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1 Introduction

A fundamental question in the field of economic growth and development is why some countries

are rich and others poor. The literature has offered many useful perspectives but we build on

two. First, agriculture matters for aggregate outcomes because poor countries are substantially less

productive in agriculture compared to rich countries and as a result allocate most of their labor

to agriculture (Gollin et al., 2002; Restuccia et al., 2008). Second, misallocation of factors across

heterogeneous production units is important in accounting for differences in measured productivity

across countries (Restuccia and Rogerson, 2008; Hsieh and Klenow, 2009). We exploit a unique

micro-level data from Malawi to measure total factor productivity (TFP) in farms controlling for

land quality and transitory shocks. Our main finding is that operated land size and capital are

essentially unrelated to farm TFP, evidence of substantial misallocation in the agricultural sector.

Quantitatively, misallocation has a substantial negative effect on agricultural productivity, a 2.8-

fold output gain from an efficient reallocation in the cross-section and between 1.7 to 2.0-fold in the

panel sample that controls for transitory variation and potential measurement error.

Malawi represents an interesting case to study for several reasons. First, Malawi is an extremely

poor country in Africa, featuring very low agricultural productivity, a large share of employment

in agriculture, and extremely low farm operational scales. Second, the land market in Malawi is

largely underdeveloped. Most of land in Malawi is customary and user rights are allocated locally

by village chiefs. In our representative sample, more than 84 percent of household farms do not

operate any marketed land (either purchased or rented-in). In Malawi, the vast majority of land

is either directly or indirectly distributed by the village head. The Customary Land Act grants

local leaders power over land transactions such as inheritance and to resolve disputes related to

land limits (Kishindo, 2011; Morris, 2016) and this status quo has remained stable since colonial

times (Pachai, 1973). Third, there is detailed and high-quality micro data for Malawi allowing us to

construct reasonably good measures of household-farm productivity to assess factor misallocation
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in agriculture.

The main data source is the 2010/11 Integrated Survey of Agriculture (ISA) for Malawi collected

by the World Bank. This is a large nationally-representative sample of more than 12 thousand

households. We also exploit more recent waves of the data to construct a panel of household

farms and provide robust results. Whereas the dispersion in our measure of farm-level TFP is

quantitatively similar to previous studies in other sectors and countries, our main finding is that

factors of production are roughly evenly spread among farmers. That is, operated land size and

capital are essentially unrelated to farm productivity, generating substantially larger amounts of

misallocation than found in other contexts. Our main result of a near zero correlation of inputs with

farm productivity is similar in both the cross-section and panel samples. Our main quantitative

finding of a substantial output gain from efficient reallocation is robust to alternative factor share

parameters, more flexible production technologies, and the consideration of specific crops.

We provide suggestive evidence a connection between misallocation and land markets. In particular,

we show that the ratio of efficient to actual land input is reduced by 17% when farms operate rented

in land. A limitation of the empirical literature on misallocation is a weak connection of misallo-

cation with the policies and institutions that cause it (Hsieh and Klenow, 2009), a caveat that also

applies to previous studies of misallocation in the agricultural sector (Adamopoulos and Restuccia,

2014). Our evidence connecting misallocation with land markets has inspired recent empirical and

quantitative studies of reforms in specific contexts that corroborate the importance of misalloca-

tion in the agricultural sector such as a land-ceiling reform in the Philippines (Adamopoulos and

Restuccia, 2020), a property rights reform in Pakistan (Beg, 2022), a leasing-rights reform in China

(Chari et al., 2021), and a land certification reform in Ethiopia (Chen et al., 2021).

Our evidence of factor misallocation based on producer-level TFP measures is closely linked to the

seminal work of Hsieh and Klenow (2009) for the manufacturing sector in China, India, and the

United States. Our analysis contributes to this work by providing evidence of misallocation in the
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agricultural sector of a very poor country. Our analysis exploits the detailed micro data and the

available panel dimension to address important concerns of measurement and specification errors

that cast doubt on the extent of misallocation in poor countries. First, our measure of producer-

level TFP in agriculture relies on physical quantities of outputs and inputs (Beegle et al., 2012;

Carletto et al., 2013) rarely available in settings outside agriculture. This allows us to evaluate

our results when focusing on individual crops, addressing potential composition issues. Second,

the micro data provide detailed measures on the quality of inputs such as land quality as well

as transitory shocks such as rain and that we explicitly control for in our measure of farm TFP.

Moreover, we use the panel dimension of the data to estimate a household-farm productivity fixed

effect that removes time and transitory variation such as potential measurement error, allowing a

more conservative characterization of the extent and cost of misallocation. Third, the detailed data

allow us to characterize misallocation within narrow geographical areas, perform relevant robustness

analysis, and to provide suggestive evidence connecting misallocation with land markets.

We also explore the consequences of misallocation for agricultural income inequality. This is relevant

because the actual land allocation derives from a land institution that may be in place in part to

address distributional concerns as the distribution of land can operate as an ex-ante redistribution

mechanism. We show however that even though the actual allocation of factors is evenly spread

across farmers, factor equalization is ineffective at equalizing incomes in Malawi since there is

substantial heterogeneity in the ability of farmers to produce output with the same inputs. Treating

the actual factor allocation as endowments, we show that the efficient allocation decentralized

via perfectly competitive rental markets, produces a substantial reduction in agricultural income

inequality—a reduction in the variance of log income from 1.7 to 1.0—and a dramatic reduction

in poverty. Essentially, agricultural income of the poorest quintile farms, which happen to be the

least productive, increases by more than 18-fold due to relatively more beneficial rental income,

compared to the 1.6-fold increase in income in the top quitile.

Our paper relates to a growing literature in macroeconomics using micro data to study macro
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development (Gollin et al., 2014; Buera et al., 2014; Bick et al., 2016; Santaeulàlia-Llopis and Zheng,

2018; Adamopoulos and Restuccia, 2020; Donovan, 2021). Macroeconomic studies of misallocation

in the agricultural sector where initially based on the size distribution of farms across countries

(Adamopoulos and Restuccia, 2014), but more recent work incorporates important features of the

micro data such as Chen (2017) on the impact of land titles on agricultural productivity, Gottlieb

and Grobovsek (2019) on the implications of communal land on misallocation in Ethiopia, and

Adamopoulos et al. (2021) on the productivity effects of a restrictive land institution in China.

Within the micro development literature, Foster and Rosenzweig (2011) provide evidence of inef-

ficient farm sizes in India that may be connected to the low incidence of tenancy and land sales

limiting land reallocation to efficient farmers and Udry (1996) focuses on the intra household-farm

reallocation of factors across wives and husbands, obtaining a relatively small role of misallocation

within households in Burkina Faso. Our results instead indicate a larger role for misallocation

across farms in Malawi, taking intra-household misallocation as given which is a part of our mea-

sured household-level productivity. Other studies analyze the role of tenancy and property rights

for agricultural productivity (Shaban, 1987; Besley, 1995; Banerjee et al., 2002) focusing on the

impact of effort and investment on farm productivity, whereas our analysis focuses on the impact of

resource allocation on agricultural productivity, taking as given farm-level TFP. Integrating the role

of land-market institutions on both factor misallocation and farm-level productivity is an impor-

tant area for future research. Midrigan and Xu (2014) find that firms’ internal capital accumulation

substantially mitigates credit market imperfections after entry and a similar mitigating argument

can be made regarding the role of informal credit in villages; these mitigating forces are, how-

ever, limited for land which is not reproducible, accumulates only through costly transactions, and

ill-defined property rights effectively prevent even informal arrangements. This is consistent with

recent empirical evidence showing that household land holdings barely grow over the life cycle in

poor countries (de Magalhães and Santaeulàlia-Llopis, 2018).

The paper proceeds as follows. In the next section, we describe the data and the construction of
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the main variables for our analysis. Section 3 presents the framework for measuring farm TFP. In

Section 4 we characterize the extent and cost of misallocation in agriculture and provide robustness

analysis. Section 5 provides suggestive evidence connecting misallocation with land markets and

discusses agricultural income inequality in an efficient allocation. We conclude in Section 6.

2 Data

We use a unique and detailed household-level dataset collected by the World Bank, the Malawi

Integrated Survey of Agriculture (ISA). The Malawi ISA is part of a new initiative funded by the Bill

& Melinda Gates Foundation and led by the Living Standards Measurement Study (LSMS) Team

in the Development Research Group (DECRG) of the World Bank. The survey is comprehensive

in the collection of the entire agricultural production, such as physical amounts by crop, and the

full set of inputs used in all agricultural activities, all collected by a new and enlarged agricultural

module that distinguish ISA from previous LSMS surveys. The data are nationally-representative

with a sampling frame based on the Census. There are four waves of the data available: 2010/11,

2013/14, 2016/17, and 2019/20 waves. We start by describing the 2010/11 wave which we use to

calculate our benchmark results, followed by a description of the unbalanced panel using the other

waves. See Appendix A for more details on the construction of our data.

The 2010/11 wave consists of an original sample that includes 12,271 households (and 56,397 in-

dividuals) of which 81% live in rural areas. The survey provides information on household-farm

characteristics over the entire year and we focus on agricultural activities related to the rainy sea-

son which accounts for more than 90% of agricultural production in Malawi. While data for many

variables is provided at the plot level, we focus our analysis on the household farm and as a re-

sult when required we aggregate plot-level information to the household farm level. Aragón et al.

(2022) discuss in detail the importance of farms versus plots in assessing misallocation in small-scale
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agriculture in developing countries.

Output and value added. The data provide quantity of each crop produced in plots operated by a

household. We value agricultural output using median at-the-gate prices and then aggregate the

value of outputs for all plots and crops to the household-farm level. We also calculate the value

of intermediate inputs, such as fertilizers, herbicides, pesticides and seeds, by applying common

median prices. As a result, our benchmark measure of household-farm output is a common-price

measure of real value added constructed as the value of agricultural production (of all crops) minus

the costs of the full set of intermediate inputs. We use common prices of outputs and intermediate

inputs to construct real value added in farms in the same spirit as using international prices to

construct real measures of output across countries. This is relevant in Malawi because intermediate

inputs are subsidized via the “Malawi Input Subsidy Program” and the subsidy allocation is based

on farmer’s income, with poorer farmers receiving higher subsidies.

Land. We measure farm land input as the sum of the size of each cultivated household plot,

including rented-in land. Hence, we focus on the operational scale of the household farm. On

average, household farms cultivate 1.8 plots. Importantly, plot size is recorded in acres using

GPS (with precision of 1% of an acre) for 98% of plots, while for the remaining 2% of plots, size

is estimated. GPS is a more precise measure of land than the more common self-reported land

(Aragón et al., 2022). The average farm size is extremely small in Malawi about 0.81 hectares

(henceforth, ha.), whereas comparatively average farm size is 187 ha. in the United States and 16.1

ha. in Belgium, a country with similar land per capita endowment as Malawi (Adamopoulos and

Restuccia, 2014). The distribution of farm land operational scales is skewed to very small sizes:

79.9% of households operate less than 1 ha., 96.7% of households operate less than 2 ha., and only

0.2% of households operate more than 5 ha. Table 1 summarizes the size distribution of farms in

Malawi from the ISA survey comparatively with Census data for Malawi, Belgium, and USA.

Land quality and rain. The data contains very detailed information on the quality of land for each
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Table 1: Size Distribution of Farms (% of Farms by Size)

ISA 2010/11 World Census of Agriculture 1990
Malawi Malawi Belgium USA

Hectares (Ha):
≤ 1 Ha 79.9 77.7 14.6 –
1− 2 Ha 16.8 17.3 8.5 –
2− 5 Ha 3.1 5.0 15.5 10.6
5− 10 Ha 0.2 0.0 14.8 7.5
10+ Ha 0.0 0.0 46.6 81.9

Average Farm Size (Ha) 0.81 0.7 16.1 187.0

Notes: The first column reports the land size distribution (in hectares) for household farms from Malawi ISA 2010/11.
The other columns report statistics from the World Census of Agriculture 1990 for Malawi, Belgium, and United
States documented in Adamopoulos and Restuccia (2014).

plot used by households. There are 11 dimensions of land quality reported: elevation, slope, erosion,

soil quality, nutrient availability, nutrient retention capacity, rooting conditions, oxygen availability

to roots, excess salts, topicality, and workability. We also observe weather conditions, such as the

annual precipitation. This allows us to control for land quality and transitory shocks to measure

household-farm productivity. Appendix A provides more detailed information and robustness on

land quality and transitory shocks.

Capital. Information on farm capital is available for both equipment (implements and machinery)

and structures. Capital equipment includes implements (such as hand hoe, slasher, axe, sprayer,

panga knife, sickle, treadle pump, and watering can) and machinery (such as ox cart, ox plough,

tractor, tractor plough, ridger, cultivator, generator, motorized pump, and grain mill), while capital

structures includes chicken houses, livestock kraals, poultry kraals, storage houses, granaries, barns,

pig sties, among others. To proxy for capital services after conditioning for its use in agricultural

activities, we aggregate across the capital items evaluated at the estimated current selling price.

The selling price for agricultural capital items, rarely available in previous LSMS data, helps capture

potential differences in the quality and depreciation of capital across farms.

Labor. A large proportion of household members in Malawi contribute to agricultural work. The
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average household size is 4.6 members with extended families in which several generations live

together in a single household. For family labor, the data provide information of weeks, days

per week, and hours per day employed per plot, activity and individual. The data also provide

information for hired labor and free labor (labor received in exchange) in labor days. We measure

household-farm labor days by aggregating labor days of all plots, activities, and individuals, for all

three types of labor. Note that family labor days account for the vast majority (roughly 99%) of

total labor input.

Geographic and institutional characteristics are also recorded for each household. We use partitions

of these characteristics to conduct alternative analyses. In particular, we use geographical infor-

mation on the region, districts, and institutional characteristics such as the traditional authority

(TA) governing the household farm. TAs are relevant for our analysis as chiefs appointed by TAs

perform a variety of functions that include issues related to land and property. We note that the

survey response rate is high with very few missing observations.

We now explain the construction of the panel data. A subset of 2010/11 wave households was

re-interviewed with the same questionnaire in 2013/14, which provides a two-period panel. The

2013/14 wave is only a re-interview wave and hence is smaller in size. In addition, there are

two new cross-section waves available: 2016/17 and 2019/20. These waves are comparable to the

2010/11 wave in terms of sample size and questionnaire, but only a small number of households from

the 2011/12 wave are re-interviewed in 2016/17 and 2019/20. Combining all four waves, around

2,000 farm households can be linked and appear at least twice in the panel. A non-trivial portion

of households experience splitting during our sample period and we drop these households in our

analysis.
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3 Measuring Farm Productivity

We use the micro data to measure productivity at the farm level. Constructing a measure of farm

total factor productivity (TFP) is essential in assessing the extent and cost of factor misallocation

in the agricultural sector. The detailed micro data for Malawi offers a unique opportunity in this

assessment as data is provided in quantities of outputs and inputs. As a result, fewer assumptions

are required to measure micro-level productivity compared to studies of the manufacturing sector

where productivity must be inferred from plant sales or revenues.

We start by describing how we measure farm productivity using the cross-sectional data, and then

explain how the panel data helps removing transitory shocks and potential measurement error. In

the 2010/11 cross-sectional data, we measure farm-level total factor productivity (TFP) si as the

residual from the following farm-level production function,

ỹi = siζi
(
kα
i (qiℓi)

1−α
)γ

, α, γ ∈ (0, 1), (1)

where ỹi is real value added, ki is capital, ℓi is the amount of operated land, ζi is a rain shock, qi is

land quality, and (α, γ) are input elasticities. In our analysis, we focus on the allocation of capital

and land across farms, abstracting from differences in labor inputs. For this reason, we measure

value added, capital, and land in the data in per labor hour terms. This implies that our residual

measure of TFP is not affected by actual differences in the labor input across farmers in the data.

In constructing our measure of farm TFP, we choose α = 0.67 and γ = 0.54 to match the capital

and land income shares for U.S. agriculture reported in Valentinyi and Herrendorf (2008) which are

0.36 and 0.18. We later discuss the robustness of our results to these factor shares using our micro

data for Malawi.

We are interested in measuring farm productivity and hence it is important to distinguish between

the productivity of the farm and the productivity of the land under operation. There are important

10



differences in the land characteristics operated by farms in our sample. For the full sample, more

than 32 percent of land is high-altitude plains while around 20 percent are low plateaus and 23

percent mid-altitude plateaus. These characteristics also differ by region where the Center region

is mostly high-altitude plains whereas the South region is mostly low plateaus. We control for land

quality in our measure of productivity by constructing a benchmark index qi regressing log output

in each farm on the full set of land quality dimensions available in the data. To the extent that

farm inputs are positively related to land quality, our benchmark index potentially attributes too

much variation to land quality. We nevertheless use this index as our benchmark because it is

conservative with respect to the productivity effects of misallocation. We consider alternative land

quality indexes with similar results, see Appendix A.

There is substantial variation in land quality qi across households and across regions, but this

variation does not account for much of the variation in output compared to variation in farm

TFP. In Malawi 2010/11 cross-section, the dispersion (variance of the log) of land quality indexes

is 0.60, the dispersion in the quantity of land across households is 0.66, while that of output is

1.80. Not surprisingly, the dispersion in land quality decreases substantially when restricting by

geographical area, the average dispersion is 0.59 within regions, 0.42 within districts, and 0.08

within enumeration areas. Reassuringly, our calculated land quality index is positively correlated

with self-reported estimated land price (Appendix A).

We also control for rain shocks, which is the single most important source of transitory shocks to

agricultural production in Malawi since a vast majority (99%) of agricultural land plots are rain-fed

without alternative irrigation systems. We measure rainfall shocks using information on annual

precipitation. To exclude rainfall shocks in estimating farm productivity, we regress farm value

added on dummy variables indicating deciles of precipitation and then explicitly controlling for this

effect from precipitation ζi in equation (1). Note that rain is not a substantial contributor to output

variation across farm households. In Malawi 2010/11 cross-section, the variance of logs of rain index

ζi is 0.03 for our entire sample, which is small compared to the dispersion in land size and output.
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The small role of rain variation further appears within regions, districts, and enumeration areas,

as well as using alternative definitions of precipitation measures such as the precipitation of the

wettest quarter.

Table 2 reports the variance decomposition of farm value added per hour using our assumed pro-

duction function. We note that farm productivity si and to a lesser extent the inputs of capital and

land are the key determinants of output variation across farm households in Malawi, with rain and

land quality playing a quantitatively minor role. Specifically, the variance of farm TFP accounts

for 78 percent of the total variance of output and the variance of capital and quality adjusted land

inputs for about 17 percent.

Table 2: Variance Decomposition of Agricultural Output

Level %
Output, var(ỹ) 1.804 100.0
Productivity, var(s), 1.402 77.7
Rain, var(ζ) 0.033 1.8
Inputs, var(f(k, qℓ)) 0.307 17.0
2cov(s, ζ) -0.014 -0.8
2cov(s, f(k, qℓ)) 0.070 3.9
2cov(ζ, f(k, qℓ)) 0.007 0.4

Notes: The variance decomposition uses our benchmark production function in equation (1) written as ỹi =
siζif(ki, qiℓi). All variables have been logged. The variables are value added ỹi, household-farm productivity si, rain
ζi, structures and equipment capital ki, and quality-adjusted land size, qiℓi. The first two columns report results
from our benchmark specification where rain and land quality are controlled for. The column “Level” reports the
variance and the column “%” reports the variance contribution to the total in percentage. Data for Malawi ISA
2010/11.

With the estimated farm productivity si, we then calculate (net) output yi that does not include

transitory rain shocks ζi and land quality qi as

yi = si
(
kα
i ℓ

1−α
i

)γ
.

We use this calculated (net) output yi in assessing the productivity gain associated with resource

reallocation in Section 4.
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Having constructed our measure of farm TFP si, we compare the magnitude of productivity dis-

persion to that of physical productivity (TFPQ) across plants in the manufacturing sector in the

United States, China, and India reported in Hsieh and Klenow (2009) in Table 3. Whereas the

ratio of physical productivity between the 90 to 10 percentile is a factor of around 15-fold in China

and India and around 9-fold in U.S. manufacturing, the 90-10 ratio across farms in our sample is

18-fold. Similarly, the 75-25 ratio is 4-fold in our sample of farms whereas it is around 4.5-fold

across manufacturing plants in China and India.

Table 3: Productivity Dispersion across Farms and Manufacturing Plants

Agricultural Farms Manufacturing Plants
Malawi ISA USA USA China India

Statistics 2010/11 Panel 1990 1977 1998 1987

Standard deviation of log 1.18 0.93 0.80 0.85 1.06 1.16
75-25 log difference 1.39 1.22 1.97 1.22 1.41 1.55
90-10 log difference 2.89 2.35 2.50 2.22 2.72 2.77
Number of observations 7,505 608 – 164,971 95,980 31,602

Notes: Statistics for the household-farm productivity distribution reported from Malawi ISA 2010/11 in the first
column and the panel sample in the second column. The third column reports statistics for farm productivity in
the United Sates from the calibrated distribution in Adamopoulos and Restuccia (2014) to U.S. farm-size data. The
other columns report statistics for manufacturing plants in Hsieh and Klenow (2009). SD is the standard deviation
of log productivity; 75-25 is the log difference between the 75 and 25 percentile and 90-10 the 90 to 10 percentile
difference in productivity. N is the number of observations in each dataset.

To further minimize the impact of transitory shocks and potential measurement error, we exploit

the available waves to construct a panel data of farms described in Section 2. We restrict the panel

sample to those households who appear in the 2010/11 wave (the benchmark year for quantitative

analysis) and at least one of the 2013/14, 2016/17, and 2019/20 waves. Our approach to estimate

farm productivity using the panel data follows Chen et al. (2021) and Adamopoulos et al. (2021).

In essence, we separately estimate farm productivity sit as in the cross-section for all four waves of

the data and then use these values to estimate a household-farm fixed effect which we denote by s̄i.

This household-farm productivity fixed effect is devoid of time and other transitory variations.

Table 3, second column, reports statistics on s̄i estimated using our panel data with this approach.
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The dispersion of farm productivity is substantially lower than our cross-sectional results, and it is

also lower than that of the U.S. agriculture or that of China and India’s manufacturing plants. We

hence conclude that the panel data provides a more conservative estimate of farm productivity and

we also use it to assess the productivity cost of misallocation in the next section.

4 Quantitative Analysis

We assess the extent of factor misallocation across farms in Malawi and its quantitative impact

on agricultural productivity. We do so without imposing any additional structure other than the

farm-level production function assumed in the construction of our measure of household-farm pro-

ductivity. We then evaluate the robustness of our main results with respect to values of factor shares,

different elasticity of substitution between capital and land in production, crop composition, and

potential measurement error.

4.1 Efficient and Actual Allocations

As a benchmark reference, we characterize the efficient allocation of capital and land across a fixed

set of heterogeneous farmers that differ in productivity si. A planner chooses the allocation of

capital and land across a given set of farmers with productivity si to maximize agricultural output

given fixed total amounts of capital K and land L. The planner solves the following problem:

Y e = max
{ki,ℓi}

∑
i

si(k
α
i ℓ

1−α
i )γ,

subject to

K =
∑
i

ki, L =
∑
i

ℓi.
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The efficient allocation equates marginal products of capital and land across farms and has a simple

form. Letting zi ≡ s
1/(1−γ)
i , the efficient allocations are given by simple shares of a measure of

productivity (zi/
∑

zi) of capital and land:

ke
i =

zi∑
zi
K, ℓei =

zi∑
zi
L.

We note for further reference that substituting the efficient allocation of capital an land into the

definition of aggregate agricultural output renders a simple constant returns to scale aggregate

production function for agriculture on capital, land, and agricultural farms given by

Y e = AN1−γ
a

(
KαL1−α

)γ
, (2)

where A = z̄1−γ is measured total factor productivity, Na is the number of farms, and z̄ =
∑

i zi/Na

is average productivity of farmers. For our benchmark, we choose α and γ consistent with the

production function used in constructing our measure of farm-level productivity, α = 0.67 and

γ = 0.54, values chosen to match the capital and land income shares in U.S. agriculture. The total

amount of capital K and land L are the total amounts of capital and land across the farmers in the

data. Farm level productivity si’s are given by our measure of farm TFP from data as described

previously.

We illustrate the extent of factor misallocation in Figure 1, where we contrast the actual allocation

of land and capital and the associated factor productivities by farm TFP with the efficient allocation

of factors and factor productivities across farms. Each (blue) dot represents a household farm in

the data whereas the (red) dashed line represents the efficient allocation. The (blue) solid line is the

best fit of the data. In the efficient allocation, operational scales of land and capital are increasing in

farm productivity so that factor productivities are constant across farms. The patterns that emerge

in comparing the efficient allocation with actual allocations are striking as the efficient allocation

contrasts sharply with the actual allocation of capital and land in Malawi. The data show that
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operational scales of land and capital in farms are unrelated to farm productivity.

Figure 1, panel (a), shows the amount of land operated by each farm against farm productivity

using our baseline measure of productivity that adjusts for rain and quality as described previously.

Contrary to the efficient allocation where there is a tight mapping between land size and TFP,

actual land in farms is essentially uncorrelated to farm TFP, the correlation between land size

and productivity is 0.17. This pattern implies that the average (or marginal) product of land is

not equalized across farms as it would be the case in the efficient allocation. Figure 1, panel (b)

documents the marginal product of land (which in our framework is proportional to the output

per unit of land or yield) across farms, which is strongly positively related to farm TFP with a

correlation (in logs) of 0.89.

Figure 1, panel (c), documents the relationship between the amount of capital in farms by farm

productivity. As with land, capital and productivity across farms are essentially unrelated, the

correlation between the two variables is 0.02. And this pattern implies an increasing marginal

product of capital with farm TFP which we document in panel (d) with a correlation between these

variables (in logs) of 0.89. Although not documented in the figure, the data indicates that the capital

to land ratio is essentially unrelated to farm productivity, with a slight negative correlation between

these variables(−0.13). This finding suggests that larger farms use more capital but since larger

farms are not more productive on average, the capital to land ratio remains roughly constant with

respect to farm TFP. Figure 1 reports variables using the Malawi ISA 2010/11 cross-sectional wave,

however, the patterns remain remarkably similar if we use instead the panel data. For instance, the

log correlation between land size and productivity is 0.21 in the panel sample compared to 0.17 in

the 2010/11 cross-section (see Appendix B.1.)

Regarding land, we emphasize that the land market is largely underdeveloped in Malawi. The pro-

portion of household-farms that do not operate any marketed land is 84.5%. These are households

whose land was granted by a village chief, was inherited or was given as bride price. The remaining
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Figure 1: Land Size, Capital, MPL and MPK: Actual and Efficient Allocations

(a) Land Size vs. Farm Productivity
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(b) MPL vs. Farm Productivity
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(c) Capital vs. Farm Productivity

-1
0

-5
0

5
10

C
ap

ita
l (

A
cr

es
 p

er
 H

ou
r, 

in
 lo

gs
)

-4 -2 0 2 4
Farm productivity (in logs)

(d) MPK vs. Farm Productivity
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Notes: Panel (a) reports actual and efficient land operational size in farms li with respect to farm productivity si.
Panel (b) reports actual and efficient marginal product of land (MPL) with respect to farm productivity si. Panel
(c) reports actual and efficient capital in farms ki with respect to farm productivity si. Panel (d) reports actual
and efficient marginal product of capital (MPK) with respect to farm productivity si. Each (blue) dot represents a
household farm in the data whereas the (red) dashed line represents the efficient allocation. All variables have been
logged. Data are for the 2010/11 cross-sectional wave.
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15.5% of farm households operate some land obtained from the market, either rented or purchased,

and the proportion of household-farms whose entire operated land was obtained in the market is

9.8%. In this context, our finding that the actual allocation of land across farmers in Malawi is un-

related to farm productivity is consistent with the institutional setting where the amount of land in

farms is more closely related to inheritance norms and redistribution, and access to land is severely

restricted in rental and sale markets so more productive farmers cannot grow their size.

Capital is also unrelated to farm productivity with the capital to land ratio being roughly constant

across farm productivity. Our interpretation of this fact is that restrictions to land markets are

also affecting capital allocations echoing de Soto (2000)’s findings that land market restrictions

and insecure property rights of farmers limit the ability to raise capital for agricultural production

(Besley and Ghatak, 2010).

To relate our findings with the broader literature on misallocation, we compute a summary measure

of distortions which are implicit in the nature of land distribution and frictional reallocation. As

in Hsieh and Klenow (2009), we compute farm revenue productivity (TFPR) as the ratio of output

to composite input, that is

TFPRi =
yi

kα
i ℓ

1−α
i

This is a summary measure of distortions since it equalizes across farms in an efficient allocation.

The dispersion in this measure of distortions is quite high in Malawi, a standard deviation of log of

1.22. In addition, distortions are quite correlated with farm productivity, a correlation of log farm

TFPR and log farm TFP of 0.94. Using instead the panel sample, the dispersion in distortions falls

to 0.99 but the correlation between distortions and farm productivity remains quite high 0.90.

Our findings constitute strong evidence of land and capital misallocation across farmers in Malawi.
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4.2 Aggregate Output Gain

To assess the impact of misallocation on agricultural productivity, in what follows we report the

aggregate output gain defined as the ratio of efficient to actual aggregate output,

Y e

Y
=

Y e∑
yi
,

where Y e is efficient aggregate agricultural output defined previously and Y is actual agricultural

output aggregated from farm-level output yi using the production function in equation (1) with our

measure of farm productivity and the actual amounts of capital and land operated by each farm.

This is a standard measure of the cost of misallocation in the literature (Hsieh and Klenow, 2009).

Recall that the computation of actual output at the farm level abstracts from rain and land quality

and hence is comparable to the efficient output described previously since our measure of farm

productivity si is purged of rain and land quality effects. Because the efficient output takes as given

the total amounts of capital, land, and the number of farmers observed in the data, the output gain

is also an agricultural TFP gain. Note that Hopenhayn (2014) proposes a measure of misallocation

which summarizes on average how much factors are distorted relative to the efficient benchmark

weighted by farm productivity:
∑

(ki/k
e
i )

αγ(ℓi/ℓ
e
i )

(1−α)γzi/
∑

zi. This measure is exactly the inverse

of our calculated output gain.

Table 4, panel (a), reports the main results. For the full cross-sectional sample in Malawi, the

output gain is 2.82-fold, that is, if capital and land were reallocated to their efficient use, aggregate

output and hence productivity would increase by 182 percent. This is a very large increase in

productivity as a result of a reduction in misallocation compared to results when evaluating specific

policies which have found increases on the order of 5 to 30 percent (Restuccia and Rogerson,

2017), and somewhat larger than the gains when eliminating plant-level wedges in manufacturing

in China and India ranging between 100 to 160 percent (Hsieh and Klenow, 2009). Given that

the productivity dispersion across farms in Malawi is similar to that of manufacturing plants in
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China and India, a larger reallocation gain suggests that resources across farms in Malawi are more

misallocated than across pants in those other countries. Not only is the standard deviation of log

revenue productivity in Malawi 1.22 higher than those in the case of India and China 0.67-0.74, but

also inputs are essentially no correlated with farm TFP in Malawi whereas the input correlation is

higher in those other countries. Because we have a large sample, our mean output gain is tightly

estimated with a standard error of 0.19 obtained from bootstrap estimates.

Table 4: Agricultural Output Gain (Y e/Y a)

Cross-section Panel data
2010/11 FE si + FE inputs

(a) Nationwide reallocation 2.82 1.96 1.67
(0.19) (0.22) (0.14)

(b) Local reallocations
Regions 2.78 1.80 1.60

(0.19) (0.14) (0.11)
Districts 2.68 1.57 1.48

(0.15) (0.08) (0.06)
Traditional authority 2.32 – –

(0.09)
Enumeration areas 1.84 – –

(0.05)
(c) Across productivity-si variation 2.38 1.51 1.52

(0.15) (0.13) (0.13)

Number of observations 7,505 608 608

Notes: Aggregate output gain as the ratio of efficient to actual output in various setups. Panel (a) reports nationwide
reallocation. Panel (b) reports reallocations within narrower definitions of geographical areas. We drop areas with
fewer than 5 household-farm observations. Panel (c) reports output gains associated with across productivity-si vari-
ation. The first column are results for the 2010/11 cross-section, and the second and third columns are results using
the panel data, where we estimate household-farm productivity fixed effects and household farm productivity and
inputs fixed effects. We omit reallocation results within traditional authority and enumeration areas due to sample
size. Confidence intervals in brackets are obtained from bootstrap with 1,000 repetitions drawn with replacement
clustered at the enumeration area level.

We also calculate the output gain from reallocation within narrower definitions of geographical

areas. Specifically, we calculate the output gain of an efficient reallocation of resources within

each geographical area, and report the weighted average of output gains among all areas, using

the actual aggregate output in each area as weight. In addition, narrower geographic definitions
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provide additional land quality controls, see Larson et al. (2014) for a similar strategy. The results

are reported in Table 4. The output gain is lower when restricting factor reallocation within narrower

geographical areas, but even with the narrowest geographical definition (enumeration areas), the

output gain is still substantial 1.84-fold, i.e., reallocating resources within each enumeration area

comprising about 16 households and about 30 acres of geographically connected land, increases

agricultural output by 84 percent. We find similar results using median geographical areas.

Factor inputs are severely misallocated in Malawi, implying the large aggregate productivity gains

just discussed. There are two features of factor misallocation in Figure 1, panels (a) and (c): factor

inputs are dispersed among farmers with similar productivity (misallocation in factor inputs within

si productivity types) and factor inputs are misallocated across farmers with different productivity

(which lowers the correlation of factor inputs with farm productivity). We argue that factor input

variation within a farm-productivity type is not likely due to measurement error as factor inputs

in farms such as land are measured with relative precision via GPS. Nevertheless, we can assess

the magnitude of the aggregate output gain associated with no dispersion in factor inputs within a

productivity type as if this variation was all due to errors. We remove within-s variation in factor

inputs by regressing separately log land and capital on a constant and log farm productivity s and use

the estimated relationship to construct measures of factor inputs that remove the residual variation.

The results for the across si misallocation are reported at the bottom of Table 4. Reallocating

resources across different productivity farms si implies an output gain that is still substantial 2.38-

fold (compared with 2.82-fold across all farms). This implies that 84 percent (log(2.38)/log(2.82))

of the overall output gain is due to misallocation across farmers with different productivity, with

16 percent due to variation across farms with the same productivity.

We further calculate the output gain using our panel data. Recall that we have four waves of data:

2010/11, 2013/14, 2016/17, and 2019/20. We separately estimate household-farm productivity for

each of the four waves and then estimate a household-farm fixed effect, which is devoid of time

and other transitory variations including potential measurement error. We then use these fixed-
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effect estimates of farm productivity together with capital and land input information from the

2010/11 wave to assess the output gain from reallocation. The results are reported in the second

column of Table 4. The output gain associated with nationwide reallocation is 1.96-fold, which is

lower than the cross-sectional estimate but still quite substantial. Since the fixed-effect estimates of

productivity abstract from transitory variation the lower output gain of reallocation is potentially

a conservative estimate of the cost of misallocation.

We also use the panel data to estimate household-farm fixed effects for inputs, in addition to farm

productivity. This specification further reduces variation in inputs which may be real or due to

potential measurement error. The results are reported in the third column of Table 4. The output

gain from nationwide reallocation is 1.67-fold in this case. Comparatively, this reallocation gain is

similar in magnitude to the nationwide reallocation in China (53 percent) that features a land insti-

tution similar to that in Malawi (Adamopoulos et al., 2021). We note that this specification could

potentially under-estimate output gain since we abstract from overtime variations in productivity

and input—for instance, land expropriation and land adjustment can be frequent in the developing

world while these are averaged out in this specification. Nevertheless, even in this case the out-

put gain remains quite substantial, corroborating the importance of misallocation in agriculture in

Malawi.

4.3 Robustness

Factor Shares. We restrict agricultural factor shares to those in the United States in our baseline

measure of farm productivity to limit the impact of factor-market distortions in Malawi on our

estimates. However, the production technology of the U.S. agricultural sector might differ from

that in Malawi due to their different stage of development (Chen, 2020). To address this issue, we

use household-farm rented-in land and capital payments reported in our micro data to compute,

respectively, the land and capital share of income for the agricultural sector in Malawi and then
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use these factor shares to redo our measures of productivity and reallocation gains. Specifically, we

measure factor shares of output using the average rental rates of land and capital. We compute

these rates as the ratio of factor rental payments to the factor stocks from the sample of farms

that rent-in capital and land. Then we use these rental rates to impute the land and capital rental

income for all farms in the entire sample. This implies an average capital share of income of 0.18

and an average land share of income of 0.37. With these factor shares, the output gain in the full

sample is 2.78-fold, close to the 2.82-fold in our baseline calibration. We hence conclude that our

results do not depend crucially on factor shares using Malawi data.

Rather than factor shares of capital and land, the results are more sensitive to the implied income

share of labor. This is because in our framework, the share of labor is determined by the extent of

decreasing returns in the farm production function γ. In the misallocation literature, there is not

a lot of guidance as to the exact value of this parameter. A large quantitative literature consid-

ers values between 0.8-0.85 (e.g. Restuccia and Rogerson, 2008), whereas monopolistic competition

frameworks such as that in Hsieh and Klenow (2009) and Yang (2021) consider a preference curva-

ture parameter that maps into decreasing returns from 0.5 to 0.67 (for an exposition of this mapping

see Hopenhayn, 2014). The value of γ is 0.54 in our baseline calibration to U.S. shares (and 0.55

using using factor shares from Malawi data above). Hence, our calibration estimates are relatively

low compared to the values typically considered in the literature. For each value of γ, we recompute

farm productivity and the output gains from reallocation. While the output gains become small

for small values of γ, in the range of plausible values, i.e., 0.4, 0.5, 0.6, 0.7, and 0.8, the output

gains are 1.85, 2.45, 3.52, 5.60, and 9.86-fold, respectively. That is, using values of γ closer to those

considered in other studies outside agriculture would substantially increase the output gains from

reallocation.

Technology. We also explore a constant elasticity of substitution (CES) production technology

instead of the Cobb-Douglas specification and find that our results remain fairly robust to different
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values for the elasticity of substitution between capital and land. Specifically, we consider the

following technology:

yi = si

(
αk

ε−1
ε

i + (1− α)ℓ
ε−1
ε

i

)γ ε
ε−1

,

where γ = 0.54 and α = 0.67 to match the baseline parameter values. In this specification ε

is the elasticity of substitution between capital and land. An elasticity of substitution of ε =

1 matches our baseline Cobb-Douglas production function. We experiment with two values of

the elasticity of substitution: more substitutability than Cobb-Douglas which we set to ε = 1.32

following Binswanger (1974) and Adamopoulos and Restuccia (2014), and less substitutability which

we set to ε = 0.10 (note perfect complementarity is ε = 0). The output gain associated with

nationwide reallocation is 3.06-fold and 2.74-fold in these two alternative specifications, quite similar

to the output gain of 2.82-fold in our baseline specification.

Another concern regarding the agricultural technology is the potential limit of capital and land

that a farmer can operate. This is closely related to the choice of the span-of-control parameter

γ that governs the relationship between the optimal operational scale and farm productivity. In

our baseline experiment, the efficient allocation implies that the largest farm operates around 321

hectares. To provide context on the magnitude of this operational scale, we note that in 2007 U.S.

Census of Agriculture, the average farm size is 169 hectares and around 8 percent of farms operate

more than 400 hectares. As a result, a farm size of 321 hectares is well within a technological

possibility. Nevertheless, we assess the sensitivity of the efficient reallocation gains to the extent of

large operational scales.

We consider a “technological” farm-size ceiling in the efficient allocation, that is we consider a

maximum amount of capital and land that a farmer can operate so that the ceiling does not affect

the capital-to-land ratio. We consider three types of ceilings: (1) no farm can operate more than 12

hectares, which is the largest farm size observed in our cross-sectional 2010/11 sample in Malawi,

(2) no farm can operate more than 5 times their current land input, and (3) no farm can operate
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more than 2 times their current land input. Note that these “technological” limits are substantially

more restricted than observed farm sizes in the U.S. data, and hence are conservative in terms of

technology capacity. We find output gains are 2.37, 1.84, and 1.49-fold in each of these scenarios.

We conclude that even with restrictive farm-size capacity, the gains from an efficient allocation of

resources are still substantial.

Misallocation within crops. In our data, most of the agricultural land, around 80 percent, is

devoted to maize production. Maize, cassava, and potatoes are the main crops produced in Malawi

in terms of volume with roughly equal amount in tonnes, but it is maize that occupies the vast

majority of cropland. The importance of maize further appears in terms of the household diet in

Malawi where about 65% the average daily calorie intake in rural areas is obtained from maize

(de Magalhães et al., 2019). Since the technology and optimal farm operational scale may differ

across crops, we assess whether the magnitude of output gain differs across farms producing maize

or other crops.

We consider reallocation among farmers who produce only maize, which represents about 25 percent

of farmers in our data. An efficient reallocation of resources among maize farmers implies an output

gain of 2.78-fold, very similar to the 2.82-fold gain in the baseline. We also consider reallocation

among farmers that produce a positive amount of maize or that maize production share is above

the median of all farms. The output gains in these cases are 2.85 and 2.72-fold, again similar to our

baseline specification. Reallocation among farmers who mainly produce non-maize, that is farmers

whose maize production share is below the median of all farms, implies an output gain of 2.61-fold.

We hence conclude that crop composition and the dependence of maize production in Malawi are

not critical in determining the the extent and cost of factor misallocation in Malawi agriculture.

Measurement error. There are relevant concerns regarding the potential for measurement error

in survey data, especially in small-scale agriculture (e.g. Deininger et al., 2012; de Nicola and
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Giné, 2014). For instance, existing studies document potential measurement problems associated

with yields (Lobell et al., 2020), labor input (Arthi et al., 2018), fertilizer quality (Bold et al.,

2015), self-reported output and land (Desiere and Jolliffe, 2018), together with specific concerns on

underreporting and recall bias (de Magalhães and Santaeulàlia-Llopis, 2018). Despite good quality

data, our data are not free of these concerns. More specifically, measurement error may manifest

itself as dispersion in estimated farm TFP and hence the calculated output gain may be affected

by measurement error. Our analysis attempts to address these concerns of measurement error by

estimating household-farm fixed effects using the panel data that control for transitory variation and

potential measurement error. We indeed find smaller output gains in the panel specifications even

though they are still sizeable. In addition, our unit of analysis is the household farm whereas many

studies emphasize measurement error at the plot level (see Aragón et al., 2022, for a discussion of

the plot versus the farm in assessing misallocation in agriculture). The evidence suggests that farm-

level observations may feature less measurement error than plot-level observations. Nevertheless, in

this section, we explore to what extent our results may still be affected by measurement error. We

conduct several counterfactual experiments to assess the potential role of measurement error and

summarize our findings. Appendix B contains a more detailed description of this analysis.

To start, we assess the role of recall bias in the data by focusing on those farmers whose survey

date is within four months of the time they finish harvest. Recall bias should be smaller among

these farmers. We find that, however, the calculated output gain is 2.78-fold among these farmers,

very similar to our baseline result of 2.82. This finding suggests that our results are unlikely to be

driven by recall bias. In addition, our measure of capital relies on household’s estimate of the resale

value. To investigate how sensitive our results are to this measure, we consider an extreme case by

setting the elasticity of capital in the production function to zero. We find an output gain of 2.96

in this case, again similar to our baseline result of 2.82.

We also assign actual inputs (ki, ℓi) to different farmers that differ in their farm TFP {si} following

perfectly positive and negative assortative assignments. Note that in each case, the distribution
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of inputs is as in the data, but the different assignments create different amounts of misallocation.

The implied output gain associated with resource reallocation ranges from 1.35-fold in the case of

perfectly positive assortative matching between inputs and productivity to 5.38-fold in the case

of perfectly negative assortative matching. Our baseline output gain of 2.82-fold lies in between,

largely because of the low correlation between farm inputs and productivity observed in the data.

We also explore a structural model to allow for a more explicit role of measurement error. We ask,

given our most conservative output gain of 1.67-fold associated with fixed effect estimates of inputs,

outputs, and productivity. If we believe that this output gain is still largely driven by measurement

errors, and the inputs and outputs are all observed with additive measurement errors, how large

should measurement errors be if the true output gain is instead, say, half of this level? In other

words, this experiment informs us of the elasticity between the magnitude of measurement errors

and the calculated output gain. It turns out that measurement error needs to be very large such that

the true output gain is half of the calculated number. Specifically, the model implies the variance

of (log) observed land input (with measurement error) to be almost twice of that of true land input

(without measurement error). We think this is unlikely since farm land input is measured via GPS.

We conclude that it is unlikely that measurement error is driving our main result of a substantial

output gain associated with a more efficient allocation of resources in Malawi agriculture, a conclu-

sion that is in line with recent studies of the agricultural sector applying panel methods to assess

measurement error (Adamopoulos et al., 2021; Aragón et al., 2022).

5 Discussion

We discuss our results by relating misallocation to the extent of land markets in Malawi and

developing the implications of misallocation for agricultural income inequality.
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5.1 The Role of Land Markets

We find strong evidence of capital and land misallocation in the agricultural sector in Malawi. We

now provide suggestive evidence connecting factor misallocation with limited market for land in

Malawi. We use plot-level information about how each plot of land was acquired by the household

and group household-farms by the share of land operated that is marketed, that is land that is

rented in. In the 2010/11 wave of data, we find that 84.5 percent of all household farms operate only

non-marketed land and the remaining 15.5 percent operate some marketed land, with 9.8 percent

operating exclusively marketed land. Marketed land represent about 22 percent of cultivated land

in Malawi. Note that our classification of marketed land is generous in terms of the potential for the

market to direct resources to best use since many land exchanges are between family and relatives,

more than half of rented in land involve zero rental price, and the size of rented land is relatively

small given that farmers only have user rights of land to meaningfully separate land use from land

rights.

Nevertheless, we use the efficient allocation calculated in Section 4 to separately calculate the output

gain for farmers with marketed land and without. The output gain is 2.95-fold for farmers without

marketed land, slightly higher than our baseline gain of 2.82-fold, while the output gain is 2.37-fold

for farmers with some marketed land. The output gain for farmers that only operate marketed land

is even lower, 1.96-fold. Note that the difference in output gain across groups may reflect differences

in misallocation or in the farm TFP distribution. We hence consider an alternative characterization

of the role of land rentals on misallocation. We construct a measure of farm misallocation as the

ratio of efficient to operated land input and regress this ratio (in log) on a dummy variable indicating

the use of marketed (rent-in) land controlling for farm TFP. We find that farm misallocation, as

the ratio of efficient to operated land, decreases significantly by 17 percent with marketed land.

Even though we find a reduction in the extent of misallocation among farms operating marketed

land, these farms are still quite far from operating at their efficient scale, that is there remains
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substantial gains to reallocation even for farms that only operate marketed land. For instance, the

correlation between land size and farm TFP is 0.15 for farms with no marketed land, 0.22 for farms

with some marketed land, and 0.26 for farms that operate only marketed land, while the efficient

allocation requires a correlation of one. This is consistent with evidence in other African countries

with similar restrictive land institutions where the extent of rental markets remain low and not fully

effective in allocating resources to best use (Chen et al., 2021).

In this regard, there is recent causal evidence on the importance of land institutions and rental

markets for misallocation in the agricultural sector, for instance, a property-rights reform associated

with digitization of land titles in Pakistan (Beg, 2022), a rural land contracting law in China that

formalizes leasing rights (Chari et al., 2021), and a land certification reform in Ethiopia (Chen

et al., 2021). In all these studies, the reform induces more land rental activity that improves

resource allocation and productivity in the agricultural sector.

5.2 Income Inequality Implications

Unlike the actual distribution of factors in the Malawian economy which is fairly uniform across

farmers with different productivity, the efficient allocation implies a substantial increase in the

dispersion of operational scales, in terms of the distribution of operated capital and land across

farmers. This important redistribution of factors across farmers may lead to concerns over the

distributional implications of reform, especially if the actual allocation of factors reflect policy and

institutional choices motivated to alleviate poverty and distributional considerations.

We assess the distributional implications of efficient operational scales. Table 5 reports the actual

and efficient distribution of factors, output, and income across farmers by productivity. Whereas

the actual distribution of land across farm TFP is fairly uniform, the efficient distribution implies

that the top quintile of farm TFP operates almost 5 times of the average size, representing 97

percent of the total land. This implies a substantial redistribution of factors to achieve higher
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levels of agricultural productivity. We note that despite relative equalization of factor inputs across

farmers, the actual distribution of income is widely dispersed in Malawi, in fact as dispersed as

the distribution of productivity. For instance, taking agricultural output as a measure of farm

income, the ratio of top to bottom quintile of income is a factor of 35-fold even though the ratio of

capital and land inputs is within a factor of 1 to 2-fold. This suggests equalizing inputs across farm

households is not effective in equalizing incomes. This insight should not be entirely surprising since

our analysis indicates substantial heterogeneity in the productivity of farms to generate income with

similar amounts of inputs.

To gauge the distributional effects on agricultural income of efficient factor reallocation we pursue

the following counterfactual. We consider the actual distribution of factors as endowments and allow

the efficient allocation to be achieved via perfectly competitive rental markets. Given competitive

rental rates of capital and land that clear the capital and land markets, we compute the income

associated with the efficient allocation which is given by the farm’s operating income plus factor

rental income as:

counterfactual income = ye + rk(k
a − ke) + rl(ℓ

a − ℓe),

where ye is efficient output, (ka, ℓa) are the actual allocations of capital and land which we take as

endowments and (ke, ℓe) are the efficient allocations, and rk and rl are the equilibrium prices that

support the efficient allocation as a competitive equilibrium. Table 5 reports the results for this

counterfactual income compared with income inequality associated with actual agricultural output.

Not only farmers at the lower end of the productivity (and income) distribution benefit the most

from the increase in the return to factors, but also overall inequality declines by more than 40

percent in terms of the variance of log agricultural income (from a variance of 1.7 to 1.0 in the

counterfactual). More dramatic are the changes in income across the richest and poorest households.

Whereas the ratio of income between farmers in the top and bottom quintiles is a factor of 35-fold

in the actual allocation, the ratio falls to 5.9-fold in the counterfactual income associated with

30



Table 5: Actual and Efficient Distributions of Land, Capital, Output, and Agricultural Income

Productivity Partition (Quintiles) var
1st 2nd 3rd 4th 5th (lnx)

Farm productivity (si) 0.11 0.29 0.51 0.88 3.21 1.40

Land (li)
Actual 0.80 0.83 0.90 1.00 1.46 0.66
Efficient 0.00 0.01 0.03 0.11 4.85 6.62

Capital (ki)
Actual 0.97 1.00 0.97 0.92 1.15 1.08
Efficient 0.00 0.01 0.03 0.11 4.85 6.62

Output (yi)
Actual 0.10 0.27 0.47 0.82 3.34 1.71
Efficient 0.00 0.01 0.03 0.11 4.85 6.62

Agricultural income
Actual 0.10 0.27 0.47 0.82 3.34 1.71
Counterfactual 0.50 0.51 0.53 0.56 2.91 1.01
Ratio 18.72 4.34 2.53 1.66 1.63 –

Notes: Household farms are ranked by farm productivity si and grouped in quitiles. Land, capital, output, and income

are in per hours terms and normalized by their mean. Actual income is the sum/net of agricultural output and factor

income/payments whereas counterfactual income is computed assuming actual allocations are the endowments and

the efficient allocation is achieved via perfectly competitive rental markets. Ratio refers to counterfactual to actual

agricultural income. Data for Malawi ISA 2010/11.

the efficient allocation, that is income inequality among these farmers falls by a factor of at least

6-fold. Moreover, while the ratio of efficient to actual income increases for all groups of household

farms, the increase is larger and quite substantial for the poorest farmers, a 18.7-fold increase in

agricultural income in the first quintile, suggesting the potential for poverty reduction associated

with this hypothetical reform.

We conclude that well-functioning rental markets for capital and land to achieve the efficient allo-

cation of operational scales can lead to substantial increases in agricultural productivity as well as

important reductions in income inequality and poverty.
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6 Conclusions

There is substantial misallocation of land and other complementary factors in the agricultural sector

in Africa. Using detailed nationally-representative household-farm level data for Malawi, we show

that a reallocation of land (and capital) to their efficient use increases agricultural output and

productivity by a factor of 2.82-fold. We show that this large gain in agricultural productivity in

Malawi is not due to overly dispersed farm TFP compared with dispersion across establishments in

other sectors or in more developed countries. Instead, the large output gain is due to severe factor

misallocation. We find that land size (and capital) are essentially unrelated to farm TFP. This

result is not entirely surprising given the egalitarian nature of land-use distributions irrespective

of productivity and weak property rights over land in Malawi. Moreover, when using the available

panel data to estimate household-farm fixed effects of productivity and inputs that control for time

and transitory variations such as potential measurement error, the agricultural output gain is still

quite substantial, between 1.7 to 2.0-fold. We show that reallocation gains remain substantial even

when we consider alternative production parameters, more flexible technologies, and control for

crop production differences.

Our assessment of misallocation focuses on the aggregate productivity cost associated with actual

allocations, whereas in practice these allocations arise from institutions designed to deal with in-

surance or equity considerations. Clearly, these are relevant issues that must be considered more

broadly. Nevertheless, regarding income inequality, we emphasize how equalizing inputs is not ef-

fective at equalizing agricultural incomes in this context since households are heterogeneous in their

ability to generate income with the same inputs. We show that an efficient reallocation of inputs

can not only attain a large aggregate productivity gain, but also a large reduction in agricultural

income inequality and poverty. The reason for these distributional gains is that the poorest agricul-

tural households happen to be the least productive and hence benefit the most from secure property

rights and the rental income associated with an efficient allocation. Our findings point to a press-
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ing need to facilitate the reallocation of land and other factors of production to more productive

uses, which requires well-defined property rights over land and the development of well-functioning

land and complementary markets. What policies and institutions are best in supporting a better

allocation of resources in the agricultural sector is of crucial importance for future research.

We also emphasize that the increase in agricultural productivity from the efficient reallocation of

factors would trigger of a profound process of structural transformation by which the agricultural

sector in Malawi could approach levels of farm size and sectoral employment shares similar to that

of industrialized countries (Adamopoulos and Restuccia, 2014). In this context, an important area

for future research is the set of policies and institutions that would facilitate the movement of labor

out of agriculture and into non-agricultural sectors in this process. Moreover, while our analysis

takes farm productivity as given, it may also be of interest to assess the dynamic implications

of misallocation. For instance, the situation where a reduction in misallocation would encourage

productive farmers to grow by utilizing modern inputs (mechanization, chemical seeds, and other

intermediate inputs) and by investing in better farm management practices (see Restuccia and

Rogerson, 2017, for a discussion on the importance of the dynamic implications of misallocation).

Similarly, while the gains from the reallocation of agricultural inputs across wives and husbands

within farm households are relatively small (Udry, 1996) compared to the gains from reallocation

across households that we find, the quantitative role of women—who are potentially more restricted

in land (and capital) inputs than men in many parts of the world—in understanding productivity

differences across farms remains an important open question. We leave these important extensions

of our analysis for future research.
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Appendix

A Data

The Malawi Integrated Survey of Agriculture (ISA) is part of a new generation of household surveys

funded by the Bill & Melinda Gates Foundation (BMGF) and led by the Living Standards Mea-

surement Study (LSMS) Team in the Development Research Group (DECRG) of the World Bank

to improve the quality and policy relevance of household-level data on agriculture in Sub-Saharan

Africa. The Malawi ISA incorporates an extended and comprehensive agricultural questionnaire on

agricultural production and factor inputs, including land quality and rain.

Land size and land quality. We measure household land as the sum of the size (in acres) of each

household’s plot used for cultivation. We include rented-in land in household land size. For the

vast majority of plots, the acres per plot are recorded using GPS with precision of 1% of an acre.

For the remaining plots, size is self-reported with an estimate from the household. This leaves

virtually no room for error in our measure of land input, see a detailed assessment in Carletto et al.

(2013). The data also contain detailed information on the quality of land for each plot used in

each household. We consider all 11 dimensions of land quality available: elevation, slope, erosion,

soil quality, nutrient availability, nutrient retention capacity, rooting conditions, oxygen availability

to roots, excess salts, topicality, and workability. The slope (in %) and elevation (in meters) are

continuous variables while the rest of land quality variables are categorical such as terrain roughness

(plains, lowlands, plateaus, hills, mountains), erosion (1 none, 2 low, 3 moderate, 4 high), nutrient

availability, nutrient retention, rooting conditions, oxygen to roots, excess of salts, toxicity and

workability (1 constraint, 2 moderate constraint, 3 severe constraint and 4 very severe constraint).

These measures are largely from geographical information system such as the Harmonized World

Soil Database.

Our benchmark land quality index is defined per household as the predicted value of output (net of

rain effects which we discuss in the next Section) generated by the joint behavior of all dimensions

of land quality controlling for capital and land size, see the first column in Table A-1. We also

explore alternative definitions of the land quality index in Table A-1 that depend on the number

of land quality dimensions that we incorporate and on the way we control for capital and land.

A reassuring aspect of our land quality index, defined from physical measures (e.g., erosion, soil

quality, etc.), is that it is positively related to land prices, see Table A-2. Finally, we perform a

robustness analysis of our reallocation results with respect to our entire set of land quality indexes
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without substantial changes in our findings, see Table A-3.

Table A-1: Land Quality Index and Its Dimensions

Land Quality Index

Benchmark Alternative Definitions
Dimensions: q0 q1 q2 q3 q4 q5

Elevation ✓ ✓ ✓ ✓ ✓ ✓
Slope ✓ ✓ ✓ ✓ ✓ ✓
Terrain roughness ✓ – ✓ – ✓ –
Erosion ✓ – ✓ – ✓ –
Nutritient availability ✓ – ✓ – ✓ –
Nutritient retention ✓ – ✓ – ✓ –
Rooting conditions ✓ – ✓ – ✓ –
Oxygen to roots ✓ – ✓ – ✓ –
Excess salts ✓ – ✓ – ✓ –
Toxicity ✓ – ✓ – ✓ –
Workability ✓ – ✓ – ✓ –

Additional controls:
Capital ✓ ✓ – – ✓ ✓

(Const.) (Const.)

Land size ✓ ✓ – – ✓ ✓
(Const.) (Const.)

Note: Summary definitions of different measures of land quality index. Our benchmark measure utilizes all 11
dimensions of land quality in addition to elevation and slope, controlling for capital and land size. For alternative
measures q4 and q5, we control for capital and land size but restrict the coefficients to be identical to capital and
land shares.

Rain. It is important to control for unanticipated temporary output shocks that can contribute to

explain the variation in output and productivity across households in the data. Rain shocks are

among the most important shocks in agriculture. We use the annual precipitation which is the

total rainfall in millimetres (mm) in the last 12 months. Our benchmark measure of output (value

added) is net of the rain effects. Specifically, we group observations into 10 bins sorted by their

observed level of rain, and then regress the (log) value added on rain deciles to net the effect of rain

shocks. As rain might be more relevant in some months than others we also tried to control for an

alternative measure of rain, the wettest quarter within the last 12 months. We find an output gain

of 2.88, similar to 2.82 in our baseline.

Labor. In Malawi, not only the household head but also a large proportion of the households

members, which average 4.6 per household, contribute to agricultural work. The household head
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Table A-2: Land Quality Index and Land Price

Land Quality Index

Benchmark Alternative Definitions
q0 q1 q2 q3 q4 q5

Correlation with land price 0.189 0.200 0.202 0.204 0.196 0.196

Notes: Rank correlation between the land quality index q and the price of land computed as the self-reported
estimated land value (under the hypothetical scenario in which the owner sells the land). We separately calculate
this correlation for our benchmark measure of land quality and 5 alternative measures of land quality defined in
Table A-1. The correlation is significant at the one percent level for all land quality measures. Data from Malawi
ISA 2010/11.

Table A-3: Output Gain with Different Land Quality Indexes

Benchmark Alternative Definitions
q0 q1 q2 q3 q4 q5

Output gain 2.82 2.84 2.83 2.84 2.82 2.84

Notes: Output gain associated with our benchmark measure of land quality and 5 alternative measures of land
quality defined in Table A-1. Data from Malawi ISA 2010/11.

is identified as the person who makes economic decisions in the household (e.g., use of production

or transfers). We define household members as individuals that have lived in the household at

least 9 months in the last 12 months. These household members potentially include family (e.g.

children, spouses, siblings, and parents) and also non-relatives (e.g. lodgers and servants). Individual

information about each household member’s (including children) extensive and intensive margins

of labor supply is collected: (i) weeks worked, (ii) days per week, and (iii) hours per day, by plot

and by agricultural activities covering the entire agricultural production. For the hired labor and

free/exchange labor, we also observe number of days worked by men, women and children by plot

and activities. The detailed information on individual agricultural labor days through the entire

year avoids the seasonal component of labor supply; that is, we do not rely on data on labor

supply related to ‘last week/month’ behavior. Our benchmark measure of household labor supply

is aggregate days of all individuals (household members and non-members) supplied in all plots

cultivated by the household in the rainy season. To control for human capital, i.e., the fact that not

all hours might contribute the same to agricultural production, we construct household efficiency

units by weighting individual hours using the wages of hired labor by age and sex groups as weights.

We find that our results are robust to this alternative specification.

Capital equipment and structures. Agricultural capital equipment includes implements (i.e., hand
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hoe, slasher, axe, sprayer, panga knife, sickle, treadle pump and watering can) and machinery (e.g.

ox cart, ox plough, tractor, tractor plough, ridger, cultivator, generator, motorized pump, grain

mill, and others). Agricultural capital structures includes chicken houses, livestock kraals, poultry

kraals, storage houses, granaries, barns, pig sties, etc. To measure the capital stock per item we

use the estimated current selling price of capital items after conditioning on its use. We construct

the household agricultural capital stock by aggregating across all agricultural items. The use of

the selling price (not available in previous LSMS data) avoids the cumbersome perpetual inventory

method adjustment for the age of capital to impute current value from the value at the time of

purchase which requires recalling and depreciation assumptions by asset’s age. We note that we

observe a small set of farmers who have zero measured capital but report cultivated land and positive

production. This may be because the data do not record a common set of very small tools and

structures used by farmers. We hence follow Adamopoulos et al. (2021) and impute an amount of

capital to all farms representing the value of this set of small tools and structures, with the value

equal to 10% of the median of the calculated capital value.

Trimming strategy. The cost of misallocation summarized by the output gain is known to be sensitive

to extreme values of inputs and outputs. We trim our sample to exclude apparent extreme values.

Specifically, we trim the top and bottom 0.5% of each of output, land, capital, and estimated farm

TFP. This trimming strategy substantially reduces measured dispersion of farm TFP by between 9

to 16 percent: the variance of log farm TFP shrinks from 1.67 to 1.40 in the 2010/11 cross-section

and from 0.96 to 0.87 in the panel sample. In the context of the misallocation literature, trimming

is also potentially a conservative strategy if high productivity units should in fact be allocated more

inputs.

B Measurement Error and Misallocation

We assess the extent to which our results may be affected by measurement error through two ap-

proaches. First, we explore the panel dimension of the data to estimate household-farm fixed effects

of productivity and inputs that abstract from time and transitory variation, including potential

measurement error. Second, we explore additional counterfactual experiments to provide bounds

on the relevance of measurement error for output gains.
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B.1 Patterns of Misallocation with Panel Data

Recall that the patterns of misallocation illustrated in Figure 1 are characterized with the 2010/11

wave of cross-sectional data. We note that these patterns remain remarkably similar if we instead use

the panel sample. Figure A-1 illustrates the patterns using the panel data to estimate a household-

farm fixed effect of productivity. The correlation of farm productivity and inputs are very similar

in the cross-section and panel data, for instance, the log correlation of land input and productivity

is 0.17 in the cross-section and 0.21 in the panel, and similarly the log correlation of capital and

productivity is 0.02 in the cross-section and also 0.02 in the panel.

B.2 Recall Bias for Agricultural Production and Labor Input

In rural settings the underreporting of agricultural production is a recurrent issue for survey data

(Deaton, 1997; de Magalhães and Santaeulàlia-Llopis, 2018). There are two aspects of the Malawi

ISA design that help mitigate and study this issue. First, in many instances the survey provides

internal consistency checks (e.g., households are asked total sales, and also sales by crop and by plot;

the interviewer must check in situ that the two sums coincide or otherwise re-interview). Second,

the ISA collects data not only on agricultural production but also on consumption that includes

food consumption (in physical units) from own production. This provides a unique opportunity to

externally validate agricultural production using consumption data. In this context, a reassuring

result is that in rural household-farms that do not sell their agricultural production and have little

or no consumption purchases (i.e., about 50% of the entire rural sample), the reported agricultural

production and the reported consumption net of transfers imply very similar quantities, which

suggests a small scope for measurement error (from recall or elsewhere) in agricultural production,

see de Magalhães and Santaeulàlia-Llopis (2018).

Not only agricultural production is collected retrospectively, but also labor input. To further inves-

tigate the basis for potential recall bias in the collection of production and labor input, we note that

in Malawi there is only one main harvest associated with the only rainy season. We then re-conduct

our entire analysis for only the households farms that are surveyed shortly (i.e., within four months)

after harvest, the output gain is 2.78-fold which is only slightly lower than the 2.82-fold output gain

in our benchmark specification. This finding suggests that our results are robust to recall bias.
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Figure A-1: Patterns of Misallocation: Panel Specification

(a) Land Size vs. Farm Productivity

-1
5

-1
0

-5
0

La
nd

 S
iz

e 
(A

cr
es

 p
er

 H
ou

r, 
in

 lo
gs

)

-6 -4 -2 0 2
Farm productivity (in logs)

(b) MPL vs. Farm Productivity
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(c) Capital vs. Farm Productivity
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(d) MPK vs. Farm Productivity
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Notes: Panel (a) reports actual and efficient land operational size in farms ℓi with respect to farm productivity si.
Panel (b) reports actual and efficient marginal product of land (MPL) with respect to farm productivity si. Panel
(c) reports actual and efficient capital in farms ki with respect to farm productivity si. Panel (d) reports actual
and efficient marginal product of capital (MPK) with respect to farm productivity si. Each (blue) dot represents a
household farm in the data whereas the (red) dashed line represents the efficient allocation. Farm productivity is
the household-farm fixed effect while farm inputs are from the 2010/11 wave. All variables have been logged.
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B.3 Bounds of Output Gains

We design the following experiment to better understand the nature of the output gain. Suppose a

planner allocates the observed input sets {ki} and {li} to farmers in a particular fashion, holding

farm-level TFP unchanged, how large are the gains from reallocation? In other words, in this

experiment, we hold the marginal distributions of {ki}, {li}, and {si} constant but we allow for,

for instance, assigning li to an arbitrary farmer j.

The assignment with lowest possible output gain is positive assortative matching between inputs

and farm productivity, which yields an output gain of 1.35-fold. The highest possible output gain

is then obtained with negative assortative matching, which is 5.38-fold. Random assignment, which

means {ki, ℓi} are uncorrelated with {si}, yields an output gain of around 3.1-fold. Note that with

finite sample (7,505 observations) the output gain associated with this random assignment varies

with the particular draw of random numbers. This comparison highlights the importance of the

correlation. Our baseline output gain, 2.82-fold, is not much lower than that of random assignment.

This is exactly because in our data, the correlation between inputs and farm productivity is very

low, as documented in Figure 1.

B.4 A Structural Interpretation of Measurement Error

We estimate a structural model of measurement error to assess their potential importance in our

quantitative results. We denote true capital, land, and output as ki, ℓi, and yi. Capital and land

inputs are functions of true productivity zi:

ln(ki) = ζk ln(zi) + dki , ln(ℓi) = ζℓ ln(zi) + dℓi .

An efficient allocation implies ζk = ζℓ = 1 and dki = dℓi = 0. Hence ζk ̸= 1 and ζℓ ̸= 1 indicate

correlated distortions as in Bento and Restuccia (2017), while dki ̸= 0 and dℓi ̸= 0 indicate non-

systematic distortions.

We assume that variables (inputs and outputs) may be observed with error, i.e.,

ln(k̃i) = ln(ki) + εki = ζk ln(zi) + dki + εki ,

ln(ℓ̃i) = ln(ℓi) + εℓi = ζℓ ln(zi) + dℓi + εℓi ,

ln(ỹi) = ln(yi) + εyi ,
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where εk, εℓ, and εy represent (log) additive measurement error. The estimated farm productivity

z̃i is then

z̃i =
ỹi(

k̃α
i ℓ̃

1−αi
i

)γ = zi
exp(εyi )(

exp(εki )
α exp(εℓi)

1−α
)γ .

We now contrast the output gain calculated from observed variables with that calculated from

true variables. Note that real aggregate inputs and output are identical to observed ones since

measurement errors are mean zero. The true output gain from reallocating resources is

e =
Y e

Y a
=

(
∑

i zi)
1−γ (KαL1−α)

γ∑
i z

1−γ
i

(
kα
i ℓ

1−α
i

)γ ,

while the measured output gain is

ẽ =
Ỹ e

Ỹ a
=

(
∑

i z̃i)
1−γ (KαL1−α)

γ∑
i z̃

1−γ
i

(
k̃α
i ℓ̃

1−α
i

)γ .

To structurally estimate this framework, we make the parametric assumption that εk, εℓ, and εy are

all normally distributed with variance σ2
m. The parameter σ2

m governs the precision in measurement

and we assume that additive measurement error is of the same magnitude for all inputs and outputs.

In addition, we assume dk and dℓ, the idiosyncratic distortions, follow normal distributions with

variance σ2
k and σ2

ℓ , and true productivity follows a normal distribution with variance σ2
s .

We use this framework to answer the following question: If true output gain e is only half of measured

output gain ẽ, what is the implied magnitude of measurement error? We estimate this framework,

which consists of six parameters: {σ2
k, σ

2
ℓ , σ

2
m, ζ

k, ζℓ, σ2
s}, to match the following five moments from

Malawi micro data: the variances of observed capital and labor input, the correlations between farm

productivity and capital/labor input, and the measured output gain. We also use the fact that true

output gain e is half the measured output gain as our sixth moment to restrict the value of σ2
m.

Considering our most conservative output gain associated with the fixed effects of inputs and pro-

ductivity in the panel of 1.67-fold, half of this level renders a “true” output gain of 1.34-fold. We

find that the magnitude of the measurement error must be huge, the estimated σ2
m = 0.22 and as a

result, the variance of (log) observed land input ℓ̃i must be almost two times larger than (log) true

land input ℓi, and the variance of (log) observed capital input k̃i must be 70% larger than (log)

true capital input ki. Given that our measure of land input is cultivated land at the household

level measured via GPS, we think this magnitude of measurement error is unlikely, but nevertheless
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our analysis helps frame the extent to which remaining measurement error may be driving reported

reallocation gains.
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