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1 Introduction

Despite following the same protocols, replications of published experiments frequently

find e↵ects of smaller magnitude or opposite sign than those in the initial studies (cf.

Open Science Collaboration, 2015; Camerer et al., 2016). One leading explanation

for replication failure is publication bias (cf. Ioannidis, 2005, 2008; McCrary et al.,

2016; Christensen and Miguel, 2016). Journal editors and referees may be more likely

to publish results that are statistically significant, that confirm some prior belief or,

conversely, that are surprising. Researchers in turn face strong incentives to select

which findings to write up and submit to journals based on the likelihood of ultimate

publication. Together, these forms of selectivity lead to severe bias in published

estimates and confidence sets.

This paper provides, to the best of our knowledge, the first nonparametric identifi-

cation results for the conditional publication probability as a function of the empirical

results of a study. Once the conditional publication probability is known, we derive

bias-corrected estimators and confidence sets. Finally, we apply the proposed meth-

ods to several empirical literatures.

Identification of publication bias Section 3 considers two approaches to iden-

tification. The first uses data from systematic replications of a collection of original

studies, each of which applies the same experimental protocol to a new sample from

the same population as the corresponding original study. Absent selectivity, the

joint distribution of initial and replication estimates is symmetric. Asymmetries in

this joint distribution nonparametrically identify conditional publication probabili-

ties, assuming the latter depend only on the initial estimate.

The second approach uses data from meta-studies. Meta-studies statistically com-

bine the estimates from multiple (published) studies to derive pooled estimates. Meta-

studies are based on estimates and standard errors from these studies. Absent selec-

tivity the distribution of estimates for high variance studies is a noisier version of the

distribution for low variance studies, under an independence assumption common in

the meta-studies literature. Deviations from this prediction again identify conditional

publication probabilities.

Both approaches identify conditional publication probabilities up to scale. Multi-

plying publication probabilities by a constant factor does not change the distribution
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of published estimates, and likewise does not a↵ect publication bias and size distor-

tions.

Correcting for publication bias Section 4 discusses the consequences of selective

publication for statistical inference. For selectivity known (up to scale), we propose

median unbiased estimators and valid confidence sets for scalar parameters. These

results allow valid inference on the parameters of each study, rather than merely

on average e↵ects across a given literature. For settings where we must estimate

the degree of selectivity, we further propose Bonferroni-corrected confidence intervals

which account for estimation error in the selection model. The supplement derives

optimal quantile-unbiased estimators for scalar parameters of interest in the presence

of nuisance parameters, as well as results on Bayesian inference.

Applications Section 5 applies the theory developed in this paper to four empir-

ical literatures. We first use data from the experimental economics and psychology

replication studies of Camerer et al. (2016) and Open Science Collaboration (2015),

respectively. Estimates based on our replication approach suggest that results signifi-

cant at the 5% level are over 30 times more likely to be published than are insignificant

results, providing strong evidence of selectivity. Estimation based on our meta-study

approach, which uses only the originally published results, yields similar conclusions.

We then consider two settings where no replication estimates are available. The

first is the literature on the impact of minimum wages on employment. Estimates

based on data from the meta-study by Wolfson and Belman (2015) suggest that re-

sults corresponding a negative significant e↵ect of the minimum wage on employment

are about 3 times more likely to be published than are insignificant results. Pos-

itive and significant e↵ects might also be less likely to be published than negative

and significant e↵ects, but the corresponding coe�cient estimates are rather noisy.

Second, we consider the literature on the impact of mass deworming on child body

weight. Estimates based on data from the meta-study by Croke et al. (2016) find

that results appear more likely to be included in this meta-study when they do not

find a significant impact of deworming, though the standard errors are large and we

cannot reject the null hypothesis of no selectivity.
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Literature There is a large literature on publication bias; good reviews are provided

by Rothstein et al. (2006) and Christensen and Miguel (2016). We will discuss some

of the approaches from this literature in the context of our framework below. One

popular method, used in e.g. Card and Krueger (1995) and Egger et al. (1997),

regresses z-statistics on the inverse of the standard error and takes a non-zero intercept

as evidence of publication bias. Our approach using meta-studies builds on related

intuitions. Another approach in the literature considers the distribution of p-values or

z-statistics across studies, and takes bunching, discontinuities, or non-monotonicity

in this distribution as indication of selectivity or estimate inflation (cf. De Long and

Lang, 1992; Brodeur et al., 2016). Other approaches include the “trim and fill”

method (Duval and Tweedie, 2000) and parametric selection models (Iyengar and

Greenhouse, 1988; Hedges, 1992). Some precedent for our proposed corrections to

inference can be found in McCrary et al. (2016), while the parametric models in our

applications are related to those of Hedges (1992).

Further recent work on publication bias includes Stanley and Doucouliagos (2014),

who propose to use power as a weighting criterion for meta-analyses to increase ro-

bustness to selective publication. Schuemie et al. (2014) suggest empirical calibration

of p-values in medical research. Bruns and Ioannidis (2016) and Bruns (2017) discuss

meta analysis in observational settings with possibly biased estimates. Stanley et al.

(2017) consider non-linear meta-regressions. Carter et al. (2017) compare di↵erent

meta-analytic methods for psychological research. Recent empirical studies explor-

ing publication bias in economics and finance include Ioannidis et al. (2017), Chen

and Zimmermann (2017), Havránek (2015) and Hou et al. (2017). Finally, Furukawa

(2017) proposes an economic model of publication bias.

Road map Section 2 introduces the setting we consider, as well as a running ex-

ample. Section 3 presents our main identification results, and discusses approaches

from the literature. Section 4 discusses bias-corrected estimators and confidence sets,

assuming conditional publication probabilities are known. Section 5 presents results

for our empirical applications. All proofs are given in the supplement, which also

contains details of our applications, additional empirical and theoretical results, and

a stylized model of optimal publication decisions.
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Notation Throughout the paper, upper case letters denote random variables and

lower case letters denote realizations. The latent parameter governing the distribution

of observables for a given study is ⇥. We condition on ⇥ whenever frequentist objects

are considered, while unconditional expectations, probabilities, and densities integrate

over the population distribution of ⇥ across studies. Estimates are denoted by X,

while estimates normalized by their standard deviation are denoted by Z. Latent

studies (published or unpublished) are indexed by i and marked by a superscript

⇤, while published studies are indexed by j. Subscripts i and j will sometimes be

omitted when clear from context.

2 Setting

Throughout this paper we consider variants of the following data generating process.

Within an empirical literature of interest, there is a population of latent studies i.

The true e↵ect ⇥⇤
i

in study i is drawn from distribution µ. Thus, di↵erent latent

studies may estimate di↵erent true parameters. The case where all latent studies

estimate the same parameter is nested by taking the distribution µ to be degenerate.

Conditional on the true e↵ect, the result X⇤
i

in latent study i is drawn from a

known continuous distribution with density f
X

⇤|⇥⇤ . We take both X⇤
i

and ⇥⇤
i

to be

scalar unless otherwise noted. Studies are published if D
i

= 1, which occurs with

probability p(X⇤
i

), and we observe the truncated sample of published studies (that is,

we observe X⇤
i

if and only if D
i

= 1). Publication decisions reflect both researcher

and journal decisions; we do not attempt to disentangle the two. Let I
j

denote the

index i corresponding to the jth published study. We obtain the following model:

Definition 1 (Truncated sampling process)

Consider the following data generating process for latent (unobserved) variables.

(⇥⇤
i

, X⇤
i

, D
i

) are jointly i.i.d. across i, with

⇥⇤
i

⇠ µ

X⇤
i

|⇥⇤
i

⇠ f
X

⇤|⇥⇤(x|⇥⇤
i

)

D
i

|X⇤
i

,⇥⇤
i

⇠ Ber(p(X⇤
i

))
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Let I
0

= 0, I
j

= min{i : D
i

= 1, i > I
j�1

} and ⇥
j

= ⇥⇤
Ij
. We observe i.i.d. draws

X
j

= X⇤
Ij
.

Section 3 considers extensions of this model that allow us to identify and estimate

p(·). Section 4 discusses how to use knowledge of p(·) to perform inference on ⇥
j

when X
j

is observed. Of central importance throughout is the likelihood of observing

X
j

given ⇥
j

:

Lemma 1 (Truncated likelihood)

The truncated sampling process of Definition 1 implies the following likelihood:

f
X|⇥ (x|✓) = f

X

⇤|⇥⇤
,D

(x|✓, 1) = p (x)

E [p (X⇤
i

) |⇥⇤
i

= ✓]
f
X

⇤|⇥⇤ (x|✓) . (1)

For fixed ✓, selective publication reweights the distribution of published results by

p(·). As we consider di↵erent values of ✓ for fixed x, by contrast, the likelihood is scaled

by the publication probability for a latent study with true e↵ect ✓, E [p (X⇤
i

) |⇥⇤
i

= ✓] .

Study-level covariates The model of Definition 1, and in particular independence

between publication decisions and ⇥⇤ given X⇤, may only hold conditional on some

set of observable study characteristics W ⇤. For example, journals may treat studies

on particular topics, or using particular research designs, di↵erently. Likewise, the

distribution of true e↵ects may di↵er across these categories. In this case Equation

(1) would have to be modified to

f
X|⇥,W

(x|✓, w) = f
X

⇤|⇥⇤
,W

⇤
,D

(x|✓, w, 1) = p (x, w)

E [p (X⇤
i

,W ⇤
i

) |⇥⇤
i

= ✓]
f
X

⇤|⇥⇤ (x|✓, w) .

In our applications, for example, we consider conditioning on journal of publication

and year of initial circulation of a study. For simplicity of notation, however, we

suppress such additional conditioning throughout our theoretical discussion.

2.1 An illustrative example

To illustrate our setting we consider a simple example to which we will return through-

out the paper. A journal receives a stream of studies i = 1, 2, . . . reporting exper-

imental estimates Z⇤
i

⇠ N(⇥⇤
i

, 1) of treatment e↵ects ⇥⇤
i

, where each experiment
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Figure 1: The left panel plots the median bias of the conventional estimator ⇥̂
j

= Z
j

,
while the right panel plots the true coverage of the conventional 95% confidence interval,
both for p(z) = .1 + .9 · 1(|Z| > 1.96).

examines a di↵erent treatment. We denote the estimates by Z⇤ rather than X⇤ here

to emphasize that they can be interpreted as z-statistics. Denote the distribution of

treatment e↵ects across latent studies by µ. Normality is in many cases a plausible

asymptotic approximation; Var(Z⇤|⇥⇤) = 1 is a scale normalization. The journal

publishes studies with Z⇤
i

in the interval [�1.96, 1.96] with probability p(Z⇤
i

) = .1,

while results outside this interval are published with probability p(Z⇤
i

) = 1. This

publication policy reflects a preference for “significant results,” where a two-sided z-

test rejects the null hypothesis ⇥⇤ = 0 at the 5% level. This journal is ten times more

likely to publish significant results than insignificant ones. This selectivity results in

publication bias: published results, whose distribution is given by Lemma 1 above,

tend to over-estimate the magnitude of the treatment e↵ect. Published confidence

intervals under-cover the true parameter value for small values of ⇥ and over-cover for

somewhat larger values. This is demonstrated by Figure 1, which plots the median

bias, med(⇥̂
j

|⇥
j

= ✓)� ✓, of the usual estimator ⇥̂
j

= Z
j

, as well as the coverage of

the conventional 95% confidence interval [Z
j

� 1.96, Z
j

+ 1.96].

2.2 Alternative data generating processes

To clarify the implications of our model, we contrast it with two alternative data

generating processes.
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Observability The setup of Definition 1 assumes that we only observe the draws

X⇤ for which D = 1. Alternative assumptions about observability might be ap-

propriate, however, if additional information is available. First, we might know of

the existence of unpublished studies, for example from experimental preregistrations,

without observing their results X⇤. In this case, called censoring, we observe i.i.d.

draws of (Y,D), where Y = D ·X⇤. The corresponding censored likelihood is

f
Y,D|⇥⇤(x, d|✓⇤) = d · p(x) · f

X

⇤|⇥⇤ (x|✓) + (1� d) · (1� E[D
i

|⇥⇤
i

= ✓⇤]).

Second, we might additionally observe the results X⇤ from unpublished working pa-

pers as in Franco et al. (2014). The likelihood in this case is

f
X

⇤
,D|⇥⇤(x, d|✓) = p(x)d(1� p(x))1�d · f

X

⇤|⇥⇤(x|✓).

Even under these alternative observability assumptions, the truncated likelihood (1)

arises as a limited information (conditional) likelihood, so identification and inference

results based on this likelihood remain valid. Specifically, this likelihood conditions on

publication decisions in the model with censoring, and on both publication decisions

and unpublished results in the model with X⇤ observed. Thus, while additional

information about the existence or content of unpublished studies might be used to

gain additional insight, the results developed below continue to apply.

Manipulation of results Our analysis assumes that the distribution of the results

X⇤ in latent studies given the true e↵ects ⇥⇤, f
X

⇤|⇥⇤ , is known. This implicitly re-

stricts the scope for researchers to inflate the results of latent studies, cf. Brodeur

et al. (2016). There are, however, many forms of manipulation or “p-hacking” (Simon-

sohn et al., 2014) which are accommodated by our model. In particular, if researchers

conduct many independent analyses (where the results of each analysis follow known

f
X

⇤|⇥⇤) but write up and submit only significant analyses, this is a special case of our

model. More broadly, essentially any form of manipulation can be represented in a

more general model where p depends on both X⇤ and ⇥⇤. This extension is discussed

in Section 3.1.3 below.
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3 Identifying selection

This section proposes two approaches for identifying p(·). The first uses systematic

replication studies. By a “replication” we mean what Clemens (2015) terms a “repro-

duction,” obtained by applying the same experimental protocol or analysis to a new

sample from the same population as the original study. For each published X in a

given set of studies, such replications provide an independent estimate Xr governed

by the same parameter ⇥ as the original study. Under the assumption that selectivity

operates only on X and not on Xr, we prove nonparametric identification of p(·) up
to scale. Under the additional assumption of normally distributed estimates we also

establish identification of the latent distribution µ of true e↵ects ⇥⇤. The distribution

µ of ⇥⇤, and more specifically the average E[⇥⇤], is the key object of interest in most

meta-studies; cf. Rothstein et al. (2006). When the studies under consideration are

on the same topic, for example the e↵ect of minimum wage increases on employment,

then the average provides a natural summary of the findings of this literature.

The second approach considers meta-studies where there is variation across pub-

lished studies in the standard deviation � of normally distributed estimates X of ⇥,

where normality can again be understood as arising from the usual asymptotic ap-

proximations. Under the assumption that the standard deviation �⇤ is independent of

⇥⇤ in the population of latent studies, and that publication probabilities are a func-

tion of the z-statistic Z⇤ = X⇤/� alone, we again show nonparametric identification

of p(·) up to scale, as well as of µ.

Identification based on systematic replication studies is considered in Section 3.1.

Identification based on meta-studies is considered in Section 3.2. In both sections,

we return to our treatment e↵ect example to illustrate results and develop intuition.

Approaches in the literature, including meta-regressions and bunching of p-values,

are discussed in the context of our assumptions in Section 3.3.

3.1 Systematic replication studies

We first consider the case of systematic replication studies, where both X⇤ and X⇤r

are drawn independently from the same known distribution f
X

⇤|⇥⇤ , conditional on

⇥⇤. In this setting the joint density f
X

⇤
,X

⇤r , integrating out ⇥⇤, is symmetric in its

arguments. Deviations from symmetry of f
X,X

r identify p(·) up to scale. We then

extend this result in several ways, allowing di↵erent sample sizes for the original and
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replication studies as well as selection on ⇥.

3.1.1 The symmetric baseline case

We extend the model in Definition 1 above to incorporate a conditionally independent

replication draw X⇤r which is observed whenever X⇤ is. The key implications of our

model are symmetry of the joint distribution of (X⇤, X⇤r), and that selectivity of

publication operates only on X⇤ and not on X⇤r. The latter assumption is plausible

for systematic replication studies such as Open Science Collaboration (2015) and

Camerer et al. (2016), but may fail in non-systematic replication settings, for instance

if replication studies are published only when they “debunk” prior published results.

Definition 2 (Replication data generating process)

Consider the following data generating process for latent (unobserved) variables.

(⇥⇤
i

, X⇤
i

, D
i

, X⇤r
i

, ) are jointly i.i.d. across i, with

⇥⇤
i

⇠ µ

X⇤
i

|⇥⇤
i

⇠ f
X

⇤|⇥⇤(x|⇥⇤
i

)

D
i

|X⇤
i

,⇥⇤
i

⇠ Ber(p(X⇤
i

))

X⇤r
i

|D
i

, X⇤
i

,⇥⇤
i

⇠ f
X

⇤|⇥⇤(x|⇥⇤
i

).

Let I
0

= 0, I
j

= min{i : D
i

= 1, i > I
j�1

} and ⇥
j

= ⇥
Ij . We observe i.i.d. draws of

(X
j

, Xr

j

) = (X⇤
Ij
, X⇤r

Ij
).

The next result extends Lemma 1 to derive the joint density of (X,Xr).

Lemma 2 (Replication Density)

Consider the setup of Definition 2. In this setup, the conditional density of (X,Xr)

given ⇥ is

f
X,X

r|⇥(x, x
r|✓) = f

X

⇤
,X

⇤r|⇥⇤
,D

(x, xr|✓, 1)

=
p(x)

E[p(X⇤
i

)|⇥⇤
i

= ✓]
f
X

⇤|⇥⇤ (x|✓) f
X

⇤|⇥⇤ (xr|✓) .
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The marginal density of (X,Xr) is

f
X,X

r(x, xr) =
p(x)

E[p(X⇤
i

)]

Z

f
X

⇤|⇥⇤ (x|✓⇤
i

) f
X

⇤|⇥⇤ (xr|✓⇤
i

) dµ(✓⇤
i

).

This lemma immediately implies that any asymmetries in the joint distribution of

X,Xr must arise from the publication probability p(·). In particular,

f
X,X

r(b, a)

f
X,X

r(a, b)
=

p(b)

p(a)
,

whenever the denominators on either side are non-zero. Using this fact, we prove that

p(·) is nonparametrically identified up to scale.

Theorem 1 (Nonparametric identification using replication experiments)

Consider the setup for replication experiments of Definition 2, and assume that the

support of f
X

⇤
,X

⇤r is of the form A⇥A for some measurable set A. In this setup p(·)
is nonparametrically identified on A up to scale.

Testable restrictions The density derived in Lemma 2 shows that the model of

Definition 2 implies testable restrictions. Specifically, define h(a, b) = log(f
X,X

r(b, a))�
log(f

X,X

r(a, b)). By Lemma 2, h(a, b) = log(p(b))� log(p(a)), and therefore

h(a, b) + h(b, c) + h(c, a) = 0

for any three values a, b, c. One could construct a nonparametric test of the model

based on these restrictions and an estimate of f
X,X

r . In the applications below we

opt for an alternative approach, and test restrictions on an identified model which

nests the setup of Definition 2, detailed in Section 3.1.3 below.

Illustrative example (continued) To illustrate our identification approach using

replication studies, we return to the illustrative example introduced in Section 2.1.

In this setting, suppose that the true e↵ect ⇥⇤ is distributed N(1, 1) across latent

studies. As before, assume that Z⇤ is N(⇥⇤, 1) distributed conditional on ⇥⇤, that

p(Z⇤) = 1 when |Z⇤| > 1.96, and that p(Z⇤) = .1 otherwise. Hence, results that are

significantly di↵erent from zero at the 5% level based on a two-sided z-test are ten

times more likely to be published than are insignificant results.
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Figure 2: This figure illustrates the e↵ect of selective publication in the replication ex-
periments setting using simulated data, where selection is on statistical significance, as
described in the text. The left panel shows the joint distribution of a random sample of
latent estimates and replications; the right panel shows the subset which are published.
Results where the original estimates are significantly di↵erent from zero at the 5% level are
plotted in blue, while insignificant results are plotted in grey.

This setting is illustrated in Figure 2. The left panel of this figure shows 100

random draws (Z⇤, Z⇤r); draws where |Z⇤|  1.96 are marked in grey, while draws

where |Z⇤| > 1.96 are marked in blue. The right panel shows the subset of draws

(Z,Zr) which are published. These are the same draws as (Z⇤, Z⇤r), except that 90%

of the draws for which Z⇤ is statistically insignificant are deleted.

Our identification argument in this case proceeds by considering deviations from

symmetry around the diagonal Z = Zr. Let us compare what happens in the regions

marked A and B. In A, Z is statistically significant but Zr is not; in B it is the

other way around. By symmetry of the data generating process, the latent (Z⇤, Z⇤r)

fall in either area with equal probability. The fact that the observed (Z,Zr) lie in

region A substantially more often than in region B thus provides evidence of selective

publication, and the exact deviation of the distribution of (Z,Zr) from symmetry

identifies p(·) up to scale.

3.1.2 Generalizations and practical complications

In practice we need to modify the assumptions above to fit our applications, where

the sample size for the replication often di↵ers from that in the initial study, and
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the sign of the initial estimate X is normalized to be positive. We thus extend our

identification results to accommodate these issues.

Di↵ering variances To account for the impact of di↵ering sample sizes on the dis-

tribution of X⇤r relative to X⇤, we need to be more specific about the form of these

distributions. We assume that both X⇤ and X⇤r are normally distributed unbiased

estimates of the same latent parameter ⇥⇤, and that their variances are known. The

assumption of approximate normality with known variance is already implicit in the

inference procedures used in most applications. Since we require normality of only

the final estimate from each study, rather than the underlying data, this assumption

can be justified using standard asymptotic results even in settings with non-normal

data, heteroskedasticity, clustering, or other features commonly encountered in prac-

tice. Normalizing the variance of the initial estimate to one yields the following

setup, where we again denote the estimate by Z rather than X to emphasize the

normalization of the variance.

⇥⇤
i

⇠ µ

Z⇤
i

|⇥⇤
i

⇠ N(⇥⇤
i

, 1)

D
i

|Z⇤
i

,⇥⇤
i

⇠ Ber(p(Z⇤
i

))

�⇤
i

|Z⇤
i

, D
i

,⇥⇤
i

⇠ f
�|Z⇤

Z⇤r
i

|�⇤
i

, Z⇤
i

, D
i

,⇥⇤
i

⇠ N(⇥⇤
i

, �⇤2
i

) (2)

We use � to denote both the standard deviation as a random variable and the realized

standard deviation. We again assume that results are published whenever D
i

= 1, so

that

f
Z,Z

r
,�

(z, zr, �) = f
Z

⇤
,Z

⇤r
,�

⇤|D(z, z
r, �|1).

Allowing the replication variance �⇤
i

to di↵er from one takes us out of the symmetric

framework of Definition 2. Display 2 also allows the possibility that the distribution

of �⇤
i

might depend on Z⇤
i

. Dependence of �⇤
i

on Z⇤
i

is present, for example, if power

calculations are used to determine replication sample sizes, as in both Open Science

Collaboration (2015) and Camerer et al. (2016). In that case, �⇤
i

is positively related

to the magnitude of Z⇤
i

, but conditionally unrelated to ⇥⇤
i

.

The following corollary states that identification carries over to this setting. The
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proof relies on the fact that we can recover the symmetric setting by (de)convolution

of Zr with normal noise, given Z and �, which then allows us to apply Theorem 1.

The assumption of normality further allows recovery of µ, the distribution of ⇥⇤.

Corollary 1

Consider the setup for replication experiments in display (2). Suppose we observe

i.i.d. draws of (Z,Zr). In this setup p(·) is nonparametrically identified on R up to

scale, and µ is identified as well.

Normalized sign A further complication is that the sign of the estimates Z in

our replication datasets is normalized to be positive, with the sign of Zr adjusted

accordingly: see Section 5.1 below for further discussion. The following corollary

shows that under this sign normalization identification of p(·) still holds, so long as

p(·) is symmetric.

Corollary 2

Consider the setup for replication experiments of display (2). Assume additionally

that p(·) is symmetric, p(z) = p(�z), and that f
�|Z⇤(�|z) = f

�|Z⇤(�| � z) for all z.

Suppose that we observe i.i.d. draws of

(W,W r) = sign(Z) · (Z,Zr).

In this setup p(·) is non-parametrically identified on R up to scale, and the distribution

of |⇥⇤| is identified as well.

3.1.3 Selection depending on ⇥⇤ given X⇤

Selection of an empirical result X for publication might depend not only on X but

also on other empirical findings reported in the same manuscript, or on unreported

results obtained by the researcher. If that is the case, our assumption that publication

decisions are independent of true e↵ects conditional on reported results, D ? ⇥⇤|X⇤,

may fail. Allowing for a more general selection probability p(X⇤,⇥⇤), we can still

identify f
X|⇥, which is the key object for bias-corrected inference as discussed in
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Section 4. Consider the following setup.

⇥⇤
i

⇠ f
⇥

⇤

Z⇤
i

|⇥⇤
i

⇠ N(⇥⇤
i

, 1)

D
i

|Z⇤
i

,⇥⇤
i

⇠ Ber(p(Z⇤
i

,⇥⇤
i

))

�⇤
i

|D
i

, Z⇤
i

,⇥⇤
i

⇠ f
�|Z⇤

Z⇤r
i

|�⇤
i

, D
i

, Z⇤
i

,⇥⇤
i

⇠ N(⇥⇤
i

, �2

i

) (3)

Assume again that results are published wheneverD
i

= 1. The assumptionD
i

|Z⇤
i

,⇥⇤
i

⇠
Ber(p(Z⇤

i

,⇥⇤
i

)) is the key generalization relative to the setup considered before. This

allows publication decisions to depend on both the reported estimate and the true ef-

fect, and allows a wide range of models for the publication process. In particular, this

accommodates models where publication decisions depend on a variety of additional

variables, including alternative specifications and robustness checks not reported in

the replication dataset. Publication probabilities conditional on Z⇤ and ⇥⇤ then im-

plicitly average over these variables, resulting in additional dependence on ⇥⇤. For a

worked-out example of this form, see Section D of the supplement.

Theorem 2

Consider the setup for replication experiments of display (3). In this setup f
Z|⇥ is

nonparametrically identified.

The proof of Theorem 2 implies that the joint density f
Z,Z

r
,�,⇥

is identified. Under

the assumptions of display (3) the joint density of (Z,Zr, �,⇥) is

f
Z,Z

r
,�,⇥

(z, zr, �, ✓) =
p(z, ✓)

E[p(Z⇤,⇥⇤)]
'(z � ✓) 1

�

'
�

z

r�✓

�

�

f
�|Z⇤(�|z)dµ

d⌫

(✓),

where we use ⌫ to denote a dominating measure on the support of ⇥. Without further

restrictions p(z, ✓) is not identified; we can always divide p(z, ✓) by some function g(✓)

and multiply dµ

d⌫

(✓) by the same function to get an observationally equivalent model.

Theorem 2 implies, however, that p(z, ✓) is identified up to a normalization given ✓,

since
f
Z|⇥(z, ✓)

f
Z

⇤|⇥⇤(z, ✓)
=

p(z, ✓)

E[p(Z⇤,⇥⇤)|⇥⇤ = ✓]
.

We can for instance impose sup
z

p(z, ✓) = 1 for all ✓ to get an identified model. In our
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applications we consider a parametric version of this model and test p(z, ✓) = p(z) as

a specification check on our baseline model.

3.2 Meta-studies

We next consider identification using meta-studies. Suppose that studies report nor-

mally distributed estimates X⇤ with mean ⇥⇤ and standard deviation �⇤, and that

selectivity of publication is based on the z-statistic Z⇤ = X⇤/�⇤. The key identify-

ing assumption is that ⇥⇤ is statistically independent of �⇤ across studies, so studies

with larger sample sizes do not have systematically di↵erent estimands. Under this

assumption, the distribution of X⇤ conditional on a larger value �⇤ = �
1

is equal

to the convolution of normal noise of variance �2

1

� �2

2

with the distribution of X⇤

conditional on a smaller value �⇤ = �
2

. Deviations from this equality for the observed

distribution f
X|� identify p(·) up to scale.

Definition 3 (Meta-study data generating process)

Consider the following data generating process for latent (unobserved) variables.

(�⇤
i

,⇥⇤
i

, X⇤
i

, D
i

) are jointly i.i.d. across i, such that

�⇤
i

⇠ µ
�

⇥⇤
i

|�⇤
i

⇠ µ
⇥

X⇤
i

|⇥⇤
i

, �⇤
i

⇠ N(⇥⇤
i

, �⇤2
i

)

D
i

|X⇤
i

,⇥⇤
i

, �⇤
i

⇠ Ber(p(X⇤
i

/�⇤
i

))

Let I
0

= 0, I
j

= min{i : D
i

= 1, i > I
j�1

} and ⇥
j

= ⇥
Ij . We observe i.i.d. draws of

(X
j

, �
j

) = (X⇤
Ij
, �⇤

Ij
).

Define Z⇤
i

= X

⇤
i

�

⇤
i
and Z

j

= Xj

�j
.

A key object for identification of p(·) in this setting is the conditional density f
Z|�.

Lemma 3 (Meta-study density)

Consider the setup of definition 3. The conditional density of Z given � is

f
Z|�(z|�) =

p(z)

E[p(Z⇤)|�]

Z

'(z � ✓/�)dµ(✓).
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We build on Lemma 3 to prove our main identification result for the meta-studies

setting. Lemma 3 implies that, for �
2

> �
1

,

f
Z|�(z|�2

)

f
Z|�(z|�1

)
=

E[p(Z⇤)|� = �
1

]

E[p(Z⇤)|� = �
2

]
·
R

'(z � ✓/�
2

)dµ(✓)
R

'(z � ✓/�
1

)dµ(✓)
,

where the first term on the right hand side does not depend on z. Since f
Z|�(z|�2

)/f
Z|�(z|�1

)

is identified, this suggests we might be able to invert this equality to recover µ, which

would then immediately allow us to identify p(·). The proof of Theorem 3 builds on

this idea, considering @
�

log(f
Z|�(z|�)).

Theorem 3 (Nonparametric identification using meta-studies)

Consider the setup for experiments with independent variation in �, described by

Definition 3. Suppose that the support of � contains an open interval. Then p(·) is

identified up to scale, and µ is identified as well.

Illustrative example (continued) As before, assume that ⇥⇤ is N(1, 1) dis-

tributed. Suppose further that �⇤ is independent of ⇥⇤ across latent studies, and

that X⇤ is N(⇥⇤, �⇤) distributed conditional on ⇥⇤, �⇤. Let p(X⇤/�⇤) = 1 when

|X⇤/�⇤| > 1.96, p(X⇤/�⇤) = .1 otherwise. Thus, results which di↵er significantly

from zero at the 5% level are again ten times as likely to be published as insignificant

results. This setting is illustrated in Figure 3. The left panel of this figure shows 100

random draws (X⇤, �⇤); draws where |X⇤/�⇤|  1.96 are marked in grey, while draws

where |X⇤/�⇤| > 1.96 are marked in blue. The right panel shows the subset of draws

(X, �) which are published, where 90% of statistically insignificant draws are deleted.

Compare what happens for two di↵erent values of the standard deviation �,

marked by A and B in Figure 3. By the independence of �⇤ and ⇥⇤, the distri-

bution of X⇤ for larger values of �⇤ is a noised up version of the distribution for

smaller values of �⇤. To the extent that the same does not hold for the distribution

of published X given �, this must be due to selectivity in the publication process. In

this example, statistically insignificant observations are “missing” for larger values �.

Since publication is more likely when |X⇤/�⇤| > 1.96, the estimated values X tend

to be larger on average for larger values of �, and the details of how the conditional

distribution of X given � varies with � will again allow us to identify p(·) up to scale.
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Figure 3: This figure illustrates the e↵ect of selective publication in the meta-studies
setting using simulated data, where selection is on statistical significance, as described in
the text. The left panel shows a random sample of latent estimates; the right panel shows
the subset of estimates which are published. Results which are significantly di↵erent from
zero at the 5% level are plotted in blue, while insignificant results are plotted in grey.

Normalized sign In some of our applications the sign of the reported estimates X

is again normalized to be positive. The following corollary shows that p(·) remains

identified under this sign normalization provided it is symmetric in its argument.

Corollary 3

Consider the setup of Definition 3. Assume additionally that p(·) is symmetric, i.e.,

p(x/�) = p(�x/�). Suppose that we observe i.i.d. draws of (|X|, �). In this setup

p(·) is nonparametrically identified on R up to scale, and the distribution of |⇥⇤| is
identified as well.

Dependence on �⇤ Publication decisions might depend not only on the z-statistic

Z⇤, but also on the standard deviation �⇤. Consider the setup of Definition 3 modified

such that

D
i

|X⇤
i

,⇥⇤
i

, �⇤
i

⇠ Ber(p(X⇤
i

/�⇤
i

) · q(�⇤
i

)).

Theorem 3 immediately implies identification of the function p(·) for this generalized
setup. The generalized setup is observationally equivalent to the model of Definition

3 with the distribution of �⇤ reweighted by q(·)/E[q(�⇤)].
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3.3 Relation to approaches in the literature

Various approaches to detect selectivity and publication bias have been proposed in

the literature. We briefly analyze some of the these approaches in our framework.

First, we discuss to what extent we should expect the results of significance tests

to “replicate” in a sense considered in the literature, and show that the probability

of such replication may be low even in the absence of publication bias. Second, we

discuss meta-regressions, and show that while they provide a valid test of the null of

no selectivity under our meta-study assumptions, they are di�cult to interpret under

the alternative. Third, we consider approaches based on the distribution of p-values

or z-statistics, and analyze the extent to which bunching or discontinuities of this

distribution provide evidence for selectivity or inflation of estimates.

Should results “replicate?” The findings of recent systematic replication studies

such as Open Science Collaboration (2015) and Camerer et al. (2016) are sometimes

interpreted as indicating an inability to “replicate the results” of published research.

In this setting, a “result” is understood to “replicate” if both the original study and

its replication find a statistically significant e↵ect in the same direction. The share of

results which replicate in this sense is prominently discussed in Camerer et al. (2016).

Our framework suggests, however, that the probability of replication in this sense

might be low even without selective publication or other sources of bias.

Consider the setup for replication experiments in display (2) with constant pub-

lication probability p(·), so that publication is not selective and f
Z,Z

r = f
Z

⇤
,Z

r⇤ . For

illustration, assume further that �⇤ ⌘ 1. The probability that a result replicates in

the sense described above is

P (Z⇤r · sign{Z⇤} > 1.96||Z⇤| > 1.96)

=
P (Z⇤r < �1.96, Z⇤ < �1.96) + P (Z⇤r > 1.96, Z⇤ > 1.96)

P (Z⇤ < �1.96) + P (Z⇤ > 1.96)

=

R

[�(�1.96� ✓)2 + �(�1.96 + ✓)2] dµ(✓)
R

[�(�1.96� ✓) + �(�1.96 + ✓)] dµ(✓)
.

If the true e↵ect is zero in all studies then this probability is 0.025. If the true e↵ect in

all studies is instead large, so that |⇥⇤| > M with probability one for some large M ,

then the probability of replication is approximately one. Thus, the probability that
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results replicate in this sense gives little indication of whether selective publication or

some other source of bias for published research is present unless we either restrict the

distribution of true e↵ects or observe replication frequencies less than 0.025. Strengths

and weaknesses of alternative measures of replication are discussed in Simonsohn

(2015), Gilbert et al. (2016), and Patil and Peng (2016).

Meta-regressions A popular test for publication bias in meta-studies (cf. Card and

Krueger, 1995; Egger et al., 1997) uses regressions of either of the following forms:

E⇤[X|1, �] = �
0

+ �
1

· �, E⇤ ⇥Z|1, 1

�

⇤

= �
0

+ �
1

· 1

�

,

where we use E⇤ to denote best linear predictors. The following lemma is immediate.

Lemma 4

Under the assumptions of Definition 3, if p(·) is constant then

E⇤[X|1, �] = E[⇥⇤], E⇤ ⇥Z|1, 1

�

⇤

= E[⇥⇤] · 1

�

As this lemma confirms, meta-regressions can be used to construct tests for the

null of no publication bias. In particular, absent publication bias �
0

= 0 and �
1

= 0,

so tests for these null hypotheses allow us to test the hypothesis of no publication bias,

though there are some forms of selectivity against which such tests have no power.

As also noted in the previous literature, absent publication bias the coe�cients �
1

and �
0

recover the average of ⇥⇤ in the population of latent studies. While these

coe�cients are sometimes interpreted as selection-corrected estimates of the mean

e↵ect across studies (cf. Doucouliagos and Stanley, 2009; Christensen and Miguel,

2016), this interpretation is potentially misleading in the presence of publication bias.

In particular, the conditional expectation E[X|1, �] is nonlinear in both � and 1/�,

which implies that �
0

, �
1

are generally biased as estimates of E[⇥⇤].1 To illustrate

the resulting complications, we discuss a simple example with one-sided significance

testing in Section B of the supplement.2

1Stanley (2008) and Doucouliagos and Stanley (2009) note this bias but suggest that one can
still use H0 : �1 = 0 to test the hypothesis of zero true e↵ect if there is no heterogeneity in the true
e↵ect ⇥⇤ across latent studies.

2A further complication is that meta-regression coe�cients are not interpretable in settings with
sign-normalized estimates, as in two of our applications. See Section C.2 of the supplement for
further discussion.
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The distribution of p-values and z-statistics Another approach in the litera-

ture considers the distribution of p-values, or the corresponding z-statistics, across

published studies. For example, Simonsohn et al. (2014) analyze whether the distri-

bution of p-values in a given literature is right- or left-skewed. Brodeur et al. (2016)

compile 50,000 test results from all papers published in the American Economic Re-

view, the Quarterly Journal of Economics, and the Journal of Political Economy

between 2005 and 2011, and analyze their distribution to draw conclusions about

distortions in the research process.

Under our model, absent selectivity of the publication process the distribution f
Z

is equal to f
Z

⇤ . If we additionally assume that Z⇤|⇥⇤ ⇠ N(⇥⇤, 1) and ⇥⇤ ⇠ µ, this

implies that

f
Z

(z) = f
Z

⇤(z) = (⇡ ⇤ ')(z) =
Z

'(z � ✓)dµ(✓).

This model has testable implications, and requires that the deconvolution of f
Z

with

a standard normal density ' yield a probability measure µ. This implies that the

density f
Z

⇤ is infinitely di↵erentiable. If selectivity is present, by contrast, then

f
Z

(z) =
p(z)

E[p(Z⇤)]
· f

Z

⇤(z),

and any discontinuity of f
Z

(z) (for instance at critical values such as z = 1.96) iden-

tifies a corresponding discontinuity of p(z) and indicates the presence of selectivity:

lim
z#z0 fZ(z)

lim
z"z0 fZ(z)

=
lim

z#z0 p(z)

lim
z"z0 p(z)

.

If we impose that p(·) is a step function, for example, then this argument allows us

to identify p(·) up to scale.

The density f
Z

⇤ also precludes excessive bunching, since for all k � 0 and all z,

@k

z

f
Z

⇤(z)  sup
z

@k

z

'(z) and @k

z

f
Z

⇤(z) � inf
z

@k

z

'(z) so that in particular f
Z

⇤(z) 
'(0) and f 00

Z

⇤(z) � '00(0) = �'(0) for all z. Spikes in the distribution of Z thus

likewise indicate the presence of selectivity or inflation.

Unlike our model, which focuses on selection, Brodeur et al. (2016) are inter-

ested in potential inflation of test results by researchers, and in particular in non-

monotonicities of f
Z

which cannot be explained by monotone publication probabilities

p(z) alone. They construct tests for such non-monotonicities based on parametrically
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estimated distributions f
Z

⇤ .

4 Corrected inference

This section derives median unbiased estimators and valid confidence sets for scalar

parameters ✓. For most of the section we assume p(·) is known; corrections account-
ing for estimation error in p(·) are discussed at the end of the section. As in our

identification results, f
X

⇤|⇥⇤ is assumed known throughout. The supplement extends

these results to derive optimal estimators for scalar components of vector-valued ✓,

and analyzes Bayesian inference under selective publication. While our identification

results in the last section relied on an empirical Bayes perspective, which assumed

that ⇥⇤
i

was drawn from some distribution µ, this section considers standard fre-

quentist results which hold conditional on ⇥. This reflects the di↵erent question at

hand: Estimability of p(·), as considered in Section 3, requires multiple observations

of studies j with potentially heterogeneous estimands ⇥
j

. In this section, by contrast,

we are interested in valid inference on ⇥ for a given study j, and so condition on ⇥
j

.

Conditioning on ⇥
j

corresponds to standard notions of bias and size control.

Selective publication reweights the distribution of X by p(·). To obtain valid esti-

mators and confidence sets, we need to correct for this reweighting. To define these

corrections denote the cdf for published results X given true e↵ect ⇥ by F
X|⇥. For

f
X|⇥ the density of published results derived in Lemma 1,

F
X|⇥(x|✓) =

Z

x

�1
f
X|⇥(x̃|✓)dx̃ =

1

E[p(X⇤)|⇥⇤ = ✓]

Z

x

�1
p(x̃)f

X

⇤|⇥⇤(x̃|✓)dx̃.

For many distributions f
X

⇤|⇥⇤ , and in particular in the leading normal case (see

Lemma 5 below) this cdf is strictly decreasing in ✓. Using this fact we can adapt

an approach previously applied by, among others, D. Andrews (1993) and Stock and

Watson (1998) and invert the cdf as a function of ✓ to construct a quantile-unbiased

estimator. In particular, if we define ✓̂
↵

(x) as the solution to

F
X|⇥

⇣

x|✓̂
↵

(x)
⌘

= ↵ 2 (0, 1), (4)

so x lies at the ↵-quantile of the distribution implied by ✓̂
↵

(x), then ✓̂
↵

(X) is an

↵-quantile unbiased estimator for ✓.
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Theorem 4

If for all x, F
X|⇥(x|✓) is continuous and strictly decreasing in ✓, tends to one as

✓ ! �1, and tends to zero as ✓ ! 1, then ✓̂
↵

(x) as defined in (4) exists, is unique,

and is continuous and strictly increasing for all x. If, further, F
X|⇥(x|✓) is continuous

in x for all ✓ then ✓̂
↵

(X) is ↵-quantile unbiased for ✓ under the truncated sampling

setup of Definition 1,

P
⇣

✓̂
↵

(X)  ✓|⇥ = ✓
⌘

= ↵ for all ✓.

If f
X

⇤|⇥⇤ (x|✓) is normal, as in our applications, then the assumptions of Theorem

4 hold whenever p(x) is strictly positive for all x and almost everywhere continuous.

Lemma 5

If the distribution of latent draws X⇤ conditional on (⇥⇤, �⇤) is N(⇥⇤, �⇤2), p(x) > 0

for all x, and p(·) is almost everywhere continuous, then the assumptions of Theorem

4 are satisfied.

These results allow straightforward frequentist inference that corrects for selective

publication. In particular, using Theorem 4 we can consider the median-unbiased

estimator ✓̂ 1
2
(X) for ✓, as well as the equal-tailed level 1� ↵ confidence interval

h

✓̂↵
2
(X) , ✓̂

1�↵
2
(X)

i

.

This estimator and confidence set fully correct the bias and coverage distortions in-

duced by selective publication. Other selection-corrected confidence intervals are also

possible in this setting. For example, provided the density f
X

⇤|⇥⇤(x|✓) belongs to

an exponential family one can form confidence intervals by inverting uniformly most

powerful unbiased tests as in Fithian et al. (2014). Likewise, one can consider alter-

native estimators, such as the weighted average risk-minimizing unbiased estimators

considered in Mueller and Wang (2015), or the MLE based on the truncated likelihood

f
X|⇥.

Illustrative example (continued) To illustrate these results, we return to the

treatment e↵ect example discussed above. Figure 4 plots the median unbiased esti-

mator, as well as upper and lower 95% confidence bounds as a function of X for the

same publication probability p(·) considered above. We see that the median unbiased
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Figure 4: This figure plots frequentist 95% confidence bounds and the median unbiased es-
timator for the normal model where results that are significant at the 5% level are published
with probability one, while insignificant results are published with probability 10%. The
usual (uncorrected) estimator and confidence bounds are plotted in grey for comparison.

estimator lies below the usual estimator ✓̂ = X for small positive X but that the

di↵erence is eventually decreasing in X. The truncation-corrected confidence interval

shown in Figure 4 has exactly correct coverage, is smaller than the usual interval for

small X, wider for moderate values X, and essentially the same for X � 5.

We do not recommend adjusting publication standards to reflect these corrections.

If publication probabilities in this example were based on more stringent critical val-

ues, for instance, then the corrections discussed above would need to be adjusted.

Instead, the purpose of these corrections is to allow readers of published research to

draw valid inferences, taking the publication rule as given. The publication rule itself

can then be chosen on other grounds, for example to maximize social welfare or pro-

vide incentives to researchers. We briefly discuss the question of optimal publication

rules in the conclusion, as well as in Section K supplement.
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In this example, our approach is closely related to the correction for selective pub-

lication proposed by McCrary et al. (2016). There, the authors propose conservative

tests derived under an extreme form of publication bias in which insignificant results

are never published. If we consider testing the null hypothesis that ✓ is equal to

zero, and calculate our equal-tailed confidence interval under the publication proba-

bility p(·) implied by the model of McCrary et al. (2016), then our confidence interval

contains zero if and only if the test of McCrary et al. (2016) fails to reject.

Estimation Error in p(·) Thus far our corrections have assumed the conditional

publication probability is known. If p (·) is instead estimated with error, median unbi-

ased estimation is challenging but constructing valid confidence sets for ✓ is straight-

forward.

Suppose we parameterize the conditional publication probability by a finite di-

mensional parameter �, and let ✓̂
↵

(X
i

; �) be the ↵-quantile unbiased estimator under

�. For many specifications of p (·), and in particular for those used in our applications

below, ✓̂
↵

(x; �) is continuously di↵erentiable in � for all x. If we have a consistent

and asymptotically normal estimator �̂ for �, for 0 < � < ↵, consider the interval

h

✓̂↵��
2

⇣

X; �̂
⌘

� c
1� �

2
�̂
L

(X) , ✓̂
1�↵��

2

⇣

X; �̂
⌘

+ c
1� �

2
�̂
U

(X)
i

where c
1� �

2
is the level 1 � �

2

quantile of the standard normal distribution while

�̂
L

(x) and �̂
U

(x) are delta-method standard errors for ✓̂↵��
2

⇣

x; �̂
⌘

and ✓̂
1�↵��

2

⇣

x; �̂
⌘

,

respectively. If our model for p(·) is correctly specified, Bonferroni’s inequality implies

that this interval covers ✓ with probability at least 1� ↵ in large samples.3

5 Applications

This section applies the results developed above to estimate the degree of selectivity

in several empirical literatures.

3Even in cases where we do not have an asymptotically normal estimator for �, for
example because we consider a fully nonparameteric model for p(·), given an initial level
1 � � confidence set CS� for � we can form a Bonferroni confidence set for ✓ as
h

inf�2CS� ✓̂↵��
2

⇣

X; �̂
⌘

, sup�2CS�
✓̂1�↵��

2

⇣

X; �̂
⌘i

.
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Key identifying assumptions The results of Section 3 imply nonparametric iden-

tification of both p(·) and µ. Using systematic replication studies, we identify p(·)
based on asymmetries in the joint distribution of original and replication estimates.

This approach is based on the assumption that selection for publication depends only

on the original estimates and not on the replication estimates. This assumption is

highly plausible by design in the two replication settings we consider.

Identification using meta-studies identifies p(·) by comparing the distribution of

estimates with di↵erent associated standard errors across studies. This approach is

based on the assumption that studies with di↵erent sample sizes on a given topic do

not have systematically di↵erent estimands. While we cannot guarantee validity of

this assumption by design, plausibility of this assumption is enhanced by our finding

that it yields estimates very similar to the approach based on replication studies. It

should also be noted that variants of this assumption are imposed in the vast majority

of existing meta-studies.

Maximum likelihood estimation The sample sizes in our applications are lim-

ited. For our main analysis, we specify parsimonious parametric models for both the

conditional publication probability p(·) and the distribution µ of true e↵ects across

latent studies, which we then fit by maximum likelihood. Parametric specifications

of the nonparametrically identified model lead to intuitive and tractable estimators.

In the supplement we consider alternative, moment-based estimators which build on

our identification arguments in Section 3. These estimators are nonparametric in µ

and yield similar results to the parametric specifications reported here.

We consider step function models for p(·), with jumps at conventional critical

values, and possibly at zero. Since p(·) is only identified up to scale, we impose the

normalization p(z) = 1 for z > 1.96 throughout. This is without loss of generality,

since p(·) is allowed to be larger than 1 for other cells.

We assume di↵erent parametric models for the distribution of latent e↵ects ⇥⇤,

discussed case-by-case below. In our first two applications the sign of the original

estimates is normalized to be positive.4 We denote these normalized estimates by

W = |Z|, and in these settings we impose that p(·) is symmetric.

4The studies in these datasets consider di↵erent outcomes, so the relative signs of e↵ects across
studies are arbitrary. Setting the sign of the initial estimate in each study to be positive has the
desirable e↵ect of ensuring invariance to the sign normalization chosen by the authors of each study.
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Details and extensions Details and further motivation for our specifications, as

well as a specification for the model of Section 3.1.3 which we use to develop specifi-

cation tests, are discussed in Section C of the supplement.

In the present section we assume that our identifying assumptions hold uncon-

ditionally for the samples considered. In Section F of the Supplement, we explore

robustness of our results to additional conditioning on covariates W , including year

of first circulation and journal of publication. However, in no case do we reject our

baseline (unconditional) specification at conventional significance levels. To check

the robustness of our findings, we report additional empirical results based on further

additional specifications in Section F of the supplement. To check robustness to our

parametric assumptions, we report estimates based on an alternative GMM estima-

tion approach that does not rely on parametric specifications of µ in Section G of the

supplement. This alternative approach yields broadly similar estimates of p(·).

5.1 Economics laboratory experiments

Our first application uses data from a recent large-scale replication of experimental

economics papers by Camerer et al. (2016). The authors replicated all 18 between-

subject laboratory experiment papers published in the American Economic Review

and Quarterly Journal of Economics between 2011 and 2014.5 Further details on the

selection and replication of results can be found in Camerer et al. (2016), while details

on our handling of the data are discussed in the supplement.

A strength of this dataset for our purposes, beyond the availability of replication

estimates, is the fact that it replicates results from all papers in a particular subfield

published in two leading economics journals over a fixed period of time. This miti-

gates concerns about the selection of which studies to replicate. Moreover, since the

authors replicate 18 such studies, it seems reasonable to think that they would have

published their results regardless of what they found, consistent with our assumption

that selection operates only on the initial studies and not on the replications.

A caveat to the interpretation of our results is that Camerer et al. (2016) select

the most important statistically significant finding from each paper, as emphasized

5In their supplementary materials, Camerer et al. (2016) state that “To be part of the study
a published paper needed to report at least one significant between subject treatment e↵ect that
was referred to as statistically significant in the paper.” However, we have reviewed the issues of
the American Economic Review and Quarterly Journal of Economics from the relevant period, and
confirmed that no studies were excluded due to this restriction.
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Figure 5: The left panel shows a binned density plot for the normalized z-statistics W =
|X|/� using data from Camerer et al. (2016). The grey line marks W = 1.96. The middle
panel plots the z-statistics W from the initial study against the estimate W r from the
replication study. The grey lines mark W and W r = 1.96, as well as W = W r. The right
panel plots the initial estimate |X| = W ·� against its standard error �. The grey line marks
|X|/� = 1.96.

by the original authors, for replication. This selection changes the interpretation

of p(·), which has to be interpreted as the probability that a result was published

and selected for replication. In this setting, our corrected estimates and confidence

intervals provide guidance for interpreting the headline results of published studies.

Histogram Before we discuss our formal estimation results, consider the distribu-

tion of originally published estimates W = |Z|, shown by the histogram in the left

panel of Figure 5. This histogram suggests of a large jump in the density f
W

(·) at

the cuto↵ 1.96, and thus of a corresponding jump of the publication probability p(·)
at the same cuto↵; cf. the discussion in Section 3.3. Such a jump is confirmed by

both our replication and meta-study approaches.

Results from replication specifications The middle panel of Figure 5 plots the

joint distribution of W, W r in the replication data of Camerer et al. (2016), using the

same conventions as in Figure 2. To estimate the degree of selection in these data we

consider the model

|⇥⇤| ⇠ �(,�), p(Z) /

8

<

:

�
p

|Z| < 1.96

1 |Z| � 1.96.
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Replication

 � �
p

0.373 2.153 0.029
(0.266) (1.024) (0.027)

Meta-study

̃ �̃ �
p

1.343 0.157 0.038
(1.310) (0.076) (0.051)

Table 1: Selection estimates from lab experiments in economics, with robust standard
errors in parentheses. The left panel reports estimates from replication specifications, while
the right panel reports results from meta-study specifications. Publication probability �

p

is
measured relative to the omitted category of studies significant at 5% level, so an estimate
of 0.029 implies that results which are insignificant at the 5% level are 2.9% as likely to be
published as significant results. The parameters (,�) and (̃, �̃) are not comparable.

This assumes that the absolute value of the true e↵ect⇥⇤ follows a gamma distribution

with shape parameter  and scale parameter �. This nests a wide range of cases,

including �2 and exponential distributions, while keeping the number of parameters

low. Our model for p(·) allows a discontinuity in the publication probability at |Z| =
1.96, the critical value for a 5% two-sided z-test. Fitting this model by maximum

likelihood yields the estimates reported in the left panel of Table 1. Recall that �
p

in this model can be interpreted as the publication probability for a result that is

insignificant at the 5% level based on a two-sided z-test, relative to a result that is

significant at the 5% level. These estimates therefore imply that significant results

are more than thirty times more likely to be published than insignificant results.

Moreover, we strongly reject the hypothesis of no selectivity, H
0

: �
p

= 1.

To test the validity of our baseline assumption of selection on z and not on ✓,

p(z, ✓) = p(z), we calculate a score test using a model discussed in Section C.1 of the

supplement. This yields a p-value of 0.53, so we find no evidence that the assumption

P (D = 1|Z⇤,⇥⇤) = p(Z⇤) imposed in our baseline model is violated.

Results from meta-study specifications While the Camerer et al. (2016) data

include replication estimates, we can also apply our meta-study approach using just

the initial estimates and standard errors. Since this approach relies on additional

independence assumptions, comparing these results to those based on replication

studies provides a useful check of the reliability of our meta-analysis estimates.

We begin by plotting the data used by our meta-analysis estimates in the right
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panel of Figure 5. We consider the model

|⇥⇤| ⇠ �(̃, �̃), p(X/�) /

8

<

:

�
p

|X/�| < 1.96

1 |X/�| � 1.96,

noting that ⇥⇤ is now the mean ofX⇤, rather than Z⇤, and thus that the interpretation

of (̃, �̃) di↵ers from that of (,�) in our replication specifications. Fitting this model

by maximum likelihood yields the estimates reported in the right panel of Table 1.

Comparing these estimates to those in the left panel, we see that the estimates from

the two approaches are similar, though the metastudy estimates suggest a somewhat

smaller degree of selection. Hence, we find that in the Camerer et al. (2016) data we

obtain similar results from our replication and meta-study specifications.

Bias correction To interpret our estimates, we calculate our median-unbiased es-

timator and confidence sets based on our replication estimate �
p

= .029. Figure 6

plots the median unbiased estimator, as well as the original and adjusted confidence

sets (with and without bonferroni corrections), for the 18 studies included in Camerer

et al. (2016). Considering the first panel, which plots the median unbiased estimator

along with the original and replication estimates, we see that the adjusted estimates

track the replication estimates fairly well but are smaller than the original estimates

in many cases. The second panel plots the original estimate and conventional 95%

confidence set in blue, and the adjusted estimate and 95% confidence set in black.

As we see from this figure, even without Bonferroni corrections twelve of the ad-

justed confidence sets include zero, compared to just two of the original confidence

sets. Hence, adjusting for the estimated degree of selection substantially changes the

number of significant results in this setting.

5.2 Psychology laboratory experiments

Our second application is to data from Open Science Collaboration (2015), who con-

ducted a large-scale replication of experiments in psychology. The authors considered

studies published in three leading psychology journals, Psychological Science, Jour-

nal of Personality and Social Psychology, and Journal of Experimental Psychology:

Learning, Memory, and Cognition, in 2008. They assigned papers to replication teams

on a rolling basis, with the set of available papers determined by publication date.
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Figure 6: The top panel plots the estimates W and W r from the original and replication
studies in Camerer et al. (2016), along with the median unbiased estimate ✓̂ 1

2
based on the

estimated selection model and the original estimate. The bottom panel plots the original
estimate and 95% confidence interval, as well as the median unbiased estimate and adjusted

95% confidence interval
h

✓̂
0.025

(W ) , ✓̂
0.975

(W )
i

based on the estimated selection model.

Adjusted intervals not accounting for estimation error in the selection model are plotted
with solid lines, while endpoints of Bonferroni-corrected intervals are marked with “p”.
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Ultimately, 158 articles were made available for replication, 111 were assigned, and

100 of those replications were completed in time for inclusion in Open Science Col-

laboration (2015). Replication teams were instructed to replicate the final result in

each article as a default, though deviations from this default were made based on

feasibility and the recommendation of the authors of the original study. Ultimately,

84 of the 100 completed replications consider the final result of the original paper.

As with the economics replications above, the systematic selection of results for

replication in Open Science Collaboration (2015) is an advantage from our perspec-

tive. A complication in this setting, however, is that not all of the test statistics used

in the original and replication studies are well-approximated by z-statistics (for ex-

ample, some of the studies use �2 test statistics with two or more degrees of freedom).

To address this, we limit attention to the subset of studies which use z-statistics or

close analogs thereof, leaving us with a sample of 73 studies. Specifically, we limit

attention to studies using z- and t-statistics, or �2 and F-statistics with one degree

of freedom (for the numerator, in the case of F-statistics), which can be viewed as

the squares of z- and t-statistics, respectively. To explore sensitivity of our results

to denominator degrees of freedom for t- and F-statistics, in the supplement we limit

attention to the 52 observations with denominator degrees of freedom of at least 30

in the original study and find quite similar results.

Histogram The distribution of originally published estimates W is shown by the

histogram in the left panel of Figure 7. This histogram is suggestive of a large jump

in the density f
W

(·) at the cuto↵ 1.96, as well as possibly a jump at the cuto↵

1.64, and thus of corresponding jumps of the publication probability p(·) at the same

cuto↵s. Such jumps are again confirmed by the estimates from both our replication

and meta-study approaches.

Results from replication specifications The middle panel of Figure 7 plots the

joint distribution of W, W r in the replication data of Open Science Collaboration

(2015). We fit the model

|⇥⇤| ⇠ �(,�), p(Z) /

8

>

>

>

<

>

>

>

:

�
p,1

|Z| < 1.64

�
p,2

1.64  |Z| < 1.96

1 |Z| � 1.96.
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Figure 7: The left panel shows a binned density plot for the normalized z-statistics W =
|X|/� using data from Open Science Collaboration (2015). The grey line marks W = 1.96.
The middle panel plots the z-statistics W from the initial study against the estimate W r

from the replication study. The grey lines mark |W | and |W r| = 1.96, as well as W = W r.
The right panel plots the initial estimate |X| = W ·� against its standard error �. The grey
line marks |X|/� = 1.96.

Replication

 � �
p,1

�
p,2

0.315 1.308 0.009 0.205
(0.143) (0.334) (0.005) (0.088)

Meta-study

̃ �̃ �
p,1

�
p,2

0.974 0.153 0.017 0.306
(0.549) (0.053) (0.009) (0.135)

Table 2: Selection estimates from lab experiments in psychology, with robust standard
errors in parentheses. The left panel reports estimates from replication specifications, while
the right panel reports results from meta-study specifications. Publication probabilities
�
p

are measured relative to the omitted category of studies significant at 5% level. The
parameters (,�) and (̃, �̃) are not comparable.

This model again assumes that the absolute value of the true e↵ect |⇥⇤| follows a

gamma distribution across latent studies. Given the larger sample size, we consider a

slightly more flexible model than before and allow discontinuities in the publication

probability at the critical values for both 5% and 10% two-sided z-tests.

Fitting this model by maximum likelihood yields the estimates reported in the left

panel of Table 2. These estimates imply that results that are significantly di↵erent

from zero at the 5% level are over a hundred times more likely to be published than

results that are insignificant at the 10% level, and nearly five times more likely to be

published than results that are significant at the 10% level but insignificant at the

5% level. We strongly reject the hypothesis of no selectivity.

A score test of the null hypothesis p(z, ✓) = p(z) yields a p-value of 0.42. Thus,

we again find no evidence that the assumption P (D = 1|Z⇤,⇥⇤) = p(Z⇤) imposed in
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Figure 8: This figure plots the estimates W and W r from the original and replication
studies in Open Science Collaboration (2015), along with the median unbiased estimate ✓̂ 1

2

based on the estimated selection model and the original estimate.

our baseline model is violated.

Results from meta-study specifications As before, we re-estimate our model

using our meta-study specifications, and plot the joint distribution of estimates and

standard errors in the right panel of Figure 7. Fitting the model yields the estimates

reported in the right panel of Table 2. As in the last section, we find that the meta-

study and replication estimates are broadly similar, though the meta-study estimates

again suggest a somewhat more limited degree of selection.

Bias corrections To interpret our results, we plot our median-unbiased estimates

based on the Open Science Collaboration (2015) data in Figure 8. We see that our

adjusted estimates track the replication estimates fairly well for studies with small

original z-statistics, though the fit is worse for studies with larger original z-statistics.

Our adjustments again dramatically change the number of significant results, with

62 of the 73 original 95% confidence sets excluding zero, and only 28 of the adjusted
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confidence sets (not displayed) doing the same.

Approved replications Gilbert et al. (2016) argue that the protocols in some of

the Open Science Collaboration (2015) replications di↵ered substantially from the

initial studies. To explore robustness with respect to this critique, in the supplement

we report results from further restricting the sample to the subset of replications which

used protocols approved by the original authors prior to the replication. Doing so we

find roughly similar estimates, though the estimated degree of selection is smaller.

5.3 E↵ect of minimum wage on employment

Our third application uses data from Wolfson and Belman (2015), who conduct a

meta-analysis of studies on the elasticity of employment with respect to the minimum

wage. In particular, Wolfson and Belman (2015) collect analyses of the e↵ect of

minimum wages on employment that use US data and were published or circulated

as working papers after the year 2000. They collect estimates from all studies fitting

their criteria that report both estimated elasticities of employment with respect to

the minimum wage and standard errors, resulting in a sample of a thousand estimates

drawn from 37 studies, and we use these estimates as the basis of our analysis. For

further discussion of these data, see Wolfson and Belman (2015).

Since the Wolfson and Belman (2015) sample includes both published and un-

published papers, we evaluate our estimators based on both the full sample and the

sub-sample of published estimates. We find qualitatively similar answers for the two

samples, so we report results based on the full sample here and discuss results based

on the subsample of published estimates in the supplement. We define X so that

X > 0 indicates a negative e↵ect of the minimum wage on employment.

Histogram Consider first the distribution of the normalized estimates Z, shown by

the histogram in the left panel of Figure 9. This histogram is somewhat suggestive

of jumps in the density f
Z

(·) around the cuto↵s �1.96, 0, and 1.96, and thus of

corresponding jumps in the publication probability p(·) at the same cuto↵s; these

jumps seem less pronounced than in our previous applications, however.

Results from meta-study specifications For this application we do not have

any replication estimates, and so move directly to our meta-study specifications. The
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Figure 9: The left panel shows a binned density plot for the z-statistics X/� in the Wolfson
and Belman (2015) data. The solid grey lines mark |X|/� = 1.96, while the dash-dotted
grey line marks X/� = 0. The right panel plots the estimate X against its standard error
�. The grey lines mark |X|/� = 1.96.

right panel of Figure 9 plots the joint distribution of X, the estimated elasticity of

employment with respect to decreases in the minimum wage, and the standard error

� in the Wolfson and Belman (2015) data.

As a first check, we run meta-regressions as discussed in section 3.3, clustering

standard errors by study. A regression of X on � yields a slope of 0.408 with a

standard error of 0.372. A regression of Z on 1/� yields an intercept of 0.343 with

a standard error of 0.283. Both of these estimates suggest selection favoring results

finding a negative e↵ect of minimum wages on employment, but neither allows us to

reject the null of no selection at conventional significance levels.

We next consider the model

⇥⇤ ⇠ ✓̄ + t(⌫) · ⌧̃ , p(X/�) /

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�
p,1

X/� < �1.96

�
p,2

�1.96  X/� < 0

�
p,3

0  X/� < 1.96

1 X/� � 1.96.

Since the data are not sign-normalized, we model ⇥⇤ using a t distribution with de-

grees of freedom ⌫̃ and location and scale parameters ✓̄ and ⌧̃ , respectively. Unlike
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in our previous applications, we allow the probability of publication to depend on

the sign of the z-statistic X/� rather than just on its absolute value. This is impor-

tant, since it seems plausible that the publication prospects for a study could di↵er

depending on whether it found a positive or negative e↵ect of the minimum wage on

employment. Recall that X > 0 indicates a negative e↵ect of the minimum wage

on employment. Our estimates based on these data are reported in Table 3, where

we find that results which are insignificant at the 5% level are about 30% as likely

to be published as are significant estimates finding a negative e↵ect of the minimum

wage on employment. Our point estimates also suggest that studies finding a positive

and significant e↵ect of the minimum wage on employment may be less likely to be

published, but this estimate is quite noisy and we cannot reject the hypothesis that

selection depends only on signficance and not on sign.

✓̄ ⌧̃ ⌫̃ �
p,1

�
p,2

�
p,3

0.018 0.019 1.303 0.697 0.270 0.323
(0.009) (0.011) (0.279) (0.350) (0.111) (0.094)

Table 3: Meta-study estimates from minimum wage data, with standard errors clustered
by study in parentheses. Publication probabilities �

p

measured relative to omitted category
of estimates positive and significant at 5% level.

These results are consistent with the meta-analysis estimates of Wolfson and Bel-

man (2015), who found evidence of some publication bias towards a negative employ-

ment e↵ect, as well as the results of Card and Krueger (1995), who focused on an

earlier, non-overlapping set of studies.

Since the studies in this application estimate related parameters, it is also interest-

ing to consider the estimate ✓̄ for the mean e↵ect in the population of latent estimates.

The point estimate suggests that the average latent study finds a small but statis-

tically significant negative e↵ect of the minimum wage on employment. This e↵ect

is about half as large as the “naive” average e↵ect ✓̄ we would estimate by ignoring

selectivity, .041 with a standard error of 0.011.

Multiple estimates A complication arises in this application, relative to those

considered so far, due to the presence of multiple estimates per study. Since it is

di�cult to argue that a given estimate in each of these studies constitutes the “main”

estimate, restricting attention to a single estimate per study would be arbitrary. This
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somewhat complicates inference and identification.

For inference, it is implausible that estimate standard-error pairs X
j

, �
j

are inde-

pendent within study. To address this, we cluster our standard errors by study.

For identification, the problem is somewhat more subtle. Our model assumes that

the latent parameters ⇥⇤
i

and �⇤
i

are statistically independent across estimates i, and

that D
i

is independent of (⇥⇤
i

, �⇤
i

) conditional on X⇤
i

/�⇤
i

. It is straightforward to

relax the assumption of independence across i, provided the marginal distribution

of (⇥⇤
i

, �⇤
i

, X⇤
i

, D
i

) is such that D
i

remains independent of (⇥⇤
i

, �⇤
i

) conditional on

X⇤
i

/�⇤
i

. This conditional independence assumption is justified if we believe that both

researchers and referees consider the merits of each estimate on a case-by-case basis,

and so decide whether or not to publish each estimate separately. Alternatively, it can

also be justified if the estimands ⇥⇤
i

within each study are statistically independent

(relative to the population of estimands in the literature under consideration). As

discussed in Section 3.1.3, however, if these assumptions fail our model is misspecified.

5.4 Deworming meta-study

Our final application uses data from the recent meta-study Croke et al. (2016) on

the e↵ect of mass drug administration for deworming on child body weight. They

collect results from randomized controlled trials which report child body weight as an

outcome, and focus on intent-to-treat estimates from the longest follow-up reported

in each study. They include all studies identified by the previous review of Taylor-

Robinson et al. (2015), as well as additional trials identified by Welch et al. (2017).

They then extract estimates as described in Croke et al. (2016) and obtain a final

sample of 22 estimates drawn from 20 studies, which we take as the basis for our

analysis. For further discussion of sample construction, see Taylor-Robinson et al.

(2015), Croke et al. (2016), and Welch et al. (2017). To account for the presence of

multiple estimates in some studies, we again cluster by study.

Histogram Consider first the distribution of the normalized estimates Z, shown by

the histogram in the left panel of Figure 10. Given the small sample size of 22 esti-

mates, this histogram should not be interpreted too strongly. That said, the density

of Z appears to jump up at 0, which suggests selection toward positive estimates.
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Figure 10: The left panel shows a binned density plot for the z-statistics X/� in the Croke
et al. (2016) data. The solid grey lines mark |X|/� = 1.96, while the dash-dotted grey line
marks X/� = 0. The right panel plots the estimate X against its standard error �. The
grey lines mark |X|/� = 1.96.

Results from meta-study specifications The right panel of Figure 10 plots the

joint distribution of X, the estimated intent to treat e↵ect of mass deworming on

child weight, along with the standard error � in the Croke et al. (2016) data.

As a first check, we again run meta-regressions as discussed in Section 3.3, clus-

tering standard errors by study. A regression of X on � yields a slope of �0.296 with

a standard error of 0.917. A regression of Z on 1/� yields an intercept of 0.481 with

a standard error of 0.889. Neither of these estimates allows rejection of the null of no

selection at conventional significance levels.

We next consider the model

⇥⇤ ⇠ N(✓̄, ⌧̃ 2), p(X/�) /

8

<

:

�
p

|X/�| < �1.96

1 |X/�| � 1.96,

where we constrain the the distribution of ⇥⇤ to be normal and the function p(·) to
be symmetric to limit the number of free parameters, which is important since we

have only 22 observations. Fitting this model yields the estimates reported in Table

4. The point estimates here suggest that statistically significant results are less likely

to be included in the meta-study of Croke et al. (2016) than are insignificant results.
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✓̄ ⌧̃ �
p

0.190 0.343 2.514
(0.120) (0.128) (1.869)

Table 4: Meta-study estimates from deworming data, with robust standard errors in
parentheses. Publication probabilities �

p

measured relative to omitted category of studies
significant at 5% level.

However, the standard errors are quite large, and the di↵erence in publication

(inclusion) probabilities between significant and insignificant results is itself not sig-

nificant at conventional levels, so there is no basis for drawing a firm conclusion here.

Likewise, the estimated ✓̄ suggests a positive average e↵ect in the population, but is

not significantly di↵erent from zero at conventional levels.

In the supplement we report results based on alternative specifications which allow

the function p(·) to be asymmetric. These specifications suggest selection against

negative estimates.

Our findings here are potentially relevant in the context of the controversial debate

surrounding mass deworming; see for instance Clemens and Sandefur (2015). The

point estimates for our baseline specification suggest that insignificant results have

a higher likelihood of being included in Croke et al. (2016) relative to significant

ones. In light of the large standard errors and limited robustness to changing the

specification of p(·), however, these findings should not be interpreted too strongly.

6 Conclusion

This paper contributes to the literature in three ways. First, we provide nonpara-

metric identification results for selectivity (in particular, the conditional publication

probability) as a function of the empirical findings of a study. Second, we provide

methods to calculate bias-corrected estimators and confidence sets when the form of

selectivity is known. Third, we apply the proposed methods to several literatures,

documenting the varying scale and kind of selectivity.

Implications for empirical research What can researchers and readers of em-

pirical research take away from this paper? First, when conducting a meta-analysis of

the findings of some literature, researchers may wish to apply our methods to assess
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the degree of selectivity in this literature, and to apply appropriate corrections to

individual estimates, tests, and confidence sets. We provide code on our webpages

which implements the proposed methods for a flexible family of selection models.

Second, when reading empirical research, readers may wish to adjust the published

point estimates and confidence sets along the lines discussed in Section 4. Suppose

for instance that for a given field publication probabilities increase considerably when

estimates exceed the 5% significance threshold, but publication does not otherwise

depend on findings. In that case, if reported e↵ects are close to zero, or very far from

zero (z-statistic bigger than 4, say), then these estimates can be taken at face value.

In intermediate ranges, in particular for z-statistics around 2, magnitudes should be

adjusted downwards.

It should be emphasized that we do not advocate adjusting publication standards

to reflect our corrected critical values. If these cuto↵s were to be systematically used

in the publication process, this would simply entail an “arms race” of selectivity,

rendering the more stringent critical values invalid again.

Optimal publication rules One might take the findings in this paper, and the

debate surrounding publication bias more generally, to indicate that the publication

process should be non-selective with respect to findings. This might for instance be

achieved by instituting some form of result-blind review. The hope would be that

non-selectivity of the publication process might restore the validity (unbiasedness,

size control) of standard inferential methods.

Note, however, that optimal publication rules may depend on results. Consider

for instance a setting where policy decisions are made based on published findings,

policy makers have a limited capacity to read publications, and journal editors maxi-

mize the same social welfare function as policy makers. In a stylized model of such a

setting, detailed in Section K of the supplement, we show that expected social welfare

is maximized by publishing the results which allow policy makers to update the most

relative to their prior beliefs. The corresponding publication rule favors the publica-

tion of surprising findings, thus violating non-selectivity. A more general theory of

optimal publication is of considerable interest for future research.
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