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1. Introduction 

Intangible assets are attracting major academic and policy interest in today’s knowledge 

economies. Intangible assets, such as knowledge generated through investment in research 

and development (R&D), are assets that are not physical in nature yet deliver concrete 

economic benefits. Research has established that intangible assets account for a significant 

proportion of firms’ value (Lev and Sougiannis 1996; Crépon et al. 1998; Webster 2000;) and 

are an important driver of productivity growth (Adams 1990; Coe and Helpman 1995; 

Corrado et al. 2009). Although our understanding of intangible assets has progressed 

significantly, many open questions remain.  

One such question is the speed at which these assets depreciate. This paper focuses on 

the private rate of depreciation of R&D assets, defined as the rate of decay of appropriable 

revenues that these assets generate (Pakes and Schankerman 1984).1 The depreciation rate of 

R&D is a key economic parameter. It provides information about the speed of technological 

change and is essential for estimating the private returns to R&D investments (Pakes and 

Schankerman 1984; Esposti and Pierani 2003; Hall et al. 2010). In this regard, Hall 

(2005:342) argues that measurement of the depreciation of R&D assets is the “central 

unsolved problem in the measurement of the returns to R&D”. The ‘depreciation problem’ 

arises from the difficulty in reconciling depreciation rates obtained using different 

methodologies (see also Griliches 1998). In addition, because the R&D depreciation rate is 

endogenous to R&D investments, it is also central to the understanding of industry dynamics 

(Caballero and Jaffe 1993; Jovanovic and Nyarko 1998; Pacheco-de-Almeida 2010). Finally, 

it is also of policy relevance in fields such as growth accounting, where it is used to build 

R&D capital stock and to compute the rental price of R&D capital (Nadiri and Prucha, 1996; 

Fraumeni and Okubo, 2005; Corrado and Hulten 2010).2 The importance of, and difficulties 

associated with, the measurement of R&D depreciation are well captured by a quote from the 

U.S. Bureau of Economic Analysis (2012): 

“Research and development (R&D) depreciation rates are critical to 

calculating the rates of return to R&D investments and capital service costs, 

                                                           
1 R&D assets account for a large proportion of intangible assets. For example, they account for approximately 
50 per cent of intangible assets in the United States (Corrado et al. 2009:676). 
2 The rental price is the user cost of R&D capital. It is used in national account systems to estimate R&D capital 
services. It includes: the opportunity cost of investing elsewhere; the loss in market value of the good due to 
ageing (i.e. depreciation); the capital gains or losses due to asset price inflation/deflation; and adjustments for 
differential tax treatment across assets.  
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both of which are important for capitalizing R&D investments in the national 

income and product accounts. Although important, measuring R&D 

depreciation rates is extremely difficult because both the price and output of 

R&D capital are generally unobservable” (Li 2012: 2). 

Within this context, this paper presents novel estimates of the R&D depreciation rate 

using data from the Australian Inventor Survey (AIS). The sample contains information on 

2259 patent applications filed at the Australian patent office (IP Australia) between 1986 and 

2005. The empirical analysis comes with two innovations. First, the estimation strategy 

departs from existing methods. Only a handful of studies have estimated the R&D 

depreciation rate and all of them rely on indirect inference. By contrast, the approach 

proposed in this paper relies on direct observation of inventors’ estimates of the revenue 

streams generated by inventions. It is thus genuinely different from existing approaches.3 

Second, this paper estimates the depreciation rate for both patented and not patented 

inventions. To the best of our knowledge, this study is the first of its kind: existing estimates 

either rely entirely on patented inventions or do not differentiate between patented and 

unpatented inventions. Yet since the very purpose of patent protection is to slow down the 

erosion of profit, the depreciation rate of unpatented inventions should be higher than that of 

patented inventions. Because not all of the patent applications in the AIS were granted, the 

dataset allows us to study how patent protection affects the depreciation rate. Understanding 

the magnitude of the difference in the depreciation rate between patented and unpatented 

inventions may help resolve discrepancies in previous estimates. It will also provide novel 

insights into the economic effects of the patent system.  

The results suggest that the depreciation rate is in the lower range of existing 

estimates and varies in a range of 1 to 5 per cent (depending on model specifications) after 

the first few years of an inventions life. There is, however, more rapid decline of 10 to 15 per 

cent in value in the first two years after patent application. The decline in value that occurs in 

the early life of an invention is largest in the radio, television and communication equipment 

industry (up to 20 per cent). Inventions in the pharmaceuticals and medicinal chemicals 

industry exhibit the lowest depreciation rate and the smallest early decline in value. The 

results further indicate that the depreciation rate is lower for inventions that are protected 

with a patent. Inventions protected with a patent enjoy a reduction in their depreciation rates 

                                                           
3 Because patent law requires ‘unity of invention’, meaning that a patent shall relate to one invention or one 
inventive concept only, we use the terms ‘invention’ and ‘patent application’ interchangeably. 
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by about 1–2 percentage points. However this effect is only observed for ‘strong’ patents, i.e. 

patents which were reported to provide effective legal protection from copying of the 

invention. 

The rest of the paper is organised as follows. The next section provides background 

information on R&D depreciation. Section 3 presents the econometric framework and the 

data, and section 4 presents the results. Finally, section 5 discusses the findings and explains 

their relevance for the fields of industrial organization and accounting, as well as for 

statistical offices. 

2. Definition(s) and estimates of R&D depreciation rate 

This section first discusses the concept of R&D depreciation. It then presents the main 

approaches that have been proposed in the literature for estimating the R&D depreciation rate 

(a longer literature review is presented in Mead 2007). The overview serves to emphasise the 

originality of the method proposed in this paper, as well as report available estimates of R&D 

depreciation rates for comparison purposes. Finally, this section discusses the effect of 

patenting on R&D depreciation. 

2.1. Defining R&D depreciation 

From an accounting perspective, R&D depreciation looks much like the depreciation of 

tangible assets. But of course intangible assets do not physically degrade; the forces that 

cause their value to decline with time are subtler. The knowledge created by R&D 

investments can be embodied in products and processes to deliver a commercial benefit, and 

it can also create a technological benefit in the form of spillovers that facilitate subsequent 

inventions. For a specific invention, both commercial and technological benefit can either rise 

or fall after it is first created, as new information arrives about the effectiveness or uses of the 

invention. But there are generic forces that tend to cause value to decline on average over 

time. First, a successful invention will tend to invite imitation, which reduces the commercial 

value to the owner of the invention. Second, because technological improvement is on-going, 

the development of other new ideas will tend to partially or wholly supersede a given idea. 

This process of obsolescence will tend to reduce the commercial value, as new products 

compete with existing ones in the process that Schumpeter dubbed creative destruction. 

Obsolescence also tends to reduce the technological value of an invention over time, as each 
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successive round of invention builds on the most recent knowledge and depends less on older 

knowledge. 

Both commercial and technological values are subject to spillovers, so there may be a 

gap between the value captured by the party that made the investment (private return) and the 

overall social value. Given this gap, the private and social rates of depreciation may differ, as 

imitation and obsolescence may operate differently on the private and social values. For 

example, imitation may greatly erode the private value while not affecting the social value.4 

Obsolescence will generally reduce the social value, but may have relatively little impact on 

the private value, as the market for the products incorporating the invention may or may not 

be impacted by subsequent technologically-dependent inventions, and those subsequent 

inventions may or may not be monetized by the original inventor.  

In this paper we focus on private depreciation rate of R&D, which we characterize as 

the average rate of decline in revenues that are appropriable by the original invention owner. 

The private depreciation that we observe results from some unknown combination of 

imitation and obsolescence. Our estimates do not speak directly to the social depreciation rate 

of R&D, although the fact that imitation depreciates private but not social value suggests that, 

in general, the depreciation rate of social value should be less than the private rate. 

2.2. Available estimates 

A handful of studies have sought to estimate the depreciation rate of R&D. A first formal 

attempt is that of Pakes and Schankerman (1984), who use patent data (output).5 The authors 

exploit the fact that the owner of a patent must pay yearly renewal fees in order to maintain a 

patent in force. They develop a model of the patent renewal decision in which revenues from 

a patented invention decline deterministically and a patent is renewed for an additional year if 

the annual revenue at least covers the cost of the renewal fee. They then impose distributional 

assumptions on invention value and calibrate their model using aggregate data to infer the 

decay rate of appropriable revenues. This methodology has been refined in a number of ways, 

in particular by using individual patent data and by accounting for the stochastic nature of the 

flow of revenues using real option models (Pakes 1986; Lanjouw 1998; Baudry and Dumont 

                                                           
4 Indeed, imitation could increase the social value of an invention, if it has the effect of making the invention 
available to more users. 
5 Although we use the term ‘depreciation rate of R&D’ when patent data is used, we are aware that there is not a 
one-to-one relationship between R&D output and patents. First, not all inventions are patented let alone 
patentable. Second, not all patents originate from R&D activities. 
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2006; Deng 2007; Bessen 2008).6 Interestingly, studies that use patent renewal data usually 

assume that the depreciation rate is exogenous to patent protection. That is, the optimal 

renewal period is chosen given an intrinsic depreciation rate. This assumption is 

counterintuitive since the very purpose of patent protection is to slow the erosion of profits. 

 Other attempts, which rely on R&D expenditures (input) rather than patent data, have 

also been undertaken. Studies in this group are of two main types. A first approach, 

predominant in the field of accounting studies, relies on firms’ financial performance 

measures. Hirschey and Weygandt (1985) show that R&D expenditures have a positive effect 

on the market value of firms controlling for the replacement cost of tangible assets. Although 

the focus of their paper is on the need to capitalise R&D expenditures for accurate 

accounting, they are able to interpret their model parameters in terms of depreciation rates (or 

‘amortisation rate’ in accounting jargon), but at the cost of identifying assumptions. In 

particular, they need to assume that R&D investments grow at the equilibrium rate, which is a 

strong assumption for firm-level studies. Related works include Hall (2005), who also uses 

firm market value, and Lev and Sougiannis (1996) and Ballester et al. (2003), who use firm 

earnings.  

A second approach that relies on R&D expenditure estimates production models with 

the stock of R&D as an input along with labor and tangible capital. Nadiri and Prucha (1996) 

specify a model of factor demand for the United States manufacturing sector with static price 

expectations and non-capital input decisions. The depreciation rate of R&D capital is one of 

the parameters of their model. Other production models include Bernstein and Mamuneas 

(2006) and Huang and Diewert (2011). Because these models are estimated at the economy 

or industry level, the returns to R&D implicitly include some degree of spillovers beyond the 

R&D-performing firm, and hence reflect to some degree the social rather than the private 

depreciation rate. Table 1 summarizes the main estimates of R&D depreciation rate. The 

estimates vary greatly, ranging from almost no depreciation to almost 50 per cent, and there 

is not, in fact, a clear tendency for the industry-level estimates to be lower than those at the 

invention or firm level. This wide variation illustrates the ‘depreciation problem’ raised by 

Zvi Griliches and Bronwyn Hall. 

                                                           
6 Another approach that uses patent data involves modelling the evolution of the number of citations received by 
patents over time. As a piece of knowledge gradually becomes less useful in generating new knowledge, the 
number of citations received by a patent should decline (Jaffe and Trajtenberg 1996). It is however unclear that 
citation data inform about the decay of appropriable revenues. It more likely captures the technological 
obsolescence of inventions. 
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Table 1. Overview of estimated R&D depreciation rates 

Article Key data Model Unit Rate 
Pakes and Schankerman (1984) Granted patents Patent renewal Invention 0.25 
Pakes (1986) Granted patents Patent renewal Invention 0.11–0.19 
Lanjouw (1998) Granted patents Patent renewal Invention 0.02–0.06 
Deng (2007) Granted patents Patent renewal Invention 0.06–0.11 
Bessen (2008) Granted patents Patent renewal Invention 0.13–0.27 
Hirschey and Weygandt (1985) R&D expenditures Accounting Firm 0.02–0.17 
Lev and Sougiannis (1996) R&D expenditures Accounting Firm 0.11–0.20 
Ballester et al. (2003) R&D expenditures Accounting Firm 0.02–0.46 
Hall (2005) R&D expenditures Accounting/ 

Production function 
Firm -0.06–0.28 

Nadiri and Prucha (1996) R&D expenditures Production function Industry 0.12 
Bernstein and Mamuneas (2006) R&D expenditures Production function Industry 0.18–0.29 
Huang and Diewert (2011) R&D expenditures Production function Industry 0.01–0.29 
Notes: Point estimates of depreciation rates reported. The depreciation rates in Lev and Sougiannis (1996) are 
computed as the average values of the parameters δk in Table 3. 

 

 Note that it is also possible to estimate depreciation rates from the ‘service life’ of 

R&D projects. This approach involves asking R&D managers about the number of years an 

R&D asset will be used and dates back at least to Schott (1976). It has been adopted by 

statistical offices in their efforts to capitalise R&D expenditures in national account systems 

(Peleg 2008; Ker 2013). One strength of this approach is that it produces service lives for the 

different components of R&D (basic research, applied research, and development). 

Weaknesses include the fact that it relies on a stated service life (as opposed to a revealed 

service life), and that service life is expressed in years and is, therefore, not directly 

comparable with the literature on R&D depreciation.7 

Although existing studies differ widely in their scope and methodology, one common 

trait is that they rely on indirect inference to estimate the depreciation rate. By contrast, the 

methodology adopted in this paper relies on direct inference. The data on inventor estimates 

of invention revenue streams lends itself to estimating the depreciation rate in a 

straightforward manner.8 In addition, no previous research has explicitly studied the 

difference in depreciation rates between inventions that are protected with a patent and 

inventions that are not. Whereas studies that rely on granted patents are only informative 

                                                           
7 Median service lives across all industries presented in Ker (2013) are 6 years (unweighted) and 10 years 
(weighted by R&D expenditures). Assuming a linear depreciation leads to a depreciation rate of 16.7 per cent 
and 10 per cent, respectively. Additional assumptions are needed to convert these figures into an exponentially 
declining depreciation function. 
8 Of course there are also limitations associated with this approach, in particular regarding the fact that it relies 
on the inventor’s estimate of the revenue stream. Sections 3 and 4 discuss the caveats. 
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about the decay rate of revenues from patented inventions, studies that rely on R&D 

expenditures mix both patented and unpatented inventions. Estimating the depreciation rate 

for both groups separately is thus a step forward in bringing these two sets of studies closer to 

each other.  

2.3. R&D depreciation and the patent system 

As Griliches (1979:101) observes, the depreciation rate of revenues accruing to the innovator 

derives from two related points regarding the market valuation of the invention: the loss in 

specificity of the knowledge as it leaks to other firms in the industry (‘imitation effect’); and 

the development of better products and processes which displace the original innovation 

(‘displacement effect’, related to obsolescence as discussed above). This observation 

immediately suggests two ways in which patent protection may reduce the depreciation rate. 

First, patent protection reduces the imitation effect as it confers the right to exclude others 

from making, using, selling and importing the invention. Second, patent protection may 

inhibit follow-on research by competitors, or yield licensing revenue if subsequent products 

rely also on the earlier invention (Scotchmer 1991; Bessen and Maskin 2009), thereby 

mitigating the revenue loss due to displacement.  

The literature is equivocal about both of these effects. On the one hand, scholars have 

shown that patent protection increases the value of inventions (Arora et al. 2008; Jensen et al. 

2011) or the value of the patenting firm (Ceccagnoli 2009), thereby providing evidence that 

patenting strengthens firms’ appropriability conditions. On the other hand, patent protection 

is an imperfect appropriability mechanism, for two reasons. First, patent rights are costly to 

enforce. While it is well recognised that many firms apply for patents to protect against 

imitation (Cohen et al. 2000; Blind et al. 2006; de Rassenfosse 2012), the actual effectiveness 

of patent protection has been questioned. Enforcing a patent requires considerable resources, 

either financial resources to defend the validity of a patent in court or other resources such as 

a large patent portfolio to increase negotiation power and settle before trial (Hall and 

Ziedonis 2001; Farrell and Merges 2004; Weatherall and Webster 2013). Second, patent 

protection is ineffective against imitators inventing around an innovation (Mansfield et al. 

1981; Gallini 1992). To protect themselves against substitute technologies, firms sometimes 

resort to a ‘patent fencing’ strategy, which involves filing multiple patents per innovation 

(Reitzig 2004). As these concerns have the potential to undermine the benefit of patent 

protection, the empirical analysis shall touch upon these issues.  
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There is, however, one important proviso to our approach to bear in mind. Patent 

protection is a costly and substitutable good and firms self-select into the patent system. The 

costs are both monetary (actual cost of patenting) and non-monetary (disclosure requirement 

in patent law), and authors have shown that these costs affect the patenting decision 

(Horstmann et al. 1985; Zaby 2010; de Rassenfosse and van Pottelsberghe 2013). The 

substitutability of patent protection arises from the alternative appropriation mechanisms such 

as lead-time and the availability of complementary assets (Teece 1986; Cohen et al. 2000; 

Arora and Ceccagnoli 2006). Therefore, under some conditions it might well be that 

inventions kept secret enjoy a lower depreciation rate than inventions submitted to the patent 

office. The Coca-Cola formula is the archetypal example of an innovation that likely would 

have depreciated at a much faster pace if it were patented. In this paper the effect of patent 

grant is estimated for firms that self-select into the patent system, and so we cannot say 

anything about depreciation of inventions that are protected by trade secrets. 

3. Framework and data 

3.1 Empirical framework 

There is no unique pattern in the evolution over time of the revenue streams of inventions. 

While some inventions may produce most revenue in their early life, others may deliver no 

return until late. We call      the amount of appropriable revenues remaining at age a (that 

is, from    ). Invention value is subject to high uncertainty and is therefore difficult to 

predict. However, it is necessarily the case that, ex post,      is a declining function of age. 

This paper follows previous convention and models invention value at age a using an 

exponential decay function: 

              (1) 

 

where   is the depreciation parameter.9 The model assumes a constant depreciation rate over 

time, and section 4.2 shows that the data supports that assumption beyond the first few years 

of an invention’s life. Dividing equation (1) by      and taking logs, the empirical 

counterpart of equation (1) can be written as: 

                                                           
9 One could also conceive of depreciation in terms of the decline in the annual revenues, but another virtue of 
the exponential model is that the depreciation rate is the same whether conceived relative to the stock or the 
annual flow. 
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         (2) 

 

where i denotes an invention and   is the parameter to be estimated.10 The data do not contain 

information on the full sequence of invention values            . Two quantities are 

observed: invention value at age 0; and the residual invention value at the time of the survey. 

Heterogeneity comes from that fact that inventions belong to cohorts of different vintages. 

Thus, the information set is                  , and the depreciation rate is estimated 

from a mix of within variations in invention value and between variations in value. 

Note that, in its initial form, equation (2) does not include a constant term – an 

intercept c different from 0 would imply that                 , which cannot be true. 

However, given that the youngest inventions in the sample are two years old, a constant term 

different from 0 can be interpreted as the decline in value that occurs within the first two 

years. Variations in the depreciation rate   are modelled as a linear function of covariates 

such that equation (2) can be written as (including a constant term): 

  
   

   
      

         (3) 

 

where   
   is the inner product between the vector of covariates    and the vector of 

parameters  , and the error-term            
   in the baseline specification. It is clear from 

equation (3) that all the explanatory variables must be interacted with the age variable. 

Equation (3) will be estimated with OLS as well as with alternative regression models: a 

generalised linear model, to account for the fact that the dependent variable is not normally 

distributed, and robust regression models, to account for potential difference in the 

trustworthiness of estimates across vintages. 

 Note that this paper relies on conservative evidence thresholds for the declaration of 

significant coefficients (p-values of 0.01 and 0.005). We follow Johnson (2013) who shows 

                                                           
10 As explained in section 4.2 the regression equation (2) also encompasses the class of declining balance 
models and is, therefore, quite general. 
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that commonly-used levels of significance represent only weak evidence in favour of 

hypothesised effects.11 

3.2 Data sources 

The empirical analysis combines data from four sources. The main data source is the AIS and 

it is complemented with information from patent databases.  

3.2.1 Australian Inventor Survey (AIS) 

In 2007 the Melbourne Institute at the University of Melbourne has conducted a survey of 

patent applications by Australian inventors submitted to IP Australia, the Australian Patent 

Office, from 1986 to 2005. Each surveyed inventor was asked questions related to the 

characteristics of the invention, including questions about invention value. A complete 

description of the survey methodology is provided in Webster and Jensen (2011). There are 

3862 inventions in the database and information on value is available for 2558 of them. 

Section 4.1 provides evidence that non-respondents do not bias the results. 

3.2.2 IP Australia’s AusPat database 

The online AusPat database from IP Australia is used to get information on the grant status of 

patent applications as well as their priority and expiry dates. The priority date is the date of 

the first filing of an application for a patent. It is used to compute the age of the invention.  

3.2.3 PATSTAT 

The European Patent Office (EPO) worldwide patent statistical database PATSTAT is used to 

get information on the family size and the IPC codes of each patent application. The family 

size is defined as the number of jurisdictions in which patent protection was sought. This 

paper adopts the extended INPADOC family definition, which groups together applications 

that are directly or indirectly linked through priorities (see Martinez 2011 for more 

information on patent families). International Patent Classification (IPC codes) codes 

represent the different areas of technology to which the patents pertain. They are assigned by 

examiners at the patent office and are thus homogeneous across patents. Technical details on 

the construction of the variables are provided in de Rassenfosse et al. (2014). 

                                                           
11 Johnson (2013) recommends using reference p-value thresholds of 0.005 and 0.001 instead of the usual 0.10, 
0.05 and 0.01. We adopt weaker thresholds than recommended (0.01 and 0.005) due to the relatively low 
number of observations in our sample for such stringent thresholds. 
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3.2.4 IPC-ISIC Concordance Table 

Patents are assigned to the appropriate industries using the empirical concordance table 

between IPC and International Standard Industrial Classification (ISIC) codes provided by 

Schmoch et al. (2003). The concordance table was built by investigating the patenting 

activity in technology-based fields (IPC) of more than 3000 firms classified by industrial 

sector (ISIC codes). When a patent contains more than one IPC code, the industry allocation 

is performed on a fractional basis. 

3.3 Dependent variable 

The dependent variable is the log of the proportion of invention value remaining at the time 

of the survey            . It is constructed from the following three survey items: 

 G1. To date, what is your estimate of sales revenue from products and processes 

using this invention? 

 G2. If you were selling this patent or invention today, what price would you be willing 

to accept for it? 

 G3. If this patent has been licensed, what is your best estimate of the licensing 

revenues to date? 

Each item is measured on a 7-point Likert scale with categories: 0 < $100,000; $100,000 to 

$500,000; $500,000 to $1m; $1m to $2m; $2m to $10m; > $10m; and unsure. A total of 1627 

observations from respondents who selected ‘unsure’ for any of the questions were dropped 

from the sample (474 observations dropped with G1, an additional 610 observations dropped 

with G2 and a final 543 observations dropped with G3). The values are expressed in 2007 

Australian dollars.12  

Since question G1 is revenue-based – rather than profit-based – we set the gross profit 

margin m at 30 per cent for goods and services produced using an invention following Jensen 

et al. (2011). (Section 4.3 investigates the sensitivity of estimates to the parameter m.) The 

variable     is the residual value for patents of age a and corresponds to question G2. The 

variable     is the total value at a = 0. It can be computed as (m*G1 + G3) + G2. Since the 

data is ordinal, the dependent variable was constructed from the mid-point value of each 

                                                           
12 An implicit assumption is that the backward value measures (G1 and G3) represent discounted cash flows. 
Section 4.3 explains that the depreciation rate would be about 0.5 percentage point below the ‘true’ rate should 
the backward value measures in fact represent undiscounted cash flows. 
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category (the last category was arbitrarily assigned a value of $15m), although alternative 

methodologies for converting categories into actual dollars will be tested. 

 Contrary to the existing approaches outlined in section 2, which rely on indirect 

inference to determine appropriable revenues, the dependent variable used in this paper is a 

direct measure of revenues. Although there may be a bias in inventors’ evaluation of the 

value of their inventions, such bias is mitigated by the use of ordinal variables (at the cost of 

precision, however). Another potential source of bias relates to the fact that inventions belong 

to cohorts of different ages. The remaining value (forward-looking question G2) is subject to 

a greater deal of uncertainty for younger cohorts, and respondents may experience greater 

difficulty in recollecting revenues earned for older inventions (backward-looking questions 

G1 and G3). This issue will be dealt with in the empirical analysis. 

3.4 Covariates 

Age of the patent (a). Computed as the number of years elapsed between the year of the 

priority patent application and the year of the survey (2007).  

Grant status of the patent (grant). Dummy variable takes the value 1 if the invention was 

granted patent protection and 0 otherwise. Australia’s patent law decrees that a patent right 

should be granted only for inventions that have a high degree of inventive merit over existing 

knowledge. The decision to grant a patent is done after a thorough examination of 

international prior art conducted by specialist patent examiners within IP Australia. It is 

therefore an exogenous event based on technological merit, not commercial value.  

Private companies (private). Dummy variable takes the value 1 if the invention belongs to a 

private company and 0 if it belongs to a public research organisation or an individual 

inventor. 

Strength of patent protection (weak). Dummy variable takes the value 1 if the respondents 

reported a “lack of confidence in legal protection from copying of the invention”. It is 

obtained from the highest scores (6 and 7) of a Likert-scale question in the AIS and is only 

available for inventions with a granted patent. 

International protection (intl protection). Dummy variable takes the value 1 if the invention 

is protected in at least one other country, that is if the INPADOC family covers at least two 

jurisdictions. Seeking international expansion for a patent is a complex and expensive process 
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that requires a certain level of commitment from its owner. This variable is a proxy for the 

ability of the owner to defend the patent in court in case of infringement.  

Other patents involved (other patents). The AIS contains information on the number of 

patents that were also used to develop the product. It is an ordinal variable with five 

categories [none; 1 to 5; 6 to 10; 11 to 20; 20+]. For the purpose of the analysis, the variable 

‘other patents’ is a dummy variable that takes the value 1 if at least one other patent is used to 

develop the product. Without using the terms ‘patent fences’ and ‘patent thickets’, the 

presence of other patents suggests that it becomes more difficult for competitors to invent 

around a technology. Similarly, patent protection may matter less for technologies that 

involve several patented components. Even if patent protection is not obtained for one 

component, another component may enjoy patent protection thereby providing effective 

protection for the whole technology.  

Industry dummies. Dummies corresponding to the main ISIC code of the patent.  

4. Results 

4.1 Descriptive statistics 

There were 3862 inventions surveyed in the AIS and information on value is available for 

2558 of them. Among these, 2259 inventions (88 per cent) are matched to the PATSTAT 

database.13 There is no evidence of bias in the reporting of invention value. Such a bias can 

be investigated along two dimensions that are available from external sources (PATSTAT 

and AusPat databases): the number of jurisdictions in which patent protection is sought (the 

family size) and the age of inventions. The average family size is 3.34 for inventions for 

which information on value is provided (N=2259), 3.23 for inventions with no information on 

value (N=1141), and the difference is not statistically significant (p-value of 0.38). Similarly, 

the average age is 8.82 years for inventions with information on value and 9.06 years for 

inventions lacking information on value, and the difference is not statistically significant (p-

value of 0.18). The age profile of inventions is presented in Figure 1 for the series of 

inventions with information on value (black bars) and missing information on value (grey 

bars).  

 
                                                           
13 In theory, all the observations should be matched to the PATSTAT database. There are, however, coverage 
problems in the PATSTAT database for patents filed at IP Australia. Section 4.3 investigates the effect of a 
potential selection bias. 
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Figure 1. Histogram of invention ages by availability of value information 

 
Notes: Black bars: information available; Grey bars: information missing. 

 

Table 2 presents descriptive statistics of the sample used. Note that the dependent 

variable is the logarithm of a ratio whose numerator is G2 and whose denominator is G2 plus 

the revenue numbers (G1 and G3). Hence the ratio never exceeds one and its logarithm is 

always negative. The mean of the dependent variable is -0.63 and the median (not in the 

table) is -0.26. The skewness of the dependent variable is explained by the predominance of 

more recent inventions in the sample (as shown in Figure 1). Inventions in the sample are 

older than two years and the average age is 8.82 years. There are 47 per cent of observations 

from private entities, and the overall grant rate is 67 per cent. About 17 per cent of granted 

patents are considered weak by inventors, 52 per cent of inventions are part of an 

international patent family, and 35 per cent of inventions come with at least one other patent 

application. The correlation structure of variables indicates that there are no collinearity 

issues. 
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Table 2. Data descriptives 

 Summary Statistics  Correlation coefficients 
 Min Mean Max Std. Dev  (1) (2) (3) (4) (5) (6) (7) 
(1)           -5.97 -0.63 -0.00 0.78  1.00       
(2) a 2 8.82 24 4.74  -0.16 1.00      
(3) grant 0 0.67 1 -  -0.05 -0.10 1.00     
(4) private 0 0.47 1 -  0.01 0.27 0.13 1.00    
(5) weak 0 0.17 1 -  0.00 0.02 n.a. -0.05 1.00   
(6) intl protection 0 0.52 1 -  0.02 -0.03 0.13 0.06 -0.04 1.00  
(7) other patents 0 0.35 1 -  0.07 -0.07 0.24 0.27 -0.08 0.20 1.00 
Notes: N = 2259. Variable weak only available for granted patents (N=1502).  

 

Figure 2 provides an overview of the depreciation function. It depicts the conditional mean of 

the dependent variable           computed using a kernel-weighted moving average. The 

confidence interval is ‘visually weighted’ using the method proposed by Hsiang (2013). The 

intuition behind these visual weights is that regions with more statistical certainty are given 

darker colours. Econometric estimates presented in section 4.2 below aim at evaluating the 

slope of the depreciation function. 

 

Figure 2. Overview of the depreciation function 

 
 

4.2 Econometric estimates of the R&D depreciation rate 

Baseline estimates 
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Table 3 presents baseline estimates of equation (3). Results using an OLS regression model 

without a constant in column (1) suggest that appropriable revenues decrease at a rate of 6 per 

cent annually. However, this model violates the basic OLS assumption that the mean of 

residuals be equal to zero, which typically calls for the inclusion of a constant term. Allowing 

for a constant term c in column (2) reduces the depreciation parameter to 2.6 per cent. The 

estimated value for the earliest observations available is                     , and the 

constant term c can therefore be interpreted as the early decline in value that is not accounted 

for by the depreciation parameter. In other words, the OLS regression model suggests that the 

average depreciation rate in the first two years is about 18 per cent (=[1-exp(c+δ*2)]/2). 

Figure 3 depicts the model fit. It suggests that the linearity assumption of the depreciation 

rate holds (at least locally, when a ≥ 2).14 A close look at the residuals suggests the presence 

of heteroscedasticity (the variance of residuals increases with age, not reported), and standard 

errors are therefore clustered by age cohort. Columns (3)–(5) investigate whether a more 

appropriate distributional assumption or a more appropriate treatment of likely outliers 

improves estimation.  

 

Table 3. Depreciation parameter with various estimation methods 

 (1)  (2) (3) (4) (5)  (6) (7) 
Method: OLS  OLS GLM Quantile MM  Quantile MM 

a -0.061**  -0.026** -0.055** -0.023** -0.015**  -0.013** -0.010** 
(0.004)  (0.004) (0.009) (0.002) (0.002)  (0.003) (0.003) 

                 -0.013** -0.007** 

        (0.002) (0.002) 
                          Y** Y 
Constant   -0.403** 2.132** -0.147** -0.152**  -0.133** -0.138** 

   (0.044) (0.133) (0.025) (0.019)  (0.023) (0.019) 
Observations 2259  2259 2259 2259 2259  2259 2259 
R2 0.024  0.024 0.024 0.024 0.024  0.035 0.033 

Notes: R2 is the square of the correlation coefficient between the predicted values of the dependent variables and 
their actual values. Standard errors in parentheses. Standard errors clustered by age cohort in columns (1)–(3). 
** p<0.005, * p<0.01 

 

                                                           
14 More flexible specifications of the decay function (up to the third-order polynomial of age) were considered 
but did not perform better in terms of the Akaike and Bayesian information criteria (AIC and BIC) than the 
linear model. For instance, the BIC is 5236 for the linear model, 5244 for the second-order polynomial model 
and 5250 for the third-order polynomial model. 
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Figure 3. Actual and predicted ratio of values (to the logarithm), by age cohort 

 
Notes: Series for the OLS model is obtained from column (2) of Table 3. 

 

The OLS regression model requires the dependent variable to be normally distributed. 

The dependent variable actually takes its value on the interval        such that the normality 

assumption is violated. The method used in column (3) assumes that the dependent variable 

conditional on the covariates follows a Gamma distribution by estimating a generalized linear 

model (GLM).15 The estimated coefficient is -0.055 and corresponds to a marginal effect at 

mean of 2.3 per cent, which is very close to the OLS estimate of column (2). However, the 

residuals still exhibit heteroscedasticity. Heteroscedasticity may be a consequence of the fact 

that inventions belong to cohorts of different vintages, such that the level of trustworthiness 

of estimates varies. A quantile regression model is presented in column (4). The quantile 

regression model estimates the effects of covariates on the median of the dependent variable 

rather than on its mean and is one way of accounting for potential outliers (Koenker and 

Bassett 1978). The estimated depreciation rate is remarkably similar to previous estimates 

(2.3 per cent) but the constant term is much lower (-0.147). The constant term suggests that 

the average depreciation rate in the first two years is about 9 per cent. Results of a robust 

regression model that down-weights potential outliers is reported in column (5). The 

estimator is the MM estimator by Yohai (1987) as implemented in Stata by Verardi and 

Croux (2009). The depreciation parameter is slightly lower, at 1.5 per cent, and the constant 

                                                           
15 The dependent variable is transformed to              so that it takes its value on the interval       . 
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term is closer to zero as compared with column (2). The last two regression models lead to 

greater model fit than OLS and GLM and are our preferred specifications. 

As a side note although the framework adopted is that of an exponential decay model, 

the parameter can also be interpreted in terms of a declining balance model. Such a model 

takes the form               and can be rewritten as                      . 

Thus, the declining balance depreciation rate can easily be recovered from the estimated 

parameter  . It corresponds to       . Note that for   small,     such that both 

models give sensibly similar results. 

 Regressions presented in the last two columns allow for a differentiated effect for 

private companies. Inventions by private companies depreciate by about one-percentage 

points more than inventions by public research organisations and individuals, probably owing 

to greater competitive pressure. The regressions also include dummies for seven industries 

that have at least 100 observations each. These seven industries account for more than 80 per 

cent of inventions and the corresponding dummies are jointly significant when the quantile 

estimator is used (but not when the MM estimator is used). Industry-specific estimates of the 

R&D depreciation rate are presented in Table A.1 and Figure A.1 in Appendix A for the 

selected industries and briefly discussed here. Point estimates vary in the range between 1 

and 4 per cent. The depreciation rate is lowest in the pharmaceuticals and medicinal 

chemicals industry (point estimates in the range 0.6–1.7 per cent) and highest in the 

machinery and equipment industry (point estimates in the range 2.1–4.0 per cent). The 

depreciation rate in the early life of an invention is smaller than the reference group in the 

pharmaceuticals and medicinal chemicals industry (in the range 4–5 per cent) and larger than 

the reference group in the radio, television and communication equipment industry (about 10 

per cent). 

Estimates by patent grant status 

The next sets of results, presented in Table 4, estimate the depreciation rate for inventions 

that were granted patent protection and inventions that were not. The estimates are obtained 

using both the quantile estimator (left panel) and the MM estimator (right panel). The grant 

effect, associated with the variable ‘       ’, is straightforward to interpret. It corresponds 

to the percentage points reduction in the depreciation rate. For instance, the value of 0.014 in 

column (1) suggests that inventions that enjoy patent protection have a depreciation rate that 

is on average 1.4 per cent lower than that of unpatented inventions. The corresponding rate 
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for the MM-estimate in column (5) is 1.2 per cent. One must be careful when interpreting the 

grant effect because of the limited information available. Ideally one would observe the full 

sequence of values together with the grant and lapse events to estimate the effect of one 

additional year of protection on the depreciation rate. Unfortunately, however, the full 

sequence of value is not observed in the AIS such that the correct interpretation of the grant 

effect is the yearly reduction in the depreciation rate over the life of inventions, given an 

average length of protection of eleven years (which is the average length of protection at IP 

Australia as indicated in Sutton 2009). Note also that we are careful not to insist on the 

causality of the result. On the one hand, the decision to grant a patent is exogenous to the 

firm, and based mainly on the technical merit of the invention (not its economic potential). In 

addition the very purpose of patent protection is to slow down the erosion of profits. Thus the 

causal interpretation seems a priori valid. On the other hand, one cannot exclude the 

possibility of reverse causality. The invention may be refused patent protection because a 

similar technology may already exist, such that the technology is bound to depreciate at a 

faster pace. Estimates of the magnitude of the grant effect are interesting in their own rights 

independently of the direction of causality. 

 Mitigating factors for the grant effect are investigated in columns (2)–(4) and (6)–(8).  

In particular, the strength of patent protection may affect the returns to patenting. The group 

of granted patents is broken down into patents for which respondents are confident about the 

quality of their intellectual property rights (weak = 0) and for which they are not (weak = 1). 

Results indicate that only patents in the former group effectively reduce the depreciation rate. 

Point estimates are not statistically different from zero when patent protection is considered 

weak (and in any case are lower than when patent protection is considered strong). Similarly, 

the ability to defend the patent in court may matter more than the actual grant and may drive 

some of the effect. We use the variable ‘intl protection’ as a proxy variable and we break 

down the grant effect into two groups: patent holders that have applied for international 

patent protection (they may have deeper pockets and/or be more willing to enforce their 

patent rights), and patent holders that have not. The corresponding parameters in columns (3) 

and (7) suggest that inventions having an international patent protection have a lower 

depreciation rate than inventions with only a domestic protection by about half a percentage 
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point.16 A third concern that may affect the estimated parameter is that patent protection may 

matter less for technologies that involve several patented components. Even if patent 

protection is not obtained for one component, another component may enjoy patent 

protection thereby providing effective protection for the whole technology. This issue is 

investigated in columns (4) and (8) with the variable ‘other patents’. The presence of other 

patents does not seem to further slow the erosion of profits. 

 

Table 4. Effect of patent grant on depreciation rate 

 (1) (2) (3) (4)  (5) (6) (7) (8) 

 Quantile estimator  MM estimator 

x:  weak intl 
protection    weak intl 

protection  

  -0.026** -0.027** -0.023** -0.028**  -0.021** -0.021** -0.020** -0.021** 
(0.006) (0.006) (0.005) (0.005)  (0.004) (0.004) (0.004) (0.004) 

        0.014**   0.013**  0.012**   0.012** 
(0.004)   (0.004)  (0.003)   (0.003) 

                0.015** 0.010    0.013** 0.010*  
 (0.004) (0.004)    (0.003) (0.004)  

               
 0.012 0.015**    0.008 0.014**  
 (0.005) (0.004)    (0.004) (0.003)  

                   0.007     0.003 

   (0.003)     (0.002) 
          -0.016** -0.016** -0.017** -0.016**  -0.009** -0.009** -0.009** -0.009** 

(0.003) (0.003) (0.003) (0.003)  (0.002) (0.002) (0.002) (0.002) 
                   Y** Y** Y** Y**  Y Y Y Y 
Constant -0.099** -0.100** -0.111** -0.099**  -0.116** -0.114** -0.118** -0.116** 

 (0.032) (0.033) (0.031) (0.031)  (0.019) (0.018) (0.019) (0.019) 
Observations 2259 2259 2259 2259  2259 2259 2259 2259 
R2 0.037 0.039 0.038 0.037  0.035 0.035 0.036 0.035 
Notes: R2 is the square of the correlation coefficient between the predicted values of the dependent variables and 
their actual values. Standard errors in parentheses. ** p<0.005, * p<0.01 

 

4.3 Sensitivity analysis 

Table 5 presents a series of robustness tests aimed at assessing the validity of the results. A 

first concern relates to the fact that observations in the sample belong to cohorts of different 

                                                           
16 We checked that the results obtained for the ‘intl protection’ variable are not affected by our choice of a 
dummy variable rather than the actual family size. We have interacted the ‘grant’ variable with the family size 
and the results did not change. 
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vintages. On the one hand future revenues are more uncertain for younger cohorts (question 

G2), but on the other hand past revenues may be more difficult to estimate accurately for 

older cohorts (questions G1 and G3), leading to a dependent variable that may be 

inconsistently measured across cohorts. Figure B.1 and Figure B.2. in Appendix B depict the 

variable V0 by cohort. There is no noticeable systematic difference in the mean of invention 

value across cohorts (except at age 24, Figure B.1), and the variable varies widely within 

cohorts as shown by the box plot in Figure B.2.  However, a linear regression of V0 against 

the age variable suggests that the reported value declines slightly with age (not reported). 

This effect could be due either to an underestimation of the past revenues (which would 

affect older inventions) or an overestimation of the future revenues (which would affect 

younger inventions). Although the robust regression models adopted already account for 

greater variance in the dependent variable, an additional test is performed. The sample used 

in column (1) is restricted to inventions in a narrow age range. It includes inventions that are 

between five and 12 years old. This selection criterion filters out approximately the 20 per 

cent youngest inventions and the 20 per cent oldest inventions. Results presented in the upper 

panel of Table 5 must be compared with those in column (1) of Table 4, and results in the 

lower panel must be compared with those in column (5) of Table 4. Quantile estimates 

suggest that the yearly depreciation rate is about 5 per cent while the grant effect is 2.2 per 

cent. MM-estimates suggest that the yearly depreciation rate is about 3 per cent while the 

grant effect is 1.4 per cent. In other words, figures presented in Table 4 can be seen as 

conservative estimates of the depreciation rate.  

 A second concern relates to the fact that some inventions in the sample were 

transferred or sold to a third-party, casting doubt on the accuracy of the revenue stream 

estimates. Regression results presented in column (2) of Table 5 are performed on a sample 

that excludes 539 such inventions.17 The results remain largely unchanged. 

 Third, twelve per cent of the observations were not matched to the PATSTAT 

database (see section 4.1). Including these observations in the regression leaves the results 

unchanged, as shown in column (3). 

                                                           
17 The sample excludes inventions for which the following questions were answered positively: ‘Has there been 
any attempt to license or sell this patent to a third party?’ and ‘Has there been any attempt to transfer this patent 
to a spin-off company?’ Therefore, we are not able to differentiate between inventions that were sold from 
inventions that were licensed and the sample used in column (2) also excludes the latter. 
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 Fourth, we have arbitrarily taken the mid-point value of each category of the ordinal 

variables to construct the dependent variable. Columns (4)–(5) test whether the results are 

robust to alternative imputation methods. We assume that observations are uniformly 

distributed in the range covered by their category (0 to $100,000, $100,000 to $500,000, etc.) 

in column (4), and that they are distributed according to a Beta distribution that is skewed to 

the left in column (5). The quantile regression model leads to slightly higher depreciation rate 

and grant effect than the baseline case, whereas the MM estimator leads to slightly lower 

depreciation rate and grant effect. Notice that the result depends on the actual draw. 

 Finally, it is possible that the results are affected by a fundamental difference in 

inventors’ answers to forward-looking and backward-looking questions. Fundamentally, we 

estimate the depreciation rate off of the relative magnitude of the inventor’s forward-looking 

valuation of the invention and their estimate of revenues already accrued; our finding of 

relatively slow depreciation corresponds to the stated reservation prices for sale of the 

invention (assumed to represent future revenues) being generally high relative to the revenues 

already received. While the revenue estimates are subject to error, it does not seem that they 

would be biased in a particular direction. But the future looking valuation may well be biased 

upward: it has been observed in a variety of contexts that people have a tendency to over-

value goods in possession, particularly if they are self-created (Kahneman et al. 1990, 

Buccafusco and Sprigman 2011).18 If, for example, the reported sale values represent a 50 per 

cent over-valuation of the true future value, the estimated depreciation rate would be pushed 

to around 2.6–3.7 per cent in our preferred models (columns 3 and 4 of Table 3). While we 

cannot put a specific upper bound on this bias, this suggests that even if the reservation sales 

price is significantly inflated, the corrected depreciation rate (after the first two years) 

remains at the low end of previous estimates. 

                                                           
18 Alternatively (and indistinguishably), inventors’ reservation price for sale may include an option value 
associated with unknown and uncertain new uses for the invention. This would not be a bias from a cognitive 
perspective, but it would artificially depress the estimated depreciation rate when set against the actual realized 
revenues in the past. 
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Table 5. Robustness tests 

 (1) (2) (3) (4) (5) 
 Y5–Y12 No transfer All obs. Uniform Beta 
Quantile estimator 
  -0.051** -0.023** -0.025** -0.034** -0.029** 

 
(0.010) (0.006) (0.005) (0.006) (0.007) 

        0.022** 0.013** 0.009* 0.019** 0.019** 

 
(0.005) (0.004) (0.003) (0.004) (0.005) 

Constant 0.063 -0.126** -0.108** -0.055 -0.052 

 
(0.070) (0.034) (0.029) (0.032) (0.040) 

MM estimator 
  -0.029** -0.019** -0.023** -0.009* -0.011** 

 
(0.008) (0.005) (0.004) (0.004) (0.003) 

        0.014** 0.011** 0.011** 0.007* 0.007* 

 
(0.004) (0.004) (0.003) (0.003) (0.002) 

Constant -0.063 -0.128** -0.127** -0.120** -0.102** 

 
(0.042) (0.023) (0.019) (0.017) (0.016) 

Observations 1319 1721 2556 2259 2259 
Notes: The regressions control for industry dummies and the ‘private’ dummy. Standard errors in parentheses. 
** p<0.005, * p<0.01. 

 

Including information on the ‘legal life’ of patents 

Exponential depreciation implies that patent value goes to zero only asymptotically. This is 

an approximation; in reality, an invention may lose all value in finite time. The survey was 

conducted in 2007 and the methodology has implicitly assumed so far that all inventions in 

the sample have lived up to at least 2007. In addition, inventions that were allocated to the 

lowest residual value category were given an arbitrary residual value of $50,000. 

Approximately 30 per cent of inventions have a residual value in the range $0–100,000 and 

are thus at risk of having their residual value artificially inflated to $50,000 and their life 

artificially stretched to 2007.  

Patent renewal data can help gauge the severity of the bias. In particular, we collected 

lapse (or expiry) date of granted patents from the AusPat database to improve the 

measurement of variables age and G2. Roughly a quarter of granted patents were already 

lapsed at the time of the survey. Interestingly, however, not all of the lapsed patents have a 

residual value in the lowest value category. The left hand side panel of Figure 4 shows that a 

large proportion of inventions associated with a lapsed patent have the lowest residual value. 

However, 54 per cent of inventions have a residual value greater than $100,000 even though 
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the patent right has expired. As emphasized by various scholars, the value of a patent differs 

from the value of the underlying invention (e.g., Harhoff et al. 2003; Arora et al. 2008) and 

Figure 4 provides direct evidence supporting that claim. The right hand side panel of Figure 4 

depicts the distribution of residual value for inventions that obtained patent protection and 

patent protection was still valid at the time of the survey for comparison purposes. 

 

Figure 4. Distribution of residual invention value G2 (patent expired vs. patent still valid) 

  
Notes: Inventions with a granted patent only. Left panel: inventions with a lapsed patent at the time of the 
survey. Right panel: inventions with a valid patent at the time of the survey. 

 

 In light of the above evidence, we have used lapse events to adapt the age and G2 

variables in the following way. If the patent had lapsed at the time of the survey and the 

residual value of the invention is comprised between 0 and $100,000, the age variable was 

reduced to coincide with the expiry date of the patent and the residual value was set to $1 

(instead of $0 due to the logarithm transformation of the dependent variable). For example, 

an invention with priority year 2000 which lapsed in 2004 and had the lowest residual value 

G2 now has an age of 4 years (down from 7 years) and a residual value of $1 (down from 

$50,000). A total of 189 observations, or 12 per cent of the sample, are affected by this 

adjustment.  
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Table 6. Using information on renewals 

  (1) (2)  (3) (4) 
Renewal information used: No Yes  No Yes 

Estimator: Quantile estimator  MM estimator 
  -0.033** -0.033**  -0.016** -0.011** 

 (0.004) (0.004)  (0.003) (0.003) 
Constant -0.029 -0.097  -0.100** -0.168** 

 
(0.038) (0.038)  (0.022) (0.023) 

Observations 1525 1525  1525 1525 
R2 0.041 0.025  0.041 0.025 

Notes: Sample restricted to inventions with a granted patent. R2 is the square of the correlation coefficient 
between the predicted values of the dependent variables and their actual values. Standard errors in parentheses. 
** p<0.005, * p<0.01. 

 

The sensitivity of the results is analysed in Table 6, which compares estimates of the 

depreciation rate when information from patent renewal is taken into account and when it is 

not. Lapse events are only available for inventions with a granted patent such that regressions 

are performed on this subsample. Taking renewal information into account does not affect 

estimates obtained with the quantile regression model from column (1) to column (2) and 

only slightly affects results obtained with the MM estimator from column (3) to column (4). 

In particular, the depreciation rate seems to be slightly lower whereas the early decline in 

value is higher. In short, the inclusion of lapse event data leaves the depreciation parameter 

roughly unchanged and increases the early decline in value.   

Sensitivity to the profit margin parameter 

Another potential limitation relates to the assumption of a 30-per cent gross profit margin m 

for question G1 (past revenues). The sensitivity of the results to the chosen m is assessed in 

Table 7, which reports estimates of the depreciation rate and the grant effect for values of m 

comprised between 0.20 and 0.40. The coefficients are largely insensitive to gross profit 

margin used, for both the quantile and the MM estimators. The only noticeable difference is 

that the grant effect is not significantly different from 0 under the strict statistical threshold 

adopted with m = 0.20 when the MM estimator is used (p-value of 0.047). 
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Table 7. Sensitivity to varying the gross profit margin (parameter m) 

  (1) (2) (3) (4) (5) 
m = 0.20 0.25 0.30 0.35 0.40 

Quantile estimator         
  -0.021** -0.023** -0.026** -0.026** -0.029** 

 (0.004) (0.005) (0.006) (0.006) (0.007) 
        0.010** 0.012** 0.014** 0.014** 0.015** 

 (0.003) (0.003) (0.004) (0.004) (0.005) 
Constant -0.061 -0.081** -0.099** -0.127** -0.140** 

 (0.024) (0.026) (0.032) (0.036) (0.041) 
MM estimator           
  -0.011** -0.018** -0.021** -0.022** -0.022** 

 (0.004) (0.004) (0.004) (0.004) (0.004) 
        0.006 0.010** 0.012** 0.013** 0.014** 

 (0.003) (0.003) (0.003) (0.003) (0.003) 
Constant -0.067** -0.085** -0.116** -0.145** -0.169** 

 (0.016) (0.018) (0.019) (0.020) (0.021) 
Observations 2,259 2,259 2,259 2,259 2,259 

Notes: Standard errors in parentheses. ** p<0.005, * p<0.01 

  

Age of the patent vs. age of the invention 

The data provides information on the age of the patent and is silent on the age of the 

invention. It should be kept in mind that patent age is necessarily a lower bound estimate of 

invention age – a patent application can only be filed if an invention exists. Tentative 

evidence suggests that there is not much difference between the two measures. Figure C.1 in 

Appendix C shows that patents are usually filed shortly after initial R&D expenditure and, 

therefore, shortly after actual invention date. It relies on 497 observations obtained from an 

international survey of patent applicants at the EPO conducted in 2006 (see de Rassenfosse 

2012). Roughly 80 per cent of patents in this sample are filed within one year of the start of 

the R&D project. This result confirms earlier econometric evidence by Hall et al. (1986) 

related to the strong contemporaneous relationship between R&D expenditures and patenting 

at the firm level. 

Additional considerations 

Additional robustness tests were performed but are not reported. First, we made sure that our 

interpretation of the ‘other patents’ variable, which takes the value of 1 if at least one other 

patent was used to develop the product, is correct. While we implicitly assume that these 

other patents belong to the same firm, the possibility exists that they belong to other firms. 

We have no way of ruling out this possibility with certainty. To hint towards an answer, we 
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exploit that fact that inventors should be listed in more than one patent if they reported that 

the focal patent involves other patents. We find that such inventors were 2.5 more likely to 

have filed another patent at IP Australia than inventors who did not mention that other patents 

were involved. This finding is consistent with the assumption that the other patents belong to 

the same firm. We have also estimated the regression model on a sample that excludes 

inventions that involve more than five other patents and inventions that were licensed. The 

possibility that patents from other firms are involved is indeed more likely when a large 

number of patents is concerned (as in the case in complex products industries) or when the 

focal patent was licensed (a sign that cross-licensing may have occurred). Doing this leads to 

coefficients that remain similar. Second, we have performed the estimations on a sample that 

excludes patents describing process inventions. These inventions are less likely to generate 

sales revenue such that the value estimates might be underestimated. The depreciation rate is 

approximately 2 per cent and the grant effect 1 per cent, for both the quantile and MM 

estimators. Third, we checked the sensitivity of the estimates with respect to the implicit 

assumption that the backward value measures (G1 and G3) are discounted cash flows. It is 

easy to show that the assumption that the figures are discounted when in fact they are 

undiscounted leads to an underestimation of the depreciation rate. We collected historic data 

on inflation rate from the Reserve Bank of Australia in order to investigate the magnitude of 

the potential bias. Discounting the backward value measures leads to a point estimate of the 

depreciation rate that is about 0.5 percentage points higher than the baseline case. The point 

estimate of the grant effect is about 0.2 percentage points higher. 

5. Discussion 

5.1 Contributions 

The contribution of this paper is twofold. First, it takes a fresh look at an old question. As far 

as we can ascertain, this study is the first to estimate the R&D depreciation rate from direct 

observation of the revenue streams of inventions. This feature of the data allows estimating 

the R&D depreciation rate in a natural way that provides an interesting and valuable contrast 

with previous studies, which all rely on indirect inference. The results suggest that the yearly 

depreciation rate for R&D is in the lower range of existing estimates, between 1 and 5 per 

cent, depending on model specifications. However, the depreciation rate is higher in the first 

two years, averaging about 8 to 9 per cent. Regarding industry estimates, the depreciation rate 

is lower than the average by 0.5–1.0 percentage point in the pharmaceuticals and medicinal 
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chemicals industry. The decline in value that occurs in the early life of an invention is also 

smaller than the average in the pharmaceuticals and medicinal chemicals industry (in the 

range 4–5 per cent). In fact most of the heterogeneity of the depreciation rate across 

industries comes from heterogeneity in the early decline in value. 

Second, this paper looks at a new question, namely the extent to which patent 

protection is associated with a slower erosion of profits. Inventions that are protected with a 

patent exhibit a depreciation rate that is 1–2 percentage points below that of inventions that 

have no patent protection. Interestingly this result is valid only for ‘strong’ patents. The grant 

effect indeed vanishes when patent protection is reported as weak. We are nevertheless 

careful not to attach a causal interpretation to the grant effect observed – we do not interpret 

our results as evidence of a ‘patent premium’. Yet the negative correlation between grant 

status and depreciation rate is an instructive finding. It contributes to reconciling estimates 

using different methodologies. It suggests that estimates of the R&D depreciation rate 

obtained using patent renewal data are a lower bound of the actual depreciation rate.  

A potential limitation of this study relates to the fact that it observes inventions that 

self-selected into the patent system (i.e., no secrecy in the sample). This limitation naturally 

applies to all studies that estimate the depreciation rate using patent data. The present study 

pushes the frontier, however, by including inventions that were refused patent protection. An 

alternative way of estimating the depreciation rate involves looking at R&D expenditures. 

This approach provides information on inventions kept secret, but it also misses some 

inventive output since not all patentable inventions originate from R&D activities (Nagaoka 

and Walsh 2009). In fact, scholars have proposed a wide variety of methods for estimating 

the depreciation rate and this paper has discussed at length the differences between the 

various methods. A key dividing line in the empirical literature can be drawn between studies 

that rely on R&D input data (expenditures) on the one hand and studies that rely on R&D 

output data (patents) on the other hand.  

5.2 Implications 

The results have implications that extend beyond academic interest. First, estimates of R&D 

depreciation rates are of immediate relevance to statistical offices around the world in their 

ongoing efforts to capitalise R&D investments in their national account systems (OECD 

2010). The assumption of a constant depreciation rate is validated by the data, at least after a 

period of two years. A strong decline in value occurs during the early life of inventions, 
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suggesting that researchers and practitioners at statistical offices should consider the 

implications of a kinked depreciation function where a large proportion of the value is 

depreciated in the first few years. The results also show that there is little industry-level 

variation in the depreciation rate, which validates the current practice of adopting a single 

depreciation rate across industries. Inventions in the pharmaceuticals industry are a notable 

exception, with a depreciation rate well below the average.  

Second, the finding that the grant effect is statistically significant only when patent 

protection is strong has implications for the industrial organisation and management 

literature. Farrell and Shapiro (2008) have shown that owners of weak patents may be able to 

abusively extract a profit from their intellectual property rights due to the public-good nature 

of challenging a patent. This paper shows that such patents have a higher depreciation rate 

than patents considered as strong, suggesting that imitation occurs faster for weak patents. 

The stronger erosion of profits partially mitigates the social cost of these weak patents. This 

conclusion holds regardless of the causality of the grant effect (indeed weak and strong 

patents are both granted). 

Third, this paper also has implications for the development of accounting principles. 

Under current accounting principles R&D expenditures are immediately expensed, despite 

the fact that they produce a stream of future benefits. Hirschey and Weygandt (1985) and Lev 

and Sougiannis (1996) have emphasised the ‘value-relevance’ of R&D expenses and argue 

that they should be capitalised. This paper provides additional evidence that patents, most of 

which result from internal R&D activities, contribute to future profits. 

We should also caution against a misinterpretation of the results. Whereas accounting 

principles state that patents must be amortised over a period not exceeding their legal lives, 

we find that many patents that have lapsed still produce economic benefits to their owners 

(i.e., the useful life is longer than the legal life). But this finding does not challenge the 

accounting principles. Only externally-acquired patents are currently allowed to be 

amortised, and the cost of acquiring patents cannot exceed the benefits they will bring during 

the remaining of their legal lives (since patents that have lapsed have no exchange value). 

However, the finding suggests that allowing the amortisation of internally-developed 

patented technologies will not totally solve the problem of the misreporting of R&D. 
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Appendix A. Industry-specific depreciation rates 

Table A.1. Industry-specific depreciation rates 

 (1) (2)  (3) (4) 
 Quantile estimator  MM estimator 

Depreciation rate (a)   
Reference group -0.020** -0.019**  -0.012** -0.015** 
Chemicals and chemical products -0.023** -0.017  -0.016** -0.009 
Pharmaceuticals and medicinal chemicals -0.011 -0.017  -0.006 -0.011 
Basic metals and fabricated metal products -0.023** -0.020  -0.012** -0.012 
Machinery and equipment n.e.c. -0.035** -0.040**  -0.021** -0.022* 
Radio, television, and communication equipment -0.023** -0.013  -0.014** -0.008 
Motor vehicles, trailers and semi-trailers -0.036** -0.037**  -0.014** -0.009 
Furniture and n.e.c. -0.027** -0.027**  -0.016** -0.022** 
Early drop in value (constant term) 

 
  

Reference group -0.125** -0.128 -0.148** -0.117** 
Chemicals and chemical products -0.125** -0.192 -0.148** -0.227** 
Pharmaceuticals and medicinal chemicals -0.125** -0.052  -0.148** -0.099 
Basic metals and fabricated metal products -0.125** -0.156  -0.148** 0.147** 
Machinery and equipment n.e.c. -0.125** -0.077  -0.148** -0.138 
Radio, television, and communication equipment -0.125** -0.209**  -0.148** -0.215** 
Motor vehicles, trailers and semi-trailers -0.125** -0.114  -0.148** -0.213* 
Furniture and n.e.c. -0.125** -0.125  -0.148** -0.082 

Notes: N = 2259. Reference group is all other industries. ** p<0.005, * p<0.01.  

 

Figure A.1. Ninety-five-per cent confidence interval of the depreciation rate 

 
Notes: Based on estimates in Table A, from column (1) for the first set of bars to column (4) for the last set. 
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Appendix B. Bias in the reporting of invention value 

Figure B.1. Mean of initial value (V0) by cohort 

 

 

Figure B.2. Box plot of initial value (V0) by cohort 
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Appendix C. Evidence on the gestation lag 

Figure C.1. Average time between initial expenditure on R&D and first patent filing 

 

Notes: N = 497. 

Sources: Based on unpublished data from the 2006 European Patent Office Applicant Survey. See de 
Rassenfosse (2012) for details. 
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