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1 Introduction

This paper studies how the interaction between adoption and innovation determines the
shape of the productivity distribution, the expansion of the technology frontier, and the
aggregate economic growth rate. Empirical estimates of productivity distributions tend to
have a large range, with many low-productivity firms and few high-productivity firms within
even very narrowly defined industries and products (Syverson (2011)). The economy is
filled with firms that produce similar goods using different technologies, and different firms
invest in improving their technologies in different ways. Some firms are innovative, bettering
themselves while simultaneously pushing out the frontier by creating technologies that are
new to the world. There are, however, many firms that purposefully choose instead to
adopt already invented ideas. The main contribution of this paper is to develop a model
of aggregate growth that delivers a productivity distribution with an endogenous expanding
frontier, range, and tail index as the result of optimal firm behavior.

In the model, innovation pushes out the frontier, creating the technologies that will
eventually be adopted, and stretches the distribution. Adoption helps to compress the dis-
tribution by keeping the laggards from falling too far behind. Beyond affecting the shape of
the distribution, both adoption and innovation affect the aggregate growth rate. Long-run
growth is driven by innovation, but that does not necessarily mean that adoption cannot
affect long-run growth. Rather, it means that adoption affects growth by affecting the in-
centives to innovate. Changes in the adoption environment can affect innovation incentives
either because innovators may one day become adopters or because adopters may directly
pay to license technologies from innovators.

Model Overview and Main Results. We first build a simple model of exogenous inno-
vation and growth to focus on how innovation and adoption jointly determine the shape of
the productivity distribution. We then add an innovation decision in which aggregate gro-
wth is endogenously driven in the long run by the innovation activity of high-productivity
firms. At the core of the model are the costs and benefits of adoption and innovation.
Firms are heterogeneous in productivity, and a firm’s technology is synonymous with its
productivity. Adoption is modeled as paying a cost to instantaneously receive a draw of a
new technology; this is a model of adoption because the new productivity is drawn from the
existing distribution of technologies currently in use for production. To represent innovation,
we model firms as being in either a creative or a stagnant innovation state; when creative,
innovation generates geometric growth in productivity at a rate increasing in firm-specific
innovation expenditures. A firm’s innovation state evolves according to a two-state Markov
process. This model of stochastic innovation with finite idiosyncratic growth rates is the
key technical feature that delivers many of the desired model properties in a tractable fra-
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mework. For example, we want the productivity distribution to have finite support so that
there are better technologies to be invented. This is in contrast to producing at some given
date using all the knowledge that will ever be known. At each point in time, any firm has
the ability to innovate or adopt, and firms optimally choose whether and how to improve
their productivity. Since adoption is a function of the distribution of available technologies,
the productivity distribution is the aggregate state variable that moves over time, and this
movement is driven by firms’ adoption and innovation activity.

In equilibrium, there will be low-productivity firms investing in adopting technologies;
stagnant firms falling back relative to creative firms; medium-productivity creative firms
investing small amounts to grow a bit through innovation; and higher-productivity creative
firms investing a lot in innovation to push out the productivity frontier. Easy adoption,
in the sense of low cost or high likelihood of adopting a very productive technology, tends
to compress the productivity distribution, as the low-productivity firms are not left too far
behind. A low cost of innovation tends to spread the distribution, as the high-productivity
firms can more easily escape from the pack. Thus, the shape of the distribution, which
typically looks like a truncated Pareto with finite support, is determined by the relative
efficiency of adoption and innovation. The stochastic innovation state ensures that some firms
that have bad luck and are uncreative for a stretch of time fall back relative to adopting and
innovating firms, generating a non-degenerate stationary distribution with adoption existing
in the long run.

Adoption and innovation are not two completely independent processes, with some firms
perpetual adopters and some perpetual innovators. Rather, the ability of all firms to invest
in both activities generates general equilibrium interactions between actions. A key spillover
between adoption and innovation can be seen in the option value of adoption. For high-
productivity firms which are far from being low-productivity adopters, the value of having the
option to adopt is small. The lower a firm’s productivity, the closer it is to being an adopter
and, thus, the higher the option value of adoption. The higher the option value of adoption,
the lower the incentive to spend on innovating to grow away from entering the adoption
region and exercising that option. Thus, the value of adoption, which is determined by the
cost of acquiring a new technology and the probability of adopting a good technology, affects
incentives to innovate and aggregate growth. Through this channel, the better adoption is,
the more tempting it is to free ride on other firms pushing out the frontier by investing less in
innovation. We conclude the paper by exploring how the excludability of technology affects
the interplay of adoption and innovation. We model adopters as having to pay a fee to the
firm whose technology they adopt. Hence there is an additional direct link between adoption
behavior and innovation incentives that affects the shape of the distribution and aggregate
growth rates. Through this licensing channel, easier adoption leads to more licensing, which
increases investments in innovation and aggregate growth.
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1.1 Recent Literature

Our paper is closely related conceptually and technically to the idea diffusion literature
including Luttmer (2007), Alvarez et al. (2008), Lucas (2009), Alvarez et al. (2013), Perla
and Tonetti (2014), and Lucas and Moll (2014). Buera and Lucas (2018) provides a survey
of the literature.

In an early paper on technology diffusion Nelson and Phelps (1966) developed a model
that specified a differential equation that determined technology diffusion as a function of
the distance between the leader and the follower. Lucas (2009) expanded the domain of
idea diffusion, in that it allowed ideas to diffuse not just from a leader to followers, but
potentially from and to all agents in the economy. The probability of receiving a particular
idea depends on the frequency of that idea in the whole population. In Perla and Tonetti
(2014) and Lucas and Moll (2014) agents make a choice to invest in technology diffusion.
Thus, the amount of diffusion is no longer exogenous (either as an exogenous function of the
distance to the frontier or as an exogenous arrival rate of draws from a source distribution),
allowing for the study of incentives, externalities, and welfare improving policies. In this
paper, we build on these models of idea diffusion, but allow agents to grow not just through
diffusion, but also through innovation.

We contribute to the literature that studies both innovation and technology diffusion.
Buera and Oberfield (2019) is a related semi-endogenous growth model of the international
diffusion of technology and its connection to trade in goods. The authors combine the process
of idea diffusion with innovation, in the spirit of Jovanovic and Rob (1989). They model
productivity upgrading according to one joint process that mixes innovation and adoption.
In contrast, our paper models these as distinct actions potentially undertaken by different
firms. Furthermore, their focus is not on the endogenous determination of the shape of
the distribution, since it is given exogenously by the distribution from which innovation
increments are drawn.1 The industry evolution model of Jovanovic and MacDonald (1994)
features firms that grow from innovation and imitation, but a firm cannot purposely target
its investment to innovation or imitation. Benhabib et al. (2014) explicitly model a choice
between investing in innovation and adoption, but in a Nelson-Phelps style model in which
agents’ decisions do not depend on the entire productivity distribution.

Perhaps the most closely related paper to ours is König et al. (2016) (KLZ). There, as
in our paper, firms make an optimal choice between two stochastic processes: one that is
related to the existing productivity distribution (imitation) and one that is not (innovation).
As in our paper, higher-productivity firms choose to focus more on innovation than imi-

1Eeckhout and Jovanovic (2002) also model technological spillovers that are a function of the distribution
of firm productivity. Acemoglu et al. (2007) also model spillovers across firms in innovation, captured by the
number of firms that have attempted to implement a technology before.
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tation.2 Both models produce sustained growth through the interaction of innovation and
imitation. A key difference is our analysis of a finite relative technology frontier (i.e., the
ratio of the maximum to average productivity). This allows us to study the intensive margin
of innovation of frontier firms and how the option value of adoption induces a free-riding
incentive and slows growth. We also study excludable technology by modeling licensing,
which introduces another mechanism through which adoption affects long-run growth.3 The
importance of the tension between endogenous innovation and imitation is emphasized in
König et al. (2018), which uses that perspective to analyze the recent transformation of the
Chinese economy.

Acemoglu et al. (2006), Chu et al. (2014), and Stokey (2014, 2017) also explore the rela-
tionship between innovation and diffusion from different perspectives.4 We share a similarity
with those papers, as there is an advantage to backwardness in the sense of option value
from the ability to adopt. The crucial element that enables the interesting trade-off between
innovation and technology diffusion in our model is that the incumbents internalize some
of the value from the evolving distribution of technologies, thus distorting their innovation
choices. That is, incumbent firms not adopting today realize they may adopt in the future,
and they derive positive value from this option to adopt.

One question that arises in diffusion models is where do new ideas come from, and how
do those new ideas determine the aggregate growth rate.5 We model long-run growth that
occurs through the interaction of innovation and diffusion. In our model with endogenous
innovation, the interaction between innovation and adoption is especially interesting when
the distribution has a finite frontier. The rate at which frontier firms invest in discovering
new ideas determines the long-run aggregate growth rate. When the frontier is finite, the
efficiency of adoption affects long-run aggregate growth in part because frontier firms realize

2There are a few other differences to consider when comparing to König et al. (2016). KLZ assume
no cost of either innovation or imitation and use a limit to firms’ absorptive capacity to induce a tradeoff
between innovation and adoption, whereas in our paper there is a cost of innovation and a cost of imitation.
Furthermore, as the arrival rate of imitation is not immediate in KLZ, they have an asymptotically power-law
left tail. Our model has a sweeping barrier, which results from the limit of a rapid imitation rate. Finally,
the monopolistic competition and differentiated goods KLZ model provides an economic foundation for a
profit function that increases in productivity, which we specify exogenously.

3The closest paper to ours in terms of modeling licensing is Shi and Hopenhayn (2017), which provides
a search-theoretic framework for analyzing bargaining over technology transfers in an environment with
congestion externalities.

4An alternative line of literature studies the diffusion of technology from incumbents to entrants, as in
Luttmer (2007), Sampson (2015), and Lashkari (2016).

5Using an initial distribution with infinite support, such as in Perla and Tonetti (2014) and the baseline
model of Lucas and Moll (2014), may provide a good approximation for the contribution of adoption to
growth in the medium run, even absent a theory of innovation that pushes out a frontier. See Figure 2 of
Perla and Tonetti (2014) and Figure 9 of Buera and Lucas (2018).

4



they may become adopters in the future.
Staley (2011) and Luttmer (2012a) explore the interaction of innovation and technology

adoption in a model in which both are exogenous processes.6 Their approach allows a formal
analysis with a finite number of firms using the well-understood KPP-Fisher equation, which
allows for a sharp characterization of model properties. In our paper we explore how adoption
and innovation choices respond to economic incentives and generate endogenous growth—in
an environment where a finite number of firms would be computationally infeasible.

2 Baseline Model with Exogenous Stochastic Innova-
tion

We first analyze an exogenous growth model to simplify the introduction of the environment
and to focus on the economic forces that determine the shape of the stationary normali-
zed productivity distribution. For the exogenously defined innovation process, we choose a
specification that leads to a meaningful concept of the technology frontier in a framework
amenable to endogenous investment in growth.

The only choice that a firm makes in this version of the model is whether to adopt a new
technology or to continue producing with its existing technology. In Section 4, we develop
the full version of this model—in which a firm chooses its innovation rate—to study how
adoption and innovation activities interact to jointly determine the shape of the productivity
distribution and the aggregate growth rate.

2.1 The Baseline Model

Firm Heterogeneity. A continuum of firms produce a homogeneous product and are he-
terogeneous over their productivity, Z, and innovation ability, i ∈ {`, h}. For simplicity, firm
output equals firm profits equals firm productivity. The measure of firms of productivity less
than Z in innovation state i at time t is denoted by Φi(t, Z). The maximum productivity of
any firm, Z̄(t) ≡ sup {support {Φ`(t, ·)} ∪ support {Φh(t, ·)}} is interpreted as the technology
frontier. There is a unit measure of firms, so that Φ`(t, Z̄(t)) + Φh(t, Z̄(t)) = 1. At any point
in time, the minimum of the support of the distribution will be endogenously determined,
denoted by Mi(t), so that Φi(t,Mi(t)) = 0. Define the distribution unconditional on type as
Φ(t, Z) ≡ Φ`(t, Z) + Φh(t, Z).

A firm with productivity Z can choose to continue producing with its existing technology,
6Luttmer (2012a, 2015a,b) provide careful analysis of the role of hysteresis including the important

interaction of the stochastic innovation process with initial conditions and how models with a continuum of
agents or states approximate the world that is populated by a finite number of agents.
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in which case it would grow stochastically according to the exogenous innovation process, or
it can choose to adopt a new technology.

Stochastic Process for Innovation. In the high innovation ability state (h), a firm is
innovating and its productivity is growing at an exogenous rate γ (for now, but a choice made
by firms in Section 4). In the low innovation ability state (`), it has zero productivity growth
from innovation (without loss of generality). Sometimes, firms have good ideas or projects
that generate growth, and sometimes firms are just producing using their existing technology.
We model innovation according to this continuous-time two-state Markov process because it
allows for the existence of balanced growth path equilibria with finite-support productivity
distributions in which adoption persists in the long run and growth is driven by the innovation
choices of frontier firms. Persistence of the innovation state is modeled primarily for technical
reasons related to continuous time rather than being of direct economic interest. Thus,
we will perform our numerical exercises calibrating the model with high transition rates.
Loosely speaking, shocks to the innovation state are like IID growth rate shocks that avoid
continuous-time measurability issues with IID stochastic processes.

The jump intensity from low to high is λ` > 0 and from high to low is λh > 0. Since
the Markov chain has no absorbing states, and there is a strictly positive flow between the
states for all Z, the support of the distribution conditional on ` or h is the same. With
support {Φ(t, ·)} ≡ [M(t), Z̄(t)], define the growth rates of the lower and upper bounds as
g(t) ≡M ′(t)/M(t) and gZ̄(t) ≡ Z̄ ′(t)/Z̄(t).

For notational simplicity, define the differential operator ∂ such that ∂z ≡ ∂
∂z

and ∂zz ≡
∂2

∂z2 . When a function is univariate, derivatives will be denoted byM ′(z) ≡ ∂zM(z) ≡ dM(z)
dz .

Adoption and Technology Diffusion. A firm has the option to adopt a new technology
by paying a cost. Adoption means switching production practice by changing to a technology
that some other firm is using. We model this adoption process as undirected search across
firms, as in Perla and Tonetti (2014) and Lucas and Moll (2014).

For simplicity, we model the adopting firm as drawing a new productivity, Z, from the
unconditional distribution, Φ(t, Z), and starting in the low-innovation state, `. That is,
adopters cannot innovate immediately after adoption.7

The cost of adoption grows as the economy grows, and it is parameterized by ζ. The
endogenous scale of the economy can be summarized by the minimum of the support of the
productivity distribution M(t). Thus, we model the cost of adoption as ζM(t).

7Model variations on conditional vs. unconditional draws and maintaining or switching innovation types
have few quantitative or qualitative consequences, especially given the high switching rates between states
used in our numerical examples. The model setup here keeps the formulas cleaner since adopters only show
up as a source in the Kolmogorov forward equation for the `-type distribution, which saves on notation.
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Leapfrogging to the Frontier. Finally, firms can leapfrog to the frontier of the producti-
vity distribution with arrival rate η > 0. Innovators jumping to the frontier represents some
chance that the innovation process generates a big insight, instead of steady incremental
progress. Different from autarkic innovation that generates γ-proportional growth through
process improvement, leapfrogging may be viewed as a melding of innovation and diffusion
since the jump is a function of the existing productivity distribution. Adopters jumping to
the frontier captures that sometimes adopters get lucky and their search for a new technology
finds the best one available.

For tractability, we model such a jump as temporarily disruptive to innovation, such that
all leapfrogging firms become `-types and must wait for the Markov transition to h before
they become innovators again.8

Firm Value Functions. Firms discount at rate r > 0. Let Vi(t, Z) be the continuation
value function for type i—i.e., the value at time t of being an i-type firm and producing with
productivity Z.

rV`(t, Z) = Z + λ` (Vh(t, Z)− V`(t, Z))︸ ︷︷ ︸
Switch to h

+ η(V`(Z̄)− V`(Z))︸ ︷︷ ︸
Jump to Frontier

+ ∂tV`(t, Z)︸ ︷︷ ︸
Capital Gains

(1)

rVh(t, Z) = Z + γZ∂ZVh(t, Z)︸ ︷︷ ︸
Exogenous Innovation

+λh (V`(t, Z)− Vh(t, Z))︸ ︷︷ ︸
Switch to `

+η(V`(Z̄)− Vh(Z)) + ∂tVh(t, Z).

(2)

A firm’s continuation value derives from instantaneous production plus capital gains as
well as productivity growth if in the high innovation ability state, and it accounts for the
intensity of jumps between innovation abilities i and jumps to the frontier.

The value of adopting is the continuation value of an `-type firm having a new producti-
vity drawn from Φ(t, Z) less the cost of adoption:

Net Value of Adoption =
∫ Z̄(t)

M(t)
V`(t, Z) dΦ(t, Z)︸ ︷︷ ︸

Gross Adoption Value

− ζM(t).︸ ︷︷ ︸
Adoption Cost

(3)

The Optimal Adoption Policy and the Minimum of the Support of the Producti-
vity Distribution. The optimal firm policy is given by a threshold rule Ma(t) such that
all firms with productivity Z ≤ Ma(t) will choose to adopt and firms with Z > Ma(t) will

8The assumption that all leapfroggers switch to the ` state is purely for analytical convenience and can
be changed without introducing qualitative differences. Similarly, the jumps to the frontier could occur
exclusively for adopting firms instead of operating firms with no qualitative differences.
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not adopt. Since the value of continuing is increasing in Z, and the net value of adopting
is independent of Z, the firm’s optimal adoption policy takes the form of a reservation pro-
ductivity rule. While the adoption threshold could conceivably depend on the innovation
type i, see Technical Appendix A.4 for a proof showing that `- and h-type firms choose the
same threshold, Ma(t), if the net value of adoption is independent of the current innovation
type.

As draws are instantaneous, for any t > 0 this endogenous Ma(t) becomes the evolving
minimum of the Φi(t, Z) distributions, M(t), and in a slight abuse of notation, we will refer
to both the minimum of the support and the firm adoption policy as M(t) going forward.9

In principle, there may be adopters of either innovation type with productivity in the
common adoption region Z ≤M(t). Define Si(t) ≥ 0 as the flow of i-type firms entering the
adoption region at time t and denote the total flow of adopting firms as S(t) ≡ S`(t) +Sh(t).

The Firm Problem. A firm’s decision problem can be described as choosing an optimal
stopping time of when to adopt. Equivalently, it can be described as a free boundary problem,
choosing the productivity level at which to adopt. Necessary conditions for the free boundary
problem include the continuation value functions and, at the endogenously chosen adoption
boundary M(t), value matching conditions,

Vi(t,M(t))︸ ︷︷ ︸
Value at Threshold

=
∫ Z̄(t)

M(t)
V`(t, Z)dΦ̂`(t, Z) +

∫ Z̄(t)

M(t)
Vh(t, Z)dΦ̂h(t, Z)︸ ︷︷ ︸

Gross Adoption Value

− ζM(t),︸ ︷︷ ︸
Adoption Cost

(4)

and smooth-pasting conditions,

∂ZV`(t,M(t)) = 0 if M ′(t) > 0 (5)
∂ZVh(t,M(t)) = 0 if M ′(t)− γM(t) > 0. (6)

Value matching states that at the optimal adoption reservation productivity, a firm must
be indifferent between producing with the reservation productivity and adopting a new pro-
ductivity. Smooth pasting is a technical requirement that can be interpreted as an intertem-
poral no-arbitrage condition—necessary only if firms at the boundary are moving backwards
relative to the boundary over time.

9To see why the minimum of the support is the endogenous threshold, consider instantaneous adoption as
the limit of the Poisson arrival rate of draw opportunities approaching infinity. In any positive time interval,
firms wishing to adopt would gain an acceptable draw with probability approaching 1, so that Z > M(t)
almost surely. A heuristic derivation of this limit is given in Technical Appendix A.5.
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The Technology Frontier. Given the adoption and innovation processes, if Z̄(0) < ∞,
then Z̄(t) will remain finite for all t, as it evolves from the innovation of firms in the interval
infinitesimally close to Z̄(t). Furthermore, with a continuum of firms the frontier grows at
rate γ since there is some firm arbitrarily close to the threshold and growing at rate γ.

Lemma 1 (Growth Rate of the Finite Frontier). If Z̄(0) <∞, then Z̄ ′(t)/Z̄(t) = γ.

If
[
Φh(t, Z̄(t))− Φh(t, Z̄(t)− ε)

]
> 0 for all ε > 0, then there are always firms arbitrarily

close to the frontier. If some of them are type h, then they will push the frontier out at rate
γ. Given that there are a continuum of firms and that the arrival rate of changes in type i
is a memoryless Poisson process, for all finite t there will always be some h-type firms that
are arbitrarily close to the frontier and have never jumped to the low state, so the growth
rate of the frontier is always γ.

Law of Motion of the Productivity Distribution. The Kolmogorov forward equation
(KFE) describes the evolution of the productivity distribution for productivities above the
minimum of the support. The KFEs in the CDFs for `- and h-type firms are

∂tΦ`(t, Z) = −λ`Φ`(t, Z) + λhΦh(t, Z)︸ ︷︷ ︸
Net Flow from Jumps

− ηΦ`(t, Z) + ηH
(
Z − Z̄(t)

)
︸ ︷︷ ︸

Leapfroggers

(7)

+ (S`(t) + Sh(t))︸ ︷︷ ︸
Flow of Adopters

Φ(t, Z)︸ ︷︷ ︸
Draw ≤ Z

− S`(t)︸ ︷︷ ︸
`-Adopters

∂tΦh(t, Z) = −γZ∂ZΦh(t, Z)︸ ︷︷ ︸
Innovation

−λhΦh(t, Z) + λ`Φ`(t, Z)− ηΦh(t, Z)− Sh(t), (8)

where H (·) is the Heaviside operator. For each type i, the KFEs keep track of inflows and
outflows of firms with a productivity level at or below Z. An i-type firm with productivity
less than or equal to Z stops being in the i-distribution at or below Z if it keeps its type
and increases its productivity above Z or if it changes its type.

A firm can keep its type and increase its Z in three ways: adoption, innovation, or
leapfrogging. An adopting firm has probability Φ(t, Z) of becoming type ` and drawing a
productivity less than or equal to Z and the number of firms adopting is (S`(t)+Sh(t)). Hence
(S`(t)+Sh(t))Φ(t, Z) is added to the `-distribution. Additionally, the flow of adopters of type
i, Si(t), is subtracted from the corresponding distribution (this term appears conditional on
any Z because adoption occurs at the minimum of the support). Intuitively, the adoption
reservation productivity acts as an absorbing barrier sweeping through the distribution from
below. As it moves forward, it collects adopters at the minimum of the support, removes
them from the distribution, and inserts them back into the distribution according to Φ.
Recognizing that the jumps in type at intensity λi are of measure 0 when calculating the
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number of firms that cross the boundary in any infinitesimal time period, the flow of adopters
comes from the flux across the moving boundary M(t).

The KFE for the h-types has a term that subtracts the firms that grow above Z through
innovation: there are ∂ZΦh(t, Z) number of h-type firms at productivity Z, and because
innovation is geometric, they grow above Z at rate γZ.

Firms of productivity Z switching from type i to type i′ leave the i-distribution and enter
the i′-distribution at rate λi. For example, the number of `-type firms with productivity less
than or equal to Z is Φ`(t, Z), and they leave the `-distribution at rate λ` and enter the
h-distribution at the same rate.

Firms jump to the frontier at rate η, so they are subtracted from the CDF. For analytical
tractability, all leapfrogging firms become type `, so they are added to the `-distribution at
Z̄(t).

The firms are owned by a representative consumer who values the undifferentiated good
with log utility and a discount rate ρ > 0. If the growth rate on the balanced growth path
is g, then the interest rate faced by firms is r = ρ+ g.

2.2 Normalization, Stationarity, and Balanced Growth Paths

In this paper, we study economies on balanced growth paths (BGPs), in which the distri-
bution is stationary when properly rescaled and aggregate output grows at a constant rate.
The economy is characterized by a system of equations defining the firm problem, the laws of
motion of the productivity distributions, and consistency conditions that link firm behavior
and the evolution of the distributions. To compute BGP equilibria, it is convenient to trans-
form this system to a set of stationary equations. While we could normalize by any variable
that grows at the same rate as the economy, it is convenient to normalize variables relative
to the endogenous boundary M(t). Define the change of variables, normalized distributions,
and normalized value functions as

z ≡ log(Z/M(t)) (9)
Fi(t, z) = Fi(t, log(Z/M(t))) ≡ Φi(t, Z) (10)

vi(t, z) = vi(t, log(Z/M(t))) ≡ Vi(t, Z)
M(t) . (11)

The adoption threshold is normalized to log(M(t)/M(t)) = 0, and the relative technology
frontier is z̄(t) ≡ log(Z̄(t)/M(t)). See Figure 1 for an illustration of the normalized and
unnormalized distributions. Define the normalized unconditional distribution as F (z) ≡
F`(z) + Fh(z), which is a valid CDF (i.e., F (t) = 0 and F (z̄(t)) = 1).

With the above normalizations, it is possible that the value functions, productivity dis-
tributions, and growth rates are stationary—i.e., independent of time.
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Figure 1: Normalized and Unnormalized Distributions

Summary of Stationary KFEs and Firm Problem. A full derivation of the normali-
zed system is given in Technical Appendix A.1. Here, we summarize the resulting equations
that characterize the laws of motion for the normalized productivity distributions and the
normalized firm problem. The equations that determine the stationary productivity distri-
butions are:

0 = gF ′`(z) + λhFh(z)− λ`F`(z)− ηF`(z) + ηH (z − z̄) + SF (z)− S (12)
0 = λ`F`(z)− λhFh(z)− ηFh(z) (13)
0 = F`(0) = Fh(0) (14)
1 = F`(z̄) + Fh(z̄) (15)
S` = gF ′`(0) if g > 0 (16)
Sh = (g − γ)F ′h(0) if g > γ. (17)

The necessary conditions of the normalized firm problem are:

ρv`(z) = ez − gv′`(z) + λ`(vh(z)− v`(z))) + η(v`(z̄)− v`(z)) (18)
ρvh(z) = ez + λh(v`(z)− vh(z)) + η(v`(z̄)− vh(z)) (19)

v(0) = 1
ρ

=
∫ z̄

0
v`(z) dF (z)− ζ (20)

v′`(0) = 0 if g > 0 (21)
v′h(0) = 0 if g > γ. (22)

Given that the two types of firms choose the same adoption threshold, we drop the type
index for the value functions at the adoption threshold: v(0) ≡ vi(0).

Equations (12) to (15) are the stationary KFEs with boundary values. Recall that g is
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the growth rate of the minimum of the support and γ is the innovation growth rate. In the
normalized setup, firms are moving backwards toward the constant minimum of the support,
and their growth rate determines the speed at which they are falling back.

Equations (18) and (19) are the Bellman equations in the continuation region and (20)
is the value-matching condition between the continuation and technology adoption regions.
The smooth-pasting conditions given in equations (21) and (22) are necessary only if the
firms of that particular type are drifting backwards relative to the adoption threshold.

See Figure 2 for a visualization of the normalized Bellman equations.

0 z̄ z

vi(z)

vi(0)

λh

λℓ

vh(z)

vℓ(z)

η

η

Figure 2: Normalized Stationary Value Functions

Definition 1 (Recursive Competitive Equilibrium with Exogenous Innovation). A recursive
competitive equilibrium with exogenous innovation consists of initial distributions Φi(0, z),
adoption reservation productivity functions Mi(t), value functions Vi(t, z), interest rates r(t),
and sequences of productivity distributions Φi(t, z) such that the following hold:

1. Given r(t) and Φi(t, z), Mi(t) are the optimal adoption reservation productivities, with
Vi(t, z) the associated value functions.

2. Given Mi(t) and Φi(t, z), r(t) is consistent with the consumer’s intertemporal marginal
rate of substitution.

3. Given Mi(t), Φi(t, z) fulfill the laws of motion in (7) and (8) subject to the initial
condition Φi(0, z).

We restrict our interest to equilibria that are balanced growth paths.

Definition 2 (Balanced Growth Path Equilibrium with Exogenous Innovation). A balanced
growth path equilibrium with exogenous innovation is a recursive competitive equilibrium
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such that the growth rate of aggregate output is constant and the normalized productivity
distributions are stationary. This is equivalent to requiring that Fi(t, z) = Fi(z) and g(t) ≡
M ′(t)/M(t) = g for all t.

Define the growth rate of aggregate output as gE(t) ≡ ∂tEt [Z] /Et [Z]. Then Lemma 2 shows
that g = gE is a requirement on a BGP.

Lemma 2 (Growth of the Endogenous Adoption Threshold and Aggregate Output). On a
balanced growth path, the growth rate of the endogenous threshold, M(t), must be the same
as the growth rate of aggregate output. That is, g = gE. Furthermore, if Z̄(0) < ∞ and
η > 0, then g = gZ̄ = γ.

Proof. The value-matching condition in equation (20) is normalized to the endogenous thres-
hold, hence adoption has a constant and strictly positive cost. Thus, as v(z) ≥ z, if the
expected value of a draw from the technology distribution were not stationary relative to the
adoption cost, then value matching could not hold with equality for all t. For finite frontier
economies, the condition g ≤ gZ̄ must be satisfied; otherwise the minimum of the support of
the distribution would eventually be strictly greater than the maximum of the support. See
Technical Appendix A.3 for a similar, but more formal, exposition.

Since g ≤ γ, then on a BGP with exogenous innovation no h-type agents cross the
boundary. Thus, S in equation (16) is the flow of `-type agents moving backwards at a
relative speed of g across the adoption barrier.

F ′(z)

z
0

Adoption compresses

z̄

Stochastic innovation spreads

Figure 3: Tension between Stochastic Innovation and Adoption

How Adoption and Innovation Generate a Stationary Normalized Distribution.
Figure 3 provides some intuition on how proportional growth and adoption can create a sta-
tionary distribution. Without endogenous adoption, nothing can prevent the proportional
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random shocks from spreading out the distribution, driving the variance to infinity.10 Howe-
ver, when adoption is endogenous, as the distribution spreads, the incentives to adopt a new
technology increase, and the adoption decisions of low-productivity agents then act to com-
press the distribution. In a BGP equilibrium, technology diffusion can balance innovation,
thus allowing for a stationary normalized distribution.

The existence of a stationary normalized distribution immediately places restrictions on
the relationship between the growth of the frontier and adoption behavior. Recall that g
is the growth rate of the endogenous reservation adoption productivity, and thus also the
growth rate of the minimum of the support of the unnormalized distribution. As Lemma 2
states, a necessary condition for the existence of a stationary normalized distribution with
a finite frontier (i.e., if Z̄(t) < ∞ for all t) is that g = gE = gZ̄ = γ. That is, the minimum
of the support, which must grow at the same rate as the aggregate economy, also must
grow at the same rate as the frontier. This may make it seem as though the growth rate of
the minimum of the support, which is determined by the adopters, determines the long-run
growth rate, but it should be interpreted as an equilibrium relationship between adoption
and innovation. The flow of adopters endogenously increases or decreases, and adjusts the
growth rate g(t) until it is in balance with the growth rate of the frontier, γ.

3 How Adoption and Innovation Interact to Shape the
Productivity Distribution

In this section, we compute BGP equilibria for economies with finite-support productivity
distributions. There are two main questions that motivate our analysis. First, how do
adoption and innovation determine the shape of the productivity distribution? Second,
what is the aggregate growth rate, and how is it affected by parameters related to adoption
and innovation?

To set the stage, consider Perla and Tonetti (2014), which is essentially a discrete-time
version of the economy in this paper with η = γ = 0 and is similar to cases in the lite-
rature such as Lucas and Moll (2014), as discussed in Buera and Lucas (2018). In Perla
and Tonetti (2014) a BGP equilibrium with strictly positive growth exists only for distri-
butions with power-law tails; the long-run growth rate is a function of the shape of the
initial distribution and the cost of adoption. In contrast, here the shape of the stationary
distribution is endogenously a function of parameters related to innovation and adoption,
while the long-run aggregate growth rate is the maximum rate of growth of innovators and is
independent of initial conditions. In this section, the growth rate of innovators is exogenous

10König et al. (2016) provide a similar intuition in their Proposition 2, which shows the expansion of the
distribution in the absence of imitation.
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(γ), but Section 4 develops the endogenous growth version of the model in which innovation
investment is a choice made by firms.

3.1 The Stationary Finite Support BGP

Define the constants λ̂ ≡ λ`
η+λh , λ̄ ≡

ρ+λ`+λh
ρ+λh , and ν = ρ+η

γ
λ̄, and let η > 0 throughout.

Proposition 1 (Stationary Equilibrium for η > 0). Given parameter restrictions, a unique
equilibrium with z̄ <∞ exists with g = γ. The stationary distribution is

F`(z) = F ′`(0)
(F ′`(0)− η/γ)(1 + λ̂)

(1− e−αz) (23)

Fh(z) = λ̂F`(z), (24)

with

α ≡ (1 + λ̂)(F ′`(0)− η/γ) (25)

z̄ = log(γF ′`(0)/η)
α

. (26)

The equilibrium F ′`(0) solves the following implicit equation (substituting for α and z̄),

ζ + 1
ρ

=
γF ′`(0)αλ̄

(
− e−νz̄(−1+e−αz̄)η

ραν
+ ez̄η(e−αz̄−1)

−αρ + −e−(α+ν)z̄+1
ν(α+ν) + −ez̄−αz̄+1

α−1

)
γ(γF ′`(0)− η)(ν + 1) . (27)

The firm value functions are

v`(z) = λ̄

γ(1 + ν)

(
ez + 1

ν
e−νz + η

ρ

(
ez̄ + 1

ν
e−νz̄

))
(28)

vh(z) = ez + (λh − η)v`(z) + ηv`(z̄)
ρ+ λh

. (29)

Proof. See Technical Appendix A.2. Parameter restrictions include those such that the F ′`(0)
that solves equation (27) is larger than η/γ. A proof of uniqueness, showing that g = γ is
the only equilibrium to exist, is in Technical Appendix A.3.

Existence, Uniqueness, and Aggregate Growth. If the initial distribution has finite
support, then the stationary distribution will have finite support because the maximum
growth rate of a firm is finite. The first immediate result is that the equilibrium is unique
for any η > 0. That is, there is a unique stationary distribution that is independent of initial
conditions. Furthermore, the aggregate growth rate equals the growth rate of innovators:
g = γ.
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Lemma 2 also stated that the aggregate growth rate equals the growth rate of the mini-
mum of the support of the distribution (g = gE), which evolves according to adoption. How
could the aggregate growth rate be driven by adoption but also equal the exogenous growth
rate of innovation? It is because adoption and innovation are linked in general equilibrium.
Adoption is endogenous, and firms invest in adoption to keep up with the frontier. If the
frontier were to grow faster, there would be more good new ideas arriving faster, which would
make it worthwhile for firms to invest more in adopting those ideas faster. Thus, endogenous
adoption is the key that links the minimum of the support of the distribution to the frontier.

Economic Intuition for Firm Behavior that Generates a Stationary Distribution.
Leapfrogging to the frontier (η > 0) plays an important role in delivering a stationary distri-
bution.11 Leapfrogging prevents the frontier from escaping from the rest of the distribution
by ensuring that frontier technologies never have zero probability of being adopted.

The Bellman equations (28) and (29) are the sum of three components: the value of
production, the option value of adoption, and the value of jumping to the frontier. That
is, in addition to the value of production with the current z modified by time discounting
and the probabilities of switching i-type, the value function accounts for changing z through
adoption and, in particular, the chance of jumping to the frontier.

Leapfrogging to the frontier by a positive mass of agents can contain the escape in relative
productivities by lucky firms that get streaks of long sojourns in the high-growth state h. As
they eventually lose their innovative ability and become `-types, they will be overtaken by
others that leapfrog to the frontier from within the productivity distribution and replenish it.
This leapfrogging/quality ladder process prevents laggards from remaining laggards forever.

Additionally, because the ratio of the frontier to the minimum of the support (the relative
frontier, z̄(t)) is finite, in the long run, frontier firms still place positive value on the option
to adopt. This means that increases in the value of adoption, whether associated with lower
costs or higher benefits of adoption, will affect the value of frontier firms. Foreshadowing:
In the endogenous growth environment, when γ is a choice, changes in the value of adoption
will influence innovation behavior at the frontier, which will affect aggregate growth rates.

Shape. The productivity distribution has an endogenous truncated-tail index, α, that
represents the shape of the productivity distribution. Furthermore, there is an additional
shape parameter of the distribution: the range of the productivity distribution, given by the
max-min ratio z̄. Model primitives such as the cost of adoption and the rate of innovation
affect both the tail index (α) and how much better the best firm can be relative to the worst

11If η = 0, then there is hysteresis and the distribution is stationary only asymptotically. That is, even
though z̄(t) <∞ for all t, limt→∞ z̄(t) =∞.
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firm in the economy (z̄). Because z̄ is a finite constant, meaning that the Fi(z) have finite
support, α is better interpreted as the shape parameter of a right-truncated power law.

Before moving to the endogenous growth case in the next section, we compute an equili-
brium with calibrated parameter values and use comparative statics to illustrate properties
of the economy. This analysis will show how the cost of adoption and the innovation growth
rate affect the shape of the distribution.

We choose parameters to demonstrate model forces, and explore the relevant region of the
state space.12 The resulting parameterization is γ = 0.02, ρ = 0.01, λ` = 0.533, λh = 1.128,
ζ = 25.18, and η = 0.00098.

First, as shown in Figure 4, v` and vh are very similar because the calibrated λi are
large, and thus the extra benefit of being in the high state or the relative pain from being
in the low state does not last very long. Second, the distributions Fi are power-law shaped,
with many low-productivity firms and few high-productivity firms, but they are truncated
at the z̄ relative frontier. In this calibration, there are also fewer h firms than ` firms at all
productivities, but those masses are determined largely by the ratio λh/λ`.
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Figure 4: Exogenous vi(z) and F ′i (z)

Comparative statics on how changes in η, γ, ζ, and λh affect z̄ and α are shown in Fi-
gure 5. Easier innovation, in the sense of a higher growth rate for innovators, spreads out the
distribution, creating a more distant technology frontier and a thicker tail. Easier leapfrog-
ging, in the sense of a higher probability of jumps to the frontier, also generates thicker tails
but generates less of a productivity gap between the best and worst firms. Easier adoption,

12Details of the simple “calibration” used in our numerical exercises are given in Technical Appendix C.
We pick parameters to roughly match firm growth rates, the firm size distribution, the aggregate growth
rate, and the risk free interest rate.
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captured by lower costs ζ, compresses the distribution, shrinking the relative frontier and
thinning the tail.
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Figure 5: Comparative Statics for Exogenous Innovation

For small η this distribution has a power-law right tail. The abrupt minimum of support
in our model comes from the immediacy of technology adoption; with a stochastic arrival as
in König et al. (2016) we would also have an asymptoptically power-law left tail.

4 How Adoption and Innovation Interact to Determine
the Long-run Aggregate Growth Rate

This section introduces endogenous investments in innovation. In the previous section, the
growth rate of the aggregate economy equaled the growth rate of innovation at the finite
frontier, g = γ, but the growth rate of innovation was exogenous. With endogenous innova-
tion, there will be an analogous result (g = γ(z̄)), where both the innovation rate γ(·) and
the frontier z̄ are endogenously (and jointly) determined. Hence we are now in position to
discuss how adoption affects the choice of innovation at the frontier, and thus the aggregate
growth rate.

4.1 Model with Endogenous Innovation and Excludability

We model firms that can control the drift of their innovation process, as in Atkeson and
Burstein (2010) and Stokey (2014).13 We will focus on two main cases that highlight how
adoption activity can affect long-run growth. In both cases, the long-run growth rate is

13An alternative approach, as taken in Section 6 of König et al. (2016), would be to have the firm choose
between adoption and innovation given a capacity.
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determined by the growth rate of high-productivity innovators, but changes in the efficiency
of adoption affect the innovation behavior of frontier firms.

The first case highlights that a finite support distribution means that there is a positive
option value of adoption even for leading firms. When firms decide how much to invest in
innovation, they take into account the option value of adoption. On the margin, the more
attractive is adoption, the stronger is the temptation to free ride and the weaker is the
incentive to innovate.

The second case is that in which ideas are excludable and adopters need to pay a licensing
fee to the higher-productivity firms whose technology they want to adopt. In this case, more
adopters lead to more licensing fees. When profits from licensing are tied to the quality of
the ideas being licensed (e.g., with bargaining over surplus), there can be a positive link
between adoption and innovation. In both cases we emphasize how externalities associated
with innovation and adoption affect growth.

As in the exogenous growth model of Section 3, in the endogenous growth model the long-
run growth rate cannot be larger than the maximum innovation rate of firms. Aggregate
growth is therefore driven by innovation (i.e., if the cost of technology diffusion went to 0,
the growth rate would still be bounded by γ).

Licensing. Up to now, the firm providing the underlying technology to the adopter was
not able to prevent being imitated—i.e., there was no excludability of the technology or
intellectual property protection. To bring excludability to this environment with adopters
and innovators we model licensing, in which an adopting firm must pay a fee to the technology
holder in order to adopt it.

The licensing fee is a fraction of the present discounted value of adopting the technology,
paid up front in a lump sum. Firms bargain to determine the size of the licensing fee. The
outside option of the adopting firm (i.e., the licensee) is to reject the offer and continue on
with its existing technology—i.e., v(0). The outside option of the licensor is simply to reject
the offer and gain nothing. Negotiations take the form of Nash bargaining, with a bargaining
power parameter ψ ∈ (0, 1] for the adopting firm.14

Proposition 2 (Profits and Value Matching with Licensing). Given equilibrium innovation
policy γ(·), growth rate g, and distributions Fi(·), the flow profits are

π(z) = ez + (gF ′`(0) + (g − γ(0))F ′h(0))︸ ︷︷ ︸
Flow of Licensees

(1− ψ) (v`(z)− v(0))︸ ︷︷ ︸
Profits per Licensee

. (30)

14See Shi and Hopenhayn (2017) for a closely related model of licensing. It provides a richer model
of bargaining over technology transfers, including a search-and-matching style congestion. Also related is
Luttmer (2015a), which provides a model with assignment between teachers and students decentralized
through a price-system.
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The value-matching condition for adopting firms is

v(0) = 1
ρ

=
∫ ∞

0
v`(z)dF (z)− ζ

ψ
. (31)

Proof. See Technical Appendix B.2.

Full bargaining power to the licensor (ψ = 1) nests the baseline case without excludability—
i.e., π(z) = ez and the cost of adoption is ζ. The value-matching condition reflects that
adopters do not gain the full surplus from the newly adopted technology by increasing the
effective cost of search to ζ/ψ.

Thus, from an adopter’s perspective, the problems with and without license fees are
identical, except for a change in the effective cost of adoption and a modification of the
post-adoption continuation value of potentially becoming a licensor in the future. The two
environments are quite different for the innovator, however, as license fees provide an extra
incentive to innovate.

Endogenous Innovation. A firm in the innovative state can choose its own growth rate
γ ≥ 0 subject to a convex cost proportional to its current z. Let χ > 0 be the productivity
of its innovation technology and the cost be quadratic in the growth rate γ. h-type firms will
choose an optimal innovation rate γ(z) by considering the effect of innovation on the profits
from production and licensing, given by π(z) in equation (30), and the timing of technology
diffusion.

With endogenous innovation and licensing, the Bellman equations (18) and (19) become

ρv`(z) = π(z)− gv′`(z) + λ`(vh(z)− v`(z)) + η(v`(z̄)− v`(z)) (32)

ρvh(z) = max
γ≥0

π(z)− (g − γ)︸ ︷︷ ︸
Drift

v′h(z)− 1
χ
ezγ2︸ ︷︷ ︸

R&D cost

+λh(v`(z)− vh(z)) + η(v`(z̄)− vh(z))


(33)

Previously, the smooth-pasting condition was not a necessary condition for h-type firms
because they never crossed the adoption boundary on the BGP (g ≤ γ). Now, given that
γ(0) < g is possible, the h-type smooth-pasting condition may be necessary (see Technical
Appendix A.4 for more on this). Consequently,

v′`(0) = 0 if g > 0 (34)
v′h(0) = 0 if g > γ(0). (35)
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The laws of motion in (12) also need to take into account the state-dependent γ(z), and
the possibility that h-type firms may cross the lower boundary if g > γ(0), resulting in

0 = gF ′`(z) + λhFh(z)− λ`F`(z)− ηF`(z) + ηH (z − z̄) + (S` + Sh)F (z)− S` (36)
0 = (g − γ(z))F ′h(z) + λ`F`(z)− λhFh(z)− ηFh(z)− Sh (37)
S` = gF ′`(0) if g > 0 (38)
Sh = (g − γ(0))F ′h(0) if g > γ(0) (39)

Summary of Equations and Numerical Methods. The endogenous innovation mo-
del is given by the following Bellman equations, value-matching conditions, smooth-pasting
conditions, and KFEs: (14), (15) and (32) to (39). With endogenous growth, the need to
jointly solve the nonlinear Hamilton–Jacobi–Bellman equations and the Kolmogorov forward
equations necessitates numerical methods. The problem takes the form of a set of ODEs
with parameters constrained by equilibrium conditions that are themselves functions of the
solutions to the ODEs. We compute the equilibrium using a generally applicable numerical
technique based on spectral collocation and quadrature, as detailed in the Computational
Appendix.15

4.2 The Option Value of Adoption Affects Long-run Aggregate
Growth

To focus on the first case in which adoption can affect long-run growth rates via the option
value, in this section we shut off the second mechanism (licensing). That is, firms’ only
source of profits is production (π(z) = ez) and there is no licensing cost (ψ = 1).

Compared to the exogenous innovation case, the key additional necessary equilibrium
condition in the endogenous growth model is the first-order condition of the value function
equation (33) with respect to γ(z), using π(z) = ez in this no-licensing case. The FOC is

γ(z) = χ
2 e
−zv′h(z). (40)

With (40), it can be shown that the innovation rate is increasing in productivity—i.e.,
γ′(z) > 0. Consider this rate at the adoption boundary z = 0 to see that γ(0) = v′h(0).
Then, γ(0) = 0 according to the smooth-pasting equation (35). The intuition is that since

15The technique uses a simple trick: line up the collocation nodes for the function approximation with
those of the quadrature nodes for calculating expectations and equilibrium conditions. After everything
is lined up, you can naively stack every equation in the model, including the Bellman equations, KFEs,
equilibrium conditions, etc., into a single nonlinear system of equations, and solve without any nested fixed
points. In practice, this requires using a high-performance solver and auto-differentiation, but it is easy to
implement and reasonably fast.
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the firm is right next to the adoption barrier, there is no additional value in increasing its
productivity marginally because it will adopt a new technology immediately.

This demonstrates a tradeoff in firms’ innovation decisions: Investing more in innova-
tion grows their productivity and increases their profits, but firms with higher productivity
are further from the adoption threshold, and thus innovation decreases the option value
of adoption. Since the option value of adoption is a larger component of total value for
lower-productivity firms, the lower-productivity firms invest less in innovation. Intuitively,
for a firm just above the adoption threshold, why invest in innovation to get an incremental
improvement when it can save the cost of innovating and, instead, adopt a technology that
is discretely better in expectation than the one it is currently using? Of course, the cost of
adopting and innovating will jointly determine this adoption threshold.

Proposition 3 (Stationary Equilibrium with Continuous Endogenous Innovation and Boun-
ded Support). The endogenous innovation choice is such that γ(0) = 0 and γ(z̄) = g. A
continuum of equilibria exist, parameterized by z̄.

Proof. See Technical Appendix B.1 with numerical methods in the Computational Appendix.

In the endogenous innovation case, there are a continuum of equilibria indexed by the
frontier z̄, each with an associated aggregate growth rate g(z̄).

Compared to Stokey (2014), who features a similar innovation process but differs in the
treatment of adoption, here the endogenous choice of γ is complicated by the option value of
adoption. Different distributions and associated z̄ induce different option values and allow
for a continuum of self-fulfilling γ(z̄). That is, a smaller z̄ increases the option value of
adoption for innovators at the frontier, which is a disincentive to innovate; this leads to less
innovation at the frontier, which, consistently, generates a smaller z̄. The hysteresis comes
from economic forces (rather than technical properties of stochastic processes and initial
conditions) and is due to a complementarity between firms’ decisions and the shape of the
distribution.

Because of this, for any η > 0, technology adoption leads to differences in the aggregate
growth rate by affecting the location of the frontier—and, consequently, the strength of the
option value of technology diffusion.

An example of the optimal innovation policy and productivity distributions for an endo-
genous growth BGP is shown in Figure 6. In addition, Figure 7 plots the growth rate as a
function of the frontier. This figure illustrates the intuition that, because of the self-fulfilling
balancing of innovation incentives and frontier location, lower values of z̄ are associated with
lower aggregate growth rates. The smaller the relative frontier, the larger the option value of
adoption at the frontier, and the lower the incentive to push out the frontier by innovation.
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Figure 8 plots the maximum growth rate from the set of equilibrium g as a function
of η. The maximum possible growth rate is a decreasing function of η. With more jumps
to the frontier, the distribution becomes more compressed, as discussed in the exogenous
innovation case of Section 3 and depicted in Figure 5. As the growth rate of the frontier
is determined by the innovation decision at z̄, the more compressed is the distribution the
lower is the innovation rate, for the same reasons that g(z̄) is increasing in Figure 7.

Comparison to Models with Exogenous Innovation. The results in this section are
in contrast to Perla and Tonetti (2014) and the baseline model in Lucas and Moll (2014),
where long-run growth is determined by initial conditions. Those papers can be interpreted
as modeling how adoption can generate growth in the medium run.

It is also distinct from models with exogenous innovation and diffusion modeled as ge-
ometric Brownian motion, such as Staley (2011) and Luttmer (2012b). In those models,
taking the innovation meeting rate to infinity for the large finite agent limit leads to un-
bounded idiosyncratic growth rates. Here we get the opposite relationship between adoption
rates and growth, in part due to adoption and innovation being choices; decreasing the cost
of technology diffusion can decrease the growth rate, as it induces more free-riding for in-
novators. Another key difference in our setup is that the finite-state Markov process and
endogenous investment in innovation at convex cost conspire to yield a finite upper bound
on firm-level growth rates.

Endogenous Innovation with η ≈ 0. To emphasize that it is the option value of
adoption that generates the link between adoption, innovation, and aggregate growth, in
this section we briefly study the case where z̄ is asymptotically unbounded.

Proposition 4 (Endogenous Innovation with η ≈ 0). For η → 0, an equilibrium exists such
that lim

t→∞
z̄ =∞ and the unique growth rate is the solution to the cubic equation

g
(
g2 + g(2λh + λ` + 3ρ) + 2ρ(λh + λ` + ρ)

)
= χ(g + λh + λ` + ρ). (41)

The endogenous innovation choice is such that γ(0) = 0 and lim
z̄→∞

γ(z̄) = g.

Proof. See Technical Appendix B.1. The numerical method to compute the equilibrium γ(z)
and the Fi(z) is described in the Computational Appendix.

As η → 0, the number of jumps to the frontier approaches 0 and the model studied in
Proposition 3 converges to the model studied in Proposition 4.

Whenever innovation is a choice, the endogenous aggregate growth rate is the growth
rate chosen by innovators at the frontier. In contrast to the η > 0 case for larger η, when
η ≈ 0 the aggregate growth rate is independent of the cost of adoption. This is because
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Figure 9: Endogenous γ(z), Fi(z), and α(z) with η ≈ 0

innovating firms at the frontier have zero option value from adoption; therefore, changes in
the cost or benefits of adoption do not alter their innovation behavior. For intuition, see
that the option value term vanishes for large z in equation (29) (i.e., vl(z) ∝ ez for z →∞).
The right panel of Figure 10 plots comparative statics for a change in the adoption cost
when η ≈ 0. As already stated in theory, the figure shows that the aggregate growth rate is
invariant to changes in the cost of adoption.
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Figure 10: How Aggregate Growth Varies with Adoption Costs with and without Leapfrog-
ging (no licensing ψ = 1)

While the growth rates are independent of the adoption costs for η ≈ 0, this is not true in
general, since innovation incentives are affected by adoption costs when there is a stationary
finite frontier. The left panel of Figure 10 plots comparative statics on the adoption cost ζ in
the model with η > 0. This figure shows that an increase in the adoption cost can increase
the growth rate, because it decreases the free-riding incentive for innovators. A welfare
interpretation is that a government subsidy to technology adoption financed by lump-sum
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taxes would decrease aggregate the growth rate. The effect of the subsidy on aggregate
growth would be stronger when frontier firms are closer to the worst firms in the economy.
This result holds in the case in which technology is not excludable (ψ = 1). We now turn
to analyzing the case of licensing, in which a subsidy to adoption can have a very different
effect on innovation and aggregate growth.

4.3 Licensing and Partial Excludability

In order to isolate the effect of licensing on aggregate growth, we focus on the η ≈ 0 case,
where Figure 10 demonstrates that, absent licensing, changes in the cost of adoption do not
affect the aggregate growth rate.

Analysis of Flow Profits. To study how licensing affects innovation incentives we diffe-
rentiate the profit function in equation (30):

π′(z) = ez + (1− ψ)gF ′(0)v′`(z). (42)

On the margin, increasing firm productivity z increases profits for two reasons. The first
term ez is the marginal increase in profits from an increase in production. The second term
is the increase in profits from an increase in licensing revenue. Since the value function
is increasing in productivity, the second term is positive, so licensing provides a positive
incentive to innovate. Furthermore, since the value function is convex, licensing provides
stronger incentives to innovate for higher productivity firms. The profits from licensing
disappear as z → 0 because the surplus from adopting a technology close to the adoption
boundary goes to 0. Consequently, π′(0) = 1. Finally, with licensing, profits become a
function of g. Faster growth means more adopters given a fixed F (z), and F (z) and v`(z)
are also themselves functions of g.

Role of Excludability. Figure 11 plots the aggregate growth rate as a function of the
excludability parameter ψ. When excludability is not too strong, the aggregate growth
rate is increasing in the degree of excludability (1-ψ) (i.e., growth increases with weaker
bargaining power for the adopter). The increase in the aggregate growth rate is due to the
added incentive to invest in growing via innovation, as higher-productivity firms gain extra
profits from licensing the better technology to adopting firms.

There is, however, a countervailing force that dominates when excludability is already
strong. If the licensor’s bargaining power is too strong, the incentive to adopt technologies
becomes too small. Consequently, fewer firms adopt new technologies, ultimately generating
less licensing revenue. Lower licensing revenue decreases the returns to innovation for all
firms, including those near the frontier that determine the aggregate growth rate.
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To give a sense of the distribution shape, we plot the Gini index. For a wide range of the
parameter values, increasing excludability increases innovation activity and generates a more
unequal distribution. This shows a trade-off between productivity inequality and aggregate
growth rates. This independent positive association between productivity dispersion and
the aggregate growth rate operates through innovation activity, compared to the typical link
(i.e., Perla and Tonetti (2014)) driven by adoption incentives.
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Figure 11: Growth and Distribution Shape under Excludability

Figure 12 presents another perspective on the role of excludability by plotting the aggre-
gate growth rate as a function of the adoption cost for various values of ψ. The model used
to generate Figure 12 is identical to the one used to generate the right panel in Figure 10,
except ψ is no longer equal to 1. In the absence of excludability (i.e., ψ = 1), adoption costs
can change the shape of the distribution, but they have no impact on the aggregate growth
rate—since the option value of adoption is infinitesimal for the highest-productivity agents
making the innovation decision at the frontier. With a strong degree of excludability, howe-
ver, lower adoption costs drive higher aggregate growth, even in this case with η ≈ 0. While
the option value of adoption for firms at the frontier is still infinitesimal, an innovating firm
gains extra profits by licensing to adopting firms, and the number of adopting firms increases
when adoption costs are lower.

The Gini coefficient decreases modestly but is nearly flat. The reason is that the shape of
the distribution near the adoption threshold is impacted by the large mass of agents there,
which is generally determined by the innovation decisions of those lower-productivity firms
rather than by the frontier innovation rates.

Finally, we consider a variation on the experiment in Figure 10, which showed that wit-
hout licensing (ψ = 1) a decrease in the cost of technology adoption decreased the aggregate
growth rate (by strengthening the free-riding incentive for innovators). In Figure 13 we plot
the same reduction in adoption costs, but in a model with licensing and with positive option
value of adoption at the frontier. Licensing can overturn the negative relationship between
adoption costs and aggregate growth rates. Conducting the same exercise with ψ = 0.5 yields
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Figure 12: Interaction of Excludability and Adoption Costs

such a reversal, as shown in Figure 13, where subsidizing technology adoption increases the
aggregate growth rate.
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Figure 13: Comparative Statics on Adoption Cost with η = 0.01 and ψ = 0.5

5 Conclusion

This paper develops a theory of the shape of the productivity distribution and of how pro-
ductivity improves over time, which generates long-run aggregate growth. Firms make choi-
ces to invest in adoption and innovation, and the balance of these two activities across
firms determines aggregate outcomes. Adoption is a force that compresses the distribution,
helping laggards keep up with an expanding frontier. Innovation is a force that stretches
the distribution, pushing out the frontier. Balanced growth path equilibria with stationary
normalized distributions exist. On a BGP, a lower cost of adoption creates a thinner-tailed
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distribution with a smaller distance between best and worst firms. Easier innovation has
an opposite effect, generating thicker tails and a larger range in productivity. More firms
leapfrogging to the frontier generates thicker tails, but, because it helps laggards keep up
with innovators at the frontier, it shrinks the distance from the bottom to the top of the
distribution.

In addition to interacting to determine the shape of the distribution, adoption and in-
novation combine to generate aggregate growth. On a BGP, the long-run aggregate growth
rate is the maximum growth rate chosen by innovating firms. If there were no innovation,
there would be no growth. In this sense, innovation is the driver of growth. Adoption,
however, affects long-run growth by affecting the incentives to innovate. In equilibrium, low-
productivity firms choose to adopt and high-productivity firms focus on innovation. Thus,
growing through innovation increases the expected time until a firm becomes an adopter.
Because innovators may one day become adopters there is an option value of adoption. If
this option value is large, e.g., because adoption is low cost, then innovators may be tempted
to free ride by investing less in pushing out the frontier, content to fall back to the adoption
threshold faster. This complimentary between the distance to the frontier and the incentive
to innovate generates multiplicity of BGP. If the initial distribution has a small distance to
the frontier, the option value of adoption is high, and the incentives to push out the frontier
are low. Thus, the small distance to the frontier is self-reinforcing. In this sense, a subsidy
to adoption can reduce aggregate growth.

Adoption, on the other hand, may be a force to increase aggregate growth. When adop-
ting firms must pay a licensing fee to the higher-productivity firm from which they are
adopting there is an extra incentive to innovate. Innovation increases productivity, and pro-
fits from licensing a high-productivity technology are larger than profits from licensing a
mediocre technology. Thus, more adopters induces more innovation, increasing aggregate
growth. Furthermore, there is an optimal level of excludability, parameterized by the bar-
gaining power of adopters, that balances the number of adopters and the profits per adopter
to maximize growth. Too strong of a bargaining power for adopters limits the innovation
incentive provided by the profits from licensing. Too weak of a bargaining power for adopters
raises the effective cost of adoption to the point that there are too few adopters.

In sum, the model illustrates how firm choices to adopt and innovate intertwine to gene-
rate aggregate effects in equilibrium.
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