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ABSTRACT

We quantify the distortionary effects of nexus tax laws on Amazon’s distribution network 
investments between 1999 and 2018. We highlight the role of two features of the expansion of 
Amazon’s network: densification of the network of distribution facilities and vertical integration 
into package sortation. Densification results in a reduction in the cost of shipping orders, but 
comes at the expense of higher facility operating costs in more expensive areas and lower scale 
economies of processing shipments. Nexus laws furthermore generate additional sales tax 
liabilities as the network grows. Combining data on household spending across online and offline 
retailers with detailed data on Amazon’s distribution network, we quantify these trade-offs 
through a static model of demand and a dynamic model of investment. Our results suggest that 
Amazon’s expansion led to significant shipping cost savings and facilitated the realization of 
aggregate economies of scale. We find that abolishing nexus tax laws in favor of a non-
discriminatory tax policy would induce the company to decentralize its network, lowering its 
shipping costs. Non-discriminatory taxation would also entail lower revenue, however, as tax-
inclusive prices would rise, resulting in a fall in profit overall. This drop and the decline in 
consumer welfare from higher taxes together fall short of the increases in tax revenue and rival 
profit, suggesting that the abolishment of nexus laws would lead to an increase in total welfare.
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1 Introduction

Online retail has grown substantially over the two last decades, accounting for 12% of all retail

spending in Q1 of 2020.1 The largest online retail platform, Amazon.com, henceforth Amazon, is

central to this growth. Between 1999 and 2018, Amazon’s share of online spending has grown from

10% to 45%, contributing to the rise in the concentration in retail markets (Autor et al., 2020).

This increasing dominance suggests that e-commerce is associated with important economies of scale

and scope, leading to a “winner-take-all” trajectory. The importance of demand-side increasing

returns to scale on platform competition is well understood (Greenstein, 1993; Chu and Manchanda,

2016; Cao et al., 2018, see). A less studied source of supply-side economies of scale is investment

in distribution networks. Rather than relying on existing hub-and-spoke networks operated by

independent logistic companies, Amazon is now the third largest delivery company globally, and

industry experts forecast that it will soon operate a fully integrated logistic supply chain.

While this investment strategy mimics that of vertically integrated brick-and-mortar retail

chains, such as Walmart, Kmart and Target (Barwick, 2008; Holmes, 2011; Zheng, 2016), a fun-

damental difference between e-commerce platforms and traditional retailers is that consumers can

make purchases online without being physically close to product inventories. Holding fixed prices,

this implies that online retailers can optimize the configuration of their logistic networks to mini-

mize costs, taking as given the spatial distribution of demand.2 Nexus tax laws change the nature

of this optimization problem by tying (tax included) retail prices with the physical presence of

facilities in a given state. Such laws favor retailers with small geographic footprints and can distort

investments in cost-saving technologies.

The goal of this paper is to measure these distortions by evaluating the effect of discriminatory

tax policies such as nexus tax laws on the distribution network of online retailers. To accomplish

this objective, we study Amazon’s growth between 1999 and 2018 through the lens of a dynamic

model of investment in a distribution network.

In the model, Amazon chooses the locations of new logistic facilities anticipating the impact

of its network configuration on current and future revenue and on the cost of fulfilling orders. We

focus on two types of facilities: (i) fulfillment centers and (ii) sortation centers. Fulfillment centers

are facilities where goods are stored, orders are packed, and packages are transferred to downstream

facilities for sorting and final delivery. In contrast, sortation centers are facilities where packages

are sorted by destination in preparation for final delivery. By locating fulfillment and sortation

centers close to each other, Amazon can integrate the order fulfillment process vertically and fulfill

an order entirely in-house, up to the last mile.

We model the cost of fulfilling orders as a combination of three components. First, the cost

of warehouse space, a fixed cost, depends on the local rental rate and a congestion penalty of

1 See https://www.census.gov/retail/mrts/www/data/pdf/ec_current.pdf.
2 In Houde et al. (2021), we show that consumer spending at Amazon is independent of distance to distribution
centers. We interpret this result as suggesting that, during our sample period, Amazon was able to guarantee a
uniform delivery speed (e.g. 2-day shipping), independently of the proximity of consumers to storage facilities.
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operating in urban areas. The other two components, which are variable costs, are the labor costs

of processing the orders at a facility and shipping costs. The latter depend on total shipping

distance and whether orders are handled by an integrated sortation center or by a independent

shipping company.

The model predicts that the optimal network configuration is the outcome of two trade-offs.

First, Amazon faces a trade-off between shipping cost savings (density) and order processing and

fixed costs (scale), given current and future demand. Second, nexus tax laws induce a trade-off

between economies of density and revenue. Upon building a distribution facility in a new state,

online retailers have to collect sales taxes on all purchases from that state. The magnitude of

this opportunity cost is modulated by the elasticity of demand, as well as tax collection delays

negotiated between Amazon and state governments.

We measure the relative importance of each of these forces in determining the location of new

facilities in three steps. In the first step, we estimate a model of demand for online and offline goods.

We combine data on household-level online spending at various websites from the comScore Web

Behavior database, data on retail spending in total from the Consumer Expenditure Survey, and

data on the propensity to shop online from Forrester Research. We estimate a CES specification

that allows us to predict household spending and Amazon’s revenue in each county and measure

the elasticity of Amazon’s revenue to local tax changes, a key ingredient to quantifying the revenue

side of the network expansion trade-offs. We identify the demand elasticity using quasi-random

variation in Amazon’s tax-inclusive price caused by the timing of Amazon’s entry into different

states. We control for nationwide improvements in quality, convenience, and product variety with

year-platform fixed effects. The results confirm that consumers are responsive to price, with a

demand elasticity of approximately −1.5, similar to the estimates from Einav et al. (2014) at −1.8

and Baugh et al. (2018) at −1.5. The estimate implies that a customer in a non-taxed location

spends 9.8% more at Amazon than the same customer in a location with the average sales tax rate

of 6.5%.

In the second step, we use the volume of orders originating from each county in each year, as

predicted by the demand model, to estimate the production technology of processing orders. Since

we do not observe how Amazon allocates orders to fulfillment centers, we use a simple probabilistic

model of product availability to predict order flows. We rely on data on the distributions of capacity

and number of employees across facilities to identify the likelihood of product availability and the

order processing technology. We estimate that a given fulfillment center is able to satisfy an order

with a probability of approximately 50%. As a result, building a denser network of facilities reduce

shipping costs by reducing the probability that orders are fulfilled by more distant fulfillment

centers. At the same time, the results imply that there are sizable increasing returns to scale to

order processing, which leads to an incentive to build fewer, but larger facilities with higher capacity

utilization rates.

In the final step, we estimate shipping and fixed costs using a moment inequality estimator.

Following Holmes (2011), we specify a set of moment inequalities that rationalize Amazon’s observed
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network expansion strategy. We compare the firm’s discounted profit stream under the observed

distribution center locations to its profit under alternative locations Amazon could have chosen,

but elected not to. For a given fulfillment center, we define alternative locations as the locations of

other facilities opened at later dates. We find values of cost parameters that render the observed

network roll-out more profitable than these alternatives.

We exploit variation in taxes and input prices across counterfactual networks to identify the

effects of distance and vertical integration into sortation on shipping costs and the effect of local

congestion on fixed costs. For example, moving up the opening date of a facility in a low-population,

low-tax state and in turn delaying the opening of a facility in a more populous, high-tax state

implies both higher revenue streams due to lower exposure to sales tax early on and longer shipping

distances and thus higher cost. By independently varying the relative magnitudes of the predicted

tax implications and input prices, we estimate bounds on each of the cost parameters.

Our estimates imply that Amazon’s average cost of shipping an order decreased from $2 to $0.30
over the sample period. Highlighting the potential supply chain efficiencies associated with vertical

integration into sortation, we find that a significant contributor to these lower shipping costs is

in-house sortation, reducing shipping costs by 40% in 2018. Overall, the results suggest that the

economies of density in shipping costs exceed the scale economies to order processing. As a result,

Amazon’s implied long-run average total cost of order fulfillment exhibits substantial economies of

scale. By expanding its network, Amazon reduced its total average fulfillment cost by about 46%,

despite facing larger labor and fixed costs.

We next use the estimated demand and fulfillment cost functions to illustrate the effect of

nexus tax laws on the configuration of the distribution network, Amazon’s cost and profit, and

other components of welfare. We simulate counterfactual profit-maximizing network configurations

under two tax regimes. We contrast the current nexus tax laws with a non-discriminatory tax

policy, where Amazon collects sales tax in all states. Since the computational burden of solving the

dynamic investment problem that Amazon faces is prohibitive, we approximate its solution with a

series of static profit maximization problems evaluated at different levels of demand. The solutions

to these static problems show that the estimated demand and cost functions are able to predict the

network expansion observed in our sample period well.

We find that a move to a non-discriminatory tax system would lead to larger and less centralized

simulated distribution networks than under the nexus tax policy. Evaluated at 2018 demand, this

tax reform would lower the average shipping cost and distance by 23% and 14%, respectively. The

lower shipping costs are partially offset by increases in labor and fixed costs, so that total average

costs are 6.3% lower under a non-discriminatory tax regime. Overall, Amazon’s profit would fall

with a move to non-discriminatory taxation, as the decrease in revenue and demand due to more

transactions being taxed outweighs the decrease in average costs. Consumer welfare falls, even

though Amazon’s rivals’ profits rise, as the higher tax-inclusive prices on Amazon lead to some

demand diversion. Since tax revenue is higher under a non-discriminatory policy, the net welfare

effect depends on the magnitude of the fiscal multiplier. Assuming a multiplier of 1.64 (Dupor et al.
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(2021)), our estimates suggest that the nexus policy decreases total welfare by about $5 billion in

aggregate. Ignoring the supply-side response of Amazon would overstate the welfare cost of nexus

laws by 8%. This highlights the importance of modeling firms’ investment decisions when analyzing

tax policy.

Our work relates to several strands of literature. First and foremost, we contribute to a growing

literature measuring the effect of discriminatory tax policies on the location of economic activities.

For instance, Suárez Serrato and Zidar (2016) measure the impact of corporate taxes on the mobility

of workers and firms, and Fajgelbaum et al. (2019) measure the equilibrium effect of state tax

dispersion on misallocation of production. Slattery (2020) and Kim (2020) analyze welfare effect

of tax competition and location-based subsidies. While this literature provides general predictions

regarding the spatial distribution of firms and workers, our paper is the first to analyze how spatial

dispersion in taxes affects investments in an environment with economies of density. Bruce et al.

(2015) and McGarry and Anderson (2016) provide early reduced-form evidence that Nexus laws

impact the location choices of online retailers, while our paper quantifies their effect of fulfilment

cost and welfare.

Our analysis is also related to recent operations research and economics literature on the man-

agement of online firms’ distribution networks (see Agatz et al., 2008, for an overview) and on

the relationship between a brick-and-mortar retailer’s store locations and its distribution network.

Building on Barwick (2008), who estimates the aggregate scale economies, irrespective of source,

from operating multiple stores in close geographic proximity, Holmes (2011) estimates the savings in

distribution costs associated with clustering stores near a distribution center. Zheng (2016) relates

the proximity of a rival’s distribution center to the chain’s expected future entry. These studies

take the configuration of the distribution network as given and rely on variation in the distances

from a distribution center to potential store locations to identify scale economies. Instead, we study

the development of the network of fulfillment centers as a strategic choice for the firm. Little work

to date has studied such classic industrial organization questions as the role of cost differences in

affecting firms’ competitive positions in the context of distribution in online markets.

Finally, an increasing body of work focuses on the estimation of demand in online retail markets

(e.g., Dolfen et al., 2019), the most relevant being studies on the responsiveness to sales tax and

the gains from variety. Einav et al. (2014) estimate the demand response to sales tax using eBay

data, exploiting the fact that a buyer has the option to buy from an out-of-state seller who does

not charge sales tax. Baugh et al. (2018) use a differences-in-differences approach to estimate the

effect of the ‘Amazon tax’, or changes in sales-tax collection on Amazon between 2013 and 2015. In

estimating the tax sensitivity, neither set of authors is able to consider substitution to other taxed

or non-taxed online outlets. We thus contribute to this literature by expanding the estimation of

demand for retail goods beyond a single online firm to a large number of online and offline retailers.

The remainder of the paper is organized as follows. The next section describes the consumer

spending data and summarizes expansion of the network. Section 3 specifies Amazon’s optimization

problem and the components of the profit function, while Section 4 presents the estimates of the
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model parameters. Section 5 uses these estimates to analyze the impact of the distribution network

expansion and the role of sales tax laws therein. Section 6 concludes.

2 Data and Stylized Facts

To analyze the expansion of Amazon’s distribution network, we rely on several data sources. The

available network data covers the years 1999 to 2018, which defines our sample period. The other

data do not cover the entire sample period, so we use a combination of our estimated models,

interpolation, and extrapolation to construct the missing observations. Section 4 and Appendices

A and B.1 describe these processes.

We begin by briefly discussing each source and the process by which we construct our primary

variables, although we leave many of the details for the appendices. We then present important

facts and trends in the data that we rely on to identify the determinants of Amazon’s profit function.

2.1 Retail Spending and Orders: Data

The main input into our demand model is the spending on retail goods by a county’s representative

household. We construct a panel of annual spending, differentiating between different types of

shopping outlets, or shopping ‘modes’. We consider three online shopping modes that vary in their

exposure to sales tax and a single offline shopping mode.

We rely on the comScore Web Behavior Database from 2006 to 2016 to construct the spending

series for the three online modes. comScore records the price, the domain, and the date of every

transaction made by a random sample of online shoppers.3 For each respondent, comScore also

records the five-digit ZIP code and a number of demographics. The sample includes 40 (12) thou-

sand households and covers 85% (54%) of US counties in its largest (smallest) sample year. The

counties covered are the most populous, as 99% (92%) of US households live in the represented

counties in the largest (smallest) sample year (see Table A-1).

We manually classify each transaction’s seller into a retailer type based on the seller’s physical

footprint across the US. Amazon, which we denote as shopping mode 1, has sales tax liabilities in

select states due to its growing distribution network, but, during most of our sample, not in states

where it does not have a physical presence.

Shopping mode 2 consists of the online arms of nationwide retailers with a broad physical store

network, such as walmart.com, which we denote as taxed online retailers. Mode 3, which we

denote as non-taxed online retailers, covers firms that rely on the online sales channel only but do

not operate extensive distribution networks; they thus lack a physical presence across states (e.g.,

overstock.com). Therefore, the variation in retailer tax collection obligations across shopping

modes, combined with within- and across-state variation in sales tax rates, changes the relative

3 comScore also records browsing behavior for households who do not shop online. We do not rely on these data
here.

5

walmart.com
overstock.com


price of a given purchase across locations and modes. Using this classification, we calculate the

mode-level annual spending for each household in the comScore sample.

We make two important adjustments to the comScore spending variables. First, we account for

households who do not shop online by using survey data from Forrester on the prevalence of online

shopping as a function of demographics. Second, we correct for the fact that comScore tracks

only the subset of user transactions made on a single registered device by scaling up household

expenditures to match average spending per household from Amazon’s financial statements. We

similarly scale other online spending using reports from the US Department of Commerce. We

calculate spending on the offline mode, mode 0, by combining data from the annual Consumer

Expenditure Survey and Census tables. We then calculate the county-level weighted average annual

spending on each mode using population weights from the US Census, giving us annual mode-level

spending for the representative household in each county. Appendix A provides details.

In addition, the demand model includes a number of consumer demographics, which we collect

from the American Community Survey and the Decennial Census, and measures of local concentra-

tion of offline retailers, which we collect from the Census’ County Business Patterns. See Appendix

A.

2.2 Distribution Network: Data

We obtain information on Amazon’s distribution network from the supply-chain consulting com-

pany MWPVL, International (http://www.mwpvl.com/). For each distribution facility, MWPVL

provides information on the location, size in square feet of floor space, employment, facility type,

opening date and closing date, where applicable.

We rely on the facility type to identify two primary types of distribution centers. First, we group

all distribution centers that store non-grocery items into a single category of fulfillment center.4 We

drop specialized distribution centers, including ‘PrimeNow Hubs’, Amazon Fresh grocery delivery

centers, return centers, and distribution centers for select high-value items such as jewelry.

The second type of facility, the sortation center, is a downstream facility in the delivery process.

For most of our sample, independent shippers such as UPS and FedEx handled much of the order

fulfillment process, including the shipping process, routing the packages through their own network

of sortation and delivery facilities from the fulfillment center to the final destination. However,

starting in 2014, Amazon began to build its own sortation network, which brings the majority of

the fulfillment process in-house: co-located fulfillment centers continuously send shipments to the

sortation centers, where these are grouped into three-digit destination zip code areas and transferred

for ‘last-mile’ delivery by either the postal service or another local courier.5 Figure 1 summarizes

the process for both ‘outsourced’ and ‘integrated’ shipments.

4 This includes non-sortable centers, handling large items that the firm cannot ship in combination with any other
products, and small and large sortable centers, handling items that the firm is able to combine into a single package.

5 Since the end of our sample period, Amazon has also begun to invest in last-mile delivery, in particular in urban
areas.
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Figure 1: Logistic of Online Transactions

(a) Independent Sortation

Consumer places order.

Order assigned to FC.

1

2

Transfer: 3rd party shipper picks up 
shipments and delivers through own 
network of sortation/delivery facilities.

3

Case 1: Outsourced sortation
(all shipments pre-2011; shipments from unaffiliated 
FCs post 2011)

Sorting: 3rd party shipper sorts packages into 
zip-code groups.

4

Last-Mile: 3rd party shipper delivers to 
consumer.

5

(b) Integrated Sortation

Transfer: Amazon transfers package to 
affiliated sortation center.3

Case 2: Integrated sortation
(shipments from affiliated FCs post 2011)

Last-mile: local delivery company delivers to 
customer.

4

Consumer places order.

Order assigned to FC.

1

2

Sorting: Amazon sorts packages into zip code 
areas and transfers pallets to local delivery 
company.

5

According to MWPVL, packages that are routed through Amazon’s own sortation network

satisfy two conditions. First, the final destination must be within the sortation facility’s coverage

region. MWPVL suggests that a sortation center’s catchment area includes destination zip codes

within 150 miles from the facility. Second, the sortation center must be near one or more fulfillment

centers, at a distance of at most 25 miles.

2.3 Cost components: Data

We assume that the costs Amazon faces when making network decisions are split into fixed costs

and variable costs per order. Fixed costs consist of the cost of warehouse space. We recognize,

per square foot of warehouse space, the observed rental rate and a congestion penalty to urban

locations. We approximate the rental rate with local commercial rents for warehousing space.

The primary source for these data is Moody’s Analytics REIS database which covers most MSAs

between 2006 and 2018. Appendix A describes how we construct county-level rents per square foot

using these data. The congestion penalty allows for the possibility that fixed costs are higher in

urban counties, where, for example, integrating facilities into the highway network is more difficult.

We rely on the population density of the facility’s county, obtained from the Census, to be a proxy

for such costs. We estimate the total fixed cost of a facility as the square footage reported by

MWPVL times the sum of rent and congestion payment.

The variable costs of an order include the wholesale cost of the product, the labor cost of

processing the order, and the shipping cost. We follow Holmes (2011) to infer wholesale costs,

or the cost-of-goods sold, from the gross margins reported in Amazon’s financial statements. See

Online Appendix OA.1.

We scale the number of employees at a facility by an average annual wage to obtain annual

labor costs of processing shipments at that facility. We use the average annual county-level wage of
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a retail employee from the Bureau of Labor Statistics as our measure of wages for fulfillment and

sortation center employees. We obtain employment data for 131 of the 165 facilities in 2017 from

a combination of industry reports and Amazon’s financial statements (see Appendix A). We also

observe system-wide employment in 2017 from an Amazon press release.6

Finally, we assume that shipping cost increases with shipping distance and calculate the distance

a shipment travels from a given fulfillment center to the consumer in a given county. We use the

Haversine formula to calculate the straight-line distances from the fulfillment center to each county’s

population-weighted centroid.

2.4 Sales Taxes: Data

The sales tax data come from two primary sources. First, we obtain state, county, and local sales

tax rates from Thomson Reuters’ Tax Data Systems for the years 2006-2018. For each year and

county, we calculate the average tax rate, as tax rates can vary within a county and may change

mid year. We assume that this sales tax rate applies to all consumer transactions at taxed online

and brick-and-mortar retailers, as well as to taxable transactions on Amazon.7 The average sales

tax rate is 6.5% across counties and years, and there is a significant of amount of time-series and

cross sectional variation in rates (see Table A-5).

Second, we observe the date on which Amazon began to collect sales tax in every US state. We

rely on data from Baugh et al. (2018) for states that realized the change before the end of 2015.

For the remaining states, we obtain the date of the change using various news sources. In 2017,

Amazon voluntarily began collecting sales tax on all of its transactions, regardless of consumer

location. This change was largely inconsequential, however; at the time, the company was already

collecting sales tax on orders from over 90% of US households. As our demand model is at the

annual level, we assume that the sales tax collection obligation applies to a given year and all

subsequent years if it is effective before August of the year; otherwise we assign it to the following

year.

Changes in the sales tax status are triggered by Amazon’s expanding distribution network due

to nexus tax laws. As we discuss above, these laws require retailers to collect sales tax from

consumers if they have a physical presence in the consumer’s state of residence. Otherwise, the

consumer is responsible for remitting a use tax, but few consumers do so.8 Not surprisingly, with

the rapid growth of e-commerce, brick-and-mortar retailers and policymakers, fearing significant

tax revenue losses, began supporting legislation to revise the definition of nexus as early as 2008 (see

Bruce et al., 2009). This culminated in a 2018 Supreme Court decision, where the court ruled that

6 Source: https://press.aboutamazon.com/news-releases/news-release-details/amazon-now-hiring-over-

120000-jobs-us-holiday-season.
7 Note that in five states, clothing purchases are generally sales tax exempt. We conduct two robustness checks
where we remove either all households from the affected states or all purchases categorized as “Apparel” from the
sample. The exemptions do not appear to drive the estimated tax responsiveness. See Houde et al. (2021).

8 See, e.g.,http://www.npr.org/sections/money/2013/04/16/177384487/most-people-are-supposed-to-pay-
this-tax, accessed on 1/12/2017.
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states could put tax collection responsibility on online retailers that exceed a minimum transaction

threshold.

The onset of Amazon’s tax collection does not always coincide with the opening of the first

facility in the state. For example, Amazon opened its first facility in Tennessee in 2011 and did

not start collecting sales tax in the state until 2014. Such gaps reflect negotiations about tax

collection responsibilities between state governments and Amazon. Amazon’s ability to extract tax

delay concessions from state governments varies with the growth of its network and its demand, as

we discuss in Appendix A.3. Hereafter, we call such delays ‘tax abatement’ agreements, although

we are being somewhat loose with this terminology. We account for the delays in our model by

assuming a deterministic schedule that maps the year of the first entry into a state into the year

when Amazon begins collecting sales tax. See Section 4.3.

2.5 Trends: Retail Spending and Orders

The basic descriptive patterns in spending demonstrate, not surprisingly, significant growth in

online shopping during our sample, with an average annual growth rate in household spending of

about 12%. At the same time, offline spending experiences an average annual decline of 5%. The

online growth reflects, in large part, Amazon’s expansion. The company’s sales grow on average 33%

per year during our sample, while non-taxed and taxed online retail grow 10% and 8%, respectively,

per year. Amazon’s share of online retail thus increases from about 6% in 2006 to 31% in 2016.

Table A-1 and Figure A-1 in Appendix A.1 demonstrate these patters.

While the growth in online spending in many locations in the US mirrors the aggregate trends,

there is significant cross-sectional variation in the level of spending on Amazon. We explore this

geographic variation in Figure 2, where we categorize counties based on the quintiles of the distribu-

tion of spending on Amazon by the county’s representative household in 2016. The map indicates

that counties in larger markets, such as counties around San Francisco, Chicago, and New York, fall

into the top or second spending quintiles of all counties. At the same time, a number of counties

in less densely populated areas, such as counties east of the Mississippi River, also exhibit high

levels of spending, placing them in the same quintiles. This spatial variation in spending provides

incentives for Amazon to decentralize its distribution network and to reduce shipping cost to not

just major metropolitan areas, but also some of these less urban areas.

Below the map, we break down average household spending on Amazon in 2016 across urban

and rural counties, wealthy and non-wealthy counties, and by Census regions. The data suggest

that households in urban or high-income counties spend more on Amazon than rural counties and

low-income counties. There is also regional variation in spending with the Northeast and the West

having higher spending levels. See Table A-4 for these spending averages for each of the sample

years.
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Figure 2: Geographic Distribution of Spending on Amazon (2016)

Average Annual Household Spending by Demographic Group ($, 2016)
Density Income Region

Urban Rural High Low Northeast Midwest South West

1,125 1,020 1,219 989 1,159 1,019 1,007 1,181

Notes: We classify counties with a population density of at least (less than) 500 people per square mile as urban
(rural) and counties with median household income of at least (less than) $80,000 as high (low) income.

2.6 Trends: Distribution Network

Table 1 summarizes the roll-out of Amazon’s fulfillment and sortation centers over the period 1999

to 2018, in three-year increments. The company expanded its fulfillment center network from five

individual facilities in 1999 to 128 by 2018.

Often, this expansion takes the form of locating new facilities within close proximity of existing

facilities, which we treat as co-location going forward. We use a clustering algorithm to define

groups of co-located fulfillment centers, or ‘clusters’, as of the end of the sample period. Roughly,

this amounts to grouping facilities that are within 20 miles of each other. We assign the centroid of

the locations of all clustered facilities at the end of our sample as the cluster’s location, recognizing

that shipping costs and distances to the various facilities within the cluster are largely the same.

Therefore, in the logistic model we describe below, we calculate the shipping cost at the level of

the cluster.

As an example, in 2018, Amazon operates six fulfillment centers near Harrisburg, PA, which we

group into a cluster located at the centroid of the six facilities. This cluster first came into existence

in 2010 when Amazon opened two facilities in Harrisburg. Over the next eight years, it opened four

additional nearby facilities, expanding the cluster in both number and size. The number of clusters,
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which we list in parentheses next to the number of fulfillment center locations in Table 1, grew

from five in 1999 to 70 in 2018. Hereafter, we use the terms ‘cluster’ and ‘location’ interchangeably,

as they both to indicate a potential site for expansion, either in the form of de-novo entry, if no

fulfillment center is active in the cluster at a point in time, or in the form of incremental expansion

through the addition of new facilities. We refer to clusters with at least one operating fulfillment

center as ‘active clusters’.

Table 1: Expansion of the Distribution Center Network

Facilities Size (100k ft2) Households

Year FC SC States
FC

Cluster SC
Employ-

ees Distance With SC

1999 5 (5) 0 4 5.9 - 305.8 307.6 -
2002 6 (6) 0 4 6.0 - 329.3 301.2 -
2005 9 (9) 0 6 5.6 - 337.3 268.8 -
2008 15 (12) 0 8 7.8 - 455.3 253.3 -
2011 25 (14) 1 9 13.2 3.2 1009.8 240.1 1.8
2014 57 (33) 12 17 14.0 3.5 965.1 127.2 48.7
2017 98 (52) 30 28 15.2 3.2 1984.1 73.8 81.7
2018 128 (70) 35 30 15.1 3.3 1906.7 67.4 82.8

Notes: Under facilities, we depict the numbers of fulfillment centers, with the number of active clusters in
parenthesis, sortation centers, and states with a facility. Size is the average square footage of fulfillment and
sortation centers and employees the number of employees of a cluster. Distance denotes the population-weighted
average distance in miles from a county’s centroid to the closest fulfillment center location. Households with
SC is the percent of US households with a sortation center within 150 miles.

The growth in fulfillment centers has been accompanied by a densification of the network. One

indication of this densification is the increase in the number of states with at least one active cluster,

which rose from four in 1999 to 30 in 2018. Table 1 also depicts network density in miles, measuring

the population-weighted average great-circle distance between each consumer location, which we

take to be a county’s population-weighted centroid, and its closest cluster. The average distance to

the consumer fell from 308 miles in 1999 to only 67 miles in 2018. Most of this decline is due to the

expansion of the distribution network into the most densely populated states along the coasts in

the mid-2010s. We illustrate these patterns in Figure 3, which maps locations of clusters (red) in

2006 and 2018, shading states by the number of households and presenting the state average sales

tax rate. The size of each bubble indicates the number of fulfillment centers in the active cluster.

Panel (b) of Figure 3 adds the location of the 35 sortation centers (yellow) that Amazon built

by 2018. As the map and Table 1 illustrate, sortation centers primarily serve large urban areas: by

2018, the relatively small number of sortation centers is able to serve a set of counties that together

account for 83% of US households.

Table 1 shows that both the size and the number employees per cluster have increased sub-

stantially over time. In addition, Amazon has expanded into more expensive areas: Table 2 shows

that the average rent per square foot in Amazon’s facility locations is below the national average

(in parentheses) in 1999, but about 10% higher than the national average in 2018. Similarly, the
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Figure 3: Distribution Center Network, 2006 and 2018

(a) Amazon fulfillment center network, 2006

(b) Amazon fulfillment center (red) and sortation center (yellow) network, 2018

Notes: Counties categorized into and shaded by quintiles of the distribution of number of households. Size of
each bubble scales with number of fulfillment centers.
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average population density of counties with a facility, our measure of congestion, has increased

substantially over time, and the wages in these counties are about $1,000 above the national aver-

age by the end of the sample. This suggests that, while the distribution network’s expansion has

reduced the distance to the average consumer and thus shipping cost, it has also disproportionately

increased fixed and labor costs.

Table 2: Local Determinants of Profitability

Year Rent ($/sq ft)

Population
Density (pop/sq

mile) Wage ($k) Sales Tax (%)
Taxed House-
holds (%)

1999 3.5 (3.6) 302.7 (245.8) 14.4 (13.8) 5.1 (6.0) 0
2002 3.7 (3.8) 414.7 (248.9) 15.7 (15.3) 5.1 (6.0) 0
2005 4.1 (4.0) 562.2 (252.1) 17.2 (16.7) 5.7 (6.0) 2.7
2008 4.2 (4.2) 512.1 (257.0) 18.8 (18.5) 6.0 (6.1) 11.3
2011 4.0 (4.0) 595.6 (259.2) 20.0 (19.3) 6.6 (6.2) 11.3
2014 4.2 (4.2) 685.0 (266.0) 21.1 (20.4) 6.8 (6.3) 69.2
2017 4.7 (4.4) 1059.5 (270.8) 22.8 (22.0) 6.6 (6.4) 97.6
2018 5.0 (4.6) 1156.7 (272.0) 23.6 (22.7) 6.6 (6.4) 97.6

Notes: We display average commercial rents, population per square mile, and annual wages at the county level
and average state-level sales tax rates for counties with an active fulfillment center cluster, compared to the
average across all counties or states in parentheses. Taxed households represent the share of US households
who live in states with positive sales tax and for whom Amazon remits sales taxes.

Some additional aspects of the distribution network expansion are noteworthy. Until 2010,

Amazon placed fulfillment centers in relatively low-population and low-tax states near highly pop-

ulated or high-tax areas. For example, Amazon opened two facilities in Nevada on the California

border, close to that state’s major cities. The company also opened one fulfillment center each in

New Hampshire and Delaware, both of which are close to major East Coast cities and have zero

sales tax. Indeed, the second to last column of Table 2 highlights that prior to 2011, the average

sales tax rate in states with a fulfillment center is lower than the nationwide average. At the same

time, the percentage of taxed consumers only increased by about 11% (last column of Table 2)

between 1999 and 2011, even though, as Table 1 indicates, the average distance between consumers

and their closest fulfillment center fell by 22% over that period. These patterns suggest that the

company actively chose locations that mitigate consumer exposure to sales taxes, in terms of either

the tax level or the size of the customer base exposed to taxes.9

As Amazon grew in scale, however, the network of fulfillment centers expanded beyond such

locations, presumably to be closer to population hubs despite sales tax implications and higher

fixed costs of warehousing in densely populated areas. For example, by 2014, we see entry into

highly populated states, such as California and Virginia, and high tax states, such as Tennessee

9 Work documenting consumers’ sensitivity to sales taxes, in terms of the extensive margin of shopping online,
includes Goolsbee (2000a), Goolsbee (2000b), Alm and Melnik (2005), Ballard and Lee (2007), and Scanlan (2007).
Ellison and Ellison (2009), Smith and Brynjolfsson (2001), Anderson et al. (2010), and Goolsbee et al. (2010)
study the intensive margin response to sales tax. Numerous papers, including Asplund et al. (2007), Agarwal et al.
(2017), and Chetty et al. (2009), study the response to sales taxes in offline markets.
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(9.5% tax rate in 2013). By 2018, Amazon added fulfillment centers in Georgia, Illinois, North

Carolina, and Ohio. The average sales tax rate in states with a fulfillment center surpassed the

overall average in 2011. Further, the growth in the share of households subject to sales tax rises to

over 90% by 2017, when Amazon began to collect tax from all consumers.

3 Model

We are interested in modeling the investment decisions leading to the expansion of Amazon’s

distribution network. Here, we detail components of the online retailer’s underlying per-period

payoff function, paying particular attention to the firm’s logistic problem, which drives the trade-

offs it faces in choosing the network of distribution facilities dynamically, as demand and order

flows evolve. We conclude this section with a description of this dynamic optimization problem.

3.1 Distribution network

We use the following notation to describe the distribution network. Facilities are indexed by

j = 1, . . . , n, and are fully described by their entry year (aj), capacity (kj), location (lj), and type

(mj = {FC, SC}).10 The index j represents a unique label attached to each facility. We assume

that locations are chosen from a finite set of possible locations, l = 1, . . . , L. In line with the co-

location of facilities we observe in the data, each location l can accommodate multiple fulfillment

centers and up to one sortation center. We thus use l to describe both the cluster and its location.

We use nt =
∑n

j=1 1(aj ≤ t) to denote the number of active facilities in period t. Similarly,

Klt =
∑n

j=1 1(aj ≤ t)× 1(lj = l and mj = FC) · kj measures the fulfillment capacity of cluster l in

period t.

We assume that the square-footage and type of each facility are fixed, so that the distribution

network evolves over time based on the opening of new facilities. We summarize the network in

period t, given the chosen sequence of opening decisions a = {a1, . . . , an}, by an nt × 3 matrix:

Nt(a) =
{
(kj , lj ,mj)

∣∣∀j s.t. aj ≤ t
}
.

We use a0, n0t , and N
0
t to denote the observed sequence of entry decisions and observed number of

active facilities and characteristics of these facilities in period t.

3.2 Demand and revenue function

We use a representative agent framework to predict orders and revenues as a function of the network

configuration and sales tax laws. Consumers are located at the population-weighted center of their

county, indexed by i = 1, . . . , I. They allocate their retail budget Bi between brick-and-mortar

retailers (k = 0) and the three online modes (k = 1, 2, 3).

10We abstract from facility exits as only one fulfillment center closes during the sample.
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Preferences for each mode reflect differences in tax exposure. For Amazon, or mode 1, nexus

tax laws imply that the distribution of sales tax across counties at a point in time reflects its

distribution network. For the remaining modes, exposure to sales tax does not vary across counties

within a year.

Beyond differences in tax exposure, we allow for two dimensions of differentiation between online

modes: quality and variety. We assume that consumers have CES preferences over modes where

each mode offers a mass of varieties ω with distribution Fkt(ω). We treat ω as a quality index by

assuming that the marginal utility of consumption of variety ω depends on a separable function of

ω and consumer i’s mode-specific taste for variety at time t, αikt. We assume that the offline mode

offers a single variety.

We show in Online Appendix OA.1.1 that consumers’ expenditure function is given by:

eikt =

∫
αiktωp̃ikt(ω)

1−σP σ−1
it BitdFkt(ω). (1)

p̃ikt(ω), the tax-inclusive price of variety ω on mode k, equals pikt(ω)(1 + τikt), where pikt is the

pre-tax price and τikt is the sales tax a resident in county i pays on purchases from mode k (see

below). Pit is the tax-inclusive Dixit-Stiglitz price index (Dixit and Stiglitz, 1977).

Equation (1) allows us to construct a log-linear function describing the spending in county i on

mode k relative to the offline option, mode 0:

ẽikt = ln eikt − ln ei0t

= ln(αikt)− ln(αi0t) + (1− σ)(ln(ρkt)− ln(pi0t))

+(1− σ) (ln(1 + τikt)− ln(1 + τi0t))︸ ︷︷ ︸
∆τikt

+ ln

(∫
ω2−σdFkt(ω)

)
= ξkt + λkZit + γkCit + ξ̄i +∆ξct + (1− σ)∆τikt + ϵikt (2)

where ξkt, as a mode-year fixed effect, captures mode-level determinants of expenditure, including

aggregate quality and variety – the last term in the second line of Equation (2). The vector Zit

contains demographics of the representative household, and Cit contains variables that measure

the level of local offline competition. The next two terms represent unobserved relative preferences

for online shopping. We assume that these preferences consist of a county-level, time-invariant,

component, ξ̄i, and a time trend that captures changes in preferences at the level of the county’s

Census Division, ∆ξct.

Since we do not observe prices for the offline option, the time-varying controls and fixed effects

account for county-level and time-series variation in prices at brick-and-mortar retailers in county

i. ∆τikt is the difference in log sales tax rates between mode k and the offline option. Last, the

model residual ϵikt includes time-varying shocks to the willingness to pay of consumers for the three

retail modes relative to the outside option, as well as measurement error in spending shares. See

Online Appendix OA.1.1 for a step-by-step derivation of Equation (2).
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We use consumer expenditure to derive aggregate revenue for Amazon, or mode 1, net of tax

remitted to state and local taxing authorities, by summing across locations:

Rt(Nt) =
∑
i

Mit
ei1t

1 + τi1t(Nt)
(3)

where Mit is the number of households. Similarly the number of orders originating from county i

is given by:

Qit(Nt) =Mit
ei1t

(1 + τi1t(Nt))p̄t
(4)

where p̄t is the average pre-tax price of Amazon’s varieties.

We impose the following assumptions on pricing and the distribution of orders across third-party

and Amazon’s direct sales.

Pricing Assumptions.

a. Each variety ω is available in each county i and its price does not vary across counties.

b. The pre-tax price of variety ω is set competitively by Amazon and a continuum of third-party

sellers according to a log-linear hedonic function:

ln pkt(ω) = ρkt + lnω.

c. Amazon earns variable profit according to common revenue sharing agreements with manu-

facturers and third-party sellers.

d. Third-party sales are non-taxable and have a constant market share across consumer locations.

Assumption a reflects that Amazon does not employ spatial price discrimination on its platform

and that such discrimination is not widespread on other platforms; thus the tax-inclusive price varies

across locations solely due to differences in sales taxes and variation in price over time is captured

by the mode-year fixed effect ξkt.
11

Assumption b allows us to treat prices as independent of the network configuration. It captures

the fact that a large number of sellers are active on the platform, selling products that are available

from a variety of other online and offline retailers.

We make Assumption c mostly for convenience since we observe limited information about the

characteristics of products and contractual terms between Amazon and its suppliers. Assuming a

11Evidence in Cavallo (2017) shows that over the period 2014-2016, online prices in the US do not change with
the location of the consumer. The retailers covered in the analysis include Amazon’s biggest competitors, such
as target.com and walmart.com, who reportedly priced nationally during the full sample. Cavallo’s work suggests
furthermore that reported efforts at spatial price discrimination by specialized online retailers in the early 2010s,
most notably Staples.com, were short-lived and temporary, presumably due to consumer backlash.
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common revenue-sharing formulation, together with Assumption d, allows us to write the revenue

net of cost of goods sold as a linear function of gross revenue:

Revenue Net Costt = Rt(Nt)× µ̄t.

Here, µ̄t denotes the average markup Amazon earns on direct sales, µown
t , and on third-party sales,

µ3PS
t , weighted by the contribution of each channel to orders:

µ̄t = s3PS
t µ3PS

t + (1− s3PS
t )µown

t ,

where s3PS
t denotes the share of third-party orders in year t.

Assumption d implies that consumers can always find an untaxed third-party seller, which

allows us to recognize the effect of third-party sellers on local sales tax liabilities.12 As a result,

the sales tax rate on each mode is given by:

τikt =


(1− s3PS

t )1taxablei1t τ̃it if k = 1 (Amazon)

τ̃it if k = 0, 2 (taxed offline and online retailers)

0 if k = 3 (non-taxed online retailers)

where τ̃it is the sales tax rate in county i and year t and 1taxablei1t is an indicator variable equal to

one if Amazon collects sales tax in county i in year t. In estimating the demand model, we use

Amazon’s observed physical presence and each state’s observed sales tax abatement schedule to

determine the tax rate residents of each county pay.

3.3 Order flow

The demand model allows us to predict the number of orders originating from county i. We use a

simple logistic model to assign a given order to a fulfillment cluster, depending on the availability

of goods across clusters and the distance between the clusters and the order’s county of origin. The

logistic model returns the flow of orders in the network, which we use to determine the variable

shipping and order processing costs.

First, we assume that a particular variety is held in every fulfillment center, but is out-of-stock

with some probability. We model product availability at a cluster as an IID binary random variable

with probability that a product is available given by

ϕt(Klt) = 1− exp

(
−ψ Klt

Varietyt

)
. (5)

The availability probability increases in the total fulfillment capacity of cluster l, Klt, but decreases

12This assumption entails an upper bound on the sales tax sensitivity. We have also conducted our analysis assuming
that all third-party transactions are taxed, resulting in a lower-bound, but significant, sensitivity to sales-tax
induced price variation. The true price sensitivity likely lies in-between these extreme cases, but Assumption e’s is
closer to the literature.
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in the variety of goods available on Amazon in period t. Equation (5) thus implies that an increase

in variety leads to a higher stock-out probability, giving Amazon an incentive to add fulfillment

centers and thus capacity to a given location as variety increases.

We rule out the possibility of a network-wide stock-out and assume that orders are processed

by the closest active cluster with available inventory. This leads to an L × I origin-destination

fulfillment matrix Ω(Nt), where, in light of the large number of orders, element (l, i), Ωl,i, measures

the fraction of orders from county i that are fulfilled by location l. As ψ → ∞, the probability that

the nearest active cluster fulfills a given order approaches one.

Conditional on orders being assigned to cluster l, we assume that they are distributed across

the individual fulfillment centers that make up cluster l in proportion to facility size kj .

Last, we rely on the industry evidence on sortation center catchment areas discussed in Section

2.2, together with the assignment of orders to clusters, to determine orders that are fulfilled fully

by Amazon. We summarize the share of orders from county i that is routed through a sortation

center at cluster l by an L × I matrix Ωsc(Nt). Element (l, i) of Ωsc equals to the sum of orders

from a household in county i, in percent, that are fulfilled by any cluster l′, Ωl′,i, that is within 25

miles of a sortation center l, provided the county falls in the 150 mile delivery catchment area of

the sortation center at l.

We use these assumptions to predict the quantity of orders handled by facility j in period t

as a function of the availability parameter ψ, the aggregate variety carried by Amazon, and the

network:

qjt(ψ) =


∑

iQit(Nt)Ωl,i(Nt)
kj
Klt

1(aj ≤ t) if mj = FC and lj = l,∑
iQit(Nt)Ω

sc
l,i(Nt)1(aj ≤ t) if mj = SC and lj = l.

(6)

Online Appendix OA.2.1 provides detail on the derivation of this function.

3.4 Cost function

The cost of fulfilling orders has three components: (i) shipping costs, (ii) labor costs in processing

orders, and (iii) fixed costs of facilities consisting of rents and congestion costs.

We begin with the shipping cost, which has two components. First, is a ‘distance cost’ that

is assumed to be a linear function of the delivery distance. Second, orders that Amazon routes

through its own sortation centers, which we refer to as “vertically integrated”, entail a constant,

per-order reduction in shipping cost relative to non-integrated orders.

This leads to the following system-wide shipping cost function:

CShipping
t (Nt) = θd ·

(∑
l

∑
i

Ωl,i(Nt)Qit(Nt)dil

)
+ θvi ·

∑
j

qjt1(mj = SC)


= θd ·Dt(Nt) + θvi ·Qvi

t (Nt) (7)
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where dil and Dt(Nt) are the shipping distance in miles from county i to cluster l and in total,

respectively, and Qvi
t (Nt) is the volume of vertically integrated orders. If θd > 0, Amazon can

reduce the cost of shipping to a particular county i either by opening up fulfillment centers in

new locations, reducing the distance to the nearest cluster, or by expanding the capacity of the

nearest cluster, thereby increasing the likelihood of product availability at the nearest cluster.

If θvi < 0, shipping costs can be further reduced by locating a sortation center near existing

fulfillment capacity. This creates a complementarity in the choices of sortation center and fulfillment

facility locations. Network density and vertical integration capture the idea that Amazon can lower

shipping cost by reducing its reliance on independent shipping companies either through a lower

distance that the shippers must cover, which in turn allows Amazon to put downward pressure on

negotiated rates, or through in-house sorting of packages.

We model the labor cost of processing using a Cobb-Douglas function, resulting in the following

labor demand functions for each facility type:

Ljt(Nt) = Amjqjt(ψ)
γ (8)

where qjt(ψ) is given by Equation (6) and Amj is the productivity of a facility of type mj . The

total labor cost is obtained by aggregating across facilities:

CLabor
t (Nt) =

∑
j

∑
l

wltLjt(Nt)1(lj = l), (9)

where wlt is the annual wage in cluster l. Importantly, if γ < 1 the production technology exhibits

economies of scale. Therefore, in addition to locating facilities in low-wage areas, Amazon can

lower labor cost by concentrating fulfillment capacity in a small number of fulfillment centers.

Last, the fixed cost of operating network Nt is given by:

Ft(Nt) =
∑
j

∑
l

kj · (rlt + κPop Densitylt) 1(lj = l)

= CRent
t (Nt) +

∑
j

∑
l

kj · (κPop Densitylt) 1(lj = l). (10)

CRent
t is the fixed cost of space, which scales with a rental rate of rlt. The parameter κ measures

how the fixed cost per square foot increases as the population density of location l increases. Such

additional penalties reflect either congestion or measurement error in rental rates, both of which

are likely more pronounced for large facilities.

3.5 Optimization problem

Putting together revenue and the various cost components yields the firm’s flow profits associated

with network Nt:
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πt (Nt) = µ̄tRt(Nt)− CShipping
t (Nt)− CLabor

t (Nt)− Ft(Nt). (11)

We are interested in understanding the trade-offs associated with the location choice of each

new active facility, conditional on the number and characteristics of facilities built every year.

Like Holmes (2011), we characterize the expansion of the network as the outcome of a constrained

dynamic optimization problem with perfect foresight:

Π
(
a0
)

= max
a

∞∑
t=0

βtπt (Nt) (12)

s.t. Nt = N0
t (a)∑

j

1(aj = t) = n0t − n0t−1

where β = 0.95 is Amazon’s discount factor and n0t−n0t−1 is the observed number of facilities opened

in period t. The solution to this problem, which describes the optimal roll-out of the distribution

network, is, under revealed preference, given by a0.

3.6 Discussion

We close this section with a discussion of several of our assumptions.

Willingness-to-pay and network investments: We begin first with the potential interaction

between Amazon’s demand and proximity to fulfilment centers. The demand model from Equation

(2) does not allow preferences to depend on the distribution network, in terms of either configuration

or size. One might imagine that the network configuration, such as the consumers’ distance to the

closest fulfillment cluster, shapes their willingness-to-pay to the extent that proximity to facilities

results in shorter shipping times. In this case, ignoring the network configuration’s contribution

to spending might furthermore bias the estimated elasticity of substitution if for a given county

location, changes in distance to the closest fulfillment center are correlated with changes in relative

taxes.

Note, however, that tax liability is tied to each customer’s state of residence, while the closest

fulfillment center to a given customer may be in a nearby state. Tax abatements also drive a

wedge between the timing of tax and shipping distance changes. In the short run, the entry of

new facilities thus varies taxes independently of shipping distance. In Houde et al. (2021), we

exploit this fact to test whether Amazon spending responds to various proxies for shipping speed

from the closest fulfillment, controlling for tax exposure, and cannot reject the hypothesis that

consumer spending is independent of proximity to an Amazon facility, our maintained assumption

here. This is consistent with the limited variation in shipping times on Amazon in practice: since

2005, Amazon has offered the same shipping terms, free two-day shipping on eligible purchases, to
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all Prime members irrespective of location.13

Instead, Equation (2) allows for uniform improvements in shipping speed across locations

through the mode-level fixed effect ξkt. The relatively short time series dimension of our data

precludes us from identifying independently how spending varies with the aggregate size of the

network, Nt, as a proxy for network density. In estimating the cost function and our counterfactual

analyses, we hold mean preferences for Amazon and the remaining modes fixed. The perturbations

we rely on in estimation only change the location of a single facility in a given year, but not change

the total size of the network. Similarly, the alternative networks we consider in our counterfactuals

are small deviations of the current network, suggesting that it might be unlikely that Amazon or

its competitors would adjust quality, prices, or aggregate variety, all of which are subsumed in ξkt,

in response.

Perfect foresight: Second, we assume that Amazon has perfect foresight about future demand and

supply conditions, an assumption that is common to the literature. It also reflects that Amazon is

a large, forward-looking company that has spent significant resources to improve the sophistication

of its predictions about future market conditions. It is difficult, of course, for us to represent

accurately the company’s expectations regarding demand and supply conditions post-sample. In

estimating the shipping and fixed cost contributions to the company’s network roll-out decisions,

which we describe in detail below, we circumvent the need to do so by exploiting only the optimality

of the timing of the opening of each facility within the sample period, holding fixed the facilities’

chosen locations and their total number at the end of the sample. Post-sample market conditions,

such as the entry or expansion of e-commerce rivals, which might give rise to entry deterrence

motives behind the chosen size and configuration of the distribution network, thus do not affect

our estimation. In the counterfactuals, we abstract from such considerations.

A second advantage to exploiting the optimality of the timing of facility openings, rather than

the optimality of the number of facilities, is that we can disregard unobserved sunk costs or benefits

to opening facilities, provided these are the same across facilities. We thus abstract from location-

specific unobserved sunk costs to opening a facility, such as the local government subsidies studied

in Slattery (2020).

Cost savings from vertical integration: Third, we recognize the gains to vertical integration

into package sortation in a reduced-form way, by making shipping cost dependent on whether the

delivery goes through an in-house sortation center. While not specifically modeled, the benefits from

in-house sorting, rather than contracting with UPS or FedEx, stem from two sources. There are the

cost efficiencies of bypassing the downstream shippers, who hold significant market power. Amazon

and the downstream shippers also face a hold-up problem. UPS or FedEx would have to invest a

significant amount in their network in order to handle Amazon’s volume at guaranteed shipping

times. The reputational concerns that shipping delays raise for Amazon provide the company with

incentives to invest in its own network. Modeling these incentives underlying Amazon’s increasing

13See https://money.cnn.com/2018/04/28/technology/amazon-prime-timeline/index.html, accessed in Oct
2019.
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expansion into delivery services is an interesting avenue for future research.14

Additional modeling assumptions: Finally, and more broadly, our data is mute on some details

of Amazon’s and its competitors’ operations. On Amazon’s side, we observe only the aggregate

share of sales by third-party sellers on Amazon’s Marketplace and assume it is constant across

locations, even though Amazon’s tax obligations differ between direct and third-party sales.15 Our

demand and network data are also not sufficiently detailed to distinguish between types of goods. As

a result, we assume that the capacity of a fulfillment cluster affects only the probability of product

availability, but not the range of varieties available at the location or an individual facility in the

cluster. Conditional on fulfillment capacity, all clusters thus carry every product variety with the

same probability. Lastly, we observe only a cross-section of employment at each fulfillment center,

together with aggregate trends in fulfillment employment. This forces us to hold the fulfillment

technology fixed over time. To the extent that there are productivity improvements in fulfillment

through e.g., automation, we may overstate the importance of economies of scale in fulfillment.

On the competitors’ side, we do not observe detailed information on the locations of their

distribution facilities and thus do not model their network choices. On the demand side, as we

control for time-varying mode-level preferences, we capture the growth in demand for competing

modes, however, which may be the result of systemwide improvements in delivery reliability and/or

speed due to network investments in response to Amazon’s total network size.

4 Empirical Analysis

In this section we discuss our econometric approach to estimating the above demand and cost

functions and the empirical results. In Section 4.1, we discuss the estimation of the demand model,

which we use to derive Amazon’s total revenue, Rt(Nt), and the geographic distribution of orders,

Qit(Nt), as a function of the network. Section 4.2 focuses on the estimation of the order flow

matrices, Ω(Nt) and Ωsc(Nt), and the labor demand function, Ljt(Nt). Finally, in Section 4.3, we

lay out the estimation of the fixed costs and the shipping costs associated with fulfilling an order.

4.1 Demand

We estimate the determinants of log spending on each mode, relative to log spending at brick-and-

mortar retailers, in Equation 2 using weighted least-squares, based on the number of observations

in the comScore sample for county i that we use to calculate ẽikt. We include as demographic

shifter Zit the income, age, and race of the representative household. We measure race as the share

of people in county i who are of a given race. To allow for non-linearities in the effects of age

14The logistics company MWPVL provides a summary of the primary benefits of Amazon’s vertical integra-
tion. See the article at http://www.mwpvl.com/html/amazon_building_new_sortation_network.html, accessed
on 11/10/2018, for details.

15See Amazon’s Annual Letter to Shareholders, 2018, available at https://www.sec.gov/Archives/edgar/data/

1018724/000119312519103013/d727605dex991.htm, accessed 6/30/2020.
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and income, we also include the share of people in the county with incomes above $100,000 and

the share of people in the county who are under the age of 35. The competition variables in Cit

include the log of county i’s population density as a proxy for travel costs and the number of all

and of small (under 50 employees) retail establishments per 1,000 people in county i. We interact

the demand shifters in Zit and Cit with an Amazon mode indicator to capture varying preferences

for Amazon by demographic group and by the level of offline competition. These preferences could

represent mode-specific targeting, heterogeneity in preferences for quality, variety, and convenience,

or variation in price sensitivity.

The identification of the elasticity of substitution, σ, comes from variation in relative taxes

across counties and time (∆τikt). The within-county variation exploits the timing of tax changes

triggered by Amazon’s expansion decisions and tax abatements, similar to a difference-in-difference

regression. The intensity of the “treatment” via tax rates varies across counties within the same

state, contributing to the identification of σ. Our main identifying assumption is that the timing

and magnitude of tax changes are independent of changes in the demand residual, conditional on

aggregate regional and mode-level trends.

Table 3: Demand Estimates

Specification I: Specification II:
Homogeneous σ Heterogeneous σ

Est SE Est SE

Elasticity (σ):
Constant -1.516 0.399 -2.488 0.507
% income 100k+ 4.179 1.343

Incremental Incremental
Amazon Base Amazon Base

Est SE Est SE Est SE Est SE

Demographics (λk):
Age 0.013 0.008 -0.020 0.010 0.013 0.008 -0.020 0.010
% under 35 1.701 0.397 -0.043 0.402 1.677 0.397 -0.037 0.402
log(Income) 0.222 0.22 0.013 0.008 0.226 0.22 0.013 0.008
% income 100k+ 0.257 0.395 -1.857 0.533 0.311 0.396 -1.741 0.534
% black -0.361 0.077 -0.647 0.637 -0.365 0.077 -0.648 0.637
% asian 0.873 0.209 2.252 1.215 0.881 0.209 2.162 1.216

Offline Competition (γk):
log(Pop density) 0.014 0.008 0.626 0.228 0.014 0.008 0.617 0.228
Retailers/pop -0.380 0.307 -0.828 0.415 -0.376 0.307 -0.821 0.415
Small retailers/pop 0.387 0.317 0.894 0.426 0.382 0.317 0.89 0.425

We present the estimated parameters and standard errors of two specifications in Table 3.

Specification I restricts σ to be the same for all consumers, while Specification II allows σ to vary

with the income of the representative consumer. We interact the relative tax rate with the share

of households in county i who have an income above $100,000.
As noted above, for each specification, we estimate a base effect of demographics and offline
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competition on the demand for all online modes relative to the offline option and allow for an

incremental effect of the covariates on the demand for Amazon. The estimated coefficients are

consistent across specification, so we focus our discussion on the heterogeneous-σ model.

The estimates suggest that the propensity to shop online falls with age and that households with

a head under the age of 35, in particular, prefer to shop on Amazon. Log-income does not have any

significant linear impacts on spending, but high-income households have lower preferences for online

shopping. Asian households prefer online shopping, and in particular shopping on Amazon, while

black households shop disproportionately offline. Online shopping does not vary with population

density, but the total number of offline competitors decreases spending across all three modes.

However, if those retailers are small, then the effects of competition disappear.

The estimated elasticity of substitution in the homogeneous model, which is approximately the

own price elasticity in a CES model for choices with small shares, is a precisely estimated −1.52.16

This result is in line with the findings of Einav et al. (2014) and Baugh et al. (2018). The magnitude

of σ suggests that a move from no taxes to the average tax rate of 6.5% results in a decrease in

demand of about 10% (6.5 times 1.52). The results of the heterogeneous specification indicate

that the price sensitivity is lower for high-income households. Specifically, a county at the 25th

percentile, with 8% of households having incomes above $100,000, has an elasticity of −2.21, while

a county with 15% of high-income households, the 75th percentile, has an elasticity of −1.89. We

investigate the robustness of our estimated elasticity to alternative spending measures and demand

specifications in Online Appendix OA.4.

To illustrate the importance of the estimated elasticity, we use the estimated Equation (3)

to calculate Amazon’s counterfactual revenue assuming a zero tax rate on Amazon transactions

throughout the sample and compare it to the firm’s predicted revenue under its actual tax obli-

gations. Few states collected taxes before 2006, and so the effect of taxes is growing over time,

especially after 2012. The loss in revenue under the actual tax path, relative to a world with

zero taxes, amounts to approximately $9 billion by the end of the sample in 2018, or 4% of sales,

suggesting that changes in Amazon’s sales tax liability significantly impact revenue.

With the estimates of the heterogeneous demand model in Table 3, we calculate Amazon’s total

revenue (Equation 3) for each year from 1999-2018 as a function of the network configuration, which

we utilize to estimate the cost parameters. To do so, we first generate the expenditure function

for each county and year outside of the comScore sample using a combination of extrapolation,

imputation, and data from Amazon’s financial statements. Appendix B.1 describes this process.

4.2 Order flow and labor demand

In this section, we discuss the estimation of the first set of cost parameters that enter (i) the

availability probability (ψ), which determines the number of orders handled by location j, and (ii)

the labor demand function (Afc, Asc, γ), given the level of orders. We estimate the flow of orders

16The maximum spending share of any of the online modes is under 5%.
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across the network by combining the predicted distribution of orders from the demand model with

data on platform-level variety and facility-level fulfillment capacity and employment.

Using the expenditure function derived from the demand model, we predict the number of

orders originating from each county and year by dividing the predicted expenditure by a yearly

price index for goods sold on Amazon, following Equation 4. To validate this approach, we compare

the predicted orders for the representative household in each county to orders calculated directly

from the comScore data for the subset of periods and counties with data overap; the correlation is

0.65.

To obtain the predicted number of orders handled by each facility j in year t from the distri-

bution of orders originating from each county, q̂jt, we require estimates of the origin-destination

probability matrices in Equation (6). These depend on product availability at cluster l. Equation

(5) summarizes our assumption that product availability is proportional to fulfillment capacity at

location j, which we observe, divided by aggregate variety available on Amazon, which we calcu-

late using the comScore data. The comScore data contain limited product characteristics to use

in deriving a measure of aggregate variety, however. We therefore rely on features of the observed

item-level price distribution to derive a proxy. We use the interquartile range of item-level price, rel-

ative to the median price, as a measure of the dispersion in available varieties over time. This proxy

for aggregate variety is highly correlated with alternatives, such as the number of unique prices we

observe in the data for a given year, but is less dependent on the sample size. We normalize the

variety index to one in 2018 to facilitate the interpretation of the model parameters. Appendix A.6

describes how we construct the price and variety indeces in detail. Note that since neither price nor

variety vary across county locations, the indices do not enter our estimated demand model directly;

they are subsumed in mode-year fixed effects.

For a given parameter value for ψ, the proportionality factor that maps variety-adjusted ful-

fillment capacity into product availability, we can now calculate the number of orders that flow

through facility j, q̂jt, following Equation (6). Plugging these into Equation (8) in turn yields the

predicted employment of facility j in year t, conditional on its size kj and location l:

Ljt(Nt|θ1) = Amj q̂jt(ψ)
γ (13)

As noted in Section 2, we observe the number of employees for most fulfillment and sortation

facilities in 2017 (denoted by L̂j,2017 for facility j) and system-wide employment in 2017 (denoted

by L̂.,2017). We use both sources of information to construct a minimum-distance estimator:

min
θ1

∑
j

(
Lj,2017(N2017|θ)− L̂j

)2
+
(
L.,2017(N2017|θ)− L̂.,2017

)2
, (14)

where θ1 = (Afc, Asc, γ, ψ) denotes the vector of parameters determining labor demand. Heuristi-

cally, the parameters are identified as follows. The two productivity parameters (Afc, Asc) enter

linearly in the labor demand function and are therefore identified from the covariation in observed
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employment across facilities, by type, and the predicted number of orders. The returns to scale

parameter (γ) is identified from covariation across facilities in capacity and predicted orders, which

translates into differences in predicted orders per employee. Finally the order flow parameter (ψ)

is identified from the covariation in the spatial distribution of employees and orders predicted by

the model.

Table 4: Order Flow Model Estimates

(a) Estimates summary

Specification I: Specification II: Goodness of Fit

Stockout Nearest Data Specification

Est SE Est SE Est I II

Availability (ψ) 0.49 0.21 – OLS: Y = lnL ln L̂ ln L̂
Orders (γ) 0.47 0.10 0.31 0.08 Intercept 5.39∗ 6.22∗ 6.40∗

Afc 1.81 0.75 3.52 1.00 FC x Dens. 0.25∗ 0.11∗ 0.08∗

Asc 0.41 0.17 0.68 0.25 FC x kj 0.64∗ 0.71∗ 0.38∗

SC 0.21 -0.62∗ -0.80∗

SSR 37.62 40.08 2017 lnL 4.83 4.92 4.93

(b) Summary statistics of the flow of orders

Years Ave Shipping Distance VI Orders Fullfillment prob.
(miles per order) (%) Closest 2nd Closest 3rd Closest

2006 450.43 0.00 0.48 0.26 0.17
2012 303.82 0.02 0.65 0.21 0.08
2018 141.80 0.37 0.51 0.23 0.12

Notes: The goodness-of-fit regression results are from OLS regressions of log employment at a facility on local
shifters of demand and facility characteristics. The ∗ indicates the coefficient is significant at the 5% level. The
last row of Table 4a shows the distribution of log employment in the data and that predicted by the model.
The summary statistics in the bottom panel are calculated using parameters from Specification I.

We report the estimates of θ1 for two specifications in Table 4a and summary statistics for

three years of our sample calculated using our main model in 4b. Our main model is the ‘Stockout’

specification, which assumes that orders originate from the closest fulfillment center with availabil-

ity. We also report estimates for a specification where the order originates from the closest facility,

abstracting from availability. The estimate of γ is significantly less than one in both specifications,

implying that the production function exhibits increasing returns to scale. Increasing returns to

scale in fulfillment is expected since the process of packaging orders is largely automatized and

relies on robotic technologies.

The availability parameter, which drives the allocation of orders to facilities, is equal to 0.49.

Rows 3-5 of Table 4b show that across years, this value implies that almost 90% of orders come

from one of the three closest facilities, with roughly 50% coming from the closest in 2018. Due

to expansion in variety and a resulting higher probability of stockouts, delivery from the closest

facility is slightly declining over time, despite expansion in capacity. Comparing Table 4b and
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Table 1 shows that this manifests itself in an average shipping distance per order of 142 miles in

2018, while the average distance to the closest fulfillment center is only about 70 miles in 2018.

Nevertheless, the expansion of the network of fulfillment centers led to a substantial decrease in

the average shipping distance over the period 2006 to 2018, from 450 to 142 miles. The expansion

of the sortation center network also led to an increase in the share of orders that Amazon handles

fully in-house; the model predicts that in-house sortation applies to 37% of orders in 2018. This

matches estimates from outside sources, which suggest that in 2014, at most 40% of Amazon’s

orders were sorted in-house.17

The last three columns of Table 4a evaluate the goodness-of-fit of the models. We report results

of three OLS projections of observed (labeled ‘Data’) and predicted 2017 facility employment on

the type of the facility and, for fulfillment centers, the capacity of the facility and the population

density of the surrounding area. The asterisk indicates coefficients that are significant the 5% level.

The last row displays actual and predicted average log employment calculated using the regression

coefficients.

Overall, both models fit the data well, in particular in relating fulfillment center capacity to

labor. The only coefficient that differs from the data significantly is the one on the SC indicator,

which is negative and significant when using the predicted employment but positive and insignificant

in the data. The difference is likely due to the fact that the data is limited in both the number

of sortation centers for which we observe employment and the variation in observed employment

across sortation centers. In contrast, the model predicts rich variation in employment across the

entire set of sortation centers. Comparing the two models suggests that the ‘Stockout’ model is a

better fit. As an additional validity check, we compare the year-over-year growth of system-wide

employment predicted from the model to a measure of growth calculated from Amazon’s financial

statements, and we are able to match the observed growth well. See Appendix A.2 for how we

construct the measures of system-wide employment.

4.3 Shipping and fixed costs

The parameters of the cost function that remain to be estimated are the ones that enter the shipping

cost and fixed cost functions: θ2 = {θd, θvi, κ}, following the functional forms in Equations (7) and

(10). We take a revealed preference approach by finding parameter values that render the observed

network more profitable than alternative, perturbed networks. This leads to a moment inequality

estimator.

Approach. We focus on alternative network roll-outs where we swap the opening dates of

two facilities to construct revealed-preference inequalities. Under our perfect foresight assumption,

changing the opening date of facility j to that of facility j′, and vice-versa, holding the facility’s

17See https://nypost.com/2017/12/29/trump-says-amazon-is-making-us-postal-service-dumber-and-

poorer/, which states that USPS handled 40% of Amazon’s shipments in 2014. Because USPS’ agreement with
Amazon covers primarily last-mile delivery, this estimate should be the maximum share of shipments that go
through Amazon’s sortation centers.
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other characteristics of location and size fixed, must result in a lower discounted net-present value

of profits than under the observed network a0:

Π(a0; θ2)−Π(aj,j
′
; θ2) ≥ 0

where Π(a) is defined in Equation (12). We use three criteria to select potential entry date swaps:

(i) facility j opened more than one year before facility j′, (ii) facilities j and j′ are of the same

type (FC or SC), and (iii) the difference between the sizes of j and j′ is less than 550,000 sq ft,

the inter-quartile range of capacity differences. This leads to M = 5, 577 potential permutations.

Importantly, the condition that strategy a0 yields higher profit than aj,j
′
only depends on the

profit flow differences between the entry dates of facilities j and j′, which we can calculate without

having to solve the infinite horizon dynamic programming problem. In contrast, counterfactual

network roll-outs that involve locations that Amazon does not choose in our sample lead to a

network configuration that differs from Amazon’s chosen one by the end of the sample. In this

case we would need to make additional assumptions about Amazon’s expectation regarding future

market conditions post-sample including, for instance, strategic deterrence considerations regarding

the entry of potential e-commerce rivals. By focusing only on deviations involving observed facility

locations, our estimation results are robust to the presence of these dynamic considerations, while

exploiting the significant cross-sectional variation in the attributes of chosen locations.

We decompose the value function differences, Π(a0; θ2) − Π(aj,j
′
; θ2), into a return function

∆Π(a0,aj,j
′
; θ2) of predicted differences and an unobserved error associated with swap (j, j′), ϵj,j

′
,

capturing deviations of the true value function difference from our prediction. This leads to the

following inequality condition:

Π(a0; θ2)−Π(aj,j
′
; θ2) = ∆Π(a0,aj,j

′
; θ2) + ϵj,j

′ ≥ 0. (15)

Separating the contribution of changes in fulfillment cost from the remaining components of the

return function ∆Π highlights that the return function is linear in θ2, reflecting the linearity of the

fulfillment cost function:

∆Π(a0,aj,j
′
; θ2) = Y j,j′ − (θdX

j,j′

d + θviX
j,j′
v + κXj,j′

p ) (16)

Here, Y j,j′ is the difference in discounted gross profit net of wages and rents between the chosen

and counterfactual networks:

Y j,j′ =

t(j′)∑
t=t(j)

βt
(
R̂t(Nt|a0)− ĈLabor

t (Nt|a0)− CRent
t (Nt|a0)

)
.

−
t(j′)∑
t=t(j)

βt
(
R̂t(Nt|aj,j

′
)− ĈLabor

t (Nt|aj,j
′
)− CRent

t (Nt|aj,j
′
)
)

(17)
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where a hat indicates that the function was estimated in a previous step. Y j,j′ thus measures the

net effect of the network configuration on gross revenue through tax changes and on wages and

rents through adjustments in the timing of location choices.

Similarly, the term Xj,j′

d is the discounted difference in total shipping distance, calculated as:

Xj,j′

d =

t(j′)∑
t=t(j)

βt
(
D̂t(Nt|a0)− D̂t(Nt|aj,j

′
)
)
. (18)

We define the differences in the discounted sum of vertically integrated orders, Xj,j′

vi , and in

the discounted sum of our congestion proxy - population density scaled by facility square-footage

- Xj,j′
p , analogously (See Online Appendix OA.3.1).18

In calculating the components of the return function, we rely on the previously estimated

demand and order flow models to predict revenue, wages, and rents under the two networks in the

years between the swapped facilities’ opening dates. This entails predicting Amazon’s revenue and

total number of orders in each county and the assignment of these orders to fulfillment centers for

the observed and counterfactual networks during the relevant time period.

To predict the consumer’s tax exposure under the two alternative networks, we assume that the

first entry into a state triggers the nexus laws’ physical presence rule, but that the tax status of

consumers in all counties adjusts only after a period of tax abatement. We assume a deterministic

schedule for the abatement period depending on the year of first entry of (i) five years if t < 2008,

(ii) two years if 2008 ≤ t ≤ 2010, and (iii) immediate if t > 2010.19

Estimator Set-up. The residual value function difference, ϵ, arises from various potential

sources: measurement error in the demand model, unobserved fixed cost components, including

unobserved subsidy payments by state and local governments, or mis-specification of the firm’s

beliefs regarding sales tax changes. We focus on the interpretation of ϵ as measurement error. One

challenge is that ϵ is potentially correlated with both gross profit differences Y j,j′ and, through

variable cost channels, differences in distance Xj,j′

d and vertically integrated orders Xj,j′

vi .

We address this simultaneity problem by constructing a vector of H non-negative instrumental

variables Zj,j′ that are correlated with changes in the profit components, but uncorrelated with

ϵj,j
′
. This allows us to consistently estimate θ2 using the following moment inequalities conditions:

E
[
Zj,j′ ·

(
Y j,j′ − (θdX

j,j′

d + θviX
j,j′

vi + κXj,j′
p )

)]
+ E

[
Zj,j′ · ϵj,j′

]
︸ ︷︷ ︸

=0

≥ 0. (19)

18 In considering counterfactual networks, we abstract from changes in the cost of tying manufacturers into the network
as manufacturers already serve the many locations of retailers like Wal-Mart and Target.

19We recognize that in New York, Amazon remitted sales tax prior to opening any fulfillment center, and that in
North Dakota and Washington State, Amazon operates non-logistic facilities that triggered sales tax liabilities.
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Following Pakes et al. (2015), we use this condition to construct sample moment inequalities:

1

M

∑
j,j′

Zj,j′

h ·
(
Y j,j′ −

(
θdX

j,j′

d + θviX
j,j′

vi + κXj,j′
p

))
︸ ︷︷ ︸

∆Π(a0,aj,j′ ;θ2)

= m̃h(θ
2) ≥ 0,∀h = 1, . . . ,H. (20)

To construct valid moment conditions, we assume that the econometric error ϵj,j
′
is mean zero and

independent of the sequence of predetermined demand and cost shifters that enter profits, including

county demographic characteristics on the demand side and county wages, rents, and sales tax rates

on the cost side.

We use this assumption to construct proxies for the gross profit and cost components entering

the return function ∆Π(a0,aj,j
′
; θ2) that are orthogonal to ϵj,j

′
. We calculate population-weighted

(rather than demand- or revenue-weighted) changes in distance and vertical integration associated

with each swap (j, j′). Let X̂j,j′

d and X̂j,j′

vi denote these pre-determined proxies for the order-

weighted distance and vertical integration variables.

Similarly, we use measures of population-weighted average tax and cost differences as shifters

for gross profit differences Y j,j′ . We measure cost differences using changes in average input

prices and population density across active locations induced by swap (j, j′), ∆Input pricesj,j
′

and ∆Densityj,j
′
, respectively. We calculate tax differences, ∆Taxj,j

′
, using population weighted

average tax rates under the observed and counterfactual roll-out strategies. See Appendix B.2 for

details on these variables.

Identification based on Swap Groupings. We use these proxies to construct H categorical

instruments that indicate whether a particular swap (j, j′) informs the different economic trade-offs

Amazon faces.

To understand how such groupings of swaps facilitates parameter identification, consider first

a case where fulfillment cost depends only on shipping distance and θvi = κ = 0. We observe two

types of decisions that affect distance to the customer: enter early in a densely populated location

or enter late in the same type of location. To construct moments that explain these decisions, the

instruments must capture the trade-off between changes in the proximity to final consumers (X̂j,j′

d )

and changes in gross profit (Y j,j′). We consider three gross profit shifters: taxes, wages, and rents.

To gain some intuition, we discuss the cases in which a swap triggers a tax change below, but the

intuition is similar for the other shifters.

Consider first instances where the firm chose to open a fulfillment center in a densely populated

area early and open a comparable fulfillment center in a less densely populated area late. The firm’s

profit under this chosen network roll-out must exceed its profit under the alternative roll-out where

we swap the opening dates of these two facilities. We pair fulfillment center j with all fulfillment

centers j′ such that swapping each resulting pair’s opening dates yields the following changes in

taxes and distance. First, the difference in population-weighted distance (X̂j,j′

d ) is negative; the

perturbed network delays the expansion into a densely populated area, and therefore, increases the

aggregate shipping distance. Second, the difference in population-weighted tax rates (∆Taxj,j
′
) is
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positive; the firm delays moving into areas with higher tax rates and with a larger population that

has to pay sales tax. We categorize swaps that satisfy both conditions using an indicator variable

Zj,j′

h = 1
(
X̂j,j′

d < 0 and ∆Taxj,j
′
> 0
)
. The subscript h indicates a particular moment condition

(or instrument).

To the extent that the tax changes associated with these swaps lead to with negative gross

profit differences on average, the following moment restriction identifies a lower bound for θd:

E
[
Y j,j′ − θdX

j,j′

d |Zj,j′

h

]
+ E

[
ϵj,j

′ |Zj,j′

h

]
≥ 0 −→ θd ≥

E
[
Y j,j′ |Zj,j′

h

]
E
[
Xj,j′

d |Zj,j′

h

] . (21)

where E
[
Xj,j′

d |Zj,j′

h

]
= E

[
Xj,j′

d |Zj,j′

h = 1
]
is the average total difference in shipping distance con-

ditional on belonging to the group Zj,j′

h = 1. The numerator E
[
Y j,j′ |Zj,j′

h

]
is defined analogously.

Intuitively, these type of swaps determine the lowest level of θd such that the shipping costs savings

from opening in a populated area outweigh the lost revenue due to taxes. An upper bound can be

constructed using the opposite trade-off, where we select network swaps such that the firm’s actual

entry decision into a densely populated, high-tax area occurs late and we compare this network to

counterfactual networks where the firm enters in densely populated, high-tax areas early.

Since the gross profit differences Y j,j′ net out wages and rents, we can construct similar moment

conditions by exploiting the trade-off between distance and input prices across locations. For

instance, if we observe the firm entering early in areas with higher wages or rents, the change in

shipping cost savings from opening in these areas must outweigh the net profit declines due to

higher wage or rental bills.

Table B-1 in Appendix B.2 defines the set of moment conditions we use in estimation. Our swap

groupings Zj,j′ capture seven “trade-offs”, leading to fourteen lower and upper-bound moments. We

use six instruments to capture the trade-offs in the timing of the network roll-out induced by nexus

tax laws. The first two instruments group swaps that trade off tax and distance. We similarly

construct lower- and upper-bound instruments by grouping swaps that (a) the capture tax and

vertical integration trade-off (e.g., moving up the opening of a sortation center reduces shipping

cost, but increases tax exposure), and (b) the tax trade-off alone, unconditional of changes in

shipping cost associated with changes in the timing of a facility opening. Similarly, we construct six

instruments to capture the above trade-offs between higher input cost bills, distance, and vertical

integration. Finally, we use two instruments that capture the trade-off in the network roll-out

between fixed cost savings from lower congestion, proxied by population density, and the distance

to populated areas.

Interim Estimates. Above, we motivate the value of grouping swaps in identifying the param-

eters of interest based on the example of the tax and shipping distance trade-off associated with

adjusting the opening date of a facility. Before discussing the estimates of the full model, we use

this example to derive initial estimates of the lower and upper bound for the distance coefficient, θd,
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Table 5: Moment Conditions and Distance Trade-offs

Lower bound: θd Upper bound: θd

Zj,j′ = 1(∆Shifterj,j
′
> 0 & X̂j,j′

d < 0) Zj,j′ = 1(∆Shifterj,j
′
< 0 & X̂j,j′

d > 0)

E(Y |Z) E(Xd|Z) E(Y |Z) E(Xd|Z)

∆Shifter (Gross Profit)
(a) Tax -13.30 -93.60 37.10 140.19
(b) Input prices -5.94 -82.68 7.60 128.21

Bounds: E(Y |Z)
E(Xd|Z)

(a) Tax 0.14 0.26
(b) Input prices 0.07 0.06

Notes: In selecting swaps for inclusion in each instrument category, we condition on population-weighted tax, input
price, and distance changes. The statistics in the body of the table, however, represent order-weighted aggregates.
The variable ∆Shifter refers to the change in one of two population-weighted profit shifters: taxes and average input
prices.

using swaps that isolate the tax and distance trade-off. We also provide estimates of these bounds

using swaps that isolate the trade-off between higher input costs and shorter shipping distances.

The results of this exercise are displayed Table 5. In the first row of the table, we report the change

in discounted gross profit (Y ) and discounted aggregate shipping distance (X), averaged across

swaps that capture the economic trade-off between distance and taxes. To isolate this trade-off, we

only include swaps in this subset where the other profit components (e.g., population, input prices,

etc.) are ‘fixed’. In practice, we condition on swaps that exhibit small differences in these other

components relative to the focal fulfillment center j.20

The first entry in the first row of the table shows that the change in discounted gross profits,

averaged over swaps that entail a decrease in the population-weighted average tax rate and an

increase in population-weighted distance relative to the observed network, is −$13.30 million. The

average change in the discounted aggregated shipping distance for the same subset of swaps is

−93.60 hundred million miles. Per the discussion above, these swaps identify the lower bound of

the cost parameter. Using the intuition of Equation (21), we calculate this bound as the ratio of the

average change in gross profits to the average change in distance, holding all remaining exogenous

cost contributions approximately fixed. The resulting estimate, presented in the lower portion of

the table, suggests that the lower bound of θd is $0.14 per 100 miles. Moving to the right in the

first row, we perform the same exercise, but this time we condition on swaps that increase the

population-weighted average tax rate and decrease the population-weighted distance relative to the

observed network. These swaps identify the upper bound of the distance parameter, which we

calculate to be $0.26 per 100 miles.

Similarly, the second row of Table 5 presents the average statistics for swaps that feature

changes in population-weighted input prices, rather than taxes, and distance. The bottom of the

20We select swaps such that the value of each of the other variables falls within the variable’s interquartile range
from the focal fulfillment center’s realization.
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table displays the bounds of θd calculated based on theses swaps, with $0.07 being the lower bound

and $0.06 being the upper bound. Therefore, at the midpoint of the smallest lower bound and

highest upper bound, a 100-mile increase in distance raises the average shipping cost by $0.17.21

Besides providing initial estimates of the bounds, this exercise also demonstrates that the in-

struments are inducing the expected trade-off between distance and gross profits. For example,

swaps that feature a decrease in taxes and an increase in population-weighted distance relative to

the observed network (first row, left side), result in a decrease in gross profit and an increase in ag-

gregate order-weighted shipping distance. The population-weighted proxy variables that define the

instruments (i.e., ∆Taxj,j
′
and X̂j,j′

d ) thus correctly predict a positive correlation between changes

in gross profit and shipping distance. This is true for the other instruments in Table 5 as well.

We note that the distance and gross profit trade-offs in Table 5 generate only four of the

fourteen moment conditions discussed above. We exploit five additional trade-offs in constructing

the remaining moments that identify θvi and κ and aid in identifying θd. We repeat the exercise

behind Table 5 for the remaining trade-offs and present preliminary estimates of θvi and κ in Table

OA-1. In the following section, we present the results of the full model, which differs from this

exercise in that we jointly estimate the cost function parameters using information contained in all

the groupings of swaps that define the fourteen moments.

Full Model Results. We present the estimates of the full model in Table 6. The column

labelled “Est.” corresponds to the parameter vector that minimizes the objective function. In all

cases this is a single point because we use more moment inequalities than parameters (i.e., multiple

profit shifters as instruments), and the moment conditions are not jointly satisfied in our sample.

To conduct inference we need to account for the fact that the model parameters are partially

identified, and the literature suggests several approaches for doing so. Since our main specification

includes multiple parameters, we construct confidence intervals based on the “profiled test statistic”

approach proposed by Bugni et al. (2017).22 We construct the confidence interval of each individual

parameter by testing repeated null hypotheses that the parameter is equal to a range of candidate

values. We define the confidence interval of each parameter as the set of values such that the

null hypothesis cannot be rejected at the 5% confidence level. The resulting confidence interval is

therefore constructed using the marginal distribution of each parameter, effectively “profiling-out”

the other two parameters.

We present results for three specifications of the cost function here and relegate estimates under

alternative assumptions on the demand and order-flow models to Online Appendix OA.4. The first

specification corresponds to a model where shipping cost depends only on distance and where the

21Note that the estimated lower bound is not necessarily below the estimated upper bound due to sampling error
in the moments and our inability to perfectly hold fixed the remaining exogenous cost components, which are
correlated with distance.

22To account for correlation between swaps, we estimate the empirical correlation between moments sharing the same
facility choice, evaluated at first-stage parameter estimates that assume zero correlation. We use this correlation
(0.3) when sampling shocks in the parametric bootstrap procedure described by Bugni et al. (2017). See also (Kaido
et al., 2019) for a related approach to constructing profiled test statistics.
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Table 6: Cost Function Estimates

Specification 1 Specification 2 Specification 3

Est. CI Est. CI Est. CI

θd: Dist. (x100 miles) 0.16 0.15 0.17 0.59 0.41 0.88 0.34 0.26 0.49
θvi: VI orders -0.52 -0.91 0.01
κ: Density (x100) 2.06 1.48 3.17 0.98 0.69 1.56

Moments 4 8 14

Notes: “Est.” denotes the parameter value at which the objective function is minimized and CI is the 95%
confidence interval calculated as described in the text. All specifications utilize 5,577 total swaps.

logistic network’s fixed costs consist only of observed rents. This leads to an estimated shipping

cost per 100 miles of $0.16, which is similar to the midpoint of the preliminary bounds presented

above. Controlling for the effect of density on fixed costs in Specification (2) and then also the cost

savings to vertical integration in Specification (3) substantially increases the estimated shipping

cost, however, suggesting omitted variables biases in Specifications (1) and (2). The change in θd

in going from Specification (1) to (2) reflects that opening a facility in high-density areas not only

reduces distance to the consumers, but also increases fixed fulfillment costs. The change in θd from

Specification (2) to (3) reflects that opening a fulfillment center in an urban area also serves the

purpose of vertical integration. Our preferred Specification (3) suggests average estimated shipping

cost of $0.34 per 100 miles.

Under Specification (3), we also find significant cost to density; our estimate of κ implies that

rents account for only approximately one half or less of the fixed costs to locating in an urban area

with a density of 1,000 people per square mile. We interpret this as evidence that traffic congestion

in urban areas increases the fixed cost of managing large fulfillment centers.

Finally, we estimate cost savings of $0.52 per order from vertical integration into sortation. To

put this estimate into perspective, consider that the order-flow model predicts an average shipping

distance of 303 miles in 2012. The variable component of the shipping cost for this average order

without an integrated sortation facility is $1.02, compared to $0.50 with vertical integration.

Predicted Order Fulfillment Costs. To illustrate our model results, we analyze trends in the

implied average order fulfillment costs. Table 7 summarizes the evolution of average cost over time

separately by each cost component. We measure average cost by dividing each cost component by

the predicted quantity of orders. In this exercise and all of the following analyses, we utilize the

point estimates from Specification (3) in Table 6.

Investments in the logistic network led to a large decrease in shipping cost from nearly $2 per

unit in 2000 to $0.29 in 2018. The drop was most pronounced between 2009 and 2015, a period

during which Amazon quadrupled the number of fulfillment centers. By 2015, shipping no longer

represents the largest component of average order fulfillment costs.

Much of the drop in shipping cost from 2015 to 2018 is due to the build-up of the sortation
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Table 7: Average Cost Decomposition

Average cost components

FC SC Shipping Labor Rent Density Total

2000 5 0 1.99 0.55 0.12 0.05 2.71
2003 7 0 1.61 0.60 0.11 0.08 2.41
2006 12 0 1.55 0.62 0.11 0.13 2.40
2009 16 0 1.39 0.53 0.08 0.10 2.11
2012 31 1 1.03 0.43 0.07 0.07 1.60
2015 67 21 0.50 0.51 0.09 0.19 1.28
2018 128 35 0.29 0.51 0.08 0.22 1.11
2018∗ 128 0 0.49 0.48 0.07 0.20 1.23

Notes: 2018∗ corresponds to a counterfactual network with no sortation centers. Average cost components are
calculated as the total network cost divided by the total orders predicted by the model.

network. In the last row, we calculate the average cost the firm would have incurred in 2018 in

the absence of sortation facilities. Eliminating sortation centers, which are located primarily in

relatively urban locations, would have increased average shipping cost by 69% (from 0.29 to 0.49),

but decreased rents plus wages by 7% (from 0.81 to 0.75), resulting in an overall average cost

increases of 11% (or $0.12).
The labor cost per order remains largely constant over the period, reflecting that the expansion

in the volume of transactions increases economies of scale in order processing even as facilities are

added. These scale economies offset the increase in employment and higher wages to workers, as

fulfillment center openings during this period took place in higher wage counties. Turning to fixed

costs, the combined rent and density costs per order increased from 2009 to 2018 due to expansion

into more urban areas.

Overall, Amazon was able to decrease total average cost by 55%, as seen in the final column. We

note that our order fulfillment cost estimates are lower than ballpark figures collected from outside

sources.23 While such measures are not directly comparable to ours for a number of reasons, they

point to the fact that our estimates are likely a lower bound on the fulfillment cost. One reason

for this is that our moment inequalities estimator is only able to capture costs that vary across the

locations in the network. We are therefore not able to, e.g., identify a constant base cost of shipping

a package (i.e., a cost function intercept) or the cost contribution of system-wide investments in

robotics. Another reason is that our model under-estimates the total revenue Amazon earns from

third-party sellers as we assume a constant mark-up; our cost estimate is proportional to revenue.

We note, however, that it is not the level of costs that is key to our analysis, it is the trends

therein and the relative magnitude of fulfillment costs to the other profit components that ultimately

23For example, as shown on https://services.amazon.com/fulfillment-by-amazon/pricing.htm?ld=NSGoogleAS,
the fee Amazon charges third-party sellers for order fulfillment ranges from $2.50 to $3.50 in Q4 of 2020. However,
these fees include costs of “picking and packing [the] orders”, “customer service”, inventory management, and a
mark-up, none of which are included in our estimate.
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Figure 4: Long-run Average Cost
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Notes: Each curve represents a different network configuration. The average cost is the total average cost of
fulfilling an order.

drive Amazon’s expansion. The fact that, as we illustrate in Section 5, our model predicts the

evolution of the distribution network suggests that we are able to capture these two features of the

firm’s cost.

Figure 4 illustrates the importance of economies of scale by plotting the implied long-run average

cost function across observed network configurations from 1999 to 2018. Each grey curve represents

the short-run average cost function calculated with a given network configuration; more recent

networks are represented with darker colors. The x-axis represents a grid of (log) aggregate output

covering the range of orders that we observe during out sample, extended by 25% beyond the 2018

level. The lower envelope (red) represents the long-run average cost function, or the most efficient

technology associated with each output level. The elasticity of the long-run total cost function with

respect to output is approximately equal to −0.8.

Amazon’s long-run cost minimization problem is characterized by a standard trade-off between

fixed and variable costs. As Figure 4 illustrates, denser networks (recent vintages) are associated

with lower variable costs (limit of AC as Q→ ∞) and higher fixed costs. As the volume of orders

expands beyond 500 million units (lnQ = 20), it becomes more efficient to operate a decentralized

network with 30+ facilities, instead of the 2006 network with 12 facilities. A volume of orders

beyond 3,000 million units (lnQ = 22) justifies investing in a network of over 90 facilities, composed

of fulfillment and sortation centers (i.e., the 2015 network configuration).
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Table 8: Effect of Entering California (2011)

Nexus (%Change) Uniform Tax (%Change)

Distance (m) State Orders Profit Shipping L+FC Orders Shipping L+FC

302 AZ -0.88 -0.68 -0.20 0.99 -0.83 -0.21 0.95
399 NV -0.17 -0.18 -0.03 0.12 -0.13 -0.04 0.10
965 WA -0.03 -0.08 -0.24 0.08 -0.03 -0.23 0.07
1169 TX -0.01 -0.01 -0.04 0.01 -0.01 -0.04 0.01

Total -0.01 -0.00 -0.08 0.05 0 -0.08 0.05

Notes: Distance denotes the distance in miles from each facility to the San Bernardino cluster. “Orders”,
“Profit”, “Shipping”, and “L+FC” denote the percentage change in facility-level output, profit, shipping cost,
and labor and fixed costs due to the hypothetical earlier opening of three fulfillment centers in San Bernardino,
CA. The last row labeled “Total” measures the system-wide change in the outcomes of interest.

4.4 Illustration: California entry

Beyond quantifying the role of economies of density in network expansion, we aim to assess the

role of tax laws in Amazon’s investment decisions during our sample period. To motivate how sales

tax liabilities through the revenue channel affect firm profitability and thus the return to investing

in fulfillment facilities near population centers, we conclude this section with an illustration of the

tax-distance trade-off that our estimated model implies.

As an example, we consider a cluster of fulfillment centers in San Bernardino, CA. Amazon

opened the first facility at this location in 2012, which also marks Amazon’s first entry into Cali-

fornia. The firm added two facilities to the cluster in subsequent years. In 2011, the year prior to

the opening of the cluster, our model predicts that a majority of southern California orders were

fulfilled by the then-closest cluster in Arizona, with the remaining orders coming from clusters in

Nevada, Washington state, and Texas.

We compare outcomes under this actual opening sequence to outcomes under a network where

Amazon moved up the opening of all three San Bernardino facilities to 2011. The left panel of

Table 8 displays the results of this experiment under nexus tax laws. We first focus on the bottom

row, which summarizes the overall percentage change in orders, profit, shipping costs, and labor

and fixed costs, relative to the actual opening sequence. Under the counterfactual opening dates,

the total number of orders decreases by 1% due to the earlier onset of tax liabilities in California.

However, Amazon is able to realize savings in shipping costs of about 8%, as orders from southern

California are now mostly fulfilled by San Bernadino, instead of further-away facilities. Labor

and fixed costs increase by about 5% due to higher wages, rents, and congestion costs, as well

as reduced economies of scale across facilities, as each facility handles fewer shipments with the

California entry.

We further break down the aggregate effects in the first four rows of the table, where we present

outcomes for the most affected clusters. The entry in California results in a redistribution of orders

across facilities, as we show in the ‘Orders’ column. The Arizona facility experiences the biggest
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drop in fulfilled orders of 88%, suggesting that, once there is entry in southern California, the

facility is largely redundant. However, because the remaining shipments are now mostly local, the

average cost of shipping orders from this facility decreases by 20%. The large drop in orders also

results in a near doubling of labor and fixed costs due to loss of economies of scale. Taken together,

the profit contribution of the Arizona facility drops by 68%.

The remaining, further-away, facilities experience smaller declines in volume. These small

changes in volume can, nevertheless, translate into sizable changes in shipping costs, as the Wash-

ington state facility illustrates. It sees a drop in volume of only 3%, which, due to its initially

low order volume relative to fixed costs, results in an increase in combined labor and fixed costs

of 8%. At the same time, the reduction in shipping costs amounts to a sizable 24%, larger than

at the Arizona facility. Due to distance, shipments from Washington state to southern California

are very costly, so even though only a small number of the Washington state shipments are real-

located to the San Bernardino cluster, these shipments have a large impact on shipping costs for

the Washington state cluster. The distance between a new facility and existing facilities thus does

not have a monotonically declining impact on the shipping costs at the existing facilities. While

the profit impact at existing facilities declines monotonically with distance to the new facility in

this particular example, the non-monotonicity in shipping costs could, in principal, translate into

similar patterns in facility-level profit. This is similar to Holmes’ (2011) approach who allows for

a trade-off between cannibalization and density. At the same time, the non-monotone impact of

distance between facilities on profit precludes us from using Barwick’s (2008) methods in solving

counterfactual network optimization problems under alternative tax structures in the following

section.

In order to illustrate the impact of nexus laws on the firm’s profitability, the right panel of Table

8 summarizes profits and costs under an alternative tax treatment where Amazon is responsible

for remitting sales tax on all transactions, irrespective of presence in the state, which we term a

‘non-discriminatory tax’ law. Here, entering a new state no longer triggers a new tax collection

and, thus, total demand remains unchanged (see last row) when we move up the San Bernardino

opening date. Since demand in California is unaffected, we observe a less significant redistribution

of orders as under the nexus laws, when the San Bernardino cluster is able to largely handle all of

the southern California orders.

On net, the aggregate reduction in shipping costs from entering San Bernardino earlier would

be slightly larger and the increase in other costs slightly lower under non-discriminatory taxes (even

though the magnitudes appear to be the same in the table due to rounding). Not shown in Table

8 is the fact that overall profit for Amazon increases by 1% due to the earlier entry in California

under non-discriminatory tax laws. Comparing this to the small but negative impact of entry on

profit under the nexus laws demonstrates how Amazon’s entry incentives change under different

tax regimes.
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5 Taxes and Investment

We now use the estimated model to quantify the combined effect of demand expansion and tax

policy on investment in the distribution network. We first use the model to illustrate the optimal

growth of the network as online demand expands. We then quantify the effect of nexus tax laws on

the growth and configuration of the network to illustrate how the laws distort Amazon’s investments

and impact Amazon’s profit and total welfare.

Finding Counterfactual Networks. Solving the dynamic optimization problem is beyond the

scope of this paper. We instead approximate the solution to this problem with a series of static

profit maximization problems at different stages of e-commerce demand. We thus find the optimal

network that maximizes the static flow profit in Equation (11), which we replicate here:

N∗
t (Θ) = argmaxNt

µ̄tR̂t(Nt)− ĈShipping
t (Nt)− ĈLabor

t (Nt)− F̂t(Nt), (22)

We consider four years during our sample period – 1999, 2006, 2012 and 2018 – that are exemplary

of the demand expansion that Amazon has experienced and use Θ to denote the dependence of the

optimal network on tax policy. In the constrained dynamic problem we relied on in estimation, we

hold the locations of facilities fixed and exploit the optimality of the opening sequence only. Here,

we now allow the platform to choose both the location and number of facilities of each type, which

are summarized by N∗
t (Θ), thereby studying the effect of tax policy and demand on aggregate levels

of investment.

To implement this procedure, we first define a set of potential locations. We start with the

locations of the roughly 150 Amazon facilities in 2018, including facilities that we excluded from our

prior analysis (e.g., Amazon Fresh grocery delivery centers). We further consider the approximately

770 locations of distribution centers operated by Target and Walmart, from MWPVL, and UPS

from Reference USA, in 2018. We keep only the subset of non-Amazon locations that have similar

levels of income and population to those chosen by Amazon. Taken together, this results in about

330 unique potential facility locations. Using a distance radius of 20 miles, we use a hierarchical

clustering algorithm to group nearby facilities, resulting in N = 253 unique potential locations

spanning 39 of the 48 contiguous states. See Figure OA-1 in Online Appendix OA.3.3 for a map of

the final set of potential locations.

We make the following simplifications to facilitate the comparison of networks across years.

First, we assume that all input prices are fixed at their average levels for all time periods. Therefore,

the only time varying component is the growth in Amazon’s demand relative to other retail modes

(i.e. αikt in our demand model). Second, we abstract away from differential tax treatment of sales

by third-party sellers and assume that all Amazon transactions are subject to the sales tax policy.

Third, we abstract from capacity choice by setting the size of each fulfillment and sortation center

equal to 1, 000, 000 and 300, 000 sq. ft., respectively, the approximate averages in the data.

Despite these simplifications, with approximately 250 locations and two facility types, the sheer

number of potential networks renders it infeasible to solve the optimal network problem exactly
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(except in t = 1999). We therefore approximate the optimal network using simulation techniques

borrowed from the operations literature. We use the simulation-based Population-Based Incre-

mental Learning algorithm developed by Baluja (1994) that combines ingredients of genetic and

standard hill-climbing optimization algorithms. In theory, as the number of simulations grows

large, the algorithm converges to a global maximum. In practice, given the scale of our problem,

the procedure may not identify the global maximum, in particular in the later years when the

optimal number of facilities is large. Therefore, we refer to the solution as an approximation to

the optimal network. We find through full enumeration, however, that the procedure predicts the

globally optimal network in 1999. Online Appendix OA.3.3 describes the algorithm in detail.

Predicted Optimal Networks under Nexus Tax Laws. Figure 5a maps the predicted network

evolution across four demand states, 1999, 2006, 2012, and 2018, under the nexus tax laws. The

color of each dot indicates the first year in which we predict a facility to operate in a given location.

This location may or may not have a facility operating again in later years.

To analyze model fit, we present a map-based comparison of the observed and predicted network

roll-out in Appendix B.3. Overall, across years, the static model matches the regional distribution

of actual fulfillment centers well, even though it is not always able to predict the exact set of states

with physical presence. In 2018, when the network is larger, we predict the set of states with

fulfillment capacity well, though the model slightly under-predicts the total of number locations.24

Our estimates are thus largely able to capture the relative levels of revenue and cost that drive

Amazon’s network decisions.

We also use Figure 5a to highlight the three primary trade-offs that Amazon faces. First, there

is a trade-off between economies of scale (fewer facilities) and density (more facilities): we observe

large networks only in 2012 and 2018, once demand has grown sufficiently. Second, sales tax

liabilities favor placement of facilities in low-population states, but such placement does not allow

the company to benefit from economies of density. This trade-off drives the predicted (and actual)

opening of facilities in high population states like California, Texas, and Florida only in 2012 and

in 2018. In these years, local demand is sufficiently high for the benefits of lower shipping costs to

outweigh the tax implications. Finally, there is a trade-off between high labor, rent and congestion

costs that favor placement of facilities in low-cost areas, which also typically are low demand and

thus do not generate significant economies of density. The patterns of fulfillment center placement

in Oregon illustrate this trade-off. In 2006, we predict the optimal fulfillment center location to be

remote and thus, low-cost. In later years, when demand is higher, we predict that locations closer

to Portland are optimal.

Predicted Optimal Networks under Non-discriminatory Tax Policy. Figure 5b presents

the roll-out under a non-discriminatory tax law. A comparison of the two maps suggests that

nexus tax laws, not surprisingly, impact the network configuration primarily in high-population

24The fact that the actual network includes more facilities is due to the fact that Amazon’s investment decision is
influenced by dynamic considerations such as entry deterrence and anticipated future growth.
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Figure 5: Fulfillment Center Network and Nexus Tax Laws

(a) Nexus Tax

(b) Non-discriminatory Tax

Notes: Colors of dots denote the first year in which we predict entry into that location. We shade states by
quintiles of the number of households, with the top quintile taking on the darkest color, and display the average
sales tax rate in each state.

or high-tax areas where the revenue implications of raising tax-inclusive prices is largest. Texas

provides a good example as our simulations show that Amazon would have entered in 2006 under

non-discriminatory tax laws. Under nexus tax laws, however, the model predicts early entries in

nearby Oklahoma and Louisiana instead, and entry occurs in Texas itself only in 2018, when cost

savings from density finally outweigh the effects of sales tax.

California provides another clear example of the effect of the nexus laws. The model predicts

that under non-discriminatory taxes, Amazon would have entered in relatively remote areas of the

state in 1999 and expanded closer to high density areas (San Francisco, Los Angeles, and San Diego)

as demand grows, consistent with the presence of large fixed costs in those areas. In contrast, with

nexus laws, the model predicts that Amazon would enter California only in 2018, with California

orders being fulfilled from Nevada, Oregon, and Arizona beforehand.

Table 9 summarizes how demand growth and tax distortions affect Amazon’s average cost in
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Table 9: Summary statistics Across Tax Regimes

(a) Tax Nexus

Year Average Cost ($/Q) Dist. Amazon Tax Facilities
Shipping Labor FC Total (miles) Avg. % > 0 FC SC

1999 1.29 0.86 0.32 2.47 377 0.26 0.05 3 0
2006 1.14 0.66 0.22 2.02 347 0.95 0.15 8 1
2012 0.78 0.44 0.11 1.33 249 1.67 0.25 22 2
2018 0.52 0.35 0.08 0.95 172 3.18 0.44 67 6

(b) Non-Discriminatory Taxes

Year Average Cost ($/Q) Dist. Amazon Tax Facilities
Shipping Labor FC Total (miles) Avg. % > 0 FC SC

1999 1.26 0.88 0.37 2.51 367 6.74 0.98 3 0
2006 1.03 0.74 0.26 2.03 314 6.75 0.98 9 1
2012 0.64 0.50 0.14 1.28 209 6.96 0.98 25 3
2018 0.40 0.40 0.10 0.89 148 7.13 0.98 78 9

Notes: We measure profit in $ million and distance in miles. The columns labeled ‘Amazon Tax’ are the
population-weighted average tax rate paid and the share of the population that pays a positive tax rate on
Amazon transactions.

aggregate, with each row corresponding to a different state of demand. We present Amazon’s

average fulfillment cost in total and broken down into its components (columns 1-4), the sales-

weighted average shipping distance (column 5), the average sales tax rate paid across orders (column

6), and the fraction of orders subject to positive sales tax (column 7). Finally, we report the number

of facilities of each type in the optimal network.

The number of facilities under nexus laws is smaller than with non-discriminatory taxes due to

the fact that Amazon has a lower incentive to invest. This difference is especially pronounced when

demand is high (2018): the model predicts both a smaller sortation network (9 versus 11 facilities)

and fewer fulfillment centers (65 versus 74) under nexus laws, in part due to the complementarity

between the two types of facilities. The elimination of the nexus tax policy has a large effect on the

configuration of the sortation network because the cost savings from vertical integration can only

be realized by locating sortation centers close to high population areas; this makes tax arbitrage

strategies based on state boundaries more difficult.

The elimination of the distortions induced by nexus laws lead to a small decrease in the average

total fulfillment cost (from $0.95 to $0.89) in 2018. The effects are more pronounced for shipping

costs: across years, the distorted network exhibits larger shipping costs, amounting to 23% in 2018,

due to higher average shipping distances (of 14% in 2018), suggesting that eliminating nexus laws

increases the incentive to realize economies of density. These increased economies of density are

balanced by larger labor and fixed costs under the non-discriminatory tax regime. With economies

of scale in labor and large fixed costs of investment, a less concentrated network leads to cost

increases from a lower capacity utilization rate.
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Table 10: Welfare Changes from Moving to Non-Discriminatory Sales Taxes

(a) Amazon Profit Components

Long Run Short Run
∆ ∆ ∆ Variable Margin ∆ ∆ ∆

Year Net Rev Fixed Cost Var Cost (nexus/uniform) Prof Var Cost Prof
1999 -18 1 -10 0.071/0.072 -9 -9 -10
2006 -93 0 -44 0.086/0.087 -49 -34 -59
2012 -504 4 -223 0.111/0.114 -285 -109 -396
2018 -1921 66 -768 0.124/0.126 -1220 -300 -1620

(b) Other Components

Long Run Short Run
Compensating ∆ Profit ∆ Fiscal Multiplier Fiscal Multiplier

Year Variation Rival Tax Rev s.t. ∆ Welfare=0 s.t. ∆ Welfare=0
1999 78 3 77 1.091 1.1
2006 394 16 387 1.104 1.129
2012 2419 70 2369 1.112 1.158
2018 9293 250 9266 1.108 1.151

Notes: All numbers are measured in $ million, except for margins and multipliers.

Welfare Implications of Non-discriminatory Tax Policy. We now consider the welfare effect

of eliminating nexus tax laws. We assume that the change in total welfare from the reform in year

t is given by:

∆Welfaret = ∆Amazon Profitt + ι×∆Tax Revenuet

−Compensating variationt + µrivalt ×∆Rival Revenuet (23)

where ι is the fiscal multiplier, µrival is the profit margin on each dollar of revenue for Amazon’s

rivals, and ∆ measures the change in each outcome variable that results from going from a nexus

regime to a non-discriminatory tax regime (i.e. outcome under non-discriminatory - outcome under

nexus laws). Table 10 summarizes the welfare effects.

The top panel of Table 10 shows reductions in revenue from the increase in sales tax (column

1) and increases in fixed costs from operating more and higher cost centers (column 2). These

outweigh the variable costs savings (column 3 and Table 9) that translate into higher margins. The

fifth column of Table 10a indicates that a non-discriminatory tax policy thus results in lower profit

for Amazon compared to profit under a nexus policy. The reduction in Amazon’s profit in 1999

is relatively small ($9 million) as demand for Amazon was low and, therefore, a relatively small

number of transactions change tax status, but it reaches over $1 billion by 2018.

In Table 10b we focus on the other components of welfare. We calculate consumer welfare as

the compensating variation (CV ), or the amount of income (i.e., budget B) that the consumer

would need to receive to make them equally well off under the non-discriminatory tax regime as
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they are under the nexus regime. That is, we determine:

CVt =
∑
i

B∗
it −Bit (24)

where Bit is the original budget of consumers in county i in year t and B∗
it is the budget of consumers

in county i and year t under non-discriminatory taxes that makes their utility equal to that under

the nexus policy. In the CES demand model, the latter is given by:

B∗
it = B̄it

(∑3
k=0 α̂iktp̃

1−σ
ikt

) 1
σ−1

(∑3
k=0 α̂iktp̄

1−σ
ikt

) 1
σ−1

(25)

where p̃ikt and p̄ikt denote the tax-inclusive prices under nexus laws and the non-discriminatory

regime, respectively.25 We use the estimates of the demand model and measures of offline prices from

the Bureau of Labor Statistics to calculate the values of α̂ikt. See Online Appendix OA.2 for the

derivation. The first column of Table 10b shows that consumers are hurt by the non-discriminatory

tax policy, which comes from the fact that they are paying higher prices on Amazon. As a result

of the growth in consumer demand, consumer welfare losses grow from $78 million in 1999 to over

$9 billion in 2018.

In the second column, we present changes in rival profit. We calculate rival revenue using the

estimated demand model and assume that the margin µrivalt is 0.57 ∗ µAmazon
t , where µAmazon

t is

Amazon’s variable profit margin in year t from Column 1 of 10a). We use data collected and

compiled from the balance sheets of publicly traded retailers to estimate the ratio of the rival

margin to Amazon’s margin.26 To give a specific example, the rivals’ profit margin in 2018 is given

by 0.57 ∗ 0.124 = 0.07. The table shows that Amazon’s rivals benefit from a non-discriminatory

policy as demand shifts from Amazon to the other modes. Rivals’ profit increases by $3 million in

1999 and $250 million in 2018.

Finally, we display the change in tax revenue in third column of Table 10b. To calculate tax

revenue, we use the sales tax rate in each county multiply it by the taxable sales from offline

competitors, mode 2 competitors, and Amazon, if their sales are taxed. Under the the nexus

policy, Amazon’s sales are only taxed in states in which the firm has a facility, while under the

non-discriminatory tax policy, all sales are taxed. Our estimated demand model suggests that, as

result of the increase in Amazon’s tax-inclusive price under the non-discriminatory policy, a portion

of the firm’s demand shifts to untaxed retailers represented by mode 3. Thus, a non-discriminatory

25This derivation assumes that each mode has one variety, meaning that our estimate is an approximation of com-
pensating variation under the multi-product case.

26The compiled data is found at https://pages.stern.nyu.edu/~adamodar/New_Home_Page/datafile/margin.

html, accessed in November of 2021. The ratio is calculated as the ration of the “Retail (General)” net margin
to the “Retail (Online)” net margin. The assumptions are that the rival modes’ net margin can be approximated
by the ‘General’ category, Amazon’s can be approximated by the ‘Online’ category, and the ratio (0.57) remains
constant over time. With that, we can use Amazon’s margin from out model in year t order to calculate the margin
of rivals.
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tax policy results in an increase in tax revenue collected.

To assess the aggregate value of the increased tax revenue, we require an estimate of the fiscal

multiplier, ι. In the fourth column of 10b, we present the ‘break-even’ value of the fiscal multiplier

that equalizes aggregate welfare under the two tax regimes. It ranges from ῑ = 1.091 in 1999 to

ῑ = 1.108 in 2018. Dupor et al. (2021) estimate an aggregate fiscal multiplier of 1.64, and Haltom

(2018) cites estimates as high as 2.0 and as low as 0.5. The estimate from Dupor et al. (2021)

suggests that removing nexus laws increases welfare in 2018 by ∆Welfare2018 = −1, 220 + 1.64 ×
9, 266 − 9, 293 + 250 = 4, 924 million. To put this in perspective, this change amounts to 0.8% of

total online spending in 2018.

The last two columns of Table 10a, labeled ‘Short Run’, display the changes in Amazon’s variable

cost and profit that would result from the elimination of the nexus tax laws if Amazon were not able

to adjust its network. This allows us to isolate the welfare contribution of Amazon’s investment

response to the change in tax policy separately from the consumers’ demand response. For example,

Amazon’s variable costs decrease by $300 million when moving to a non-discriminatory policy at its

nexus-policy distribution network. Comparing this to the change in costs with a network adjustment

suggests that that 61% of the reduction in variable costs stems from adjustments in Amazon’s

investment. As a result, Amazon’s profit falls by about 33% more and the break-even multiplier is

4% higher under the fixed distribution network. Again relying on Dupor et al.’s (2021) multiplier

of 1.64, the welfare increase from changing the tax policy is about 8% lower when Amazon cannot

adjust its network in response. This demonstrates that the investments in Amazon’s network play

a significant role in determining the effects of tax policy, highlighting the importance of recognizing

the supply-side distribution network choices in tax policy analysis.

6 Conclusion

We make two primary contributions. First, we quantify the distortions associated with nexus tax

laws, a topic of intense political debate. We find that the laws reduced Amazon’s incentive to invest

in a dense and vertically integrated distribution network, increasing shipping costs by 30%. We

estimate that implementing a non-discriminatory tax regime results in a total welfare gain of of

about $5 billion, where 8% of the gain comes from Amazon’s network adjustments in reaction to the

policy. Our second contribution is measuring the economies of density in the distribution sector.

Most firms in online retail markets outsource large portions of the fulfillment and delivery of orders

to third-party shipping companies. Our case study of Amazon highlights that, for large online

retailers, the variable cost savings associated with building an integrated distribution network can

far outweigh the additional fixed costs and unrealized economies of scale in fulfillment. To capture

these trade-offs, we build and estimate a model of Amazon’s network formation and show that the

benefits of building a dense network are substantial. We estimate a threefold decrease in average

shipping cost between 1999 and 2018.

Our work suggests several important avenues for future research. First, we conjecture that a
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primary driver of Amazon’s decision to expand into downstream sortation and, beyond our sample

period, last-mile delivery is a hold-up problem that would lead to underinvestment in fulfillment

capacity by shippers such as UPS and Fed-Ex under incomplete contracts. One could study such

inefficiencies with information on the contracts between Amazon and third-party shippers. Second,

while our analysis focuses on the direct costs and benefits of Amazon’s expansion, the impact on

traffic congestion and pollution are likely significant. Quantifying the relationship between the

network and these external costs is a topic we hope to explore. Third, we do not allow for a

systematic relationship between tax incentives offered by local governments and investment by

Amazon in our model. With data on subsidies similar to those used in Slattery (2020), a model of

bargaining between firms and governments could be added to our dynamic model of investment.

Finally, we take the growth of third-party sellers and their reliance on Amazon as given in our

model, but this growth could potentially lead to anti-competitive rent-seeking behavior arising

from monopsony power. This concern is commonly raised by proponents of antitrust enforcement

efforts against the firm.27 Data that separates third-party sales from Amazon’s direct sales applied

to our framework would allow for a quantification of the market power Amazon commands from

its status as a key logistics supplier.

27See https://www.nytimes.com/2020/11/10/business/amazon-eu-antitrust.html, accessed on 3-9-2021.
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Appendix

A Appendix: Data

A.1 Expenditures for the Representative Household

In this Appendix, we provide details on the spending data and construction of our measures of
online spending by shopping mode and of offline expenditure for the representative household in
county i and year t. The primary source for our online spending data is the comScore Web Behavior
Database, which tracks the online purchasing and browsing activity of a random sample of internet
users. With their permission, comScore records any activity on the users’ registered computer,
including that of other household members, and also collects the zip-code and demographic char-
acteristics of participating households. For a given household, comScore records every online order
during its time in the sample. For each order, we observe the seller’s domain, the date and time of
the order, the product category of item(s) purchased, the list price for each individual item, and
a ‘basket total’, representing the order’s total cost, including shipping and taxes. Coverage of the
sample is reported in the first three columns of Table A-1.

Table A-1: comScore Sample Coverage and Spending by Retail Channel

Coverage (%) Average Expenditure ($) [Orders]

Year
House-
holds (k) Counties

House-
holds Offline Amazon Taxed Non-taxed

2006 38.3 84 99 5,341 62 [2] 510 [13] 486 [11]
2007 39.5 85 99 5,474 86 [3] 588 [14] 502 [11]
2008 20.2 71 96 5,520 106 [4] 569 [14] 450 [10]
2009 15.9 64 95 4,912 129 [4] 619 [15] 514 [11]
2010 15.4 66 95 4,662 195 [7] 687 [16] 569 [12]
2011 17.3 68 96 4,792 286 [9] 865 [20] 542 [12]
2012 18.2 67 96 4,494 378 [12] 1,015 [23] 553 [12]
2013 16.5 62 95 3,816 491 [16] 1,062 [24] 693 [15]
2014 12.0 54 92 3,846 604 [19] 1,107 [25] 742 [16]
2015 16.3 64 95 3,219 798 [25] 1,250 [28] 853 [18]
2016 24.8 72 97 3,272 1,040 [32] 1,272 [28] 1,031 [22]

Notes: County and household coverage are the percentage of US counties and households residing in the
comScore data. Expenditures and orders are the average across households in the given year.

We begin the process of constructing our spending variables by removing transactions for prod-
uct categories (defined by comScore) that Amazon does not compete in, for example travel and
dating services. Next, we classify each of the remaining domains into one of the three online modes,
where the classification depends on the retailers offline footprint and, therefore, their tax liabilities.
Appendix Table A-2 lists the top ten domains each that fall into the non-Amazon categories of
sellers. Then, we aggregate the ‘basket total’ across all transactions through mode k for household
h in year t. This results in annual ‘household expenditures’ in each mode.

The next step is to account for the fact that we only observe ‘household expenditures’ for
households that made at least one online purchase in year t. To do this, we supplement the
comScore data with survey data from Forrester Research, Inc.’s “North American Technographics
Online Benchmark Survey”. Among other information, the survey records for the period 2006 to
2007 and 2010 to 2014 whether a responding household indicates having made an online purchase
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Table A-2: Taxed and Non-Taxed Competitors

Sales Rank Taxed Non-Taxed

1 walmart.com ebay.com
2 jcpenney.com qvc.com
3 bestbuy.com dell.com
4 macys.com yahoo.net
5 apple.com hsn.com
6 homedepot.com overstock.com
7 victoriassecret.com fingerhut.com
8 target.com amway.com
9 staples.com newegg.com
10 gap.com orientaltrading.com

Total 102 292

Notes: Table displays top 10 domains in terms of 2013 expenditures in the comScore data that we define
as taxed and non-taxed.

over the three months prior to the data collection, together with the age, income, race, and zip
code of the respondent. Patterns in the Forrester data suggest an increasing take-up of e-commerce
(see column (1) in Table A-3).

We employ a linear probability model to project each Forrester respondent’s propensity to pur-
chase online on household demographic categories (race, age and census region of head of house-
hold), household income, and time trends. We then use the estimates of the model to predict
the probability that a household in the comScore data made an online purchase in a given year,
based on their demographics. For the years 2008 and 2009, we use linear interpolations for a given
demographic group based on the predictions in 2007 and 2010. Using the predicted online purchase
propensities from this model, we calculate ‘expected annual expenditures’ on each shopping mode
for the households in the comScore sample, assuming that the propensity to purchase online applies
to all modes equally.

Next, we aggregate across households to derive the expenditure of a representative household
in county i in year t on the three online shopping modes. To do this, we first calculate the
average expenditures for demographic group z in county i and year t for mode k. We then apply
demographic sampling weights that measure the relative prevalence of demographic group z in the
comScore data and data from the Census to derive expenditures for mode k for a representative
household in county i and year t.28,29

Finally, we address the intensive-margin bias in comScore spending introduced by the firm not
recording the full universe of household online activity across devices. We assume that under-
reporting in comScore online spending is uniform across counties and scale up each representative

28De los Santos et al. (2012) compare the sample of comScore users in 2002 and 2004 to the Computer Use Supplement
of the Current Population Survey and find that the sample generally compares well with the population of online
shoppers.

29The sampling weights are constructed based on the relative number of households that fall into different demo-
graphics bins in the comScore sample and in the population. The population data comes from the American
Community Survey (‘ACS-5 year’) from 2009-2016. To extrapolate data back to 2006, we assume a county level
constant growth rate in population belonging to each bin between 2000 and 2009, where the 2000 data come from
the decennial Census.
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Table A-3: Unscaled Household Online Purchasing

Forrester Average Expenditures w/out Scaling
Offline Only (%) Amazon ($/year) Taxable ($/year) Non-Taxable ($/year) All ($)

2006 55.6 18.2 99.8 95.1 213.0
2007 60.8 19.8 102.8 87.7 210.3
2008 - 21.5 99.8 78.9 200.3
2009 - 25.3 81.5 67.8 174.6
2010 32.1 34.1 76.7 63.6 174.3
2011 23.0 52.0 88.3 55.4 195.6
2012 23.9 84.1 85.0 46.3 215.5
2013 27.2 78.9 81.0 52.8 212.7
2014 24.6 77.3 85.2 57.1 219.6
2015 23.0 98.0 107.0 73.1 278.1
2016 22.6 116.2 98.5 79.8 294.5

Notes: Expenditures are the average across households. Offline Only denotes the share of respondents who
answered no to the question whether they had shopped online in the previous three months in the Forrester
Technographics Survey.

household’s spending by a year and shopping-mode varying scale factor. We determine the scale
factor by matching the average household spending calculated using our sample to the average
spending per household on Amazon calculated using Amazon’s annual reports and spending on the
other modes calculated using the U.S. Census Bureau’s quarterly e-commerce retail sales reports.
Specifically, we multiply the expected expenditures for each representative household by the scaling
factor and then calculate the average household spending across the United States on each mode.
We search for the scaling factors for each mode and year where the resulting household averages
match the averages from the supplemental sources.

In order to construct a spending figure from Amazon’s annual financial statements that is com-
parable to the comScore data, we only include the reported sales from the “Media” and “Electronics
and Other General Merchandise” categories in North America. An additional issue in matching
the spending data is that the financial statement excludes sales tax paid and includes only the
royalties and fees earned off of third-party sales. The comScore data, on the other hand, includes
sales taxes and the full revenue from third-party sales. To account for this when determining the
scaling factors, we adjust the comScore data to exclude taxes and to include only the portion of
third-party sales that Amazon retains. We calculate the latter using Amazon’s royalty rate on
third-party transactions (see description in Section A.7 below) and data on the evolution of the
share of total sales accounted for by third-party sellers over the sample period reported in the 2018
annual report cover letter.

The right panel of Table A-1 summarizes the average household spending by shopping mode.
Spending on all online modes have increased substantially over time as people substitute away
from offline shopping, with Amazon displaying the most pronounced growth. By 2016, the average
household spending is about $1,000 on Amazon, while it spends about the same amount on non-
taxed competitors. For taxed competitors, the spending is higher at $1,300. Finally, households
spend about $3,300 at offline retailers. In brackets, we display the number of orders for the online
modes, which are calculated by dividing the household spending by the price index calculated in
Appendix A.6. The orders have roughly the same growth patterns as spending.

Figure A-1 demonstrates the growth in Amazon’s share of online and all retail spending over
time. These numbers are calculated using data from Amazon’s financial statements and reports
by the US Census bureau, which is why we have data points outside of our comScore sample.
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Amazon’s online share remains relatively stable, and even decreases, until about 2006. Thereafter,
we see a rapid increase, culminating at over over 40% by 2018. Amazon’s share of total retail has
similar patterns, reaching about 5% in 2018.

Figure A-1: Amazon’s Growth
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Notes: Calculations are made using reported sales in Amazons financial statements and reported online and total
retail sales reported in the U.S. Census Bureau’s quarterly e-commerce retail sales reports.

We explore heterogeneity in spending on Amazon across demographics and geography in Table
A-4, where break down average annual household spending on Amazon across urban and rural
counties, wealthy and non-wealthy counties, and the counties belonging to the four different Census
regions. Overall, the growth rates are similar across demographic groups and regions, but there
exists significant cross-sectional differences in spending based on region, income, and whether or
not the consumer lives in a city.

Finally, we report the unscaled average household spending data in table A-3 and compare it to
the scaled data in Table A-1. For Amazon, the pattern of increasing household spending matches
the scaled data, but the magnitude of the growth is smaller. This is inline with the intuition that
the share of ‘missing’ transactions increases over time due to the take up of mobile purchasing.
Modes 2 and 3 generally show more of a U-shaped or flat pattern, which is largely inconsistent
with what we see in the data from the US Department of Commerce. Again, this is likely because
of the data we are missing from mobile or other-computer transactions for these modes.

Note that the scaling is mode-year specific, so that we preserve the rich variation in spending
across geographies and demographics from the comScore and Forrester data. This variation identi-
fies the consumer response to sales-tax, while the scaling acts to correct the level of spending and
revenue by mode, which is important in identifying the supply side of the model. Therefore, the
scaling exercise mostly serves to capture the degree of Amazon’s growth relative to the other modes
in line with the data observed in the reports.
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Table A-4: Average Spending on Amazon, by Type of County ($/year)

Income

Year Urban Rural High Low Northeast Midwest South West

2006 70 55 87 57 80 54 52 74
2007 98 76 121 79 105 79 76 100
2008 120 99 131 102 131 93 99 129
2009 152 118 175 124 155 126 117 161
2010 212 197 255 189 234 187 180 238
2011 322 273 372 267 360 275 263 327
2012 423 367 464 367 436 384 353 447
2013 534 505 597 487 558 498 468 595
2014 656 665 752 615 721 603 589 774
2015 883 793 981 765 949 755 798 910
2016 1,125 1,020 1,219 989 1,159 1,019 1,007 1,181

Notes: We define rural counties as counties with a population density of less than 500 residents per square mile
and low-income counties as counties with average household income below $80,000. Region is as defined by the
US Census Bureau.

A.2 Employment

The employment data comes from industry sources and Amazon’s financial statements and press
releases. We construct a cross section of the number employees at a subset of fulfillment and
sortation centers in 2017. Our main source of information is MWPVL and the establishment
survey YTS (Your-economy Time Series).30 MWPVL reports the target number of employees for
a subset of facilities. We match the list of facilities and the panel of Amazon establishment from
YTS. This survey provides employment data for most facilities, but the overlap is not perfect. In
addition, although the YTS data is annual, the data exhibit very little adjustments over time,
and so we use the more recent cross-section (2017). When two facilities are covered by YTS and
MWPVL, we use an average of the two estimates. Finally, for a small number of facilities that
are unmatched, we use data from Reference USA which includes information on employees for a
limited set of Amazon facilities.31 Overall, we use employment information for 131 out of the 163
facilities active in 2018 (including 26 sortation centers).

We also observe the total number of fulfillment employees in 2017, 125 thousand, from an
Amazon press release.32 We combine the latter and information from Amazon’s financial statements
to get an estimate of the total number of fulfillment employees for the other years in our sample.
We observe the logistic cost share of total cost and the total number of employees in Amazon’s
financial statements for our entire sample. With these data and the number of logistic employees
from the press release, we construct the ratio of the cost share of logistics to the employment share
of logistics in 2017. Assuming this ratio is constant over time allows us to back out the number of
logistics employees for all of the years in our sample.

Figure A-2 provides a summary of these data. Figure A-2a demonstrates that the increase in
fulfillment employment coincides with the accelerating expansion of the network starting around
2010. The histograms in Figures A-2b and A-2c show that both types of facilities have a significant

30See https://wisconsinbdrc.org/data/

31See http://www.referenceusa.com/Home/Home

32See https://press.aboutamazon.com/news-releases/news-release-details/amazon-now-hiring-over-

120000-jobs-us-holiday-season
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Figure A-2: Employment by facility types and year

(a) Total Employment
0

25
50

75
10

0
12

5
To

ta
l d

is
tri

bu
tio

n 
em

pl
oy

ee
s (

x1
00

0)

2000 2004 2008 2012 2016
Year

(b) Sortation Center(2017)

0
.1

.2
.3

.4
Fr

ac
tio

n

0 200 400 600 800
Establishment employees

(c) Fulfillment Center(2017)

0
.1

.2
.3

Fr
ac

tio
n

0 1000 2000 3000 4000
Establishment employees

Notes: The left graph is the time series of overall fulfillment employment. The center and right graphs are the
distributions of employment across sortation centers and fulfillment centers in 2017, respectively.

amount of variation in employment in 2017, with the level of employment being much higher at
fulfillment centers.

A.3 Sales Tax

Our tax rates come from Thomson Reuters’ Tax Data Systems, which provide state, county, and
local tax rates for the years 2006-2018. We add these rates together and compute the average tax
rate across municipalities in each county for each year of the sample. Because we do not observe
rates before 2006, we assume that the tax rates from 1999-2005 are equal to the tax rate in 2006.
Table A-5 summarizes the tax rate data. The household weighted average sales tax rate varies
between 6.75% and 7.13%, with a standard deviation of between 1.5% and 1.6% across counties in
every year. In addition, tax rates vary across time, as between 42 and 68% of households live in
counties that experience tax rate changes from year to year and all counties experience at least one
tax rate change over our sample period. Finally, higher population counties tend to have higher
tax rates, as demonstrated by the final column.

Table A-5: Tax Rates

Year Ave Tax StDev Tax % HHs w/ Change Corr(#HHs, Tax)

2006 6.75 1.54 55.33 0.09
2008 6.82 1.51 67.47 0.10
2010 7.03 1.66 67.97 0.13
2012 6.96 1.56 64.60 0.11
2014 7.02 1.56 42.13 0.11
2016 7.13 1.59 42.69 0.10

Notes: The average and standard deviation of tax are moments from the distribution of the county level average
tax rates. HHs with change is the percentage of households that lived in a county where the average sales tax rate
changed that year. Corr is the county level correlation between households and the average sales tax rate.

This tax rate is assumed to apply to all transactions at brick-and-mortar and taxed online
retailers. Amazon transactions are taxed, and the local sales tax rate applies, if the consumer lives
in a state where Amazon collects taxes. As mentioned in the text, nexus tax laws would suggest
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that this occurs when Amazon operates a facility in the consumer’s state. However, it is not always
the case that these two events coincide perfectly, and here, we provide anecdotal and empirical
evidence that the gaps in timing are due to negotiation between state governments and Amazon

We begin by providing a few pieces of anecdotal evidence of this connection. First, in the
1999 through 2011 financial statements, Amazon states that “a successful assertion by one or more
states or foreign countries that we should collect sales or other taxes on the sale of merchandise
or services could result in substantial tax liabilities for past sales, decrease our ability to compete
with traditional retailers, and otherwise harm our business.” (p. 15 in 1999) There are similar
quotes in later statements about the repercussions of states “requiring [Amazon] to collect of taxes
where [they] do not” (e.g., 2017 page 12). This suggests that Amazon considered sales tax to be a
first-order issue impacting their bottom line.

A second piece of anecdotal evidence comes from documented negotiations between specific
states, such as Nevada and Texas, where the debate between Amazon and the state governments
over locating in the state centered around sales tax and Amazon’s physical presence in the state.
Amazon also chose to shut down its affiliate program in Illinois in order to avoid sales tax when
the state changed the nexus laws to include affiliates. These examples provide suggestive evidence
of the importance of the relationship between sales tax and Amazon’s strategic decisions.

There are occasions, mostly towards the end of our sample, where Amazon began to charge
sales tax before opening a facility. However, to the best of our knowledge, in all but one of these
cases (NY), Amazon had plans to build a facility in that state soon after the onset of sales tax
collection. Of course, it could be that Amazon decided to build a facility only after conceding on
the sales tax issue, but this seems unlikely given the nature and history of nexus laws. States have
unsuccessfully fought for years to change the nexus laws to include companies without a physical
presence in their jurisdiction, like Amazon. However, Amazon did start to charge sales tax in all
US states in 2017, irrespective of physical presence. This appears to be mostly a move for good
publicity and/or to put pressure on federal regulators to change the nexus laws, as Amazon had
already been charging sales tax to over 90% of the US population by this time.

The final pieces of anecdotal evidence are the observed location decisions of Amazon. Specifi-
cally, placing facilities on the western border of Nevada, the southern border of New Hampshire,
the southern border of Wisconsin, and in Delaware suggest that sales tax played an important
strategic role in determining their locations.

Given these anecdotes, we argue that the change in sales tax obligation is triggered by entry,
but that this change may only take effect after negotiations with state officials. The way that we
think about these negotiations is based the observed changes in the time between entry and sales
tax collection over time.

We observe that in the early period of our sample, there was often a significant lag between
the date of entry and the change in sales tax laws. For example, Amazon did not start collecting
sales tax in Pennsylvania until nine years after it opened its first fulfillment center in the state.
This was a time when Amazon had significant bargaining power with the states. One reason is
the lower demand in early time periods, so it was not as important for Amazon to be close to its
customers. Additionally, in early periods they were not located in very many states, meaning there
may be competing options of other, possibly lower sales-tax, states. For both of these reasons,
Amazon’s threat point (the value of opening in a different state) was higher in the early periods.
An example of this comes from Nevada in 2011, where a law that would have forced Amazon (and
other online retailers) to collect sales tax failed due (partially) to concerns that Amazon would
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close its fulfillment center in the state.33 Later, Amazon negotiated a deal with the state to start
collecting sales tax in 2014.34 In another example in the same year, Amazon closed a fulfillment
center and abandoned plans for expansion in Texas due to a dispute about paying uncollected taxes.
These two examples show Amazon using its leverage in order gain preferential tax treatment in the
early years of our sample.

However, as Amazon continued to expand their network, their bargaining power with states
lessened. State governments knew that, given the level of demand, it was important for Amazon to
be close to customers and that there were not many tax-friendly fallback states remaining. Because
of this, we see Amazon agreeing to charge sales tax quickly after the opening of the first facility in
a state and sometimes even before. We note that in all but one of the states in which they started
to collect sales tax ‘early’, they had agreements in place to build a facility soon after.35 To the best
of our knowledge, there is only one example, New York, where Amazon started to collect sales tax
without an announced plan to build an fulfillment center

Figure A-3: Tax Date Lags
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Notes: Each point represents a year of first entry into the state and the corresponding lag or lead in the
implementation of the collection of sales tax. The size of each point indicates the number of facilities with that
entry and lag.

To formalize this argument, we use data on the time between entry and sales tax. First, we
present Figure A-3, which shows, for each first entry into a given state, the time between entry
and tax collection. This demonstrates a negative relationship between date of first entry and the

33See https://www.reviewjournal.com/uncategorized/taxation-committee-drops-internet-sales-tax-

amendment/?ref=894

34See https://lasvegassun.com/news/2012/apr/23/nevada-reaches-agreement-amazon-collection-sales-t/

35See, for example, the situation in New Jersey: https://www.nj.com/news/2012/05/amazoncom_to_begin_

collecting.html
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lag in tax collection dates. Second, we run a regression where the dependant variable is the time
between first entry into a state and the beginning of tax collection. The regressors are a linear time
trend, a dummy variable indicating that the first entry in that state occurred post 2012, and the
minimum tax rate in a nearby state (i.e., same census region) that has yet to have an fulfillment
center. The time trend is intended to capture the reduction in bargaining power due to the increase
in demand, while the post-2012 dummy variable captures a discrete shift in bargaining strategy at
this time period. The tax variable is included to proxy for the value of the ‘outside option’. Table
A-6 displays the results, which show that the lag gets shorter post-2012 and for each additional
year. Additionally, the more attractive the outside option (i.e., lower tax rates), the higher the lag
in collection.

Table A-6: Tax Lag Regression

(1)
VARIABLES Tax year - Entry year

Minimum tax rate in unoccupied states from the same region -41.80**
(17.05)

State entry year -0.418***
(0.107)

1(Entry year>2012) -2.295*
(1.251)

Constant 847.1***
(214.9)

Observations 23
R-squared 0.861
Mean dep. variable 2.217
SD dep. variable 4.112
Mean tax variable 0.0393
SD tax variable 0.0225

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses. The dependant variable is the first
year of tax collection minus the year of the first entry into a state. Minimum tax rate is the smallest tax rate
of states in the same region that do not yet have a facility. Regions are defined by the US Census Bureau.

We take this into account in the supply side model and in the counterfactuals by assuming an
deterministic tax abatement schedule that depends on the entry year. We believe that this schedule
is able to capture the most important aspect of the negotiations (the time series) and that a more
comprehensive bargaining model between the states and Amazon, although interesting, is out of
the scope of this paper.

A.4 County characteristics

We explain our procedure for collecting and imputing the county level data in our analysis. We
separate the sections by the different categories of data we collect.

Demographics

The estimation of the model requires observing the demographic characteristics of the representa-
tive household and the number of households in each county in the US for the years 1999 to 2018.
The characteristics we include are income, age, and race. To measure the income of the repre-
sentative household, we include the average household income in a county as well as the share of
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households that have household income above 100 thousand. To measure age, we include the share
of households with a head of the household above 35 years old and to measure race, we include the
share of households with a head of the household who is black, Asian, or another race.

These variables, as well as the total number of households, are available during census years
(2000 and 2010) for every county, but between census years, we rely on the Census’s American
Community Survey (ACS). The drawback of the ACS is that the data are only available for high
population counties for the years 2006-2008 via the “ACS-1 Year” (depending on the variable,
missing percentage ranges from 41% to 75%). The “ACS-5 Year”, on the other hand, is available
between 2009-2016 for all counties. At the time when the data were collected, the 2017 and 2018
“ACS-5 year” were not yet available. To summarize, we observe the necessary variables (1) for the
complete set of counties in 2000 and from 2009-2016 (2) for only large counties from 2006-2008 and
(3) for no counties in 1999, 2001-2005, and 2017-2018.

Therefore, we impute demographics and the number of households for the missing counties
between 2006-2008 and all counties in 1999 and between 2001-2005 using. We regress each county
level demographic variable or number of households on state×year fixed-effects and county fixed-
effects:

yit = µi + τstate(i),t + eit.

This regression is estimated using observations for all counties during the census years, as well as
non-missing ACS counties for other years. We use the predicted value of this regression to impute
the data for missing counties from 2006-2008.

In order to use the model to predict the data for all counties in 1999 and 2001-2005, it is
necessary to have values of the state/year fixed effects for these years. We assume a constant
annual growth rate of these effects between 1999 and 2006, which we are able to determine using
the estimates of the fixed effects for 2000 and 2006.

Finally, in order to predict the variables for 2017 and 2018, we assume a constant annual growth
rate of each demographic variable and the number of households from 2015-2018. We calculate the
growth rate using the data from 2015-2016.

Retail Establishments

Our measure of offline competition is the count of local retail establishments. We separate these
into large and small retailers by the number of employees (greater or less than 50). For these
counts, we use data from the County-Business Pattern (CBP) between 1999-2016 for all counties.
Similar to the demographic data, we assume a constant growth from 2015-2018 in order to predict
the offline competition variables.

Retail wage

To estimate the county-level average retail wage, we use the annual wage in the retail sector observed
in the BLS Quarterly Census of Employment and Wages from 1999-2016. In each year, there are
around 37% counties with no wage data and between 0.01%-0.03% of counties are outliers (wage
out of range $10,000-$50,000). To impute the wage for these counties, we calculate the weighted
average wage of the twenty nearest neighboring counties that have data, using an inverse distance
weight. The data is then extrapolated to 2017 and 2018 using the same procedure as the one used
with the demographics, households, and retail establishments.
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Rent

We observe rents for distribution and industrial establishments at the MSA level for 2010-2018
for 47 MSAs from the Regional Economic Information System (REIS), and for industrial only
establishments between 2006-2010. Assuming the MSA-level ratio of industrial to distribution rent
stayed constant over the period, we use both data sets to predict MSA-level distribution rent from
2006-2018.

We then proceed in two steps to form a county level measure of rent for the years 1999-2018. In
the first two steps, we use the REIS and other data to predict rents for all MSAs from 1999-2018
and in the third step, we use these predictions to estimate a county level measure. The process
proceeds as follows:

1. Using the 2006-2018 data for the observed MSAs, we regress the (log) average rent on the
MSA-level CPI, which is available for all years between 1999 and 2018 from the BLS, while
controlling for MSA fixed-effects. We use the predicted values of this regression to predict
rent prior to 2006 for the observed MSAs.

2. To predict rent for the remaining MSAs, we regress (log) average rent on the following MSA
characteristics observed in the BLS and Census demographic data and aggregated to the
county level (in log): population, pop. density, employment rate, industrial employment rate,
office employment rate, nb of of employees, nb of establishments, median house value, mean
income, labor force participation rate, and year and census division fixed effects. We use the
predicted value from this regression to predict rents for the missing MSAs for all years.

3. To predict rent at the county level, we first assign the MSA rent measure to all counties located
with 20 miles of the MSA centroid. To predict outside of this radius, we regress MSA rents
on the characteristics of counties located within the radius, where we include the following
county characteristics: median house value, land size, population density, wage and median
income. The counties outside of the radius are then assigned the predicted value of this
regression. Essentially, we extrapolate outside the MSA core using the observed relationship
between housing cost and density and average distribution rent.

We note that our measure of rent does not account for the negotiations between property
owners and Amazon or any market power Amazon wields in such negotiations. To the extent that
Amazon’s bargaining power varies across locations, it may lead to biased estimates of our shipping
cost parameters. For example, if Amazon’s bargaining power were higher in larger markets, then
the shipping cost estimate would be overestimated; if bargaining power were higher in smaller,
more remote markets, then the shipping cost estimate would be underestimated. It is unclear to
us how significant the variation in bargaining power across markets might be.

A.5 Total Retail spending

We use micro data from the Consumer Expenditure Survey (CEX) between 1999 and 2016 to
construct a measure of average retail at the county-year level. The micro-data sample includes
repeated cross-sections of roughly 60,000 households reporting annual spending on categories cov-
ered by Amazon and other general merchandise retailers. We choose categories based on their
Universal Classification Code (UCC). The categories cover items that can roughly be put in to the
following larger categories: beauty supplies, household items, electronics, apparel and accessories,
office/school supplies, books, pet supplies, and sporting goods. A detailed description of which
UCC codes are included is available upon request.
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We use these data and an imputation approach similar to Blundell et al. (2008) to construct our
retail spending for the representative consumer. The starting point is a linear regression relating
spending with household characteristics and time/region fixed-effects:

yit = Xitβt + µr(i),t + ϵit (A-1)

where Xi includes indicators for age and income groups, education, employment status, rate and
family composition, and µ is a region/year fixed effect. Note that the regression is estimated
separately for each year.

The second step measures the mean of Xit for each county/year. We use the aggregate census
tables described in the previous section for this task. Let X̄j,t denotes this average for county j in
year t.

We then use the estimates (β̂t, µ̂t) to calculate the conditional expectation of (log) annual
spending in each county:

ȳjt = X̄jtβ̂t + µ̂r(j),t. (A-2)

Finally, we transform this conditional expectation into levels assuming that spending is dis-
tributed according to a log normal distribution:

Spendingjt = exp ((ȳjt + σ̂ϵ/2)) (A-3)

Since the log-normal distribution is sensitive to outliers, we windsorize the distribution of ȳjt by
truncating the values to the 99.9% percentile. To form data for 2017 and 2018, we extrapolate
assuming a constant annual growth rate as in the previous sections.

A.6 Prices and Variety

In this section we describe how we construct the price and variety indices. We first discuss the
price index. We calculate the average price of goods purchased over the course of a year for the
representative household in each county using the comScore data. Specifically, we calculate the
average price of goods purchased on Amazon for each household and then use population weights
to aggregate to the county level. Therefore, the construction of this is the same as the construction
of the weighted average spending discussed in Section A.1. To smooth any remaining noise in
the pricing data and to make out-of-sample predictions, we regress the county level prices on a
linear time trend and the share of households in the county who have a head of the household that
makes over $100 thousand in income. Including the latter accounts for the fact that higher income
households may be buying different things on Amazon.

The results of these regressions are in the first two columns of Table A-7. In the first column,
the dependent variable is in levels, while in the second column, it is in logs. Both specifications
indicate that there is a positive trend in the prices on Amazon over time and the log specification
shows that higher income households buy more expensive items. The time trend in the log-linear
model suggests that prices increase by just under 1% each year. We use the results of these models
to predict the transacted prices for each county and each year. These predictions are in the first
two columns of Table A-8. Both specifications predict a 1999 price of about $25. The prices then
increase until 2018, with the increase being slightly more for the linear model.

We now turn to the variety index. We construct our measure of variety as the ratio of the
interquartile range to the median price in each year, where the median price is calculated in the
same way as the average price. As product availability on Amazon does not vary by location, we
do not utilize the variation in prices at the county level, which represents only the variation in
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Table A-7: Price Regressions

Dep Var P Log(P) IQR Log(IQR)

Linear Time Trend 0.436*** 0.009*** 1.970*** 0.084***
(0.044) (0.001) (0.263) (0.008)

Share of Pop w/ Inc >100k 0.069 0.581***
(1.566) (0.038)

Obs 17,338 17,338 11 11
R-Sq 0.006 0.021 0.862 0.922

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses. The first two columns are price regressions
using county level data and the last two columns are variety regression using annual data.

products purchased by a single household (or county) and not necessarily the products available on
the platform. Instead, we utilize the variation in prices across the entire US, using all transacted
prices observed in the comScore data in a given year.

Similar to the price index, we use a regression to smooth the data and to make out of sample
predictions. However, here we only include the time trend as the dependent variable because the
dependant variable is at the year level rather than the county/year level. The results are displayed
in the third and fourth columns of A-7. Despite the fact that we only have 11 observations, the
model fits the data well. The estimates show that the variation in prices is increasing over time,
with the log-linear model indicating that the IQR increases by about 8% each year. We again use
the results to predict the IQR across all years from 1999-2018. The last two columns of Table
A-8 indicate that the IQR increases substantially over time. While the linear model predicts a
negative value in the early years, the middle years (during our sample) and the overall increase are
comparable across specifications. In our remaining analysis, we use the predictions of the log-linear
model for prices and IQR, normalizing the IQR by predicted average price in constructing the
aggregate variety index. We index the resulting standardized IQR to one in 2018.

Table A-8: Predicted Price Moments

Predicted Price Index Predicted IQR
Year Linear Log Linear Log

1999 25.01 25.16 -0.73 8.05
2002 26.32 25.87 5.18 10.36
2005 27.63 26.71 11.09 13.34
2008 28.94 27.81 17.00 17.17
2011 30.24 28.66 22.91 22.10
2014 31.55 29.67 28.82 28.45
2017 32.86 30.51 34.73 36.63
2018 33.30 30.77 36.70 39.85

Notes: The predictions of the log models account for the variance of the residual.
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A.7 Marketplace Spending and Approximating the Gross Margin

Recall that µ̄ is the weighed average margin between purchases directly through Amazon and
purchases through third party sellers:

µ̄t = s3PS
t µ3PS + (1− s3PS

t )µown

where s3PS
t is the share of marketplace sales observed in the 2018 annual report (cover letter).

We use the annual reports of Amazon from 1999-2018 along with outside sources to determine the
values of µ3PS and µown, which we assume are fixed over time.

We begin with our approximation of µown. Amazon’s annual report displays their gross margin
each year (e.g., 2013 p. 26), but there are three problems with using this number directly. First, this
includes the cost and revenue of third party sales. Second, this margin includes some of the costs
that we will estimate such as labor, land, density, and shipping costs. Third, there are additional
costs that we want to include that are not included in “Cost of Goods Sold”, for example robotics,
electricity, etc.

Instead, we calculate the margin as:

µown =
Amazon Sales− (Cost of Goods Sold + Other Costs− Shipping Costs)

Amazon Sales

We observe “Amazon Sales” in their annual report (e.g., 2016 p.26). Specifically, Amazon reports
their total revenue in “Media” and “Electronics and Other General Merchandise” categories in
North America, which is roughly equivalent to the revenue we predict from our model. Revenue
from Canada and Mexico is not included in the comScore data, but this comprises a small share
of total revenue.36 This figure includes both direct product sales as well as ‘service sales’, which
include revenue from third-party sales. Therefore, we net out the third-party revenue using the
share of third-party transactions and the margin earned on third-party transactions, µ3PS , which
we discuss below.

Amazon also reports the total ‘Cost of Goods Sold’, which is comprised of wholesale costs and
shipping costs. We compute the cost of goods sold for North America by multiplying the total cost
by the ratio of sales from North America to total sales. Because we estimate shipping costs, we
need to subtract these costs from the margin. Therefore, we net out the ‘Shipping Costs’ that are
observed in the annual report (e.g., 2016 p. 25). Again, we adjust these by the share of sales that
are from North America.

The “Other Costs” variable should not include any land or labor costs that we are going to
estimate. So we collect the “Fullfillment Cost” from the annual report, which “consist of those costs
incurred in operating and staffing our North America and International fulfillment and customer
service centers and payment processing costs” (e.g., 2016 p. 27), and net out preliminary estimates
of the costs of labor, land, and density from our model. We adjust this by the share of North
American sales and the share of third-party sales in order to get ‘Other Costs’ for US Amazon
transactions only.

The calculated value of µown varies from year to year, with a high of about 0.2 in the early
years and a low of about 0.09 in 2011. We use the average across all years, approximately 0.15,
and assume that this is the margin that Amazon realizes on direct transactions, net of any costs
we estimate.

Next we turn to the margin Amazon earns on third party transactions, which includes both a

36According to S & P Capital Platform’s segment analysis of Amazon, nearly 98% of North American revenue came
from the United States in 2017.
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royalty rate and seller fees such as membership fees and stocking fees. It is not necessary for us to
observe these separately, as we only care about the overall margin on third-party sales. In order
to determine µ3PS , we use the amount of revenue Amazon earned from third party sellers from
2014-2018, which, along with the Amazon’s total revenue and the share of third-party sales, allows
us to back out µ3PS for these years. The revenue from third-party retailers is observed starting in
the 2016 annual report, which reports this measure 2 years retroactively (p. 68). The backed out
margin ranges from 0.32 to 0.35 during this time frame, so a reasonable estimate may be 0.335.
However, because it is likely more costly for Amazon to receive, manage, and ship inventory from
a third-party retailer, we use a conservative estimate of µ3PS = 0.3.

Therefore, the weighted average margin is given by:

µ̄t = s3PS
t 0.30 + (1− s3PS

t )0.15

B Appendix: Estimation

B.1 Projecting Spending

Here, we describe the steps to project demand outside of our sample using additional data. First,
we collect data on the variables in Cit and Zit for the years and counties outside of our sample from
the US Census Bureau. Second, to predict the county fixed effects we use the estimates of a linear
regression of the estimated in-sample fixed effects on a large number of county characteristics. This
auxiliary regression fits the data well with an R-squared of 0.89. We also use a regression with
time-trend covariates to predict the census division-year fixed effects. We use the predictions of the
county fixed effect and the census division-year regressions for both in-sample and out-of-sample
data, which smooths the spending data to account for possible measurement error.

Finally, in order to predict the mode-year fixed effects outside of our sample, we bring in
aggregate spending data from Amazon’s annual reports and the US Department of Commerce.
Specially, we can use the estimates of the demand model and the projections discussed above to
predict total yearly spending for a given set of fixed effects. We find the values of the fixed-effects
such that these predictions match the information from the aggregate spending data.

B.2 Instrument Construction

Here, we describe how we construct the instruments. Recall, that the instruments must be orthog-
onal to the measurement error from the demand model, but correlated with the components of the
profit difference. Therefore, we construct measures of these components that are not a function of
the estimated demand model.

The first variable, a shifter of the shipping distance component, is the total weighted shipping
distance difference, where instead of using the number of orders predicted by the demand model as
the weight, we use the population of the county:

X̂j,j′

d =

t(j′)∑
t=t(j)

βt

(
I∑

i=1

L∑
l=1

PopitΩ̂i,l(Nt|a0)dil − PopitΩ̂i,l(Nt|aj,j
′
)dil

)

The function Ω̂i,l(Nt|a) represents the estimated O-D matrix under a network strategy a.
The second, a shifter of the vertically integrated orders component, is the weighted number of

vertically integrated orders, where again we use county population instead of the estimated number
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Table B-1: Definition of moment conditions

Trade-offs Variables Nb. Swaps: Zj,j′

r = 1

Distance & Taxes X̂j,j′

d & ∆T̂ax
j,j′

83 (-/+) 1857 (+/-)

Distance & Cost X̂j,j′

d & ∆ ̂Input prices
j,j′

648 (-/+) 2282 (+/-)

VI & Taxes X̂j,j′

vi & ∆T̂ax
j,j′

133 (+/+) 967 (-/-)

VI & Cost X̂j,j′

vi & ∆ ̂Input prices
j,j′

1037 (+/+) 1307 (-/-)

Distance & VI X̂j,j′

d & X̂j,j′

vi 606 (-/-) 1883 (+/+)

Distance & Density X̂j,j′

d & X̂j,j′

p 566 (-/+) 2100 (+/-)

Taxes alone ∆T̂ax
j,j′

+ |X̂j,j′

d | < σvi & |X̂j,j′

vi | < σd 119 (+) 989 (-)
Fraction of swaps 0.79

of orders:

X̂j,j′

vi =

t(j′)∑
t=t(j)

βt

(
I∑

i=1

L∑
l=1

PopitΩ̂
sc
i,l(Nt|a0)− PopitΩ̂i,l(Nt|aj,j

′
)

)

Shifters of gross profit differences include the differences in the two average input prices (wages
and rent):

∆Input pricesj,j
′

=

t=t(j′)∑
t=t(j)

βt
1

n0t

(
ICt(Nt|a0)− IC(Nt|a0)

)
where ICt(Nt|a) is the sum of the input cost (either wage or rent) across active clusters under
strategy a. Note the input cost of a cluster is the average across the facilities in that cluster, if
those facilities are in different counties. When all facilities within a cluster are in the same county,
then it is just the input cost in that county.

The shifter of the density cost is difference in average population density:

∆Densityj,j
′

=

t=t(j′)∑
t=t(j)

βt
1

n0t

(
¯Denst(Nt|a0)− ¯Dens(Nt|a0)

)
where ¯Denst(Nt|a) is the sum of the population density across active locations.

Finally, as an additional shifter of the gross profit difference, we construct the difference in the
population weighted average tax rate between strategies a0 and aj,j

′
:

∆Taxj,j
′
=

t=t(j′)∑
t=t(j)

βt

(
I∑

i=1

Popit
Total popt

·
(
τit
(
a0
)
− τit

(
aj,j

′
)))

.

where τit (a) is the tax rate charged on Amazon in county i under strategy a.
Table B-1 formally defines the indicator variables that we use as instruments in the estimation,

as well as the number of permutations associated with each one. The last two columns report the
number of swaps used for each moment. Overall, we use 79% of all available swaps in the estimation.

A-16



The (+) and (-) signs beside each entry indicate the sign of the first and second variables generating
the trade-offs. Recall that differences are expressed relative to the rejected option of opening facility
j′ early (and delaying j). A positive sign indicates that the chosen option leads to an increase in
the variable of interest.

The first row demonstrates the trade-off between distance and tax. We observe 83 swaps leading
to negative distance and positive tax changes, and 1,857 swaps leading to an increase in distance
and a tax decrease. Note that we observe a larger number of distance increase/tax decrease swaps
because most new entries in dense areas take place late in the sample, and generate little tax
changes. In contrast we observe a large number of swaps generating trade-offs between cost and
distance (second row).

The trade-offs associated with the expansion of the sortation network correspond to swaps
leading to positive differences in vertical integration and tax (or cost), and negative differences in
vertical integration and tax or cost. These swaps correspond to cases in which Amazon chose to
increase the number of vertically integrated transactions at the expense of lower revenue or higher
input prices.

The next two trade-offs capture the joint variation in distance and vertical integration, and
distance and population density. Instruments associated with choices that increase both distance
and vertical integration impose restrictions on the ratio of θd over θvi. The trade-off between
distance and population density similarly restricts the ratio of θd and the effect of density on
fixed-costs (κ).

Finally, we include a pair of moments associated with variation in taxes, and minimal changes
in distance and vertical integration (i.e. difference is smaller than the inter-quartile range in both
variables). These additional moments produce positive and negative changes in gross profits, which
impose restrictions on the scale of the fixed-cost parameter (κ).

B.3 Model Fit

We present the fit of the model’s predictions of the roll-out in Figure B-1, which displays information
about the timing of observed first entry into a state (shade) and the corresponding predictions of
our model (points).

For the low-demand state (1999), the model accurately predicts the regional distribution of
active fulfillment centers, as the predicted optimal configuration includes one location each in the
west (Nevada), the center (Kentucky) and the east (Massachusetts; note however that the observed
network’s location is in Delaware). As demand increases (2006 and 2012), the density and number of
facilities expand rapidly. In 2006, the model predicts a slightly more dense network than the actual
network, with locations in additional states in the mid-west (Michigan), the southeast (Alabama),
the mid-Atlantic (Virginia), and the west (Oregon). Though, the model accurately predicts entry
on the east-cost (Pennsylvania) and south (Oklahoma). However, the observed entry in the south
was in Texas rather than Oklahoma.

The 2012 network is similar to the observed one, with expansions in the mid-west (Indiana),
south (South Carolina) and west (Arizona). The model also predicts entry into Florida and Col-
orado during this time, which is slightly earlier than what we observe.

For 2018, further entry is predicted in the west (California), mid-Atlantic (Maryland) and mid-
west (Wisconsin), which are all entries that are observed. However, there are some states which
the model misses in the mid-west (Illinois), east (New York), and southeast (Georgia).
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Figure B-1: Observed (shade) and Model Predicted (dot) First Entry into State

Notes: The dots are places at the centroid of the state and not at a particular location.
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OA.1 Online Appendix: Model

OA.1.1 CES Spending Derivation

Here, we describe the derivation of the spending equations in the CES demand model. The utility
of the representative household in county i in year t is given by:

Uit(qi0t, ..qi3t) =

(
3∑

k=0

∫
vikt(ω)

1/σqikt(ω)
σ−1
σ dFkt(ω)

) σ
σ−1

where qikt(ω) is the quantity of product variety ω purchased from shopping mode k in year t.
The household solves:

max
qi0t,..qi3t

Uit(qi0t, ..qi3t)

s.t.

3∑
k=0

∫
p̃ikt(ω)qikt(ω)dFkt(ω) ≤ Bit

resulting in the optimal expenditure:

eikt =

∫
vikt(ω)p̃ikt(ω)

1−σP σ−1
it BitdFkt(ω)

The term Pit represents the Dixit-Stiglitz price index: Pit =
(∑3

k=0

∫
vikt(ω)p̃ikt(ω)

1−σdFkt(ω)
) 1

1−σ
.

Given the pricing assumptions and the separability of the marginal utility, expenditures can be
rewritten as:

eikt =

∫
αiktω(ρktω(1 + τikt))

1−σP σ−1
it BitdFkt(ω)

= αiktρ
1−σ
kt (1 + τikt))

1−σP σ−1
it Bit

∫
ω2−σdFkt(ω)

Taking the log of the relative spending in county i to the offline option, results in Equation 2
from the main text:

ẽikt = ln eikt − ln ei0t

= ln(αikt)− ln(αi0t) + (1− σ)(ln(ρkt)− ln(pi0t))

+(1− σ) (ln(1 + τikt)− ln(1 + τi0t))︸ ︷︷ ︸
∆τikt

+ ln

(∫
ω2−σdFkt(ω)

)
︸ ︷︷ ︸

Variety

= ξkt + λkZit + γkCit + ξ̄i +∆ξct + (1− σ)∆τikt + ϵikt (OA-1)

where the final equality comes from the parameterization of tastes for mode k relative to mode 0
and the relative prices:

ln(αikt)−ln(αi0t)+(1−σ)(ln(ρkt)−ln(pi0t))+ln

(∫
ω2−σdFkt(ω)

)
= ξukt+λkZit+γkCit+ξ̄i+∆ξct+ϵikt
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OA.2 Calculating Compensating Variation

Here, we describe how we calculate the compensating variation from going from the nexus tax
regime to the non-discriminatory regime. Note that we have not estimated all the parameters
of the CES model, so we must rely on an approximation of the utility function to calculate the
change in consumer welfare. In particular, the distribution of product quality enters the demand
estimates only through mode/year fixed-effects, and we do not observed the joint distribution of
quantity and prices for each variety. We therefore assume that each mode sells a single variety with
a time-varying product quality index αikt, which leads to the following utility function:

Uit(qi0t, .., qi3t) =

(
3∑

k=0

α
1
σ
iktq

σ−1
σ

ikt

) σ
σ−1

Optimal consumption is then:
qikt = αiktp̃

−σ
iktP

σ−1
it Bit

and indirect utility is:

u(p̃i0t, ..., p̃i3t, Bit) =

(
3∑

k=0

α
1
σ
ikt(αiktp̃

−σ
iktP

σ−1
it Bit)

σ−1
σ

) σ
σ−1

= P σ−1
it Bit

(
3∑

k=0

αiktp̃
1−σ
ikt

) σ
σ−1

The price index is given by:

Pit =

(
3∑

k=0

αiktp̃
1−σ
ikt

) 1
1−σ

Plugging this into the indirect utility results in:

u(p̃i0t, ..., p̃i3t, Bit) = Bit

(
3∑

k=0

αiktp̃
1−σ
ikt

) σ
σ−1

1∑3
k=0 αiktp̃

1−σ
ikt

= Bit

(
3∑

k=0

αiktp̃
1−σ
ikt

) 1
σ−1

Assume that price changes from p̃ to p̄ (and P to P̄ ) and original level of the budget is given
by B̃it. The compensating variation for consumer i is the difference between the current budget
and B∗

it, where B
∗
it is the budget such that the utility under the two price regimes is equal:

B̃it

(
3∑

k=0

αiktp̃
1−σ
ikt

) 1
σ−1

= B∗
it

(
3∑

k=0

αiktp̄
1−σ
ikt

) 1
σ−1

or:

B∗
it = B̄it

(∑3
k=0 αiktp̃

1−σ
ikt

) 1
σ−1

(∑3
k=0 αiktp̄

1−σ
ikt

) 1
σ−1

The total compensating variation is the sum fo this difference across all consumers:

CV =
∑
i

B∗
it − B̄it

For this calculation, we need to back out αikt for all modes from the estimates of our model,
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as we do not estimate this separately from prices. Assuming there is only one variety implies that
the estimates of the regression are:

δ̂ikt = ln(αikt)− ln(αi0t) + (1− σ)(ln(pkt)− ln(pi0t)) = ξ̂ukt + λ̂kZit + γ̂kCit + ∆̂ξi0t + ϵ̂ikt

so:
α̂ikt = exp(δ̂ikt + ln(αi0t)− (1− σ)(ln(pkt)− ln(pi0t)))

where the variety term drops out because there is only one variety per mode. We normalize αi0t = 1
so that:

α̂ikt = exp(δ̂ikt − (1− σ)(ln(pkt)− ln(pi0t)))

For each of the online modes, we construct an average transaction price using data from com-
Score. See Appendix A.6 for details. These prices vary over time, but not across locations. Offline
prices, on the other hand, are allowed to vary across space and time. We estimate pi0t using a
combination of CPI data from the Bureau of Labor Statistics and prices at walmart.com from
comScore. Specifically, we take the ratio of the price index on walmart.com in 2006, p̄WM,t=2006, to
the 2006 national CPI for Urban Consumers less food and energy, CPIUSA,2006, and assume that it
is representative of the ratio of offline prices to the CPI across all counties and all years. Therefore,
with data on the CPI for a given county and year, CPIit, we calculate local offline prices as:

pi0t =
pWM,t=2006

CPIUSA,2006
∗ CPIit

To determine CPIit we combine the data on the national CPI for Urban Consumers from 1999
to 2018 with Regional CPI data for Urban Consumers from 2018. Specifically, we assume that the
value of the CPI for county i in 2018 is equal to the Regional CPI for Urban Consumers in county
i’s MSA, when available, and its Census region when MSA data is not available. The regional CPI
for Urban Consumers in 2018 comes from the Bureau of Labor Statistics. We then assume that the
ratio of the county’s CPI to the national CPI is constant across time, meaning we can calculate
CPIit across all years using the time-series of national CPI data from 1999-2018:

CPIit =
CPIi,t=2018

CPIUSA,2018
∗ CPIUSA,t

OA.2.1 Order Flow Matrices

In this section, we provide more details on the order flow matrices. Since the availability of orders is
independently distributed across locations, the unconditional Origin-Destination (O-D) probability
matrix takes the following form:

Ωu
l,i(Nt) =

 ∏
l′|dil>dil′

(1− ϕt (Kl′t))

ϕt(Klt)

where dil is the distance between county i and location l.
The above matrix can lead to unfulfilled orders (i.e. sum of columns less than one), and so we

form the conditional fulfillment probability O-D matrix:

Ωl,i(Nt) =
Ωu
l,i(Nt)∑L

l′=1Ω
u
l′,i(Nt)

. (OA-1)
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and use it to predict the volume of orders fulfilled by fulfillment center located in l:

qjt =
∑
i

Qit(Nt)Ωl,i
kj
Klt

if mj = FC

The fraction of orders from county i processed by a sortation center in location l is given by:

Ωsc
l,i(Nt) = 1(dil ≤ 150)

L∑
l′=1

Ωl,i(Nt)1(dl′l ≤ 25) (OA-2)

where dl′l is the distance between cluster l and cluster l′. Therefore, the volume of orders processed
by sortation center located in l:

qjt =
∑
i

Qit(Nt)Ω
sc
l,i if mj = SC.

OA.3 Online Appendix: Estimation

OA.3.1 Return Function

Here we define elements of the return function that are not in the text. Again, the hat indicates a
function that was estimated in a previous step:

Xj,j′

vi is the discounted differences in the number of vertically-integrated transactions:

Xj,j′

vi =

t(j′)∑
t=t(j)

βt
(
Q̂vi

t (Nt|a0)− Q̂vi
t (Nt|aj,j

′
)
)

Xj,j′
p is the discounted difference in the population density (weighted by facility square-footage):

Xj,j′
p =

t(j′)∑
t=t(j)

βt
(
CPop Dens
t (Nt|a0)− CPop Dens

t (Nt|aj,j
′
)
)

where CPop Dens is the non rent portion of fixed cost Ft(Nt): C
Pop Dens
t (Nt|a) =

∑
j kjPop Densitylj ,t

OA.3.2 Moment Conditions and Profit Trade-offs

In this section, we expand the discussion of Table 5 from the text to include preliminary estimates
of the vertical integration parameter, θvi, and the density cost parameter, κ. We repeat the first
panel of Table 5 in Table OA-1 below and add two additional panels.

In the first two rows of the second panel, we report the changes in gross profit (Y ) and the
number of orders that are vertically integrated (X), averaged across swaps that capture the trade-
off between vertical integration and taxes/input prices. This trade-off come from the fact that, in
order to increase the number of vertically integrate orders, Amazon must open facilities in more
urban areas and, thus, pays higher input prices and/or charges sales tax to more consumers. We
again hold the other profit components fixed by conditioning on swaps that exhibit small changes
in the other variables.

The left side of the panel focuses on swaps where the average tax rate decreases (∆Taxj,j
′
> 0)

and the population weighted number of vertically integrated orders (X̂vi > 0) decreases. This
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set of swaps determines the lowest value of the θvi such that the total cost savings from vertical
integration outweighs the lost revenue from charging additional sales tax, making the observed
network optimal. The change in gross profits, averaged across these swaps is −$30.92 million. The
average change in number of vertically integrated orders for this subset of swaps is 36.22 million.
Similar to the example in Equation 21, we calculate the lower bound of θvi by taking the ratio of
these numbers, which equals $0.85 of cost saving per order. The lower bound is $0.17 per order if
instead we use the input price as our profit shifter. To determine the upper bound, we compute the
average changes in gross profit and vertically integrated orders for swaps that feature the opposite
side of the trade-off. Taking the ratio of these, we calculate the upper bound as 2.08 or $0.27 per
order, depending on the profit shifter.

In the bottom panel of the table, we focus on the trade-off that identifies the additional rental
cost of locating in a densely populated area, κ. The trade-off is that Amazon pays the additional
cost of higher density as it locates closer to consumers, reducing the shipping distance. Note that
the fact that the shipping distance impacts the shipping costs implies that this trade-off does not
identify κ separately from θd but, instead, identifies the ratio of these two parameters. In the left
side of the panel, we focus on the subset of swaps where the population density decreases (Xpop > 0)
and the total population weighted shipping distance increases (X̂d < 0). Note that there is no hat
on Xpop because this is a fixed-cost and, thus, is not a function of the number of orders (i.e., it is
exogenous). Additionally, we hold the gross profit fixed by conditioning on swaps that have small
changes in taxes and input prices. Given a value of θd, this set of swaps identifies the highest value
of κ such that the cost of having a facility in a more densely populated area does not outweigh the
savings from shorter shipping distances, making the observed network optimal.

The average change in population density for this subset of swaps is 24.17 people per square
mile (100s) where the average change in shipping distance is −71.97 hundred million miles. Again,
similar to the example in 21, we can take the ratio of these to calculate the lower bound of θd

κ , which
is 0.336. The right side of the panel, which focuses on the opposite side of the trade-off, shows that
the upper bound of the ratio is 0.307. Notice again that this exercise does not restrict the upper
bound to be higher than the lower bound. Using the mid-point of the estimates of θd from the
top panel of the table (0.17), we determine that κ is approximately $0.50 per unit of population
density.
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Table OA-1: Moment Conditions and Profit Trade-offs

(a) Distance trade-offs

Lower bound: θd Upper bound: θd

Zj,j′ = 1(∆Shifterj,j
′
> 0 & X̂j,j′

d < 0) Zj,j′ = 1(∆Shifterj,j
′
< 0 & X̂j,j′

d > 0)

E(Y |Z) E(Xd|Z) E(Y |Z) E(Xd|Z)

∆Shifter (Gross Profit)
(a) Tax -13.30 -93.60 37.10 140.19
(b) Input prices -5.94 -82.68 7.60 128.21

Bounds: E(Y |Z)
E(Xd|Z)

(a) Tax 0.14 0.26
(b) Input prices 0.07 0.06

(b) Vertical integration trade-offs

Lower bound: θvi Upper bound: θvi

Zj,j′ = 1(∆Shifterj,j
′
> 0 & X̂j,j′

vi > 0) Zj,j′ = 1(∆Shifterj,j
′
< 0 & X̂j,j′

vi < 0)

E(Y |Z) E(Xvi|Z) E(Y |Z) E(Xvi|Z)

∆Shifter (Gross Profit)
(a) Tax -30.92 36.22 34.10 -16.36
(b) Input prices -3.51 20.44 4.58 -16.81

Bounds: E(Y |Z)
−E(Xvi|Z)

(a) Tax 0.85 2.08
(b) Input prices 0.17 0.27

(c) Density/distance trade-offs

Lower bound: θd
κ Upper bound: θd

κ

Zj,j′ = 1(Xj,j′

pop > 0 & X̂j,j′

d < 0) Zj,j′ = 1(Xj,j′

pop < 0 & X̂j,j′

d > 0)

E(Xpop|Z) E(Xd|Z) E(Xpop|Z) E(Xd|Z)

∆Shifter (Fixed Cost)
Pop Density 24.17 -71.97 -33.44 108.97

Bounds:
E(Xpop|Z)
−E(Xd|Z) 0.336 0.307

Notes: In selecting swaps for inclusion in each instrument category, we condition on population-weighted tax, input
price, and distance changes. The statistics in the body of the table, however, represent order-weighted aggregates.
The variable ∆Shifter refers to the change in one of two population-weighted profit shifters: taxes and average input
prices.

OA.3.3 Network Optimization Algorithm

We describe the simulation-based algorithm we use to solve Amazon’s network optimization prob-
lem, which is called the Population-Based Incremental Learning (PBIL) algorithm developed by
Baluja (1994). The central idea of the algorithm is to convexify the optimization problem by it-
erating over the probability of opening a facility in a given location, rather than on the vector of
binary choices. The algorithm starts with a uniform probability of entering each location, and
progressively refine the guess by bringing the probabilities closer to one or zero to maximize the
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expected profit. To avoid converging too quickly to a local optimum, the algorithm perturbs a
random number of location choice probabilities. This is the genetic component of the procedure.
The algorithm stops when the maximum profit configuration stops evolving. The procedure is then
repeated using a different sequence of random numbers (runs). As this number goes to infinity, the
algorithm converges to a global maximum.

Let N denotes the number of unique locations. The choices is summarized by two N × 1
vectors: A = {ai,fc, ai,sc}i=1,...,N where ai,fc ∈ N+ and ai,sc ∈ {0, 1}. Each location can include
more than one fulfillment center, and at most one sortation center. In addition, we impose the
restriction that a sortation center cannot be placed in a location without a fulfillment center.
The algorithm treats those decisions as stochastic, and iterate over the probability of each network
configuration. We use a Poisson probability distribution to describe the choice of fulfillment centers,
and a binomial distribution to describe the choice of sortation centers. Let Λ = {λi,fc, λi,sc}i=1,...,N

denote a matrix of parameters describing the location choice probabilities: ai,fc ∼ Pois(λi,fc) and
Pr(ai,sc = 1) = λi,sc. Importantly, we are not restricting the number of facilities. The optimization
problem searches for the location and number of facilities of each type.

The algorithm proceeds as follows. The starting parameter value Λ0 is defined such that each
location is chosen with uniform probability. We also scale the parameters so that the expected
number of locations is equal to the number of observed facilities of each type in a given year. At
generation k, the algorithm updates the choice probability vector as follows:

1. Maximization step:

(a) Sample S network configurations from probability distribution Λk

(b) For each s, calculate the flow of orders and the aggregate profits: Πs
t

(c) Identify the profit maximizing configuration: Amax
k = argmaxs∈{1,...,S Πs.

2. Hill-climbing step: Update network probability parameters using the convex combination of
Λk and Amax

k

Λk+1 = (1− α)Λk + αAmax
k

3. Mutation step:

(a) For each location/facility type draw uki,j ∼ U [0, 1] and ekij ∼ U [0, 1]

(b) If uki,j < η1, perturb (i, j) choice probability according to:

λk+1
i,j = λki,jη

2 + ekij(1− η2)

4. If Πmax < Πmax
k update the profit maximization network:

Amax = Amax
k and Πmax = Πmax

Steps (1)-(4) are repeated until the network Amax stops changing. In practice we stop the algorithm
when Πmax has remained constant for S̄ generations. To ensure that the algorithm identifies a
global maximum, we repeat the stochastic process over a large number of runs, and identify the
most profitable network across L runs. Each run yields a potentially different network configuration
because the sequence of random numbers is different across generations. When the number of ideal
facilities is small (e.g. t = 1999 nfc = 4) most runs lead to the same configuration, and the
stochastic algorithm identifies a unique global maximum. For larger networks, the largest profit
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network changes from run to run. In these cases, it is best to think of the result as a stochastic
approximation of the optimal network.

In Figure OA-1 we display the locations that are in the choice set (white), as well as the locations
that our model predicts in 2018 (red). A total 39 of the 48 contiguous states have a location, with
most of those states without a location being on the bottom of the population distribution.

Figure OA-1: Possible Locations (white) and 2018 Chosen Locations (red)

Notes: States are shaded by quintiles of the number of households with the darker color indicating more households.
The average sales tax rate is displayed.

OA.4 Online Appendix: Robustness

OA.4.1 Demand Specification

In this section, we explore the implications of our demand model. One worry is that we are
not accounting for unobserved time-varying heterogeneity based on a consumer’s location. In the
current model, we allow for unobserved growth in preferences for online shopping at the census
division level via a set of division-year fixed effects. However, it could be the case that there is
geographic variation in growth at the mode level and/or at a different level of spatial granularity.
In Table C-1 we present the estimated constant and σ for 5 different models, where each model
assumes a different level of fixed effects (indicated at the bottom of the table). Specification (3) is
our baseline.

Overall the table demonstrates that the estimate of σ is always negative and significant at the
5% level, but the magnitude is sensitive to the level of fixed effects. Controlling for a finer level
of geographic variation appears to be important, as demonstrated by both the estimated constant
and σ, and allowing for mode-level unobserved growth results in an estimate below 1 (in absolute
value). The reason for this is that the mode-year-level fixed effects absorb much of the across mode
and time variation in tax rates used to identify σ. We note that the estimate of the baseline model
(3) is the closest to the estimates in the previous literature (e.g., (Einav et al., 2014) and (Baugh
et al., 2018)).
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Table C-1: Demand Estimates (Alternative Specifications)

(1) (2) (3) (4) (5)
Variable name

Elas of Subs -1.187** -1.189** -1.516** -0.830* -0.958*
(0.391) (0.395) (0.399) (0.410) (0.433)

Constant -3.585 -2.942 -6.378* -3.642 -7.070*
(2.768) (2.857) (2.987) (2.858) (2.989)

Obs 52,488 52,488 52,488 52,488 52,488
R-Sq 0.600 0.604 0.608 0.604 0.609

FEs None Region-Year Division-Year
Region-Year-

Mode
Division-Year-

Mode

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses. The results are from models that are
equivalent to the left panel of Table 3, but with a different dependant variable. We omit the other parameter
estimates for space.

In Table C-2, we examine how the different demand specifications impact the cost estimates.
The specification indicated at the top of the table corresponds to the specifications in Table C-1.
The point estimates are generally similar across the specifications, but the confidence intervals are
slightly larger under the baseline model. The estimates of the distance cost in specifications (4) and
(5) are about 20% smaller than the baseline, which is in line with the intuition that the tax-distance
trade off varies with the magnitude of σ. Similarly, the VI parameter is also slightly smaller in
specifications (4) and (5).

Table C-2: Cost Estimates (Alternative Demand Specifications)

(2) (3) (4) (5)
Est. CI Est. CI Est. CI Est. CI

θd 0.30 0.24 0.42 0.34 0.26 0.49 0.26 0.22 0.36 0.28 0.22 0.38
θvi -0.48 -0.71 -0.09 -0.52 -0.91 0.01 -0.46 -0.63 -0.16 -0.44 -0.70 -0.07
κ 0.85 0.63 1.28 0.98 0.69 1.56 0.74 0.56 1.14 0.78 0.56 1.24
Mom 14 14 14 14
Ineq 5577 5577 5577 5577

Notes: Each specification corresponds to a demand model from Table C-1.

OA.4.2 Alternative Measures of Household Spending

A concern may be that our procedure for constructing online spending (described in A.1) drives
our results. We therefore investigate the robustnness of the CES demand estimates from Section
4.1 to the use of alternative dependent variables. Table C-3 reports the results, where the unit of
observation across all specification is at the level of the county, year, and shopping mode. The first
column uses the log difference between the average spending on a given mode calculated using only
the comScore data (i.e., the raw data) and offline retail spending for a given county. In the second
column, we replace the raw averages with spending adjusted for extensive margin underreporting
through the Forrester online purchase probabilities. The elasticity of substitution is similar for these
two specifications, but slightly lower than our main estimate (column 4). The results in column
3, where we use a weighted average of the spending variable using population weights, indicate
that this is most likely due to the sampling of households in the comScore data. Last, scaling the
data to match reported aggregates in column 4 results in changes to the estimated mode/year FEs
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(not shown), as the levels of spending change. We also estimate a slightly smaller elasticity of
substitution as compared to column (3).

The similar elasticity estimates in (3) and (4) suggest, as was discussed in Section A.1, that the
scaling of the data primarily acts to adjust the levels of spending (i.e., the fixed effects), with the
cross-sectional variation in market shares largely preserved. We note that if these regressions where
done with the levels of spending as the dependent variable rather than log differences in spending,
then inflating the data by a constant would not impact the tax coefficient. Therefore, that the tax
coefficients differ slightly between columns (3) and (4) is due to the non-linearity of the model.
Overall, these robustness exercises give us confidence that the specifics behind the construction of
the spending variable are not a significant driver of our results.

Table C-3: CES Model with Alternative Spending Variables

(1) (2) (3) (4)
Variable name

Elasticity of substitution -1.295** -1.331** -1.703** -1.516**
(0.284) (0.284) (0.337) (0.399)

Constant -4.452* -5.392* -3.788 -6.378*
(2.124) (2.128) (2.522) (2.987)

Obs 52,488 52,488 52,488 52,488
R-Sq 0.513 0.519 0.454 0.608

Spending Variable Raw
Raw + Forr

Adj

Raw + Forr
Adj + Pop
weights

Raw + Forr
Adj + Pop

weights + Infl

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses. Dependent variable is defined as log of
expenditure on each online mode divided by offline expenditure. Specification (1) uses the county average of the raw
comScore spending; specification (2) the county average of comScore spending adjusted by the probability of online
purchase by demographic group from Forrester; specification (3) the weighted county average of the same spending
variable using Census-based sampling weights; and specification (4) further inflates county-level spending to match
outside spending statistics. See text for detail.

OA.4.3 Order Flow Model

In this section we compare the estimates from two alternative order flow models estimates. The first
two columns in Table C-4 reproduce our main specification results (MD). Recall that the parameters
are estimated by minimizing the distance between the predicted and observed number of employees
in 2017 for a sample of sortation center and fulfillment center facilities. The third and fourth
columns estimate the model instead by matching aggregate moments capturing the correlation
between facility characteristics (population density and capacity) and number of employees. This
approach does not exploit the full richness in the distribution of facility sizes, but is more immune
to measurement error in reported employees. The last column restricts the stock-out probability
to be zero (ψ → ∞). This implies that orders are fulfilled by the nearest cluster.
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Table C-4: Order Flow Model Parameter Estimates (Alternative Specifications)

(a) Parameter estimates

Stockout (MD) Stockout (GMM) Nearest
Parameters Est. SE Est. SE Est. SE

Availability – ψ 0.49 0.21 1.54 1.93 –
Output – γ 0.47 0.10 0.74 0.10 0.31 0.08
Afc 1.81 0.75 0.68 0.28 3.52 1.00
Asc 0.41 0.17 0.10 0.05 0.68 0.25

Objective func. 37.62 2.24 40.08

(b) Goodness of fit

Moments Obs. moments Model predictions
Est. SE MD GMM Nearest

Regression: Empl (log)
Intercept 5.39 0.55 6.40 5.39 6.61
FC x Pop dens. 0.25 0.08 0.10 0.25 0.06
FC x Capacity 0.64 0.20 0.57 0.64 0.31
SC 0.21 0.57 -0.81 0.21 -1.01

Annual growth rate 0.24 0.00 0.21 0.24 0.20
2017 Empl. (log) 4.83 0.01 4.92 4.83 4.93

Notes: The model predictions are the point estimate of the goodness of fit regressions, where MD and Nearest are
already presented in the main text.

The scale parameter γ is estimated to be less than one in all three specifications (i.e. increasing
return to scale). The MD specification (baseline) is in the middle of that range (i.e. 0.47). The
main difference across the three specifications is in the availability parameter ψ. Recall that this
parameter determines the relationship between the size of a cluster and the probability that an
order is fulfilled. The GMM specification identifies this parameter by matching the observed positive
relationship between population density around a cluster, and the number of employees in a facility.
The estimate suggest a positive stock-out probability (ψ << ∞), but less frequent than in our
baseline specification (i.e. 0.49 < 1.54). This estimate is very noisy however, presumably due to
the weakness of the reduced-form moments.
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Table C-5: Cost Estimates (Alternative Order Flow Specifications)

Specification A: MD Order-flow model

Est. CI— Est. CI— Est. CI
SC: Distance (x100 m.) 0.16 0.15 0.17 0.59 0.41 0.88 0.34 0.26 0.49
SC: VI Orders -0.52 -0.91 0.01
FC: Pop. density (x100) 2.06 1.48 3.17 0.98 0.69 1.56
Nb of moments 4.00 8.00 14.00

Specification B: GMM Order-flow model

Est. CI— Est. CI— Est. CI
SC: Distance (x100 m.) 0.13 0.13 0.00 0.23 0.13 0.37 0.16 0.10 0.22
SC: VI Orders -0.28 -1.09 -0.15
FC: Pop. density (x100) 0.67 0.33 1.34 0.52 0.30 0.84
Nb of moments 4.00 8.00 14.00

Notes: The MD order flow model is the same as presented inthe main text. The GGM order flow model corresponds
to the MD estimates in Table C-4.

Table C-5 compares the estimated cost function under the alternative order-flow estimates.
Note that we cannot use the “nearest” specification to construct our moment inequality estimator.
This is because the number and size of facilities within a cluster do not impact the variable profit.
Without stock-outs, the firm would select a single facility per cluster, which is not consistent with
the observed roll-out.

The estimates obtained using the GMM specification are qualitatively similar to our baseline
estimates (Panel A), but lead to lower average fulfillment costs.
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