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1 Introduction

Globalization has been a mighty force over the last few decades. Compared to the movements of

material goods and financial capital across countries, however, labor and talent have been much

slower to globalize. This greater localization of labor and talent is perhaps not surprising given

that it is easier to transmit financial capital in a disembodied form or build/ship a physical good

for an exact purpose. People and their labor, however, have typically come as a collective and

fully integrated package, so-to-speak, that makes location decisions more complex. If one seeks to

access labor inputs available abroad, one option is to attract and host the individual, temporarily

or permanently, near the location of the work to be performed. For a variety of reasons, this

has proven politically unpopular and nearly all countries place restrictions on migrations. As a

result, so only about 3% of the world’s population lives outside of their country of birth.1

A second option is to identify how the required task can be exchanged at a distance, without

necessitating a person’s physical migration. Offshoring—the performance of a specified task in

another country—has become a substantial force in certain business functions where the tasks

can be effectively located at a geographic distance. Thus, the focus shifts from “trade in goods”

to “trade in tasks” needing to be performed (Grossman and Rossi-Hansberg, 2008). Prominent

examples include low-end data entry and high-end back-office information technology (IT) in

India for US and European companies. In a prominent study, Blinder and Krueger (2013)

estimate that around one quarter of jobs could be offshored from the United States.2

Offshoring was initially best suited for large corporations due to the substantial fixed costs

in establishing an overseas presence. Even if using an external outsourcing vendor, it only made

sense for organizations to engage in trade in tasks if they had a sufficiently large ongoing volume

of work to justify learning about overseas options, vetting contractors, negotiating terms and

prices, and reorienting their own business processes to fit around the overseas work, etc. Similar

to the Melitz (2003) model for international trade, firms entered into these overseas efforts

when a large and sustained improvement that exceeded a threshold requirement was feasible.

Helpman et al. (2004) develop a framework where the most productive firms launch overseas

1Kerr et al. (2016, 2017) review the literature, data and policy environments for global talent flows. Clemens
(2011) emphasizes the “trillion-dollar bills” that remain on the sidewalk due to this low rate of migration in light
of productivity differences across countries.

2Offshoring closely relates to outsourcing—the performance of a specified task by an external party to the
purchasing company—and the two terms are often used interchangeably in the press. Outsourcing is possible
without offshoring (e.g., purchasing services from an external company in one’s own country), and offshoring is
possible without outsourcing (e.g., setting up a company-owned data center or manufacturing plant abroad). For
most of this paper’s discussion of digital labor markets, the two concepts overlap completely as the contracts are
both externally sourced and abroad.
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facilities, those with intermediate productivity engage in trade, and the least productive firms

serve domestic markets only. Helpman (2014) provides a review.

Digital labor markets have the potential to radically alter this picture. These Internet-based

platforms connect workers worldwide with companies seeking to have tasks completed. This

chapter describes digital labor markets, evaluating their dramatic rise and global span, and re-

views academic studies of how these markets function. We first discuss the persistent information

frictions that have been a barrier to off-line global labor sourcing and how digital labor platforms

address these barriers. Sections 2 and 3 provide both micro- and macro-level perspectives, re-

spectively, and we present some new empirical analyses that link these two perspective together

with respect to cross-border contract placement over countries. Our empirical discussion uses

data from Upwork, the world’s largest digital labor platform, and its predecessor oDesk.3 We

extend prior work by Ghani et al. (2014) on ethnic contract placement, and we provide new

evidence regarding flows and substitution across countries.

Section 4 then considers the evolution of digital labor markets and provides case-based exam-

ples of other ways that digitization is extending the spatial reach of labor and talent inputs. For

example, many corporations and governments are rushing to build “open innovation” platforms

that expose their organizations to valuable external ideas. We discuss examples from Proc-

ter & Gamble, the National Aeronautics and Space Administration (NASA), and similar large

organizations on how they are using open collaboration concepts for solving thorny innovation

challenges. Digital platforms are also extending the use of global labor to many smaller start-ups,

and overseas tech development has become the norm for many US and European entrepreneurs

given the cost savings possible.

Only time will tell the ultimate impact of digital labor markets, online innovation contests,

and similar collaborative activities for the globalization of labor markets and talent, but their

strong potential is now evident. Moreover, they are becoming a powerful tool for researchers

seeking to understand the functioning of labor markets. It is exceptional, for example, to observe

a recorded history of the bids given for contracts, the traits of accepted bids versus the compe-

tition, the performance outcomes of projects, the prior and subsequent longitudinal history of

workers and contracting firms, and so on. See Horton and Tambe (2016) for an overview of the

research potential of computer-mediated labor markets. These platforms have also been the site

3Upwork is the result of a merger in 2014 of Elance and oDesk, which were founded in 1999 and 2003,
respectively. In 2016, Upwork reports annually servicing over three million jobs that represent more than $1
billion in work. Projects range from simple transcription work to high-end services, and Upwork records over
12 million registered freelancers and 5 million companies (https://www.upwork.com/about/, accessed June 21,
2016).
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for multiple experimental studies of labor market behavior. Building on our research experience,

the fifth section provides some perspectives for researchers about the advantages and pitfalls

of using these types of data and platforms for economic studies, and we close with some open

questions for the future about these platforms and the digitization of work.

2 The Environment of Digital Labor Markets

2.1 Upwork

Upwork is an online platform that connects workers who supply services with buyers who pay

for and receive these services from afar. Examples include data entry and programming tasks.

The platform is the result of a 2014 merger between Elance and oDesk, and the merged entity

was rebranded as Upwork in 2015. In 2016, Upwork is the world’s largest platform for online

outsourcing, and oDesk and Elance were the two largest platforms before the merger. To be

consistent and reduce confusion, we favor using the name Upwork even when describing a period

before the company was known by this name. When discussing and extending studies of earlier

periods that use oDesk-specific data, we mention this alternative sample. The data used in this

study were obtained directly from oDesk and Upwork for research purposes.

On the Upwork platform, any worker can contract with any firm directly, and all work takes

place and is monitored via a proprietary online system.4 In exchange for a 10% transaction fee

from the total wage bill5, Upwork provides a comprehensive management and billing system that

records the time spent by the worker on the job, allows easy communication between workers

and employers about scheduled tasks, facilitates simple document uploading and transfer, and

takes random screenshots of workers’ computer terminals to allow electronic monitoring.6

These features facilitate easy, standardized contracting, and any company and any worker

can form electronic relationships with very little effort. More advanced features provide tools

for teams to collaborate on projects.

A worker who wants to provide labor services on Upwork fills out an online profile describing

his/her skills, education level, and experience. A worker’s entire history of Upwork employment,

including wages and hours, is publicly observable to potential employers. For contracts that have

been completed, a feedback measure from the employer is publicly displayed. Figure 1 provides

4This section draws from Ghani et al. (2014).
5Upwork recently announced a new non-linear pricing structure in which fees would be gradually reduced as

the match-specific wage bill increased.
6We use the terms “employer” and “employment” for consistency with the existing labor literature rather

than as a comment on the precise legal nature of the relationships created on these sites.
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an example of a worker profile.

Companies and individuals looking to hire on Upwork fill out a job description, including the

skills required, the expected contract duration, and some preferred worker characteristics. In the

first few years after the platform’s founding, most of the jobs posted were hourly positions for

technology-related or programming tasks (e.g., web development), but postings for administra-

tive assistance, data entry, graphic design, and smaller categories have become more prevalent as

the platform has grown. Advanced tasks include search engine optimization, data analytics, and

mobile app programming. Table 1 provides a distribution of contracts over job category. After

a company posts a position opening, workers apply for the job and bid an hourly rate. Firms

can interview workers via Upwork, and ultimately form a contract if both parities agree. In the

past, this process was large decentralized, but in more recent years, Upwork has invested heavily

in making algorithmic recommendations to both employers and workers about which worker to

hire or which job to apply to, respectively. See Horton (2017) for evidence on the effectiveness of

these algorithmic recommendations in increasing the quantity of matches formed in the market.

2.2 Micro-Evidence on Information Frictions

Most past studies of oDesk/Upwork are micro-based studies that tend to focus on matching

or information frictions. Evidence on the existence of these frictions are evident in the data

used here. The literature’s focus on these micro-based frictions is perhaps surprising at first

glance, given that the core power of these platforms and their rising economic importance is

the global information access and firm-worker matching process that the platforms enable, often

for the first time. Yet, even though these platforms have removed many frictions from their

labor markets (e.g., information access, document transfer, billing, etc.), some classic issues

remain and perhaps become more evident, such as uncaptured externalities for the development

of information about workers and firms for the market to observe or ethnic/racial biases people

have in contract selection. Also, similar to other online environments like auction sites or e-

commerce platforms, new issues can arise due to the platform’s features and aggregation of

many buyers and sellers that are hard to anticipate. Here we review several studies and tie

together what they mean for our understanding of matching frictions.

Many of the matching frictions that have preciously been documented arise because employers

hire discrete workers into particular slots (see Lazear et al. (2016)). Table 1 shows that there are

many more applicants than slots available to contract. That there are many applicants relative

to openings suggests that it may be hard for workers to determine what employers are looking

4



for or how an applicant will be assessed against other workers. On oDesk/Upwork, because

of unobserved capacity to take on new projects, employers have the same problems when they

pursue workers (see Horton (2016a)). These and other forms of information frictions result in

sunk effort on both sides of the market before a successful match is formed.

Several factors contribute to these frictions, and many are also present in traditional labor

markets. These include uncertainty and difficulty in assessing worker quality, leading to concerns

about adverse selection. Other questions around direct contract enforcement are potentially

relevant as well. For larger projects, team aggregation challenges appear to be compounded in

the online setting.

Over time, the Upwork market has evolved to better provide features that mitigate these

sources of friction. Reputation systems, prevalent in many peer-to-peer and electronic markets,

were early features designed to mitigate adverse selection. However, as discussed by Horton and

Golden (2016), these systems often provide only coarse information that results in “bunching”

of scores either at the top or bottom of the rating scale. Many employers are reluctant to

leave negative feedback, and so only “good” feedback is reported. It also appears that what is

considered “good” has increased over time, leading to a kind of reputation inflation. As such,

would-be employers have difficulty assessing ability ex ante (though this is far from a challenge

unique to online settings). As a reaction to this problem, Upwork has moved to utilize the fact

that experienced workers often transact with many employers, enabling the display of private

feedback ratings that aren’t linked to an individual transaction. This has reduced the effect of

bunching on market frictions by providing additional gradation between workers.

While reputation systems provide information about past performance, new workers face

the problem of how to break into the market. Hiring a novice worker produces two outputs:

the direct work product and information about that worker’s quality. However, because these

are spot markets with somewhat limited full-time repeated contracting, the information about

worker output is not particularly valuable to an employer. As a result, there is under hiring of

unknown workers because employers do not internalize the value of generating knowledge about

workers that is revealed once they start work (Tervio, 2009). In the data, very few novice workers

are hired relative to the experienced cohort. Pallais (2014) demonstrates through an experiment

that a major contributing factor to the low share of novice hires is the Tervio mechanism where

employers do not to internalize the value of information. To do so, she randomly hires novice

workers and leaves them honest feedback. This initial feedback has profound effects on treated

workers’ online careers. Future employers are much more likely to hire workers in the treatment
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group who receive a rating than control workers who did not receive the rating.

Stanton and Thomas (2016b) then show that the market has evolved to include intermedia-

tion as a response to the worker startup problem. Intermediaries, called agencies, have entered

online labor markets and have altered hiring patterns for novice workers. These agencies tend to

be small groups consisting of several online workers, and employers can observe agency affiliation

and an agency-level feedback score on each affiliated worker’s profile. Most agency workers are

co-located, suggesting some role for offline ties in the formation of these groups. A key factor

for overcoming the information problem is an incentive to invest, and intermediaries are pro-

vided with this incentive because they own the reputation of their affiliated workers. Stanton

and Thomas show that novice workers who enter the market with intermediary affiliation are

much more likely to find work than workers who enter without affiliation. They identify the

information effect of intermediation by comparing outcomes over workers’ careers; the initial in-

termediary advantage fades-out as workers gain experience. The entry of intermediary agencies

has improved the prospects of novice affiliated workers and has reduced frictions for affiliated

novice workers who seek to enter the market.

The earliest frictions explored in the literature were due to adverse selection concerns because

of employers’ difficulty distinguishing worker quality. More recent literature explores the conse-

quences either of uncertainty about the environment that employers face or switching frictions

when changing from a familiar offline environment. Stanton and Thomas (2016a) explore uncer-

tainty about the market as the result of employers being unfamiliar with the value of the market.

Because employers’ interviews are observed in the data, a measure of search effort is available.

Stanton and Thomas document that employer interviewing falls dramatically with experience,

suggesting an important role for learning about the distribution of matches through the process

of hiring. If some factors cause new employers to forego initial hiring, strong experience effects

suggest that these factors limit market size by the failure to move new users along the experience

curve. Stanton and Thomas suggest that the nature of how workers bid for jobs is a significant

factor that has limited the takeup of new users. Because workers can observe employer inexpe-

rience, it is possible for them to tailor wage bids to what employers are likely to know about the

market. In most markets inexperienced users receive lower prices to draw them in, but in online

labor markets inexperienced employers receive wage bids that are approximately 10% higher

than their experienced alter-egos. The spot nature of contracting means that workers do not

participate in the employer gains from learning the market. Workers’ higher bids limit take up

of the market and hinder the expansion of online work. The failure of decentralized actors to

6



internalize the consequences of how their own behavior affects information for trading partners

has the potential to limit the growth of online exchange. Differences in pricing policy may be

necessary to counteract some of these incentives.

Other work suggests that offline familiarity influences online hiring behavior. For example,

Ghani et al. (2014) document the prevalence of ethnic-linked exchanges online by studying

the hiring patterns of the Indian diaspora on oDesk/Upwork. Importantly for identification,

applicants do not know the ethnic identity of the employer; this minimizes concerns about sorting

as a confound. Even with access to workers from all over the world, they find that the ethnic

Indian diaspora is much more likely to hire in India than employers of other ethnicities. Whether

due to preferences or information problems, this may limit the amount of trade conducted

through opening labor markets online. On the other hand, the reliance on familiarity may, in

theory, grease the wheels of transactions and help employers to overcome uncertainty about

workers. In the Upwork context, the size of the Indian diaspora hiring online suggests this role

for encouraging the sourcing of online work is likely to be a small factor in encouraging market

growth.

For those employers who do take an initial jump, several strategies may be used to deal with

an uncertain environment. For example, many employers appear to use hiring tournaments in

which small pieces of a project are done by multiple workers; the best workers are retained.

This process can be repeated until a satisfactory set is found. This strategy is likely to make

sense for production processes like software engineering where there are multiple ways to solve

a problem. For tasks where accuracy is important, sourcing redundant projects and using error

checking across workers to find mistakes may be more appropriate. Both of these strategies help

to resolve uncertainty. Employers also appear to use pattern matching after successful outcomes.

For example, Ghani et al. (2014) report that employers who initially choose to source work in

India are more than 11.5% more likely to choose India on their next contract upon success

compared to employers with unsuccessful first contracts.

That employers use workers’ countries as an important source of information has been doc-

umented in several sources. Mill (2013) studies statistical discrimination and employer learning

through experience with hiring in particular countries. Guo (2016), using data from an early on-

line labor market called rentacoder, shows that employers update their beliefs about all workers

from a country after hiring from that country. Agrawal et al. (2014) examine the structure of

information and how this affects workers differently depending on their country. An interesting

and important finding of this paper is that although at least some employers behave in a way
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consistent with statistical discrimination, information about actual worker productivity seems to

be a remedy: with more information, employers engage in less crude statistical discrimination.

Using an experiment, Lyons (2016) also examines cross-country versus intra-country differences

in team production when hiring online, extending many of these results to more complicated

production.

2.3 Ethnic Diasporas and Contract Placement

While micro-frictions have been the literature’s main focus, we turn in the next section towards

a more macro-oriented analysis of contract placement, providing some first evidence regarding

flows and substitution across countries. In preparation for the macro perspective, we first provide

an example of how the micro and macro lens connect with each other. We do this by extending

the work of Ghani et al. (2014), who quantify how members of the Indian diaspora are more

likely to place an outsourcing contract into India, compared to non-Indians, and have some

important differences as to how these contracts are structured. While this analysis shows micro-

connectivity, it differs from the standard analysis in the macro literature. Rauch and Trindade

(2002), for example, relate trade flows to the distribution of the ethnic Chinese population across

countries, rather than the greater likelihood that two observed traders are Chinese. We thus

extend our earlier work to now mirror the approach of Rauch and Trindade (2002). To keep the

analysis in line with Ghani et al. (2014), we use oDesk data covering 2005-2010.7,8

In this analysis, as well as the one to come in Section 3, we use the gravity framework from

the international trade literature to guide our work. Similar to planetary pull, these trade models

suggest that countries should engage more in trade to the degree that they are larger and also

closer together. There are several theoretical ways that one can derive a gravity model, and the

appendix to this paper outlines the Eaton and Kortum (2002) model that is most aligned with our

work. The Eaton and Kortum (2002) model considers countries having a range of technological

productivities for various activities. Each country purchases the activity from the country that

7The oDesk data do not record a person’s ethnicity or country of birth, so Ghani et al. (2014) use the names of
company contacts to probabilistically assign ethnicities. This matching approach exploits the fact that individuals
with surnames like Chatterjee or Patel are significantly more likely to be ethnically Indian than individuals with
surnames like Wang, Martinez, or Johnson. The matching procedure exploits two databases originally developed
for marketing purposes, common naming conventions, and hand-collected frequent names from multiple sources
like population censuses and baby registries. The process assigns individuals a likelihood of being Indian or one
of eight other ethnic groups. Kerr (2007, 2008) and Kerr and Lincoln (2010) provide extended details on the
matching process, list frequent ethnic names, and provide descriptive statistics and quality assurance exercises.
Ghani et al. (2014) provide an extended discussion and analysis of this match in the oDesk-specific context.

8More broadly, recent research emphasizes the importance of immigrants in frontier economies for the diffusion
of technologies and ideas to their home countries (e.g., Saxenian 2002, 2006; Kerr 2008; Agrawal et al. 2011). Kerr
(2016) reviews this literature and its connection to trade more completely and provides appropriate references.
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can be the lowest cost provider of the activity, including the purchasing country itself. This cost

considers the price levels and wage rates in countries, the productivity of countries for tasks,

and distances between nations. Thinking of these activities as tasks on a digital labor platform

is a natural extension, and our empirical analysis relates the volume of contracting between

countries. The appendix provides a more rigorous introduction.

The dependent variable in Columns 1-7 of Table 2 is the share of contracts originating from

a country on oDesk that are outsourced to India. We focus on shares of contracts, rather than

contract volumes, as the adoption of oDesk across countries as a platform for e-commerce is still

underway and somewhat idiosyncratic to date. Shares allow us to consider the choice of India

for outsourcing independent of this overall penetration of oDesk. The core regressor is taken

from the World Bank’s Bilateral Migration and Remittances 2010 database. This database

builds upon the initial work of Ratha and Shaw (2007) to provide estimates of migrant stocks by

country. We form the Indian diaspora share of each country’s population by dividing these stocks

by the population levels of the country. We complement this diaspora measure with distances

to India calculated using the great circle method, population and GDP per capita levels taken

from the United Nations, and telephone lines per capita in 2007 taken from World Development

Indicators. We also calculate a control variable of the overall fit of the country’s outsourcing

needs with the typical worker in India.9

Column 1 presents our base estimation. We have 92 observations, and we weight by the log

number of worldwide contracts formed on oDesk. The first row shows the connection of digital

outsourcing to the diaspora population share, which is quite strong. A 1% increase in the Indian

diaspora share of a country is associated with a 1% increase in the share of oDesk contracts

outsourced to India. The country-level placement of digital contracts in India systematically

followed the pre-existing levels of Indian diaspora communities. Looking at the other covariates,

spatial distance does not matter in the digital labor context like it does in many estimates of

economic exchanges. In fact, the share of contracts sent to India increases with spatial distance.10

9We calculate this control by first measuring the share of contracts outsourced from the country in nine job
categories indicated. We likewise measure the distribution of oDesk work performed in India across the nine
job categories, independent of where the company contact is located. We then calculate the sum of the squared
deviations of these two distributions to measure how closely the work typically filled in India matches the needs
of a given country. We subtract this sum of deviations from one, so that positive values represent a better fit,
and we transform the measure to have unit standard deviation to aid interpretation.

10Unreported estimations also find that time zones do not play a strong role in contract placement. The
coefficient values suggest a negative effect of being further apart in terms of time zone, but these results are very
small in magnitude and not statistically significant. Two important details to note are 1) many digital contracts
(e.g., data entry) do not require extensive synchronous interaction, and 2) for those that do, many Indian workers
are willing to work the originating country’s business day if that is needed for securing the job. Appendix Figure 1
provides a more detailed application timezone analysis taken from Horton (2016a). This figure shows the shifting
of schedules more broadly.
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The overall fit of a country’s outsourcing needs with the skillsets of Indian workers predicts that

greater shares of work are sent to India. On the other hand, country population levels and

telephone penetration do not play an important role. We likewise find similar weakness in

Internet penetration measures, but they are not as uniformly available. Finally, countries with

higher GDP per capita send less of their work to India conditional on the other covariates.

Many countries have been slower to develop on digital labor platforms, and nations with very

few contracts can generate noisy share estimates. Our main estimations thus weight by contract

volume to focus attention on better measured data and more meaningful observations; we utilize

log weights to not overly emphasize the United States experience in particular. Columns 3

and 4 show similar results when we weight by log country population or when we exclude the

weights. In both cases, the coefficients decline somewhat and the standard errors grow given

the greater emphasis placed on noisy outcomes, but the role of diasporas remains economically

and statistically significant. Column 5 shows similar results when adding a control for the total

worldwide count of contracts on oDesk by a country. This variable picks up the negative effect

earlier associated with GDP per capita. Column 6 tests whether this connection is simply

following on existing business relationships that countries have with India. We measure the

extent to which India is a trading partner of the focal country by the total volume of trade in

2007 between India and the country divided by the country’s GDP. Introducing this as a control

does not affect our results.

Column 7 shows that the elasticity declines when excluding an outlier firm in the United Arab

Emirates that outsourced an enormous number of contracts to India, but overall the pattern re-

mains similar and statistically significant.11 Column 8 finds similar results when examining the

dollar share of contracts being sent to India rather than the count share. This estimation natu-

rally puts more weight on contracts that have higher wages and longer durations. The coefficient

declines compared to Column 1 but remains economically important and statistically significant.

Finally, Column 9 provides an important connection to our earlier estimation approaches. The

dependent variable is the share of company contacts using oDesk in the focal country that are of

ethnic Indian origin (independent of whether or not the work is contracted with India). Larger

Indian diaspora shares in a country’s general population are highly correlated with a larger

11The results are not overly-dependent upon a single country, and we find very similar results when excluding
the United States, Pakistan, and similar. Excluding the UAE has the largest effect, resulting in a point estimate
of 0.878 (0.660), which is not very surprising given that the Indian diaspora’s share of 35% in the UAE is by far
the largest, twice that of the next-highest states of Qatar (18%) and Oman (17%). As a second approach, we
find a point estimate of 1.629 (0.654) when winsorizing outlier diaspora shares to Oman’s value to cap the UAE’s
extreme value. The role of the diaspora community is also very similar when including a control for English
language proficiency, which we are able to assemble for about half of the countries in our sample.
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share of oDesk company contacts for the country being of ethnic Indian origin. The coefficient

measures that a 1% increase in the relative size of the India diaspora to host country population

(e.g., from 1% to 2%) is correlated with a 2.6% increase in the share of oDesk company contracts

in that host country who have Indian ethnic names (e.g., from 10% to 13%).12

To summarize, in a spirit similar to Rauch and Trindade’s (2002) analysis of Chinese diaspora

and flows of trade in manufactured goods, we find clear evidence linking the Indian diaspora

to the placement of digital outsourcing contracts into India. This complements the micro-level

perspective taken by Ghani et al. (2014). This is encouraging more broadly as it provides greater

assurance that micro- and macro-level approaches are providing complementary perspectives on

the functioning of digital labor markets.

3 Macro-Level Perspective

3.1 Contract Flows on Digital Labor Platforms

Figure 2 displays the asymmetric distribution of contract flows on Upwork. The most striking

features of contract flow on Upwork are 1) the North-South nature of placements and 2) the

very limited degree that countries provide services to themselves, with the United States being

a major exception.

Table 3A ranks the top 20 hiring countries by aggregate wage bill from cross-border contracts

from the launch of the platform through 2015. The United States is by far the largest hiring

economy, with a cumulative wage bill for cross-border contracts that is almost seven times higher

than second-ranked Australia. In addition to placing more jobs abroad, US employers have

contracts that average 35% more in wage bills compared to the other countries given in Table

3A. By contrast, the United States is only the seventh ranked country from a worker perspective,

and only four of the top 20 worker countries are present on this employer country list (i.e., United

States, United Kingdom, Canada, and Germany). This emphasizes the exceptionally strong

North-South nature of contract placements on digital labor markets.

Table 3B provides a mirror image of Table 3A from the worker perspective. India is the

largest country by worker wage bill, with $340 million in cumulative wages received through

2014. This is about 19% larger than the cumulative wage bill for the Philippines, the second-

12Considering partitions of the data, the diaspora coefficient is 0.893 (0.263) for 2008 and prior, 1.085 (0.240)
for 2009 and later, 0.798 (0.238) for high-end contracts, 0.592 (0.113) for low-end contracts, 0.448 (0.232) for
initial contracts, and 1.134 (0.334) for subsequent contracts. Ghani et al. (2014) analyze further how overseas
ethnic Indians show higher rates than other ethnic groups of outsourcing initial contracts to workers in India and
the path dependence that follows for subsequent contracts.
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ranked country. After the Philippines, the gap is more dramatic; the Ukraine is ranked third,

with a wage bill of $118 million, or about 35% of the Indian total. Figures 3A and 3B depict

the top bilateral routes by contract volume and dollar value, respectively.

Table 4 ranks the top suppliers of contract labor to the United States, again using cumulative

wage bills over the oDesk/Upwork history. The United States edges out India and the Philippines

as the largest provider of contract labor to itself. Behind this aggregate statistic, India and the

Philippines record greater contract volume in Column 3, but the average wage bill for US-sourced

work has been higher ($943 vs. $666 for India and $538 for Philippines, respectively). Two other

South Asian countries (Pakistan, Bangladesh), Russia and Ukraine round out the next largest

providers of digital labor and talent for US employers.

The pattern of flows are quite unique to digital labor markets. Excluding the United States,

there is a -0.08 correlation among the remaining 19 countries in terms of aggregate wage bill

supplied (Column 4) and total US imports of manufactured goods (Column 7). China is the

eighth-ranked provider of services, at only 10% of the level of India or the Philippines. Quite

noticeably, Japan and Mexico are not even listed on Table 4, suggesting the negative correlation

would further strengthen in their presence. The correlation is a similar -0.09 when comparing

Column 4 against the total US imports of services in Column 8. While not shown in this table,

it is again quickly evident upon reflection that the global sourcing of Upwork contracts is also

quite different from global sources for immigrants to the United States.

Figure 4 provides a summary statistic of the distribution of US source countries for workers

on Upwork compared to America’s distribution of source countries for traded goods and services.

We calculate the sum of the squared deviations between the share of a country’s Upwork wage

bill paid by US employers and the equivalent share in traditional accounts of traded goods and

services. Goods imports data come from the census, and services imports data come from the

World Bank TSD database and are last reported by country in 2011. To avoid compositional

changes in the series over time, the goods and services series are restricted to be balanced.

Deviations of Upwork shares are calculated against the balanced series. A level of zero would

indicate perfect alignment of source countries, while a level of two is the theoretical maximum.

In the earliest phases of the platform, circa 2006, there was substantial divergence of source

countries for digital labor work compared to typical patterns for both trade in manufactured

goods and trade in services. Since this time, the squared deviations of source countries for

oDesk/Upwork have further diverged from the source countries for manufactured goods, while

convergence towards source countries for trade in services is evident until 2011. Consistent with

12



earlier tables, the largest deviations for the goods series are for China, India, the Philippines,

and Russia. China is a large trading partner offline but has little online share. For the other

countries, their online share exceeds their offline share.

3.2 Gravity Models of Contract Flows

Stepping beyond the example of the United States, Table 5 next examines digital outsourcing

patterns across all country pairs using the familiar gravity model. Beyond the information that

we derive directly from the Upwork database, most covariates used in this section come from

the bilateral gravity and TRADHIST CEPII datasets. We consider a cross-sectional estimation

of bilateral country pairs using the pseudo maximum likelihood estimator of Santos Silva and

Tenreyro (2006). This conservative approach also allows us to retain bilateral routes on which

zero contract placement occurs on Upwork.

The dependent variable is the wage bill from cross-country contracts paid by employer coun-

try to the worker country. We include employer country and worker country fixed effects in

estimations that account for overall levels evident in Tables 3a and 3b. Employer country fixed

effects are concentrated out, and worker country fixed effects are included as unreported indica-

tor variables. Estimations are weighted by total contracts paid by employer country to reflect the

global distribution of trade and robust standard errors are used to account for heteroskedasticity.

To allow for non-linear effects, we model most explanatory variables as indicator variables

for various points in the distribution of a covariate. The omitted category for each indicator is

the smallest/least category (e.g., shortest bilateral distance or GDP/capita difference between

employer and worker country smaller than $5000). Coefficients for each explanatory factor show

the conditional differential compared to the omitted group. All models also include unreported

indicator variables for quartiles of the product of GDP between countries.

Column 1 provides a base estimation that does not use recent offline trade flows as an

explanatory variable. We first find that distance still matters in shaping the broad distribution

of outsourcing contracts. We did not observe this pattern in the special case of India, examined

in Table 2, but it is more systematically present when considering global contract placements.

On the other hand, contiguous countries often show stronger links and economic integration,

but we do not find evidence of a border effect in these data. A common country language and

sharing a time zone also appear to boost contract placement.13 Finally, we observe that the

13The common country language result, however, is not robust across the multiple language variants developed
by Melitz and Toubal (2014) and should be treated with caution. The choice about these language variants does
not affect the other coefficients reported in Table 5.
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largest differences in GDP per capita between the employer and worker countries increase the

wage bill of contracts.

These basic findings continue to hold in Column 2 when also including the level of recent

bilateral trade flows. Recent offline trade patterns have modest power for predicting services

trade online. We are unable to parse whether the act of trading physical goods has a causal

effect in this regard, by for example boosting business connections and reputations for this

work, or whether these past trade relationships reflect more primal determinants that we have

not modeled or did not measure well. Potential examples include geographic and economic

interactions that are more fine-grained than our gravity covariates could pick up or idiosyncratic

relationships across countries (good and bad) that are not included in the framework but impact

business interactions.

Columns 3 and 4 compare the periods before and after 2011. The role of distance is becoming

less pronounced, while GDP differences are becoming more pronounced. As a whole it looks like

a typical trade model performs better after 2011, suggesting that platform maturity is somewhat

leading digital labor patterns to look more like those observed for other international exchanges.

Finally, Column 5 considers persistence in past online trade, which would be expected as a

result of the information friction and path-dependence models reviewed earlier in the literature.

Does an initial high share of wage bill pre 2011 continue to explain flows in the later period?

The answer is a clear yes, even after controlling for offline conditions that may affect the initial

distribution. The elasticity is 0.369, so a 10% increase in pre-2011 trade implies a 3.7% increase

in post-2011 digital trade. This connection is consistent with the micro results in Ghani et al.

(2014) which show that employers replicate their approach to contracting if it works the first

time. The estimates may also be consistent with employers who exploit a locale after resolving

uncertainty about its fit or after developing some location-specific knowledge.

3.3 Substitution Elasticities

The results to this point lead us to ask to what extent changes in relative prices overcome some

frictions. The first attempt at addressing this question explores substitution patterns across

countries. Table 4 suggests that American employers are home-biased and are likely to hire US

workers despite their high prices. Here we attempt to quantify how variation in relative prices

affects substitution by American employers away from US workers and towards workers from the

rest of the world. To do so, we restrict the sample to US employers and estimate how contract
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shares vary with mean wage bids. The regression is

ln (sjkt)− ln (s0kt) = α0W̄jkt + α1W̄jkt × USj + countryj + timet + jobCategoryk + εitk,

where sjkt is the share of contracts relative to total job openings posted by US employers in job

category k filled by workers from country j in time period t, s0kt is the share of openings without

a contract, and W̄jkt is the mean hourly wage bid in that cell. The interaction W̄jkt×USj allows

the coefficient on price to differ for workers from the United States. To account for endogeneity

of wage bids, we instrument for bids by non-US workers using the z-score of the log of the local

currency to dollar exchange rate. This instrument comes from Stanton and Thomas (2016a)

and exploits the fact that all contracts are in US dollars but non-US workers’ outside wages are

paid in the local currency. The z-score normalization is necessary to account for different scales

relative to the dollar across countries. A second instrument is necessary for US workers. Here

we use an instrument that is based on common cost shocks across markets, taking the average

wage bid for UK workers interacted with a dummy that the bid in question is from the United

States.

The estimating equation is the linear IV analogue of a logit model, but the parameters

α0 and α1 allow for some additional flexibility in assessing substition patterns across countries

relative to a model where the coefficient on price is constrained to be constant across all al-

ternatives. The own-price elasticity for non-US workers, denoted “row” for “rest of world,” is

α0 (1− srow) W̄row, where srow is the share of contracts to job openings coming from the rest

of the world. The own price elasticity for US workers is (α0 + α1) (1− sUS) W̄US. The cross-

price elasticity for the rest of the world with respect to US bids is − (α0 + α1) sUSW̄US, and

the cross-price elasticity for the United States with respect to bids from the rest of the world is

−α0srowW̄row.

Table 6 provides estimates of substitution patterns across countries using these expressions,

along with first-stage regressions for the linear IV estimates. In all specifications, demand for

workers from the rest of the world is more elastic than for workers from the United States. The

base own-bid elasticity for the rest of the world is -4.61. This says that a 1% increase in average

bids leads to a 4.61% decrease in contract share for the rest of the world. Surprisingly, the

elasticity is larger in magnitude for technical categories, -8.29, than for non-technical categories,

-3.06. The elasticity has also fallen over time. The base own-bid elasticity for US workers, in

contrast is -2.14. It is also larger for technical categories and displays a similar decline over

time.

15



The cross-elasticities are of even more interest. We believe this is the first place to document

that these elasticities are tiny; suggesting limited substitution across places based on price-related

considerations. The cross-elasticity for the rest of the world with respect to US bids is 0.039.

This says that a 1% increase in US bids leads to a 0.039% increase in contract share for the

rest of the world. This rises to 0.044 in technical categories and has fallen over time. The

magnitude of these cross-elasticities is even smaller when looking at the elasticity of US share

relative to rest of world bids. Figure 5 provides a visual comparison.

These results suggest limited substitution between the United States and other countries.

This lack of substitution suggests that frictions may be quite persistent. Even in a global

labor market with limited switching costs, there is very little substitution between the United

States and other countries. Instead, given the magnitude of own-bid elasticities, this suggests

employers leave the platform in response to bid increases rather than substitute away from their

target search location.

4 Additional Digital Collaborations

Our paper mostly concentrates on an empirical depiction of the Upwork platform, but we now

turn to some case examples to describe the range of other ways that digital capabilities are

extending access to talent over long distances. First, before leaving digital labor markets, it is

important to recognize the multiple types of two-sided labor platforms being developed. Founded

in 2013, HourlyNerd (not called Catalant) has built an innovative marketplace for management

consulting work. It focuses on business consulting and has over 20,000 independent consul-

tants registered for project-based work. Originally targeting ways to connect freelancers with

small companies that would not otherwise use consultants, HourlyNerd has grown into field-

ing enterprise-level solutions that are used by many large companies too. Like management

consulting, many areas that appear today to be protected from digital competition may soon

become targets of entrepreneurs seeking to build platforms in these areas. Examples from the

legal industry are UpCounsel and InCloudCounsel.

Second, online contests and crowd-based mechanisms provide ways for companies to solicit

ideas from many unexpected sources. For instance, pharmaceuticals giant Merck designed an

eight-week contest in 2012 to aid its drug development process. It released data on chemical

compounds that it had previously tested, and then challenged participants to identify which held

the most promise for future testing. The winner would receive $40,000. The contest attracted 238
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teams that submitted more than 2,500 proposals. The winning solution came from computer

scientists (not professionals in the life sciences) who were using machine-learning approaches

previously unknown to Merck. This opened up opportunities for Merck that would not have

otherwise been feasible.

Contests held by NASA also illustrate the worldwide span of these human capital inputs

(Lakhani et al. 2013). NASA launched a set of pilot projects in 2008 to evaluate the use of

global contests and similar crowd-sourced approaches for solving thorny technical challenges that

were proving difficult for its internal team. NASA used three for-profit platforms (InnoCentive,

TopCoder, Yet2.com) during its early phases for challenges like forecasting of solar events, im-

proved food barrier layers, and compact aerobic resistive device design. Seven challenges posted

on InnoCentive illustrate the global engagement, with 2900 problem solvers from 80 countries

participating. In many cases, the developed crowd-based solutions were twice as good or better

than what the organization had achieved internally. These contests continue to be an important

way that NASA sources global talent for its work.

Boudreau and Lakhani (2014) describe further the many ways that contests are used to

access far flung ideas and insights. Similar to Upwork and HourlyNerd, many digital platforms

like InnoCentive and TopCoder are positioning themselves to be the platforms for companies to

reach talented people with ideas, no matter where they live. This breadth of the crowdsourcing

platforms, moreover, is critically important for the value they can deliver to clients like Merck

and NASA. This is because the quality of the outcome depends not on the average quality of

the responses assembled, but instead on the extreme tail of the ideas generated. While internal

experts may on average deliver better quality ideas, the extreme values when pulling ideas from

a very large external contractor pool are likely to be higher. If it is only the best idea or solution

that matters, access to a huge global developer pool can be very advantageous.

Third, as described in introduction, some companies are seeking to establish porous organi-

zational boundaries directly for their businesses. When P&G developed its Connect + Develop

platform, it had 7,500 employees worldwide working on innovation-related activities. But, P&G

estimated that there were 200 people outside of P&G working on the same topics for each of

its scientists, or about 1.5 million people, and it launched its Connect + Develop to be this

global outreach. One of its earliest successes was an important innovation for its Pringles line

that came from a technology developed in a small bakery in Italy (Huston and Sakkab, 2006).

In a similar spirit, companies and developers engaged in open-source software depend upon and

contribute to a global common good, where national borders are second-order.
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5 Perspectives for Researchers

Data on digital labor markets provide some special advantages for researchers interested in

empirical labor topics. First, they often can provide a unique or rare angle on an important

topic through their records of bidders and the outside options of both parties, their record of

performance outcomes, the ability to construct longitudinal careers for workers, the conduct of

skills assessments for workers, and so on. This often allows researchers to attack very complex

problems in new ways, providing a unique edge to papers. For example, studies of discrimination

have often been perplexed by how to best determine levels of discrimination when observing

realized wage differentials in the market, whereas these platforms could allow one to make

inference from the observed bids given to an employer and the characteristics of the chosen

worker. On the other hand, weighing against this advantage is the fact that these powerful

approaches often bring their own complex problems to solve. Continuing the discrimination

example, how do you correctly capture the employer’s perceptions of the various performance

histories of the bidders?

One limitation of Upwork data for some labor topics is that it is not straightforward to

identify corporate firms due to the lack of a unique company identifier. The person hiring

within General Motors company, for example, could list many variations on the company’s

name or even the name of the subsidiary that they work for. For researchers familiar with

patent data, this structure is operationally quite similar to ambiguities with patent assignee

codes/names. This structure limits the ability of researchers to describe outsourcing behavior

very well across the firm size distribution on Upwork, but for most applications this has limited

consequence. Longer-term, it would be very interesting to match digital labor markets data

to confidential administrative sources of employer-employee information, like the Longitudinal

Employer-Household Database (LEHD) that is developed and maintained by the Census Bu-

reau. Another possibility is the Venture Xpert records on start-ups backed by venture capital.

Obviously, overseas freelancers would not be captured, but such merger would allow interesting

depictions of local hiring versus outsourced contracts.

Third, these platforms allow experiments to be run in labor markets that are not other-

wise feasible (e.g., Pallais, 2014; Cullen and Pakzad-Hurson, 2016). Some of these experments

are conducted at the platform level, changing fundamentally how some aspect of the market

“works”—a type of intervention that would be very difficult to conduct in other contexts. For

example, Horton (2016b) reports the results of a true minimum wage experiment, while Horton
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and Johari (2016) report the results of an experiment in which employers were required to pub-

licly signal their relative preferences over price and quality to would-be applicants. They were

able to experimentally manipulate whether the employer’s preferences were communicated to

would-be applicants, allowing them to estimate how much additional sorting of workers to the

“right” kind of employer occurs when employer preferences are made explicit.

6 Open Questions

The analyses and examples of digital labor markets provided in this review bear witness to an

exciting phenomenon in its earliest stage of development. With a focus on high-skilled talent,

Freeman (2013) argues increasing globalized knowledge creation and transfer could become the

“one ring to rule them all” with respect to international trade in services, financial and capital

mobility, and people flows. Perhaps so, and the evidence collected in this review suggests digital

labor and talent access could be a central part of such a future. On the other hand, this fate

is far from guaranteed, and the ultimate importance of these global forces will only be revealed

over the next decade and beyond. We close this review with some open questions to this end.

First, several interesting questions exist about the platforms themselves. Perhaps most im-

portant, platforms are still experimenting with the technical designs and algorithms that govern

how their labor markets operate, what information is provided to firms and workers, and so

on. Many small tweaks are implemented, but some redesigns are quite impactful, such as when

oDesk began requiring firms and workers to use a similar skill vocabulary, with implications for

the matching efficiency of the platform. The digital platforms have clear incentives to make

adjustments that improve their efficiency and competitiveness, and researchers likewise may un-

cover top-notch natural experiments if they can be closely integrated into these adjustments

and their design/implementation. On a related note, complementary tools like Dropbox, Slack,

GoogleDocs, etc. are improving the functioning and accelerating the development of digital labor

exchanges. We need to learn more about the symbiotic relationship between other collaborative

tools and digital labor markets and how the complementary products coevolve. Ownership of

data and privacy have not been major concerns thus far, but may take on bigger roles in the

future.

Next, many questions exist about how these rapidly-expanding digital labor platforms will

impact the broader labor markets and economy around them. At present, the modest size

of these labor platforms has not delivered local consequences in advanced economies like those
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associated with Uber and Airbnb. As such, there has been less attention to regulatory structures

and tax policies for these markets, especially compared to other parts of the shared economy.

It is an open and important question about how the policy environment surrounding these

companies will adjust as they scale. Similarly, the future interactions—competitive battles,

mergers and acquisitions, etc.—with offline outsourcing or temporary help companies or online

platforms in adjacent domains will be intriguing to watch. Recent start-ups that focus on online-

to-offline work tasks (e.g., Hello Alfred) suggest the current perceived gaps might close faster

than expected.

While small in advanced economies from a contracting perspective, the economic impacts

in terms of freelancers and their local economies are already more accentuated in some special

settings in developing and emerging economies. For example, some remote Russian towns have

an abundance of technical talent due to the Cold War and utilize these digital labor platforms

to obtain good-paying work globally when none is available in the local economy. Due to local

spillovers and the development of agencies, as discussed in Section 2, remote places can even

become somewhat known for a certain type of outsourced task, similar to the specialized man-

ufacturing towns in China. More research should go into studying the development of these

contractor pools and their local operations. Moreover, comparative studies across specialized

places in the face of exchange rate movements and similar shocks will be interesting. On these

and similar fronts, studies can be both leading edge in terms of describing an emerging global

phenomenon and also on the leading edge in terms of academic insights about important broader

economic questions.
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Appendix: Conceptual Framework for Gravity Model

This section reviews the Eaton and Kortum (2002) model as a theoretical background for a
gravity specification for trade.14 The world consists of N countries producing and consuming a
continuum of goods or services j ∈ [0, 1]. In our setting, we think of j as tasks or services that
are completed on a digital platform, but we will keep the simple label of “good” throughout this
appendix for consistency. Consumers maximize utility in each period by purchasing these goods
in quantities Q(j) according to a constant elasticity of substitution (CES) objective function,

U =

(
∫ 1

0

Q(j)(σ−1)/σdj

)σ/(σ−1)

, (1)

subject to prices determined below. σ > 0 is the elasticity of substitution across goods for the
consumers. Consumers earn wage w and consume their full wages in each period. Accordingly,
time subscripts are omitted.

Countries are free to produce or trade all goods. Inputs can move among industries within
a country but not across countries. Industries are characterized by identical Cobb Douglas
production functions employing labor with elasticity α and the continuum of produced goods,
also aggregated with (1), with elasticity 1−α. Factor mobility and identical production functions
yield constant input production costs across goods within each country, ci(j) = ci ∀j.

Technology differences exist across countries, so that country i’s efficiency in producing good
j is zi(j). With constant returns to scale in production, the unit cost of producing good j in
country i is ci/zi(j). While countries are free to trade, geographic or cultural distance results
in “iceberg” transportation costs so that delivering one unit from country i to country n costs
dni > 1 units in i. Thus, the delivery to country n of good j made in country i costs

pni(j) =

(

ci
zi(j)

)

dni. (2)

An increase in country i’s efficiency for good j lowers the price it must charge. Perfect compe-
tition allows consumers to buy from producers in the country offering the lowest price inclusive
of shipment costs. Thus, the price that consumers in country n pay for good j is

pn(j) = min[pni(j); i = 1, ..., N ]. (3)

The technology determining the efficiency zi(j) is modelled as the realization of a random
variable Zi drawn from a country-specific probability distribution Fi(z) = Pr[Zi < z]. Draws
are independent for each industry j within a country. A core innovation of Eaton and Kortum’s
model is to use the Fréchet functional distribution to model technologies,

Fi(z) = e−Ti·z
−θ

, (4)

where Ti > 0 and θ > 1. The country-specific parameter Ti determines the location of the
distribution, while the common parameter θ determines the variation within each country’s
distribution. By the law of large numbers, a larger Ti raises the average efficiency of industries
for country i, and therefore its absolute advantage for trade. A larger θ, on the other hand,
implies a tighter distribution for industries within every country and thereby limits the scope
for comparative advantage across nations.

The Fréchet distribution (4) allows prices from equations (2) and (3) to be determined. The
probability that country i is the lowest-cost producer of an arbitrary good for country n is

14Costinot et al. (2012) extend Eaton and Kortum (2002) to articulate appropriate industry-level estimations
of Ricardian advantages as a source of trade among countries.
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πni = Ti(cidni)
−θ�

∑N
k=1 Tk(ckdnk)

−θ.15 With a continuum of goods, πni is also the fraction of
goods country n purchases from country i. Country n’s average expenditure per good does not
vary by source country, so that the fraction of country n’s expenditure on goods from country i
is also

Xni

Xn

=
Ti(cidni)

−θ

∑N
k=1 Tk(ckdnk)−θ

, (5)

where Xn is total expenditure in country n. Holding input prices constant, technology growth
in country i increases its exports to country n through entry into industries in which it was
previously uncompetitive. Looking across import destinations for an industry in which it already
exports, country i also becomes the lowest-cost producer for more distant countries it could not
previously serve due to the markup of transportation costs. Condition (5) also shows how trading
costs d lead to deviations in the law of one price.

Defining Qi to be the total sales of exporter i, Eaton and Kortum (2002) show how bilateral
exports can be expressed as

Xni =
(dni/pn)

−θXn
∑N

k=1(dki/pk)
−θXk

Qi, (6)

where pi is the price level of a country i. This equation shows how the trade connects with
the aggregate size of the importer (Xn), the exporter (Qi), and the price-adjusted distances
between them (dni/pn). The allocation of trade has an intuitive feel. The share of total exports
of country i (Qi) that go to country n is determined by how country n’s size, bilateral distance,
and prices compare to the other countries in the world, with the latter being summarized in the
denominator through the summation of countries.

Rearranging this for the purposes of estimation, we have

log (Xni) = log(Qi)− θ log(dni/pn) + log(Xn)− log(
∑N

k=1
(dki/pk)

−θXk)

or

log (Xni/Xn) = log(Qi)− θ log(dni/pn)− log(
∑N

k=1
(dki/pk)

−θXk).

The last term is a worldwide constant term that would be captured by intercepts or fixed effects
in estimation.

Reflecting on this model, there are parts of it that are not well suited to thinking about a
digital labor market. For example, the model assumes balanced trade across goods and that all
goods are represented, but we are examining only a small slice of economic activity and there is
no trade balance. On the other hand, the choice to contract on these platforms may be closer
to the perfect competition and distance assumptions than other settings. This provides some
context and grounding for applying the gravity equation in our empirical work.

15The distribution of prices country i presents to country n is Gni(p) = Pr[Pni ≤ p] = 1 − Fi(cidni/p) =
1− exp(−Ti(cidni)

−θpθ). Country n buys from the lowest cost producer of each good, so that its realized price

distribution is Gn(p) = Pr[Pn ≤ p] = 1−
∏N

i=1
[1−Gni(p)] = 1− exp(−pθ

∑N

i=1
Ti(cidni)

−θ). The probability is

πni = Pr[Pni(j) ≤ min{Pns(j); s 6= i}] =
∫∞

0

∏

s 6=i
[1 − Gns(p)]dGni(p). See Eaton and Kortum (2002) for the

full derivation of the price index.
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Figure 1:  Example of a worker profile from a digital labor platform

Notes: Example of a worker profile from the oDesk platform.



Figure 2:  The asymmetric nature of Upwork global contract flows

Notes:  The figure quantifies the number of contracts for selected countries by their cross-border nature. The vertical axis is specific to each country and measured 
in tens of thousands. The first bar in each triplet captures outbound contracts made by employers in the country to workers in another country. The second bar 
reflects contracts made by employers to workers in their own country. The third bar measures the contracts completed by workers in the country where the 
employer is in another country.



Figure 3a:  Top employer-worker contract flows on Upwork platform by contract volume

Notes:  The figure shows the top 15 employer-worker contract flows on oDesk/Upwork by contract volume through 2014. The arrow points to the location of the 
worker. The number indicates the rank of the flow, and Appendix Table 1 provides values. For the #3 case, the third largest flow is the United States to itself.



Figure 3b:  Top employer-worker contract flows on Upwork platform by wage bill

Notes:  The figure shows the top 15 employer-worker contract flows on oDesk/Upwork by wage bill through 2014. The arrow points to the location of the worker. 
The number indicates the rank of the flow, and Appendix Table 1 provides values. For the #1 case, the largest flow is the United States to itself.



Notes:  Squared deviations of the share of Upwork wage bill paid by US employers to a country against the US share 
of imports of goods and services from that country. Services imports data come from the World Bank TSD database 
and are last reported by country in 2011. Goods imports data come from the census. To avoid compositional changes 
in the series over time, the goods and services series are restricted to be balanced. Deviations of Upwork shares are 
calculated against the balanced series.

Figure 4:  Comparison of Upwork's global sourcing distribution for US 
employers to that for goods and services imports
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Figure 5:  Elasticities of work to own-bid and cross-bids

Notes: See Panel A of Table 6. 
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Appendix Figure 1:  Hours of work on Upwork platform

Notes: Taken from Horton (2016a). Panel A describes application timing from the perspective of Pacific Standard Time on the West Coast of 
the United States. Panel B maps from the perspective of the contractor. Many countries have workers who adjust their work schedules to that 
of the United States.



Job Category
Number of job 

openings

Number of 
unique 

applicants
Number of 
contracts

Number of 
cross-border 

contracts
Cross-border 
contract share

Wage bill, ($ 
mil)

Wage bill from 
cross-border 
contracts, ($ 

mil)
Cross-border 

wage bill share

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Administrative Support 3,741,563 22,443,920 484,244 435,450 90% 184.7 155.5 84%
Business Services 853,436 2,741,608 95,699 79,552 83% 78.3 59.4 76%
Customer Service 436,211 2,232,582 50,541 43,665 86% 89.3 70.9 79%
Design & Multimedia 5,339,055 14,267,825 498,949 457,700 92% 106.2 92.9 87%
Networking & Info. Systems 646,733 1,431,241 47,445 43,108 91% 39.3 31.8 81%
Sales & Marketing 2,797,382 15,416,597 376,295 342,496 91% 141.8 121.0 85%
Software Development 2,736,048 8,886,761 230,407 217,343 94% 307.5 285.0 93%
Web Development 7,918,424 30,365,649 772,828 724,107 94% 607.6 561.5 92%
Writing & Translation 4,163,107 10,566,662 598,715 480,517 80% 167.4 107.2 64%

Total 28,631,959 108,352,845 3,155,123 2,823,938 90% 1,722 1,485 86%

Table 1: Summary statistics by job category

Notes: Data come from oDesk/Upwork from the launch of the platform through 2014.  Wage bill is in millions of US dollars at the time of recording.



DV is India's DV is share
Base Including Weighting Unweighted Adding Adding Excluding share of of company

estimation distance by log estimation worldwide trade with UAE dollar value contacts with
covariates population oDesk India outlier firm of contracts Indian ethnic

only contracts control for country name

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Indian diaspora share of 1.090*** 0.728*** 0.969*** 0.850* 1.135*** 1.004*** 0.531** 0.694* 2.577***
country population (0.197) (0.156) (0.364) (0.429) (0.218) (0.236) (0.204) (0.360) (0.188)

Indicator for geographical distance 0.071** 0.041 0.090** 0.087** 0.069** 0.077** 0.059* -0.033 0.004
to India of 5,000-10,000 kilometers (0.030) (0.026) (0.043) (0.044) (0.031) (0.033) (0.030) (0.056) (0.058)

Indicator for geographical distance 0.095*** 0.088*** 0.100** 0.092** 0.119*** 0.102*** 0.087*** 0.058 -0.074
to India of >10,000 kilometers (0.029) (0.030) (0.039) (0.041) (0.027) (0.033) (0.028) (0.063) (0.047)

Log population -0.009 -0.016* -0.017* 0.010 -0.009 -0.010 0.011 0.000
(0.007) (0.009) (0.010) (0.008) (0.007) (0.006) (0.013) (0.007)

Log GDP per capita -0.042** -0.051* -0.045 -0.008 -0.041* -0.034 0.010 -0.078**
(0.022) (0.027) (0.029) (0.025) (0.023) (0.022) (0.039) (0.035)

Log telephone lines per capita 0.004 0.002 -0.004 0.005 0.004 -0.005 -0.056 0.052
(0.034) (0.039) (0.038) (0.030) (0.034) (0.034) (0.055) (0.041)

Overall fit of project profile with 0.078** 0.070 0.054 0.085** 0.076* 0.074* 0.015 -0.032
India's worker profile (0.039) (0.047) (0.054) (0.039) (0.040) (0.039) (0.057) (0.083)

Log count of oDesk contracts -0.027***
worldwide (0.009)

Trade with India as share of GDP 0.660
(1.046)

Observations 92 92 92 92 92 92 92 92 92
Mean of DV 0.341 0.341 0.341 0.341 0.341 0.341 0.338 0.372 0.096
Relative effect (1% diaspora share) 0.032 0.021 0.028 0.025 0.033 0.029 0.016 0.019 0.268

Notes:  Country-level regressions in Columns 1-7 estimate traits associated with a larger share of work being contracted to India. Column 8 considers shares based upon dollar values. 
Column 9 considers the share of company contacts placing contracts that have an ethnically Indian name. Regressions weight by log number of worldwide contracts formed on oDesk, 
unless otherwise noted, and report robust standard errors.

Table 2: Estimates of contract volumes formed on oDesk with workers in India
Dependent variable is share of oDesk contracts formed with workers in India



Country

Employer wage-
bill rank from 
cross-border 

contracts

Worker wage-bill 
rank from cross-
border contracts

Number of cross-
border hiring 

contracts 

Wage-bill from 
cross-border 

hiring, ($ mil)

Number of cross-
border worker 

supply contracts

Wage-bill from 
cross-border 

worker supply, ($ 
mil)

(1) (2) (3) (4) (5) (6) (7)

United States 1 7 1,468,476 964.6 123,157 56.0
Australia 2 24 269,941 138.0 17,499 8.5
United Kingdom 3 11 229,056 92.6 44,201 23.0
Canada 4 9 183,206 86.6 42,332 30.4
United Arab Emirates 5 45 122,343 69.7 10,939 3.5
Germany 6 19 40,392 19.1 15,456 10.7
France 7 33 26,494 18.5 11,356 5.7
Netherlands 8 40 30,933 14.8 6,379 4.6
Israel 9 57 38,285 13.3 3,202 2.3
Ireland 10 58 17,984 13.0 4,525 2.2
Denmark 11 72 13,119 11.4 2,179 1.4
Switzerland 12 64 18,428 11.1 1,532 1.7
Sweden 13 46 13,980 10.0 6,045 3.4
Spain 14 23 19,295 9.1 12,803 8.9
Singapore 15 56 31,820 9.0 4,713 2.3
New Zealand 16 55 16,772 8.4 4,422 2.4
Hong Kong 17 60 15,320 8.2 3,013 2.0
Norway 18 66 9,344 7.4 2,075 1.7
Belgium 19 61 11,263 6.1 2,547 2.0
Italy 20 27 13,373 4.3 12,039 6.9

Notes: See Table 1. The top 20 countries by hiring employer wage bill are displayed.

Table 3A: Hiring and working patterns for top hiring countries on oDesk/Upwork



Country

Employer wage-
bill rank from 
cross-border 

contracts

Worker wage-bill 
rank from cross-
border contracts

Number of cross-
border hiring 

contracts 

Wage-bill from 
cross-border 

hiring, ($ mil)

Number of cross-
border worker 

supply contracts

Wage-bill from 
cross-border 

worker supply, ($ 
mil)

(1) (2) (3) (4) (5) (6) (7)

India 22 1 48,236 3.4 595,980 340.3
Philippines 41 2 20,573 1.2 627,497 286.9
Ukraine 37 3 4,526 1.4 66,436 118.3
Russia 25 4 7,292 3.1 39,754 89.2
Pakistan 45 5 15,480 0.9 265,127 87.3
Bangladesh 75 6 11,078 0.3 399,845 62.5
United States 1 7 1,468,476 964.6 123,157 56.0
China 30 8 7,962 2.2 40,153 38.1
Canada 4 9 183,206 86.6 42,332 30.4
Poland 38 10 3,967 1.4 13,529 25.5
United Kingdom 3 11 229,056 92.6 44,201 23.0
Belarus 119 12 356 0.1 9,799 18.6
Romania 46 13 5,523 0.9 32,769 17.8
Vietnam 89 14 1,832 0.2 16,929 13.3
Indonesia 55 15 2,941 0.6 26,272 11.5
Argentina 64 16 2,043 0.5 10,228 10.9
Serbia 78 17 2,253 0.3 20,196 10.8
Armenia 100 18 734 0.1 8,918 10.7
Germany 6 19 40,392 19.1 15,456 10.7
Egypt 56 20 5,288 0.6 26,445 10.1

Notes: See Table 1. The top 20 countries by worker wage bill are displayed.

Table 3B: Hiring and working patterns for top working countries on oDesk/Upwork



Country
Worker wage-bill 

rank

Number of work 
supply contracts, 

total

Wage-bill from 
work supply, 
total, ($ mil)

Wage-bill from 
work supply, 2005-

2011, ($ mil)

Wage-bill from 
work supply, 2012-

2014, ($ mil)
Total US imports of 

goods, ($ mil)
Total US imports of 

services, ($ mil)

(1) (2) (3) (4) (5) (6) (7) (8)

United States 1 235,225 221.7 67.7 154.0 n.a. n.a.
India 2 317,731 211.6 59.2 152.4 158,462 53,945
Philippines 3 358,671 193.0 48.4 144.6 51,737 8,362
Ukraine 4 30,612 67.4 20.0 47.4 8,230 n.r.
Pakistan 5 140,552 58.4 15.4 42.9 21,345 10,118
Russia 6 19,305 50.1 16.7 33.4 144,435 17,658
Bangladesh 7 218,882 39.7 6.5 33.1 23,322 n.r.
China 8 20,055 23.4 3.8 19.7 2,007,688 46,240
Canada 9 25,264 21.2 6.3 15.0 1,778,196 177,874
Poland 10 6,208 16.5 4.8 11.7 16,446 9,476
United Kingdom 11 22,265 14.2 3.5 10.6 317,506 286,063
Belarus 12 4,444 9.8 2.9 6.9 3,753 275
Romania 13 14,447 9.8 2.1 7.7 6,474 n.r.
Argentina 14 5,516 8.1 2.5 5.6 26,484 6,612
Vietnam 15 7,836 7.7 1.5 6.2 76,744 198
Indonesia 16 12,735 7.1 1.8 5.3 92,053 1,598
Brazil 17 4,773 6.6 1.7 5.0 158,228 21,621
Egypt 18 11,534 6.4 1.3 5.1 13,498 n.r.
Armenia 19 3,949 6.2 1.8 4.5 368 n.r.
Australia 20 9,444 6.1 2.1 4.0 54,245 28,384

Notes: The top 20 countries by worker wage bill paid by US employers are displayed.  Data come from oDesk/Upwork from the launch of the platform through 2014. Columns 
7 and 8 use external data from the Census and the World Bank TSD database and take totals over data from 2006-2011. 2011 is the last year of services imports data with a 
country breakdown. Although trade in goods data is available through later periods, data ends in 2011 to maintain comparability between the goods and services series. Missing 
services data are not reported in the TSD database (n.r.).  

Table 4:  Top countries supplying work to American employers



Estimation 
without 

historical trade

Base estimation Base 
estimation, 
pre 2011

Base 
estimation, 
post 2011

Base 
estimation, post 
2011 with lag

(1) (2) (3) (4) (5)

(0,1) Geographic distance, quartile 2 -0.281*** -0.245*** -0.324*** -0.274*** -0.162***
(0.00150) (0.00146) (0.00673) (0.00242) (0.00299)

(0,1) Geographic distance, quartile 3 -0.425*** -0.386*** -0.551*** -0.389*** -0.172***
(0.00184) (0.00188) (0.00912) (0.00323) (0.00424)

(0,1) Geographic distance, quartile 4 (longest) -0.539*** -0.449*** -0.752*** -0.438*** -0.142***
(0.00214) (0.00243) (0.0108) (0.00412) (0.00528)

(0,1) Employer - Worker GDP/Cap > $5k 0.343*** 0.367*** 1.254*** 0.135*** -0.133***
(0.00368) (0.00366) (0.0172) (0.00464) (0.00442)

(0,1) Employer - Worker GDP/Cap > $10k 1.117*** 1.087*** 0.419*** 1.087*** 0.825***
(0.00498) (0.00466) (0.0149) (0.0112) (0.00943)

(0,1) Past trade volume, quartile 2 0.0100** -0.105*** 0.0773*** 0.194***
(0.00466) (0.0370) (0.00515) (0.00476)

(0,1) Past trade volume, quartile 3 -0.0836*** -0.328*** 0.0145*** 0.123***
(0.00501) (0.0427) (0.00555) (0.00560)

(0,1) Past trade volume, quartile 4 (largest) 0.0867*** -0.0520 0.131*** 0.170***
(0.00491) (0.0421) (0.00550) (0.00563)

(0,1) Zero historical trade -0.357*** -0.495 -0.324*** -0.0622***
(0.0197) (0.309) (0.0206) (0.0175)

(0,1) Common country border -0.449*** -0.414*** -0.477*** -0.430*** -0.336***
(0.00555) (0.00559) (0.0221) (0.00864) (0.00767)

(0,1) Common country language 0.198*** 0.204*** 0.295*** 0.226*** 0.116***
(0.00319) (0.00308) (0.00785) (0.00478) (0.00294)

Time zone difference -0.0114*** -0.0177*** 0.0249*** -0.0268*** -0.0381***
(0.000153) (0.000137) (0.000841) (0.000195) (0.000172)

(0,1) Both the employer and worker 1.645*** 1.835*** 1.916*** 1.828*** 1.144***
countries are in the WTO (0.266) (0.127) (0.529) (0.173) (0.108)

Lag of log wage bill for country pair 0.369***
(0.00237)

Observations 19,430 18,143 13,330 17,485 17,485
Mean of dependent variable ($ mil) 0.0758 0.0811 0.0288 0.0622 0.0622

Table 5: Estimates of wage-bill volume formed on Upwork
DV is wage bill from cross-country contracts paid by employer country 

Notes: Estimates are weighted by total employer country wage bill. Robust standard errors are reported. Estimation is via Poisson pseudo maximum 
likelihood and includes employer country and worker country fixed effects. Employer country fixed effects are concentrated out, and worker 
country fixed effects are included as dummies. All models also include dummies for quartiles of the product of gap between countries (not 
reported). Historical trade volume is flows taken from the cepii TRADHIST dataset and averaged over 2001-2004. Other gravity covariates come 
from the cepii Gravity dataset. Column 5 includes an indicator for zero trade prior to 2011 in the oDesk data and the lag of log wage bill is set to 
zero in these cases.



Base Technical Non-technical Base Base
categories categories estimation estimation

2005-2011 2011-2014

(1) (2) (3) (4) (5)

Wage bid average -0.316*** -0.416*** -0.261*** -0.629*** -0.268***
(0.0298) (0.0596) (0.0313) (0.186) (0.0247)

Wage bid average  x 1(US worker) 0.211*** 0.215*** 0.204*** 0.257*** 0.188***
(0.0189) (0.0340) (0.0216) (0.0682) (0.0171)

Own-bid elasticity, rest of world -4.615 -8.291 -3.056 -7.990 -4.140
Own-bid elasticity, US workers -2.144 -5.557 -0.953 -6.581 -1.808
Cross-elasticity, rest of world share and US bids 0.0387 0.0442 0.0222 0.0981 0.0370
Cross-elasticity, US share and rest of world bids 0.00685 0.00964 0.00507 0.0135 0.00577

Z-score of log local currency to -0.597*** -0.447*** -0.604*** -0.651*** -0.515***
dollar exchange rate (0.0525) (0.0900) (0.0610) (0.0870) (0.0548)
Log wage bid average in the United 0.361*** 0.278*** 0.423*** 0.222*** 0.566***
Kingdom x Worker in United States (0.0379) (0.0551) (0.0409) (0.0489) (0.0328)

Z-score of log local currency to -0.0164*** -0.0289*** -0.00630 -0.0214*** -0.00439***
dollar exchange rate (0.00403) (0.00782) (0.00383) (0.00601) (0.000804)
Log wage bid average in the United 0.556*** 0.518*** 0.595*** 0.336*** 0.877***
Kingdom x Worker in United States (0.0496) (0.0870) (0.0438) (0.0595) (0.0331)

Observations 33,604 11,862 21,742 10,311 23,293

Table 6: Estimates of contract elasticities for US employers
See panel headings for dependent variable

Notes: Table provides estimations of contract elasticities for US employers. The unit of observation is the country-job category-month of contracts with US 
employers. Regressions include worker country-by-job category and year-by-month fixed effects. Z-scores of the local currency to US dollar exchange rate are 
used as instruments for the mean of the bid. The log of the average UK wage bid interacted with a dummy for workers from the United States is an instrument 
for the wage bid average for US workers. Robust standard errors reported.

Panel A:  Main Regression. Dependent variable is log share of contracts less the no-hire share

Panel B:  First stage regression for wage bid average

Panel C:  First stage regression for wage bid x 1(US worker)



Rank Worker country Employer country Contracts Rank Worker country Employer country Wage bill

(1) (2) (3) (4) (5) (6) (7) (8)

1 Philippines United States 358,671 1 United States United States 221.7
2 India United States 317,731 2 India United States 211.6
3 United States United States 235,225 3 Philippines United States 193.0
4 Bangladesh United States 218,882 4 Ukraine United States 67.4
5 Pakistan United States 140,552 5 Pakistan United States 58.4
6 Philippines Australia 71,139 6 Russia United States 50.1
7 India Australia 59,339 7 Bangladesh United States 39.7
8 India United Kingdom 47,279 8 Philippines Australia 39.3
9 Philippines United Kingdom 40,178 9 India Australia 32.1

10 Philippines Canada 36,838 10 China United States 23.4
11 India Canada 36,500 11 Canada United States 21.2
12 Bangladesh United Kingdom 32,957 12 India United Kingdom 21.1
13 Bangladesh Australia 30,667 13 India Canada 18.5
14 Ukraine United States 30,612 14 United States United Arab Emirates 17.2
15 India United Arab Emirates 28,515 15 India United Arab Emirates 16.9
16 Canada United States 25,264 16 Poland United States 16.5
17 Bangladesh Canada 24,688 17 Philippines Canada 14.7
18 India India 23,294 18 United Kingdom United States 14.2
19 Philippines United Arab Emirates 23,200 19 Philippines United Kingdom 11.2
20 Pakistan United Kingdom 22,919 20 Belarus United States 9.8
21 United Kingdom United States 22,265 21 Romania United States 9.8
22 Pakistan Australia 20,804 22 United States Australia 8.2
23 Philippines Philippines 20,250 23 Argentina United States 8.1
24 China United States 20,055 24 Vietnam United States 7.7
25 United States Australia 19,750 25 United States Canada 7.6
26 Russia United States 19,305 26 Russia United Kingdom 7.3
27 United States Canada 19,270 27 Ukraine United Kingdom 7.2
28 United States United Kingdom 18,360 28 Indonesia United States 7.1
29 Pakistan Canada 17,200 29 Brazil United States 6.6
30 Kenya United States 16,461 30 Ukraine Canada 6.6

Appendix Table 1: Top employer-worker routes on Upwork

Notes: See Figures 3A and 3B.

Contract volume Wage bill ($ mil)




