NBER WORKING PAPER SERIES

THE IMPACT OF PUBLIC AND PRIVATE RESEARCH SUPPORT ON PREMATURE CANCER MORTALITY AND HOSPITALIZATION IN THE U.S., 1999-2013

Frank R. Lichtenberg

Working Paper 23241 http://www.nber.org/papers/w23241

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 March 2017

The views expressed herein are those of the author and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2017 by Frank R. Lichtenberg. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.

The Impact of Public and Private Research Support on Premature Cancer Mortality and Hospitalization in the U.S., 1999-2013 Frank R. Lichtenberg NBER Working Paper No. 23241 March 2017 JEL No. I10,I18,J11,O3

ABSTRACT

We use data from PubMed and other sources to examine the impact of public and private research support on premature (before ages 75, 65, and 55) cancer mortality and hospitalization, by estimating difference-in-differences models based on longitudinal, cancer-site-level data on about 30 cancer sites.

The estimates indicate that cancer sites about which more research-supported articles were published since the 1970s had larger reductions in premature mortality and hospitalization during the period 1999-2013, controlling for the change in the number of people diagnosed. Cancer sites for which more non-research-supported articles were published did not have larger reductions in premature mortality or hospitalization.

The research support that contributed to articles published during 1987-2001 reduced premature (before age 75) mortality at an average annual rate of 0.9% during the period 1999-2013, and it reduced the number of years of potential life lost before age 75 due to cancer in 2013 by 566 thousand. The research support that contributed to articles published during 1984-1998 reduced hospital discharges at an average annual rate of 4.1% during the period 1999-2013, and it reduced the number of hospital discharges due to cancer in 2013 by 566 thousand.

Frank R. Lichtenberg Columbia University 504 Uris Hall 3022 Broadway New York, NY 10027 and NBER frl1@columbia.edu

I. Introduction

In a previous study, Lichtenberg (2013) used PubMed¹ data on the number of publications about different types of cancer (breast, colon, lung, etc.) to provide evidence about the impact of biomedical research on U.S. cancer mortality rates.² Estimates from that study indicated that mortality rates: (1) are unrelated to the (current or lagged) stock of publications that had not received research funding; (2) are only weakly inversely related to the contemporaneous stock of published articles that received research funding; and (3) are strongly inversely related to the stock of articles that had received research funding and been published 5 and 10 years earlier.

In this paper, we will extend and update the analysis performed in Lichtenberg (2013) in a number of important respects:

- The sole outcome measure analyzed in the previous study was the age-adjusted mortality rate. In this paper, we will analyze a different type of mortality measure: years of potential life lost (YPLL) before three ages (75, 65, and 55).³ Estimates of YPLL models (but not of age-adjusted mortality rate models) enable us to calculate the number of life-years gained from biomedical research.
- In addition to analyzing the impact of biomedical research on premature cancer mortality, we will analyze its effect on hospitalization (the number of inpatient hospital discharges and days of care) due to cancer. Hospital care was the largest single component of U.S. medical expenditure in 2014, accounting for 32% of total expenditure (Centers for Medicare & Medicaid Services (2017)).

¹ PubMed comprises over 26 million citations for biomedical literature from <u>MEDLINE</u>, life science journals, and online books. PubMed citations and abstracts include the fields of biomedicine and health, covering portions of the life sciences, behavioral sciences, chemical sciences, and bioengineering. PubMed also provides access to additional relevant web sites and links to the other NCBI molecular biology resources. PubMed is a free resource that is developed and maintained by the National Center for Biotechnology Information (NCBI), at the U.S. National Library of Medicine (NLM), located at the National Institutes of Health (NIH).

² Previous research on the agricultural (Evenson and Kislev (1973)) and manufacturing (Adams (1990)) sectors of the economy had found that counts of publications are useful indicators of the stock of knowledge.

³ Previous authors have argued that "reducing premature mortality is a crucial public health objective" (Renard, Tafforeau, and Deboosere (2014)). A widely used measure of premature mortality is years of potential life lost (YPLL) before a given age (e.g. age 75), i.e. the number of years *not* lived by an individual who died before that age (Association of Public Health Epidemiologists in Ontario (2015)). Statistics of YPLL are published by the World Health Organization, the OECD, and government agencies of the U.S., Switzerland, and other countries. Burnet et al (2005) argue that YPLL "should be considered when allocating research funds."

- The previous study controlled for changes in incidence by including just the contemporaneous age-adjusted incidence rate (in year t) in the age-adjusted mortality model. In this paper, we will control for the average annual number of patients diagnosed in years t-9 to t in the premature mortality and hospitalization models.
- In the previous study, all publications in which a specific type of cancer was a topic were included. In this paper, only publications in which a specific type of cancer was one of the *main topics* are included.⁴
- In the previous study, the maximum allowed lag from publication to mortality was 10 years. In this paper, we allow for lags of up to 24 years.
- The functional form specified in the previous study was log-log. In this paper, we will estimate semi-logarithmic models. Comparison of the marginal effects of research-based and non-research-based publications is more straightforward in the semi-logarithmic model.
- In the previous study, the sample period was 1995-2009. This paper will analyze a more recent period: 1999-2013.

In the next section of this paper, we describe the econometric model of premature mortality and hospitalization that we will estimate. In Section III, we describe the data sources we rely upon to construct the dataset used to estimate the model and present descriptive statistics; all of the data are publicly available. Estimates of the models are presented in Section IV. Implications of the estimates are discussed in Section V. Section VI contains a summary and conclusions.

II. Econometric model of premature mortality and hospitalization

To assess the impact of biomedical research on premature cancer mortality and hospitalization, I will estimate the following difference-in-differences model based on longitudinal, cancer-site-level data on about 30 cancer sites:

⁴ As of 4 March 2017, "breast neoplasms" was a topic in 247,546 publications, and was a "main topic" in 207,485 publications; "colonic neoplasms" was a topic in 67,435 publications, and was a "main topic" in 49,940 publications.

$$\ln(Y_{st}) = \beta_{research} CUM_RESEARCH_PUBS_{s,t-k} + \beta_{other} CUM_OTHER_PUBS_{s,t-k}$$

$$+\gamma \ln(\text{CASES}_{10}_{\text{YEARS}_{\text{st}}}) + \alpha_{\text{s}} + \delta_{\text{t}} + \varepsilon_{\text{st}}$$
(1)

where Y_{st} is one of the following variables:

and

YPLL75 _{st}	= the number of years of potential life lost before age 75 from cancer at site s (s = 1,,30) in year t (t=1999,,2013)
YPLL65 _{st}	= the number of years of potential life lost before age 65 from cancer at site s in year t
YPLL55 _{st}	= the number of years of potential life lost before age 55 from cancer at site s in year t
DISCHARGES _{st}	= the number of inpatient hospital discharges in year t for which the principal diagnosis was cancer at site s
HOSP_DAYS _{st}	= the number of days of inpatient hospital care in year t for which the principal diagnosis was cancer at site s
and	
CUM_RESEAF	$RCH_PUBS_{s,t-k}$ = the number of PubMed articles published by the end of year t-k (k = 0, 3, 6,,24) that had cancer at site s as a "main topic" and that mentioned U.S. Government and/or

	non-U.S. Government research support ⁵
CUM_OTHER_PUBS _{s,t-k}	= the number of PubMed articles published by the end of year t-k that had cancer at site s as a "main topic" and that did <i>not</i> mention either U.S. Government or non-U.S. Government research support

- $CASES_{10}_{YEARS_{st}}$ = the average annual number of patients diagnosed with cancer at site s in SEER 9 registries in years t-9 to t
 - α_s = a fixed effect for cancer at site s
 - δ_t = a fixed effect for year t

⁵ Disentangling the effects of U.S. Government and non-U.S. Government research support is difficult. As shown in Lichtenberg (2013), almost half of the publications that cite U.S. Government research support also cite non-U.S. Government research support. Non-U.S. government financial support includes support by American societies, institutes, state governments, universities, and private organizations, and by foreign sources (national, departmental, provincial, academic & private organizations).

$\varepsilon_{st} = a \text{ disturbance}$

The fixed year effects control for time-varying factors that influence cancer mortality and hospitalization in general. The models will be estimated by weighted least squares, weighting by $(1 / 15) \Sigma_t Y_{st}$. Disturbances will be clustered within cancer sites.

III. Data sources and descriptive statistics

Premature mortality data. Data on the number of years of potential life lost before ages 75, 65, and 55, by cancer site and year, were constructed from data contained in the <u>WHO Mortality</u> <u>Database</u>. Data for 1999 and 2013 are shown in Table 1. Figure 1 shows data on the number of years of potential life lost before age 75 in 1999 and 2013 for 4 cancer sites that had roughly similar numbers (between 141 and 196 thousand) of YPLL75 in 1999. The 1999-2013 change in YPLL75 varied considerably across these 4 cancer sites.

Hospitalization data. Data on the number of inpatient hospital discharges and days of care, by cancer site and year, were constructed from data contained in the Healthcare Cost and Utilization Project (Agency for Healthcare Research and Quality (2017)). The number of days of care was computed as the number of discharges times average length of stay. Data for 1999 and 2013 are shown in Table 2.

Research-based and other publications. Data on CUM_RESEARCH_PUBS and

CUM_OTHER_PUBS, by cancer site and year, were constructed by performing searches on the PubMed Advanced Search Builder. As shown in Appendix Table 1, this tool allows the user to download data on the number of results (publications) by year after performing a search. We used the diseases branch (D) of the MeSH Tree to determine appropriate search terms (cancer site definitions). A publication was included in CUM_RESEARCH_PUBS if it had any one of the following "Publication Types": Research Support, American Recovery and Reinvestment Act; Research Support, N.I.H., Extramural; Research Support, N.I.H., Intramural; Research Support, Non-U.S. Gov't; Research Support, U. S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.; Research Support, U.S. Gov't, P.H.S. Data for 1999 and 2013 are shown in Table 3. Figure 2 shows data on the cumulative number of research-supported publications in 1989, 2001, and 2013 for 4 cancer sites that had similar numbers (between 4261 and 4678) of research-

supported publications in 1989. The number of research-supported articles published during 1990-2013 varied considerably across these 4 cancer sites.

Incidence data. Data on the number of people diagnosed in SEER 9 registries, by cancer site and year, were obtained from the National Cancer Institute's <u>SEER*Stat Software</u>. Data for 1999 and 2013 are shown in Table 4.

IV. Empirical results

Estimates of parameters of premature mortality models (eq. (1), where Y = YPLL75, YPLL65, or YPLL55) are shown in Table 5. Each row of the table represents a separate model, corresponding to a different dependent variable and assumed lag length (k) from publications to premature mortality. CUM_RESEARCH_PUBS and CUM_OTHER_PUBS are both measured in thousands.

In lines 1-9, the dependent variable is ln(YPLL75), and k = 0, 3, 6, ..., 24, respectively. As shown in lines 1-3, $\beta_{research}$ is negative but not statistically significant when $k \le 6$. However, as shown in lines 4-6, $\beta_{research}$ is negative and statistically significant (p-value < .05) when $9 \le k \le 15$. This indicates that premature (before age 75) mortality is inversely related to the number of research-supported articles that had been published 9-15 years earlier, controlling for the number of other articles that had been published 9-15 years earlier and for the average annual number of patients diagnosed in SEER 9 registries in the previous 10 years. The estimate in line 5 implies that 1000 additional research-supported publications is associated with a 1.3% YPLL75 reduction 12 years later. The point estimates of $\beta_{research}$ when $18 \le k \le 24$ are similar to the point estimates when $9 \le k \le 15$, but the standard errors are much larger when $18 \le k \le 24$, so those estimates are not statistically significant.⁶ The estimates of $\beta_{research}$ for $0 \le k \le 24$ from ln(YPLL75) models are shown (on an inverted scale) in Figure 3.

None of the estimates of β_{other} in lines 1-9 are statistically significant: premature (before age 75) mortality is unrelated to the number of publications that did *not* mention either U.S. Government or non-U.S. Government research support. All of the estimates of γ in lines 1-9 are

⁶ The large standard errors may be attributable, to an important extent, to left-censoring of the data on researchsupported articles: PubMed did not record information about research support until 1975 (National Library of Medicine (2017)).

statistically significant: YPLL75 is significantly positively related to the number of people diagnosed in the previous 10 years.

In lines 10-18 of Table 5, the dependent variable is ln(YPLL65). These estimates are quite similar to the estimates in lines 1-9. PYLL65 is inversely related to the number of research-supported articles that had been published 12-15 years earlier, and is unrelated to the number of other articles. It is also unrelated to the number of people diagnosed in the previous 10 years, presumably because about half of cancer patients are diagnosed after the age of 65.⁷

In lines 19-27 of Table 5, the dependent variable is ln(YPLL55). The estimates of $\beta_{research}$ for $0 \le k \le 24$ from ln(YPLL55) models are shown in Figure 4. The point estimates of $\beta_{research}$ are strictly increasing with respect to lag length. The estimates for $0 \le k \le 15$ are not statistically significant, but the estimates for $18 \le k \le 24$ are statistically significant. This indicates that the number of years of potential life lost before age 55 is inversely related to the number of research-supported articles that had been published 18-24 years earlier, and that 1000 additional research-supported publications is associated with a 4.2% YPLL55 reduction 24 years later. Evidently, the lag from research-supported publications to premature mortality reduction is considerably longer for YPLL55 than it is for YPLL75.

Estimates of parameters of hospitalization models (eq. (1), where Y = DISCHARGES or HOSP_DAYS) are shown in Table 6. In lines 1-9, the dependent variable is ln(DISCHARGES). The estimates of $\beta_{research}$ for $0 \le k \le 24$ from ln(DISCHARGES) models are shown in Figure 5. For all values of k, the estimate is negative and statistically significant. Once again, the point estimates of $\beta_{research}$ are strictly increasing with respect to lag length. The estimate of $\beta_{research}$ in line 9 of Table 6 indicates that 1000 additional research-supported publications is associated with a 10% DISCHARGES reduction 24 years later. The estimates in lines 1-9 indicate that the number of hospital discharges is significantly positively related to the number of people diagnosed in the previous 10 years, as expected. The estimates also indicate that the number of hospital discharges is also significantly positively related to the number of other (non-research-supported) publications, which is somewhat surprising. However, the magnitudes of the β_{other} coefficients are much smaller than the magnitudes of the $\beta_{research}$ coefficients: the estimate of

⁷ <u>https://www.cancer.gov/about-cancer/causes-prevention/risk/age</u>

 β_{other} in line 9 indicates that 1000 additional non-research-supported publications is associated with only a 1.6% DISCHARGES increase 24 years later.

In lines 10-18, the dependent variable is ln(HOSP_DAYS). Estimates of the parameters of HOSP_DAYS models are quite similar to estimates of the parameters of DISCHARGES models.

V. Discussion

The estimates of eq. (1) indicate that cancer sites about which more research-supported articles were published since the 1970s had larger reductions in premature mortality and hospitalization during the period 1999-2013, controlling for the change in the number of people diagnosed. Cancer sites for which more non-research-supported articles were published did not have larger reductions in premature mortality or hospitalization.

We can use the estimates to calculate the reduction in premature mortality in 2013 attributable to previous publication of research-supported articles. Lines 1-9 of Table 5 indicate that YPLL75_{st} is most strongly inversely correlated with CUM_RESEARCH_PUBS_{s,t-12}. The weighted (by $(1 / 15) \Sigma_t$ YPLL75_{st}) mean 1999-2013 increase in CUM_RESEARCH_PUBS_{s,t-12} was 9.01 (= 12.13 – 3.11). The estimate of $\beta_{research}$ in the YPLL75 model when k = 12 is -0.013, so we estimate that, if no research-supported articles had been published during the period 1987-2001, the number of years of potential life lost before age 75 due to cancer in 2013 would have been 12.8% (= exp(0.013 * 9.01) – 1) higher. Since previous research reduced YPLL75 by 12.8% over a 14-year period, it reduced premature mortality at an average annual rate of 0.9% (= 12.8% / 14). According to the Centers for Disease Control (2017), 4407 thousand years of potential life lost before age 75 due to cancer in 2013, so we estimate that, if no research-supported articles had been published that, if no research-supported articles had been publicated that an average annual rate of 0.9% (= 12.8% / 14). According to the Centers for Disease Control (2017), 4407 thousand years of potential life lost before age 75 due to cancer in 2013, so we estimate that, if no research-supported articles had been published during the period 1987-2001, the number of years of potential life lost before age 75 due to cancer in 2013 would have been 566 thousand (= 12.8% * 4407 thousand) higher.

We can also use the estimates to calculate the reduction in hospital discharges in 2013 attributable to previous publication of research-supported articles. Lines 1-9 of Table 6 indicate that DISCHARGES_{st} is most strongly inversely correlated with CUM_RESEARCH_PUBS_{s,t-15}. The weighted (by $(1 / 15) \Sigma_t$ DISCHARGES_{st}) mean 1999-2013 increase in

CUM_RESEARCH_PUBS_{s,t-15} was 7.31 (= 9.17 – 1.86). The estimate of $\beta_{research}$ in the DISCHARGES model when k = 15 is -0.062, so we estimate that, if no research-supported articles had been published during the period 1984-1998, the number of hospital discharges due to cancer in 2013 would have been 57.0% (= exp(0.062 * 7.31) – 1) higher. Since previous research reduced DISCHARGES by 57.0% over a 14-year period, it reduced hospital discharges at an average annual rate of 4.1% (= 57.0% / 14). According to HCUPnet (2017), there were 1082 thousand hospitalizations due to cancer in 2013, so we estimate that, if no research-supported articles had been published during the period 1984-1998, the number of hospital discharges due to cancer in 2013 would have been 566 thousand (= 57.0% * 1082 thousand) higher.

VI. Summary and conclusions

A previous study used PubMed data on the number of publications about different types of cancer (breast, colon, lung, etc.) to provide evidence about the impact of biomedical research on U.S. cancer mortality rates. In this paper, we extended and updated the analysis performed in the earlier study in several important respects: we analyzed a different type of mortality measure (years of potential life lost (YPLL) before three ages (75, 65, and 55)); we analyzed the effect of research-supported publications on hospitalization as well as on mortality; we controlled for lagged as well as current cancer incidence; and we allowed for longer (24 years vs. 10 years) lags from publication to cancer outcomes.

To assess the impact of biomedical research on premature cancer mortality and hospitalization, we estimated difference-in-differences models based on longitudinal, cancer-sitelevel data on about 30 cancer sites. The estimates indicated that cancer sites about which more research-supported articles were published since the 1970s had larger reductions in premature mortality and hospitalization during the period 1999-2013, controlling for the change in the number of people diagnosed. Cancer sites for which more non-research-supported articles were published did not have larger reductions in premature mortality or hospitalization.

Premature (before age 75) mortality is inversely related to the number of researchsupported articles that had been published 9-15 years earlier, controlling for the number of other articles that had been published 9-15 years earlier and for the average annual number of patients diagnosed in SEER 9 registries in the previous 10 years. The estimates indicated that 1000 additional research-supported publications is associated with a 1.3% YPLL75 reduction 12 years later. Estimates of models of YPLL65 were quite similar to estimates of models of YPLL75. YPLL65 is inversely related to the number of research-supported articles that had been published 12-15 years earlier, and is unrelated to the number of other articles.

The number of years of potential life lost before age 55 is inversely related to the number of research-supported articles that had been published 18-24 years earlier; 1000 additional research-supported publications is associated with a 4.2% YPLL55 reduction 24 years later. Evidently, the lag from research-supported publications to premature mortality reduction is considerably longer for YPLL55 than it is for YPLL75.

The number of hospital discharges attributed to cancer is significantly inversely related to the number of research-supported articles at every lag length investigated (from 0 to 24 years), but the magnitude of the effect is strictly increasing with respect to lag length. The estimates indicated that 1000 additional research-supported publications is associated with a 10% reduction in hospital discharges 24 years later.

The research support that contributed to articles published during 1987-2001 reduced premature (before age 75) mortality at an average annual rate of 0.9% during the period 1999-2013, and it reduced the number of years of potential life lost before age 75 due to cancer in 2013 by 566 thousand. The research support that contributed to articles published during 1984-1998 reduced hospital discharges at an average annual rate of 4.1% during the period 1999-2013, and it reduced the number of hospital discharges due to cancer in 2013 by 566 thousand.

References

Adams JD (1990), "Fundamental Stocks of Knowledge and Productivity Growth," *Journal of Political Economy* 98 (4): 673-702, August.

Agency for Healthcare Research and Quality (2017). <u>HCUPnet: A tool for identifying, tracking,</u> and analyzing national hospital statistics.

Association of Public Health Epidemiologists in Ontario (2015). Calculating Potential Years of Life Lost (PYLL), <u>http://www.apheo.ca/index.php?pid=190</u>

Burnet NG, Jefferies SJ, Benson RJ, Hunt DP, Treasure FP (2005). Years of life lost (YLL) from cancer is an important measure of population burden--and should be considered when allocating research funds. *British Journal of Cancer* 92 (2): 241–5, January, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2361853/

Centers for Disease Control (2017), Years of Potential Life Lost (YPLL) Reports, 1999 - 2015.

Centers for Medicare & Medicaid Services, Office of the Actuary, National Health Statistics Group (2017), <u>The Nation's Health Dollar (\$3.0 Trillion)</u>, <u>Calendar Year 2014</u>, <u>Where It Went</u>.

Evenson RE, Kislev Y (1973). Research and Productivity in Wheat and Maize. *Journal of Political Economy* 81(6): 1309-29.

Lichtenberg F (2013). The impact of biomedical research on U.S. cancer mortality: a bibliometric analysis, <u>NBER Working Paper No. 19593</u>, October; forthcoming in <u>Measuring and</u> <u>Modeling Health Care Costs</u>, Ana Aizcorbe, Colin Baker, Ernst Berndt, and David Cutler, editors (University of Chicago Press, <u>NBER Book Series Studies in Income and Wealth</u>).

National Library of Medicine (2017), <u>Funding Support (Grant) Information in</u> <u>MEDLINE/PubMed</u>.

Renard F, Tafforeau J, Deboosere P (2014). Premature mortality in Belgium in 1993-2009: leading causes, regional disparities and 15 years change. *Arch Public Health* 72(1): 34, Oct 1.

Cancer site	YPL	L75	YPL	L65	YPLL55			
	1999	2013	1999	2013	1999	2013		
Respiratory Tract Neoplasms	1,094,462	1,039,040	386,680	339,215	96,512	64,067		
Breast Neoplasms	420,346	399,430	209,158	182,937	78,561	60,710		
Colonic Neoplasms	275,970	289,895	110,322	120,808	35,542	37,203		
Genital Neoplasms, Female	235,153	270,230	112,295	117,903	43,355	39,580		
Nervous System Neoplasms	196,118	210,359	115,921	115,574	63,378	59,851		
Pancreatic Neoplasms	188,112	250,760	72,090	86,768	20,067	19,098		
Lymphoma, Non-Hodgkin	167,540	117,849	78,995	49,712	33,860	19,272		
Urologic Neoplasms	141,558	167,829	56,698	60,934	18,363	16,404		
Liver Neoplasms	108,497	218,426	50,019	82,649	19,102	18,739		
Skin Neoplasms	101,720	104,905	52,747	48,173	22,495	17,940		
Leukemia, Myeloid	100,328	92,716	57,083	46,844	31,693	24,131		
Esophageal Neoplasms	97,523	117,188	38,363	42,120	10,420	9,260		
Stomach Neoplasms	93,130	93,463	42,295	41,833	16,045	14,738		
Genital Neoplasms, Male	83,820 90,340		23,922 26,948		8,025	7,533		
Soft Tissue Neoplasms	69,921 76,536		39,751	42,221	21,601	22,571		
Leukemia, Lymphoid	58,720	52,851	36,000	30,199	23,160	18,294		
Rectal Neoplasms	47,173	61,888	20,528	27,445	7,123	8,755		
Endocrine Gland Neoplasms	30,117	29,386	19,665	17,254	12,892	10,409		
Bone Neoplasms	29,268	30,206	21,418	21,316	15,010	14,663		
Hodgkin Disease	26,302	15,765	17,394	9,643	10,694	5,493		
Tongue Neoplasms	18,308	22,568	8,690	9,505	3,113	2,830		
Gallbladder Neoplasms	11,625	13,463	4,260	4,800	1,113	1,135		
Nasopharyngeal Neoplasms	9,349	8,660	5,159	4,335	2,364	1,680		
Intestinal Neoplasms	8,918	9,275	4,175	3,780	1,508	1,243		
Oropharyngeal Neoplasms	5,488	8,918	2,303	3,488	593	755		
Peritoneal Neoplasms	5,183	5,855	2,188	2,070	723	533		
Salivary Gland Neoplasms	4,758	6,305	2,190	2,700	818	935		
Eye Neoplasms	2,581	2,955	1,513	1,440	843	652		
Hypopharyngeal Neoplasms	2,525	2,558	1,070	965	298	190		
Lip Neoplasms	235	428	68	180	13	33		
Total	3,634,748	3,810,047	1,592,960	1,543,759	599,284	498,697		

Number of years of potential life lost before ages 75, 65, and 55, by cancer site, 1999 and 2013

Source: Author's calculations based on data contained in the WHO Mortality Database.

Number of inpatient hospital discharges a	nd days of care, by cancer site, 1999 and
20	3

Cancer site	DISCH	ARGES	HOSP_DAYS			
	1999	2013	1999	2013		
Respiratory Tract Neoplasms	148,391	130,900	1,200,377	860,233		
Breast Neoplasms	116,916	67,425	340,917	176,961		
Colonic Neoplasms	115,339	90,545	1,080,513	699,540		
Genital Neoplasms, Male	101,978	71,485	389,868	170,760		
Genital Neoplasms, Female	98,478	72,100	502,011	340,069		
Urologic Neoplasms	78,107	78,630	475,148	424,923		
Lymphoma, Non-Hodgkin	48,304	37,225	458,159	381,926		
Rectal Neoplasms	46,428	38,890	416,847	295,085		
Nervous System Neoplasms	35,464	35,295	257,927	236,890		
Pancreatic Neoplasms	30,799	34,925	288,040	266,005		
Stomach Neoplasms	25,018	22,355	270,778	202,975		
Endocrine Gland Neoplasms	20,995	19,375	50,085	46,350		
Liver Neoplasms	14,538	21,920	108,524	141,860		
Bone Neoplasms	14,259	14,355	97,068	101,705		
Esophageal Neoplasms	12,753	11,900	128,366	103,693		
Skin Neoplasms	10,627	8,715	50,413	40,947		
Hodgkin Disease	5,534	3,920	51,733	44,140		
Total	925,923	761,973	6,168,774	4,536,074		

Source: Author's calculations based on data extracted from the Healthcare Cost and Utilization Project (Agency for Healthcare Research and Quality (2017)).

	CUM_	RESEARCI	H_PUBS	CUM_OTHER_PUBS				
	1989	2001	2013	1989	2001	2013		
Endocrine Gland Neoplasms	7,238	19,698	45,683	54,197	89,459	141,778		
Breast Neoplasms	5,795	22,455	67,139	33,553	63,902	112,570		
Respiratory Tract Neoplasms	5,387	15,455	41,012	55,341	85,914	132,881		
Liver Neoplasms	5,122	12,176	29,037	21,229	37,338	63,401		
Leukemia, Myeloid	4,678	12,588	23,522	14,165	23,965	36,041		
Genital Neoplasms, Female	4,507	14,290	36,426	52,815	80,413	118,927		
Nervous System Neoplasms	4,353	12,740	29,135	41,802	68,471	107,005		
Intestinal Neoplasms	4,261	15,293	42,889	30,939	54,612	95,987		
Leukemia, Lymphoid	3,731	9,393	18,250	12,040	19,668	28,795		
Colonic Neoplasms	3,262	7,928	16,254	13,909	20,536	29,189		
Urologic Neoplasms	3,074	8,436	18,381	27,805	45,286	70,826		
Skin Neoplasms	2,878	7,988	17,223	24,499	40,822	67,263		
Genital Neoplasms, Male	2,728	10,454	33,937	19,156	36,880	68,072		
Lymphoma, Non-Hodgkin	2,060	8,609	18,266	14,368	28,159	47,439		
Bone Neoplasms	1,531	4,040	9,561	33,497	50,164	74,643		
Pancreatic Neoplasms	1,522	4,490	12,568	9,507	16,851	30,963		
Rectal Neoplasms	1,519	2,651	4,935	12,391	17,943	26,781		
Eye Neoplasms	1,425	3,173	5,807	11,160	15,685	22,926		
Hodgkin Disease	1,290	2,814	4,373	12,427	15,957	19,267		
Stomach Neoplasms	1,173	4,324	13,624	21,951	32,729	48,321		
Esophageal Neoplasms	421	1,966	6,755	8,855	15,226	24,896		
Soft Tissue Neoplasms	418	1,310	2,377	3,182	7,977	15,123		
Nasopharyngeal Neoplasms	339	1,056	3,273	3,171	4,736	7,166		
Salivary Gland Neoplasms	279	741	1,499	4,703	7,286	10,711		
Peritoneal Neoplasms	136	444	1,360	2,435	4,504	8,277		
Tongue Neoplasms	111	302	963	2,415	3,477	5,052		
Gallbladder Neoplasms	64	239	647	2,024	3,380	5,080		
Oropharyngeal Neoplasms	55	271	851	1,121	1,975	3,667		
Total	71,346	207,325	507,760	546,646	895,316	1,425,060		

Cumulative number of research-supported and other publications, by cancer site, 1999 and 2013

Source: Author's calculations based on data extracted from PubMed Advanced Search Builder.

Average annual number of patients diagnosed in SEER 9 registries in previous 10 years, by cancer site, 1999 and 2013

Cancer site	1999	2013
Genital Neoplasms, Male	19,166	21,336
Breast Neoplasms	17,183	20,725
Respiratory Tract Neoplasms	16,902	18,410
Colonic Neoplasms	9,462	9,122
Urologic Neoplasms	7,652	10,917
Genital Neoplasms, Female	6,817	8,053
Lymphoma, Non-Hodgkin	4,553	6,057
Skin Neoplasms	4,252	7,349
Rectal Neoplasms	3,566	3,684
Pancreatic Neoplasms	2,595	3,719
Stomach Neoplasms	2,039	2,145
Endocrine Gland Neoplasms	1,711	4,094
Nervous System Neoplasms	1,632	1,937
Leukemia, Lymphoid	1,496	2,115
Leukemia, Myeloid	1,349	1,774
Liver Neoplasms	1,116	2,399
Esophageal Neoplasms	1,077	1,376
Hodgkin Disease	733	830
Soft Tissue Neoplasms	658	974
Tongue Neoplasms	591	987
Intestinal Neoplasms	389	671
Lip Neoplasms	302	206
Gallbladder Neoplasms	286	332
Salivary Gland Neoplasms	284	389
Hypopharyngeal Neoplasms	238	192
Bone Neoplasms	226	272
Eye Neoplasms	202	250
Nasopharyngeal Neoplasms	172	198
Peritoneal Neoplasms	88	187
Oropharyngeal Neoplasms	72	119

Source: Author's calculations based on data extracted from the National Cancer Institute's SEER*Stat Software.

Estimates of premature mortality model parameters from eq. (1):
$ln(Y_{st}) = \beta_{research} CUM_RESEARCH_PUBS_{s,t-k} + \beta_{other} CUM_OTHER_PUBS_{s,t-k}$
+ $\gamma \ln(\text{CASES}_{10}\text{YEARS}_{st}) + \alpha_s + \delta_t + \varepsilon_{st}$

		$\beta_{research}$					β _{other}					γ			
Line	lag	Est.	S. E.	Z	Pr > Z		Est.	S. E.	Z	Pr > Z		Est.	S. E.	Z	Pr > Z
		Y = YPLL75													
1	0	-0.001	0.002	-0.73	0.4681		-0.002	0.002	-0.85	0.3938		0.55	0.26	2.10	0.0357
2	3	-0.002	0.002	-0.99	0.3225		-0.002	0.002	-0.86	0.3914		0.54	0.26	2.10	0.0361
3	6	-0.004	0.003	-1.51	0.1307		-0.002	0.002	-0.64	0.5199		0.54	0.26	2.08	0.0374
4	9	-0.008	0.004	-2.04	0.0411		-0.001	0.003	-0.20	0.8408		0.54	0.26	2.06	0.0391
5	12	-0.013	0.006	-2.23	0.0258		0.001	0.003	0.20	0.8442		0.54	0.27	2.04	0.0412
6	15	-0.018	0.008	-2.17	0.0300		0.001	0.004	0.32	0.7484		0.55	0.27	2.03	0.0428
7	18	-0.019	0.014	-1.40	0.1614		0.001	0.005	0.20	0.8399		0.56	0.28	2.03	0.0423
8	21	-0.015	0.022	-0.68	0.4990		0.000	0.006	-0.03	0.9732		0.56	0.27	2.09	0.0371
9	24	-0.014	0.031	-0.45	0.6559		-0.001	0.007	-0.13	0.8971		0.57	0.27	2.13	0.0330
								Y = YP	LL65						
10	0	-0.002	0.002	-0.84	0.4012		-0.002	0.002	-0.92	0.3580		0.32	0.26	1.20	0.2318
11	3	-0.003	0.003	-0.99	0.3229		-0.002	0.003	-0.91	0.3610		0.31	0.26	1.19	0.2329
12	6	-0.004	0.003	-1.34	0.1787		-0.002	0.003	-0.72	0.4734		0.31	0.26	1.18	0.2384
13	9	-0.009	0.005	-1.80	0.0726		-0.001	0.004	-0.34	0.7332		0.31	0.26	1.16	0.2449
14	12	-0.015	0.007	-2.12	0.0340		0.000	0.004	0.01	0.9909		0.31	0.27	1.15	0.2483
15	15	-0.020	0.009	-2.24	0.0249		0.001	0.005	0.14	0.8852		0.32	0.28	1.16	0.2452
16	18	-0.023	0.014	-1.63	0.1023		0.001	0.006	0.10	0.9166		0.33	0.28	1.18	0.2385
17	21	-0.020	0.022	-0.92	0.3593		0.000	0.007	-0.04	0.9643		0.34	0.28	1.21	0.2278
18	24	-0.020	0.031	-0.64	0.5208		-0.001	0.008	-0.14	0.8876		0.34	0.28	1.22	0.2209
								Y = YP	LL55						
19	0	-0.003	0.004	-0.81	0.4187		-0.002	0.004	-0.45	0.6493		0.03	0.16	0.19	0.8496
20	3	-0.004	0.006	-0.64	0.5253		-0.003	0.005	-0.52	0.6045		0.03	0.16	0.21	0.8371
21	6	-0.005	0.008	-0.67	0.5040		-0.003	0.006	-0.45	0.6496		0.03	0.16	0.20	0.8415
22	9	-0.009	0.010	-0.94	0.3498		-0.002	0.006	-0.29	0.7720		0.03	0.16	0.19	0.8467
23	12	-0.015	0.011	-1.41	0.1577		-0.001	0.006	-0.08	0.9329		0.04	0.16	0.22	0.8279
24	15	-0.022	0.011	-1.93	0.0531		0.000	0.006	0.00	0.9972		0.05	0.16	0.29	0.7701
25	18	-0.028	0.012	-2.29	0.0223		0.001	0.007	0.09	0.9297		0.07	0.17	0.38	0.7076
26	21	-0.033	0.016	-2.13	0.0332		0.001	0.007	0.16	0.8697		0.08	0.18	0.43	0.6656
27	24	-0.042	0.021	-2.04	0.0413		0.002	0.008	0.23	0.8164		0.09	0.19	0.46	0.6452

Note: estimates in bold are statistically significant (p-value < .05). The models were estimated by weighted least squares, weighting by (1 / 15) $\Sigma_t Y_{st}$. Disturbances were clustered within cancer sites.

$$\begin{split} \text{Estimates of hospitalization model parameters from eq. (1):} \\ ln(Y_{st}) &= \beta_{research} \, CUM_RESEARCH_PUBS_{s,t-k} + \beta_{other} \, CUM_OTHER_PUBS_{s,t-k} \\ &+ \gamma \, ln(CASES_10_YEARS_{st}) + \alpha_s + \delta_t + \epsilon_{st} \end{split}$$

		β _{research}					β _{other}					γ			
Line	lag	Est.	S. E.	Z	Pr > Z		Est.	S. E.	Z	Pr > Z		Est.	S. E.	Z	Pr > Z
						_	Y :	= DISCH	IARGE	S	_	_			
1	0	-0.014	0.003	-5.55	<.0001		0.006	0.003	2.22	0.0265		0.40	0.19	2.11	0.0348
2	3	-0.019	0.003	-5.80	<.0001		0.006	0.003	2.30	0.0215		0.42	0.18	2.31	0.0208
3	6	-0.025	0.004	-6.91	<.0001		0.008	0.003	2.67	0.0075		0.43	0.17	2.46	0.0139
4	9	-0.035	0.005	-7.76	<.0001		0.010	0.003	3.19	0.0014		0.44	0.17	2.58	0.0098
5	12	-0.046	0.006	-7.85	<.0001		0.012	0.004	3.43	0.0006		0.47	0.17	2.77	0.0055
6	15	-0.062	0.007	-8.40	<.0001		0.014	0.004	3.54	0.0004		0.51	0.17	3.02	0.0025
7	18	-0.077	0.015	-5.26	<.0001		0.016	0.006	2.77	0.0056		0.54	0.18	3.03	0.0024
8	21	-0.089	0.027	-3.28	0.0010		0.017	0.008	2.05	0.0399		0.55	0.19	2.89	0.0039
9	24	-0.100	0.037	-2.71	0.0068		0.016	0.009	1.72	0.0857		0.55	0.19	2.89	0.0039
							Y	= HOSP	_DAYS	5					
10	0	-0.019	0.007	-2.81	0.0049		0.009	0.003	2.53	0.0113		0.71	0.12	5.67	<.0001
11	3	-0.025	0.009	-2.84	0.0044		0.010	0.004	2.62	0.0087		0.71	0.11	6.23	<.0001
12	6	-0.032	0.011	-2.92	0.0035		0.011	0.004	2.71	0.0067		0.73	0.11	6.79	<.0001
13	9	-0.038	0.012	-3.17	0.0015		0.012	0.004	2.90	0.0038		0.76	0.11	7.19	<.0001
14	12	-0.043	0.011	-4.07	<.0001		0.012	0.003	3.37	0.0007		0.78	0.11	7.28	<.0001
15	15	-0.050	0.010	-5.08	<.0001		0.012	0.003	3.69	0.0002		0.80	0.11	7.07	<.0001
16	18	-0.057	0.015	-3.90	<.0001		0.012	0.004	3.04	0.0023		0.80	0.12	6.44	<.0001
17	21	-0.066	0.022	-3.07	0.0022		0.013	0.005	2.48	0.0132		0.80	0.14	5.81	<.0001
18	24	-0.080	0.026	-3.05	0.0023		0.014	0.006	2.34	0.0195		0.81	0.14	5.62	<.0001

Note: estimates in bold are statistically significant (p-value < .05). The models were estimated by weighted least squares, weighting by (1 / 15) $\Sigma_t Y_{st}$. Disturbances were clustered within cancer sites.

Colonic Neoplasms[MeSH Terms] - PubMed - NCBI

Appendix Figure 1

• · · · · · ·				<u>Sig</u> r	<u>h in to NCBI</u>
10					
Publed.gov	PubMed			8	Search
US National Library of Medicine National Institutes of Health		Create RSS Create alert Advanced			Help
	Format: Summary - So	rt by: Publication		Filters: Manage Filte	ers
Article	Date -				
types					
		Send	d to 🖵	Results by year	
Clinical Trial					
Review					
Customize	Search results				
	Items: 1 to 20 of 6743	5			
Text				<	►
availability				D	ownload CSV
A botro ot		<< First < Prev Page of 3372 Next > L	_ast >>		
Abstract Free full text	A 15 gono signatu	o for prodiction of colon concor requirence	o and		
Full text	1 prograsia based a			Titles with your se	earch 🔄
T dif text				terms	
	Xu G, Zhang M, Zr			Helicobacter pylori in	fection is an
PubMed	Gene. 2017 Mar 10;60	04:33-40. doi: 10.1016/j.gene.2016.12.016.		in [Cancer Causes C	ontrol. 2017]
Commons	PIMID: 27998790			The molecular chara	ctoristics of
Reader comments	Similar articles			colonic [.] Pathol Clir	n Res 2016
Trending articles	Loss of periplakin	expression is associated with the tumoride	nocie		
g en le co	2 of coloratel caroin		110315	Diverticular Disease	and
			147	[Asian Pac J Cance	r Prev. 2016]
Publication	Li X, Zhang G, Wa	ng Y, Elgenama A, Sun Y, Li L, Gu Y, Guo	SVV,		See more
dates	XUQ.				
5 years	Biomed Pharmacothe	r. 2017 Mar;87:366-374. doi:			
10 years		.12.103.		Find related data	
Custom range	Similar articles				
				Database:	
Species	Mid-term oncologic	outcome of a novel approach for locally		Select	
opooloo	3. advanced colon ca	ncer with neoadiuvant chemotherapy and			
Humans	surgery	noor with hoodajavant onomothorapy and		Find items	
Other Animals	Arrodondo I Poivo	uli L Pastar C. Chapitan A. Sala LI. Cana	حفامح		
		Iuli J, Pasiol C, Chopilea A, Sola JJ, Goliz Martínez D, Dadriguez I, Harnández Lizar			
<u>Clear all</u>	I, A-Cleniuegos J,	Z Marta(2):220 285 dai: 10 1007/012004 016 1	ain JL.	Search details	
	PMID: 27/96023	7 Mar, 19(3).379-385. doi: 10.1007/\$12094-016-1	1539-4.		
Show additional	Similar articles				
<u>Inters</u>					
	Stochastic phenoty	pic interconversion in tumors can generate	е		
	4. heterogeneity.				
	Simone G			Search	See more
	Fur Biophys J 2017 M	1ar:46(2):189-194_doi: 10 1007/s00249-016-119(0-6		
	PMID: 27942765		0 0.		
	Similar articles			Recent Activity	
				Τι	<u>urn Off</u> <u>C</u> lear
	Betalains increase	vitexin-2-O-xyloside cytotoxicity in CaCo-2	2		
	5. cancer cells.			Terms1 (67435)	PubMed
	Farabegoli F. Scar	oa ES, Frati A, Serafini G, Papi A, Spisni F	E.		
	Antonini F Benedr	Antonini F. Benedetti S. Ninfali P.			sms[MeSH
	Food Chem. 2017 Ma	r 1;218:356-364. doi: 10.1016/i.foodchem.2016.0	9.112.	Major Topic] (49	940) PubMed
		,		^	