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ABSTRACT

We examine inferences about old age mortality that arise when researchers use survey data 
matched to death records. We show that even small rates of failure to match respondents can lead 
to substantial bias in the measurement of mortality rates at older ages. This type of measurement 
error is consequential for three strands in the demographic literature: (1) the deceleration in 
mortality rates at old ages, (2) the black-white mortality crossover, and (3) the relatively low rate 
of old age mortality among Hispanics—often called the “Hispanic paradox.”  Using the National 
Longitudinal Survey of Older Men (NLS-OM) matched to death records in both the U.S. Vital 
Statistics system and the Social Security Death Index, we demonstrate that even small rates of 
missing mortality matching plausibly lead to an appearance of mortality deceleration when none 
exists, and can generate a spurious black-white mortality crossover.  We confirm these findings 
using data from the National Health Interview Survey (NHIS) matched to the U.S. Vital Statistics 
system, a dataset known as the “gold standard” (Cowper et al., 2002) for estimating age-specific 
mortality.  Moreover, with these data we show that the Hispanic paradox is also plausibly 
explained by a similar undercount.
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 “By my troth, I care not. A man can die but once. We owe God a death … and let it go 
 which way it will, he that dies this year is quit for the next.”  
 
   William Shakespeare, Henry IV Part 2, Act 3 Scene 2 
 
Introduction  

Both the scientific community and the general public have a deep interest in the 

processes that shape old age mortality. Many facets of old age mortality have elicited intense 

evaluation by scholars, including the following three topics:  

The first issue is perhaps the most compelling topic in the study of mortality—the 

plasticity of longevity. Life expectancy has increased in a remarkably linear manner since the 

1840s (Oeppen and Vaupel, 2002), naturally giving rise to a debate about the question: “Is 

there some built-in age limit to human life?” Relevant to this debate are studies that indicate a 

late-life mortality deceleration law—the empirical generalization that death rates level off at 

advanced ages, forming a late life mortality plateau.1  

A second widely studied phenomenon is the “black-white mortality crossover.” At 

younger ages, blacks have higher mortality rates than corresponding whites—a result that is 

unsurprising given racial differences in socioeconomic factors. But it appears that black 

mortality rates become lower than white mortality rates at older ages (Manton et al. 1979; 

Berkman et al. 1989; Dupre et al. 2006; Kestenbaum 1992; Lynch et al. 2003; Masters 2012).    

                                                           
1 This law was first quantified in 1939, when Greenwood and Irwin (1939) found that the one-year probability of 
death at advanced age asymptotically approaches a limit of 0.44 for women and 0.54 for men. Such a law suggests 
that there may be no fixed upper limit to human longevity, and thus no fixed maximal human lifespan (Thatcher et 
al., 1998; Gavrilov and Gavrilova, 2006). 
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Third, there is substantial interest in the empirical generalization that Hispanic and 

Latino Americans have mortality rates that are similar to, or lower than, their non-Hispanic 

white counterparts. This finding has been entitled the “Hispanic paradox” (Markides and Coreil, 

1986)—paradoxical given the socioeconomic differences between the two groups. 

Findings about racial and ethnic differences in mortality are so anomalous that some 

scholars have explored the possibility that the results are due primarily to “bad data” (e.g., 

Coale and Kisker, 1986; Preston et al., 1996; Preston et al., 1999; Preston and Elo, 2006; Lynch 

et al., 2003, Swallen and Guend, 2003; Rosenberg et al., 1999). Despite decades of work to 

identify and correct data issues, demographers have largely concluded that careful data 

correction mitigates, but does not eliminate, the black-white crossover and Hispanic paradox. 

These findings have motivated a host of theories on why Hispanic Americans generally, and 

older blacks specifically, appear to die at lower rates than corresponding non-Hispanic whites 

(e.g., Vaupel et al., 1979; Manton and Stallard, 1984; and Manton, et al., 1979; Wrigley-Field, 

2014; Abraido-Lanza et al., 1999; Shai and Rosenwaike, 1987). 

Our contribution to the study of old age mortality falls squarely in the “bad data” 

domain. We show that even a small amount of a particular data problem—which we denote 

the “Methuselah effect”—biases inferences about old age mortality in predictable ways. Our 

theoretical analysis shows that the Methuselah effect can create the appearance of the three 

phenomena we have just mentioned—mortality deceleration, the black-white crossover, and 

the Hispanic paradox—even when none exist. Empirical evaluation, using data from the 

National Longitudinal Survey of Older Men (NLS-OM) and National Health Interview Survey 

(NHIS), demonstrates that the Methuselah effect indeed operates as predicted by theory. 
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To see the issue at hand, consider a research design that relies on data structure such as 

the “gold standard” (Cowper et al., 2002) NHIS data matched to National Death Index (NDI). It is 

easy to see why these data earned the “gold standard” imprimatur. After all, the NHIS dataset is 

large and population-representative; it includes multiple birth cohorts; and it is constructed 

using administrative records, which are generally viewed as accurate. Even so, it is inevitable 

that for at least a few individuals who appear the base sample, there will be a failure to match 

the death to administrative death records. This form of measurement error creates the 

Methuselah effect, so named because it produces a set of respondents who appear to live 

forever. The Methuselah effect will typically create small biases to the measurement of 

mortality at relatively young ages, but the bias grows precipitously as the population ages. 

The intuition of the Methuselah effect is straightforward. Suppose that a respondent 

dies at age a, but the death is not matched to the base-sample respondent. This causes us to 

underestimate the numerator in our age a death rate—an inconsequential problem if such an 

occurrence is relatively rare. But then we will overestimate the denominator of the age specific 

mortality rate for all ages greater than a. As a cohort ages, the fraction of missing deaths rises 

relative to individuals who actually remain alive, and the Methuselah respondents inexorably 

come to dominate.2 Mortality estimates thus become progressively more downward-biased, 

leading mechanically to an inference of mortality rate deceleration. Moreover, if the failure-to-

match rate varies by some group characteristic, this form of measurement error will affect 

                                                           
2 One could imagine an error process operating predominantly in the other direction, if deaths are recorded that 
do not occur. This could be called the “Twain effect” (per Mark Twain’s suggestion that “the report of my death 
was an exaggeration”). The Twain effect would cause underestimation of the denominator in subsequent years. 
Here again, consequent error would progressively worsen as the cohort ages. Below we argue that this effect is not 
important in our application.  
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group comparisons of mortality. Methuselah error is thus potentially salient for studies of the 

black-white mortality crossover and the Hispanic paradox, because of racial and ethnic 

differences in failure-to-match rates (Lariscy, 2011; Hsu, 2012). 

 Our paper proceeds as follows: First, we briefly review relevant literature. To provide 

motivation, we note several theories of aging and race-based differences in mortality selection 

(e.g., physiological degeneration, vitality loss, and frailty). We also provide a brief overview of 

previous work on measurement error as it pertains to the study of old age mortality.  

Second, we provide a theoretical investigation of the biases introduced by the 

Methuselah effect—demonstrating how the Methuselah effect generates spurious mortality 

rate deceleration, and showing that even when mortality rates are higher for one sub-

population (e.g., black men) than a second sub-population (e.g., white men) at all ages, a 

mortality crossover can spuriously appear if the failure-to-match rate is higher for the first 

group than for the second.  

Finally, we explore the empirical relevance of our argument using two data sources. The 

first is the National Longitudinal Survey of Older Men (NLS-OM), a nationally representative 

survey of men born in the U.S., 1906-1921, which has recently been matched to death records 

in the U.S. Vital Statistics system and the Social Security Death Index. This is a remarkable 

dataset in that the matched dataset gives us three potentially useful death reports—two 

administrative reports on the date of death, and also the date of death reported in the survey 

(for the more than half of respondents who died during survey years). The survey occurred long 

enough ago that the sample can now be considered nearly an “extinct generation.” Our second 
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data source is the NHIS, match to administrative death records, primarily to the National Death 

Index (NDI), but also to Social Security and Medicaid and Medicare records.  

 Our empirical work shows that the Methuselah effect falsely creates the inference of 

mortality rate deceleration. Also, in both data sets we find that deaths are matched at higher 

rates for non-Hispanic whites than for blacks or non-black Hispanics. Failure to account for the 

resulting measurement error leads us to estimate a black-white mortality crossover at 

approximately age 85, whereas once we account for measurement error we find little evidence 

of a black-white crossover. Similarly, any evidence of a Hispanic mortality advantage disappears 

once we account for the Methuselah effect.   

The Current Literature on Old-age Mortality 

Mortality Deceleration 

Late-life mortality deceleration—a phenomenon in which mortality hazard rates tend to 

stabilize at advanced ages—is an empirical prospect that stands in contrast to a hazard that 

increases exponentially, as characterized by the Gompertz law. Mortality deceleration has been 

observed in insects, but is controversial in mammals (Gavrilov and Gavrilova, 2011). Gompertz 

(1825) first proposed late-life mortality deceleration in human aging and Greenwood and Irwin 

(1939) observed it in humans. Others disagree. For instance, Gavrilov and Gavrilova (2011) 

conclude that mortality deceleration is negligible up to the age of 106, and suggest that the 

Gompertz law provides a good fit.  

Gavrilov and Gavrilova (2011) suggest several factors that might contribute to a spurious 

finding of mortality deceleration, and in each instance when they adjust for the factor, the fit 

with the Gompertz law improves. First, old individuals may exaggerate their ages, which 
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reduces apparent mortality. Second, the use of discrete-time hazard estimation methods, 

rather than instantaneous hazard rate analysis, can be a problem. Third, issues arise when 

multiple birth cohorts are combined if those cohorts have differing age-specific mortality rates. 

Finally, the use of cross-sectional data, rather than cohort data, can lead to estimated 

deceleration. Gavrilov and Gavrilova (2011) show that there is no evidence of mortality 

deceleration in analyses that follow individual birth-year cohorts through extinction. 

Race-Based Mortality Crossovers 

 In the United States, a black-white mortality crossover has been found for both men and 

women in a number of studies (Arias, 2006; Johnson, 2000; Kestenbaum 1992; Lynch et al., 

2003; Parnell and Owens, 1999). In this crossover literature, mortality rates are found to be 

higher for blacks than for whites at younger ages, but are lower for blacks than whites at older 

ages. The crossover appeared, for instance, in the 1910 United States Life Tables, with the 

crossover occurring at age 79 for men and age 78 for women (Department of Commerce, 1921). 

The age of the mortality crossover now appears to be closer to age 85, and evidence suggests 

that the age of the crossover has been increasing across birth cohorts (Lynch, et al., 2003; 

Masters, 2012). As we have noted, there is disagreement among demographers on whether the 

crossover is the result of selection or bad data.  

 Beginning with the pioneering work of Vaupel et al. (1979), there has been widespread 

appreciation that population heterogeneity in the susceptibility to mortality (i.e., “frailty”) can 

lead to a surviving population being positively selected for survival (Manton and Stallard, 1981; 

Manton et al., 1984; Vaupel and Yashin, 1985; Nam, 1995; Lynch et al. 2003). Under this theory, 

individuals who survive to older ages are especially robust, as higher mortality across the life 



9 

 

course has culled those who are relatively frail. In the study of black-white differences, this 

theory postulates that since blacks have higher mortality rates than whites earlier in life, older 

blacks are more robust on average, potentially explaining why blacks have lower mortality rates 

than whites at old ages.  

 An alternative explanation emphasizes how poor data quality biases estimates of older 

age mortality rates (Coale and Kisker 1986; Preston and Elo, 2006; Preston et al., 1996; Preston 

et al., 1999). To date, the principal data quality issue investigated has been the tendency for 

individuals to overstate their age, especially at older ages. This phenomenon appears especially 

pervasive among black Americans (Preston and Elo, 2006). For example, Preston et al. (2003) 

match 2,990 death certificates for blacks aged 60+ in 1980-85 to corresponding census records 

from childhood, finding that only 45 percent of women and 51 percent of men had an age at 

death reported on the death certificate consistent with the recorded census age. An incomplete 

Vital Statistics system, especially in the South in the early 20th century, left many older black 

Americans without a birth certificate and hence a known age, likely contributing to the high 

levels of age misreporting among older black Americans. 

 Proponents of the frailty view point to several findings. First, some studies find that 

correcting for age misreporting changes the age of the mortality crossover but does not 

eliminate it (Preston and Elo, 2006; Lynch et. al 2003). Second, scholars who use survey data, 

like the NHIS matched to the NDI, argue that this mitigates the issue of age misreporting at old 

ages, as age is taken from a survey administered years before death (Eberstein, Nam and 

Heyman, 2008; Lynch et al. 2003). Third, there is evidence that the mortality crossover occurs in 

some causes of death, but not others. For example, Eberstein, et al. (2008) report a notable 
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crossover for deaths by heart disease but no evidence of a crossover for deaths by malignant 

neoplasms or by diabetes. This leads these authors to conclude, “Although age misreporting 

probably contributes to some of the discrepancy in age trends of mortality rates for whites and 

blacks (less so based on the NHIS-NDI dataset), it seems unlikely that it can be a major 

contributor to mortality crossovers. That would necessitate an age-misreporting pattern that 

varied by cause of death in a peculiar manner.” Finally, Masters (2012) suggests that adjusting 

for cohort of birth can eliminate the mortality crossover. This is consistent with the frailty point 

of view if differential mortality selection for blacks versus whites has been declining over the 

course of the 20th century (perhaps because of declining racial economic inequality). 

General Empirical Approaches to Estimating Mortality 

There is a vast literature on the estimation of mortality. The classic approach to the 

estimation of period age-specific mortality rates (ASMRs) entails estimation of two objects—

target population cell estimates (for the denominator) and corresponding estimates of deaths 

(for the numerator)—from two different data sources. This procedure is used, for example, in 

the construction of the United States Life Tables released by the National Vital Statistics 

Reports (e.g., Arias 2006). At most ages, population estimates are formed using census data, 

and mortality is estimated using data from the National Vital Statistics System, though at older 

ages (ages 85 to 99) estimation relies also on data from the insured Medicare population. 

There are well known concerns about the “two sample issue,” some of which are 

relevant to the black-white crossover and the Hispanic paradox. For example, in the study of 

mortality in the Hispanic population, a central concern is that individuals in household surveys 

record their own ethnicity, while in Vital Statistics data a proxy reports ethnicity (Swallen and 
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Guend, 2003). If Hispanics are occasionally misreported as non-Hispanic white in Vital Statistics 

data, this would elevate estimated ASMR for non-Hispanic whites while depressing them for 

Hispanics. As for the black-white crossover, the reporting of age at death by a proxy, combined 

with mortality rates that rise with age, can lead to an overstatement of age at death in Vital 

Statistics records (Coale and Kisker, 1986; Myers, 1978). For example, Preston, Elo, and Stewart 

(1999) show that even if age misreporting is symmetric, because mortality rises with age, a 

relatively larger fraction of individuals recorded in any 5-year age interval in the Vital Statistics 

will generally be younger than they appear.3  

A potential solution to the “two sample issue” is to estimate mortality rates from a 

single prospective study in which age is recorded when respondents are young, and 

respondents are followed until death. If race and ethnicity are reported in the prospective 

study, no reassessment is needed at death. A further potential advantage of prospective 

studies is that the documentation of date of death can often be directly established from 

respondents’ “contacts,” typically family members who help data collection agencies track the 

respondents’ whereabouts.4 

More generally, deaths of respondents in the base study are often recorded by linking 

prospective survey data to subsequent mortality records, e.g., records in the National Death 

Index (NDI), which are thought to be highly accurate.  The NHIS-NDI data are an example. As we 

have noted, researchers such as Cowper, et al. (2002) have highlighted the high quality of these 

                                                           
3 Preston, Elo, and Stewart (1999) show that when age is recorded in single years earlier in life (instead of 5-year 
intervals) this virtually eliminates biases in ASMR from age misreporting. 
4 Yet another advantage of this approach is that longitudinal surveys often collect data on family and other 
contextual variables, which then allows researchers to assess relationships between early-life factors and 
subsequent mortality. 
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data. Even so, concerns have been raised about the extent to which mortality estimates might 

be affected by the match quality between the data sources (Patel, et al., 2004). Matching is 

done on the basis of multiple factors, including Social Security number, first and last name, 

middle initial, date of birth, and other factors. The best match is determined by a probabilistic 

“match score” which sums a set of weights assigned to each of the items on which records are 

matched; there is no guarantee of complete match accuracy.  

Lariscy (2011) investigates how match quality between the NDI and the 1989-2006 NHIS 

affects inference about mortality differences between Hispanics and non-Hispanic whites. He 

has two central findings: First, the quality of matches is poorer for Hispanic Americans than for 

non-Hispanic white Americans. Second, inferences about the Hispanic paradox depend on the 

cut-off criteria used in the “match score” when determining the acceptability of a data match. 

For example, for foreign-born Hispanics, relaxing and tightening the NCHS-recommended cut-

point for match acceptance results in substantial changes to mortality risk relative to U.S.-born 

non-Hispanic whites. Lariscy (2011) also finds that among the oldest individuals, foreign-born 

Hispanics are less likely to die during follow-up than U.S.-born non-Hispanic whites, regardless 

of the matching standard he applies. 

 Our work is very much in the spirit of Lariscy (2011). We proceed, first of all, with a 

theoretical investigation of measurement error induced by the failure to match death records. 

We then turn to an empirical evaluation using NLS-OM data and NHIS data, in both cases 

matched to administrative death records. 

Estimation of Mortality in Longitudinal Studies—A Theoretical Analysis 

A Single Population 
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 Suppose we have an initial sample of 𝑁0 individuals. At any subsequent time 𝑡, the 

sample is divided into the stock of survivors, 𝑁𝑡, and the stock of accumulated deaths, 𝐷𝑡 , 

𝑁𝑡 + 𝐷𝑡 = 𝑁0.      (1) 

The stock of accumulated deaths evolves by  

   𝑑𝑡 = 𝐷𝑡 − 𝐷𝑡−1,        (2) 

where 𝑑𝑡 denotes time 𝑡 deaths. The stock of survivors declines by  

𝑁𝑡 = 𝑁𝑡−1 − 𝑑𝑡−1.                                                      (3) 

Researchers often wish to estimate the hazard rate, which is simply 

ℎ𝑡 =
𝑑𝑡

𝑁𝑡−1
 .                      (4) 

 Assume that difficulties in matching sample respondents to administrative data result in 

a probability 𝛼 of missing a death. We divide deaths into two groups, those that are observed, 

𝑑𝑡
𝑜 , and those that are unobserved, 𝑑𝑡

𝑢, while assuming that all matched deaths are indeed 

deaths: 

𝑑𝑡 = 𝑑𝑡
𝑜 + 𝑑𝑡

𝑢.                                   (5) 

The realized proportion of unobserved deaths is 𝛼𝑡
𝑑 = 𝑑𝑡

𝑢 𝑑𝑡 ,⁄  with 𝐸(𝛼𝑡
𝑑) =  𝛼. We can 

similarly divide the stock of accumulated deaths between observed deaths, 𝐷𝑡
𝑜 = ∑ 𝑑𝑠

𝑜 ,𝑡
𝑠=1  and 

unobserved deaths, 𝐷𝑡
𝑢 = ∑ 𝑑𝑠

𝑢,𝑡
𝑠=1  where of course 

𝐷𝑡
𝑜 + 𝐷𝑡

𝑢 = 𝐷𝑡.         (6) 

The realized proportion of unobserved accumulated deaths is 𝛼𝑡
𝐷 = 𝐷𝑡

𝑢 𝐷𝑡 ,⁄  again with 

𝐸(𝛼𝑡
𝐷) =  𝛼.   

The observed hazard ℎ𝑡
𝑜 , the ratio of time 𝑡 deaths and time 𝑡 − 1 observed survivors, 

can be written 
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ℎ𝑡
𝑜 =  

(1−𝛼𝑡
𝑑)𝑑𝑡

𝑁𝑡−1
𝑜 =

(1−𝛼𝑡
𝑑)𝑑𝑡

𝑁𝑡−1+𝛼𝑡−1
𝐷 𝐷𝑡−1

=
𝑑𝑡

𝑁𝑡−1+𝛼𝑡−1
𝐷 𝐷𝑡−1

−
𝛼𝑡

𝑑𝑑𝑡

𝑁𝑡−1+𝛼𝑡−1
𝐷 𝐷𝑡−1

.                   (7) 

The first term of the far right-hand side of equation (7) is smaller than ℎ𝑡 if there have been any 

missing deaths matches prior to time 𝑡. The second term further reduces the observed hazard 

rate if there is at least one missing death in the current period. Hence, as argued in Hsu (2012), 

this type of measurement error results in an underestimation of the hazard rate, and it does so 

in a way that grows over time. In particular, as a cohort becomes aged, the stock of 

accumulated deaths, 𝐷𝑡−1, grows, which means that the denominator in (7) increasingly 

diverges from the true number of survivors, 𝑁𝑡−1. As a mechanical matter, then, the observed 

hazard shows spurious deceleration.    

 We have a final observation: The measurement error results in an underestimation of 

the standard error. Because the hazard rate is the result of 𝑁𝑡−1Bernoulli trials—the survivors 

either die or they do not—the standard error of the hazard rate is  

𝑆𝐸(ℎ𝑡) =
ℎ𝑡(1−ℎ𝑡)

√𝑁𝑡−1
.                     (8) 

This standard error is increasing in the hazard rate up to ℎ𝑡 = 0.5, and is decreasing in 𝑁𝑡−1. 

Thus, as long as the hazard rate is below 0.5, the measurement error will incorrectly reduce our 

estimate of the standard error of the hazard rate, because 𝑁𝑡−1
𝑜 > 𝑁𝑡−1 and ℎ𝑡 > ℎ𝑡

𝑜 .  Our 

measurement error, therefore, typically leads to an overstatement of the precision of our 

hazard rate. 

Comparing Mortality across Populations  

Now suppose we have two populations, and we want to compare the probability of 

death between these groups. Equation (7) helps us examine how our measurement error 
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affects inferences about differences in the probability of death. Below, we present evidence 

that the rate of missing matches for black Americans, 𝛼𝑏 , is greater than for white Americans, 

𝛼𝑤, i.e., 𝛼𝑏 > 𝛼𝑤. Researchers wish to estimate the difference in the hazard rates, ℎ𝑡,𝑏 −  ℎ𝑡,𝑤, 

but instead typically estimate the difference in observed rates, ℎ𝑡,𝑏
𝑜 − ℎ𝑡,𝑤

𝑜 , which, using (7), is 

  [
𝑑𝑡,𝑏

𝑁𝑡−1,𝑏+𝛼𝑡−1,𝑏
𝐷 𝐷𝑡−1,𝑏

−
𝛼𝑡,𝑏

𝑑 𝑑𝑡,𝑏

𝑁𝑡−1,𝑏+𝛼𝑡−1,𝑏
𝐷 𝐷𝑡−1,𝑏

] − [
𝑑𝑡,𝑤

𝑁𝑡−1,𝑤+𝛼𝑡−1,𝑤
𝐷 𝐷𝑡−1,𝑤

−
𝛼𝑡,𝑤

𝑑 𝑑𝑡,𝑤

𝑁𝑡−1,𝑤+𝛼𝑡−1,𝑤
𝐷 𝐷𝑡−1,𝑤

].     (9) 

The observed difference understates the true difference when 𝛼𝑡,𝑏
𝑑 > 𝛼𝑡,𝑤

𝑑  and 𝛼𝑡,𝑏
𝐷 > 𝛼𝑡,𝑤

𝐷 , 

which is likely, given 𝛼𝑏 > 𝛼𝑤. Also, using logic from (8), the estimated standard error of the 

differences will typically be understated. 

 Figure 1 illustrates via simulation. In Panel A we have two populations—one with a 40% 

higher mortality rate at every age. We introduce Methuselah error to the high-mortality group, 

at rates of 1%, 5%, 10%, and 15%, in each case generating a spurious crossover. The age of the 

crossover is decreasing in the error rate. In Panel B we introduce a 4.2% match error rate in the 

higher-mortality group and a 1.8% error rate in the low mortality group, choosing these rates 

because they correspond to the lowest error rates we find, respectively, for blacks and whites 

in the NLS-OM data discussed below. Again, we observe a spurious crossover. 

 Our results are potentially germane to both the black-white mortality crossover and to 

the Hispanic paradox, given that death matching accuracy rates are higher for non-Hispanic 

whites than Hispanics and blacks, as we show below. 

Measuring Death in Two Datasets 

Missing Deaths in the National Longitudinal Survey – Older Men Cohort 

 Our empirical analysis proceeds with the Older Men Cohort of the National Longitudinal 

Survey (NLS-OM) data. This is a nationally representative survey of men, initiated in 1966, 
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largely of men in the 1906 to 1921 birth cohorts. As of 1990, the Census Bureau, which 

conducted the interview for the Older Men’s Cohort, reported that 2,660 of the 5,020 men 

were deceased, which we refer to as the “survey” report. Given concerns some deaths may 

have been missed in the data collection process, in 1990 the Census attempted to match 

respondents to their Vital Statistics death certificate records. The match was possible because 

the Bureau had respondents’ names, date of birth, and Social Security numbers. This was a 

painstaking undertaking; given resources available at the time, there was a “hand-match” in 

which Bureau employees attempted to directly match respondents to their death records. This 

gives researchers two possible reports of a death by 1990. As we discuss below, the Vital 

Statistics 1990 match (the “VS90 match”) matched only 2,083 of the 2,660 deaths. 

 Our research team was interested in updating the mortality records in this cohort, and 

so we contracted with the Census Bureau to match the respondents with their death 

certificates through 2008, using Vital Statistics records, giving us deaths through the age of 102 

years for the 1906 birth cohort (the oldest cohort) and through the age of 87 for the 1921 birth 

cohort (the youngest cohort). This new match was done electronically, and we expect 

computers to be better at matching than humans. Our match, the “VS08 match,” yielded 2,749 

deaths as of 1990—666 more than the VS90 match and 89 more than the survey report.   

In addition, the Census Bureau matched the Older Men cohort to the Social Security 

Administration (SSA) Death Index file, which recorded deaths through the end of 2012.5  

                                                           
5 Readers may wonder why the Vital Statistics match used data through 2008 while the SSA Death Index is through 
2012. While we informally refer to the Census Bureau as matching on the respondent’s Social Security number, 
this is true only in an indirect sense. The Bureau matches on a Personal Identification Key (PIK), which is a number 
that has a one-to-one match with the respondent’s Social Security number, to protect the confidentiality of 
respondents. All files used for matching must, therefore, contain this unique PIK for matching, a process known as 
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Through 1990, the SSA report (“the SSA12 match”) produced 2,407 deaths. The SSA12 match 

has 324 more deaths than the VS90 match, but it is 253 short of the survey report and 342 

short of the VS08 match. These reports are broken out by the race and ethnicity of the 

respondents in Table 1. We believe that this table represents compelling evidence that the 

VS08 match and the survey report are the highest quality. The VS90 match clearly failed to 

identify numerous deaths that appear in the other three sources, which is hardly surprising 

given it was a hand match. The SSA12 match also caught fewer deaths than either the survey 

report or VS08 match. As we wish to measure deaths up to 90 years of age, we focus on the 

VS08 match. 

 Because survey houses are reluctant to accept a report of a death without 

documentation,6 it is reasonable to believe that there is a very low rate of “false positives.” This 

suggests we may evaluate the quality of the administrative data matches by comparing rates of 

missing matches when there are death reports in the survey. We pursue this strategy in Table 2. 

Here we see high rates of likely “false negatives”—a failure to match when in all likelihood a 

death has occurred—for both the VS90 and SSA12 matches. The error rate for the VS08 match 

is an order of magnitude smaller, but is still non-negligible, in the 2 to 4 percent range. 

Moreover, there are racial and ethnic differential in errors from all matches. It appears that 

black respondents are harder to match to death records than are non-black respondents in the 

NLS-OM.  

                                                           
“being PIKed.” At the time of our match, the most recent PIKed file from Vital Statistics was through 2008, while 
the files from SSA were through 2012. 
6 For instance, in collecting data for the current NLS cohorts, the NLSY 1979 and NLSY 1997 cohorts, NORC requires 
interviewers’ proxies to provide either an obituary or a death certificate before recording a death.  
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 Finally, we are interested in understanding who is failing to be matched in each of the 

respective reports. We examine the age of death as recorded in the survey. If there was no 

death recorded in the VS08 match, individuals were on average 59.3 years of age at death, but 

if there was a death recorded in the VS08 match, individuals were instead 67.3 years of age (t-

test p-value < 0.01). We find similar results for the SSA12 matches: Those who were not 

matched were on average 63.9 years old at death, but those who were matched averaged 67.7 

years old at death (t-test p-value < 0.01). These results suggest that failures to match are 

occurring disproportionately at earlier ages. Such failures to match make particular sense for 

the SSA12 match, as most individuals did not start to receive Social Security benefits until age 

65 (unless they take early retirement at 62). 

Black-White Mortality Crossovers in the NLS-OM 

 Using our matched NLS data, we can compare age-specific hazard curves for blacks and 

non-Hispanic whites for ages 60 and above. Because our NLS sample has few individuals who 

identify as non-black Hispanic, for the remainder of our analysis of NLS data, we focus only on 

blacks and non-Hispanic whites. We thus begin our analysis by eliminating all cases of 

individuals who do not fall into these demographic groups. We next eliminate the 326 

individuals who died before reaching the age of 59 (the oldest cohort in 1966). We also drop 

three individuals who have a missing age of death in the VS08. We then estimate separate 

hazard rates for non-blacks and blacks.  We estimate the nonparametric probability of dying in 

age (a) and race (r):  

𝑑𝑖,𝑎,𝑟 = 𝜏𝑎,𝑟 + 𝜀𝑖,𝑎,𝑟          (10) 

where 𝜏𝑎,𝑟 is the age/race specific hazard rate. 
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In the top panel of Figure 2 we plot the hazard curves using the SSA12 match. We 

provide nonparametric estimates of the black-white gap in hazard rates in Panel A of Table 3. 

Consistent with numerous previous studies, we find a black-white mortality crossover; it occurs 

at age 76 and becomes statistically significantly at age 80. Of course, from our analysis above 

we know the SSA12 match misses a substantial fraction of death reports, and we know also that 

the fraction missed is relatively higher for black respondents. Given our theoretical arguments, 

we have concerns that the observed crossover could be a consequence of measurement error. 

In the bottom panel of Figure 2 we instead use the VS08 death reports to estimate the 

hazard curves, and we again show the corresponding nonparametric estimates in Table 3. With 

these data, which have fewer false negatives, the estimated black-white crossover occurs at age 

83, and this gap is not statistically significant at any age above 83. The improvement in the data 

quality has a significant effect not only on the absolute levels of estimated mortality, but also 

on inferences about the black-white gap. As we have already seen (Figure 1), though, even the 

low error rates of the VS08 matching (which are correlated with race/ethnicity) can generate a 

spurious mortality crossover. We return to this issue in our model-based analysis below.  

Missing Deaths in the National Health Interview Survey (NHIS) 

We next study mortality using the National Health Interview Survey (NHIS), accessed 

through the Integrated Heath Interview Series at the University of Minnesota (MPC, 2016). We 

have noted that these data have been referenced as the “gold standard” for the study of 

mortality rates (Cowper et al., 2002). We select respondents from the 1986 to 1989 surveys 

who were at least 85 years old at the time of the interview. As a part of the NHIS, the National 

Center for Health Statistics matched participants who were at least 18 years old at the time of 
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the interview to death records, primarily to the National Death Index but also to the Social 

Security and Medicaid and Medicare records. See NCHS (2013) for a description. The NCHS 

matched respondents to their death records through 2011. 

 Our sample is comprised of 3,736 individuals. As expected from this sample of older 

individuals, it is mostly female, nearly 68 percent. There are 80 Hispanics and 420 blacks.  We 

begin our analysis by estimating the nonparametric probability of death by age group for non-

Hispanic whites and blacks. Because there are only 80 Hispanics, we do not attempt to estimate 

the probability of death for this group. In the 1980s the public use files of the NHIS top code age 

at 99 so we drop the 44 cases with a reported age of 99 in 1986-1989. This results in an analysis 

sample of 409 blacks and 3,203 non-Hispanic whites.   

 In Figure 3, we report surprising results. The mortality hazard rates of both blacks and 

non-Hispanic whites increase until the age of 100, but then experience a decline from ages 101 

to 105 (the oldest age we analyze). By way of comparison, we plot the probability of death by 

age from the 2013 Social Security Life Tables for Females. Because 30 percent of our sample is 

male and this group is from older cohorts, we expect the SSA estimates to be a lower bound for 

our estimates, but they diverge after about age 94. Moreover, our estimated age profiles, 

which feature clear mortality deceleration, look suspiciously like our simulations of the 

Methuselah effect (Figure 1). 

 To ascertain whether the type of measurement error we document in the NLS Old Men 

cohort also afflicts the NHIS study, we pursue a new strategy based on the “extinct generation” 

argument (Kannisto, 1994), using the full sample of 3,736 individuals. Because our sample has a 

minimum age of 85 in 1989, by 2011 the minimum-aged individual in our sample is 106. Almost 
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everyone in these cohorts should be deceased. To estimate the number of people who should 

likely have survived through year 2011, we calculate the expected number of survivors from the 

2013 Social Security Life Tables for Females. We expect 5.3 non-Hispanic whites to survive, 0.69 

blacks to survive, and 0.13 non-black Hispanics to survive (see Table 4). These estimates are 

optimistic for two reasons.  First, 30 percent of our sample is male, and males have higher 

mortality. Second, the 2013 Life Tables use data from younger cohorts and there has been a 

secular decline in mortality. 

 We present results in Table 4. Rather than the 5.3 whites we expect from the Life 

Tables, we have 216 non-Hispanic whites. Similarly, for blacks we have 45 respondents, rather 

than the estimated 0.69. Finally, for non-black Hispanics, we have 15 “survivors” rather than 

the expected 0.13. Clearly, many individuals died but had unreported deaths. Importantly, the 

rates of this Methuselah effect vary by race/ethnicity. Among non-Hispanic whites the apparent 

“survivor rate” to age 106 is 6.7 percent; among blacks it is 10.7 percent; and among non-black 

Hispanics 18.8 percent survive.  

Estimating Parametric Models of Mortality in the Presence of Matching Error 

An Econometric Strategy 

 As our theory and simulations show, accounting for matching error is essential to the 

accurate estimation of the hazard rate of mortality at older ages. We have also seen that in the 

NLS-OM and NHIS-NDI data matches, these errors are consequential. We proceed with a simple 

empirical model designed to allow for the type of matching error we have described. Here we 

do not strive to find the best model of matching error; rather our intent is to demonstrate that 
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even simple models of matching error can profoundly affect estimated old-age mortality 

profiles. Our model provides insight and demonstrates a potential empirical way forward.  

 Our basic approach, which estimates the age specific hazard rate using discrete time 

methods, has a long track record in demography (Allison, 1982). Allison suggests reformatting 

the data so that individuals have an observation for each time period in which they are at risk, 

and then parameterizing the hazard as a logistic model. As Allison discusses, and demonstrates 

empirically, this model is not the exact equivalent of a proportional hazard model, but in 

practice the difference between the two models is likely to be trivial, and the logistic model 

converges to the proportional hazard model as the time interval becomes small. 

Suppose we have a sample of 𝑛 individuals, who enter the sample at age 𝐴𝑖
0and are last 

observed at age 𝐴𝑖
𝑇 . Some individuals exit due to death, in which case a death indicator variable 

𝐷𝑖  is set to one. Others survive when last observed in the sample, in which case 𝐷𝑖 = 0. In the 

absence of missing death records, the likelihood takes the familiar form, 

𝐿 = ∏ {ℎ𝐴𝑖
𝑇 ∏ (1 − ℎ𝑎)

𝐴𝑖
𝑇−1

𝑎=𝐴𝑖
0 }

𝐷𝑖

×𝑛
𝑖=1 ∏ {∏ (1 − ℎ𝑎) 

𝐴𝑖
𝑇

𝑎=𝐴𝑖
0 }

(1−𝐷𝑖)
𝑛
𝑖=1 ,                   (13) 

where ℎ𝑎 is the hazard rate. 

 Our innovation is to modify the likelihood function to account for missing death record 

matches, i.e., Methuselah cases. We work with the case in which the probability of missing a 

death is constant across ages; generalizations to more complex cases are possible. Suppose the 

probability of missing a death is 𝛼. In this case “observed survivors” are a mixture of “true 

survivors” and Methuselah cases. Similarly, “observed deaths” encompass only a fraction of 

“true deaths.”    
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 We begin by calculating the probability that an observed survivor is a Methuselah case. 

First, let  

𝑆𝐴𝑖
𝑇 = ∏ (1 − ℎ𝑎)

𝐴𝑖
𝑇

𝑎=𝐴𝑖
0      (14) 

be the probability of being a true survivor. Second, note that the expected value of being a 

Methuselah case is just 𝛼 times the probability that an individual has actually died, 

𝛼 (1 − 𝑆𝐴𝑖
𝑇).      (15) 

Then the probability of being an observed survivor is given by the sum of (14) and (15), 

𝑆
𝐴𝑖

𝑇
0 = 𝑆𝐴𝑖

𝑇 +  𝛼 (1 − 𝑆𝐴𝑖
𝑇) =  𝛼 + (1 −  𝛼)𝑆𝐴𝑖

𝑇.   (16) 

  Next, we expect to observe (1 − 𝛼) of all deaths; the probability of being an observed 

death is 

(1 − 𝑆
𝐴𝑖

𝑇
0 ) =  (1 − 𝛼) (1 − 𝑆𝐴𝑖

𝑇).    (17) 

With all this in mind, we substitute (14) into (16) and (17), and use these in our likelihood 

function, which gives 

 𝐿 = ∏ {(1 − 𝛼)ℎ𝐴𝑖
𝑇 ∏ (1 − ℎ𝑎)

𝐴𝑖
𝑇−1

𝑎=𝐴𝑖
0 }

𝐷𝑖

×𝑛
𝑖=1 ∏ {𝛼 + (1 − 𝛼) ∏ (1 − ℎ𝑎) 

𝐴𝑖
𝑇

𝑎=𝐴𝑖
0 }

(1−𝐷𝑖)
𝑛
𝑖=1 .    (18) 

When 𝛼 = 0, this expression of course simplifies to the standard likelihood function (13).  

 To implement our estimator, we use Allison’s (1982) familiar logistic form, setting ℎ𝑎 to 

be a function of such covariates as age, race, and (where applicable) Hispanic ethnicity.  

 There are two ways to estimate our model. First, we can pick parameters to minimize 

the logarithm of the likelihood function (18). Second, a simpler alternative is possible if age 𝐴𝑖
𝑇is 

large enough for all observations. In this latter case, every apparent survivor is a Methuselah 
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case. Thus we can simply remove these records, and then set 𝛼 = 0 for the remaining records, 

i.e., simply estimate a logistic regression on records that have a recorded death. This is a variant 

of the “extinct generation estimator” first used, according to Preston, Heuveline, and Guillot 

(2001), by Vincent (1951). An extinct generation approach has appears in a number of 

subsequent students, including, e.g., Gavrilov and Gavrilova (2011).  

Results 

 We first implement our econometric strategy with men in the NLS-OM cohort (who 

were aged 52 to 59 in 1966). We estimate the model for non-Hispanic white men, because this 

is the largest of our demographic groups. We use the SSA12 match, because that version of the 

data has the most acute problem with Methuselah error, and thus it presents us with the most 

difficult inference problem.7 As reported in Table 2, Methuselah error is on the order of 11% for 

the non-Hispanic white men in the sample. We estimate model (18), using a baseline hazard 

that is quadratic in age. As a technical matter, when setting up the maximization routine, we 

implement a standard strategy that insures that the matching error rate is between 0 and 1.8 

 In the public release of the data, all observed deaths are recorded, but the age of death 

is top-coded at 90 (i.e., the age of death is provided only among those dying at age 89 or 

younger). By 2012, individuals in the cohort are aged 98 to 105, at which age nearly all men 

have likely died, so it is reasonable to also implement our extinct generation estimation 

procedure.  

                                                           
7 We also estimated the measurement model with the VS08 match, and it performed equally well with those data.  
8 Programs are available from the authors. Our procedure for limiting the measurement error to be between 0 and 
1 entails the use of a logistic error model, specifying error to be 𝛼 = 𝑒𝛾 (1 + 𝑒𝛾)⁄ , then allowing 𝛾 to differ for 
whites and blacks.  
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 Using the measurement error (ME) model (18), we estimate 𝛼 to be 0.105. This is very 

close to the error that we calculated directly, as reported in Table 2. The clearest way to 

illustrate the hazard estimates is using plots. Figure 4 plots hazard curves for the ME model and 

the extinct generation model, and also for the naïve logit model, which makes no correction for 

Methuselah error. As expected, the ME model and extinct generation model give very similar 

inferences, and estimated mortality is substantially higher once we correct for Methuselah 

error. It is notable that the extinct generation approach yields estimates that are more precise 

than with the ME model; this is sensible since that model makes assumptions that are more 

restrictive.9   

  We next apply our empirical methods to the NHIS-NDI data. These data have a number 

of advantages in comparison to the NLS-OM data. First, the dataset is much larger than the NLS-

OM dataset, so we can proceed with a model that estimates mortality separately for non-

Hispanic white, black, and Hispanic samples.10 More importantly, we can evaluate mortality 

post age 90 because the data are not top-coded. Finally, this exercise is important given that 

these data are often used to estimate mortality models. 

 To maintain comparison with the NLS-OM, we focus on men in birth cohorts 1907 

through 1914 who appear in the 1986-1999 NHIS. These are men who were aged 72 to 92 in 

these years of the NHIS. Our hazard estimation now begins at age 72, the youngest age we 

observe the 1907 to 1914 cohort in the NHIS, and continues through age 105, the oldest 

potential age in 2012, which is the last year available to us in the NHIS data. We estimate a logit 

                                                           
9 Specifically, the extinct generation approach stipulates that all missing deaths are Methuselah error, while the 
ME model estimates the rate of Methuselah error. 
10 The number of person years in our NHIS-NDI analysis is 119,007. 
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model with a baseline hazard that is quadratic in age and fully interacted with race/ethnicity 

indicator variables. 

 We report results in Table 5. We estimate non-negligible Methuselah error rates for all 

groups. It is lowest for non-Hispanic whites, higher for blacks, and higher yet for Hispanics. 

Using estimates of Methuselah error rates, along with the fraction of the sample for which a 

death was not observed in the NHIS data match, we can calculate the fraction of deaths that 

were not observed because of matching error. For whites, the fraction of observations for 

which a death was not recorded in the 2012 match is 0.0488; because our estimated 

Methuselah error rate is 0.037, this suggests that 76% (0.037/0.0488) of observed surviving 

whites are Methuselah cases. For blacks the fraction of individuals for whom a death was not 

recorded is 0.0792, suggesting that 90% of observed surviving blacks are Methuselah cases. 

Finally, among Hispanics the fraction of individuals for whom a death was not recorded is 

0.1192, suggesting that 92% of observed Hispanic survivors are Methuselah cases. 

 We observe that for each racial/ethnic group, the estimated coefficient on age squared 

is close to zero. There is no evidence of mortality deceleration.  

 In Figure 5 we plot our estimated hazard curves, and of course we are interested in 

learning how our inferences differ from the naïve approach. Thus Panel A of Figure 5 displays 

the hazard rates for blacks vs. non-Hispanic whites—first with the naïve logit model and then 

with our Matching Error model. In the NHIS cohorts, a naïve model (which does not adjust for 

matching error) shows a black-white mortality crossover at approximately age 85. A very 

different pattern appears when we correct for matching error. At no age is the estimated 

mortality hazard lower for blacks than for whites. In Panel B the naïve analysis shows Hispanic 



27 

 

men having a mortality advantage, especially at older ages. However, no statistically significant 

differences between Hispanic and non-Hispanic white mortality rates are found once we 

correct for differential measurement error. It appears that in these data both the black-white 

crossover and the Hispanic paradox are due entirely to the Methuselah effect.  

Concluding Remarks   

 The study of old age mortality holds an important place in demography. Observed 

statistical patterns have motivated a large literature that explores plausible biological 

mechanisms that underlie human aging. Among the key issues that have occupied scholarly 

attention are the following: Do we see mortality rate deceleration in old age? Is there a black-

white mortality crossover, with blacks having lower mortality at advanced ages? Is there a 

paradoxical Hispanic advantage in mortality? 

 We explore these issues using data from two studies, the NLS-OM and NHIS, both of 

which have been matched to administrative death records. Our key contribution is a careful 

analysis of a pernicious form of measurement error—the failure to record some deaths. We 

show that in both data sources there is a non-negligible amount of such measurement error, 

and we show that error rates differ by race and ethnicity. Failure to recognize the error, and 

correct for it, could lead us to believe in mortality rate deceleration, the black-white mortality 

crossover, and the Hispanic paradox. Correction for the error reverses all of these inferences. 

 We recognize that other studies, especially those on animal populations, do not rely on 

data matching, and there is evidence of mortality deceleration in non-human populations. 

Having said that, our analysis leads us to be skeptical of evidence about deceleration in the 
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mortality of humans.11  Similarly, black-white differences in match rates seem to be a natural 

feature of data that demographers often work with, and we have seen that a logical 

consequence of this error structure is to generate a spurious black-white mortality crossover. 

Similar logic pertains to the Hispanic paradox. 

 While we have made some progress in addressing the Methuselah effect, there are 

substantial issues we have not resolved. Our model is very simple; we assume that the only 

systematic factor affecting error is racial/ethnic group. It is likely that improvements in the Vital 

Statistics system mean that matching error varies also by birth cohort. It is also plausible that 

matching error may be a function of age at death, because data matching for deaths at unusual 

ages may be easier than matches at common ages. Our analytical structure could be adapted to 

account for these features.    

In addition, we have not dealt with an alternative source of relevant measurement 

error—the misreporting of age. In the NLS-OM and the NHIS-NDI, age misreporting is probably 

not as common as in other data, because age was collected from individuals themselves, 

typically many years before death (Eberstein et al., 2008; Lynch et al., 2003). Nonetheless, some 

failure-to match may be due to age misreporting in the survey or death records. If such errors 

depend only on race/ethnicity, the extinct generation variant of our model deals properly with 

the problem (because the approach simply drops these cases), but more complex cases are 

possible. If the age-misreporting process can be systematically modeled by demographers, 

perhaps methods we develop here can be adapted to reduce biases in a more general setting.   

                                                           
11 Biological models that allow for mortality deceleration in drosophila and other non-primates may be quite 
different than the human biology of aging. Older theories, such as those that posit limits to cell replication should 
perhaps be reconsidered. 
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A great deal more work lies ahead for demographers interested in the accurate 

assessment of mortality at older ages. 

  



30 

 

REFERENCES 

Abraido-Lanza, A. F., Dohrenwend, B. P., Ng-Mak, D. S., & Turner, J. B. (1999). The Latino 
mortality paradox: a test of the “salmon bias” and healthy migrant hypotheses. 
American Journal of Public Health, 89 (10), 1543-1548. 

 
Allison, P. D. (1982). Discrete time methods for the analysis of event histories. Sociological 

Methodology, 13, 61-98. 
 
Arias, E. (2006). United States life tables, 2003. National vital statistics reports, 54 (14), 1-40. 
 
Berkman, L., Singer, B., & Manton, K. (1989). Black/white differences in health status and 

mortality among the elderly. Demography, 26(4), 661-678. 
 
Coale, A. J., & Kisker, E. E. (1986). Mortality crossovers: reality or bad data? Population Studies, 

40(3), 389-401. 
 
Cowper, D. C., Kubal, J. D., Maynard, C., & Hynes, D. M. (2002). A primer and comparative 

review of major U.S. mortality databases. Annals of Epidemiology, 12, 462-468. 
 
Department of Commerce, Bureau of the Census. (1921). United States Life Tables: 1890, 1901, 

1910, and 1901-1910. Washington, DC: U.S. Government Printing Office. 
 
Dupre, M. E., Franzese, A. T., & Parrado, E. A. (2006). Religious attendance and mortality: 

Implications for the black-white mortality crossover. Demography, 43(1), 141-164. 
 
Eberstein, I. W., Nam, C. B., & Heyman, K. M. (2008). Causes of death and mortality crossovers 

by race. Biodemography and Social Biology, 54(2), 214-228. 
 
Gavrilov, L. A., & Gavrilova, N. S. (2006). Reliability theory of aging and longevity. In E. J. Masoro 

& S. N. Austad (Eds.), Handbook of the Biology of Aging (pp. 3-42). Burlington, MA: 
Academic Press. 

 
Gavrilov, L. A., & Gavrilova, N. S. (2011). Mortality measurement at advanced ages: a study of 

the Social Security Administration Death Master File. North American Actuarial Journal, 
15 (3), 432-447. 

 
Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality 

and on a new mode determining the value of life contingencies. Philosophical 
Transactions of the Royal Society A, 115, 513-583. 

 
Greenwood, M., & Irwin, J. O. (1939). The biostatics of senility. Human Biology, 11, 1-23. 
 



31 

 

Hsu, Y.-C. (2012). Three essays on measurement and evaluation of mortality (Unpublished Ph.D. 
dissertation). Heinz College, Carnegie Mellon University, Pittsburgh, PA. 

 
Johnson, N. (2000). The racial crossover in comorbidity, disability, and mortality. Demography, 

37, 267-283. 
 
Kannisto, V. (1994). Development of oldest old mortality, 1950-1990: Evidence from 28 

developed countries. Odense, Denmark: Odense University Press. 
 
Kestenbaum, B. (1992). A description of the extreme aged population based on improved 

Medicare enrollment data. Demography, 29(4), 565-580. 
 
Lariscy, J. T. (2011). Differential record linkage by Hispanic ethnicity and age in linked mortality 

studies: implications for the epidemiologic paradox. Journal of Aging and Health, 23(8), 
1263-1284. 

 
Lynch, S. M., Brown, J. S., & Harmsen, K. G. (2003). Black-white differences in mortality 

compression and deceleration and the mortality crossover reconsidered. Research on 
Aging, 25(5), 456-483. 

 
Manton, K. G., Poss, S. S., & Wing, S. (1979). The black/white mortality crossover: Investigation 

from the perspective of the components of aging. The Gerontologist, 19(3), 291-300. 
 
Manton, K. G., & Stallard, E. (1981). Methods for evaluating the heterogeneity of aging 

processes in human populations using vital statistics data: Explaining the black/white 
mortality crossover by a model of mortality selection. Human Biology, 53, 47-67. 

 
Manton, K. G., & Stallard, E. (1984). Recent trends in mortality analysis. New York, NY:  

Academic Press. 
 
Manton, K. G., Stallard, E., & Vaupel, J. W. (1984). Methods for comparing the mortality 

experience of heterogeneous populations. Demography, 18, 389-410. 
 
Markides, K. S., & Coreil, J. (1986). The health of Hispanics in the Southwestern United States: 

An epidemiological paradox. Public Health Reports, 101, 253-265. 
 
Masters, R. K. (2012). Uncrossing the US black-white mortality crossover: The role of cohort 

forces in life course mortality risk. Demography, 49(3), 773-796. 
 
Minnesota Population Center and State Health Access Data Assistance Center. 

(2016). Integrated Health Interview Series: Version 6.21. Minneapolis, MN: University of 
Minnesota. Available from http://www.ihis.us  

 

http://www.ihis.us/


32 

 

Myers, R. J. (1978). An investigation of the age of an alleged centenarian. Demography, 15(2), 
235-236. 

 
Nam, C. (1995). Another look at mortality crossovers. Social Biology, 42, 133-142. 
 
National Center for Health Statistics. (2013). NCHS 2011 Linked Mortality Files Matching 

Methodology. Hyattsville, MD: Office of Analysis and Epidemiology.  
 
Oeppen, J., & Vaupel, J. W. (2002). Broken limits to life expectancy. Science, 296 (5570), 1029-

1031. 
 
Parnell, A. M., & Owens, C. R. (1999). Evaluation of U.S. mortality patterns at old ages using the 

Medicare enrollment data base. Demographic Research, 1, 
doi:10.4054/DemRes.1999.1.2 

 
Patel, K. V., Eschbach, K., Ray, L. A., & Kyriakos, S. (2004). Evaluation of mortality data for older 

Mexican Americans: Implications for the Hispanic paradox. American Journal of 
Epidemiology, 159(7), 707-715. 

 
Preston, S. H., Elo, I. T., Rosenwaike, I., & Hill, M. (1996). African-American mortality at older 

ages: Results of a matching study. Demography, 33(2), 193-209. 
 
Preston, S. H., Elo, I. T., & Stewart, Q. (1999). Effects of age misreporting on mortality estimates 

at older ages. Population Studies, 53(2), 165-177. 
 
Preston, S. H., Heuveline P., Guillot M. (2001). Demography: Measuring and Modeling 

Population Processes. Malden, MA: Blackwell Publishers. 
 
Preston, S. H., Elo, I. T., Hill, M. E., & Rosenwaike, I. (2003). The demography of African 

Americans 1930-1990. Dordrecht, Netherlands: Springer Netherlands. 
 
Preston, S. H., & Elo, I. T. (2006). Black mortality at very old ages in official US life tables: A 

skeptical appraisal. Population and Development Review, 32(3), 557-566. 
 
Rosenberg, H. M., Maurer, J. D., Sorlie, P. D., Johnson, N. J., MacDorman, M. F., Hoyert, D. L., … 

Scott, C. (1999). Quality of death rates by race and Hispanic origin: a summary of current 
research, 1999. Vital and Health Statistics, Series 2, 128, 1-13. 

 
Shai, D., & Rosenwaike, I. (1987). Mortality among Hispanics in metropolitan Chicago: an 

examination based on vital statistics data. Journal of Chronic Disease, 40, 445-51. 
 
Swallen, K., & Guend, A. (2003). Data quality and adjusted Hispanic mortality in the United 

States, 1989-1991. Ethnicity & Disease, 13, 126-33. 
 



33 

 

Thatcher, A. R., Kannisto, V., & Vaupel, J. W. (1998). The Force of Mortality at Ages 80 to 120. 
Odense, Denmark: Odense University Press. 

 
Vaupel, J. W., Manton, K. G., & Stallard, E. (1979). The impact of heterogeneity in individual 

frailty on the dynamics of mortality. Demography, 16(3), 439-454. 
 
Vaupel, J. W., & Yashin, A. (1985). Heterogeneity's ruses: Some surprising effects of selection on 

population dynamics. The American Statistician, 39, 176-185. 
 
Vincent, P. (1951). La mortalité des Vieillards. Population, 6, 181-204. 
 
Wrigley-Field, E. (2014). Mortality deceleration and mortality selection: Three unexpected 

implications of a simple model. Demography, 51, 51-71. 
  



34 

 

Table 1  Distribution of deaths as of 1990, by source of report, NLS-OM data 
 

 
 

Survey VS90 Match VS08 Match SSA12 Match N 

Black 
 

874 634 893 734 1,420 

Non-black Hispanic 
 

20 14 21 17 82 

Non-Hispanic white 
 

1,730 1,405 1,797 1,625 3,467 

Other race 
 

36 30 38 31 51 

Total 2,660 2,083 2,749 2,407 5,020 

 
Source: Authors’ calculations, National Longitudinal Survey, Old Men Cohort.   
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Table 2  Measurement error by race and ethnicity: Respondents reported dead in the survey, 
with a missing match to administrative records, NLS-OM data 
 

 
 

Black Non-black 
Hispanic 

Non-Hispanic 
white 

VS90 Match    

Fraction missing when survey reports a 
death 

0.280 0.300 0.193 

Number missing 245 6 333 

 

SSA12 Match    

Fraction missing when survey reports a 
death 

0.206 0.150 0.110 

Number missing 180 3 191 

 

VS08 Match    

Fraction missing when survey reports a 
death 

0.042 0.000 0.018 

Number missing 37 0 31 

N 1,420 82 3,467 

 
Source: Authors’ calculations, National Longitudinal Survey, Old Men Cohort. There are 2,660 
respondents reported as deceased by the survey by 1990: 874 blacks, 20 non-black Hispanics, 
1,730 non-Hispanic whites (and 36 other race not included in the above analysis). If we test the 
null hypothesis that the rates of error are the same for blacks and non-Hispanic whites, we 
reject the hypothesis at the 0.001 percent confidence level for the VS90 Match, the SSA12 
Match, and the VS08 Match. 
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Table 3  Nonparametric estimates of hazard rate gap between blacks and non-Hispanic whites 
 

A. Social Security Administration 2012 Match 

Age Black-White Gap P-value  Age Black-White Gap P-value 

59 0.0027 0.500  75 0.0013 0.922 
60 0.0013 0.803  76 0.0076 0.462 
61 -0.0007 1.000  77 -0.0033 0.778 
62 0.0028 0.531  78 -0.0112 0.313 
63 0.0018 0.728  79 -0.0146 0.191 
64 0.0006 0.895  80 -0.0262 0.018 
65 0.0036 0.519  81 -0.0323 0.008 
66 0.0114 0.041  82 -0.0265 0.045 
67 0.0023 0.670  83 -0.0207 0.108 
68 0.0124 0.058  84 -0.0417 0.002 
69 0.0097 0.151  85 -0.0526 0.000 
70 0.0120 0.078  86 -0.0290 0.049 
71 0.0128 0.074  87 -0.0603 0.000 
72 0.0060 0.434  88 -0.0295 0.055 
73 -0.0033 0.752  89 -0.0361 0.022 
74 
 

0.0026 
 

0.763 
 

 
   

B. Vital Statistics 2008 Match 

Age Black-White Gap P-value  Age Black-White Gap P-value 

59 0.0046 0.198  75 0.0127 0.240 
60 0.0075 0.124  76 0.0271 0.029 
61 0.0002 1.000  77 0.0205 0.111 
62 0.0031 0.562  78 0.0236 0.078 
63 0.0092 0.059  79 0.0038 0.766 
64 0.0042 0.437  80 -0.0098 0.539 
65 -0.0025 0.727  81 -0.0067 0.765 
66 0.0190 0.003  82 0.0102 0.555 
67 0.0165 0.011  83 0.0133 0.510 
68 0.0114 0.106  84 -0.0210 0.316 
69 0.0317 0.000  85 -0.0344 0.161 
70 0.0114 0.133  86 -0.0051 0.908 
71 0.0215 0.011  87 -0.0498 0.064 
72 0.0175 0.053  88 -0.0019 1.000 
73 0.0181 0.054  89 0.0131 0.682 
74 0.0059 0.559     

Source: Authors’ calculations, National Longitudinal Survey, Old Men Cohort. P-values reported 
are based on a two-tailed Fisher’s Exact Test of the hypothesis that blacks and non-Hispanic 
whites have the same mortality rate at a given age.  
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Table 4  Estimated probability of surviving 21 years after Health Interview Survey for those 
aged 85 and older, 1986 to 1989 surveys 
 

 Black Non-black 
Hispanic  

Non-Hispanic 
white 

Fraction assumed alive 
(N) 
 

0.1071 
(45) 

0.1875 
(15) 

0.0667 
(216) 

Fraction confirmed deceased 
(N) 
 
 

0.8929 
(375) 

0.8125 
(65) 

0.9333 
(3,020) 

Total Sample Size 
 

420 80 3,236 

 

Expected number alive from SSA Life Tables 
 

0.69 
 

0.13 
 

5.3 

P-value for test of equality with non-
Hispanic whites 

0.003 0.000  
 

Source:  Authors’ calculations, Minnesota Population Center and State Health Access Data 
Assistance Center, Integrated Health Interview Series:  Version 6.12. Minneapolis: University of 
Minnesota, 2015, and SSA 2013 Life Tables. Test for equality are from Fisher’s exact test, one 
tailed. 
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Table 5  Parameter estimates from the measurement error-corrected hazard model, NHIS 
data 
 

Variable in the Hazard Model   

   Age 0.121  

 (0.0110)  

   Age2 -0.000408  

 (0.000380)  
   Black 0.334  

 (0.267)  
   Black × Age -0.0242  

 (0.0392)  
   Black × Age2 0.000673 

(0.00140)  
   Hispanic 0.0436 
 (0.450) 
   Hispanic × Age -0.0414 

 (0.0624) 
   Hispanic × Age2 0.00216 

 (0.00210) 
   Constant -3.589  

 (0.0773)  

Estimated Rate of Missing 
Deaths 

  

   Error Rate for White 0.037  

 (0.00229)  
   Error Rate for Black 0.071  

 (0.0091)  
   Error Rate for Hispanic 0.110  

 (0.0160)  

Observations (N × Years) 119,007  

Source: Authors’ calculations, National Health Interview Survey. In this regression the age 
variable is constructed so that Age = 1 for the youngest age in the data, which is age 72.  
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Figure 1  Simulations of spurious mortality crossovers 
 
Panel A  Consequences of varying rates of Methuselah error  
 

 
Note: The reference group is from the SSA Life Tables.  The “high mortality” group has a 40% 
higher mortality than the reference group.  We then simulated missing deaths for the high 
mortality group, with error rates of 0%, 1%, 5%, 10% and 15%. 
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Panel B  Simulation of a black-white mortality crossover with small rates of missing deaths 
 

  
Note: The gray curve shows the probability of death for non-Hispanic whites, from the 2013 SSA 
Period Life Tables, and the black curve shows a population with 40% higher mortality.  We then 
simulate missing deaths for the non-Hispanic whites at 1.8% and for blacks at 4.2%. 
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Figure 2  Nonparametric estimated hazard curves for NLS-OM data matches 
 

 
 

 
 
 
 

Note: The top panel uses SSA12 data and the lower panel VS08 data.  Solid black lines indicate 
blacks.  Dotted black lines indicate non-Hispanic whites.   
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Figure 3  Nonparametric estimated hazard curves from NHIS data 
 

  
 

Note: The solid black lines indicate blacks; dashed black lines indicate non-Hispanic whites; and 
the dotted black lines indicate the SSA Life Table estimates. 
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Figure 4  Plots of the estimated hazard curves for three models, white men in the NLS-OM SSA Match 
 
 
 

 
Note: The dashed-dot lines represent 95% confidence intervals. 
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Figure 5  Evidence on the black-white mortality crossover and Hispanic paradox in the naïve 
logit model and measurement error-corrected model, NHIS-NDI data 
  
Panel A  The black-white mortality crossover 
 

 

 
Note: The dashed-dot lines represent 95% confidence intervals. 
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Panel B  The Hispanic paradox 
 

 
 

 
Note: The dashed-dot lines represent 95% confidence intervals. 
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