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1 Introduction

Research on priority-based resource allocation focuses on two central mechanisms: one based on

Gale and Shapley (1962)’s deferred-acceptance (DA) algorithm and the other based on Gale’s

top trading cycles (TTC) algorithm (Shapley and Scarf 1974). This focus is due in part to

the fact that both mechanisms are strategy-proof as direct mechanisms: truthful reporting is a

weakly dominant strategy for the proposing side in DA and for individuals in TTC. The main

difference between the mechanisms is that DA produces an outcome that is not Pareto efficient

but eliminates justified envy. An allocation eliminates justified envy if there is no blocking pair;

that is, if no individual prefers another assignment over her assignment and has a higher priority

at the preferred assignment. TTC is Pareto efficient but does not eliminate justified envy. There

is no mechanism that is both Pareto efficient and eliminates justified envy.1

Abdulkadiroğlu and Sönmez (2003) proposed resolving this trade-off in school assignment

mechanism design as follows: if the designer prefers the elimination of justified envy over effi-

ciency, then use DA. If the designer prefers efficiency over elimination of justified envy, then use

TTC.2 Since Gale and Shapley (1962) showed that DA produces a justified envy-free match-

ing that is not Pareto dominated by any other justified envy-free matching, the argument for

DA rests on a firm foundation. DA is constrained-optimal in the sense that it weakly Pareto

dominates any other matching with no justified envy.

Without a similar constrained-optimality result for TTC, the formal argument for TTC is not

on as solid footing. In particular, there are other strategy-proof and Pareto efficient mechanisms

for priority-based resource allocation. For example, a serial dictatorship mechanism, which

assigns each student in a given order to her most preferred choice among the remaining schools,

is strategy-proof and Pareto efficient. Importantly, priorities have no role in this mechanism, in

the sense that changing priorities does not alter the outcome for a given ordering of students.

Under DA, priorities have a clear role since there is no justified envy. However, the role of

priorities in TTC is much less clear, since TTC allows for justified envy but uses priorities to

compute allocations.

In this paper, we provide a constrained optimality result for TTC that is analogous to the

result for DA. To compare efficient allocations, we measure the extent to which two allocations

eliminate justified envy. Our approach is inspired by recent literature examining problem-wise

1This fact is a consequence of Roth (1982a), who shows that an allocation that is free of justified envy need

not be Pareto efficient. Kesten (2010) shows a related result: there is no Pareto efficient and strategy-proof

mechanism that selects the Pareto efficient and justified-envy-free allocation whenever it exists. Ergin (2002)

characterizes situations where there is no conflict between elimination of justified envy and Pareto efficiency.
2Abdulkadiroğlu and Sönmez (2003) state (p. 732): “... the choice between these two competing mechanisms

depends on the structure and interpretation of the priorities. In some applications, policy makers may rank

complete elimination of justified envy before full efficiency, then Gale-Shapley student optimal stable mechanism

can be used in those cases. Efficiency may be ranked higher by others, and the top trading cycles mechanism can

be used in such applications.”
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comparisons to contrast mechanisms.3 We say that mechanism ϕ1 has less justified envy

than mechanism ϕ2 if, for any problem, the set of blocking pairs of mechanism ϕ1 is a subset

of the set of blocking pairs of mechanism ϕ2. Our main result states that there is no Pareto

efficient and strategy-proof mechanism that has less justified envy than TTC, when each school

has one seat. When minimizing justified envy is second only to efficiency, this result provides

the missing foundation for recommending TTC.

Lack of a rigorous understanding of the roles priorities and preferences play in TTC may

also explain its limited use in practice. For instance, from 2003 to 2005, a Student Assignment

Task force in Boston, led by civic leaders, evaluated possible improvements to the school choice

system. As part of their review, the task force recommended TTC over DA, and provided the

following statement, which indicates how they perceived the mechanisms after reviewing the

academic literature (Landsmark, Dajer and Gonsalves 2014):

[T]he Gale-Shapley algorithm [...] cuts down on the amount of choice afforded to families.

The Top Trading Cycles algorithm also takes into account priorities while leaving some

room for choice. [...] [C]hoice was very important to many families who attended

community forums...

Based on this report and further consultation with the community and academic experts, the

final recommendation was for DA (Abdulkadiroğlu, Pathak, Roth and Sönmez 2005a). TTC was

faulted for allowing students to trade as stated in the final school committee report (BPS 2005):

[TTC’s] trading shifts the emphasis onto the priority and away from the goals BPS is

trying to achieve by granting these priorities in the first place.

The OneApp assignment system used for all public school children in New Orleans’ Recovery

School District (RSD) was based on TTC in its initial year in 2012 (Vanacore 2012). To the

best of our knowledge, the RSD is the only place that TTC has been used in practice, in school

assignment or elsewhere.4,5 However, after one year, officials abandoned TTC in favor of DA,

3For examples in different contexts, see Chen and Kesten (2016), Kesten (2006), Maskin (2016), and Pathak

and Sönmez (2013).
4A team of economists led by Muriel Niederle and Clayton Featherstone proposed a TTC system for school

choice for San Francisco, and the school board approved it in March 2010 (see San Francisco Unified School District

(2010), Board Approves New Student Assignment System for San Francisco Schools, Press Release, March 10,

2010, https://web.archive.org/web/20100331064212/http://portal.sfusd.edu/data/news/pdf/3%2010%2010%20

SF%20School%20Board%20Approves%20New%20Student%20Assignment%20System.pdf). However, it appears

that the district staff never implemented the Board’s decision; in any event, the school district has declined to

make public its current algorithm. For a blow-by-blow description of events, browse the posts at Roth, Alvin E.,

Market Design blog, http://marketdesigner.blogspot.com/search?q=Francisco+AND+school.
5A version of TTC was initially proposed as a way to organize kidney exchange (see Roth, Sönmez and Ünver

(2004)) but was never used in practice due in part to the difficulty of implementing long cycles. Instead, an

incremental process has led to the use of long chains and cycles identified through integer programming (see

Anderson, Ashlagi, Gamarnik and Roth (2015)).
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in part due to its treatment of priorities. Motivated by these developments, we use data from

New Orleans and Boston to report on how TTC compares to other efficient mechanisms and to

DA. The empirical comparison also shows the relevance of our results when schools have more

than one seat.

This paper is related to several other papers on axiomatic mechanism design characterizing

strategy-proof mechanisms. The most closely related result is Ma (1994), who characterizes TTC

as the unique strategy-proof, Pareto efficient, and individually rational mechanism in the housing

market model of Shapley and Scarf. (Strategy-proofness was established in Roth (1982b)).

In Section 5, we show how our main result generalizes Ma (1994). Pápai (2000) introduces

and characterizes a wide class of mechanisms, known as hierarchical exchange rules, by Pareto

efficiency, group strategy proofness, and re-allocation proofness. TTC is a hierarchical exchange

rule defined by the school priority lists but Pápai (2000) does not make explicitly reference any

specific priority and therefore is silent on how TTC respects priorities. In a similar vein, Pycia

and Ünver (2016) introduce and characterize trading cycles with brokers and owners by Pareto

efficiency and group strategy-proofness.6 Dur (2013) and Morrill (2015a) each characterize TTC

by relying on additional axioms, which are distinct from our result. Following the circulation of

Abdulkadiroglu and Che (2010), Morrill (2015a) developed a characterization of TTC based on

a new fairness concept that he terms “just.” Essentially, this approach amounts to excluding

some incidences of justified envy from the fairness consideration.7 By contrast, we consider all

incidents of justified envy in our fairness consideration.

There are other notable characterizations of mechanisms used for school assignment. Al-

calde and Barberá (1994) show that student-proposing DA is the only mechanism that elimi-

nates justified-envy, is individually rational, is non-wasteful, and is strategy-proof. Balinski and

Sönmez (1999) show that DA is the only matching mechanism that eliminates justified-envy, is

individually rational, is non-wasteful, and respects improvements. Kojima and Manea (2010)

characterize DA using Maskin monotonicity.

This paper also aligns with more recent studies motivated by TTC mechanisms’ fairness

implications. Hakimov and Kesten (2014) and Morrill (2015b) propose TTC variants that

improve fairness under some circumstances; we shall discuss these extensively. Che and Tercieux

(2016a), Che and Tercieux (2016b) and Leshno and Lo (2017) study Top Trading Cycles in large

economies under different asymptotics.8 They show that the amount of justified envy entailed

6See also Bade (2016). Pycia and Ünver (2011) extend their characterization when each discrete resource can

be represented by a copy.
7Specifically, Morrill (2015a) declares a mechanism to be unjust (only) if i has justified envy toward j at j’s

assignment s and reassigning j could potentially lead to a “change” of assignment for some student k who has a

higher priority at s than i. Importantly, this notion makes no distinction whether the “change” makes student k

better or worse off.
8Che and Tercieux (2016a) and Che and Tercieux (2016b) consider a setting in which the number of students

and the number of schools grow large, whereas Leshno and Lo (2017) study a setting in which the number of

students and the number of seats at each school grow large while the number of schools remains fixed and finite.
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by TTC does not vanish as the economy grows large.

The rest of this paper is organized as follows. Section 2 introduces the model and our method

of comparing mechanisms in terms of their sets of blocking pairs. Section 3 describes a simple

example we use to demonstrate our main theorem. Section 4 defines TTC and states our main

result. Section 5 describes extensions when schools have multiple seats, when priorities are not

strict, and for the housing market model of Shapley and Scarf. Section 6 uses data from New

Orleans and Boston to compare assignment mechanisms and reviews design issues that led to

the adoption of DA after one year in New Orleans. Section 7 concludes.

2 The Model

2.1 Notation

We define a priority-based resource allocation problem in terms of school assignment, following

Abdulkadiroğlu and Sönmez (2003). There are a number of students, each of whom should be

assigned a seat at one of a number of schools. Each student has a strict preference ordering over

all schools as well as remaining unassigned, and each school has a strict priority ranking of all

students. Each school also has a maximum capacity.

Formally, a school choice problem consists of:

1. a set of students I = {i1, ..., in},

2. a set of schools S = {s1, ..., sm},

3. a capacity vector q = (qs1 , ..., qsm),

4. a list of strict student preferences P = (Pi1 , ..., Pin), and

5. a list of strict school priorities �= (�s1 , ...,�sm).

For any student i, Pi is a strict preference relation over S ∪ {i} where sPii means student

i strictly prefers a seat at school s to being unassigned. For any student i, let Ri denote the

“at least as good as” relation induced by Pi. For any school s, �s is a complete, irreflexive

and transitive binary priority relation over I.9 Thus, i �s j means that i has strictly higher

priority at s than j. The model assumes that priorities are strict, and we examine the weak

priority case in Section 5. Priority rankings are determined by the school district, and schools

have no control over them. We also use the following shorthand notation: P−I′ = (Pi)i∈I−I′ and

�−S′= (�s)s∈S−S′ .
We fix the set of students, the set of schools and the capacity vector throughout the paper;

hence the pair (P,�) denotes a school choice problem (or simply an economy).

9Our results follow under a more general assumption that �s is a complete, irreflexive and transitive binary

priority relation over I ∪ {s}, where i �s s �s j means that i is eligible for a seat at s and j is not eligible.
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The outcome of a school choice problem is a matching. Formally, a matching µ : I → S ∪ I
is a function such that

1. µ(i) 6∈ S ⇒ µ(i) = i for any student i, and

2. |µ−1(s)| ≤ qs for any school s.

We refer µ(i) as the assignment of student i under matching µ.

A matching µ Pareto dominates a matching ν, if µ(i)Riν(i) for all i ∈ I and µ(i)Piν(i)

for some i ∈ I. A matching is Pareto efficient if it is not Pareto dominated by any other

matching.

A matching µ eliminates justified envy if

1. it is individually rational in the sense that there is no student i who prefers remaining

unassigned to her assignment µ(i), and

2. there is no student-school pair (i, s) such that,

(a) student i prefers s to her assignment µ(i), and

(b) either school s has a vacant seat under µ or there is a lower priority student j who

nonetheless received a seat at school s under µ.

If there is a student i who violates the first condition, we say the matching is blocked by

an individual. If there is student-school pair (i, s) that violates the second condition, we say

that student i has justified envy and (i, s) form a blocking pair. A matching eliminates

justified envy if it is not blocked by either any individual or any pair. Eliminating justified envy

is mathematically the same as stability for the college admissions model (Gale and Shapley 1962),

when colleges have responsive and acceptant preferences (Roth 1985).10 The main difference

involves interpretation: in college admissions, each school is a strategic agent, so stability has

strategic implications, whereas in priority-based resource allocation eliminating justified envy is

motivated by fairness considerations.

A mechanism selects a matching for each economy. If ϕ is a mechanism, let ϕ(P,�) denote

the matching selected by ϕ. Let ϕ(P,�)(i) denote the assignment of i in matching ϕ(P,�). A

mechanism is Pareto efficient if it only selects Pareto efficient matchings, i.e., for any problem

(P,�), the matching ϕ(P,�) is Pareto efficient. Similarly, a mechanism eliminates justified

envy if it only selects justified envy-free matchings. Finally, a mechanism ϕ is strategy-proof if

reporting true preferences is a dominant strategy for every individual in the preference revelation

game induced by ϕ; that is, for all P , �, i and P ′i

ϕ(P,�)(i)Riϕ(P ′i , P−i,�)(i).
10A college’s preferences are responsive if there is a linear order of the students according to which it wishes to

fill its seats (up to its quota). Its preferences are acceptant if it would accept any student if a seat is available;

i.e., it finds no student unacceptable.
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2.2 Mechanisms

We describe three mechanisms for priority-based resource allocation. The simplest is a serial

dictatorship, which is defined through a priority ordering of agents. For a given preference P , a

serial dictatorship assigns the highest priority agent her first choice, the second highest priority

agent her top choice among schools with remaining capacity, and so on. This mechanism is

strategy-proof and Pareto efficient (see, e.g., Roth (1982a), Abdulkadiroğlu and Sönmez (1998),

and Svensson (1999)).

Abdulkadiroğlu and Sönmez (2003) adapt Gale’s TTC for settings with priorities. Given a

problem (P,�), TTC finds a matching via the following algorithm:

• Step 1 : Assign each school a counter that keeps track of how many seats are still available

at the school. Initially set the counters equal to the capacities of the schools. Each student

points to her favorite school under her announced preferences. If a student has no accept-

able school, they are removed from the market. Each school points to the student who has

the highest priority for the school. Since the numbers of students and schools are finite,

there is at least one cycle. A cycle c = {sk, ik}k=1,...,K is an ordered list of schools and

individuals such that sk points to ik and ik points to sk+1 for every k where sK+1 = s1.

Moreover, each school can be part of at most one cycle. Similarly, each student can be part

of at most one cycle. Every student in a cycle is assigned a seat at the school she points

to and is removed. Each school’s counter reduces by one in each cycle, and if the counter

reduces to zero, the school is also removed. All other schools’ counters stay put.

In general, at

• Step k : Each remaining student points to her favorite school among the remaining schools.

If a student has no acceptable school, they are removed from the market. Each remaining

school points to the student with highest priority among the remaining students. There is

at least one cycle. Every student in a cycle is assigned a seat at the school that she points

to and is removed. Each school’s counter reduces by one in each cycle, and if the counter

reduces to zero, the school is also removed. All other schools’ counters stay put.

The algorithm terminates when no more students can be assigned seats. We denote the outcome

of this mechanism as TTC(P,�). This algorithm trades priorities of students among themselves

starting with students with highest priorities. Abdulkadiroğlu and Sönmez (2003) show this

mechanism is strategy-proof and Pareto efficient.

The last mechanism we define is based on Gale and Shapley’s (1962) celebrated DA algorithm,

which assigns student as follows:

• Step 1 : Each student proposes to her first choice. Each school tentatively assigns its seats

to its proposers one at a time, following their priority order. Any remaining proposers are

rejected.
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In general, at

• Step k : Each student who was rejected in the previous step proposes to her next choice.

Each school considers the students it has been holding together with its new proposers and

tentatively assigns its seats to these students one at a time, following their priority order.

Any remaining proposers are rejected.

The algorithm terminates when there are either no new proposals or each student has exhausted

her rank order list. Dubins and Freedman (1981) and Roth (1982a) show that DA is strategy-

proof. Gale and Shapley (1962) show that it Pareto dominates any other mechanism that

eliminates justified envy. DA is widely used in school choice systems, including in New York

City (Abdulkadiroğlu, Pathak and Roth 2005b, Abdulkadiroğlu, Pathak and Roth 2009), London

and elsewhere (see, e.g., Pathak and Sönmez (2013) and Pathak (2011)).

2.3 Comparing Mechanisms

To isolate the way in which TTC uses priorities over other efficient and strategy-proof mech-

anisms, we need a way to compare efficient allocations based on other properties. A recent

literature examines problem-wise comparisons to rank mechanisms by properties that are not

satisfied for each problem (see, e.g., Chen and Kesten (2016), Kesten (2006), Maskin (2016),

and Pathak and Sönmez (2013).) We follow this approach with our definition:

Definition 1. A mechanism ϕ has less justified envy than ψ at �, if for any P and student-

school pair (i, s), if pair (i, s) blocks ϕ(P,�), then pair (i, s) blocks ψ(P,�).

When we compare mechanisms for a given problem, this definition is not equal to a com-

parison of the count of blocking pairs across mechanisms. Rather, the concept involves a subset

relationship: the set of individuals and schools that are in blocking pairs is at least as large

under ψ as under for ϕ for each problem.

Two mechanisms can have less justified envy than each other if they have the same blocking

pairs for each problem. Our next definition rules this out:

Definition 2. A mechanism ϕ has strictly less justified envy than ψ if ϕ has less envy than

ψ, but ψ does not have less envy than ϕ.

Since the concept of less justified envy defines a preorder, our last definition describes the

minimal element of that order.11

Definition 3. Given a class of mechanisms C, ϕ is justified envy minimal in C if there is

no other mechanism ψ in C that has strictly less envy than ϕ.

11The concept of less justified envy does not define a partial order since the preorder it defines violates anti-

symmetry. To see this, let ψ and ψ′ be two distinct, justified envy-free mechanisms. Clearly, ψ has less justified

envy than ψ′, and ψ′ has less justified envy than ψ. However, ψ 6= ψ′.
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These definitions compare the sets of students who have justified envy under two different

mechanisms. As will be clear, we shall perform this comparison within the class of mechanisms

that are Pareto efficient and strategy-proof. In the rest of the paper, when not specified, the

class of mechanisms, C, are Pareto efficient and strategy-proof mechanisms.

Our problem-wise comparison is related to similar ideas for different contexts. The most

closely related notion was examined by Chen and Kesten (2016), who say that a mechanism ϕ is

more stable than φ if at any problem where φ is stable, ϕ is also stable, and there is a problem

where φ is stable and ϕ is not.12 This concept cannot be used to compare mechanisms that

do not produce stable outcomes for any problem, while our notion does allow for comparisons

in those cases. In that respect, our notion allows for more refined comparisons: if ϕ has less

justified envy than φ, then ϕ is more stable than φ.13

3 Motivating Example

We begin with an example illustrating the tradeoff between efficiency and eliminating justified

envy.14 Suppose there are three students I = {i1, i2, i3} and three schools S = {s1, s2, s3}, each

with one seat. Preferences and priorities are given by

Pi1 Pi2 Pi3 �s1 �s2 �s3
s2 s1 s1 i1 i2 i3

s1 s2 s2 i3 i3 i2

s3 s3 s3 i2 i1 i1

.

DA produces matching (
i1 i2 i3

s1 s2 s3

)
,

which eliminates justified envy but is Pareto inefficient. In particular, it is Pareto dominated by

another matching: (
i1 i2 i3

s2 s1 s3

)
,

which is Pareto efficient. TTC, by letting students i1 and i2 trade their top priorities respectively

at s1 and s2, implements this outcome. The trade leaves i3 justifiably envying students i1 and

i2, as her priorities at s1 and s2 are violated.

12Hakimov and Kesten (2014) use this idea to compare the stability of two versions of TTC in a problem with

two schools.
13Variations on problem-wise comparisons used to compare mechanisms by their vulnerability to manipulation

proposed by Pathak and Sönmez (2013) are examined in Andersson, Ehlers and Svensson (2014), and Arribillaga

and Massó (2016a) and Arribillaga and Massó (2016b). Aside from preference manipulation, Kesten (2006) shows

that given a priority structure, if DA is not consistent for an economy, neither is TTC.
14As we already mentioned in the introduction, this tradeoff is well known. See, for instance, Roth (1982a) and

Abdulkadiroğlu and Sönmez (2003).
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In short, TTC uses priorities but does not protect all students’ priorities. At the same time,

it does protect the priorities of students i1 and i2, as they are no worse off than their respective

top priority schools. Our main question is whether it is possible to further reduce justified envy

without sacrificing efficiency or strategy-proofness? Put simply, the answer is no. Consider any

mechanism ψ 6= TTC, and suppose ψ does not match i1 with s2. (The argument will be the

same if ψ matches i2 differently from TTC.) For student i1 to remain free of justified envy under

ψ, however, he cannot be assigned s3, so she must match with s1. Given this, student i2 must

match with s2, or else i2 will have justified envy. Hence, the only way to reduce the amount

of justified envy produced by TTC is to match students according to the DA matching above,

which is Pareto inefficient.15 Summing up, if one requires Pareto efficiency, strategy-proofness,

and respect for i1 and i2’s priorities, just as in the above assignment, then the matching must

coincide with the TTC matching. This illustrates the “envy-minimizing role” of TTC in its use

of priorities.

Take serial dictatorship, which is another prominent efficient and strategy-proof mechanism.

If we require the priorities of i1 and i2 to be respected, the serial order must be either i1− i2− i3
or i2 − i1 − i3; both cases result in the same matching as the TTC matching. But if preferences

were different, serial dictatorship would typically do worse than TTC under either serial order.

Suppose the students’ preferences are now:

Pi1 Pi2 Pi3

s3 s2 s3

s2 s3 s2

s1 s1 s1

(Their priorities are the same as before.) TTC will now assign(
i1 i2 i3

s1 s2 s3

)
,

which is not only efficient but also free of justified envy; note that all students are assigned to

their top priority schools. Under either of two serial orders, however, the serial dictatorship

mechanism assigns: (
i1 i2 i3

s3 s2 s1

)
,

which violates i3’s priority.

Next, we will formalize the sense in which TTC “economizes” on the incidence of justi-

fied envy and showing that its main contender, serial dictatorship, fails to to economize, both

theoretically and empirically.

15This argument shows that if ψ has less justified envy than TTC, then the two mechanisms must coincide at

the preference profile we are considering. Our proof of Theorem 1 builds on this argument but must also use

strategy-proofness to show that ψ and TTC actually coincide at other preference profiles.
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4 TTC as Justified Envy Minimizer

4.1 Main result

Pareto efficiency and eliminating justified envy are two conflicting concepts since there is no

mechanism that satisfies both properties. Our main result states the following constrained-

optimality property of TTC:

Theorem 1. Suppose each school has one seat. Let ϕ be a Pareto efficient and strategy-proof

mechanism. If ϕ has less justified envy than TTC at �, then ϕ(·,�) = TTC(·,�).

This result implies that TTC is justified envy-minimal in the class of Pareto efficient and

strategy-proof mechanisms. The proof, provided in the Appendix, proceeds by contradiction.

We first posit that there is an efficient mechanism ϕ with less justified envy than TTC. That is,

there is a problem where ϕ produces an efficient allocation that has less justified envy than the

allocation produced by TTC. By comparing the outcome of ϕ to the steps of TTC, the proof

shows that ϕ cannot have less justified envy than the TTC allocation without contradicting

either the Pareto efficiency or strategy-proofness of ϕ.

We do not claim TTC to be the only justified-envy minimal mechanism in the class of Pareto

efficient and strategy-proof mechanisms. However, we can identify a well-known mechanism in

this class that is not justified-envy minimal. For each school s, let fs :�s→�s be an arbi-

trary function that transforms its priority into another (possibly same or distinct) priority. Let

f = (fs)s. Consider a class of mechanisms ϕ(·,�) = TTC(·, f(�)). In other words, the new

mechanism is obtained by running a TTC under priorities that may differ from true priorities.

Observe that ϕ is Pareto efficient and strategy-proof. A well-known mechanism in this class is

serial dictatorship, which is obtained if for some ordering � over students, fs(�s) =� for any

�s and s.

Proposition 1. Suppose fs(�s) 6=�s for some school s. Then, the mechanism ϕ(·,�) =

TTC(·, f(�)) is not justified-envy minimal.

Proof. Assume �′s:= fs(�s) 6=�s. This must mean that there are at least two students i1 and

i2 such that i1 �s i2, but i2 �′s i1. Consider an environment where school s is the only school.

Clearly, in this environment, there is trivially a strategy-proof, Pareto efficient, and justified

envy-free mechanism. For instance, TTC is one such mechanism. Further assume that students

i1 and i2 are the only students ranking school s as acceptable. It is obvious that in such a

case, the “distorted” TTC fails to select an envy-free assignment. Hence, it cannot be justified

envy-minimal.16

16While it may look obvious that running TTC with the “wrong” priorities will fail to be justified envy-minimal,

we provide an example in Appendix C showing that, if we are allowed more fine-tuning (for instance, if the priority

modifications are allowed to depend on the preferences) a modified version of TTC can be justified envy-minimal

in the class of strategy-proof and Pareto-efficient mechanisms.
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This result shows that the envy-minimality of TTC is nontrivial. It also highlights the roles

played by the priorities in economizing on justified envy: the envy-minimality fails even with

minimally modified priorities.

4.2 “Tightness” of Theorem

Our characterization is tight in the sense that relaxing any of the assumptions yields a mechanism

with less justified envy and the remaining properties. Indeed, when we drop the efficiency

requirement, TTC does not minimize envy in the class of strategy-proof mechanisms. In that

class, TTC produces matchings allowing for justified envy, while DA does not. Therefore, DA

minimizes justified envy in that class.

In addition, TTC does not minimize envy in the class of Pareto efficient mechanisms, when

we drop the strategy-proofness requirement. The following example provides a mechanism that

is Pareto efficient and has strictly less justified envy than TTC.

Example 1 (A Pareto efficient but not strategy-proof mechanism with less justified envy than

TTC). Suppose there are three students I = {i1, i2, i3} and three schools S = {s1, s2, s3}. Pref-

erences and priorities are given by

Pi1 Pi2 Pi3 �s1 �s2 �s3
s2 s1 s1 i1 i2 i3

s3 s2 s2 i3 i3 i2

s1 s3 s3 i2 i1 i1

.

TTC yields the matching

µ =

(
i1 i2 i3

s2 s1 s3

)
.

Matching µ is blocked by the pair (i3, s1) and the pair (i3, s2). The following matching is Pareto

efficient and justified envy-free:

ν =

(
i1 i2 i3

s3 s2 s1

)
.

We build the mechanism ϕ as follows: for any problem other than the one considered above,

let ϕ pick the same matching as TTC. For the above problem, ϕ picks ν, the efficient and

justified envy-free matching. Clearly, ϕ is Pareto efficient and ϕ has less justified envy than

TTC. Our main result implies that mechanism ϕ is not strategy-proof. Indeed, if the preferences

are given as in the above instance, student i1 is assigned to school s3. However, if i1 misreports

his preferences by switching school s3 and s1, then we obtain the TTC outcome: i1 is matched

to s2 and is better off.

Another assumption in our characterization result is that each school has a single seat. We

discuss the case with multiple school seats in detail in the next section.

12



5 Extensions

5.1 Multiple school seats

When schools may have more than one seat, there are multiple possible implementations of

TTC. We refer to the version defined in Section 2.2 as TTC-Counters, since each school starts

with a counter.

Morrill (2015b) introduces a TTC variation known as TTC-Clinch and Trade. This

mechanism is motivated by the idea that TTC-Counters allows an applicant i to use her priority

at another school to “trade” into a school even when the applicant is among the highest qs

priority students at school s. These trades may lead to unnecessary situations of justified envy,

which can be avoided by “clinching” or assigning applicants in this highest-priority group before

forming and executing cycles. The mechanism works as follows:

• Step 1 :

1a) For each i ∈ I, if it is one of the qs highest ranked students at i’s most preferred

school s, then assign i to s, remove i, and set qs = qs − 1. Whenever we remove

a student, we adjust the rankings of all schools accordingly. This is called clinching

a school. Iterate the clinching procedure until no student has one of the qs highest

priorities at her most preferred school s.

1b) Have each student that remains point to her most preferred school that has capacity

greater than zero. Have each school with available capacity point to the highest ranked

student. Note that a cycle must exist. For every cycle that exists, assign the student

to the school to which she is pointing, remove the student, and reduce the capacity of

the school by one.

• Step k :

ka) If the school to which i was pointing in Round k − 1 still has available capacity, then

i continues to point to the same school. For the students whose favorite school was

removed in the previous round, iterate the clinching process until no student has one

of the qs highest priority at her most preferred school s unless she was pointing to s

at the end of round k − 1.

kb) Have each remaining student point to her most preferred school that has capacity

greater than zero. Have each school with available capacity point to the highest priority

student. A cycle must exist. For every cycle that exists, assign the student to the

school to which she is pointing, remove the student, and reduce the capacity of the

school by one.
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The algorithm terminates when all students are assigned a seat. Morrill (2015b) shows that

Clinch and Trade is strategy-proof and efficient.

Another TTC variation is motivated by the fact that in TTC-Counters, the highest priority

student has “ownership” over all slots of a school. That is, in TTC-Counters, there are at most

|S| participants in each round, and the market may be made thickened by considering all school

seats. Hakimov and Kesten (2014) define Equitable TTC, which assigns all slots of school s to

all the qs students with the highest priority, giving one seat to each student and endowing them

with equal trading power. The key part of this extension requires specifying who can point to

whom. The mechanism works as follows:

• Step 1: For each school, all available slots are assigned to students one by one, following

their priority order, to form student-school pairs. Each student-school pair (i, s) points to

the student-school pair (i′, s′) such that (i) school s′ is the best choice of student i, and

(ii) student i′ is the student with the highest priority for school s among the students who

are assigned to a slot from school s′. If student i is already assigned to one slot from her

best choice school, then all student-school pairs containing her point to that student-school

pair. There is at least one cycle. In each cycle, corresponding trades are performed, and

all student-school pairs that participate in a cycle are removed. It is possible that student-

school pairs containing the same student, say student i, appear in either the same or in

different cycles. In such a case, student i is placed in her best choice, and the other slots

of that school (to which the student-school pairs containing her are pointing in those other

cycles) remain to be inherited. For each student-school pair (i, s) that participates in a

cycle, the slots assigned to student i in other student-school pairs that do not participate

in a cycle also remain to be inherited.

• Step k :

ka) Inheritance: For each school s, such that (i) there are slots at school s that remain to

be inherited from previous steps, and (ii) there are no existing pairs that were assigned

to a slot at school s in previous steps of the algorithm, the slots that remained to be

inherited from previous steps are assigned to the remaining students one by one,

following the priority order for school s to form new student-school pairs.

kb) Pointing: Each student-school pair (i, s) points to the student-school pair (i′, s′) such

that (i) school s′ is the best choice of student i, and (ii) student i′ is the student with

the highest priority for school s among the students who are assigned to a slot from

school s′. If student i is already assigned to one slot from her best choice school, then

all student-school pairs containing her point to that student-school pair. There is at

least one cycle. In each cycle, corresponding trades are performed, and all student-

school pairs that participate in a cycle are removed. It is possible that student-school

pairs containing the same student, say student i, appear in the same cycle or in
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different cycles. In such a case, student i is placed in her best choice, and the other

slots of that school (to which the student-school pairs containing her are pointing in

those other cycles) remain to be inherited. For each student-school pair (i, s) that

participates in a cycle, the slots assigned to student i in other student-school pairs

that do not participate in a cycle also remain to be inherited.

Hakimov and Kesten (2014) shows Equitable TTC is Pareto efficient and strategy-proof.

They also show that if there are two schools, if Equitable TTC selects an allocation with justified

envy for a problem, then TTC also selects an allocation with justified envy, but the converse is

not necessarily true.

To understand the differences between these variations on TTC, consider the following ex-

ample.

Example 2. [Variations on TTC] Suppose there are three students I = {i1, i2, i3} and two

schools S = {s1, s2}, with qs1 = 2 and qs2 = 1. The preferences and priorities are given by

Pi1 Pi2 Pi3 �s1 �s2
s2 s1 s2 i1 i2

s1 s2 s1 i2 i3

i3 i1

.

TTC produces: (
i1 i2 i3

s2 s1 s1

)
,

where during TTC, i2 forms a cycle with i1 that assigns her to s1, even though she has high

enough priority to be assigned to s1 without being in a cycle with another student. TTC-Clinch

and Trade as well as Equitable TTC avoid this cycle and produce the efficient and justified

envy-free matching: (
i1 i2 i3

s1 s1 s2

)
.

This example might suggest other possible mechanisms that have strictly less justified envy

than TTC. However, TTC-Clinch and Trade and TTC-Counters are not generally comparable in

terms of justified envy in general, since the set of blocking pairs are non-empty and disjoint for

both mechanisms. Roughly speaking, by clinching, an applicant obtains her top choice, resulting

in other applicants improving their priority. These priority improvements, in turn, generate new

trading opportunities that can result in justified envy.

None of TTC-Counters, TTC-Clinch and Trade, or Equitable-TTC is constrained-optimal

with multi-unit capacity, as we next show.

Proposition 2. Suppose there is a school with more than one seat. Then,
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i) TTC-Counters, TTC-Clinch and Trade, and Equitable TTC are not justified-envy minimal

within the set of Pareto efficient and strategy-proof mechanisms.

ii) For each of the three mechanisms, there exists a justified envy minimal, Pareto efficient,

and strategy-proof mechanism that has strictly less justified envy than that mechanism.

The proof of the first part of this result constructs a Pareto efficient and strategy-proof

mechanism ϕ that produces the same outcome as TTC-Counters for nearly all problems. We

define it to produce a different outcome than TTC-Counters in a problem that always has a

Pareto efficient and justified envy-free matching. For instance, coming back to Example 2, one

can check that the priorities satisfy the conditions identified in Ergin (2002); for any set of

preferences, there will be a matching that is Pareto efficient and justified envy-free. Hence,

in this economy, the strategy-proof student-proposing deferred acceptance mechanism selects

a matching satisfying those two properties. Recall, however, that TTC-Counters produces a

matching that is not justified envy-free in this example. Hence, we can build a mechanism that

selects the outcome of the student-proposing deferred acceptance mechanism when priorities

are given as in Example 2 and otherwise coincides with TTC-Counters. This mechanism is

strategy-proof and Pareto efficient and has strictly less justified envy than TTC-Counters. The

full argument for TTC-Counters—as well as TTC-Clinch and Trade and Equitable TTC—is

provided in Appendix.

The second part of this result follows from the finiteness of I and S: for fixed number

of schools, students, and school capacities, the number of Pareto efficient and strategy-proof

mechanisms is finite, since the number of priorities and preferences is also finite. Hence, starting

from any mechanism in this class, one can iteratively find a mechanism improving in the justified

envy (which is a transitive order) until one reaches a justified-envy minimal mechanism in finite

steps. While the existence of justified-envy minimal mechanisms can be shown, no simple

constructive algorithm has been found so far. Whether such an algorithm exists remains an

open question.

These observations motivate the empirical analysis in Section 6, which evaluates the perfor-

mance of three variations of TTC compared to serial dictatorship and deferred acceptance.

5.2 Weak Priorities

The school choice problem was defined with strict priorities. In practice, priorities are often

defined via coarse categories in practice, such as having a sibling enrolled at the school or

residing in the school’s geographic catchment area. In this section, we relax the assumption that

priorities are strict. Let % be a profile of weak priority relations, where each element is complete

and transitive but need not be irreflexive or anti-symmetric.

An assignment mechanism ϕ selects a matching for each problem (P,%). For example, one

possible mechanism is to convert the weak priorities into strict priorities using a tie-breaker and
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then apply one of the mechanisms described in Section 2.2. Formally, a tie-breaker rs at school

s is a function rs : I → N that assigns each student a number. Under %s, when two students

have equal priority the tie-breaker constructs �s by giving higher priority to the student with

the lower value of the tie-breaker. Let τ be a collection of tie-breakers for each school; that is,

τ = (rs)s∈S . TTCτ is a mechanism that applies the tie-breaker τ to construct the strict priority

order, and then applies TTC to the resulting problem. That is, given (P,%), TTCτ first applies

tie-breaker τ to % to construct �τ and then computes TTC(P,�τ ).

For any given τ , TTCτ is Pareto efficient and strategy-proof. However, even when each

school has one seat, it is possible to show that TTCτ does not minimize justified envy among

Pareto efficient and strategy-proof mechanisms.

Example 3 (TTCτ does not minimize justified envy for problem (P,%)). There are three

students I = {i1, i2, i3} and two schools S = {s1, s2}, where qs1 = qs2 = 1. School s1 has

strict priorities given by i1 �s1 i2 �s1 i3, while s2 ranks i2 last and is indifferent between i1 and

i3. Consider the tie-breaker τ , where r(·) is the same for each school and is defined by r(i1) = 2,

r(i2) = 3, and r(i3) = 1. With this tie-breaker, �τ is given by:

�s1 �s2
i1 i3

i2 i1

i3 i2

.

Suppose that preferences are as follows:

P1 P2 P3

s2 s1 s1

s1 s2 s2

.

TTC yields the following matching (
i1 i2 i3

s2 i2 s1

)
,

where i2 is unassigned. In problem (P,%), the pair (i2, s1) blocks this matching.

Consider student-proposing DA with some other tie-breaking rule τ̂ , where each school’s tie-

breaker is given by r̂(·) with r̂(1) = 1, r̂(2) = 2, and r̂(3) = 3. The corresponding priorities �τ̂

are given by:

�s1 �s2
i1 i1

i2 i3

i3 i2

.

It is easy to check that this satisfies the acyclicity condition in Ergin (2002). Therefore, DA

applied to (P,�τ̂ ) is Pareto efficient.
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To show that TTCτ does not minimize envy in the class of Pareto efficient and strategy-proof

mechanisms for problems (P,%), we build ϕ which applies student-proposing DA with tie-breakers

τ̂ applied to % whenever the priorities are given as above and applies TTC with tie-breaker τ

applied to % for any other priority relation. The resulting mechanism ϕ is Pareto efficient and

strategy-proof and has less justified envy than TTCτ .

A potentially unusual aspect of this example is that the tie-breaking rule depends on which

mechanism we use. It may be more natural to compare mechanisms holding fixed the way

tie-breakers are selected by the mechanism. For a mechanism ϕ for problem (P,�), we can

define ϕτ for problem (P,%) as the mechanism that applies tie-breaking τ to % to construct �τ

and then computes the outcome of ϕ for (P,�τ ). With this definition in hand, the following

proposition is an immediate consequence of our main theorem:

Proposition 3. Suppose that each school has one seat. Let τ be a tie-breaking rule and ϕτ be

a Pareto efficient and strategy-proof mechanism. If ϕτ has less justified envy than TTCτ , then

ϕτ = TTCτ

Proof. Suppose that ϕτ has less justified envy than TTCτ . Then there exists (P,%) such that

ϕτ (P,%) has less justified envy than TTCτ (P,%). Consider (P,�τ ), and observe

ϕ(P,�τ ) = ϕτ (P,%) and TTC(P,�τ ) = TTCτ (P,%).

Therefore, ϕ(P,�τ ) has less justified envy than TTC(P,�τ ), which contradicts Theorem 1 which

states that if ϕ has less justified envy than TTC, ϕ must equal TTC.

5.3 The Shapley-Scarf Housing Market Model

As noted above, Gale initially proposed the TTC algorithm for the housing market model of

Shapley and Scarf (1974). In the housing market model, the number of individuals is equal to

the number of objects or “houses.” Each individual has a complete strict ranking over houses

and is endowed with a house. Roth and Postlewaite (1977) showed that the market’s unique

core is found via Gale’s TTC algorithm, since in each cycle an individual points to the owner of

his most preferred house among the remaining houses. (Recall that for priority-based resource

allocation, a cycle consists of individuals pointing to objects and objects pointing to individuals.)

For this model, an allocation is individually rational if every individual is assigned a house that

she weakly prefers to her initial endowment. Roth (1982b) shows that TTC is strategy-proof in

this model, and Ma (1994) shows that Gale’s TTC is the only Pareto efficient, strategy-proof,

and individually rational mechanism for this problem.

If we re-interpret the Shapley-Scarf economy such that the agent endowed with a house is first

in that house’s priority relation, while all other agents have the equivalent priority just below

the owner, then we can consider this setting as equivalent to our model with weak priorities.

Let % be as described above. A pair (i, s) blocks a matching µ in economy (P,%) if and only if
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sPiµ(i), where s is the unique school at which i has top priority, which means that individual

rationality is violated. Thus, if a Pareto efficient and strategy-proof mechanism is individually

rational in a Shapley-Scarf economy, it must be that this mechanism has less justified envy than

TTC at %. Theorem 1 therefore implies the following17

Corollary 1 (Ma (1994)). In a Shapley-Scarf economy, a mechanism is Pareto efficient, strategy-

proof, and individually rational if and only if it is TTC.

6 Comparing Mechanisms in New Orleans and Boston

In this section, we use data from New Orleans and Boston to compare Pareto efficient and

justified envy-free allocations in practice.

6.1 New Orleans

The New Orleans Recovery School District was formed in 2003 to facilitate state control of

schools in New Orleans. The RSD’s role expanded considerably following Hurricane Katrina in

2005, and by 2011-12, the district came to oversee the majority of schools in New Orleans. In

2011-12, the RSD included a total of 73 schools: 13 district-run and 60 charter schools. In 2011-

12, the district launched a pioneering unified enrollment process known as OneApp, in an effort

to make the process easier to navigate and improve the efficiency of the previous decentralized

application process.18

Early on, officials identified three major priority groups: students with siblings currently

enrolled in a school, students currently enrolled in schools that are closing, and students who

live in the school’s geographic area. More background on OneApp is presented in Vanacore

(2011), Vanacore (2012), and Harris, Valant and Gross (2015). There was little concern that

RSD schools would form blocking pairs and try to enroll pupils from other RSD schools, as might

motivate a strategic rationale for eliminating blocking pairs. When deciding on the assignment

mechanism, the RSD relied on the Boston experience, whose school priority structure was most

similar to New Orleans. At the time, Boston had a sibling and walk zone priority (see, e.g.,

Abdulkadiroğlu et al. (2005a) and Pathak and Sönmez (2008)).19 New York City’s experience

with a new centralized assignment system was also relevant because the superintendent and

17Theorem 1 is proved for strict priorities. However, it is easily checked that it extends to the weak priorities

considered in this section. Indeed, the proof of the theorem goes through as long as, when a school s points to a

student i at some step of TTC, i �s j for any individual j who remains at this step. Under the priority relations

considered in this section, this property is satisfied.
1816 schools managed by the Orleans Parish Board, a second school district in New Orleans were not part of

the OneApp process in its first year, nor were five charter schools authorized by the state’s Board of Elementary

and Secondary Education (BESE).
19In 2013, Boston Public Schools eliminated walk zones, and the current system only has a sibling priority. See

Dur, Kominers, Pathak and Sönmez (2016) for more details.
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many other RSD staffers had worked in New York City’s Department of Education when it

adopted a new mechanism.

The discussion centered on the trade-off between efficiency and eliminating justified envy,

and there were concerns about how to explain TTC to the public. Officials eventually sided with

efficiency and selected TTC-Counters based on the desire for “as many students as possible get

into their top choice school” (RSD 2012). Other versions of TTC had not yet been systematically

investigated at the time of the decision and so were not considered. To address the concerns

about explaining the algorithm, staff were trained in the basics of how the algorithm worked,

and promotional materials were released to the public to provide an overview of the algorithm

before it was used (see, e.g., the newspaper descriptions in the New Orleans Times-Picayune

referenced in Vanacore (2011) and Vanacore (2012)).20

We use data from elementary and high school applicants in grade PK and 9 in the 2011-12

school year, and report on the performance of five mechanisms: TTC-Counters, TTC-Clinch and

Trade, Equitable TTC, Serial Dictatorship, and DA. Applicants are asked to rank up to eight

choices; in practice, less than 5% of applicants rank all eight choices, so it seems reasonable to

run the alternative algorithms without taking any behavioral response into account since truth-

telling is a weakly dominant strategy in each mechanism without a constraint.21 We draw 100

sets of lottery numbers, one for each child, and ran the assignment algorithms for each lottery

draw. For the serial dictatorship, we order students according to the realized lottery order.

Table 1 reports the average across lottery draws and two grades.

Our analysis shows that all three versions of TTC produce nearly identical aggregate rank

distributions and similar amounts of justified envy. Roughly 65% of applicants are assigned to

their top choice, and 19% are unassigned. Of those who obtain their first choice across lottery

draws, the standard deviation is 5.2, so there is virtually no difference once we account for

simulation uncertainty. Across the three versions of TTC, about 13% of students and 10% of

schools are involved in a blocking pair. Here again, the differences between columns are much

smaller than the standard deviation across lottery draws. Likewise, the differences in the count

of blocking pairs and instances of justified envy are similar for each version of TTC.22

20School choice design comprises not only algorithms but also communication packages.
21Strictly speaking, when there is a constraint on the number of choices an applicant can rank, none of the

mechanisms is strategy-proof. But for the 95% of applicants who ranked fewer than eight choices, they could have

ranked an additional choice, and so there is little reason to strategize among the choices they submitted. Haeringer

and Klijn (2009), Calsamiglia, Haeringer and Kljin (2010), and Pathak (2016) provide additional analysis and

discussion of constrained rank order lists.
22Note that this conclusion differs from some of the simulations performed by Hakimov and Kesten (2014) and

Morrill (2015b), which show substantial differences across TTC variants. One way to interpret the difference is

that the simulation environments (e.g., the distribution of preferences and priorities) considered by these authors

do not approximate real-world markets such as New Orleans and Boston. Another possibility is that the difference

across different TTC variants may diminish in large markets; for instance, Leshno and Lo (2017) reach a conclusion

consistent with our empirical findings, showing that in a large market the TTC-Clinch and Trade may not perform

better (and sometimes considerably worse) than the TTC-Counters in terms of justified envy.

20



Further, each of the three TTC mechanisms has less justified envy than Serial Dictator-

ship.23 About 18% of students have justified envy, and five more schools trigger justified envy

under Serial Dictatorship compared to TTC. These differences are larger than the correspond-

ing standard deviation due to lottery draws. Moreover, the number of blocking pairs is roughly

40% greater under Serial Dictatorship than under TTC. This evidence suggests that the forces

identified in Theorem 1 and Proposition 1 carry through (even) when schools can have more

than one seat; namely, TTCs (of different variants) perform well in terms of “economizing” on

justified envy when schools have more than one seat. It is worth noting that the aggregate rank

distribution under the Serial Dictatorship is similar to that under TTC, indicating that, based

on this metric, there may be little cost to minimizing blocking pairs.

In 2012-13, the RSD switched to DA, citing three main reasons. First, there were on-going ef-

forts to encourage participation from a broader set of schools in New Orleans, including screened

schools in the Orleans Parish School Board (OPSB). OPSB schools include those that audition

applicants for specialized music, arts, and specialized athletic programs, in which eliminating

blocking may be valuable for strategic reasons.24 Second, TTC was perceived as difficult for

participants to understand and for staff to explain why a child was assigned a seat over a child

who was not. Under DA, officials could explain that an applicant did not obtain an assignment

at a higher ranked seat because another applicant with higher priority was assigned to that

seat. Such an explanation was not available for TTC. Finally, eligible families were allowed to

apply for non-public schools participating in Louisiana’s Scholarship Program (LSP), a voucher

program that allows low-income students in low-performing schools to apply for private schools

(for more details on this program, see Abdulkadiroglu, Pathak and Walters (2016)). The LSP

expanded statewide during Year 2 of OneApp due to a state law, Act 2. The Louisiana Depart-

ment of Education interpreted blocking pairs created by TTC as being potentially subject to

legal challenge under Act 2.

The last column of Table 1 suggests that the switch to DA may have had little impact on

the overall aggregate rank distribution of choices received by applicants. Slightly fewer students

are assigned to their top choice under DA. The difference between DA and TTC-Counters is

10 students, which is greater than the standard deviation of first choice under TTC-Counters,

which was 5.2. Slightly more students are assigned their second choice, and DA has somewhat

fewer students unassigned. The benefit of this small reduction in top choice assignment is that

no student is involved in a blocking pair.

23Note also that Serial Dictatorship entails similar aggregate rank distribution as each TTC mechanism. The

finding that all four Pareto efficient mechanisms perform similarly in aggregate rank distribution is consistent

with Che and Tercieux (2017), who establish approximate payoff equivalence of Pareto efficient mechanisms in

large allocation problems.
24Direct-run OPSB schools participated in OneApp in 2012-13, but OPSB charter schools and charter schools

run directly by the state under the purview of OPSB did not. In December 2012, the OPSB passed an amendment

requiring charter schools to participants in OneApp when their contracts are reauthorized. The RSD encouraged

all OPSB charters to participate.
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6.2 Boston

Boston Public Schools operates a school choice process wherein applicants can apply to any

school in their zone for elementary and middle school and city-wide for high school. Like in New

Orleans, students are prioritized based on sibling and walk zone status, so that students with

siblings at a school who reside in the walk zone have highest priority, students with siblings at

a school have the next highest priority, and students in the walk zone have the next highest

priority. Within each priority, students are ordered using their random number.25 We work

with data from four years, from 2009-2010 through 2012-2013, when the district employed the

student-proposing deferred acceptance algorithm.26 We focus on main round applicants for the

elementary (grade K1 and K2), middle (Grade 6), and high school (Grade 9) transition points.

For each applicant, we observe the priority of the choices they ranked.27 Since the mechanism is

based on DA, applicants can rank as many schools as they wish, and BPS advises families to list

schools in order of true preference (BPS 2012), we simulate the outcome of other mechanisms

holding the submitted preferences fixed.

Table 2 shows that the patterns in Boston parallel those in New Orleans. Namely, there is

little difference across the three versions of TTC in terms of the aggregate rank of choices assigned

and amount of justified envy. Furthermore, TTC has significantly less justified envy than the

Serial Dictatorship and a similar aggregate rank distribution. Finally, DA assigns slightly fewer

students to their first choice and has a small number who are unassigned. This difference is

far smaller than the difference in the number of students with justified envy under TTC. These

facts suggest our results may be relevant for other cities with similar priority structures as New

Orleans and Boston.

7 Conclusion

This paper provided a formal basis for recommending TTC over other Pareto efficient and

strategy-proof mechanisms for priority-based resource allocation. Our main result is a counter-

part to the constrained-optimality result for DA and shows that there is a formal justification for

resolving the trade-off between Pareto efficiency and the elimination of justified envy as initially

envisioned by Abdulkadiroğlu and Sönmez (2003).

Using data from New Orleans and Boston, we investigated three TTC variations for settings

where schools may have more than one seat. The aggregate rank distribution and set of blocking

25Appendix E of Dur et al. (2016) provides additional details on the priority structure, and describes how the

mechanism applies walk zone priority for only one-half of school seats.
26Boston continues to employ DA, but changed the configuration of its schools zones after our time-period (see,

e.g., Dur et al. (2016) for more details).
27To implement TTC, it is necessary to compute the priority of choices that are not ranked. We impute sibling

priority at unranked schools using a list of schools that siblings attend and walk zone priority using information

linking residential locations to the set of walk zone schools.
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pairs are similar across these versions of TTC. Further, all TTC variations have significantly less

justified envy than a serial dictatorship, thereby providing an empirical analogue to our main

result.

In the field, there is growing momentum in favor of DA over TTC (see, e.g., Pathak and

Sönmez (2013) and Pathak (2016)). This trend may be driven by a first-mover advantage of

DA, since New York City and Boston adopted DA in 2003 and 2005, and its familiarity as the

core of the National Residency Matching Program for U.S. doctors (Roth and Peranson 1999).

Our paper shows that the aggregate rank distribution of choices assigned under DA and TTC

are similar in Boston and New Orleans, which may further shift the balance in favor of DA for

markets similar to these two areas.28

Moreover, officials in New Orleans echoed a theme in Boston: TTC seems harder to explain

and participate in compared to DA. It remains to be seen whether there will be another setting

where TTC is used for school assignment in the field. Part of the challenge in advocating for

TTC is explaining how it reflects priorities, a difficulty that may be easier to surmount with our

formal result. It’s possible that TTC would have been selected in other settings with knowledge

of this result, and at the very least, advocates now have a new argument in favor of TTC.

28New York City high school assignment exhibits a more discernible difference between TTC and DA in aggre-

gate rank distribution of assigned choices (see Abdulkadiroğlu et al. (2009) and Che and Tercieux (2016b)), and

the pattern of difference is consistent with a theoretical result of Che and Tercieux (2016b) for a large-market

model. New York City school assignment is unique in size (it involves more than 80,000 applicants annually)

and variety of programs (it includes more than 750 programs of differing in types, including screened, limited

unscreened, and Ed-opt, etc.). The extent to which differences in market characteristics affect the performance

of alternative matching mechanisms is worth further investigation.

23



TTC-Counters
TTC-Clinch	and	

Trade Equitable	TTC Serial	Dictatorship

Student-
Proposing	
Deferred	

Acceptance
(1) (2) (3) (4) (5)

1 772 770 771 777 762
2 126 129 127 121 137
3 46 47 47 44 51
4 18 18 18 17 19
5+ 11 11 11 8 10
Unassigned 222 221 222 228 217
Total 1196 1196 1196 1196 1196

Students	with	justified	envy 158 157 159 213 0
Schools	involved	in	blocking	pairs 7 7 7 12 0
Blocking	pairs	(i,s) 228 224 215 308 0
Instances	of	justified	envy	(i,	(j,s)) 1111 1086 1100 6546 0

Table	1.	Comparison	of	Mechanisms	in	New	Orleans	for	Main	Transition	Grades	(PK	and	Grade	9)

Notes:		The	main	transition	grades	are	PK	and	Grade	9	for	2012.		TTC-counters	defined	in	Abdulkadiroglu	and	Sonmez	(2003).		TTC-
Clinch	and	Trade	defined	in	Morrill	(2015).		Equitable-TTC	defined	in	Hakimov	and	Kesten	(2014).		Students	with	justified	envy	
means	there	exists	a	school	s	where	(i,s)	is	a	blocking	pair.		School	involved	in	blocking	pairs	means	there	is	a	school	s	such	that	
there	exists	student	i	such	that	(i,s)	is	a	blocking	pair.		Blocking	pairs	(i,s)	means	there	exists	at	least	one	applicant	j	such	that	(i,(j,s))	
is	a	blocking	instance.				Instance	of	justified	envy	(i,(j,s))	means	student	i	complains	about	student	j's	assignment	at	s.			The	
numbers	represent	averages	of	100	different	lottery	draws	for	each	grade,	which	are	then	averaged	over	grades	PK	and	9.		The	
standard	deviation	across	lottery	draws	in	column	1	for	first	choice	assigned	is	5.2,	for	unassigned	is	5.2,	for	students	with	justified	
envy	is	8.5,	for	schools	involved	in	blocking	pairs	is	0.4,	for	blocking	pairs	is	20.2,	and	for	instances	of	justified	envy	is	110.7.		
Standard	deviations	are	similar	for	the	other	columns.			

A.	Choice	Assigned

B.	Statistics	on	Blocking	Pairs



TTC-Counters
TTC-Clinch	and	

Trade Equitable	TTC Serial	Dictatorship

Student-
Proposing	
Deferred	

Acceptance
(1) (2) (3) (4) (5)

1 1240 1240 1240 1236 1227
2 322 323 323 315 336
3 134 134 134 132 138
4 56 55 55 51 57
5+ 39 39 53 34 40
Unassigned 102 101 101 124 96
Total 1893 1893 1893 1893 1893

Students	with	justified	envy 129 126 125 280 0
Schools	involved	in	blocking	pairs 18 18 18 44 0
Blocking	pairs	(i,s) 160 156 157 369 0
Instances	of	justified	envy	(i,	(j,s)) 768 711 696 3650 0

Table	2.	Comparison	of	Mechanisms	in	Boston	for	Main	Transition	Grades	(K1,	K2,	6,	and	9)

Notes:		Data	cover	four	school	years	from	2009-2010	through	2012-13.	TTC-counters	defined	in	Abdulkadiroglu	and	Sonmez	
(2003).		TTC-Clinch	and	Trade	defined	in	Morrill	(2015).		Equitable	TTC	defined	in	Hakimov	and	Kesten	(2014).	Instance	of	justified	
envy	(i,(j,s))	means	student	i	complains	about	student	j's	assignment	at	s.		Blocking	pair	(i,s)	means	there	exists	at	least	one	
applicant	j	such	that	(i,(j,s))	is	a	blocking	instance.		Students	with	justified	envy	means	there	exists	a	school	s	where	(i,s)	is	a	
blocking	pair.		Schools	involved	in	blocking	pairs	means	there	is	a	school	s	such	that	there	exists	student	i	such	that	(i,s)	is	a	
blocking	pair.		BPS	precedence	implemented	as	Walk-Open.		The	numbers	represent	averages	of	100	different	lottery	draws	for	
each	grade,	which	are	then	averaged	over	grades	K1,	K2,	6,	and	9.		The	standard	deviation	across	lottery	draws	in	column	1	for	first	
choice	assigned	is	6.8,	for	unassigned	is	5.2,	for	students	with	justified	envy	is	16.9,	for	schools	involved	in	blocking	pairs	is	2.4,	for	
blocking	pairs	is	21.6,	and	for	instances	of	justified	envy	is	98.6.		Standard	deviations	are	similar	for	the	other	columns.			

A.	Choice	Assigned

B.	Statistics	on	Blocking	Pairs



A Proof of Theorem 1

Proof. Let ϕ be a Pareto efficient and strategy-proof mechanism that has less justified envy than

TTC at the profile of priority relations �. To the contrary, suppose that there exists P such

that

ϕ(P,�) 6= TTC(P,�).

The proof will proceed by induction on the steps of TTC. Let Ik(P,�) be the set of individuals

who are matched in step k of TTC(P,�).

Claim 1: For all i ∈ I1(P,�),

ϕ(P,�)(i) = TTC(P,�)(i).

Proof. Suppose that for some i ∈ I1(P,�),

ϕ(P,�)(i) 6= TTC(P,�)(i).

Let c = {sk, ik}k=1,...K be the cycle in which i is matched with TTC(P,�)(i) and i = iK . We

will abuse notation and say that i ∈ c for some i if i = i1, ..., iK . Note that every ik trades sk

for sk+1, which is ik’s first choice.

Consider the alternative preference relation:

P ′iK : s1, sK , ...

Since we’ve only altered the preferences of individuals in c and each obtains her first choice, the

TTC matching remains the same:

TTC(P ′iK , P−{iK},�) = TTC(P,�).

Since s1 is iK ’s first choice and

ϕ(P,�)(iK) 6= TTC(P,�)(iK)︸ ︷︷ ︸
=s1

,

we obtain

s1PiKϕ(P,�)(iK). (1)

Also, since sK points to iK , by construction of TTC, we know that

TTC(P ′iK , P−{iK},�)(iK)R′iKsK .

Therefore, (iK , sK) does not block TTC(P ′iK , P−{iK},�).

Since ϕ has less justified envy than TTC at �, (iK , sK) also does not block ϕ(P ′iK , P−{iK},�).

In addition, since sK points to iK in cycle c, for all j 6= iK , we have

iK �sK j

26



so that

ϕ(P ′iK , P−{iK},�)(iK) ∈ {s1, sK}

must hold. Then equation (1) and strategy-proofness of ϕ imply

ϕ(P ′iK , P−{iK},�)(iK) = sK ,

for otherwise iK would be able to manipulate ϕ in economy (P,�) by submitting P ′iK to obtain

s1. As a result, iK obtains her second choice under P ′iK .

Next, consider iK−1 and the alternative preference

P ′iK−1
: sKsK−1...

As before, the TTC matching remains the same:

TTC(P ′iK−1
, P ′iK , P−{iK−1,iK},�) = TTC(P ′iK , P−{iK},�) = TTC(P,�).

Since sK is iK−1’s first choice and

ϕ(P ′iK , P−{iK},�)(iK−1) 6= TTC(P ′iK , P−{iK},�)(iK−1)︸ ︷︷ ︸
=sK

,

we obtain

sKPiK−1ϕ(P ′iK , P−{iK},�)(iK−1). (2)

Also, since sK−1 points to iK−1, by construction of TTC, we know that

TTC(P ′iK−1
, P ′iK , P−{iK−1,iK},�)(iK−1)R

′
iK−1

sK−1,

it must be the case that (iK−1, sK−1) does not block TTC(P ′iK−1
, P ′iK , P−{iK−1,iK},�). Since ϕ

has less justified envy than TTC at �, (iK−1, sK−1) does not block ϕ(P ′iK−1
, P ′iK , P−{iK−1,iK},�).

In addition, since sK−1 points to iK−1 in cycle c, for all j 6= iK−1, we have

iK−1 �sK−1 j.

Thus, using the fact that (iK−1, sK−1) does not block ϕ(P ′iK−1
, P ′iK , P−{iK−1,iK},�), as before,

we obtain

ϕ(P ′iK−1
, P ′iK , P−{iK−1,iK},�)(iK−1)R

′
iK−1

sK−1,

so that

ϕ(P ′iK−1
, P ′iK , P−{iK−1,iK},�)(iK−1) ∈ {sK , sK−1}.

By strategy-proofness of ϕ and by (2), it must be that

ϕ(P ′iK−1
, P ′iK , P−{iK−1,iK},�)(iK−1) = sK−1.
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Then

ϕ(P ′iK−1
, P ′iK , P−{iK−1,iK},�)(iK−2) 6= TTC(P ′iK−1

, P ′iK , P−{iK−1,iK},�)(iK−2)︸ ︷︷ ︸
=sK−1

.

Repeating the argument recursively for iK−2, and for every individual in the cycle c, we

obtain that

ϕ(P ′c, P−c,�)(ik) = sk,

where P ′c = {P ′ik}ik∈c and P ′ik : sk+1, sk, ....

To see this, note that at the last step of the recursive argument, we know that

ϕ(P ′c, P−c,�)(i1) = s1.

This implies that

ϕ(P ′c, P−c,�)(iK) ∈ {sK , ∅}.

Now since

TTC(P ′c, P−c,�)(iK)R′iKsK ,

we know that (iK , sK) does not block TTC(P ′c, P−c,�) and because ϕ has less justified envy

than TTC, it does not block ϕ(P ′c, P−c,�). Since, by definition of TTC, for all j 6= i,

iK �sK j,

we must have

ϕ(P ′c, P−c,�)(iK)R′iKsK .

Therefore,

ϕ(P ′c, P−c,�)(iK) = sK .

Applying the argument recursively, we get that ϕ(P ′c, P−c,�)(ik) = sk for all k. But this

contradicts Pareto-efficiency of ϕ because every individual in the cycle will be better off if every

ik is matched with sk+1 without changing the matching of individuals in I − c.
Therefore, we have established Claim 1: for all i ∈ I1(P,�),

ϕ(P,�)(i) = TTC(P,�)(i).

�

Now, assume that

ϕ(P,�)(i) = TTC(P,�)(i)

for all i that is matched in the first m− 1 steps of TTC, i.e. i ∈
⋃

l=1,...,m−1
Il(P,�).

Claim 2. For all i ∈ Im(P,�),

ϕ(P,�)(i) = TTC(P,�)(i).
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Proof. Suppose to the contrary that for some i ∈ Im(P,�),

ϕ(P,�)(i) 6= TTC(P,�)(i).

Let c = {sk, ik}k=1,...,K be the cycle in which i is matched with TTC(P,�)(i) in step m of

TTC(P,�) and i = iK .

Note that every ik trades sk for sk+1 which is her first choice among remaining objects at

step m of TTC(P,�). Consider the alternative preference relation:

P ′iK : s1, sK , ...

By construction, the TTC matching remains the same, i.e.

TTC(P ′iK , P−{iK},�) = TTC(P,�).

Since s1 is iK ’s first choice among remaining objects at step m of TTC(P,�); that is,

ϕ(P,�)(iK) 6= TTC(P,�)(iK) = s1.

By our inductive hypothesis, under ϕ(P,�), all schools s assigned before step m of TTC(P,�)

have been assigned to

ϕ(P,�)(s) = TTC(P,�)(s).

That is, all schools assigned before step m are assigned to a student not in Im(P,�). Therefore,

iK does not receive any such schools s under ϕ(P,�), i.e.

ϕ(P,�)(iK) 6= s

for all schools s assigned before step m of TTC(P,�). This yields

s1PiKϕ(P,�)(iK). (3)

Also, by construction of TTC, we know that

TTC(P ′iK , P−{iK},�)(iK)R′iKsK ,

so it must be the case that (iK , sK) does not block TTC(P ′iK , P−{iK},�). Since ϕ has less

justified envy than TTC at �, (iK , sK) does not block ϕ(P ′iK , P−{iK},�).

In addition, by construction of TTC, we know that for all j that are not yet eliminated at

step m of TTC,

iK �sK j.

Note that

ϕ(P ′iK , P−{iK},�)(sK)
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is not eliminated at step m of TTC. To see this, note that if ϕ(P ′iK , P−{iK},�)(sK) had been

eliminated in TTC before step m, we would have by the inductive hypothesis

ϕ(P ′iK , P−{iK},�)(sK) = TTC(P ′iK , P−{iK},�)(sK) = iK−1,

meaning that iK−1 would have been eliminated before step m in TTC(P ′iK , P−{iK},�), a con-

tradiction.

Thus, since ϕ(P ′iK , P−{iK},�)(sK) is not eliminated at step m of TTC and iK �sK j for all

j that are not eliminated yet at step m of TTC, we obtain that either

ϕ(P ′iK , P−{iK},�)(sK) = iK

or

iK �sK ϕ(P ′iK , P−{iK},�)(sK).

Thus, because (iK , sK) does not block ϕ(P ′iK , P−{iK},�), in each of these cases, we must have

that

ϕ(P ′iK , P−{iK},�)(iK)R′iKsK ,

so that

ϕ(P ′iK , P−{iK},�)(iK) ∈ {s1, sK}.

By strategy-proofness of ϕ and (3), it must be that

ϕ(P ′iK , P−{iK},�)(iK) = sK .

Then,

ϕ(P ′iK , P−{iK},�)(iK−1) 6= TTC(P ′iK , P−{iK},�)(iK−1)︸ ︷︷ ︸
=sK

.

As above, we repeat these arguments to arrive a contradiction with Pareto-efficiency of ϕ, which

completes the proof of the claim. �

Claim 2 shows the inductive step. As a result, if ϕ has less justified envy than TTC at �,

then ϕ = TTC, completing the proof.

B Proof of Proposition 2

The example below shows that TTC-Counters, TTC-Clinch and Trade, and Equitable-TTC do

not minimize justified envy in the class of Pareto efficient and strategy-proof mechanisms, when

schools have multiple seats.

Consider TTC-Counters (as will become clear, the argument is similar for TTC-Clinch and

Trade or Equitable-TTC). We build a Pareto efficient and strategy-proof mechanism ϕ that

allows for strictly less justified envy than TTC-Counters. Suppose ϕ selects the same matching
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as TTC-Counters except for the following instance: there are four individuals i1, i2, i3, and i4 and

three schools s1, s2, s3, where qs1 = 1 and qs2 = qs3 = 3. In this instance, ϕ selects a matching

that is free of justified envy and Pareto efficient, which can be computed by student-proposing

DA.

Ergin (2002) characterizes priorities under which, for any individual preference, there exists

a matching that is Pareto efficient and justified envy-free. Priorities must be such that there is

no Ergin-cycle. A profile � has an Ergin-cycle if there are three individuals i1, i2, and i3 and

two schools s1 and s2 such that the two conditions are satisfied:

1. Loop condition. i1 �s1 i2 �s1 i3 and i3 �s2 i1,
2. Scarcity condition. There are (possibly empty) disjoint sets Ns1 and Ns2 ⊆ I\{i1, i2, i3}

s.t. Ns1 ⊆ Us1(i2) and Ns2 ⊆ Us2(i1) and |Ns1 | = qs1 − 1 and |Ns2 | = qs2 − 1 where Us1(i2) and

Us2(i1) are the strict upper contour set of i2 and i1, respectively (i.e., Us1(i2) := {` : ` �s1 i2}
and Us2(i1) := {` : ` �s2 i1}).

In the instance described above, the scarcity condition in the definition of an Ergin-cycle can

never be satisfied. To see this, observe that for a school s ∈ {s2, s3},

|Ns| = 3− 1 = 2,

while Ns ⊆ I\{i1, i2, i3} implies that

|Ns| ≤ 1,

since |I| = 4. Therefore, sets satisfying the scarcity condition do not exist. Hence, any profile

of priority relations is Ergin-acyclic.

Finally, it is enough for our purpose to build some (P,�) where the set of blocking pairs of

ϕ is a proper subset of the set of blocking pairs of TTC-Counters. Since ϕ eliminates justified

envy, we only need to show that there is (P,�) under which TTC-Counters does not eliminate

justified envy.

Consider the following profile of preferences and priority relations:

Pi1 Pi2 Pi3 Pi4 �s1 �s2 �s3
s3 s1 s1 s2 i1 i1 i3

s3 i4 i3 i4

i2 i2 i2

i3 i4 i1

TTC-Counters produces: (
i1 i2 i3 i4

s3 s3 s1 s2

)
,

where (i2, s1) is a blocking pair.

This completes the argument for TTC-Counters. It is easy to check that TTC-Counters,

TTC-Clinch and Trade, and Equitable TTC coincide to produce the same assignment for the
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above profile of preferences and priority relations. Hence, the same argument can be used for

TTC-Clinch and Trade and Equitable TTC.

C Another justified envy-minimal mechanism

When each school has a single seat, we build a mechanism different from TTC that is strategy-

proof, Pareto-efficient, and justified envy-minimal. The mechanism is identical to TTC except

at the following instance of priorities: we have three students i1, i2 and i3 and two schools s1

and s2 each with a single seat. Priorities are given by

�s1 �s2
i2 i1

i3 i3

i1 i2

.

In essence, the mechanism will rank i3 on top of each school’s ranking and run standard

TTC on these modified priorities (except for some preference profiles where there is a unique

efficient and stable allocation where the original priorities will still be used to run TTC). This

mechanism will be denoted TTC∗. Let us describe it precisely. For the instance of priorities

described above and for each profile of preferences P , TTC∗ selects a matching as follows.

Case A.

If under P there is an individual who ranks all schools as unacceptable then run TTC.

Case B.1.

If under P both i1 and i2 rank s1 first and i1 finds s2 unacceptable then run TTC

Case B.2.

If under P both i1 and i2 rank s2 first and i2 finds s1 unacceptable then run TTC

Case C.

If none of the above cases apply, move i3 to the top of each school’s ranking. Run TTC on the

modified priorities.

Clearly, TTC∗ is Pareto efficient. We prove below that it is strategy-proof.

Proposition 4. TTC∗ is strategy-proof.

Proof. Fix P falling into case A. If some student i deviates to P ′i , this cannot be profitable if

we remain into case A or fall into Case B.1 or B.2 (since TTC is strategy-proof). Therefore,

consider the case where we fall into Case C after i’s deviation. After the deviation, all individuals

rank at least one school acceptable (since we are not in Case A anymore). Since at least one

individual must rank all schools unacceptable before the deviation and since we are looking at
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a single deviation by individual i, we conclude that Pi ranks all schools unacceptable. Hence,

under TTC∗, i is unmatched under P and since Pi ranks all schools unacceptable, there cannot

be any profitable deviation.

Fix P falling into case B.1 (and not in case A). If some student i deviates to P ′i , this cannot

be profitable if we remain into case B.1 or fall into Case A or B.2 (since TTC is strategy-proof).

Therefore, consider the case where we fall into Case C after i’s deviation. This must mean that

before deviation both i1 and i2 rank s1 first and i1 finds s2 unacceptable, though this is not the

case anymore after deviation. Note that this must mean that i is either i1 or i2. Further, since P

falls into Case B.1, TTC∗ runs standard TTC. Hence, i2 gets matched to her top choice s1 and

so i2 has no incentive to deviate (recall that each individual finds at least one school acceptable

since we are not in Case A). Hence, let us consider i = i1. The only way to reach (by a deviation

of i1) Case C is for i1 to claim that s2 is acceptable (while s2 is not acceptable to i1 under

the original preferences Pi). Now, to complete the argument, we distinguish two cases. First,

assume that i3 ranks s2 first. Then, since we fall into Case C after deviation, TTC∗(P ′i , P−i) is

given by (
i1 i2 i3

i1 s1 s2

)
.

In particular, i1 cannot get s1 (the only acceptable school under Pi) so the deviation to P ′i
cannot be profitable. Similarly, in the other case where i3 ranks s1 first, TTC∗(P ′i , P−i) is given

by (
i1 i2 i3

s2 i2 s1

)
.

Here again, i1 fails to obtain s1 and so the deviation is not profitable. The case under which P

falls into Case B.2 can be treated in the same way.

Fix P falling into case C. If some student i deviates to P ′i , this cannot be profitable if we

remain into case C (since TTC is strategy-proof). Therefore, consider the case where we fall

into Case A. This must mean that P ′i ranks all schools unacceptable. Since TTC∗ is individually

rational, i’s deviation cannot be profitable. So consider the case where after deviation we fall

into Case B.1 (and not into Case A). This must mean that before deviation, either i1 or i2 does

not rank s1 first, or i1 finds s2 acceptable while after deviation both i1 and i2 rank s1 first

and i1 finds s2 unacceptable. This must mean that i is either i1 or i2. If i = i1, this means

that, i2 ranks s1 first (recall that before and after deviation, each individual has at least one

acceptable school since we do not fall into Case A before and after deviation). So, in particular,

after deviation, i1 cannot get s1 (s1 will be allocated to i2). Since after deviation, i1 finds s2

unacceptable, i1 will not get s2 either, and so she will remain unmatched. So the deviation

cannot be profitable to i1.

Now, consider the other case where deviator i = i2. This means that i1 ranks s1 first and

ranks s2 unacceptable. This also means that before deviation, i2 ranks s2 first while after

deviation i2 ranks s1 first. To complete the proof, we distinguish two cases. First, assume
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that i3 ranks s2 first. Then, at P , i2 gets s1 if she finds s1 acceptable or remains unmatched.

After deviation, i2 ranks s1 on top and i2 must be getting s1 after deviation, so this cannot be

profitable. In the other case where i3 ranks s1 first, before deviation, i2 is getting s2, which

is her top choice. So the deviation cannot improve on this. The same reasoning holds if the

deviation falls into Case B.2.

We fix any Pareto efficient and strategy-proof mechanism ϕ with less justified envy than

TTC∗. We claim that ϕ = TTC∗.

Proposition 5. Fix any P that falls into Case A, B.1 or B.2. ϕ(P ) = TTC∗(P ).

Proof. Fix any P falling into Case A. Some individual must rank all schools as unacceptable.

It is easy to check that, in such a case, there is a unique efficient and stable allocation that is

selected by TTC (with only two students, priorities are trivially Ergin-acyclic). Hence, because

ϕ has less justified envy than TTC∗, ϕ must also select the unique efficient and stable allocation,

and we obtain ϕ(P ) = TTC∗(P ).

Now, fix any P falling into Case B.1. Both i1 and i2 rank s1 first, and i1 finds s2 unacceptable.

Here again, one can check that TTC selects the unique efficient and stable allocation, and we

obtain ϕ(P ) = TTC∗(P ). A similar reasoning holds for any P falling into Case B.2.

Proposition 6. Fix any P that falls into Case C. ϕ(P ) = TTC∗(P ).

Proof. We assume that P falls into Case C and prove the above proposition in the four following

claims.

Claim 1. Assume that s1Pi1s2 and s2Pi2s1.

ϕ(P ) = TTC∗(P ).

Proof. Clearly, under TTC∗, i3 is never part of any blocking pair. Hence, because ϕ has less

justified envy than TTC∗, we must have that i3 is never part of any blocking pair under ϕ

as well. Assume wlog that s1 is i3’s top choice (recall that because P falls into Case C, each

individual finds at least one school acceptable).

In the sequel, we claim that i3 is assigned its top choice s1 under matching ϕ(P ). If i3 is not

assigned its top choice s1 under ϕ, then in order to ensure that (i3, s1) does not block ϕ(P ), we

must have that i2 is matched to s1 under ϕ(P ). Now, consider two cases. First, i3 is matched

to s2 under ϕ(P ). In that case, i2 and i3 would be better off switching their assignments, a

contradiction with Pareto efficiency of ϕ. In the other case, i3 must be unmatched under ϕ(P ).

If i1 gets matched to s2 under ϕ(P ), allowing i2 and i1 to switch their assignments would be

beneficial to both of them, again a contradiction with Pareto efficiency of ϕ. If i1 is not matched

to s2 under ϕ(P ) then s2 is unmatched, and by assigning it to i2 we Pareto-improve on ϕ(P ),

a contradiction.
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Thus, we proved that ϕ(P )(i3) = s1 = TTC∗(P )(i3). Now, let us complete the argument

and show that ϕ(P ) = TTC∗(P ). First, consider the case where i1 finds s2 acceptable. TTC∗

yields the following matching (
i1 i2 i3

s2 i2 s1

)
.

If under ϕ(P ), i1 remains unmatched, then (i1, s2) would block ϕ(P ) while it does not block

TTC∗(P ), a contradiction with our assumption that ϕ has less justified envy than TTC∗. Thus,

ϕ(P )(i1) = s2 = TTC∗(P )(i1) and so we conclude that ϕ(P ) = TTC∗(P ). Now, consider the

second case where i1 finds s2 unacceptable. Recall that s2 must be acceptable to i2, and so

TTC∗ yields the following matching (
i1 i2 i3

i1 s2 s1

)
.

Clearly, since we showed that i3 gets matched to s1 under ϕ(P ), i1 remains unmatched under

ϕ(P ). So by Pareto efficiency of ϕ, it must be that ϕ(P )(i2) = s2 = TTC∗(P )(i2). We conclude

that ϕ(P ) = TTC∗(P ). �

Claim 2. Assume that s1Pi1s2 and s1Pi2s2.

ϕ(P ) = TTC∗(P ).

Proof. There are two cases.

Case 1. s1Pi3s2. Because P falls into Case C, each individual ranks at least one school

acceptable (since P does not fall into Case A) and i1 finds s2 acceptable (since P does not fall

into Case B.1). Thus, TTC∗ yields the following matching(
i1 i2 i3

s2 i2 s1

)
.

We first claim that under ϕ(P ), i2 must remain unmatched. Indeed, if i2 is matched under

ϕ(P ), then consider the new preference profile where s2P
′
i2
s1P

′
i2
i2. Note that (P ′i2 , P−{i2}) falls

into the cases considered in Claim 1. Hence, by Claim 1, we know that ϕ(P ′i2 , P−{i2})(i3) =

TTC∗(P ′i2 , P−{i2})(i3) = s1 and ϕ(P ′i2 , P−{i2})(i2) = TTC∗(P ′i2 , P−{i2})(i2) = i2. Thus, from

profile (P ′i2 , P−{i2}), i2 can misreport her preference profile as Pi2 . In turn, she gets matched

and is strictly better-off, which contradicts the strategy-proofness of ϕ. Hence, under ϕ(P ),

i2 must be unmatched. Next, we claim that i3 is assigned s1 under ϕ(P ). Indeed, if i3 is

not assigned s1 under ϕ(P ), then i1 must be assigned s1 since it is acceptable to her (and we

already know that i2 must be unmatched). But then (i3, s1) would block ϕ(P ) but does not

block TTC∗(P ), which contradicts our assumption that ϕ has less justified envy than TTC∗.

To conclude, under ϕ(P ), i3 gets s1, i2 is unmatched, and so, since s2 is acceptable to i1, i1 gets

matched to s2. Thus, ϕ(P ) = TTC∗(P ).
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Case 2. s2Pi3s1. TTC∗ yields the following matching(
i1 i2 i3

i1 s1 s2

)
.

We first claim that ϕ(P ) matches i3 to her top choice s2. Indeed, if i3 is not matched to s2

under ϕ(P ) then in order for (i3, s2) not to block ϕ(P ), i1 must match to s2. But then, in order

for (i2, s1) not to block ϕ(P ), which is necessary since it does not block TTC∗(P ), i2 must also

match s1. So if i3 is not matched to s2 under ϕ(P ) the only candidate for ϕ(P ) is(
i1 i2 i3

s2 s1 i3

)
.

Now, let us assume that i3 ranks s1 acceptable under Pi3 . Next, consider the preference

profile (P ′i3 , P−{i3}) where s1P
′
i3
s2P

′
i3
i3. Note that (P ′i3 , P−{i3}) falls into Case 1 considered just

above. Hence, we know that ϕ(P ′i3 , P−{i3}) = TTC∗(P ′i3 , P−{i3}) and so i3 is matched to s1

under ϕ(P ′i3 , P−{i3}). Since i3 is unmatched under ϕ(P ), because we assumed that i3 ranks s1

acceptable under Pi3 , we found a profitable deviation for i3, a contradiction with the strategy-

proofness of ϕ. Thus, provided that Pi3 ranks s1 as acceptable, we obtained ϕ(Pi3 , P−{i3})(i3) =

TTC∗(Pi3 , P−{i3})(i3) = s2.

Let us now assume that i3 ranks s1 unacceptable under Pi3 . Consider a deviation of i3 to

P ′i3 satisfying s2P
′
i3
s1P

′
i3
i3, i.e., where s1 is ranked as acceptable. We just saw that, in such

a case, ϕ(P ′i3 , P−{i3})(i3) = TTC∗(P ′i3 , P−{i3})(i3) = s2 and so i3 gets matched to s2 under

ϕ(P ′i3 , P−{i3}). Here again, we find a profitable deviation for i3, which contradicts the strategy-

proofness of ϕ.

We conclude that ϕ(P ) matches i3 to her top choice s2. Now, TTC∗(P ) matches i2 with s1,

and, in order not have the blocking pair (i2, s1) under ϕ(P ), i2 and s1 must also be matched

together under ϕ(P ). We conclude that ϕ(P ) = TTC∗(P ). �

Claim 3. Assume that s2Pi1s1 and s2Pi2s1.

ϕ(P ) = TTC∗(P ).

Proof. The proof is similar to that of Claim 2. �

Claim 4. Assume that s2Pi1s1 and s1Pi2s2.

ϕ(P ) = TTC∗(P ).

Proof. Without loss of generality, assume that s2Pi3s1 (the same argument applies when s1Pi3s2).

TTC∗ yields the following matching (
i1 i2 i3

i1 s1 s2

)
.
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If, under ϕ(P ), i3 is not matched to her top choice s2, then in order for (i3, s2) not to block ϕ(P )

(which is necessary, since it does not block TTC∗(P )), i1 must be matched to s2 under ϕ(P ).

But then for (i2, s1) not to block ϕ(P ) (which is necessary since it does not block TTC∗(P )), i2

must be matched to s1. Thus, if i3 is not matched to her top choice s2, the only candidate for

ϕ(P ) is (
i1 i2 i3

s2 s1 i3

)
.

Now, consider P ′i1 such that s1P
′
i1
s2P

′
i1
i1. Since i1 ranks s2 acceptable under P ′i1 , (P ′i1 , P−{i1})

falls in to the profile of preferences considered in Claim 2. Hence, ϕ(P ′i1 , P−{i1}) and TTC∗(P ′i1 , P−{i1})

both yield the same matching given by (
i1 i2 i3

i1 s1 s2

)
.

Now, if the true preference profile is (P ′i1 , P−{i1}) and i1 misreports to Pi1 , then i1 gets matched

to s2 under ϕ(Pi1 , P−{i1}). Hence, the misreport Pi1 is profitable to i1, which contradicts the

strategy-proofness of ϕ.

We conclude that under ϕ(P ), i3 must be matched to her top choice s2. But now, if i2 is

not matched to s1 under ϕ(P ) then (i2, s1) blocks ϕ(P ) but does not block TTC∗(P ), which is

a contradiction. Hence, i2 must be matched to s1, and we conclude that ϕ(P ) = TTC∗(P ). �

These four claims together establish the proposition.

37



References

Abdulkadiroglu, Atila and Yeon-Koo Che, “The Role of Priorities in Assigning Indivisible

Objects: A Characterization of Top Trading Cycles,” 2010. Working Paper, Columbia

University.

, Parag Pathak, and Christopher Walters, “Free to Choose: Can School Choice

Reduce Student Achievement?,” 2016. Forthcoming, American Economic Journal: Applied

Economics.
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