly information representation based on a cost function K if
the observed SDSC data C(µ,A) corresponding to each decision problem (µ,A) coincides with the
SDSC data Pλ generated by optimal strategies λ ∈ Λ̂(µ,A|K).

Definition 9 Data set C ∈ C has a costly information representation (CIR) based on K ∈ K
if, for all (µ,A) ∈ D,

C(µ,A) = {Pλ ∈ P|λ ∈ Λ̂(µ,A|K)} ≡ P̂ (µ,A|K).

1. It has a posterior-separable (PS) representation it is has a CIR K ∈ KPS.

2. It has a uniformly posterior-separable (PS) representation it is has a CIR K ∈ KUPS.

3. It has a Shannon representation if it has a CIR K = KS
κ for κ > 0.

4.4 The Revealed Strategy

Caplin and Dean [2015] show that, while there is a multiplicity of strategies that could have gen-
erated any SDSC data, there is always a unique least Blackwell informative strategy consistent
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with the data. The first step in constructing this strategy is to identify with each chosen action a
the corresponding “revealed posterior” γ̄aP . This treats the action as chosen at one and only one
posterior which can be inferred from our behavioral data using Bayes’rule. Building on this, the
“revealed posterior-based strategy”is the least Blackwell informative strategy consistent with the
data. As such, it is the least costly for all our PS cost functions. It follows that for the class of
models we consider in this paper, optimality implies that the revealed attention strategy is used by
the DM in each decision problem.

Definition 10 Given (µ,A) ∈ D, P ∈ P(µ,A), and a ∈ A, we define revealed action probability
P (a) =

∑
ω∈Ω(µ) µ(ω)P (a|ω). We define A(P ) as the actions chosen with positive probability. If

a ∈ A(P ) ⊂ A, we define also revealed posterior γ̄aP ∈ Γ(µ)

γ̄aP (ω) =
µ(ω)P (a|ω)

P (a)
;

with Γ(P ) the union across a ∈ A(P ). The revealed posterior-based attention strategy λ(P ) =
(QP ,qP ) ∈ Λ(µ,A)5 is defined by Γ(QP ) = ∪a∈A(P )γ̄

a
P and:

QP (γ) =
∑

{a∈A(P )|γ̄aP=γ}
P (a);

qP (a|γ) =

{
P (a)
QP (γ) if γ̄aP = γ;

0 if γ̄aP 6= γ.

To illustrate construction of the revealed attention strategy, consider the data set P ∗ = Pλ∗ .
The revealed posterior associated with the choice of action a is,

γ̄aP ∗(ω1) =
µ(ω1)P ∗(a|ω1)

P ∗(a)
=

0.5× 0.4

0.25
= 0.8.

Similarly
γ̄aP ∗(ω2) = 0.2; γ̄bP ∗(ω1) = 0.4; and γ̄bP ∗(ω2) = 0.6

We can then calculate the revealed strategy as involving

QP ∗(γ̄
a
P ∗) = P ∗(a) = µ(ω1)P ∗(a|ω1) + µ(ω2)P ∗(a|ω2)

= 0.5 ∗ (0.4 + 0.1) = 0.25.

Hence,
QP ∗(γ̄

b
P ∗) = P ∗(b) = 0.75;

Furthermore,
qP ∗(a|γ̄aP ∗) = 1 = qP ∗(b|γ̄bP ∗).

Note in this case that λ∗ is in fact the revealed strategy associated with data set Pλ∗ = P ∗,

λ∗ = λ(P ∗) = λ(Pλ∗).

While this does not hold for arbitrary strategies, it is general for data observed in our representa-
5See Appendix 1 for direct confirmation that λ(P ) ∈ Λ(µ,A).
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tions, as discussed in Caplin and Dean [2015]. Appendix 2 contains this result together with other
general results that link strategies revealed by data in costly information representations with the
SDSC data generated by optimal strategies.

5 Compression and the Shannon Model

Having introduced the key model elements and data-related definitions, we turn now to the results
themselves. In this section we start with a data set having a UPS representation and identify
additional behavioral restrictions that make this a Shannon representation. As the definitions
show, the UPS form allows for a general convex function T (γ), while Shannon restricts T (γ) to a
particular one parameter family, T (γ) = κ ln(γ). This restriction on T implies many qualitative
restrictions on behavior. For example, there are strong symmetry properties, so that behavior
must indicate that all states individually are equally easy or diffi cult to perceive. There are also
no complementarities, so that learning about one state makes it no easier (or more diffi cult) to
learn about any separate state. There are also very strong smoothness properties and profound
quantitative restrictions e.g. in terms of the response to payoff changes.

Our first theorem establishes that a single behavioral invariance axiom is enough to move us
from a UPS representation to a Shannon representation, hence conveying all of these particular
properties noted above and all others besides. This axiom insists that choices not change when
payoff equivalent states are “compressed” into a single state. In the remainder of the section we
first introduce this behavioral axiom intuitively. We then formalize it and state the main theorem.
Finally, we sketch the proof. The proof itself, which is involved, is in Appendix 5.

5.1 Basic Decision Problems and Basic Forms

What precisely does it mean to say that payoffs alone matter? To specify, consider first decision
problems in which all states are distinct in terms of payoffs, so that no two possible states have
identical payoffs for all available actions. We call these “basic”decision problems.

Definition 11 Given (µ,A) ∈ D, a decision problem is basic, (µ,A) ∈ B ⊂ D if, given ω 6= ω′ ∈
Ω(µ), there exists a ∈ A such that u(a, ω) 6= u(a, ω′).

Consider now a non-basic decision problem with three possible states: Ω(µ) = {ω1, ω2, ω3} and
two actions A = {a, b}. In this problem, states ω1 and ω2 are equivalent:

u(a, ω1) = 1, u(b, ω1) = 0;

u(a, ω2) = 1, u(b, ω2) = 0;

u(a, ω3) = 0, u(b, ω3) = 1.

There are two obvious ways to shift all probability from the two equivalent states to one or the
other of them. One way is to set µ̄(ω1) = µ(ω1) + µ(ω2) and µ̄(ω2) = 0, with µ̄(ω3) = µ(ω3). The
alternative is to set µ̂(ω2) = µ(ω1) + µ(ω2) and rule out state ω1. These priors associated with
these two “basic forms”of (µ,A) are illustrated in Figure 6.
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Figure 6: Basic Forms of Decision Problem
(µ,A)

We now provide the general technical definitions.

Definition 12 We associate (µ,A) ∈ D with a set of basic forms (µ̄, A) ∈ B(µ,A) ⊂ B by:

1. Partitioning Ω(µ) into L basic sets
{

Ωl(µ)
}

1≤l≤L comprising payoff equivalent states, so

that, given ω ∈ Ωl(µ) and ω′ ∈ Ωm(µ),

l = m iff u(a, ω) = u(a, ω′) all a ∈ A.

2. Labeling all possible states both by equivalence class and in order within each equivalence class:

Ω(µ) = {ωli||1 ≤ i ≤ I(l) = |Ωl(µ)| and 1 ≤ l ≤ L}.

3. Selecting ı̄(l) ∈ {1, .., I(l)} all l and defining Ω̄(µ) = ∪Ll=1ω
l
ı̄(l).

4. Defining µ̄ ∈ Γ(µ) by setting

µ̄(ωli) =


I(l)∑
j=1

µ(ωlj) if i = ı̄(l);

0 if i 6= ı̄(l).

.

Given ı̄(l) ∈ {1, .., I(l)} on 1 ≤ l ≤ L, we say (µ̄, A) ∈ B(µ,A) for ı̄.

18



5.2 Invariance Under Compression

Note that there is no functional value for the DM in distinguishing between states that assign the
same payoff to all actions. Hence an ideally designed machine for encoding states would not waste
any of its scarce resources on this task. The stochastic structure of choice would not change if
distinct yet payoff equivalent states were “compressed”into a single state.

Our Invariance under Compression axiom insists that patterns of choice are equivalent in all
decision problems with a common basic form.

Axiom A1 Invariance under Compression (IUC): Given (µ̄, A) ∈ B(µ,A) for ı̄,

P ∈ C(µ,A)⇐⇒ ∃P̄ ∈ C(µ̄, A) s.t. P (a|ωli) = P̄ (a|ωlı̄(l)),

all 1 ≤ i ≤ I(l), 1 ≤ l ≤ L and a ∈ A.

We can illustrate the meaning of IUC using the example discussed above, in which the decision
problem (µ,A) is such that Ω(µ) has two basic sets: {ω1, ω2} and {ω3}. Note first that IUC
implies that, for any observed P ∈ C(µ,A) it must be the case that P (a|ω1) = P (a|ω2) for all
a ∈ A: the DM must behave identically in any states that belong to the same basic set. Moreover,
behavior in (µ,A) must be similar to behavior in the basic version of the problem. For example,
given µ̄(ω1) = µ(ω1) + µ(ω2), P̄ ∈ C(µ̄, A) if and only if P̄ (a|ω1) = P (a|ω1) = P (a|ω2) for some
P ∈ C(µ,A) and all a ∈ A. The fact that this also holds for the basic version of the problem in
which µ̂(ω1) = µ(ω1) + µ(ω2) means furthermore that behavior in the two basic versions of the
problem must be the same: P̄ ∈ C(µ̄, A) if and only if P̄ (a|ω1) = P̂ (a|ω2) for some P̂ ∈ C(µ̂, A).
An immediate corollary is that, for any prior µ∗ such that µ∗(ω3) = µ(ω3) and Ω(µ∗) ⊂ Ω(µ) it
must be the case that C(µ,A) = C(µ∗, A).

The key result is that the Shannon cost function alone among UPS cost functions satisfies this
invariance axiom.

Theorem 1: Data set C ∈ C with a UPS representation has a Shannon representation if and only
if it satisfies IUC.

5.3 Necessity

That IUC is necessary for a Shannon representation follows directly from the posterior-based char-
acterization of the solution to the Shannon model. Caplin and Dean [2013] provide an “invariant
likelihood ratio”condition for optimality. This states that P ∈ C(µ,A) is consistent with optimality
for a cost function KS

κ if and only if:

1. Given a, b ∈ A(P ),

γ̄aP (ω)

exp(u(a, ω)/κ)
=

γ̄bP (ω)

exp(u(b, ω)/κ)
all ω ∈ Ω(µ). (10)
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2. Given a ∈ A(P ) and c ∈ A\A(P ),∑
ω∈Ω(µ)

[
γ̄aP (ω)

exp(u(a, ω)/κ)

]
exp(u(c, ω)/κ) ≤ 1.

It is the fact that these conditions are invariant under the compression operation that establishes
IUC as necessary for a Shannon representation, as formalized in Appendix 5.

5.4 Guide to the Suffi ciency Proof

While the necessity proof is straight forward, the suffi ciency proof is not. Theorem 1 establishes that
IUC is profoundly powerful. It implies that, starting with behavior generated by a general strictly
convex function, IUC plus one attentive choice pins down behavior in all decision problems. This
follows since the attentive choice pins down the single parameter κ > 0 in the Shannon function,
leaving no more degrees of freedom.

Given the vast distance that the proof must travel to rule out all other forms of the cost
function, it involves several stages that we elaborate on briefly here. The proof itself involves many
corresponding lemmas that provide details.

One line of argument uses IUC to establish strong symmetry properties of the cost function:
here the argument is direct. Two other key aspects of the proof take up issues of smoothness
and functional form. In particular, there are strong differentiability and additive separability
arguments. With these established, we identify a second order PDE that must be satisfied
and that implies the Shannon form. The smoothness and separability arguments work in a fixed
state space of cardinality 4 or higher. The final step in the proof involves using IUC to link cost
functions across dimensions and to iterate down to dimensions below four. We briefly outline what
is accomplished in each stage, leaving the full treatment to the Appendix.

5.4.1 Symmetry

The first step in the proof is to introduce and demonstrate the powerful symmetry implications of
IUC. The definition of symmetry in beliefs is direct: γ1, γ2 ∈ Γ are symmetric, γ1 ∼Γ γ2, if there
exists a bijection σ : Ω(γ1)→ Ω(γ2) such that, for all ω ∈ Ω(γ1),

γ1(ω) = γ2(σ(ω)).

Correspondingly, the strictly convex function T : Γ −→ R is symmetric if,

γ1 ∼Γ γ2 =⇒ T (γ1) = T (γ2) .

A sequence of results establishes that IUC implies symmetry of the T function in a UPS represen-
tation (Lemma 5.7).

Symmetric Cost Lemma: Given C ∈ C satisfying Axiom A1, any function T : Γ −→ R in a
UPS representation K(Q) =

∑
Γ(Q)Q (γ)T (γ) must be symmetric.
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Intuitively, Axiom A1 implies that relabeling the states cannot affect choice. To see this consider
two basic decision problems (µ1, A1) and (µ2, A2) that are symmetric in the sense that µ1(ω) =
µ2(σ(ω)) for each ω ∈ Ω(γ1) and such that, for each a ∈ A1, there exists b ∈ A2 such that
u(a, ω) = u(b, σ (ω)) where the implied mapping between A1 and A2 is bijective. Now consider
a third problem (µ3, A3) which involves replicating (µ1, A1) and (µ2, A2) on a set of states Ω(µ3)
disjoint from Ω(µ1)∪Ω(µ2), and then consider the problem (µ13 + µ2

3 + µ3
2 , A1 ∪A2 ∪A3). (µ1, A1),

(µ2, A2), and (µ3, A3) are all basic versions of this last problem and therefore the SDSC data
generated by (µ1, A1) and (µ2, A2) is similar to the SDSC data generated by (µ3, A3) and hence
each is similar to the other. It is a small step from this observation to the Symmetric Cost Lemma.

5.4.2 Differentiability

As noted above, much of the proof involves working within a fixed state space Ω̃ ⊂ Ω of cardinality
J ≥ 4, with the states indexed by j. Recall that Γ̃ comprise the interior posteriors with Ω(γ) = Ω̃
and we correspondingly let T̃ be the restriction of T to Γ̃. By symmetry, the form of this function
depends only on the cardinality J .

Given γ ∈ Γ̃ and any pair of states i 6= j we define the one-sided derivative in direction ji, T̃−→
ji

(γ),
as the directional derivative associated with increasing the ith coordinate and equally reducing the
jth:

T̃−→
ji

(γ) = lim
ε↓0

T̃ (γ + ε(ei − ej))− T̃ (γ)

ε
;

where ek ∈ RJ is the corresponding unit vector.6

Since T̃ is convex, we know that T̃−→
ji

(γ) exists. We define also the two-sided derivative in

direction ji, T̃(ji), by:

T̃(ji)(γ) = lim
ε→0

T̃ (γ + ε(ei − ej))− T̃ (γ)

ε
.

While in principle the two-sided derivative need not exist, we show that it always does (Lemma
5.32). The proof makes heavy use of results in Rockafellar [1970] and the profound structure
that IUC conveys. The proof is carried out in stages, interactively with the proof of full additive
separability, discussed further below.

With T̃(ji)(γ) existing always, we can define cross directional derivatives of T̃ . Given γ ∈ Γ̃ and
any two pairs of states i 6= j and k 6= l, we define the corresponding cross derivative of T̃(ji) in
direction lk as the corresponding (two-sided) directional derivative,

T̃(ji)(lk)(γ) = lim
ε→0

T̃(ji)(η + ε(ek − el))− T̃(ji)(η)

ε

Again, we show that these cross-derivatives exist everywhere in Γ̃ (Lemma 5.36).

6This is defined in Rockafellar [1970] as the directional derivative of T̃ at γ in direction ei−ej direction, T̃ ′(γ|ei−ej)
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5.4.3 Additive Separability

The proof of additive separability is staged and inter-leaved with the proof of differentiability.
While we cannot in the text convey the full flavor of the additivity and differentiability results, it
may be helpful to point out several key insights.

The first observation is that the Lagrangian Lemma implies that there is a common hyper-
plane tangent to each of the net utility functions at each chosen posterior. This links directional
derivatives of the net utility function at distinct optimal posteriors (Lemma 5.11).

Equalization of Directional Derivatives: Suppose C ∈ C has a UPS representation K, and
consider (µ,A) ∈ D and P ∈ C(µ,A) with a, b ∈ A(P ) with {γ̄aP , γ̄bP } ⊂ Γ̃. Suppose that
both T̃ a(ji)(γ̄

a
P ) = T̃ b(ji)(γ̄

b
P ), then

Na
(ji)(γ̄

a
P ) = N b

(ji)(γ̄
b
P ).

A second observation is that IUC places structure on the sets of posteriors that can be linked
by considering decision problems with equivalent states. In Figure 7, we illustrate this implication
of IUC with three states, but the intuition applies generally. Consider a decision problem with
three states (ω1, ω2, ω3) and two actions A = {a, b}, in which states ω1 and ω2 are equivalent.
Figure 7 displays the space of potential priors and posteriors. Suppose that µ̄1 is the prior in the
basic problem in which all of the combined probability of ω1 and ω2 is assigned to ω1 and µ̄2 is
the prior in the case in which ω2 receives all of the weight. Since µ̄1(ω1) = µ̄(ω2) the line segment
connecting these two priors is parallel to the segment connecting (1, 0, 0) and (0, 1, 0). The line
segment connecting µ̄1 and µ̄2 represents the set of potential priors for which,

µ(ω1) + µ(ω2) = µ̄1(ω1) = µ̄2(ω2),

so that (µ̄1, A) and (µ̄2, A) are basic versions of (µ,A).

The above shows that, letting µ to be an arbitrary prior in this set, IUC places restrictions
on the relationship between the optimal posteriors for the problems (µ,A), (µ̄1, A) and (µ̄2, A)
(Lemma 5.12). Consider γa. Bayes rule states that γa(ω) = P (a|ω)µ(ω)/P (a). IUC implies that
P (a|ω) and P (a) are the same for all µ on the segment connecting µ̄1 and µ̄2, including µ̄1 and µ̄2

themselves. This implies that as µ moves from µ̄1 to µ̄2, γ
a and γb are always proportionate to µ.

It follows that γa and γb lie at the intersection of a line through µ and (0, 0, 1), the dashed grey
line in the figure, and a line parallel to the segment connecting (1, 0, 0) and (0, 1, 0), the solid red
and blue lines in the figures. γ̄a1 and γ̄

b
1 in the figure denote the optimal posteriors for (µ̄1, A), and

γ̄a2 and γ̄
b
2 the optimal posteriors for (µ̄2, A).
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Figure 7: Implications of Compression

These two observations when combined relate the derivatives of T̃ at γa and γb in the Figure.
The Lagrangian Lemma implies that there is a hyperplane tangent to both N(γa) and N(γb).
Suppose that both T̃(ij)(γ

a) and T̃(ij)(γ
b) exist. Since prize-based expected utility is linear, the

difference between T̃(ji)(γ
a) and T̃(ji)(γ

b) must equal u(a, ωi)− u(a, ωj)− u(b, ωi) + u(b, ωj). Since
shifts in µ from µ̄1 to µ̄2, do not affect prize based utility, T̃(ji)(γ

a)− T̃(ji)(γ
b) must be independent

of µ whenever both derivatives exist (Lemma 5.13).

Consider now two priors µ and µ̂, each lying between µ̄1 and µ̄2. The four posteriors γ
a,γb,γ̂a,

and γ̂b form a trapezoid in the Figure. If T̃ is differentiable at all four points we would know that
T̃(ji)(γ

a)− T̃(ji)(γ
b) = T̃(ji)(γ̂

a)− T̃(ji)(γ̂
b). We show that in general (Lemma 5.17):

T̃−→
ji

(γa)− T̃−→
ji

(γb) = T̃−→
ji

(γ̂a)− T̃−→
ji

(γ̂b) (11)

We do so by finding pairs of differentiable points that simultaneously converge to the four posteriors
γa,γb,γ̂a, and γ̂b.

Equation (11) is close to the rectangle condition for additive separability. To apply the rectangle
condition, we deform the simplex so that the trapezoid becomes a rectangle, and then return to
the simplex. This results in the following characterization of the directional derivative which we
state in terms of the dimension J since it requires J ≥ 4 (Lemma 5.21):

T̃−→
ji

(γ) = A

(
γ(1)

γ(1) + γ(J)

)
+B (γ(2), ..., γ(J − 1)) , (12)

for someA : R+ −→ R andB : RJ−2 −→ R, and all 2 ≤ i 6= j ≤ J−1. As (11) must hold for a range

of γ(1) and γ(J) we can show that A
(

γ(1)
γ(1)+γ(J)

)
must be constant (Lemma 5.22). Symmetry then

implies that, if T̃−→
ji

(γ) does not depend on γ(1) and γ(J), B cannot depend on any γ(k) other than
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γ(i) and γ(j) (Lemma 5.24). Finally, we use the fact that T̃(ji)(γ) = T̃(ki)(γ) − T̃(kj)(γ) whenever
the latter are well defined to establish that there exists a function f on (0, 1) such that for all γ ∈ Γ̃
(Lemma 5.29):

T̃−→
ji

(γ) = f(γ(i))− f(γ(j)).

This function is then used to show that the two-sided directional derivatives T̃(ji) exist everywhere
(Lemma 5.36).

5.4.4 The Second Order PDE and Shannon Entropy

Consider again the problem in Figure 7. The Lagrangian Lemma implies that as we shift µ between
µ̄1 and µ̄2, the resulting revealed posteriors satisfy N

a
(ji)(γ

a(µ)) = N b
(ji)(γ

b(µ)). Setting µ(t) =

tµ̄2 + (1 − t)µ̄1, we can define γ
a(t) = γa(µ(t)) and γb(t) = γb(µ(t)) to be the revealed posteriors

associated with µ(t). Given the twice differentiability of T̃ , we have d
dtN

a
(ji)(γ

a(t)) = d
dtN

b
(ji)(γ

b(t)),
and, since ω1 and ω2 are redundant prized-based utility does not depend on t, so that

d

dt
T̃(ji)(γ

a(t)) =
d

dt
T̃(ji)(γ

b(t)).

Finally, note that since γa(t), µ(t), and γb(t) all lie along a line through (0, 0, 1), a change in t
alters γa proportionately more than γb. It follows that

γa(1)T̃(ji)(12)(γ
a) = γb(1)T̃(ji)(12)(γ

b).

Since this equation holds for all γ(1), both sides must equal some constant κJ , and, since T̃(ji)(γ) =
f(γ(i))− f(γ(j)), we arrive at

γ(1)f ′(γ(1)) = κJ .

A particular solution to this equation is κJ lnx. Integrating once more yields the Shannon form:

T̃ = κJ
∑
j

γ(j) ln(γ(j)).

Other solutions to these differential equations can be rejected as either irrelevant (they sum to a
constant because the γ(j) sum to a constant), inconsistent with the dependence of T̃(ji) on solely
on γ(i) and γ(j), or inconsistent with symmetry.

5.4.5 IUC and Universal Domain

The proof at this stage has three gaps. First, it applies only to interior posteriors. Second, there is
no tie between dimensions J ≥ 4. Third it does not cover lower dimensional cases. We show next
that IUC solves all of these.

The first key observation is that, given J ≥ 4, all optimal strategies are precisely as if κJ applied
to all posteriors γ ∈ Γ with |Ω(γ)| = L ≤ J . Note that, as a convex function, the costs are at
least as high as the limit of the costs on the boundary. This limit function is in fact the classical
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Shannon entropy function,

T (γ) ≥ κJ
L∑
l=1

γ(l) ln γ(l).

Even if costs take this minimum value, the known necessary and suffi cient conditions for optimality
imply that no prior possible states are ever ruled out in an optimal strategies. Hence the behavioral
data is precisely as it would be if this function applied to all posteriors, even those that set some
prior possible states as impossible.

The final part of the proof uses IUC to iterate down in dimension. To be precise, define KJ to
be the Shannon cost function with parameter κJ for J ≥ 4 as defined on all posteriors with that
state space or below,

KJ(γ) ≡ κJ
∑

j∈Ω(γ)

γ(j) ln γ(j), all γ ∈ Γ with |Ω(γ)| ≤ J.

The precise result we establish is that, given any decision problem (µ,A) ∈ D with a prior of
cardinality one lower, |Ω(µ)| = J − 1,

P ∈ C(µ,A) iff ∃λ ∈ Λ̂(µ,A|KJ) such that Pλ = P .

Note that establishing this completes the proof of the theorem, since it directly implies that κJ =
κJ−1 for J ≥ 4, where the Shannon form was already established, and that the Shannon form and
the corresponding parameter apply also to J = 3, then iteratively to J = 2, completing the logic.

6 Existence and Recoverability

As indicated in the introduction, our remaining results establish necessary and suffi cient conditions
for a UPS representation. In this section we cover the first stage of this three stage process, by
introducing conditions that establish recoverability of the cost function.

6.1 NIAS, NIAC, and Completeness

Our general recoverability result rests on three axioms, all of which are necessary for a PS repre-
sentation of any kind, and indeed apply even more generally. Our first two axioms are required for
existence of any CIR. “No Improving Action Switches”(NIAS), due to Caplin and Martin [2015],
is based on utility being maximized at each posterior. It insists that all actions chosen maximize
expected utility at the corresponding posterior. “No Improving Attention Cycles”(NIAC), adapted
from Caplin and Dean [2015], rules out switching attention strategies across problems in a manner
that increases overall utility. It insists that attention strategies cannot be shuffl ed between decision
problems in such a manner as to raise total utility across these decision problems.

Axiom A2 No Improving Action Switches (NIAS): Given (µ,A) ∈ D and P ∈ C(µ,A),

a ∈ A(P ) =⇒ ū(γ̄aP , a) = û(γ̄aP , A),
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where,
û(γ,A) ≡ max

a∈A
ū(γ, a). (13)

Axiom A3 No Improving Attention Cycles (NIAC): Given µ ∈ Γ and a finite set

{(A(m), P (m))}1≤m≤M

with (µ,A(m)) ∈ D, P (m) ∈ C(µ,A(m)), and (A(1), P (1)) = (A(M), P (M)),

M−1∑
m=1

Û(µ,A(m), P (m)) ≥
M−1∑
m=1

Û(µ,A(m), P (m+ 1)),

where,
Û(µ,A, P ) ≡

∑
γ∈Γ(P )

QP (γ)û(γ,A). (14)

Our third axiom insists that almost all posterior distributions satisfying Bayes’ rule can be
found in the data for some decision problem. The caveat relates to posteriors that entirely rule out
some ex ante possible states of the world. As indicated above, this never happens in the Shannon
model.

To state this formally, we let ΓC(µ) denote all revealed posteriors ever observed in any decision
problem with the given prior, and correspondingly QC(µ) as distributions over posteriors that are
observed in the data. We define also ΓC = ∪µ∈ΓΓC(µ).

Axiom A4 Completeness: Given µ ∈ Γ:

1. ΓC(µ) contains all interior posteriors, Γ̃(µ) ⊂ ΓC(µ).

2. ΓC(µ) is a convex set.

3. If Q ∈ Q(µ) is such that Γ(Q) ⊂ ΓC(µ) then Q ∈ QC(µ).

6.2 Recoverability

The recoverability result rests on A2-A4 alone.

Theorem 2: Given C ∈ C satisfying A2-A4, there exists a function K ∈ K such that C(µ,A) ⊂
P̂ (µ,A|K) all (µ,A) ∈ D. This function is unique on (µ,Q) ∈ F with Q ∈ QC(µ).

The proof has two key steps. The first establishes existence of a cost function K ∈ K such that
C(µ,A) ⊂ P̂ (µ,A|K) all (µ,A) ∈ D based on NIAS and NIAC. This proof is essentially the same
as that of Caplin and Martin [2015] and Caplin and Dean [2015].7 The second is a constructive
proof that pins this function down deterministically. The second stage is worth sketching out, not
only because of its technical importance, but also because it underlies our characterization of PS
representations.

7The richer data also leads us to change proof method, relying in this case on the work of Rochet [1987].
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The procedure for constructing the cost function involves application of the fundamental theo-
rem of calculus. Given µ ∈ Γ and Q̄ ∈ QC(µ), we first enumerate the possible posteriors γ̄n ∈ Γ(Q̄)
for 1 ≤ n ≤ N = |Γ(Q̄)| and define corresponding fixed probability weights Q̄n ≡ Q̄(γ̄n). We then
construct a path from the prior to the set of posteriors by defining for each n a line

γ̄nt = tγ̄n + (1− t)µ,

so that at t = 0 we have γ̄n0 = µ and at t = 1 we have γ̄n1 = γ̄n. For each t we consider the
distribution Q̄t in which each γ̄nt is selected with the same probability as γ̄

n,

Q̄t(γ̄
n
t ) = Q̄n.

Note that this construction ensures that the weighted average of the posteriors always averages
back to the prior, ∑

n

Q̄t(γ̄
n
t )γ̄nt =

∑
n

Q̄n [tγ̄n + (1− t)µ] = µ,

so that Q̄t ∈ Q(µ).

Since Q̄t ∈ Q(µ), A4 implies that Q̄t ∈ QC(µ). Hence for every t ∈ [0, 1], there exists a
decision problem (µ, Āt) ∈ D and observed data P̄t ∈ C(µ, Āt) that give rise to the corresponding
distribution of revealed posteriors QP̄t = Q̄t.

Given any cost function K ∈ K such that C(µ,A) ⊂ P̂ (µ,A|K) all (µ,A) ∈ D, we then show
that,

K(µ, Q̄t) ≡ K̄(t).

is convex and continuous in t ∈ [0, 1], and hence almost everywhere differentiable in t with,

K̄(t) =

∫ 1

0
K̄ ′(t)dt, (15)

where the integration is over points of differentiability.

Next we characterize K̄ ′(t). At any point t at which K̄(t) is differentiable, we consider the
decision problem (µ, Āt) for which Q̄t is globally, hence locally, optimal. Thinking of shifting
locally to a different posterior distribution Qs for s ∈ (t− ε, t+ ε) leads to a first-order condition,

K̄ ′(t) =
∑
n

Q̄n ([γ̄n − µ] · u(ānt )). (16)

where ānt is any chosen action associated with γ
n
t ∈ Γ(Qt) and where the dot product [γ̄n − µ]·u(ānt )

is defined by,
[γ̄n − µ] · u(ānt ) ≡

∑
ω∈Ω(µ)

[γ̄n(ω)− µ(ω)]u(ānt , ω).

Substituting (16) into (15) yields,

K(µ, Q̄) =
∑
n

Q̄n [γ̄n − µ] ·
∫ 1

0
u(ānt )dt.
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Note that, given (µ, Q̄) ∈ F with Q̄ ∈ QC(µ), enumerating the support Γ(Q̄) = {γ̄n|1 ≤ n ≤ N}
and using the notation above, this cost function is of the form,

K(µ, Q̄) ≡
∑
n

Q̄(γ̄n)TCµ (γ̄n, Q̄)− TCµ (µ, Q̄),

where TCµ (µ, Q̄) = 0 and,

TCµ (γ̄n, Q̄) ≡ [γ̄n − µ] ·
∫ 1

0
u(ānt )dt. (17)

There are three noteworthy aspects of the result. First, the variational logic reflects the economic
intuition that marginal utility of improved information should align with its marginal cost. If a
large change in payoffs is required to induce a small change in the optimal posterior, learning is
costly on the margin. The second point is that many action sets produce the same distribution of
posteriors. For example one could shift up all payoffs by a constant amount. What we know is
that (17) must be invariant to the particular action set that generates this posterior distribution.
In the particular case of adding a constant to all payoffs, invariance follows because state by state
differences between prior and posterior average to zero. What the general result tells us is that the
corresponding invariance is fully general once A2 through A4 are assumed.

The third point of interest is that the cost function recovered in this general case has much
in common with PS cost functions. The key distinction is that TCµ (γ̄n, Q̄) depends not only on
the particular posterior γ̄n but also the full distribution of posteriors Q̄. Hence the computation
for a fixed posterior can be entirely different should the distribution of posteriors change. This
differentiates it from the PS form, to which we now turn.

7 PS and UPS Representations

In this section we introduce axioms for PS and UPS representations.

7.1 Separability

As indicated above, the first key step in the PS proof is to rule out dependence of TCµ (γn, Q̄) in
(17) on the distribution of posteriors. Given γ ∈ Γ(Q̄) ∩ Γ(Q̄′), we want to ensure that,

TCµ (γ, Q̄) = TCµ (γ, Q̄′).

This requires an invariance axiom concerning data with shared revealed posteriors. We must be
able to find decision problems that produce both distributions using common actions at shared
posteriors. The logic of this axiom is demonstrated in Figure 8. Consider again the decision
problem (µ, {a, b}) of Figure 4. The optimal strategy for this decision problem involves the use of
posteriors γ̂a and γ̂b and so these posteriors would be revealed in the data. Our separability axiom
demands that for any arbitrary posterior γ̂c, such that

{
γ̂b, γ̂c

}
can be the support for an attention

strategy feasible from µ, there must exist a corresponding action c such that this pair of posteriors
are revealed in the SDSC data from (µ, {b, c}), with γ̂b still the revealed posterior for action b (see
Figure 8a).
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Figure 8a Figure 8b

The necessity of this axiom for our model is illustrated in Figure 8b. We begin with the
hyperplane which defines the optimal strategy in problem (µ, {a, b}) which is tangent to the net
utility function for action a at γ̂a and action b at γ̂b. Given the ability to shift and tilt the gross
utility line defined by the payoffs, it is always possible to find an action c such that the resulting
gross utility function, when combined with the cost curve, gives a net utility function which is
tangent to the hyperplane precisely at γ̂c. The Lagrangian Lemma then tell us that

{
γ̂b, γ̂c

}
define

the support of an optimal strategy in the resulting decision problem, and so must be observed in
the data for (µ, {b, c}) as required.

This logic holds more generally, as stated in the following axiom.

Axiom A5 Separability: Given (µ,A(1)) ∈ D, P (1) ∈ C(µ,A(1)), and Q2 ∈ QC(µ) with
Γ(QP (1)) ∩ Γ(Q2) 6= ∅, there exists A(2) ⊂ A and P (2) ∈ C(µ,A(2)) satisfying QP (2) = Q2

such that qP (1)(a|γ) = qP (2)(a|γ) all γ ∈ Γ(QP (1)) ∩ Γ(Q2).

The proof that Separability implies existence of function Tµ such that Tµ(γ) = TCµ (γ,Q) in
equation (17) for all Q ∈ QC(µ) is straight forward. It involves standard linear algebra arguments
as well as our knowledge of the specific structure of the cost function for each fixed posterior
distribution as defined by (17).

While the Separability axiom uses the existential qualifier, in the case of Shannon represen-
tations one can specify the precise change in actions needed to generate specified changes in the
posteriors. This follows from the invariant likelihood ratio property specified in equation (10). This
ratio is enough to pin down the action required in A(2) to generate any γ ∈ Γ(Q2)/Γ(QP (1)) using
the posteriors in Γ(QP (1)) ∩ Γ(Q2) and their associated actions.
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7.2 Convexity Properties

With Separability, we have a rationalizing cost function of the PS form, but without the required
strict convexity. In the next stage of the proof we show that there is no loss of generality in assuming
the function to be weakly convex. In terms of rationality, there is no advantage to deliberately
throwing away information, so that, even if they were present, concave portions of the cost function
would never be acted on. This aspect of the proof is very much analogous to the result of Afriat
[1967] that concavity can be assumed of any utility function recovered from optimizing choice in a
linear budget set.

While weak convexity is guaranteed, one cannot guarantee strict convexity without additional
assumptions. To this end we introduce a non-linearity axiom which insists that if one revealed
posterior is a mixture of two others, then the expected utilities cannot be correspondingly mixed.
This directly permits the further step from weak to strict convexity.

Axiom A6 Non-linearity: Given (µ,A) ∈ D, P ∈ C(µ,A), and distinct a1, a2, a3 ∈ A(P ) with
γ̄a1P 6= γ̄a3P ,

γ̄a2P = αγ̄a1P + (1− α)γ̄a3P =⇒ ū(γ̄a2P , a2) 6= αū(γ̄a1P , a2) + (1− α)ū(γ̄a3P , a3).

7.3 From Some to All Optima

With axioms A2 through A6, we are able to identify a PS cost function K ∈ KPS that rationalizes
all observed data, so that C(µ,A) ⊂ P̂ (µ,A|K). Two additional axioms are required to establish
that all optimal strategies are seen, C(µ,A) = P̂ (µ,A|K). We first impose a convexity property on
the data.

Axiom A7 Convexity: Given (µ,A) ∈ D, Pl ∈ C(µ,A) for 1 ≤ l ≤ L, and probability weights
α(l) > 0, Pα ∈ C(µ,A), where,

Pα(a|ω) ≡
L∑
l=1

α(l)Pl(a|ω).

With this, we first show that an arbitrary optimal strategy can be decomposed (using an ap-
propriate mixture operation) into a set of such strategies λ(l) with linearly independent posteriors,

λ =

L∑
l=1

α(l)λ(l).

Caratheodory’s theorem plays the key role in this part of the proof. We then show that this
mixture operation correspondingly mixes the data, so that if each of the data sets Pλ(l) is observed,

Convexity implies that Pλ =

L∑
l=1

α(l)Pλ(l) must also be observed.

Our final axiom provides conditions ensuring that each data set Pλ(l) with linearly independent
posteriors is indeed observed. A key observation in this stage concerns uniqueness of optimal
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strategies. A uniqueness lemma ensures that any optimal strategy that uses linearly independent
posteriors is uniquely optimal provided all available actions are chosen. To apply this to strategy
λ(l), we diminish the payoffs to all actions that are unchosen in this strategy by an arbitrarily small
amount. This marginal change ensures that the uniqueness result applies to all correspondingly
perturbed decision problems, for each of which λ(l) is therefore uniquely optimal. Uniqueness of
optimal strategies in a PS representation implies that the corresponding SDSC data is observed.

Our process of taking perturbations allows us to construct for each λ(l) a corresponding sequence
of action sets that converges to A in the limit in such a way that λ(l) is uniquely optimal, hence
observed in the data all the way to the limit. To use convergence of this sequence of decision
problems to make a conclusion on the limit problem itself requires a continuity axiom. Given µ ∈ Γ
we define a payoff-based metric on the space of actions,

d(a, a′) =

 ∑
ω∈Ω(µ)

(
u(a, ω)− u(a′, ω)

)2 1
2

.

Axiom A8 Continuity: Consider I ≥ 1 sequences of actions ai(m) with limm→∞ ai(m) = āi

for 1 ≤ i ≤ I, and define A(m) = ∪Ii=1a
i(m) and Ā = ∪Ii=1 āi. Then given µ ∈ Γ and

P ∈ ∩∞m=1C(µ,A(m)),
A(P ) ⊂ Ā =⇒ P ∈ C(µ, Ā).

This is a very weak condition concerning sequences of choice sets which converge pointwise and
which have a subset of actions which remain fixed. If, at every step in the sequence, the same
choice behavior is observed (which must therefore only involve choice amongst actions available in
all choice sets), then that behavior must also be observed in the limit. In light of our perturbation
method, this suffi ces to establish that all data sets Pλ(l) are observed in the original choice set.
To complete the proof, we apply the convexity result to show that the data Pλ generated by the
original optimal strategy is also observed.

7.4 Existence and Simple Recovery

We summarize this discussion in the following theorem.

Theorem 3: Data set C ∈ C has a PS representation if and only if it satisfies Axioms A2 through
A8.

Given a PS cost function, we show that there is a relatively simple way to recover it. Given
µ ∈ Γ and non-degenerate Q̄ ∈ QC(µ), Corollary 2 establishes existence of a choice set Ā such that
an inattentive strategy η ∈ ΛI(µ, Ā) and a strategy λ = (Qλ, qλ) ∈ Λ(µ, Ā) with Qλ (γ) = Q̄ (γ)
are both optimal, hence have equal expected utility net of attention costs,

U(λ)− U(η) = K(µ, Q̄)−K(µ, η)

By construction, the inattentive strategy is free, K(µ, η) = 0, so that indifference implies that
K(µ, Q̄) is directly computable as the difference in expected utility,

K(µ, Q̄) = U(λ)− U(η).
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7.5 LIP and UPS Theorem

A single invariance axiom takes us from a PS to a UPS representation. Locally Invariant Posteriors
(LIP) conveys the idea that, given P ∈ C(µ,A), the resulting action-posterior pairs are invariant
to various changes in µ and A.

First, if the prior µ changes to µ′ such the posteriors revealed in (µ,A) are still feasible, then
they must still be observed in C(µ′, A). The necessity of this condition is illustrated in Figure 9,
which again builds on the decision problem (µ, {a, b}) with µ = 0.5 and optimal posteriors γ̂a and
γ̂b. Recall that these posteriors are identified as supporting the highest chord above the prior µ.
Consider the prior µ′ with µ′(ω1) = 0.3, and note that precisely the same posteriors support the
highest chord above this new prior as well, implying that they remain optimal and so must be
observed for decision problem (µ′, {a, b}).

Figure 9: Locally Invariant Posteriors

LIP also requires that, given P ∈ C(µ,A), if a new decision problem is defined by deleting some
available actions, then the remaining action-posterior pairs must be observed provided Bayesian
consistency is retained.

The following formal definition captures both of these invariance properties.

Axiom A9 Locally Invariant Posteriors (LIP): Consider (µ,A) ∈ D, P ∈ C(µ,A), and
probabilities ρ(a) > 0 on A′ ⊂ A(P ) with

∑
a∈A′

ρ(a) = 1. Define P ′ ∈ P by A(P ′) = A′,

QP ′(γ) =
∑

{a∈A′|γ̄aP=γ}
ρ(a) and:

qP ′(a|γ) =

{
ρ(a)
QP (γ) if γ̄

a
P = γ′;

qP ′(a|γ) = 0 else.
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Then P ′ ∈ C
(∑
a∈A′

ρ(a)γ̄aP , A
′

)
.

Our fourth theorem shows essentially that a data set with a PS representation has a UPS
representation if and only if it satisfies LIP. There is a caveat. For necessity of LIP (Axiom A9),
we insist on a link between the posteriors ΓC(µ1) and ΓC(µ2) for distinct priors. If prior µ2 lies in
the convex hull of posteriors that are revealed posteriors from prior µ1, then these posteriors must
be observed from prior µ2 also. We present a simple example in Appendix 4 in which this does not
hold. We define regular data sets as those that have this property globally.

Definition 13 Data set C is regular, C ∈ CR ⊂ C, if, given µ1 ∈ Γ and Q ∈ ∆(Γ(µ1)) with
Γ (Q) ⊂ ΓC(µ1), ∑

γ∈Γ(µ2)

γQ(γ) = µ2 =⇒ Γ (Q) ⊂ ΓC(µ2).

Note that the Shannon model generates a data set that is regular, as do other standard entropies.
It simplifies our analysis without substantively amending our results to include regularity as a pre-
condition in the necessity proof.

Theorem 4: If C ∈ C has a PS representation and satisfies LIP (Axiom A9), it has a UPS
representation. If C ∈ CR has a UPS representation then it satisfies LIP.

The proof of theorem 4 is lengthy yet conceptually straight forward. It relies on the Lagrangian
Lemma and elementary linear algebra. It also relies on invariance of the cost function under affi ne
transforms of the strictly convex function Tµ.

Note that between them, theorems 1, 3, and 4 show that data set C ∈ C has a Shannon
representation if and only if it satisfies Axioms A1 through A9. For the sake of completeness, we
establish this as Corollary 3 in Appendix 5.

8 Further Results

In this section we provide further results that expand on various features of our representation.
We first show how to obtain a representation when the IO observes only a single piece of SDSC
for each decision problem - i.e. a choice function rather than a choice correspondence. Second, we
describe the relationship between our model and the more traditional model of costly information
acquisition in which the DM chooses between information structures consisting of signals, rather
than probability distributions over posteriors. Finally we introduce Tsallis entropy (Tsallis [1988]),
an alternative formulation to that of Shannon which is of value in describing physical and social
systems (see Section 9.3). Costs based on Tsallis entropy fall in the UPS class but do not satisfy
IUC, as we demonstrate.
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8.1 Choice Functions

To explore the application of our approach to choice functions, we let CF be the set of data sets in
which there is only one observation of SDSC data for each decision problem,

CF ≡
{
CF : D → P|CF (µ,A) ∈ P(µ,A)

}
.

Given there will be multiple optima in some decision problems, there are several distinct forms
of representation that may be of interest. The most obvious approach captures observation of a
selection from the optimal choice correspondence.

Definition 14 Data set CF ∈ CF has a functional costly information representation (FCIR)
K ∈ K if, for all (µ,A) ∈ D,

CF (µ,A) ∈ P̂ (µ,A|K).

It has a FPS/FUPS/F-Shannon representation if it is has an FCIR with K ∈ KPS/KUPS/K = KS
κ

for κ > 0.

We can also consider the case in which the DM mixes among strategies when there are multiple
optima, meaning that the observed data falls in the convex hull of the data generated by optimal
strategies.

Definition 15 Data set CF ∈ CF has a mixed functional costly information representation
(MCIR) K ∈ K if, for all (µ,A) ∈ D,

CF (µ,A) ∈ Conv
{
P̂ (µ,A|K)

}
,

It has a MPS/MUPS/M-Shannon representation if it is has an MCIR with K ∈ KPS/KUPS/K =
KS
κ for κ > 0.

Our first observation is that a data set will have a FPS representation if and only if it has an MPS

representation. This follows from the fact that, for the PS model, P̂ (µ,A|K) = Conv
{
P̂ (µ,A|K)

}
.

Thus we can concentrate on identifying conditions which allow for the former type of representation.

The key to functional extensions of our approach is a recoverability result in the spirit of that
outlined in Section 6, whereby Axioms A2 through A4 alone are enough to uniquely pin down a
rationalizing cost function. In the case of a functional representation, we cannot guarantee that
all distributions over posteriors will be observed in the data. However, it is the case that all
distributions with linearly independent support will be observed, as all such strategies are uniquely
optimal in some decision problem if costs are posterior separable. It is therefore possible to uniquely
identify costs for all such attention strategies. Moreover, there is a unique way to extend this cost
function to all attention strategies in a manner consistent with posterior separability. If we define
mixtures of posterior distributions as in Appendix 2,

Q =

L∑
l=1

αlQl ⇔ Q(γ) =

L∑
l=1

α(l)Ql(γ) all γ ∈ Γ(Q),
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posterior separability of costs implies that,

Q =
L∑
l=1

αlQl

⇒ K(µ,Q) =

L∑
l=1

αlK(µ,Ql).

Thus if a data set has a FPS representation then it is possible to uniquely identify those costs K
from the data.8 Having done so, one can then identify all SDSC which are consistent with optimal
behavior with respect to this cost function P̂ (µ,A|K). Treating this as a data set, we can then
apply the relevant axioms: for an FPS P̂ must satisfy Axioms A5-A8, for a FUPS it must also
satisfy Axiom A9 and for F-Shannon it must also satisfy Axiom A1. In this way we can construct
necessary and suffi cient conditions for functional representations.

8.2 Costly Signal Acquisition

The standard approach to modeling optimal acquisition of costly information specifies an informa-
tion structure, consisting of a joint distribution of signals and states. The DM chooses amongst
these structures, which are subject to some cost function (see for example Caplin and Dean [2015]).
A signal-based strategy comprises an information structure and a mixed action strategy mapping
signals to distributions over chosen actions. As is standard, and as we assume in our posterior-
based approach, costs depends only on the information structure, not the action strategy. The DM
faced with decision problem (µ,A) ∈ D is modeled as choosing a signal-based strategy to maximize
expected utility net of information costs.

The signal-based and posterior-based approaches are equivalent in the sense that a data set can
be rationalized by optimal choice of signal-based strategy if and only if it can be rationalized by
optimal choice of posterior-based strategies. To go from a CIR in our sense to a corresponding
cost function on information structures involves little more than identifying the signals with the
posteriors. The argument in the reverse direction involves identifying posteriors associated with
the various actions and correspondingly transforming the mixed strategy.

While the data that is characterized is the same using our posterior-based formulation and the
standard signal-based formulation, there is a key distinction with regard to testability. Subjective
signals are observable only indirectly, through their impact on updating and thereby behavior.
From the viewpoint of choice-based analysis, the posterior-based approach has the advantage that
it by-passes unobservable signals.

8.3 Tsallis Entropy and Failures of IUC

The IUC property seems suffi ciently reasonable as to be more widely true. To understand how IUC
fails for cost functions other than Shannon, we show how the condition fails for the class of cost
functions associated with entropy functions introduced by Tsallis [1988].

8With regard to attention strategies with linearly dependent support, one can insist that these are only used when
optimal according to the recovered cost function.
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For σ ∈ R, σ 6= 1, the Tsallis entropy of posterior γ ∈ Γ is defined by,

TSσ(γ) =
1

σ − 1

1−
∑

ω∈Ω(γ)

γ(ω)σ

 ∈ R.
As σ → 1, Tsallis entropy heads in the limit to Shannon entropy, H(γ).

A key property of Tsallis entropy is that it is non-additive. Given two independent probability
distributions γ1 and γ2, the entropy of the product distribution can be related to the entropy of
the marginal distributions,

TSσ(γ1 × γ2) = TSσ(γ1) + TSσ(γ2) + (1− σ)TSσ(γ1)TSσ(γ2).

Shannon entropy (σ = 1) is the special case of additivity.

Given µ ∈ Γ it is simple to define the Tsallis cost function for information structures with
Γ(Q) ⊂ Γ̃(µ) in a manner completely analogous to the Shannon model. Costs are related to the
expected Tsallis entropy of the posteriors less that of the prior, again with multiplicative factor
κ > 0,

KTSσ
κ (µ,Q) = −κ

[∑
Q(γ)TSσ(γ)− TSσ(µ)

]
.

Recall that what is costly is reducing entropy so KTSσ
κ is decreasing in the entropy of the posteriors.

KTSσ
κ (µ,Q) is real-valued for all distributions Q ∈ ∆(Γ(µ)).9

This cost function is a member of the UPS class, and so the resulting behavior satisfies Axioms
A2-A9. However it violates IUC. Consider a problem (µ,A) and suppose that states ω1, ω2 ∈ Ω(µ)
are identical in payoff terms, so that, u(a, ω1) = u(a, ω2) for all a ∈ A. Consider P ∈ C(µ,A) and
suppose without loss of generality that each action is chosen from one and only one posterior so
that QP (γ̄aP ) = P (a). Now consider KTSσ

κ (µ,QP ):

κ
∑

γ̄aP∈Γ(QP )

QP (γ̄aP )
∑

ω∈Ω(µ)

γ̄aP (ω)

(
γ̄aP (ω)σ−1 − 1

σ − 1

)
− κ

∑
ω∈Ω(µ)

µ(ω)

(
µ(ω)σ−1 − 1

σ − 1

)
;

where we have pulled out multiplicative factor γ̄aP (ω) to make explicit the relationship to a constant
elasticity function. Substituting using Bayes’rule, γ̄aP (ω) = P (a|ω)µ(ω)

P (a) and invoking
∑

ω P (a|ω) = 1,

9A subtle point is that there are cases in which an ex ante possible state may be ruled out, as when Ω(µ) =
{ω1, ω2, ω3} yet γ ∈ Γ(Q) has support Ω(γ) = {ω1, ω2}. The above formula correctly deals with this case when when
σ > 0 because the contribution of these terms to the sum is zero so that their exclusion is immaterial.
Matters are slightly more complex when σ < 0. In this case there are infinite costs to ruling out ex ante possible

states. This calls for care in specifying the Tsallis attention cost function. Given µ ∈ Γ, the corresponding cost
function is:

KTSσ
κ =

{
κ
[∑

Q(γ)TSσ(γ)− TSσ(µ)
]

if Ω(γ) = Ω(µ) all γ ∈ Γ(Q);

∞ if Ω(γ) 6= Ω(µ) some γ ∈ Γ(Q).

The need to depart from the standard specification of Tsallis entropy in the above cases is due to what is essentially
a missing argument. The standard Tsallis entropy function makes no explicit reference to the prior. Yet the cost of
making an ex ante possible state impossible becomes unboundedly high at the margin when σ < 0, so that making
it free to entirely rule such a state out would be inappropriate.
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leads to the following expression for Tsallis costs in terms of SDSC data:

KTSσ
κ (µ,QP ) =

∑
a∈A(P )

∑
ω∈Ω(µ)

P (a|ω)µ(ω)σ

[
(P (a|ω)/P (a))σ−1 − 1

σ − 1

]

−
∑

ω∈Ω(µ)

µ(ω)

(
µ(ω)σ−1 − 1

σ − 1

)

Now suppose that IUC holds so that P ∈ C(µ,A) implies P (a|ω1) = P (a|ω2) for all a ∈ A. We
now focus on the part of this expression associated with a single action a ∈ A and the two states
ω1 and ω2:

P (a|ω1)µ(ω1)σ
(P (a|ω1)/P (a))σ−1 − 1

σ − 1
+ P (a|ω2)µ(ω2)σ

(P (a|ω2)/P (a))σ−1 − 1

σ − 1

=

(
P (a|ω1)

(P (a|ω1)/P (a))σ−1 − 1

σ − 1

)
[µ(ω1)σ + µ(ω2)σ] .

We now compare this to the cost that would be incurred if ω1 and ω2 were instead collapsed into the
single state ω1 with prior probability µ(ω1)+µ(ω2). If, as specified by IUC, the choice probabilities
remain P (a|ω1) (

P (a|ω1)
(P (a|ω1)/P (a))σ−1 − 1

σ − 1

)
[µ(ω1) + µ(ω2)]σ .

If σ < 1 then the decision maker finds it more costly to learn about ω1 and ω2 separately than
together,

µ(ω1)σ + µ(ω2)σ > (µ(ω1) + µ(ω2))σ .

If σ > 1, the opposite is the case. It is clear that these changes in the marginal cost of information
mean that the same P (a|ω1) cannot generally be optimal in the original problem and its basic form,
leading to a violation of IUC.

Only if σ = 1 does the DM treat the two scenarios as equivalent. Recall that as σ → 1, Tsallis
entropy approaches Shannon entropy. Shannon entropy is therefore the special case in which the
agent is indifferent between aggregating and separating states. This is the essence of the IUC
axiom. With Shannon, the cost of implementing P (a|ω) rises proportionately with µ(ω), whereas
with Tsallis entropy costs rise more than proportionately with µ(ω) when σ > 1, and less than
proportionately when σ < 1. The implication is that when σ < 1, information is proportionately
cheaper in more likely states, so that an agent would appear to pay greater attention in such states.

9 Relation to the Literature

9.1 Existing Characterizations of the Shannon Model

Several recent papers have provided insights into the behavior implied by the Shannon model.
Matejka and McKay [2015] provide a generalized logit formula for optimal SDSC probabilities
P (a|ω) in the Shannon model. Caplin and Dean [2013], Stevens [2014], and Caplin et al. [2016]
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show that addition of appropriate complementary slackness conditions renders these necessary and
suffi cient.

While insightful, such conditions for optimality are not directly revealing of the behavioral
patterns that the model produces. In contrast, our analysis is of value in this regard. Indeed, many
of the tools we describe - such as the posterior based approach to optimal strategies in the Shannon
model and the geometry of net utility functions - have already proved useful in economic research
since their introduction in Caplin and Dean [2013] (see for example Caplin et al. [2015] and Martin
[2017]). For example, in the UPS case, LIP makes it relatively easy to derive comparative static
results as priors change.

A more closely related analysis is that of de Oliveira [2013], who also axiomatizes a form of
decision making given a Shannon cost function. The key difference is that de Oliveira [2013] places
axioms on preference orderings over menus, whereas we place axioms on choices as revealed in
SDSC data. There is therefore no obvious relationship between the axioms. One possible exception
is that IUC appears related to de Oliveira [2013]’s independence of orthogonal decision problem
(IODP) axiom. IODP involves indifference between solving two decision problems with independent
payoffs together or separately. We early on conjectured that we would need both IUC and IODP
to generate the Shannon form. We only later realized that IUC alone was suffi cient. It is therefore
possible that IUC implies IODP. de Oliveira [2013] also does not consider generalizations of the
Shannon model.

Pioneering work by Shannon [1948] and Khinchin [1957] provides direct axiomatizations of
Shannon entropy. These axiomatizations focus on properties of the measure of information itself,
rather than on how basing learning costs on them impacts optimal behavior. Axioms such as con-
tinuity, being maximal at uniformity, being invariant to zero probability events, and satisfaction of
additivity conditions are shown to imply the Shannon entropy function for probability distributions.
This work is therefore focussed on properties of measures of disorder, rather than understanding
the behavioral implications of associated attention cost functions.

9.2 Behavioral Evidence Against the Shannon Model

The use of the Shannon model is often justified on information theoretic grounds (see for example
Sims [2003] and Matejka and McKay [2015]). In particular, mutual information is related to the rate
of information flow needed to generate a given conditional distribution of signals given a distribution
of states, assuming optimal coding (see for example Cover and Thomas [2012] chapter 10). Yet the
experimental literature in economics and psychology establishes that there are important behavioral
reasons to look beyond that model.

The most direct evidence derives from experiments that collect SDSC data to which the above
characterizations apply. This fledgling literature exhibits behavioral patterns that are inconsistent
with the Shannon model. One key problem relates to the elasticity of chosen posteriors to changes
in the underlying rewards. The Shannon model makes sharp and precise predictions about the
rate at which subjects improve their accuracy in response to improved incentives. A single decision
problem is enough to pin down the one parameter in the model and so the “expansion path”
of information acquisition in response to changed incentives. Caplin and Dean [2013] show that
the improvement in expected utility as the incentive to learn rises is significantly lower than the
Shannon model predicts in a simple two state, two action set-up.
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A second behavioral limitation of the Shannon model is that it makes no allowance for perceptual
distance. Yet perceptual distance is critical in many every day decisions, as when good decisions
require the DM to differentiate between alternative pricing schemes: it seems likely that prices
which are closer together will be harder to distinguish than those which are far apart. By way of
conceptual confirmation, Dean and Neligh [2017] design an experiment with 100 balls on a screen,
of which a random number (between 40 and 60) are red, with the remainder blue. Subjects are
tasked with correctly identifying which color ball is in the majority. The Shannon model implies
that they must be just as good at the task when there are 51 red balls on the screen as when there
are 60, which is strongly rejected by the data.

An earlier literature in psychology also demonstrates behavior that does not fit with the Shannon
model. Woodford [2012] discusses the experimental results of Shaw and Shaw [1977], in which a
subject briefly sees a signal which may appear at one of a number of locations on the screen.
Their task is to accurately reproduce the location of this briefly seen signal. According to the
Shannon cost function, the actual location, being payoff irrelevant, should also be irrelevant to task
performance. Yet in practice, performance is superior at locations that occur more frequently.

9.3 PS Models

UPS models were introduced in Caplin and Dean [2013]. They are rich enough to allow for many
of the behavioral findings that call the Shannon model into question. With regard to incentives,
Caplin and Dean [2013] develop a simple two parameter UPS model that generalizes the Shannon
model. They find that the additional degree of freedom leads to a significantly better fit of the
data according to the Akaike Information Criterion. With regard to perceptual distance, while
rejecting the Shannon model, Dean and Neligh [2017] find (weak) support for LIP, and hence the
UPS model. Finally, note that while the results of Shaw and Shaw [1977] are inconsistent with
the Shannon model, they are consistent with the UPS model. In the Tsallis model with σ < 1, for
example, learning about unlikely states is proportionately more expensive than about likely states.
This produces a commensurately greater error rate, as in the experiment.

Since their introduction, several papers have made use of UPS costs functions - see for example
Gentzkow and Kamenica [2014], Steiner et al. [2015], Clark [2016] and Morris and Strack [2017].
In part this is due to their flexibility in rationalizing behavior. It is also due in part to the fact
that UPS models make available familiar Lagrangian methods of optimization.

The current paper is the first to introduce the more general class of PS cost function. As noted,
this allows the costs to vary depending on prior beliefs. We expect this additional flexibility also
to prove useful in understanding behavior and in economic modeling. Indeed alternative forms of
entropy have proven valuable in other disciplines. There are many settings in which the additional
flexibility they allow for leads to a better ability to describe physical and social systems. Examples
include internet usage (Tellenbach et al. [2009]), machine learning (Maszczyk and Duch [2008]),
statistical mechanics (Lenzi et al. [2000]), and many other applications in physics (Beck [2009]).
See Gell-Mann and Tsallis [2004] for a review. In these cases, the additivity property of Shannon
entropy is found to be unhelpful in describing the phenomena of interest.

Interestingly, the literature in information theory and on the design of experiments has also
focussed on PS cost functions. For example, the Blackwell-Sherman-Stein Theorem shows that
PS functions can be used to characterize the property of statistical suffi ciency, and so provide
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an alternative characterization of Blackwell’s theorem. The theorem states that an information
structure π is statistically suffi cient for π′ (i.e. π Blackwell dominates π′) if and only if,∑

γ∈Γ(Qπ)

Qπ(γ)T (γ) ≥
∑

γ∈Γ(Qπ′ )

Qπ′(γ)T (γ),

for every continuous, (weakly) convex T , where Qπ is the distribution over posteriors generated
by π (see for example Le Cam [1996])̇.10 Torgersen [1991] further shows that the class of PS
cost functions can be characterized by properties of the costs themselves. Specifically, the (weakly
convex) PS class of cost function of information structures characterizes monotonicity in Blackwell
informativeness and linearity in a natural mixture operation.

9.4 Alternative Models of Limited Attention

Our work belongs to a recent literature which characterizes the behavior associated with models of
incomplete attention - see for example Masatlioglu et al. [2012], Manzini and Mariotti [2014] and
Steiner and Stewart [2016]. It is also related to significant bodies of work on costly information
acquisition with very different forms of cost function. The most ubiquitous such model is search
theoretic, involving a fixed cost of uncovering each available option (e.g. Caplin et al. [2011]). Other
approaches include costly purchase of normal signals (Verrecchia [1982], Llosa and Venkateswaran
[2012] and Colombo et al. [2014] ) and “all or nothing” information costs (Reis [2006]). Even in
the rational inattention literature alternative cost functions have been provided. For example,
Paciello and Wiederholt [2014] consider costs that are convex in mutual information, while Sims
[2003] considers a model in which there is a hard constraint on the amount of mutual information
a DM can use. Inspired by the findings of Shaw and Shaw [1977], Woodford [2012] considers
a cost function which is linear in Shannon capacity, rather than Shannon mutual information.
Another ongoing body of work to which our modeling relates is the sparsity-based model of Gabaix
[2014]. This model is based on a distinct form of attention cost function involving fixed costs of
comprehending individual characteristics of options. The question of how these other cost functions
restrict behavior, and so how they differ from the PS class, remains open.

10 Concluding Remarks

Together our results provide necessary and suffi cient conditions for cost functions of increasing
specificity. Theorem 3 states that Axioms A2-A8 are necessary and suffi cient for the existence
of a Posterior Separable attention cost function. In addition, given a Posterior Separable cost
function, Theorem 4 states that Locally Invariant Posteriors (Axiom A9) is necessary and suffi cient
for the existence of a Uniformly Posterior Separable cost function. Finally, given a Uniformly
Posterior Separable cost function, Theorem 1 states that Invariance under Compression (Axiom
A1) is necessary and suffi cient for the cost function to take the Shannon form. In addition, Theorem
2 states that Axioms A1-A3 are suffi cient for there to exist a unique attention cost function that
represents the data.

10We thank Daniel Csaba for pointing this out to us.
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