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1. Introduction
Nivolumab	Treatment	for	Non-Small-Cell	Lung	Cancer	

Nivolumab—a	biological	product	marketed	by	Bristol-Myers	Squibb	(BMS)	in	the	U.S.	

as	 Opdivo—has	 several	 FDA-approved	 indications,	 one	 being	 previously	 treated	 advanced	

non-small-cell	 lung	 cancer	 (NSCLC).	 For	 treatment	 of	 NSCLC,	 two	 primary	 outcomes	 pre-

specified 1 	in	 a	 pivotal,	 phase-III	 randomized	 trial	 of	 nivolumab	 versus	 docetaxel	

(chemotherapy)	were	overall	survival	time	and	one-year	overall	survival	rate.	In	summarizing	

that	study	Borghaei	et	al.,	2015,	report:	

Overall	survival	was	significantly	 longer	with	nivolumab	than	with	docetaxel…	
At	the	time	of	the	interim	analysis	(minimum	followup	for	overall	survival,	13.2	
months),	the	median	overall	survival	was	12.2	months	(95%	confidence	interval	
[CI],	 9.7	 to	 15.0)	 with	 nivolumab	 and	 9.4	months	 (95%	 CI,	 8.1	 to	 10.7)	 with	
docetaxel,	representing	a	27%	lower	risk	of	death	with	nivolumab	(hazard	ratio,	
0.73;	96%	CI,	0.59	 to	0.89;	P	=	0.002).	The	overall	 survival	 rate	at	1	year	was	
51%	 (95%	 CI,	 45	 to	 56)	 with	 nivolumab	 and	 39%	 (95%	 CI,	 33	 to	 45)	 with	
docetaxel.	

Figure	1	depicts	the	data	from	which	these	results	are	computed.2	The	two	reported	estimates	

of	overall	survival	are	shown:	a	difference	in	median	survival	time	of	2.8	months	in	panel	(a);	

and	a	difference	in	twelve-month	survival	probability	of	.12	in	panel	(b).	

A	 BMS	 direct-to-consumer	 advertising	 campaign	 prominent	 in	 the	 U.S.	 in	 2017	 has	

boasted	that	Opdivo	treatment	for	NSCLC	offers	"a	chance	to	live	longer."3	

A	Chance	to	Live	Longer?	

What	might	the	Borghaei	et	al.	results	say	about	the	"chance	to	live	longer"	pitched	in	

the	Opdivo	ads?	In	claiming	"a	chance	to	live	longer"	at	least	two	questions	arise	logically.	The	

first	is:	"a	chance	to	live	longer,"	compared	to	what?	The	second	is:	"a	chance	to	live	longer,"	

1	ClinicalTrials.gov	study	NCT01673867.	
2	The	smoothed	empirical	distribution	functions	depicted	 in	 figure	1	are	approximated	from	
the	data	depicted	in	figure	1A	in	Borghaei	et	al.,	2015,	as	survival	curves.	
3	http://www.opdivo.com/advanced-nsclc,	 accessed	April	 30	 2017.	 BMS	 applied	 on	 January	
31,	2017,	for	a	U.S.	trademark	for	"A	CHANCE	TO	LIVE	LONGER"	(U.S.	Patent	and	Trademark	
Office,	 Serial	 No.	 87319390).	 At	 the	 time	 this	 draft	 was	 completed,	 the	 status	 of	 that	
application	was	"Under	Examination."	
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measured	how?	In	light	of	the	Borghaei	et	al.	results,	"compared	to	what"	might	be	answered	

reasonably	as	"treatment	with	docetaxel"	or	"treatment	with	other	relevant	comparators."	

	 Of	greater	 interest	 in	 this	paper,	however,	are	questions	 in	 line	with	 the	second	one:	

measured	how?	Given	the	outcomes	studied	in	Borghaei	et	al.,	one	reasonable	measure	of	"a	

chance	 to	 live	 longer"	 might	 be	 a	 difference	 in	 median	 survival	 times	 between	 the	 two	

treatments:	subjects	had	a	50	percent	chance	to	live	longer	than	12.2	months	with	nivolumab	

treatment	compared	with	a	50	percent	chance	to	live	longer	than	9.4	months	with	docetaxel.	

Alternatively,	"a	chance	to	live	longer"	might	reasonably	be	characterized	in	terms	of	twelve-

month	 survival	 probabilities:	 patients	 treated	 with	 nivolumab	 showed	 a	 twelve-percent	

greater	chance	to	live	at	least	twelve	months	longer	than	did	patients	treated	with	docetaxel.4	

	 Letting	!tniv 	and	!tdoc 	denote	 a	 patient's	 survival	 time	 with	 nivolumab	 or	 docetaxel	

treatment,	 then	 "living	 longer"	 amounts	 essentially	 to	 !tniv > tdoc .	 While	 the	 2.8-month	

difference	in	median	survival	times	or	the	.12	difference	in	twelve-month	survival	times	hints	

at	 a	 relationship	 like	 this,	 the	 notion	 of	 "a	 chance	 to	 live	 longer"	 is	 something	 different.	 "A	

chance	to	live	longer"	might	reasonably	be	translated	as	the	probability	a	patient	treated	with	

nivolumab	lives	longer—not	some	particular	amount	longer,5	just	longer	by	some	unspecified	

amount—than	had	they	otherwise	been	treated	with	docetaxel,	i.e.	!Pr tniv > tdoc( ) .6	If	a	patient	
asks:	"If	I'm	treated	with	nivolumab,	what	is	the	chance	that	I'll	live	longer	than	if	I'm	treated	

with	docetaxel?",	then	one	number	that	answers	this	question	is	!Pr tniv > tdoc( ) .	
																																								 																					
4	Either	of	 these	characterizations	 is	of	 the	sort	 that	might	be	advanced	as	 the	basis	of	FDA	
marketing-approval	applications	or	of	other	more	general	efficacy	or	effectiveness	claims.	
5	Cost-effectiveness	 questions	 would	 often	 balance	 "how	 many	 weeks	 longer"	 against	 cost	
across	 comparators.	 If	 such	 outcome	 and	 cost	measures	 are	 converted	 into	 univariate	 net-
benefit	(NB)	measures	then	the	choice	between	comparators	amounts	to	knowing	whether	or	
not	!NBj >NBk .	
6	DTC	 advertising	 for	 Keytruda	 (pembrolizumab;	 Merck),	 whose	 indications	 for	 NSCLC	 are	
similar	 to	 Opdivo's,	 uses	 the	 catchphrase	 "a	 chance	 for	 a	 longer	 life."	
(https://www.keytruda.com/non-small-cell-lung-cancer/,	accessed	April	30,	2017).	Entresto	
(sacubitril/valsartan;	Novartis),	a	treatment	for	chronic	heart	failure,	is	promoted	in	DTC	ads	
to	 "help	 increase	 your	 chances	 of	more	 tomorrows"	 (http://www.entresto.com/info/about-
entresto.jsp,	accessed	April	30,	2017).	
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	 Inequality	 probabilities	 like	 this	 are	 the	main	 focus	 of	 this	 paper.	 In	 comparing	 two	

outcomes	 in	 a	 population	 exhibiting	 outcome	 heterogeneity,	 questions	 about	 the	 chance	 or	

probability	 that	 one	 outcome	 exceeds	 the	 other	 may	 be	 natural	 to	 pose.	 How	 one	 might	

analyze	such	questions	is	the	main	purpose	of	this	paper.	

	

Why	Might	Inequality	Probabilities	Be	of	Interest?	

	 Let	!y0 	and	!y1 	be	two	outcomes	of	interest	(e.g.	!y0 = tdoc 	and	!y1 = tniv ).	The	inequality	

probability7	!Pr y1 > y0( ) 	provides	 an	 intuitive	 characterization	 of	 the	 extent	 to	 which	 one	
outcome	is	stochastically	larger	than	another.	This	can	be	appreciated	from	its	definition,	

	
!
Pr y1 > y0( ) = f y0 ,y1( )y0

∞
∫ dy1dy0−∞

∞
∫ ,	 	 	 	 	 	 (1)	

wherein	 !f y0 ,y1( ) 	is	 the	 joint	 probability	 density	 of	!y0 	and	!y1 .	!Pr y1 > y0( ) 	is	 sometimes	
referred	to	as	"fraction	who	benefit"	(Huang	et	al.	2016;	see	also	Aakvik	et	al.,	2005).	Unlike	

familiar	criteria	based	on	population	expected	benefit,	!E y1 − y0⎡⎣ ⎤⎦ ,	measures	like	!Pr y1 > y0( ) 	
are	 relevant	 indicators	 in	 voting	 (e.g.	 median	 voter,	 majority	 rule,	 etc.),	 strict-Pareto,	 and	

other	 social	 choice	 contexts	 (e.g.	 Coate,	 2000,	 Gerber	 and	 Lewis,	 2004,	 Jacob	 and	 Lundin,	

2005,	and	Pauly,	1989;	also	see	Heckman	et	al.,	1997,	for	general	perspectives).	

	 Inequality	probabilities	also	play	a	central	role	in	stochastic	settings	where	the	benefit	

associated	with	a	choice	depends	on	the	ordering	among	but	not	the	magnitudes	of	competing	

outcomes,	for	instance	a	payoff	(V)	from	choosing	the	winner	in	an	M-participant	competition	

(e.g.	a	horserace,	a	basketball	game,	or	an	exclusive	therapeutic-category	formulary	listing).	In	

such	 cases	!yj 	might	 measure	 speed,	 score,	 therapeutic	 cost-effectiveness,	 etc.	 In	 such	 a	

competition	the	realized	benefit	from	selecting	competitor	j	is	

	 !Bj ! = !V× 1 yj > yk( )k≠j∏ ,	 	 	 	 	 	
	 	

(2)	

																																								 																					
7	The	 term	 "inequality	probability"	 is	 used	 in	 this	paper	 to	 refer	 to	parameters	!Pr u > v( ) 	or	
!Pr u ≥ v( ) 	for	arbitrary	and	possibly	jointly	distributed	variables	of	interest,	u	and	v.	
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with	corresponding	expected	benefit8	(using	standard	"∧ "	notation	for	"and"):	

	
!
E Bj⎡
⎣

⎤
⎦ ! = !V×Pr yj > y1( ) !∧ !…!∧ ! yj > yj−1( ) !∧ ! yj > yj+1( ) !∧ !…!∧ ! yj > yM( )( ) ,	 (3)	

or,	in	the	two-outcome	case,	

	 !E Bj⎡
⎣

⎤
⎦ ! = !V×Pr yj > yk( ) .	 	 	 	 	 	 	 	 (4)	

	 Finally,	 reconsider	 the	nivolumab	example.	 If	 it	 is	of	 interest9	to	know	 the	difference

!Pr tniv ≥12( )−Pr tdoc ≥12( ) ,	 then	!Pr tniv ≥ t'( )−Pr tdoc ≥ t'( ) 	may	 also	 be	 of	 interest	 for	 other	
!t '≠12 	or	 over	 all	 possible	 t'.10	Yet	 these	 are	 different	 considerations	 than	 those	 involving	

!Pr tniv ≥ tdoc( ) 	whose	definition	 in	 (1)	embeds	consideration	of	all	 values	of	! tdoc ,tniv( ) .	Only	
by	reference	to	a	particular	decision	criterion	might	it	be	determined	which	such	parameters	

should	be	of	interest.	

	

Summary	Outcome	Measures	Used	in	Evaluations	

	 Asking	different	questions	about	relationships	between	two	outcomes	leads	logically	to	

different	ways	 to	 characterize	 and	 summarize	 statistically	 such	 outcomes	 in	 heterogeneous	

populations.	In	essence	the	previous	discussion	posed	questions	about	whether	one	outcome	

(say	!y1 )	 is	 larger	 than	another	 (say	!y0 ),	 and	 focused	on	a	particular	metric	of	 comparison,	

!Pr y1 > y0( ) .	Whether	the	outcomes	of	interest	are	survival	times	or	perhaps	other	outcome-
																																								 																					
8	When	the	!yj 	are	random	utilities	associated	with	different	choice	prospects,	quantities	like	
the	probability	in	(3)	are	familiar	from	the	multinomial	discrete-choice	literature.	
9	Presumably	this	quantity	is	of	 interest	since	it	 is	one	of	the	study's	primary	endpoints;	see	
ClinicalTrials.gov	 study	 NCT01673867	 and	 U.S.	 FDA,	 2015.	 Why	 a	 particular	 value	 of	 t'	 is	
privileged	merits	consideration.	Whether	for	parsimony,	for	convenience,	due	to	biostatistical	
or	regulatory	convention,	or	for	other	reasons	is	often	not	obvious.	While	such	choice	should	
ideally	square	with	decisionmakers'	 loss	functions,	 it	 is	rarely	made	explicit	that	it	does;	see	
Manski,	1998,	2007.	

10	If	it	converges	the	integral	of	!Pr tniv ≥ t'( )−Pr tdoc ≥ t'( ) 	over	t'—characterizing	second-order	

stochastic	dominance—	equals	!E tniv⎡⎣ ⎤⎦−E tdoc⎡⎣ ⎤⎦ .	
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relevant	metrics—better,	 lower,	 greater,	 faster,	 clearer,	 easier,	 safer,	 longer-acting,	 cheaper,	

etc.—the	same	basic	ideas	apply.	Of	interest	is	the	probability	that	!y1 is	"better"	than	!y0 ,	not	

"how	much	better"	it	might	be.	

	 Of	 course	 other	 evaluation-oriented	metrics	 are	 encountered	 commonly	 in	 empirical	

health	research.	Letting	!Fj y( ) 	denote	the	population	marginal	distribution	for	outcome	!yj 	and	

!V …( ) 	denote	some	statistical	 functional	defined	on	!Fj y( ) (e.g.	moment,	quantile,	probability,	
etc.),	 empirical	 investigations	 focus	 typically11	on	!V F0 y( )( ) 	and	!V F1 y( )( ) 	as	 the	 summary	
measures	 to	 be	 estimated,	 and	 on	 some	 contrast	 between	 them—most	 typically,	 their	

difference—as	the	basis	of	a	 treatment-effect,	comparative-effectiveness,	or	other	claim.	For	

example,	 the	 two	 primary	 outcomes	 in	 the	 Borghaei	 et	 al.	 study	 correspond	 to	

!V Fj y( )( ) =med Fj y( )( ) 	and	!V Fj y( )( ) =Fj y( ) .	
	 While	 the	 specification	 of	!V …( ) 	and	 its	 estimation	 from	 sample	 data	 are	 broadly	
important	considerations,	this	paper's	specific	concern	is	how	observed	data	on	the	marginal	

distributions	of	two	or	more	outcomes	can	be	used	to	at	least	partially	inform	decisionmakers	

about	 inequality	 probabilities	 !Pr y1 > y0( ) 	and	 related	 parameters.	 When	 outcomes	 are	
observed	jointly	such	an	exercise	is	straightforward;	the	challenge	in	knowing	!Pr y1 > y0( ) 	is	
when,	for	whatever	reason,	!y0 	and	!y1 	are	not	observed	together	at	the	subject	level.

12	

	

This	Paper	

Relationships	to	Existing	Literature	

	 This	paper's	 focus	 intersects	 several	broad	 themes	 that	have	been	well	developed	 in	

																																								 																					
11	Stochastic	dominance	comparisons	are	an	obvious	exception	to	this	form	of	comparison,	as	
are	measures	involving	any	features	of	the	joint	distribution	of	!y0 	and	!y1 .	
12	See	 Imbens	 and	Wooldridge,	 2009,	 p.	 17,	 and	 Abbring	 and	 Heckman,	 2007,	 p.	 5151,	 for	
views	on	why	decisionmakers	might	or	mightn't	want	to	"bother"	identifying	features	of	joint	
distributions.	
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the	 literature:	 treatment-effect	 estimation	 and	 heterogeneous	 treatment	 effects 13 ;	

decisionmaking	criteria	in	stochastic	environments14;	and	point	versus	interval	identification	

of	treatment	effects.15	These	broader	literatures	are	not	surveyed	here	although	references	to	

specific	work	are	made	when	useful.	The	work	most	closely	related	to	this	paper	includes	that	

of	Heckman	and	coauthors16,	a	series	of	studies	by	Fan	and	coauthors17,	as	well	as	studies	by	

Adams,	 201318,	 Basu	 and	 Thariani,	 2016,	 Firpo	 and	 Ridder,	 2008,	 Lee,	 2000,	 and	 Manski,	

1997.	 This	 paper's	main	 results	 and	 a	 discussion	 of	 their	 applicability	 to	 a	 range	 of	 policy	

questions	were	discussed	in	a	much	earlier	working	paper	by	the	author	(Mullahy,	2005).	

	

Motivation	and	Plan	

	 The	 paper	 is	 motivated	 mainly	 by	 the	 observation	 that	 there	 are	 important	 and	

potentially	 useful	 results	 on	 inequality	 probabilities	 of	 the	 sort	 examined	 here	 that—while	

established	 in	 the	 technical	 literature—have	 thusfar	 had	 little	 impact	 on	 health	 economics	

research.19	In	 particular,	 this	 paper	 attempts	 to	 exposit	 (relying	 often	 on	 simple	 graphical	

depictions)	 the	 elementary	 features	 of	 such	 results	 and	 then	 extend	 and	 apply	 them	 to	

contexts	of	interest	in	health	economics.	

	 Until	section	4	the	paper's	results	are	largely	not	new;	indeed,	the	paper's	main	results	

on	 inequality	 probabilities	 presented	 in	 section	 3	 are	 just	 tailored	 applications	 of	 Fréchet-

																																								 																					
13	Angrist,	2004;	Athey	and	 Imbens,	2006;	Basu	et	 al.,	 2007;	Bitler	et	 al.,	 2006;	Borah	et	 al.,	
2011;	Chan	and	Hamilton,	2006;	Hauck	et	al.,	2000;	Horwitz	et	al.,	1996;	Huang	et	al.,	2016;	
Koenker	and	Bilias,	2001;	Kravitz	et	al.,	2004;	Vanness	and	Mullahy,	2012;	Willke	et	al.,	2012.	
Imbens	and	Wooldridge,	2009,	provide	an	comprehensive	overview	of	many	of	these	issues.		
14	Gerber	and	Lewis,	2004;	Grandmont,	1978;	Jacob	and	Lundin,	2005;	Stinnett	and	Mullahy,	
1998.	
15	Manski,	1999,	2007.	
16	Aakvik	et	al.,	2005,	Abbring	and	Heckman,	2007,	Carneiro	et	al.,	2001,	Heckman,	2001,	and	
especially	Heckman	et	al.,	1997.	
17	Fan	et	al.,	2014,	2017;	Fan	and	Park,	2010,	2012.	
18	As	this	draft	was	being	completed	the	author	was	made	aware	of	the	paper	by	Adams,	2013,	
whose	approach	and	examples	overlap	with	some	of	this	paper's.	
19	Exceptions	include	Adams,	2013,	Cameron	et	al.,	2004,	and	Huang	et	al.,	2016.		
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Boole	 probability	 bounds.20	Yet	 their	 discussion	 in	 technical	 literatures	 distant	 from	 health	

economics	 may	 have	 hindered	 their	 application	 in	 health	 economics	 and	 elsewhere.	

Describing,	 extending,	 and	 implementing	 these	 results	 in	health	economics	 contexts	are	 the	

goals	of	 this	paper;	at	a	minimum	it	 is	hoped	that	 the	paper	provides	a	useful	practitioner's	

guide.	

	 The	plan	is	as	follows.	Section	2	describes	the	main	assumptions	and	notation.	Section	

3	 presents	 the	 results	 on	 probability	 bounds.	 Section	 4	 extends	 the	main	 results	 in	 several	

directions	and	offers	examples.	Section	5	considers	the	application	of	the	main	results	to	cost-

effectiveness	 analysis.	 Section	 6	 discusses	 bounds	 when	 more	 than	 two	 outcomes	 are	 of	

interest.	 Section	7	considers	empirical	 implementation:	 sampling,	estimation,	and	 inference.	

Section	8	summarizes.		

	

2.	Definitions,	Assumptions,	and	Notation	
	 The	setup	here	is	familiar	in	the	treatment-effect	literature.	M+1	outcomes	of	interest,	

! y0 ,y1 ,…( ) ,	 are	 jointly	 distributed	 in	 the	 population	 according	 to	 !F y0 ,y1 ,…( ) 	with	
corresponding	 joint	 probability	 density	 denoted	 !f y0 ,y1 ,…( ) . 21 	 !F y0 ,y1 ,…( ) 	might	 be	
interpreted	as	representing	a	population	heterogeneous	in	outcomes	or	as	a	joint	distribution	

of	random	variables.22		

	 For	 now	 assume	 that	 there	 are	 two	 outcomes	 of	 interest,	! y0 ,y1( ) ,	 although	 more-
general	cases	are	considered	in	section	5.	Unless	noted	otherwise	! y0 ,y1( ) 	are	assumed	to	be	
continuously	 distributed.	 To	 be	 consistent	 with	 the	 technical	 definition	 of	 distribution	

																																								 																					
20	The	main	 results	 here	 involve	 set	 or	 interval	 identification,	 or	 probability	 bounds,	 of	 the	
sort	studied	and	advocated	forcefully	by	Manski.	While	there	may	be	increasing	receptivity	by	
analysts	 of	 set	 identification,	 point	 identification	 is	 still	 the	 standard	 in	many	 contexts	 (e.g.	
FDA	regulation).	

21	This	notation	is	informal;	formally,	!F c0 ,c1 ,…( ) =Pr y0 ≤ c0( ) !∧ ! y1 ≤ c1( ) !∧ !…( ) .	
22	Outcomes	are	denoted	in	lower-case	to	keep	notation	concise.	Distinctions	between	random	
variables	and	realizations	should	be	clear	from	context.	
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functions	 the	 focus	will	 on	!Pr y1 ≥ y0( ) 	instead	 of	!Pr y1 > y0( ) 	although	 these	 are	 essentially	
the	same	with	continuously	distributed	outcomes.23	The	particular	!yj 	measures	may	be	ratio-

scale,	 interval-scale,	 ordinal,	 or	 any	measure	 for	which	 strict	 or	weak	 inequality	provides	 a	

meaningful	comparison.	

	 The	 population	 marginal	 distribution	 functions	 for	 the	 !yj 	are	 denoted	

!Fj y( ) =Pr yj ≤ y( ) ,	 j=0,1,	 for	all	y	 in	their	respective	supports	!Sj = Lj ,Uj⎡
⎣

⎤
⎦ .	Of	course	the	!Fj y( ) 	

are	 related	 to	!F y0 ,y1( ) 	via	
!
Fj y( ) = F y0,y1( )Sk∫ !dykyj≤y!∫ dyj ,	!j≠ k .	Until	 section	7	 "conditional	

on	x"	 can	be	assumed	 tacitly	 if	 appropriate,	but	will	not	be	made	explicit	unless	useful;	 the	

role	 of	 covariates	 x	 is	 revisited	 in	 section	 7.	 Moreover	 until	 section	 7	 the	 discussion	 is	

concerned	only	with	population	distributions	and	 identification;	considerations	of	sampling,	

estimation,	and	inference	are	deferred	until	then.		 Define	 the	 subject-level	 difference	

!Δ01 = y0 − y1 .24	In	the	population	!Δ01 	is	often	considered	a	treatment	effect	but	in	general	is	

just	 some	 contrast	 of	 interest.	 Understanding	!Δ01 	is	 challenging	when	 only	 one	 of	 the	!yj 	is	

observable.	 Define	 the	 population	 distribution	 of	 !Δ01 	as	

!
FΔ01 c( ) =Pr y0 − y1 ≤ c( ) =Pr y1 + c ≥ y0( ) .	 Of	 interest	 in	 most	 of	 what	 follows	 is	 !c =0 ,	 or	

!Pr y1 ≥ y0( ) .	!Pr y1 ≥ y0( ) 	is	thus	one	feature	of		the	treatment-effect	distribution.	
	

3.	Main	Results:	Bounds	on	Inequality	Probabilities	
Revisiting	the	Nivolumab	vs.	Docetaxel	Example	

	 To	 motivate	 the	 general	 results	 discussed	 below,	 consider	 again	 the	 nivolumab	 vs.	

																																								 																					
23	For	discrete	 outcomes	 the	difference	between	weak	 and	 strict	 inequality	will	matter;	 see	
below.	
24	Subject-indexing	subscripts	are	suppressed	unless	useful	 for	clarity.	Note	that	the	0	and	1	
subscripts	are	reversed	from	what	is	typical	in	the	literature.	Economists	often	consider	such	
contrasts	 in	a	Rubin	 counterfactual	 framework,	but	 they	are	also	 relevant	 in	other	 contexts	
where	information	about	the	jointness	properties	of	!F y0 ,y1( ) 	is	absent.	



	 8	

docetaxel	twelve-month-survival	results	discussed	in	section	1.	In	a	population,	!tniv 	and	!tdoc 	
will	in	general	be	jointly	distributed	even	if	at	the	subject	level	only	one	of	them	is	observable.	

With	 reference	 to	 figure	 2	wherein	 roman	numerals	 denote	 the	 four	 subspaces	with	 origin	

! tdoc ,tniv( ) = 12,12( ) ,	the	reported	result	on	twelve-month	survival,	!Pr tniv ≥12( )−Pr tdoc ≥12( )
=.12,	can	be	obtained	as25	

	  !

Pr tniv ≥12( )−Pr tdoc ≥12( ) ! = !Pr tdoc ,tniv( )∈I∪II( )−Pr tdoc ,tniv( )∈I∪IV( )
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! = !Pr tdoc ,tniv( )∈II( )−Pr tdoc ,tniv( )∈IV( )
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! = !.12 	

(5)	

	 Now	suppose	outcomes	are	binary	with	!qj =1 tj ≥12( ) ,	!j∈ doc,niv{ } ,	being	indicators	of	
twelve-month	survival	under	the	two	treatments.	The	general	joint	and	marginal	probability	

structure	is	shown	in	panel	(a)	of	table	1.	Note	that	for	the	strict	inequality	event	!qniv >qdoc 	

	 !Pr qniv >qdoc( ) ! = !Pr qdoc =0!∧ !qniv =1( ) ! = !π01 ! = !Pr qdoc ,qniv( )∈II( ) .	 	 (6)	

Bounding	!π01 	is	straightforward	using	Fréchet-Boole	probability	bounds.	The	best	bounds	on	

!π01 	knowable	from	the	marginals	!πj 	are	

	 !max 0,π1 − π0{ } ! ≤ !π01 ! ≤ !min 1− π0 ,π1{ } .	 	 	 	 	 	 (7)	

The	 lower	 bound,	 !π1 − π0 ,	 is	 !Pr tdoc ,tniv( )∈II( )−Pr tdoc ,tniv( )∈IV( ) ,	 coinciding	 with	 (5).	
Applying	this	result	to	the	nivolumab	example	one	finds	!.12! ≤ !π01 ! ≤ !.51 ,	i.e.	notwithstanding	

sampling	error	!Pr qniv >qdoc( ) 	is	at	least	.12	but	not	greater	than	.51;	see	panel	(b)	of	table	1.	
	

General	Results:	Bounding	!Pr y1 ≥ y0( ) 	using	Fréchet-Boole	Probability	Bounds	
	 For	arbitrary,	 jointly	distributed	variables	! za ,zb( ) 	and	corresponding	 sets	!Za 	and	!Zb ,	

																																								 																					
25	At	 this	 point	 these	 estimates	 are	 treated	 as	 if	 population	 parameters.	 This	 example's	
empirical	properties	are	considered	in	section	7.	
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the	Fréchet-Boole	lower	bound	("FLB")	on	the	joint	probability	of	the	events	!zj∈Zj 	is:	

	 !Pr za ∈Za !∧ !zb∈Zb( ) ! ≥ !max Pr za ∈Za( )+Pr zb∈Zb( )−1( ) ,0{ } ,	 	 	 (8)	

which	is	informative	if	!Pr za ∈Za( )+Pr zb∈Zb( ) >1 .	For	disjunctions	("or",	symbolized	"∨ "),	

	 !Pr za ∈Za !∨ !zb∈Zb( ) ! ≥ !max Pr za ∈Za( ) ,Pr zb∈Zb( ){ } .	 	 	 	 (9)	

	The	corresponding	upper	bounds	("FUB")	are	

	 !Pr za ∈Za !∧ !zb∈Zb( ) ! ≤ !min Pr za ∈Za( ) ,Pr zb∈Zb( ){ } ,	 	 	 	 (10)	

which	is	informative	so	long	as	either	of	the	!Pr zj∈Zj( ) 	is	less	than	one.	For	disjunctions,	

	 !Pr za ∈Za !∨ !zb∈Zb( ) ! ≤ !min Pr za ∈Za( )+Pr zb∈Zb( ) ,1{ } ,	 	 	 (11)	

which	is	informative	if	the	sum	of	the	!Pr zj∈Zj( ) 	is	less	than	one.	
	 For	arbitrary	y',	consider	the	events	!y0 ≤ y' 	and	!y1 > y' .	Applying	(8)	gives	

	

!

Pr y0 ≤ y'!∧ !y1 > y'( ) ! ≥ !max Pr y0 ≤ y'( )+Pr y1 > y'( )−1,0{ }
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! = !max F0 y'( )+ 1−F1 y'( )( )−1,0{ }
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! = !max F0 y'( )−F1 y'( ) ,0{ }.

		 	 	 (12)	

	 This	 result	 is	 illustrated	 in	 figure	 3(a)	 depicting	 ! y0 ,y1( ) -space	 and	 illustrative	

isodensity	contours	of	!f y0 ,y1( ) 	drawn	using	
	

y0
y1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
~BVN 4.1

5.1
⎡

⎣
⎢

⎤

⎦
⎥ ,

1 .5
.5 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
.	The	arbitrary	y'	is	

indicated	 on	 both	 axes.	 Let	!P J( ) 	denote	!Pr y0 ,y1( )∈J( ) ,	 where	 J	 is	 any	 of	 the	 six	 subspaces	

!IA
' , !IB' , !…, !IV' 	whose	common	origin	is	indicated	in	the	figure	at	!y0 = y1 = y' .	Then:	

	
!
Pr y0 ≤ y'( ) ! = !P II'( )+P IIIA'( )+P IIIB'( ) 	 	 	 	 	 	 (13)	
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!
Pr y1 > y'( ) ! = !P II'( )+P IA'( )+P IB'( ) 	 	 	 	 	 	 	 (14)	

	 !Pr y0 ≤ y'( )+Pr y1 > y'( )−1! = !P II'( )−P IV'( ) 	 	 	 	 	 (15)	

	 !Pr y0 ≤ y'!∧ !y1 > y'( ) ! = !P II'( ) 	 	 	 	 	 	 	 (16)	

If	 it	 exceeds	 zero,	 (15)	 is	 the	 FLB	on	!Pr y0 ≤ y'!∧ !y1 > y'( ) ;	 for	!P IV'( ) >0 	this	 is	 smaller	 than	

the	true	probability	in	(16).	Thus,	

	

!

Pr y1 ≥ y0( ) ! = !P IB'( )+P II'( )+P IIIA'( )
!!!!!!!!!!!!!!!!!!!!!!!! ≥ !P II'( )
!!!!!!!!!!!!!!!!!!!!!!!! ≥ !P II'( )−P IV'( )
!!!!!!!!!!!!!!!!!!!!!!!! = ! P II'( )+P IIIA'( )+P IIIB'( )( ) !− ! P IIIA'( )+P IIIB'( )+P IV'( )( )
!!!!!!!!!!!!!!!!!!!!!!!! = !F0 y'( )−F1 y'( ) , 	 	

(17)	

wherein	 line	 three,	!P II'( )−P IV'( ) ,	 is	 the	FLB	 from	(15).	Thus,	using	only	 the	marginals	!Fj y( ) 	
potentially	 informative	 lower	 bounds	 on	 !Pr y0 ≤ y'!∧ !y1 > y'( ) 	and	 thus	 !Pr y1 ≥ y0( ) 	are	
obtained.	 Analogously,	 if	 informative	 the	 FUB	 on	!Pr y0 ≤ y'!∨ !y1 > y'( ) 	follows	 from	 (11)	 as	

!F0 y'( )+ 1−F1 y'( )( ) ,	seen	by	noting	that	!P I'( )+P II'( )+P III'( )≥P IB'( )+P II'( )+P IIIA'( ) =Pr y1 ≥ y0( ) 	
with	reference	to	figure	3(a),	then	applying	(11)	for	the	event	! y0 ≤ y'!∨ !y1 > y'( ) .		
		

Best	Bounds	on!Pr y1 ≥ y0( ) 	
	 Since	 !Pr y1 ≥ y0( )≥Pr y1 > y0( )≥Pr y0 ≤ y'!∧ !y1 > y'( ) 	a	 nonzero	 FLB	 on	

!Pr y0 ≤ y'!∧ !y1 > y'( ) 	is	 partially	 informative	 as	 a	 lower	 bound	 on	!Pr y1 ≥ y0( ) .	 Since	 y'	 is	
arbitrary,	however,	such	a	bound	will	generally	not	be	a	sharp	or	best	possible	such	bound	on	

!Pr y1 ≥ y0( ) .	 Intuitively	 from	 (17),	 a	 best	 lower	 bound	 on	 !Pr y1 ≥ y0( ) 	is	 defined	 by	
determining	the	value(s)	of	y	such	that	the	difference	between	!F0 y( ) 	and	!F1 y( ) 	is	maximized.	
	 To	 show	 this	 and	 some	 of	 its	 implications,	 the	 paper	 by	 Fan	 and	 Park,	 2010,	
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(henceforth	 FP)	 is	 especially	 useful,	 particularly	 since	 its	 results	 help	 structure	 empirical	

investigations	as	discussed	in	section	7.26	Rearranging	the	expressions	of	FP's	Lemma	2.1	and	

eq.	(2),	and	defining	S	as	the	common	support	of	!F0 y( ) 	and	!F1 y( ) ,27	FP	show	(in	this	paper's	
notation)	that	for	arbitrary	c:	

							!supy∈Smax F0 y( )−F1 y− c( ) ,0{ } ! ≤ !Pr y1 ≥ y0 + c( ) ! ≤ !infy∈Smin 1+F0 y( )−F1 y− c( ) ,1{ } ,					(18)	

which	FP	note	are	sharp	bounds	on	!Pr y1 ≥ y0( ) .	Of	particular	interest	here	is	c=0,	giving	

	 !supy∈Smax F0 y( )−F1 y( ) ,0{ } ! ≤ !Pr y1 ≥ y0( ) ! ≤ !infy∈Smin 1+F0 y( )−F1 y( ) ,1{ } .	 (19)	

That	is,	the	greatest	lower	bound	on	the	inequality	probabilities	!Pr y1 ≥ y0( ) 	identifiable	from	
the	 marginals	!Fj y( ) 	is	 the	 maximum	 over	 all	 y	 in	 S	 of	 the	 difference	 (if	 positive)	 between	

!F0 y( ) 	and	!F1 y( ) .	The	corresponding	smallest	upper	bound	 is	!1+F0 y( )−F1 y( ) 	if	 this	quantity	
is	 less	 than	 one.	 In	 essence,	 these	 best	 bounds	 are	 determined	 by	 searching	 over	!y∈S 	to	
determine	where	the	FLB	and	FUB	are	greatest	and	smallest,	respectively.	These	results	are	

the	foundation	for	what	follows.	

	 At	this	point	some	additional	notation	will	be	useful.	For	!j,k∈ 0,1,…{ } , !j≠ k :	

	 !δ jk y( ) ! = !Fj y( )−Fk y( ) 	 	 	 	 	 	 	 	 (20)	

	 !Djk ! = !maxy∈S δ jk y( ) ,0{ } 	 	 	 	 	 	 	 	
(21)

	

	 !Yjk ! = !argmaxy∈S δ jk y( )( ) 	if	!Djk >0 ,			undefined	if	!Djk =0 	 	 	 (22)	

																																								 																					
26	The	0	and	1	subscripts	are	reversed	from	those	in	FP's	exposition.	FP	credit	a	line	of	earlier	
research	upon	which	 their	work	 is	based,	with	Makarov,	1982,	 and	Williamson	and	Downs,	
1990,	figuring	prominently.	The	work	by	Adams,	2013,	Fan	and	Park,	2012,	Fan	et	al.,	2017,	
Firpo	and	Ridder,	2008,	Lee,	2000,	and	Manski,	1997,	is	also	noteworthy	here.	Applications	of	
related	ideas	in	health	research	are	considered	by	Adams,	2013,	Basu	and	Thariani,	2016,	and	
Huang	et	al.,	2016.	

27	!S= min L0,L1{ } ,max U0,U1{ }⎡⎣ ⎤⎦ .	FP	discuss	technical	considerations	involved	in	defining	the	

relevant	supports,	i.e.	the	domains	of	the	sup	and	inf	in	(19).	
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That	is,	so	long	as	!δ jk 	is	positive	!Yjk 	is	the	set	of	values	of	y	at	which	!δ jk 	is	greatest,	while	!Djk 	

is	 that	 maximal	 value	 of	!δ jk .	 The	!Djk 	are	 known	 familiarly	 as	 Kolmogorov's	 distance	 or	

Kolmogorov's	D	statistics,	which	are	the	basis	of	some	nonparametric	tests	for	equality	of	two	

marginal	distributions.28	While	in	general	!Yjk 	is	set-	or	interval-valued,	it	is	assumed	for	now	

that,	 if	defined,	it	 is	a	unique	value	to	simplify	notation	and	analysis;	most	important	results	

go	through	whether	or	not	uniqueness	holds	(FP	discuss	the	role	of	uniqueness).	

	 To	 visualize	 the	 result	 in	 (19),	 consider	 figure	 3(b)	 in	 which	 the	 six	 subspaces	

!IA ,!IB ,!…, !IV 	have	 common	 origin	 !y0 = y1 = Y01 .	 Here	 the	 difference !P II( )−P IV( ) 	(red	
reference	 lines)	 is	 at	 least	 !P II'( )−P IV'( ) 	(blue	 reference	 lines).	 Since	

!P II( )−P IV( ) =F0 Y01( )−F1 Y01( ) ,	!P II( )−P IV( ) 	corresponds	to	the	FP	characterization	of	the	best	
lower	bound	on	!Pr y1 ≥ y0( ) .	Thus	as	in	(17):	

	

!

Pr y1 ≥ y0( ) ! = !P IB( )+P II( )+P IIIA( )
!!!!!!!!!!!!!!!!!!!!!!!!! ≥ !P II( )
!!!!!!!!!!!!!!!!!!!!!!!!! ≥ !P II( )−P IV( )
!!!!!!!!!!!!!!!!!!!!!!!!! = ! P II( )+P IIIA( )+P IIIB( )( ) !− ! P IIIA( )+P IIIB( )+P IV( )( )
!!!!!!!!!!!!!!!!!!!!!!!!! = !F0 Y01( )−F1 Y01( )
!!!!!!!!!!!!!!!!!!!!!!!!! = !D01. 	 	

(23)	

Whether	or	not	the	!Yjk 	are	defined	it	follows	that	!Pr y1 ≥ y0( )≥D01 ,	i.e.	when	!D01 =0 	and	!Y10 	

is	undefined,	the	most	that	can	be	said	is	that	!Pr y1 ≥ y0( )≥0 ,	 i.e.	 the	FLB	is	not	 informative.	
Analogous	arguments	establish	that,	if	it	is	informative,	the	best	FUB	is	!1−D10 .	

	 To	summarize:	if	informative,	the	best	possible	bounds	available	from	the	!Fj y( ) 	are	

																																								 																					
28	See	 Darling,	 1957,	 and	Mann	 and	Whitney,	 1947.	!Djk 	metrics	 arise	 in	 other	 contexts;	 for	
instance	 they	 correspond	 to	 stop-loss	 distance	 of	 degree	 one	 in	 the	 insurance	 literature	
(Denuit	et	al.,	2002).	



	 13	

	 !Djk ! ≤ !Pr yk ≥ yj( ) ! ≤ !1−Dkj .		 	 	 	 	 	 	 (24)	

For	 example,	 in	 the	 example	 depicted	 in	 figure	 3	!Y01 = 4.6 ,	!Y10 	is	 undefined,	!D01 = .38 ,	 and	

!D10 =0 .	With	respect	to	the	nivolumab	example,	the	"chance	to	live	longer,	"	!Pr tniv ≥ tdoc( ) ,	is	
at	least	.17	but	not	greater	than	.96,	sampling	considerations	notwithstanding.	

	

4.	Examples,	Extensions,	and	Related	Results	
Two	Numerical	Examples	

	 Two	 numerical	 examples	 are	 pictured	 in	 figure	 4.	 Panel	 (a)	 shows	 two	
!
N µ j ,σ j2( ) 	

marginal	 distributions,	 where	 !F0 y( ) is	 !N 0,4( ) 	and	 !F1 y( ) 	is	 !N .5,1( ) .	 This	 yields	 !Y01 = −.73 ,	

!Y10 =2.07 ,!D01 = .36− .11= .25 ,	and	!D10 = .94− .85= .09 .	Panel	(b)	shows	results	for	exponential	

marginal	distributions,	where	!F0 y( ) 	is	!Exp 5( ) 	and	!F1 y( ) 	is	!Exp 1( ) .	These	assumptions	result	
in	!Y01 = .40 ,	!Y10 	undefined,	!D01 = .87− .33= .54 ,	and	!D10 =0 .29	

	

Zero-	and	First-Order	Stochastic	Dominance	

	 Consider	 first	 the	 case	 of	 zero-order	 stochastic	 dominance	 (ZSD;	 Castagnoli	 1984).	

																																								 																					
29 	If	 the	 !Fj y( ) 	are	 !N µ j ,σ j2( ) 	then	 !Y01 	and	 !Y10 	are	 given	 by	 the	 quadratic	 formula	 with	
!a =σ1

2 −σ0
2 ,	
!
b= −2 σ1

2µ0 −σ0
2µ1( ) ,	 and	 !c =σ1

2µ0
2 −σ0

2µ1
2 −2σ02σ12ln σ1

2 σ0
2⎛

⎝⎜
⎞
⎠⎟ 	if	 !σ0

2 ≠ σ1
2 ,	 with	

roots	!Y01 < Y10 	if	!σ0
2 >σ1

2 	and	!Y01 > Y10 	if	!σ0
2 <σ1

2 .	If	!σ0
2 =σ1

2 ,	then	one	of	!Y01 	or	!Y10 	is	given	by	

!.5 µ0 +µ1( ) 	(!Y01 	if	!µ0 < µ1 ;	!Y10 	if	!µ0 > µ1).	 See	 figure	 5,	 panels	 (a)	 and	 (b).	 If	 the	!Fj y( ) 	are	
exponential	 with	 !Fj y( ) =1−exp −θjy( ) ,	 then	 !D01 = exp −θ1Y01( )−exp −θ0Y01( ) ,	 !D10 =0 ,	

!Y01 = ln θ1 θ0( ) θ1 −θ0( ) ,	and	!Y10 	is	undefined	if	!θ0 >θ1 ;	the	subscripts	are	reversed	if	!θ1 >θ0
.	 While	 parametric	 distributions	 may	 be	 helpful	 for	 illustrative	 and	 modeling	 purposes,	
applications	 often	 consider	 nonparametric	 empirical	 distributions.	 Estimating	 the	 !Djk 	
nonparametrically	is	discussed	in	section	7.
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!F1 y( ) zero-order	 dominates	!F0 y( ) ,	 denoted	 !F1 ≻0 F0 ,	 if	!U0 <L1 ,	 i.e.	 if	 the	 entire	 probability	

mass	of	!F1 y( ) 	sits	above	that	of	!F0 y( ) 	on	the	real	line	(see	figure	6).	A	noteworthy	feature	of	
ZSD	 is	 that	!Pr y1 ≥ y0( ) =1 ,	 i.e.	 regardless	 of	 a	 population	member's	 outcome	 in	!F0 y( ) ,	 that	
outcome	will	be	 less	 than	their	outcome	in	!F1 y( ) .30	Note	that	!D01 =1 	for	any	!Y01 	in	! U0 ,L1⎡⎣ ⎤⎦ 	

so	 !Pr y1 ≥ y0( ) 	is	 point-identified	 as	 !Pr y1 ≥ y0( ) =1 ,	 i.e.	 the	 FLB	 on	 !Pr y1 ≥ y0( ) 	at	 !Y01 	is	
maximally	 informative.	With	 first-order	dominance	 !F1 ≻1 F0 ,	!Y01 	is	defined,	!Y10 	is	 undefined,	

!D01 >0 ,	and	!D10 =0 .	

	

Informativeness	of	the	
!
Djk 	Bounds	

	 To	 see	 how	 closely	 the	 !Djk -based	 bounds	 correspond	 to	 the	 true	 inequality	

probabilities	 suppose	
 !y0 ,y1 ∼BVN µ0,µ1;1,1,ρ( ) .	 The	 entries	 in	 table	 2	 are	!D01 	and	 the	 true	

!Pr y1 ≥ y0( ) 	for	 selected	 !µ1 −µ0 	and	 ρ 	(the	 probabilities	 depend	 only	 on	 the	 differences	

!µ1 −µ0 ).	When	!µ1 −µ0 	is	 large	and	ρ 	is	negative,	 the	!D01 -based	bounds	are	 relatively	 close	

to	!Pr y1 ≥ y0( ) ,	 but	with	 positive	ρ 	these	 bounds	 are	 quite	 conservative	 relative	 to	 the	 true	

!Pr y1 ≥ y0( ) .	 Such	 results	 are	 intuitive:	 for	 given	 marginals,	 negative	 correlation	 tends	 to	
situate	more	joint	probability	mass	in	quadrants	II	and	IV	than	does	positive	correlation	(e.g.,	

contrast	figures	7(a)	and	7(b)).	

	

!Pr y1 ≥ y0( ) 	under	Independence	
	 Gastwirth,	 1975,	 considers	 situations	 where	!y0 	and	!y1 	are	 statistically	 independent.	

Here,	!Pr y1 ≥ y0( ) 	is	 identified	 given	 the	 marginals:	
!
Pr y1 ≥ y0( ) = f0 y0( ) f1 y1( )dy1dy0y0

∞
∫−∞

∞
∫ .	

																																								 																					
30	If	y	is	net	benefit,	then	a	policy	shifting	!F0 y( ) 	to	!F1 y( ) 	yields	a	Pareto	improvement.	
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Consider	 the	 exponential	 case	 in	 figure	 4(b).	 The	 FLB	 on	!Pr y1 ≥ y0( ) 	for	 any	 dependence	
structure	is	!D01 = .54 ,	whereas	!Pr y1 ≥ y0( ) 	under	independence	is!θ0 θ0 +θ1( ) = .83 .	

	

Relationships	to	Permutation	Distributions	

	 Let	!!y0,N = y0,n⎡
⎣

⎤
⎦ 	and	!!y1,N = y1,n⎡

⎣
⎤
⎦ 	denote	N-vectors	describing	outcomes	for	a	sample	

or	 a	 finite	 population	 of	 size	 2N.	 Let	 !!P y0,N( ) 	be	 the	 !N×N! 	matrix	 containing	 the	 N!	
permutations	of	the	elements	of	!!y0,N ;	let	!!

C = y1,N −P y0,N( )c⎡
⎣⎢

⎤
⎦⎥
	be	the	!N×N! 	matrix	whose	c-th	

column	 is	 the	 difference	 between	 !!y1,N 	and	 the	 c-th	 column	 of	 !!P y0,N( ) ;	 and	 let	

!!
d = 1

N 1 Cn,c >0( )n=1
N∑⎡

⎣⎢
⎤
⎦⎥
	be	the	!1×N!	vector	describing	the	fraction	of	elements	in	each	of	C's	

columns	 for	 which	!y1,n > y0,n(c) .	 Then	 the	 smallest	 and	 largest	 elements	 of	 d	 are	!D01 	and	

!1−D10 ,	respectively.	These	relationships	are	discussed	by	Heckman	et	al.,	1997,	who	suggest	

that	when	N	is	large	summary	statistics	like	deciles	of	the	sample	marginal	distributions	might	

be	used	to	approximate	the	permutation	relationships.	

	

Alternative	Characterizations	of	!Δ01 	and	Transformations	

	 Beyond	!Δ01 = y0 − y1 ,	 other	 contrasts	 may	 be	 of	 interest,	 for	 instance	!t y0( )− t y1( ) 	
where	 !t …( ) 	is	 a	 monotone-increasing	 transformation.	 The	 previous	 results	 apply	 here:	

!Pr t y1( )≥ t y0( )( ) =Pr y1 ≥ y0( ) ,	 !Yjk ,t = t Yjk( ) ,	 !D01,t =F0,t Y01,t( )−F1,t Y01,t( ) =F0 Y01( )−F1 Y01( ) ,	
etc.,	 using	 obvious	 notation.	 For	 !yj >0	 contrasts	 might	 involve	 ratios,	 !Pr y0 y1( )≤ c( ) 	or	
proportional	 differences	!Pr y0 − y1( ) y0( )≤ c( ) .31	Non-inferiority	 assessments	 may	 concern	

																																								 																					
31	See	 Imbens	 and	 Wooldridge,	 2009,	 and	 Lee	 and	 Kobayshi,	 2001,	 and	 Lee,	 2005,	 for	
conceptual	considerations,	and	Langley	et	al.,	2014	for	a	related	application.	
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probabilities	like	!Pr y0 − y1 ≤ c( ) 	for	nonzero	c.32	So	long	as	c	and/or	!t …( ) 	are	known	all	these	
cases	can	be	subsumed	by	specifying	!Δ = τ0 y0( )− τ1 y1( ) 	and	considering	!Pr τ1 y1( )≥ τ0 y0( )( ) .	
For	 example,	 in	 the	 proportional-difference	 example	!τ0 y0( ) = 1− c( )y0 	and	!τ1 y1( ) = y1 .	 The	

previous	results	go	through	directly	 if	 the	respective	!Fj y( ) 	reference	the	distributions	of	the	
transformed	measures	obtained,	e.g.,	by	standard	change-of-variable	methods.	

	

Discrete	and	Ordinal	Outcomes	

	 The	main	 results	 on	 identifying	 bounds	 on	 inequality	 probabilities	 apply	 also	 when	

population	outcome	measures	are	integer-valued	(e.g.	count-data;	see	Cameron	et	al.,	2004),	

discrete-ordinal,	or	categorical	measures	(e.g.	health-status	scores	or	indexes,	Likert	scales).33	

One	important	consideration	in	such	cases	is	whether	the	parameter	of	interest	is	!Pr y1 ≥ y0( ) 	
or	!Pr y1 > y0( ) 	since	in	the	population	a	nonzero	probability	of	ties,	i.e.	of	the	event	!y0 = y1 ,	is		

relevant.34	The	 approach	 described	 in	 section	 3	 that	 identifies	 the	!Yjk 	and	!Djk 	is	 applicable	

here,	but	the	quantity	whose	bounds	are	identified	as	such	is	!Pr y1 > y0( ) ,	not	!Pr y1 ≥ y0( ) .35	
	 The	 2009	 study	 by	 Volpp	 et	 al.	 on	 the	 effects	 of	 financial	 incentives	 on	 smoking	

cessation	and	related	outcomes	offers	an	instructive	example.	One	outcome	of	interest	in	that	

study	is	a	five-point	Likert	scale	measure	of	subjects'	self-assessed	health;	the	distributions	of	

their	 sample	 data	 are	 pictured	 in	 figure	 8(a).	 Treatment	 effects	 using	 this	 measure	 are	

assessed	by	Volpp	et	al.	by	examining	differences	between	treatment	and	control	separately	at	

																																								 																					
32	See	U.S.	Food	and	Drug	Administration,	2016.	
33	Huang	et	al.,	2016,	consider	a	discrete	functional	disability	measure	as	their	main	outcome.	
Also	see	Allison	and	Foster,	2004,	for	some	related	perspectives	on	discrete	ordinal	outcomes.	
34	In	 empirical	 applications	 consideration	 of	 ties	 is	 relevant	 not	 only	 when	 the	 data	 are	
naturally	 discrete	 but	 also	 when	 data	 that	 are	 in	 principle	 continuously	 distributed	 are	
measured	coarsely.	
35	For	 the	!Yjk to	 be	 (potentially)	 unique	 when	 outcomes	 are	 discrete	 or	 categorical,	 the	

domain	of	the	argmax	in	(22)	should	be	redefined	as	the	set	! y Pr y0 = y!∨ !y1 = y( ) >0{ } .		
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the	 five	Likert	 scale	points	 (see	 their	 figure	2).	 In	 these	data	!Y01 	occurs	 at	 the	 "Very	Good"	

category	with	 a	 resulting	!D01 = .03 .	 This	 result	 can	 be	 imagined	 by	 reference	 to	 figure	 8(b)	

which	depicts	the	sample	space	for	these	data;	!D01 = .03 	corresponds	to	the	probability	mass	

of	the	red	dots	minus	that	of	the	black	dots.	

	

Spreading	or	Rectangularizing	Distributions	

	 Figure	 9(a)	 illustrates	 a	 case	 where	 !F0 y( ) 	is	 !N 0,1( ) 	and	 !F1 y( ) 	is	 !N 0,4( ) 	giving	

!Y01 =1.36 ,	!Y10 = −1.36 ,	 and	!D01 =D10 = .16 .	 Assume	 now	 that	 some	 intervention	 replaces	

!F1 y( ) 	with	!F2 y( ) ,	 which	 is	!N 0,16( ) ,	 resulting	 in	!Y02 =1.72 ,	!Y20 = −1.72 ,	 and	!D02 =D20 = .29 .	

Spreading	!F1 y( ) 	relative	 to	!F0 y( ) 	in	 the	 sense	 of	 increasing	!F0 y( )−F1 y( ) 	for	 all	 y	 (e.g.	 in	
increase	in	!σ1

2 	when	!µ0 = µ1 )	increases	the	!Djk 	and	thus	gives	tighter	bounds	on	!Pr y1 ≥ y0( ) .	
Conversely,	rectangularizing	one	distribution	results	in	the	limit	in	a	degenerate	distribution	

for	 which	 !Y01 = Y10 	so	 that	 !D10 =1−D01 	and	 !Pr y1 ≥ y0( ) 	is	 point-identified:	

!1−D10 =D01 ≥Pr y1 ≥ y0( )≥D01 .	 For	 example,	 figure	 9(b)	 shows	 a	 case	 where	 !F1 y( ) 	is	
degenerate	!N 1,0( ) 	and	!F0 y( ) 	is	!N 0,4( ) .	 This	 gives	!Y01 = Y10 =1 ,	!D01 = .69 ,	 and	 !D10 = .31 	so	

that	!Pr y1 ≥ y0( ) 	is	point-identified	at	.69.	
	

5.	Inequality	Probabilities	and	Cost-Effectiveness	Analysis	
	 Inequality	 probabilities	 may	 usefully	 inform	 some	 questions	 in	 cost-effectiveness	

analysis	 (CEA).	 Much	 applied	 CEA	 involves	 consideration	 of	 mean	 incremental	 costs	 and	

outcomes,	 and	 focuses	 on	 uncertainties	 arising	 from	 sampling	 variation.	 This	 is	 often	 true	

whether	 the	 evaluation	 strategy	 is	 based	 on	 incremental	 cost-effectiveness	 ratios	 (ICERs),	

cost-effectiveness	 acceptability	 curves	 (CEACs;	 Fenwick	 et	 al.,	 2004,	 and	 Willan,	 2001),	 or	

some	 other	 approach.	 The	 ideas	 discussed	 in	 this	 paper	 permit	 alternative	 perspectives	 on	

stochastic	CEA	wherein	the	main	focus	is	on	underlying	population	heterogeneity	of	costs	and	
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outcomes	instead	of	sampling	variation.36	

	 Suppose	the	!yj 	are	defined	as	net	health	benefit	("h";	Stinnett	and	Mullahy,	1998),	

	 !yj = hj = ej − cj λ( ) ,	 	 	 	 	 	 	 	 	 (25)	

where	!ej 	and	!cj 	denote	 the	 health	 outcomes	 and	 costs	 arising	 from	 intervention	 j	 (!Tj )	 in	

some	 population,	 and	 λ 	represents	 a	 population-constant	 standard	 like	 social	 marginal	

willingness	to	pay	for	e	(e.g.	dollars	per	QALY).	For	instance,	in	a	social	choice	setting	where	

population	 members	 vote	 self-interestedly	 for	 one	 intervention	 to	 be	 applied	 uniformly,	

!Pr h1 ≥h0( ) 	signals	 the	 likelihood	 that	!T1 	would	 be	 the	 intervention	 adopted.	!Pr h1 ≥h0( ) 	is	
also	one	characterization	of	"the	probability	of	cost-effectiveness"	(Willan,	2001).		

	 Define	the	subject-level	outcomes	!!q = e0 ,e1 ,c0 ,c1⎡⎣ ⎤⎦ ,	and	for	a	given	λ 	let	

	

!

Prλ h1 ≥h0( ) =Pr e1 − c1 λ( ) ! ≥ !e0 − c0 λ( )( )
!!!!!!!!!!!!!!!!!!!!!!!! =Pr e1 −e0( )≥ c1 − c0( ) λ( )
!!!!!!!!!!!!!!!!!!!!!!!! =Pr r ≤ λ( ) , 	 	 	 	 	

(26)	

where	 !r = c1 − c0( ) e1 −e0( ) .	 For	 given	 !λ >0 	 !Prλ h1 ≥h0( ) 	is	 increasing	 in	 !e1 	and	 !c0 	and	
decreasing	 in	 !e0 	and	 !c1 ,	 while	 the	 relationship	 between	 !Prλ h1 ≥h0( ) 	and	 λ 	may	 be	

nonmonotonic.	Note	 too	 that	 the	relationship	between	!Prλ h1 ≥h0( ) 	and	λ 	is	essentially	 that	
of	an	incremental	CEAC:	as	λ 	varies	it	tells	the	probability	that	intervention	1	becomes	more	

or	less	acceptable	relative	to	intervention	0.	Defined	in	terms	of	underlying	random	variables,	

however,	this	CEAC	differs	from	that	of	more-familiar37	CEACs	that	have	been	considered.	

	 In	data-rich	contexts	wherein	all	elements	of	q	 are	 jointly	observable—i.e.,	when	 the	

full	joint	probability	structure	of	!!Fq …( ) 	is	available—!Prλ h1 ≥h0( ) 	can	be	point-identified.	Yet	

																																								 																					
36	This	is	sometimes	cast	as	2nd-	vs.	1st-order	uncertainty;	see	Vanness	and	Mullahy,	2012.	

37	That	is,	criteria	using	
!
µc1

−µc0( ) µe1
−µe0( ) 	and	analog	estimates	 ! µ

!
c1 −µ!c0( ) µ!e1 −µ!e0( ) .	
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in	 many	 settings	 only	 joint	 marginal	 distributions	 !Fj e,c( ) 	and,	 therefore,	 marginal	
distributions	!Fj,λ h( ) 	are	available.	This	would	be	the	case,	e.g.,	in	a	two-arm	trial	where	both	
outcome	 and	 cost	 data	 from	 the	 each	!Tj 	are	 available	 at	 the	 subject	 level	 (van	 Hout	 et	 al.,	

1994),	or	when	! e0 ,c0( ) 	and	! e1 ,c1( ) 	are	observed	 in	 separate	datasets.38	When	only	 the	 joint	
marginals	 !Fj e,c( ) 	are	 available	 !Prλ h1 ≥h0( ) 	cannot	 generally	 be	 point-identified	 unless	

! e0 ,c0( ) 	is	statistically	independent	of	! e1 ,c1( ) .	
	 Yet	in	light	of	the	results	in	section	3,	it	may	be	possible	to	obtain	informative	bounds	

on	!Prλ h1 ≥h0( ) 	when	 only	 the	 marginals	!Fj,λ h( ) 	are	 available.	 As	 an	 illustrative	 example	
assume	 that	

 !!q ∼MVN µq ,Vq( ) .	 Let	!!µq = µe0
, !µe0 +5,!µc0 , !µc0 +10⎡

⎣
⎤
⎦
,	 and	 let	

!
Vq 	be	 defined	 to	

have	all	diagonal	elements	equal	1	and	all	off-diagonal	elements	equal	.5.	Then	for	a	given	λ 	

 !h1 −h0 ∼N 5− 10 λ( ) ,1+ 1 λ( )( ) .	 The	 resulting	 true	 probabilities!Prλ h1 ≥h0( ) =Prλ h1 −h0 ≥0( ) 	
and	corresponding	FLB	based	on	the	marginals	!F0,λ h( ) 	and	!F1,λ h( ) 	are	plotted	in	figure	10	for	
values	of	!λ∈ 0,10( ⎤⎦ .	In	this	case	the	FLB	is	seen	to	be	informative,	at	least	for	values	of	!λ >2 .	

	

6.	Inequality	Probabilities	with	More	than	Two	Outcomes	
Three	or	More	Competing	Univariate	Outcomes	

	 While	 most	 attention	 in	 the	 evaluation	 literature	 is	 on	 contrasts	 between	 two	

outcomes,	 in	some	cases	more	than	two	outcomes	are	of	interest.	For	instance,	Nissen	et	al.,	

2016,	compare	in	a	three-arm	trial	the	cardiovascular	safety	profiles	of	celecoxib,	ibuprofen,	

and	naproxen	 for	patients	with	osteoarthritis	or	 rheumatoid	arthritis,	while	marketing39	for	

																																								 																					
38	Indeed,	much	as	in	the	mainstream	treatment-effect	literature	one	reason	that	means-based	
CEA	 (ICERs,	 CEACs,	 etc.)	 may	 be	 popular	 is	 that	 mean	 differences	 in	 outcomes	 and	 costs	
correspond	to	differences	in	their	marginal	means	under	suitable	sampling	schemes.	
39 https://www.victoza.com/consider-using-victoza-/compared-with-januvia----byetta-.html,	
accessed	May	10,	2017.	
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Victoza	(liraglutide;	Novo	Nordisk),	a	treatment	for	type	2	diabetes,	compares	its	therapeutic	

properties	with	those	of	Januvia	(sitagliptin;	Merck)	and	Byetta	(exenatide;	AstraZeneca).	

	 Expanding	the	discussion	of	section	3,	one	consideration	might	be	the	probability	that	

one	treatment	(say	!y1 )	results	in	a	better	outcome	than	either	of	the	others	(say	!y0 	and	!y2 ),	

i.e.	!Pr y1 ≥ y0!∧ !y1 ≥ y2( ) .40	With	three	outcomes	the	earlier	results	can	be	extended	to	obtain	
potentially	 informative	 bounds	 on	 !Pr y1 ≥ y0!∧ !y1 ≥ y2( ) .	 Specifically,	 Fréchet-Boole	

inequalities	can	themselves	be	used	recursively	to	bound	the	bounds	on	!Pr y1 ≥ y0!∧ !y1 ≥ y2( )
,	the	latter	being	unknowable	given	only	information	on	the	marginals	!Fj y( ) .	
	 To	 this	 end,	 define	 !D21 	using	 (21).	 Let	 !Pr y1 ≥ y0( ) 	and	 !Pr y1 ≥ y2( ) 	correspond,	
respectively,	 to	!Pr za ∈Za( ) 	and	!Pr zb∈Zb( ) 	in	 (8),	 and	 note	 that	!Pr y1 ≥ yk( )≥Dk1 	for	 k=0,2.	
Using	!D01 	and	!D21 ,	it	follows	that	a	lower	bound	on	the	lower	bound	on	!Pr y1 ≥ y0!∧ !y1 ≥ y2( )
—and,	therefore,	a	lower	bound	on	!Pr y1 ≥ y0!∧ !y1 ≥ y2( ) 	itself—is	!max D01 +D21 −1,0{ } ,	i.e.	

					!max D01 +D21 −1,0{ } ! ≤ !max Pr y1 ≥ y0( )+Pr y1 ≥ y2( )−1,0{ } ! ≤ !Pr y1 ≥ y0!∧ !y1 ≥ y2( ) ,					(27)	

which	 is	 informative	 if	!D01 +D21 >1 .	 The	 corresponding	 approach	 to	 obtaining	 an	 upper	

bound	on	the	upper	bound	on	!Pr y1 ≥ y0!∧ !y1 ≥ y2( ) 	uses	

	 !Pr y1 ≥ y0!∧ !y1 ≥ y2( ) ! ≤ !min Pr y1 ≥ y0( ) ,Pr y1 ≥ y2( ){ } ! ≤ !min 1−D10,1−D12{ } ,								(28)	

which	is	informative	if	either	or	both	of	the	!D1k 	exceed	zero.	

	 For	 example,	 suppose	
 !! y0 ,y1 ,y2⎡⎣ ⎤⎦ ∼TVN µ ,V( ) 	with	 !µ = µ0 ,µ1 ,µ2⎡⎣ ⎤⎦ = 1,3,0⎡⎣ ⎤⎦ 	and	

covariance	
		
V =

1 ρ 2ρ
ρ 1 2ρ
2ρ 2ρ 4

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.	 The	 !Fj y( ) 	and	 corresponding	 !Y01 =2 	and	 !Y21 =1.58 	are	

																																								 																					
40	Such	questions	might	be	of	interest	when	all	the	outcomes	are	observed	in	the	same	sample	
or	when—as	discussed	below	in	section	7—observations	from	different	datasets	are	used.	
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depicted	 in	 figure	11(b),	 showing	!D01=.68	and	!D21=.71.	The	 lower	bound	on	 the	population	

FLB	 on	 !Pr y1 ≥ y0!∧ !y1 ≥ y2( ) 	obtained	 from	 !D01 	and	 !D21 	is	 thus	 .39=.68+.71-1.	 Table	 3	
compares	 this	with	 the	 true	 probabilities	 and	 the	 population	 FLBs	 for	!ρ∈ −.25,0,.25{ } .	 The	
lower	 bound	 on	 the	 FLB	 based	 on	!D01 	and	!D21 	is	 conservative,	 albeit	 still	 informative.	 The	

corresponding	upper	bound	in	(28)	is	minimally	informative,	.9996,	resulting	from	!D10=0	and	

!D12=.0004.	

	

Competing	Multivariate	Outcomes	

	 In	some	evaluations	the	outcomes	of	interest	are	multivariate.	A	prominent	example	is	

that	 of	 co-primary	 ("and",	 "all")	 outcomes	 in	 clinical	 studies.41	In	 regulatory	 settings	 co-

primary	outcomes	may	involve	"use	of	two	or	more	endpoints	for	which	demonstration	of	an	

effect	 on	 each	 is	 needed	 to	 support	 regulatory	 approval"	 (U.S.	 FDA,	 2017).	 One	

characterization	of	 "effect"	might	be	 that	all	outcomes	under	one	 treatment	are	not	 smaller	

than	those	under	the	comparator,	i.e.	!!y1 ≥ y0 	for	P-vectors	!!y j .	Analogous	considerations	arise	

in	healthcare	quality	measurement	contexts	where	all-or-nothing	indicators	of	quality	may	be	

of	interest	(Nolan	and	Berwick,	2006).	

	 To	 formalize	 these	 ideas,	 suppose	 the	 P-dimensional	 outcomes	 are			y j = yj,1 ,…,yj,P⎡
⎣

⎤
⎦ ,	

j=0,1.	 Of	 concern	 may	 be	 the	 probability	!!Pr y1 ≥ y0( ) 	where	 ≥	 is	 element-by-element.	 For	
instance,	 with	 M=P=2,	 the	 parameter	 of	 interest	 is	 !Pr y1,1 ≥ y0,1 !∧ !y1,2 ≥ y0,2( ) .	 Two	
approaches	might	be	considered.	

	 For	the	first,	assume	M=P=2	and	that	only	the	four	univariate	marginals	!Fj,m y( ) ,	j=0,1,	
p=1,2,	 are	 available.	 Using	 the	 recursive-bounding	 idea	 in	 (27)	 and	 (28),	 and	 letting		Djk ,p 	

denote	 quantities	 akin	 to	 (21),	 the	 lower	 and	 upper	 	Djk ,p −based 	bounds	 on	

																																								 																					
41	Atkinson,	2003,	discusses	the	ideas	of	union	("or")	and	intersection	("and")	outcomes.	
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!Pr y1,1 ≥ y0,1 !∧ !y1,2 ≥ y0,2( ) 	are	
	 !max D01,1 +D01,2 −1,0{ } ! ≤ !Pr y1,1 ≥ y0,1 !∧ !y1,2 ≥ y0,2( ) ! ≤ !min 1−D10,1 ,1−D10,2{ } .					(29)	
	 The	second	approach	assumes	that	M=2	P-dimensional	joint	marginals	!!Fj y( ) ,	j=0,1,	are	
available.42	Using	results	from	Rüschendorf,	2004	(see	also	Kotz	and	Seeger,	1993),	the	joint	

probability	of	the	events	!!y0 ≤ y ' 	and	!!y1 > y ' 	for	arbitrary	!!y ' 	is	bounded	as	follows:	

	 !!max F0 y '( )−F1 y '( ) ,0{ } ! ≤ !Pr y0 ≤ y '!∧ !y1 > y '( ) ! ≤ !min 1+F0 y '( )−F1 y '( ) ,1{ } 	 (30)	

Obtaining	the	best	bounds	on	!!Pr y1 ≥ y0( ) 	in	this	case	follows	in	a	manner	analogous	to	(24)	
except	 that	determining	 the	particular	!!Yjk 	(the	vector	analog	of	!Yjk 	in	 (22))	at	which	!!F0 y( ) 	
and	!!F1 y( ) 	are	 evaluated	 to	 identify	 the	 best	 bounds	 may	 entail	 additional	 computational	
considerations.43	

	 For	 illustration,	 consider	M=2	co-primary	outcomes			y j 	where	 the		yj,p 	are	binary,	 the	

joint	 marginals	 are	 known,	 and	!!y '=0 	in	 (30).44	Here	 the	 best	 bounds	 on	!!Pr y1 > y0( ) 	are	
(refer	to	(7)):	

	

!!

max Pr y1 =1( )−Pr y0 =1( ) ,0{ } ! ≤ !Pr y0 =0!∧ !y1 =1( ) ! = !Pr y1 > y0( )
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ≤ !min 1−Pr y0 =1( ) ,Pr y1 =1( ){ } 	 	 (31)	

This	 idea	 also	 covers	 the	weak	 inequality	 case,	!!Pr y1 ≥ y0( ) ,	 albeit	with	messier	 probability	
																																								 																					
42	The	assumption	that	the	joint	marginals	are	identifiable	would	often	be	a	reasonable	one.	
43	In	a	closely	related	context	Andrews,	1997,	discusses	how	a	grid	or	hypercube	search	over
!!y ' 	can	 be	 confined	 to	 the	 observed	 sample	 values	 of	 y—as	 these	 define	 the	 steps	 in	 the	
empirical	joint	distribution—thus	simplifying	estimation.	Note	that	the	M	elements	of	!!Yjk will	
generally	not	be	the	M	scalar	values	that	would	obtain	from	applying	(22)	with	reference	to	
the	M	univariate	marginals.		
44	For	example,	Langley	et	al.,	2014,	consider	two	binary	co-primary	endpoints	 in	a	study	of	
secukinumab	versus	etanercept	in	the	treatment	of	plaque	psoriasis.	
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algebra.	Moreover,	 using	 (9)	 and	 (11)	 the	 recursive-bounding	 idea	 in	 (27)	 and	 (28)	 can	 be	

used	 to	 bound	 composite	 ("or",	 "any")	 outcome	 probabilities	 (U.S.	 FDA,	 2017),	 e.g.	

!Pr y1,1 > y0,1 !∨ !y1,2 > y0,2( ) .	
	

7.	Sampling,	Estimation,	and	Inference	
	 This	 section	 considers	 empirical	 implementation	 of	 the	 univariate-outcome	 results	

described	 in	section	3.	 In	what	 follows	 the	empirical	marginal	distributions	of	 the	observed	

outcomes	!yj,n ,	given	sample	sizes	!Nj ,	are	defined	as	!
Fj,Nj y( ) = 1

Nj
1 yj,n ≤ y( )n=1

Nj∑ .	

	

Sampling	

	 The	sampling	assumptions	are	standard	ones.	FP	state:	"observations	on	the	outcome	

of	participants	in	the	treatment	group	identify	the	distribution	of	the	potential	outcome	with	

treatment,	and	observations	on	the	outcome	of	participants	in	the	control	group	identify	the	

distribution	 of	 the	 potential	 outcome	 without	 treatment."45	In	 essence,	 a	 random	 sample	

containing	 information	on	 the	 true	! y0 ,y1( ) ,	 or	more	generally	!! y0 ,y1 ,x( ) ,	 is	drawn	 from	 the	
population.	 Then	 for	 each	 subject	 the	 information	 on	 either	!y0 	or	!y1 	is	 deleted	 at	 random,	

resulting	 in	 samples	 of	 size	!Nj 	of	 observations	 on	!yj .	 More	 generally,	 the	 FP	 results	 apply	

with	 unconfounded	 conditioning	 on	x—i.e.	 selection	 on	 observables	 only—if	 covariates	 are	

relevant.46	These	 assumptions	 are	 standard	 and	 point	 to	 what	 matters	 being	 consistent	

estimates	of	 the	!Fj y( ) 	in	 the	 sense	of	 convergence	 in	distribution:	!Fj,Nj y( )→Fj y( ) 	as	!Nj→∞ 	

																																								 																					
45	All	 the	 standard	 reasons	 to	 scrutinize	 the	 validity	 of	 such	 assumptions	 in	 light	 of	 the	
processes	that	may	actually	generate	the	observed	data	are	applicable	here.	See	Adams,	2013,	
Chan	and	Hamilton,	2006,	Fan	et	al.,	2017,	Imbens	and	Wooldridge,	2009,	and	Manski,	1996.	
46	See	 FP,	 pages	 932	 and	 944-945,	 and	 Imbens	 and	 Wooldridge,	 2009,	 section	 2.2.	 In	 an	
unconfounded	 regression	 context	 with	 !!y =αt +m x( )+u ,	 !!E u t,x⎡⎣ ⎤⎦ =0 ,	 and	 !t∈ 0,1{ } ,	 an	
analyst	might	imagine	empirical	bounds	analysis	using	as	"outcomes"	the	estimated	adjusted	
or	 semi-residuals	

 !!r
! = y−m" x( ) 	from	 the	 two	 subsamples	 defined	 by	 the	 binary	 treatment	

indicator.	Consideration	of	the	properties	of	such	an	approach	is	left	for	future	exploration.	
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for	all	y	 in	!Sj 	(Hansen,	2017,	section	6.7).	Technical	considerations	aside,	sampling	schemes	

that	 identify	 criteria	 like	!V F1 y( )( )−V F0 y( )( ) 	(e.g.	 differences	 in	 means	 or	 medians)	 would	
generally	suffice	for	purposes	at	hand.	

	

Additional	Sampling	Considerations	

Censoring	of	Empirical	Outcome	Distributions		

	 In	 applications	 left	 (e.g.	 Tobit-type)	 or	 right	 (e.g.	 survival	 times)	 censoring	 may	 be	

relevant.	Censoring	of	either	or	both	of	the	empirical	marginal	distributions	may	or	may	not	

affect	the	magnitudes	of	the	FLB	or	FUB	depending	on	where	censoring	occurs	relative	to	the	

uncensored	data's	!Yjk .	Informative	bounds	on	!Pr y1 ≥ y0( ) 	may	still	be	defined	from	censored	
samples	regardless	of	the	degree	of	censoring	so	long	as	some	outcome	data	are	uncensored.	

Consider	the	study	by	Lee	et	al.,	2016,	comparing	naltrexone	and	usual	treatment	for	opioid	

relapse.	The	study's	primary	outcome	is	relapse-free	survival	time.	The	outcome	data	(derived	

from	approximating	the	data	in	Lee	et	al.'s	figure	2)	are	depicted	in	figure	12.	While	these	data	

are	 right-censored	 at	 24	 weeks,	 it	 can	 be	 determined	 that	!D01 	is	 at	 least	 .29	 based	 on	 a	

provisional	!Y01 	at	15	weeks.
47	

	

Marginal	Distributions	Observed	in	or	Estimated	from	Different	Datasets	or	Samples	

	 Nothing	 about	 the	 results	 discussed	 above	 demands	 that	 the	 data	 on	!y0 	and	!y1 	be	

obtained	from	the	same	sample	or	dataset.	All	that	is	required	is	that	the	respective	empirical	

marginal	 distributions	 converge	 to	 the	 corresponding	 population	marginals	 of	!F y0 ,y1( ) ,	 as	
above.	 If	 the	marginal	distributions	of	 the	 two	outcomes	observed	 in	different	datasets	 (e.g.	
																																								 																					
47	When	 either	 or	 both	 of	 the	

!
Fj,Nj y( )

	
are	 censored,	 point	 identification	 of	!E y1⎡⎣ ⎤⎦−E y0⎡⎣ ⎤⎦ 	is	

generally	not	possible.	Depending	on	where	censoring	occurs	this	is	also	true	for	differences	
between	 marginal	 quantiles	 although	 informative	 bounds	 may	 be	 available	 if	 one	 of	 the	
marginial	 quantiles

	
is	 observed.	 For	 instance,	 while	 it	 is	 not	 possible	 to	 identify	

!med F1 y( )( )−med F0 y( )( ) 	in	the	Lee	et	al.	example,	 it	 is	evident	from	Lee	et	al.'s	figure	2	that	
this	difference	is	at	least	13	weeks.	
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repeated	cross-sections,	synthetic	panels,	separate	trials,	etc.)	are	truly	representative	of	the	

same	 population—characterized	 by	 time,	 place,	 and	 all	 other	 observable	 and	 unobservable	

characteristics—then	the	previous	analysis	is	applicable	without	modification.48	

	

Estimation	

	 Estimation	of	!D01 	and	!D10 	requires	an	algorithm	that	computes	the	difference	between	

empirical	distribution	functions	across	their	common	support.	In	Stata,	this	is	straightforward	

using	 the	 ksmirnov procedure.49	With	 the	 data	 on	!y0,n 	and	 !y1,n 	stacked	 into	 a	 single	

variable	 (say	!y = yn⎡⎣ ⎤⎦ )	 having	!N0 +N1 	observations,	 and	 a	 second	 variable	 (say	!g = gn⎡⎣ ⎤⎦ )	

defined	 as	 the	 binary	 indicator	 of	 group	 membership,	 e.g.	!gn =1 n >N0( ) ,	 then	 the	 Stata	
command	is	simply:	

	 ksmirnov y, by(g)	

ksmirnov	returns	the	scalar	stored	results	r(D_1)	and	r(D_2)	whose	absolute	values	are,	

respectively,	the	estimates	of	!D01 	and	!D10 .	To	illustrate,	500	observations	are	drawn	from	the	

!N 0,2( ) 	and	!N .5,1( ) 	distributions	depicted	in	figure	4.	The	ksmirnov	estimates	are	shown	in	
exhibit	 1.	 From	 r(D_1)	 and	 r(D_2),	 the	 estimates	 of	 !D01 	and	 !D10 	are	 .224	 and	 .12,	

corresponding	to	their	respective	population	counterparts	.25	and	.09	shown	in	figure	4.	

	

Inference	

	 The	emphases	to	this	point	in	the	paper	have	been	identification	of	probability	bounds	

based	 on	!Djk 	and	 estimation	 of	 such	 bounds.	 Considerations	 of	 inference	 might	 involve	 at	

least	two	questions	(see	Imbens	and	Manski,	2004,	and	Tamer,	2010).	First,	what	purpose	is	
																																								 																					
48	The	assumption	that	the	two	samples	are	drawn	from	the	same	population	is	a	strong	one.	
For	clinical	trials	inclusion	criteria,	study	sites,	etc.,	would	all	be	relevant	considerations;	for	
population	surveys	or	administrative	data,	sampling	frames,	exclusion	criteria,	etc.,	would	be	
relevant.	
49	R	 has	 a	 procedure,	 ks.test,	 that	 appears	 to	 provide	 output	 similar	 to	 that	 of	 Stata's	
ksmirnov.	
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served	by	conducting	 inference	about	bounds?	Second,	which	parameters	are	of	 interest	 for	

conducting	 inference?	 Assuming	 useful	 purposes	 exist	 then	 at	 least	 two	 types	 of	 inference	

may	 be	 relevant:	 inference	 about	 the	!Djk -based	 bounds	 per	 se,	 and	 inference	 specifically	

about	!Pr y1 ≥ y0( ) .	

	 For	 the	 first	 type,	 FP	 provide	 large-sample	 results.	 Since	 the	
!
Fj,Nj y( ) 	are	 averages	 of	

independent	 Bernoulli	 variates	 (Hansen,	 2017,	 section	 13.2),	 FP's	 proposition	 3.1	 gives	

	
!
N Djk ,N −Djk( ) !→ !N 0,σ jk2( ) 	 	 	 	 	 	 	

(32)	

where	

	
!
σ jk
2 ! = !F0 Yjk( ) 1−F0 Yjk( )( ) !+ !F1 Yjk( ) 1−F1 Yjk( )( ) ,	 	 	 	 	 (33)	

assuming	 equal	 sample	 sizes	 in	 the	 two	 groups	 (this	 is	 easily	 relaxed)	 and	 that	 various	

regularity	conditions50	are	met.	Confidence	intervals	built	on	these	large-sample	results	must	

also	respect	the	0-1	probability	bounds.	For	the	data	in	figure	1,	using	(33)	to	compute	95%	

(±2	s.e.)	CIs	around	the	estimated	!D01 	and	!1−D10 	bounds	whose	point	estimates	are	.17	and	

.96,	respectively,	results	in	respective	CIs	of	[.10,	 .24]	and	[.90,	1].	FP	also	discuss	bootstrap-

based	inference.	

	 For	the	second	type,	inference	may	be	undertaken	to	understand	sampling	variation	in	

the	 estimates	 of	!Pr y1 ≥ y0( ) .	 ksmirnov gives	 p-values	 for	 testing	 directional	 hypotheses	
that	one	of	!y0 	or	!y1 	is	stochastically	smaller	than	the	other	(see	exhibit	1).	These	p-values	are	

computed	 as	
!
pjk ,N = exp − 2N0N1N0+N1

Djk ,N2⎛
⎝

⎞
⎠ 	for	 the	 null	 that	!yj 	is	 not	 stochastically	 smaller	 than	

																																								 																					
50	FP's	results	use	the	assumption	(which	they	suggest	can	be	relaxed)	that	the	!Yjk 	are	unique.	
FP	also	discuss	bootstrap	 inference;	see	also	Abrevaya,	2000,	and	Abadie,	2002.	A	sampling	
exercise	suggests	that	even	a	naive	bootstrap—with	computation	of	each	replicate's	estimate	
of	!Djk 	around	 the	 original	 sample's	 value	 of	!Yjk—reproduces	 closely	 both	 the	 population	

(known	!Fj y( ) )	 and	 analog	 (!Fj,Nj y( ) "plugged	 in")	 versions	 of	 the	 (33).	 These	 results	 are	
available	on	request.	
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!yk ;	the	!pjk ,N 	depend	only	on	the	!Djk ,N ,	not	on	the	particular	values	of	the	!
Fj,Nj y( ) .51	

	

8.	Summary	
	 This	paper	has	proposed	the	utility	in	health	economics	evaluations	of	some	results	on	

inequality	probabilities	from	the	treatment-effect	literature	that	have	gone	largely	unnoticed	

or	 unused	 in	 health	 applications.	 In	 comparing	 outcomes	!yj 	across	 a	 population,	 which	

metric(s)	 are	 used	 for	 comparison	 is	 at	 the	 decisionmaker's	 discretion.	 While	 standard	

contrasts	 like	 ATEs	 are	 informative	 for	 some	 questions,	 other	 perspectives	 may	 be	 more	

relevant	 in	 some	 decisionmaking	 contexts.	 Questions	 regarding	 inequality	 probabilities	 are	

natural	 to	consider	 in	a	 range	of	decisionmaking	settings.	While	point	 identification	of	 such	

parameters	 is	 challenging,	 the	 paper	 has	 shown	 how	 inequality	 probabilities	 can	 be	

informatively	bounded	using	 information	on	 the	marginal	 outcome	distributions.	Of	 course,	

estimating	 the	 relevant	marginal	outcome	distributions	 from	 the	data	at	hand	may	 itself	be	

challenging	for	all	the	standard	reasons.	

	 Whether	decisionmakers	are	comfortable	relying	on	bounds	is	a	consideration	whose	

relevance	 and	 importance	 have	 been	 emphasized	 by	 Manski.	 Entrenched	 approaches	 to	

evaluation	 in	 regulatory	 (e.g.	 FDA)	 and	 other	 contexts	 may	 be	 challenging	 to	 budge.	 Yet	

superior	decisions	will	be	made	if	evaluations	that	inform	them	are	anchored	to	criteria	that	

reflect	 what	 actually	matters	 to	 decisionmakers52	rather	 than	 to	 criteria	 that	 happen	 to	 be	

biostatistically	 convenient	 or	 time-honored.	 True	 value-based	 policymaking	 and	 healthcare	

delivery	demand	no	less.	 	

																																								 																					
51	See	Darling,	1957.	The	two	directional	 tests	ksmirnov	reports	are	against	null	hypotheses	
that	!y0 	is	not	stochastically	smaller	than	!y1 	and	that	!y1 	is	not	stochastically	smaller	than	!y0 .	
52	See	Lynn	et	al.,	2015,	for	a	compelling	discussion.	
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Figure	1	
	

Survival	Time	Distributions:	Nivolumab=!Fniv t( ) 	versus	Docetaxel=!Fdoc t( ) 	—	
Panel	(a):	Median	Survival	Times;	Panel	(b):	Twelve-Month	Survival	Probabilities	
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Figure	2	
	

Survival	Time,	Nivolumab	versus	Docetaxel:	Sample	Space	for	Continuous	and	Binary	
Outcomes	
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Figure	3	

FLB	based	on	Marginals	!Fj y( ) 	from	Joint	Distribution	
!
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Figure	4	
	

Numerical	Examples:	Computing	!Yjk 	and	!Djk 	—	

Panel	(a):	!F0 y( )=!N 0,4( ) ,	!F1 y( )=!N .5,1( ) ;	Panel	(b):	!F0 y( )=!Exp 5( ) ,	!F1 y( )=!Exp 1( ) .	
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Figure	5	
	

Numerical	Examples:	Computing	!Yjk 	—	

Panel	(a):	!σ0
2 ≠ σ1

2 ,	Both	!Y01 	and	!Y10 	Defined;	
Panel	(b):	!σ0

2 =σ1
2 ,	Only	One	of	!Y01 	or	!Y10 	Defined	
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Figure	6	
	

Illustration	of	Zero-Order	Stochastic	Dominance,	!Y01 = U0,L1⎡⎣ ⎤⎦ ,	and	!D01 =1 ,	with	

 !F1 y( )≻0 F0 y( ) 	
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Figure	7	

FLB	based	on	Marginals	!Fj y( ) 	from	Joint	Distribution	
!
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Panel	(a):	!ρ= .5 ;	Panel	(b):	!ρ= −.5 	
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Figure	8	
	

Volpp	et	al.,	2009:	Self-Rated	Health	Status	Results,	Computation	of	!Y01 	and	!D01 	—	

Panel	(a):	Control=!F0 y( ) ,	Intervention=!F1 y( ) ;	Panel	(b):	Sample	Space	
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Figure	9	
	

Numerical	Examples:	Spreading	and	Rectangularizing	—	
Panel	(a):	!F0 y( )=!N 0,1( ) ,	!F1 y( ) =!N 0,4( ) ,	!F2 y( ) =!N 0,16( ) ;	

Panel	(b):	!F0 y( )=!N 0,4( ) ,	!F1 y( ) =!N 1,0( ) 	
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Figure	10	
	

Net	Health	Benefit:	True	!Prλ h1 ≥h0( ) 	and	FLB	based	on	Marginals	!F0,λ h( ) 	and	!F1,λ h( ) 	
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Figure	11	
	

Demonstrating	Fréchet-Boole	Bounds	with	Three	Outcomes:	
Computation	of	!D01 	and	!D21with	 !! y0 ,y1 ,y2⎡⎣ ⎤⎦ ∼TVN µ ,V( ) 	(Parameters	Defined	in	Text)	
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Figure	12	
	

Lee	et	al.,	2016,	Relapse-Free	Survival	Time	Results	with	Censoring:	
Usual	Treatment=!F0 y( ) ,	Naltrexone=!F1 y( ) ,	and	Computation	of	!Y01 	and	!D01 	
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Table	1	
	

Binary	Outcomes	Bounds	on	!Pr y1 ≥ y0( )—	
Panel	(a):	General	Case;	Panel	(b):	Nivolumab	Example	Probability	Bounds	

	

	 !y0 	 Marginal	
Total	0	 1	

!y1 	
0	 !π00 	 !π10 	 !1− π1 	

1	 !π01 	 !π11 	 !π1 	

Marginal	Total	 !1− π0 	 !π0 	 1	

(a)	
	

Twelve-Month	Survival	
Docetaxel	(!qdoc )		 Marginal	

Total	Died	 Survived	

Nivolumab	
(!qniv )		

Died	 !π00 	 !π10 	 .49	

Survived	 !.12! ≤ !π01 ! ≤ !.51 	 !π11 	 .51	

Marginal	Total	 .61	 .39	 1	
(b)!! 	
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Table	2	
	

!D01 	and	!Pr y1 ≥ y0( ) 	for	Alternative	Mean	and	Correlation	Structures;	
 ! y0 ,y1( )∼BVN µ0 ,µ1;1,1,ρ( ) 	

	

		 !Pr y1 ≥ y0( ) 	for	ρ =	
!µ1 −µ0 	 !D01 	 -.9	 -.5	 0	 .5	 .9	

.5	 .20	 .60	 .61	 .64	 .69	 .87	

1	 .38	 .70	 .72	 .76	 .84	 .99	

2	 .68	 .85	 .88	 .92	 .98	 >.999	
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Table	3	
	

Three-Outcome	Case:	Fréchet	Bounds	and	Bounds	Based	on	!D01and	!D21 	
	

!!F y0,y1 ,y2( ) =MVN µ ,V( ) 	
ρ 	

-.25	 0	 .25	

Population	
Parameters	

!Pr y1 > y0( ) 		 .90	 .92	 .95	

!Pr y1 > y2( ) 	 .89	 .91	 .93	

!Pr y1 > y0!∧ !y1 > y2( ) 	 .81	 .85	 .89	

FLB	on	!Pr y1 > y0!∧ !y1 > y2( ) 	 .79	 .83	 .88	

FLB	on	FLB	using	!D01 ,	!D21 	 .39	
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Exhibit	1	
	

Using	Stata's		ksmirnov		to	Estimate	!D01 	and	!D10 ,	with	 !y0 ∼N 0,2( ) 	and	 !y1 ∼N .5,1( ) 		
		

 
. by g: sum y 
 
-------------------------------------------------------------------------
-----> g = 0 
 
    Variable |       Obs        Mean    Std. Dev.     Min        Max 
-------------+-------------------------------------------------------- 
           y |       500    .1139187    1.982952  -6.232434   6.283308 
 
-------------------------------------------------------------------------
-----> g = 1 
 
    Variable |       Obs        Mean    Std. Dev.     Min        Max 
-------------+-------------------------------------------------------- 
           y |       500    .4553814    1.035908  -2.470682   3.612597 
 
 
. ksmirnov y, by(g) 
 
Two-sample Kolmogorov-Smirnov test for equality of distribution functions 
 
 Smaller group       D       P-value  Corrected 
 ---------------------------------------------- 
 0:                  0.2240    0.000 
 1:                 -0.1200    0.001 
 Combined K-S:       0.2240    0.000      0.000 
 
. disp r(D_1) 
.224 
 
. disp r(D_2) 
-.12 
 

	
	




