NBER WORKING PAPER SERIES

CONSEQUENCES OF THE CLEAN WATER ACT AND THE DEMAND FOR WATER QUALITY

David A. Keiser Joseph S. Shapiro

Working Paper 23070 http://www.nber.org/papers/w23070

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 January 2017, Revised June 2018

We thank the editor, Larry Katz, along with four referees, Joe Altonji, Josh Angrist, David Autor, Richard Carson, Lucas Davis, Esther Duflo, Eli Fenichel, Michael Greenstone, Catherine Kling, Arik Levinson, Matt Kotchen, Amanda Kowalski, Rose Kwok, Drew Laughland, Neal Mahone, Enrico Moretti, Bill Nordhaus, Sheila Olmstead, Jordan Peccia, Nick Ryan, Daniel Sheehan, Kerry Smith, Richard Smith, Rich Sweeney, Reed Walker, and participants in many seminars for excellent comments, Randy Becker, Olivier Deschenes, Michael Greenstone, and Jon Harcum for sharing data, Elyse Adamic, Todd Campbell, Adrian Fernandez, Ryan Manucha, Xianjun Qiu, Patrick Reed, Vivek Sampathkumar, Daisy Sun, Trevor Williams, and Katherine Wong for excellent research assistance, and Bob Bastian and Andy Stoddard for explaining details of the Clean Water Act. Keiser thanks the USDA for funding through the National Institute of Food and Agriculture Hatch project number IOW03909. Shapiro thanks fellowships from the EPA, MIT-BP, Martin Family Fellows, the Schultz Fund, the Yale Program on Applied Policy, and NSF Grant SES-1530494 for generous support. Any opinions and conclusions expressed herein are those of the authors and do not necessarily represent the views of the U.S. Census Bureau or the National Bureau of Economic Research. All results have been reviewed to ensure that no confidential information is disclosed.

NBER working papers are circulated for discussion and comment purposes. They have not been peerreviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2017 by David A. Keiser and Joseph S. Shapiro. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.

Consequences of the Clean Water Act and the Demand for Water Quality David A. Keiser and Joseph S. Shapiro NBER Working Paper No. 23070 January 2017, Revised June 2018 JEL No. H23,H54,H70,Q50,R31

ABSTRACT

Since the 1972 U.S. Clean Water Act, government and industry have invested over \$1 trillion to abate water pollution, or \$100 per person-year. Over half of U.S. stream and river miles, however, still violate pollution standards. We use the most comprehensive set of files ever compiled on water pollution and its determinants, including 50 million pollution readings from 240,000 monitoring sites and a network model of all U.S. rivers, to study water pollution's trends, causes, and welfare consequences. We have three main findings. First, water pollution concentrations have fallen substantially. Between 1972 and 2001, for example, the share of waters safe for fishing grew by 12 percentage points. Second, the Clean Water Act's grants to municipal wastewater treatment plants, which account for \$650 billion in expenditure, caused some of these declines. Through these grants, it cost around \$1.5 million (2014 dollars) to make one river-mile fishable for a year. We find little displacement of municipal expenditure due to a federal grant. Third, the grants' estimated effects on housing values are smaller than the grants' costs; we carefully discuss welfare implications.

David A. Keiser Iowa State University 468F Heady Hall Ames, IA 50011 dkeiser@iastate.edu

Joseph S. Shapiro 37 Hillhouse Avenue PO Box 208264 New Haven, CT 06520-8264 and NBER joseph.shapiro@yale.edu

I Introduction

The 1972 U.S. Clean Water Act sought "to restore and maintain the chemical, physical, and biological integrity of the Nation's waters." This paper quantifies changes in water pollution since before 1972, studies the causes of any changes, and analyzes the welfare consequences of any changes.

The Clean Water Act addressed a classic externality. Textbooks since at least Stigler (1952; 1966) have illustrated the concept of an externality through the story of a plant dumping waste in a river and harming people downstream. The immediate impetus for the Clean Water Act was a 1969 fire on the Cuyahoga River, which had fires every decade since 1868 though has had no fires since 1972. Time (1969) described it vividly:

"Anyone who falls into the Cuyahoga does not drown," Cleveland's citizens joke grimly. "He decays." The Federal Water Pollution Control Administration dryly notes: "The lower Cuyahoga has no visible life, not even low forms such as leeches and sludge worms that usually thrive on wastes. It is also literally a fire hazard."

Despite the potential to address this market failure, the Clean Water Act has been one of the most controversial regulations in U.S. history, for at least two reasons. First, it is unclear whether the Clean Water Act has been effective, or whether water pollution has decreased at all. An analysis in the 1990s summarized, "As we approached the twenty-year anniversary of this landmark law, no comprehensive analysis was available to answer basic questions: How much cleaner are our rivers than they were two decades ago?" (Adler, Landman, and Cameron 1993). Other writers echo these sentiments (Knopman and Smith 1993; Powell 1995; Harrington 2004). Today over half of U.S. river and stream miles violate state water quality standards (USEPA 2016), but it is not known if water quality was even worse before the Clean Water Act. William Ruckelshaus, the first head of the U.S. Environmental Protection Agency (EPA), nicely summarized what *is* known about water pollution today: "even if all of our waters are not swimmable or fishable, at least they are not flammable" (Mehan III 2010).

The second controversy is whether the Clean Water Act's benefits have exceeded its costs, which have been enormous. Since 1972, government and industry have spent over \$1 trillion to abate water pollution, or over \$100 per person-year. This is more than the U.S. has spent on air pollution abatement (see Appendix A). In the mid-1970s, Clean Water Act funding of municipal wastewater treatment plants was the single largest public works program in the U.S. (USEPA 1975). These costs were large partly because the Clean Water Act had ambitious targets: to make **all** U.S. waters fishable and swimmable by 1983; to have **zero** water pollution discharge by 1985; and to prohibit discharge of toxic amounts of toxic pollutants. President Nixon actually vetoed the Clean Water Act and described its costs as "unconscionable," though Congress later overruled the veto (Nixon 1972). Large costs could be outweighed by large benefits. However, existing cost-benefit analyses of the Clean Water Act have not estimated positive benefit/cost ratios (Lyon and Farrow 1995; Freeman 2000), including U.S. Environmental Protection Agency's own retrospective analysis (2000a; 2000c).

These academic controversies have spilled over into politics. The U.S. Supreme Court's 2001 and 2006 *SWANCC* and *Rapanos* decisions removed Clean Water Act regulation for nearly half of U.S. rivers and streams. In 2015, the Obama Administration proposed a Clean Water Rule (also called the Waters of the United States Rule) which would reinstate many of those regulations. Twenty-seven states have sued to vacate the rule.

This paper seeks to shed light on these controversies using the most comprehensive set of files ever compiled in academia or government on water pollution and its determinants. These files include several datasets that largely have not been used in economic research, including the National Hydrography Dataset, which is a georeferenced atlas mapping all U.S. surface waters; the Clean Watershed Needs Survey, which is a panel description of the country's wastewater treatment plants; a historic extract of the Grants Information and Control System describing each of 35,000 Clean Water Act grants the federal government gave cities; the Survey of Water Use in Manufacturing, a confidential plant-level dataset of large industrial water users which was recently recovered from a decommissioned government mainframe (Becker 2016); and around 50 million water pollution readings at over 240,000 pollution monitoring sites during the years 1962-2001 from three data repositories—Storet Legacy, Modern Storet and the National Water Information System (NWIS). Discovering, obtaining, and compiling these data has been a serious undertaking involving three Freedom of Information Act requests, detailed analysis of hydrological routing models, and extensive discussions with engineers and hydrologists from the U.S. Geological Survey (USGS), the EPA, and engineering consultancies. These data enable a more extensive analysis of water pollution and its regulation than has previously been possible.

The analysis obtains three sets of results. First, we find that most types of water pollution declined

over the period 1962-2001, though the rate of decrease slowed over time. Between 1972 and 2001, the share of waters that met standards for fishing grew by 12 percentage points. The pH of rivers and lakes has increased at a similar rate to the pH of rainwater, likely in part due to decreased sulfur air pollution. In other words, less acid rain may have led to less acidic rivers and lakes. Additionally, the temperature of rivers and lakes increased by 1 degree F every 40 years, consistent with climate change.

Second, the paper asks how the Clean Water Act's grants to municipal wastewater treatment plants, one of the Act's central components, contributed to these trends. We answer this question using a tripledifference research design comparing water pollution before versus after investments occurred, upstream versus downstream of recipient plants, and across plants. We define upstream and downstream waters using a set of 70 million nodes that collectively describe the entire U.S. river network. We find that each grant decreases the probability that downriver areas violate standards for being fishable by half a percentage point. These changes are concentrated within 25 miles downstream of the treatment plant and they persist for 30 years. Through these grants, it cost around \$1.5 million (\$2014) per year to make one river-mile fishable. We do not find substantial heterogeneity in cost-effectiveness across regions or types of grants. We also find that one dollar of a federal grant project led to about one additional dollar of municipal sewerage capital spending.

Third, the paper asks how residents valued these grants. We analyze housing units within a 25 mile radius of affected river segments, partly since 95 percent of recreational trips have a destination within this distance. We find that a grant's estimated effects on home values are about 25 percent of the grant's costs. While the average grant project in our analysis cost around \$31 million (\$2014), our main estimates imply that the estimated effect of a grant on the value of housing within 25 miles of the affected river is around \$7 million. We find limited heterogeneity in these numbers across regions and types of grants.

We discuss several reasons why the true benefit/cost ratio for the grants program could exceed this 0.25 ratio of the change in home values to grant costs. These reasons include that people may have incomplete information about changes in water pollution and their welfare (including health) implications; these numbers exclude nonuse ("existence") values; grants may increase sewer fees; these estimates abstract from general equilibrium effects; and they exclude the five percent of most distant recreational trips. Available evidence to evaluate these reasons is limited; it does suggest that the true benefit/cost ratio may exceed 0.25, though does not clearly show that this ratio exceeds one. One interpretation of our

main estimates is that the benefits of these grants exceed their costs if these unmeasured components of willingness to pay exceed the components of willingness to pay that we measure by a factor of three or more.

We provide several indirect tests of the identifying assumptions, which generally support the validity of the research design. First, we report event study graphs in time which test for pre-trends in the years preceding a grant. Second, we report two research designs—a triple-difference estimator which uses upstream areas as a counterfactual for downstream areas, and a differences-in-differences estimate using only downstream areas. Third, we assess whether grants affect pollutants closely related to municipal waste more than they affect pollutants that are less closely related. Fourth, we separately estimate the effect of a plant receiving one, two, three, or more grants. Finally, we estimate specifications controlling for important potential confounding variables, including industrial water pollution sources, air pollution regulations, and local population totals.

More broadly, this paper departs from the literature in four primary ways. This is the first study quantifying national changes in water pollution since before the Clean Water Act using a dense network of monitoring sites. Trends are important in their own right and because measuring water pollution is a step towards measuring its costs (Muller, Mendelsohn, and Nordhaus 2011). Some studies measure trends in water pollution for small sets of monitoring sites (e.g., USEPA 2000b; Smith, Alexander, and Wolman 1987).¹

This paper also provides the first national estimate of how Clean Water Act investments affected ambient pollution concentrations. We use these estimates to calculate the cost effectiveness of these investments. Water pollution research typically uses ex ante engineering simulations to assess water quality policies (Wu, Adams, Kling, and Tanaka 2004). A few studies do investigate how water pollution affects self-reported emissions of one pollutant in specific settings (Earnhart 2004a,b; Cohen and Keiser 2017), or study similar questions for air pollution (Shapiro and Walker Forthcoming). Recent research finds that India's water pollution regulations, which have similar structure to the U.S. Clean Water Act, are ineffective (Ebenstein 2012; Greenstone and Hanna 2014). Several studies find that ambient

¹Smith and Wolloh (2012) study one measure of pollution (dissolved oxygen) in lakes beginning after the Clean Water Act and use data from one of the repositories we analyze. They conclude that "nothing has changed" since 1975. We find similar trends for the pollutant they study in lakes, though we show that other pollutants are declining in lakes and that most pollutants are declining in other types of waters.

water pollution increases with political boundaries (Sigman 2002; Lipscomb and Mobarak 2017; Kahn, Li, and Zhao 2015). Some work investigates how fracking wells and the pollution they send to wastewater treatment plants affect water quality (Olmstead, Muehlenbachs, Shih, Chu, and Krupnick 2013).

Third, this study provides the first estimate of the effects of water pollution regulation on home values. Existing estimates of willingness-to-pay for water quality use travel cost methods, hedonics, or stated preferences (i.e., contingent valuation; Kuwayama and Olmstead (2015) list many individual studies).² Travel cost studies typically rely on cross-sectional variation in pollution and focus on a limited area like a county (e.g., Smith and Desvousges 1986), though some work uses broader coverage (Keiser 2016). Such studies may suffer from omitted variable bias because unobserved disamenities like factories or roads contribute to pollution and discourage recreational visits (Leggett and Bockstael 2000; Murdock 2006; Moeltner and von Haefen 2011). Such omitted variables are important for studying air pollution, though their importance for water pollution is unknown. Most cost-benefit analyses of the Clean Water Act rely on stated preferences (Carson and Mitchell 1993; Lyon and Farrow 1995; USEPA 2000a), which are controversial (Hausman 2012; Kling, Phaneuf, and Zhao 2012; McFadden and Train 2017).

Finally, we believe this is the first empirical study of the efficiency of subsidizing the use of pollution control equipment. This policy is common in many countries and settings. Theoretical research has lamented the poor incentives of such subsidies (Kohn 1992; Aidt 1998; Fredriksson 1998) and empirical research is scarce.³ Our analysis of heterogeneity in cost-effectiveness and benefit-cost ratios also provides a new domain to consider recent research on spatially differentiated policy (Muller and Mendelsohn 2009).

The paper proceeds as follows. Section II describes the Clean Water Act and water pollution. Section III explains the data. Section IV discusses the econometric and economic models. Section V summarizes pollution trends. Section VI analyzes how grants affected pollution. Section VII discusses grants' effects on housing. Section VIII concludes. All appendix material appears in the online appendix.

²Muehlenbachs, Spiller, and Timmins (2015) relate fracking to home values and drinking water. Some studies in historic or developing country settings, where drinking water regulation is limited, relate surface water quality to health (Ebenstein 2012; Greenstone and Hanna 2014; Alsan and Goldin Forthcoming). Others relate drinking water quality directly to health (Currie, Zivin, Meckel, Neidell, and Schlenker 2013).

 $^{^{3}}$ The only econometric analysis we know of such policies tests how the French policy of jointly taxing industrial air pollution and subsidizing abatement technologies affected emissions, using data from 226 plants (Millock and Nauges 2006). That study does not separately identify the effect of the pollution tax from the effect of the abatement subsidy.

II The Clean Water Act and Water Pollution

II.A Clean Water Act Background

Policies before the Clean Water Act may contribute to some of the water pollution patterns we observe before 1972.⁴ The U.S. Congress passed major water pollution control laws in 1948, 1956, 1961, 1965, 1966, and 1970. Many earlier laws, like the Clean Water Act, supported municipal wastewater treatment and industrial abatement, but provided funds an order of magnitude below the funds distributed by the Clean Water Act. By 1966, all 50 states had passed some type of water pollution legislation, but enforcement varied greatly across states (Hines 1967).

The Clean Water Act retained large roles for state-level implementation, and the effectiveness of that implementation most likely varied across states. While a simple formula determined the level of grant funds that each state received, each state designed the priority lists determining which plants received grants. States with decentralized authority also oversaw writing of permits for municipal plants, monitoring and enforcement of violations, and other activities (Sigman 2003, 2005).

The Clean Water Act targeted municipal waste treatment and industrial pollution sources, sometimes called "point sources." However, much water pollution also comes from "non-point" pollution sources such as urban and agricultural runoff. The Clean Water Act has largely exempted these latter sources from regulation.

This paper focuses on the Clean Water Act grants program, but the Clean Water Act also limited industrial water pollution through the National Pollutant Discharge Elimination System (NPDES). NPDES aims to cover every source which directly discharges pollution into U.S. waters. Some plants are part of a separate "Pretreatment Program," in which they discharge untreated or lightly-treated wastewater through sewers to wastewater treatment plants, then pay fees to the treatment plant.⁵ The permits were distributed in the early 1970s. This was a national program affecting most plants and industries at

around the same time.

 $^{^{4}}$ The 1972 law was formally called the Federal Water Pollution Control Amendments, though we follow common practice in referring to it as the Clean Water Act.

⁵The wastewater treatment plants which are the focus of this paper also receive effluent permits through the NPDES program, so our analysis of grants may also reflect NPDES permits distributed to wastewater treatment plants.

II.B Wastewater Treatment Background

In most cities and towns, sewers convey wastewater to a municipal wastewater treatment plant which treats the waste and then discharges it to surface waters. Ninety-eight percent of treatment plants are publicly owned (USEPA 2002). The abatement technology in treatment plants initially only included screens to remove large objects. As technology improved during the twentieth century, treatment plants began allowing wastewater to settle before discharging, then plants began applying biological treatments (e.g., bacteria) that degrade pollution, and finally began using more advanced chemical treatments. These abatement technologies are generally called raw, primary, secondary, and tertiary treatment. The Clean Water Act required all municipal treatment plants to have at least secondary treatment by 1977.

This investment in wastewater treatment was not cheap. Projects funded by Clean Water Act grants cost about \$650 billion in total over their lifetimes (\$2014). Grants covered new treatment plants, improvement of existing plants, and upgrades to sewers (USEPA 1975). Local governments paid about a fourth of most grant projects' capital costs.⁶ The 1987 Clean Water Act Amendments replaced these grants with subsidized loans (the Clean Water State Revolving Fund).

The U.S. did not come close to meeting the Clean Water Act's goal of having every plant install secondary treatment by 1977, though abatement technologies improved over time. In 1978, for example, nearly a third of all plants lacked secondary treatment, and by 1996, almost none did. The treatment technology used in wastewater treatment plants, however, had been improving steadily before the Clean Water Act (USEPA 2000b).

Because this paper exploits the timing and location of grants to identify the effect of the Clean Water Act's grants program, it is useful to clarify how grants were distributed. The allocation of wastewater spending across states came from formulas depending on state population, forecast population, and wastewater treatment needs (CBO 1985). Within a state, grants were distributed according to a "priority list" that each state submitted annually to the EPA. States had to base a priority list on seven criteria (USEPA 1980, p. 8):

⁶The federal government paid 75 percent of the capital cost for most construction projects awarded through September 1984, and 55 percent thereafter; local governments paid the rest of the capital costs. Beginning in 1977, grants provided a higher 85 percent subsidy to projects using "innovative" technology, such as those sending wastewater through constructed wetlands for treatment. This extra subsidy fell to 75 percent in 1984, and about 8 percent of projects received the subsidy for innovative technology (USGAO 1994).

1. [T]he severity of the pollution problem; 2. [T]he existing population affected; 3. [T]he need for preservation of high quality waters; 4. [A]t the State's option, the specific category of need...5. ... [T]echniques meeting innovative and alternative guidelines...6. [O]ther criteria, consistent with these, may be considered (including the special needs of small and rural communities). The state may not consider: the project area's development needs not related to pollution abatement; the geographical region within the State; or future population growth projections; and 7. [I]n addition to the criteria listed above, the State must consider ... total funds available; and other management criteria.

EPA estimated that it took two to ten years from project conception to finishing construction.

II.C Water Pollution Background

This paper emphasizes two measures of water quality – the dissolved oxygen saturation of water, and whether waters are fishable – though also reports results for other measures. We focus on dissolved oxygen saturation because it is among the most common omnibus measures of water quality in research, because it responds to a wide variety of pollutants, and because it is a continuous (rather than binary) measure of pollution, which alleviates concerns about failing to measure inframarginal changes in water quality. Most aquatic life requires dissolved oxygen to survive. Water can absorb dissolved oxygen from the air, but loses dissolved oxygen when microorganisms consume oxygen in order to decompose pollution. Dissolved oxygen levels move inversely with temperature. Dissolved oxygen saturation represents the dissolved oxygen level divided by the maximum oxygen level expected given the water temperature, so implicitly adjusts for water temperature. Actual dissolved oxygen saturation is bounded below at zero (describing water with no oxygen) but is not bounded above. Dissolved oxygen deficits are defined as 100 minus dissolved oxygen saturation.

We focus also on the fishable standard because making water safe for fishing is a major goal of the Clean Water Act, and because recreational fishing is believed to be a main reason why people value water quality. We use a definition of "fishable" developed by William Vaughan for Resources for the Future (RFF). This definition distills several published water quality criteria and state water quality standards from between 1966 and 1979. It is also a widely-used interpretation of "fishable." In this definition, water is "fishable" if pollution is below a threshold, based on four measures: biochemical oxygen demand (BOD), dissolved oxygen saturation, fecal coliforms, and total suspended solids (TSS). To implement these definitions in the data, we pool data from these pollutants and define a dummy for whether a raw pollution reading exceeds the relevant standard.⁷

We also report estimates for whether waters are swimmable, and we report separate results for the other pollutants that are part of the "fishable" and "swimmable" definitions—BOD, fecal coliforms, and TSS. These pollutants merit interest in their own right because BOD, fecal coliforms, and TSS are a majority of the five "conventional pollutants" the Clean Water Act targeted. The other "conventional" pollutants are pH, which we analyze in Appendix Table IV, and oil and grease, a pollutant for which we have little data. We define all pollutants so that lower levels of the pollutant represent cleaner water (so we report the share of waters that are "not fishable" or "not swimmable," and we report dissolved oxygen deficits).

Describing these other pollutants may help interpret results. BOD measures the amount of oxygen consumed by decomposing organic matter. Fecal coliforms proxy for the presence of pathogenic bacteria, viruses, and protozoa like E. coli that cause human illness. Pathogens including fecal coliforms are the most common reason why water quality violates state standards today (USEPA 2016). TSS measures the quantity of solids in water that is trapped by a filter.⁸ Municipal sources in the early 1980s were estimated to account for about 20 percent of national BOD emissions and less than one percent of national TSS emissions (Gianessi and Peskin 1981), though municipal sources may account for a larger share of emissions in urban areas. Most TSS comes from agriculture and urban runoff.

We also report a few results for three additional groups of pollutants: industrial pollutants like lead, mercury, and phenols; nutrients like nitrogen and phosphorus; and other general water quality measures like temperature. We use a standardized criterion, described in Appendix B.3, to choose pollutants for

⁷ "Fishable" readings have BOD below 2.4 mg/L, dissolved oxygen above 64 percent saturation (equivalently, dissolved oxygen deficits below 36 percent), fecal coliforms below 1000 MPN/100mL, and TSS below 50 mg/L. "Swimmable" waters must have BOD below 1.5 mg/L, dissolved oxygen above 83 percent saturation (equivalently, dissolved oxygen deficits below 17 percent), fecal coliforms below 200 MPN/100mL, and TSS below 10 mg/L. The definition also includes standards for boating and drinking water that we do not analyze.

⁸We analyze all these physical pollutants in levels, though Appendix Tables III and VI show results also in logs. Fecal coliforms are approximately lognormally distributed, and BOD and TSS are somewhat skewed (Appendix Figure I). Log specifications would implicitly assume that the percentage change in a river's pollution due to a grant is the same for a river with a high background concentration, which is unlikely. Other water pollution research generally specifies BOD and TSS in levels; practices vary for fecal coliforms.

this appendix table.

One important question is how far these pollutants travel downstream. We focus on a distance of 25 miles for several reasons. First, the only engineering study we found on this question (USEPA 2001) limited its analysis to 25 miles downstream of point sources for BOD. They chose this distance to reflect 15 watershed-specific studies designed to remedy pollution problems. Second, an interview with a wastewater regulation specialist at the Iowa Department of Natural Resources suggested that effects of treatment plants on dissolved oxygen would be concentrated within 20 miles downriver. Third, estimated effects of grants on whether rivers are fishable out to 100 miles downstream of a treatment plant only show effects within 25 miles (Appendix Table VI).

III Data

We use eight types of data; Appendix B provides additional details.

1. Spatial Data on Rivers and Lakes. We use data from the National Hydrography Dataset Plus, Version 2.1 (NHD), an electronic atlas mapping all U.S. surface waters. NHD organizes the U.S. into approximately 200 river basins, 2,000 watersheds, 70,000 named rivers, 3.5 million stream and river miles, and 70 million river nodes. A river in these data consists of a set of river nodes (i.e., points) connected by straight lines. NHD forms a network describing the flow direction of each river or stream segment and helps us follow water pollution upstream or downstream. Panel A of Figure I shows U.S. streams, rivers, and lakes, colored by their distance from the ocean, Great Lakes, or other terminus. (See details in Appendix B.2.)

2. Municipal Water Pollution Sources. We use data on U.S. municipal water pollution treatment plants from the EPA's Clean Watershed Needs Survey (CWNS). We use latitude and longitude data from the first available year for a plant (CWNS reports this beginning in 1984), and grant identifying codes for all available years. We limit the analysis to plants that report non-zero population served.

3. Clean Water Act Grants. We filed two Freedom of Information Act requests to obtain details on each of the 35,000 Clean Water Act grants that the federal government gave to these plants. These records come from the EPA's Grants Information and Control System (GICS). We restrict the analysis to grants with non-missing award date, grant amount, and total project cost (including both federal and local capital expenditures). The data also report the name of the overseeing government authority (city, county, state, or special district), a grant identifier code, and the name of the recipient treatment plant. The data also include grants in the years 1957-1971 given under predecessor laws to the Clean Water Act. For simplicity, the analysis counts multiple grants to a treatment plant in a calendar year as a single grant. (See details in Appendix B.4.)

4. Ambient Levels of Water Pollution. We use water pollution readings from three federal data repositories: Storet Legacy, Modern Storet, and the National Water Information System (NWIS).⁹ Storet Legacy focuses on the earlier part of our period, and the full raw data include 18,000 data files and 200 million pollution readings. Modern Storet is similar to Storet Legacy but covers more recent years. The Storet repositories have data from many local organizations. USGS national and state offices collect a large share of NWIS readings. Appendix B.3 describes details and steps taken to clean these data, including limiting to rivers, streams, or lakes, restricting to comparable measurement methods, winsorizing at the 99th percentile, excluding readings specific to hurricanes and other non-routine events, and others.

Appendix Table I provides basic descriptive statistics. The analysis sample includes 11 million observations on the four main pollutants and 38 million observations on the additional pollutants discussed in Appendix Table IV. The analysis sample covers 180,000 monitoring sites; an additional 60,000 monitoring sites record data on the other pollutants discussed in Appendix Table IV. Levels of BOD, fecal coliforms, and dissolved oxygen deficits are much lower in the U.S. than in India or China (Greenstone and Hanna 2014). Among the four main pollutants, about half the data describe dissolved oxygen. Almost half the data come from monitoring sites that report readings in at least three of the four decades we analyze.

No sampling design explains why certain areas and years were monitored more than others. In some cases, hydrologists purposefully designed representative samples of U.S. waters. At least three such networks are in these data: the Hydrologic Benchmark Network, the National Stream Quality Accounting Network, and the National Water-Quality Assessment Program (HBN, NASQAN, and NAWQA), which this paper discusses later. In other cases, sampling locations and frequency were chosen by local governments or non-governmental organizations. Cities and some states like Massachusetts have denser

⁹We considered a fourth repository, the Sustaining the Earth's Watersheds: Agricultural Research Data System (STEW-ARDS), managed by the USDA. We did not use these data because they focus on years 1990 and later, mainly measure pesticides, and have a small sample.

monitoring networks, while other areas like Texas have less dense networks (Figure I, Panel C).

5. Census Tract Data. We use the Geolytics Neighborhood Change Database (NCDB), which Geolytics built from the 1970, 1980, 1990, and 2000 Censuses of Population and Housing. The 1970 census only included metro areas in tracts, so these tract-level data for 1970 are restricted to metro areas, and so much of our analysis is as well.

We use these census data because they have national coverage and because transaction-level records from county assessor offices, such as those aggregated by Dataquick or CoreLogic, generally do not extend back to the 1970s. Appendix B.5 provides further details, including a discussion of data quality.

6. Recreational Travel Distances. We seek to determine a distance around a river that covers most individuals who travel to participate in recreation at this river. We obtain estimates of this distance from the Nationwide Personal Transportation Survey (NPTS) for years 1983, 1990, and 1995. This survey is the only source we know that provides a large nationally representative sample of recreational activities and travel distances over the period we study.¹⁰ The survey picks a day and has respondents list all trips, their purposes, and the driving distances in miles. We limit trip purposes to "vacation" or "other social or recreation." Averaged across the three survey years, the 95th percentile of one-way distance from home to recreational destinations is about 34 miles. Of course, these data represent all recreational trips, and do not distinguish whether water-based recreation trips require different travel distances.

This is the distance traveled along roads, but the radius we use to calculate the distance of homes from rivers represents the shortest direct path along the ground ("great circle distance"). We are aware of two comparisons between great circle and road distances. First, the 2009 National Household Travel Survey (USDOT 2009, successor to the NPTS) reports both the road and great circle distance between a person's home and the person's workplace. The mean ratio of the road distance to the great circle distance is 1.4. Second, a recent study compared driving distance versus great circle distances for travel from a representative sample of 70,000 locations in the U.S. to the nearest community hospital, and the average ratio was also 1.4 (Boscoe, Henry, and Zdeb 2012).¹¹ So we estimate that the great circle distance between homes and rivers which covers 95 percent of recreational trips is 25 miles ($\approx 33.7/1.4$).

¹⁰The National Survey of Recreation and the Environment and its predecessor, the National Recreation Survey, do not systematically summarize trips taken and travel distances. Many travel demand papers use small surveys that report distance traveled to a specific lake or for a narrow region.

¹¹The 1.4 ratio and the 34 mile calculation from the previous paragraph both use survey weights. These values are similar without survey weights, or when excluding outlier reported travel distances (above 150 miles).

7. Municipal Financial Records. To examine the pass-through of federal Clean Water Act grants to municipal spending on wastewater treatment, we use data from the 1970-2001 Annual Survey of State and Local Government Finances and the Census of Governments. These data report annual capital and total expenditures for sewerage (a category including wastewater treatment), separately for each local government.¹² The final sample includes 198 cities; in addition to describing these data in more detail, Appendix B.6 discusses the main sample restrictions, including requiring a balanced panel and accurate links to the grants data. Given this sample size, we report a set of estimates which weight by the inverse propensity score, to provide estimates more representative of all cities. For use as a control variable in some specifications, we obtain population data for most of these cities from the 1970-2000 decennial censuses, then linearly interpolate between years.

8. Other Environmental Data. One sensitivity analysis controls for nearby industrial sources of water pollution. We are not aware of any complete data on industrial water pollution sources around the year 1972, so we use two distinct controls as imperfect proxies. The first is a list of the manufacturing plants that used large amounts of water in 1972. We obtain these data from the confidential 1973 Survey of Water Use in Manufacturing (SWUM) microdata, accessed through a Census Research Data Center. The second control is a count of the cumulative number of plants in a county holding industrial effluent (NPDES) permits. We filed a Freedom of Information Act request to obtain a historic copy of the EPA database which keeps records of industrial pollution sources—the Permit Compliance System, now called the Integrated Compliance Information System. Appendix B.7 describes more information on these sources, along with additional data on weather and nonattainment designations. Finally, Appendix B.8 describes data used to consider heterogeneity across different groups of grants by several dimensions: grant size, baseline abatement technologies, baseline pollution, Clean Water Act state decentralization, prevalence of local outdoor fishing and swimming, local environmental views, declining older urban areas (Glaeser and Gyourko 2005), and high amenity areas (Albouy 2016).

Spatial Links. We construct four types of links between datasets. The first involves linking each pollution monitoring site and treatment plant to the associated river or lake. The second involves measuring distances along rivers between treatment plants and pollution monitoring sites. The third involves

¹²The "year" in these data refers to each local government's fiscal year. We convert the data to calendar years using data from these surveys on the month when each government's fiscal year ends, assuming that government expenditure is evenly distributed across months. For the few governments that don't report when their fiscal year ends, we assume they report by calendar year.

measuring areas of census tracts around rivers. The fourth involves linking grants to individual plants in the CWNS. Appendix C provides details of each step.

IV Econometric and Economic Models

IV.A Econometrics: Water Pollution Trends

We use the following equation to assess year-by-year changes in water pollution:

$$Q_{icy} = \sum_{\tau=1963}^{\tau=2001} \alpha_{\tau} \mathbb{1}[y_y = \tau] + X'_{icy}\beta + \delta_i + \epsilon_{icy}$$
(1)

Each observation in this analysis is an individual water pollution reading at monitoring site i, hour and calendar day-of-year c, and year y. The variable Q_{icy} represents the level of water pollution. We estimate this equation separately for each pollutant. The matrix X_{icy} includes cubic polynomials in time of day and in day of year. In sensitivity analyses, X_{icy} also includes air temperature and precipitation. The fixed effects δ_i control for all time-invariant determinants of water pollution specific to monitoring site i. These are important because they adjust for any cross-sectional differences in baseline pollution rates across monitoring sites in the imbalanced panel, which ensures that identification comes only from changes in pollution within each monitoring site and over time. The error term ϵ_{icy} includes other determinants of water pollution. We plot the year-by-year coefficients $\alpha_{1963} \dots \alpha_{2001}$ plus the constant. The year-specific points in graphs can be interpreted as mean national patterns of water pollution, controlling for time and monitoring site characteristics.

Except where otherwise noted, all regressions in the paper are clustered by watershed. Appendix Tables III, VI, and VIII also report results from two-way clustering by watershed and year. A watershed is defined by the USGS as an area of land in which all water within it drains to one point. Where relevant, watersheds or counties are defined by the treatment plant's location.

We also estimate linear water pollution trends using the following equation:

$$Q_{icy} = \alpha y_y + X'_{icy}\beta + \delta_i + \epsilon_{icy} \tag{2}$$

The main coefficient of interest, α , represents the mean annual change in water pollution, conditional on the other controls in the regression. We also show specifications which interact the trend term y with an indicator $1[y \ge 1972]$ for whether an observation is year 1972 or later. This interaction measures how water pollution trends differed after versus before the Clean Water Act. We emphasize graphs based on equation (1) more than tables based on equation (2) since the nonlinear trends in graphs are crudely approximated with linear trends and since 30 years is a long post period.

IV.B Econometrics: Effects of Grants on Water Pollution

This section discusses estimates of how grants affect downstream water pollution, which is the paper's second main research question. It then assesses how grants affect municipal spending on wastewater treatment capital. Appendix D discusses evidence on how water pollution changes as rivers pass treatment plants, which tests the hypothesis that the data capture an important feature of the world.

Effects of Clean Water Act Grants on Water Pollution

We use the following regression to estimate effects of Clean Water Act grants on water pollution:

$$Q_{pdy} = \gamma G_{py} d_d + X'_{pdy} \beta + \eta_{pd} + \eta_{py} + \eta_{dwy} + \epsilon_{pdy}$$
(3)

This regression has two observations for each treatment plant p and year y, one observation describing mean water quality upstream (d = 0), and the other observation describing mean water quality downstream (d = 1). The variable G_{py} describes the cumulative number of grants that plant p had received by year y. This regression measures grants as a cumulative stock because they represent investment in durable capital. The main coefficient of interest, γ , represents the mean effect of each grant on downstream water pollution. We also explore other specifications for G, including limiting to grants for construction and not for planning or design, estimating effects separately for each possible number of cumulative grants, and others.

Equation (3) includes several important sets of controls. The matrix X_{pdy} includes temperature and precipitation controls. The plant×downstream fixed effects η_{pd} allow both upstream and downstream waters for each treatment plant to have different mean levels of water pollution. These fixed effects control for time-invariant sources of pollution like factories and farms, which may be only upstream or only downstream of a plant. The plant×year fixed effects η_{py} allow for water pollution to differ near each treatment plant in each year, and they control for forces like the growth of local industries, other environmental regulations, and changes in population density which affect both upstream and downstream pollution. The downstream×basin×year fixed effects η_{dwy} allow upstream and downstream water quality separately to differ by year in ways that are common to all plants in a river basin. These fixed effects address the possibility that other point source pollutants and regulations are located near wastewater treatment plants and had water quality trends related to the municipal grants.

Equation (3) focuses on the effect of the number of grants a plant has received, rather than the dollar value of these grants, for several reasons. (Appendix Table VI reports similar effects of grant dollars.) First, it may be easier to think in discrete terms about the effect of a grant, rather than the effect of an arbitrary amount of money. Second, estimating these regressions in simple discrete terms makes the regression tables more easily comparable with event study graphs. Third, larger grants tend to go to more populated areas and larger rivers. Because it takes larger investment to achieve a change in pollution concentration for a more populated area and larger river, it is ambiguous whether larger grants should have larger effects on pollution concentrations. Fourth, the distribution of cumulative grant amounts is both skewed and has many zeros. Focusing on the number of grants rather than grant dollars avoids issues involved in log transformations (or other approaches) in the presence of many zeros.

A few other details are worth noting. Because the dependent variable is an average over different numbers of underlying pollution readings, in all regressions where each observation is plant-downstream-year tuple, we use generalized least squares weighted by the number of raw underlying pollution readings.¹³ To maximize comparability between the treatment plant location and monitoring sites, we restrict pollution data to monitoring sites located on the same river as the treatment plant. Finally, estimates are limited to plants within 1 kilometer of a river node. Appendix Table VI shows results with some of these assumptions relaxed.

The identifying assumption for equation (3) to provide an unbiased estimate of the parameter γ is

¹³We also report unweighted estimates. GLS based on the number of underlying pollution readings in each plant×downstream×year is an efficient response to heteroskedasticity since we have grouped data. GLS estimates the effect for the average pollution reading rather than for the average plant×downstream×year. It is possible that areas with more pollution data may be of greater interest; for example, Panel C of Figure I shows more monitoring sites in more populated areas.

that the grants×downstream interaction $G_{py}d$ is independent of the regression error, conditional on other explanatory variables:

$$E[G_{py}d_d \cdot \epsilon_{dpy} | X_{pdy}, \eta_{pd}, \eta_{py}, \eta_{dwy}] = 0$$

This assumption would be violated if, for example, grants or permits responded to unobserved shocks to variables like population which themselves affect pollution concentrations.¹⁴

We also report event study graphs of outcomes relative to the year when a facility receives a grant:¹⁵

$$Q_{pdy} = \sum_{\tau=-10}^{\tau=25} \gamma_{\tau} \mathbb{1}[G_{p,y+\tau} = 1]d_d + X'_{pdy}\beta + \eta_{pd} + \eta_{py} + \eta_{dwy} + \epsilon_{pdy}$$
(4)

Here τ indexes years since a grant was received, where $\tau = -10$ is plants receiving a grant ten or more years in the future, and $\tau = -25$ is plants receiving grants 25 or more years in the past.¹⁶

Pass-through of Clean Water Act Grants to Municipal Expenditure

How does a dollar of Clean Water Act grants affect municipal spending on wastewater treatment? Grants could have complete pass-through, so a federal grant of one dollar increases municipal spending on wastewater treatment by a dollar. Grants could also have incomplete pass-through (crowding out municipal expenditure) or more than complete pass-through (crowding in).

We study this question primarily because it can increase the accuracy of cost-effectiveness and costbenefit analyses. If, for example an additional dollar of federal grant funds lead cities to spend less than

a dollar on wastewater treatment, then the spending due to grants is less than our cost data imply.

¹⁴This assumption could also fail if changes in governments' effectiveness at receiving grants are correlated with governments' effectiveness at operating treatment plants. This does not seem consistent with our results since it would likely create pre-trends in pollution or home values, whereas we observe none. Our finding that benefits last about as long as engineering estimates suggest (30 years) and for only the expected pollutants also are not exactly what this story would predict. We also observe that each additional grant results in further decreases in pollution (Appendix Table VI), which would be a complicated story for the timing of government human capital to explain.

¹⁵The analysis includes plants that never received a grant (which have all event study indicators $1[G_{p,y+\tau} = 1]$ equal to zero), plants that received a single grant (which in any observation have only a single event indicator equal to one), and plants that received more than one grant (which in any observation can have several event indicators equal to one). Since no reference category is required in this kind of event study setting where one observation can receive multiple treatments, for ease of interpretation, we recenter the graph line so the coefficient for the year before treatment ($\tau - 1$) equals zero. This implies that coefficients in the graph can be interpreted as the pollution level in a given year, relative to the pollution level in the period before the treatment plant received a grant.

 $^{^{16}}$ As in most event study analyses, only a subset of event study indicators are observed for all grants. Because most grants were given in the 1970s, we observe water pollution up to 10 years before and 15-25 years after most grants.

The question of how federal grants affect municipal spending is also important in the fiscal federalism literature (Oates 1999; Lutz 2010). Finally, this analysis provides some evidence on the quality of the grants data, since the grants data come from a completely different source than the municipal expenditure data.

To estimate the pass-through of Clean Water Act grants to local expenditure, we regress cumulative municipal sewerage capital expenditures E_{cy} in city c and year y on cumulative Clean Water Act grant dollars D_{cy} this city has received:

$$E_{cy} = \beta D_{cy} + v_c + \eta_{wy} + \epsilon_{cy} \tag{5}$$

The dependent and independent variables are cumulative because capital is a stock, and since local investment could occur after the grants are received. The regression includes city fixed effects v_c and year fixed effects η_y . We also report specifications with river basin×year fixed effects η_{wy} . The value $\beta = 1$ implies complete pass-through (no crowding out or crowding in). Finding $\beta < 1$ implies incomplete pass-through (crowding out), while $\beta > 1$ implies more than complete pass-through (crowding in).

The definitions of these variables are important. Municipal expenditures E_{cy} include both expenditures funded by federal grants and those funded by other sources of revenue. As mentioned in Section II.B, most grants require cities to pay 25 percent of the capital cost, though a small share require other copayments. We therefore report two sets of regressions—one where the variable D_{cy} includes only federal grant funds, and another where the variable D_{cy} includes both federal grant funds and the required municipal capital contribution. We also report specifications that weight by the inverse propensity score for inclusion in the balanced panel of cities.

IV.C Demand for Water Quality

Hedonic Model

A few definitions and a graph convey essential features of the hedonic model. A house *i* is described by a vector of its *J* different characteristics, (z_1, \ldots, z_J) . The home's price is $P_i = P(z_1, \ldots, z_J)$. The marginal implicit price of attribute *j* is the marginal change in home price due to a marginal increase in attribute *j*, all else constant: $P_{z_j} \equiv \partial P/\partial z_j$. The key feature of this hedonic price schedule $P(\cdot)$ is that it reflects the equilibrium of firms that supply housing and consumers that demand housing. We assume that housing markets are competitive and that each consumer rents one house.

Appendix Figure VII illustrates. The curve θ_1 describes the bid function of one type of consumer. The bid function is the consumer's indifference curve in the tradeoff between the price of a home and the amount of attribute j embodied in the home. The curve θ_2 describes the bid function for another type of consumer. The curve ϕ_1 describes the offer function of a firm, and ϕ_2 of another firm. The offer function is the firm's isoprofit curve in the tradeoff between home price and attribute j.

The hedonic price schedule provides information about willingness-to-pay for amenity j because it reflects the points of tangency between consumer bid curves and firm offer curves. This implies that the marginal implicit price of an amenity at a given point on the hedonic price schedule equals the marginal willingness to pay of the consumer who locates on that point of the hedonic price schedule.

Econometrics: Demand for Water Quality

To analyze how Clean Water Act grants affected home values, we use a differences-in-differences estimate comparing the change in the log mean value of homes within a 0.25, 1, or 25 mile radius in any direction of the downstream river, before versus after the plant receives a grant, and between plants receiving grants in early versus late years.

Because water pollution flows in a known direction, areas upstream of a treatment plant provide a natural counterfactual for areas downstream of a plant. For this reason, our preferred methodology in Section IV.B to assess how Clean Water Act grants affect water pollution uses a triple-difference estimator comparing upstream and downstream areas. But because residents who live upstream of treatment plants can benefit from clean water downstream of treatment plants (e.g., by traveling for recreation), upstream homes could benefit from grants. Hence our preferred housing estimates come from difference-in-difference regressions analyzing homes within a 25 mile radius of river segments that are downstream of treatment plants. We report both the double-difference and triple-difference estimators for both outcomes, and obtain qualitatively similar conclusions.

We estimate the following regression:

$$V_{py} = \gamma G_{py} + X'_{py}\beta + \eta_p + \eta_{wy} + \epsilon_{py} \tag{6}$$

Here G_{py} represents the cumulative number of grants received by plant p in year y, V_{py} is the log mean value of homes within a 0.25, 1, or 25 mile radius of the portion of the river that is 25 miles downstream of treatment plant p, η_p are plant fixed effects, and η_{wy} are river basin×year fixed effects. Some specifications include controls X_{py} for house structure characteristics and the interaction of baseline characteristics with year fixed effects (see Appendix B.5 for details). We estimate the change in total housing units and total value of the housing stock.

A few points are worth noting. First, we limit regression estimates to the set of tracts reporting home values in all four years 1970, 1980, 1990, 2000. When we fit the change in home values, we do so both for only the balanced panel of tract-years reporting home values, and for all tract-years. Second, because the differences-in-differences specification used for home values does not use upstream areas as a counterfactual, it involves the stronger identifying assumption that areas with more and fewer grants would have had similar home price trends in the absence of the grants. In part for this reason, we focus on specifications including basin×year fixed effects and the interaction of baseline characteristics with year fixed effects. Estimates without the basin×year controls are more positive but also more sensitive to specification, which is one indication that the specification of equation (6) provides sharper identification. Fourth, to obtain regression estimates for the average housing unit, and to provide an efficient response to heteroskedasticity, we include generalized least squares weights proportional to the number of total housing units in the plant-year observation and to the sampling probability.¹⁷

V Water Pollution Trends

V.A Main Results

We find large declines in most pollutants the Clean Water Act targeted. Dissolved oxygen deficits and the share of waters that are not fishable both decreased almost every year between 1962 and 1990 (Figure II). After 1990, the trends approach zero. Year-by-year trends for the other pollutants in the main analysis – the share of waters that are not swimmable, BOD, fecal coliforms, and TSS – show similar patterns (Appendix Figure III).

¹⁷The census long form has housing data and was collected from one in six households on average, but the exact proportion sampled varies across tracts.

The graphs show no obvious evidence of a mean-shift or trend-break in water pollution around 1972. This tells us little about the Clean Water Act's effects, however, since its investments may take time to affect water pollution, expanded during the 1970s, and may be effective even if not obvious from a national time series. These graphs also suggest that existing evaluations of the Clean Water Act, which typically consist of national trend reports based on data from after 1972, may reflect forces other than the Clean Water Act. Using a national time series to evaluate the Clean Water Act could imply that it has been counterproductive, since the rate of decrease in pollution slowed after 1972.

Regressions with linear trend and trend break specifications underscore these findings, subject to the caveats mentioned earlier about the linear approximations and the long post period. The share of waters that are not fishable fell on average by about half a percentage point per year, and the share that are not swimmable fell at a similar rate (Table I, Panel A). In total over the period 1972-2001, the share of waters that are not fishable and the share not swimmable fell by 11 to 12 percentage points. Each of the four pollutants which are part of these fishable and swimmable definitions declined rapidly during this period. Fecal coliforms had the fastest rate of decrease, at 2.5 percent per year. BOD, dissolved oxygen deficits, and total suspended solids all declined at 1 to 2 percent per year.

These full data show more rapid declines before 1972 than after it. Independent evidence is generally consistent with this idea. Engineering calculations in USEPA (2000b) suggest that the efficiency with which treatment plants removed pollution grew faster in the 1960s than in the 1980s or 1990s. Hines (1967) describes state and local control of water pollution in the 1960s, which typically included legislation designating regulated waters and water quality standards, a state pollution control board, and enforcement powers against polluters including fines and incarceration. Data on industrial water pollution in the 1960s is less detailed, though manufacturing water intake (which is highly correlated with pollution emissions) was flat between 1964 and 1973 due to increasing internal recycling of water (Becker 2016). Moreover, the share of industrial water discharge that was treated by some abatement technology grew substantially in the 1960s (Bureau 1971). We interpret pre-1972 trends cautiously, however, both because far fewer monitoring sites recorded data before the 1970s (Appendix Table I), and because the higher-quality monitoring networks (NAWQA, NASQAN, and HBN) focused their data collection after 1972.

It is interesting to consider possible explanations for these slowing trends. One involves declining

returns to abatement of pollution from "point sources." At the same time, much oxygen-demanding pollution comes from agriculture and other "non-point" sources, and those sources have remained largely unregulated. Another is that "fishable" and "swimmable" are limited between 0 and 1, and dissolved oxygen saturation does not much exceed 100 percent. This explanation is less relevant for the slowing trends in continuous variables like BOD, fecal coliforms, or TSS.

We estimate many sensitivity analyses, including restricting to high-quality subsamples of the data, adding important controls, weighting by population, and many others. Most of these alternative approaches have similar sign, magnitude, and precision as the main results. Appendix Table III shows these results and Appendix E.1 explains each.

V.B Other Water Quality Measures

We also discuss trends in three other groups of water quality measures: industrial pollutants; nutrients; and general measures of water quality (Appendix Table IV).¹⁸ All three industrial pollutants have declined rapidly. Lead's decrease of about 10 percent per year may be related to air pollution regulations, such as prohibiting leaded gasoline. The decline in mercury is noteworthy given the recent controversy of the Mercury and Air Toxics Standards (MATS) policy that would regulate mercury from coal-fired power plants. Some nutrients like ammonia and phosphorus are declining, while others like nitrates are unchanged. Nutrients were not targeted in the original Clean Water Act, but are a focus of current regulation. Temperature is increasing by about 1 degree F per 40 years, which is consistent with effects from climate change. Electricity generating units and other sources do contribute to thermal pollution in rivers, but increasing temperature is an outlier from decreasing trends in most other water pollutants.

pH increased by 0.007 pH units per year, meaning that waters became more basic (less acidic). Rainwater monitors that are not in our data record increases of similar magnitude in rainwater pH over this period, and attribute it to declines in atmospheric sulfur air pollution (USEPA 2007). Hence decreases in acidic sulfur air pollution may have contributed to decreases in acidic water pollution.

¹⁸Appendix B.3 describes the rule we use to choose indicators for this list; it mainly reflects the pollutants used in the EPA's (1974) first major water pollution report after the Clean Water Act.

VI Clean Water Act Grants and Water Pollution

VI.A Effects of Clean Water Act Grants on Pollution

Table II shows that these grants cause large and statistically significant decreases in pollution. Each grant decreases dissolved oxygen deficits by 0.7 percentage points, and decreases the probability that downstream waters are not fishable by 0.7 percentage points. The other pollutants decrease as well — BOD falls by about 2.4 percent, fecal coliforms fall by 3.6 percent, and the probability that downstream waters are not swimmable by about half a percentage point. The point estimate implies that each grant decreases TSS by one percent, though is imprecise.

Event study graphs corresponding to equation (4) support these results. In years before a grant, the coefficients are statistically indistinguishable from zero, have modest magnitude, and have no clear trend (Figure III). This implies that pollution levels in upstream and downstream waters had similar trends before grants were received. In the years after a grant, downstream waters have 1-2 percent lower dissolved oxygen deficits, and become 1-2 percent less likely to violate fishing standards. These effects grow in magnitude over the first ten years, are statistically significant in this period, and remain negative for about 30 years after a grant. The gradual effect of the grants is unsurprising since, as mentioned earlier, EPA estimates that it took two to ten years after a grant was received for construction to finish. The 30year duration of these benefits is also consistent with, though on the lower end of, engineering predictions. Two studies report that concrete structures of treatment plants are expected to have a useful life of 50 years but mechanical and electrical components have a useful life of 15-25 years (American Society of Civil Engineers 2011, p. 15; USEPA 2002, p. 11). Event study graphs for other pollutants are consistent with these results, though are less precise (Appendix Figure IV). Appendix Figure V shows the effect of a grant by distance downstream from a treatment plant; less data is available to estimate effects separately for each 5-mile bin along the river, and estimates are correspondingly less precise.

Appendix Table VI shows a variety of sensitivity analyses, and Appendix E.2 discusses each. They give similar qualitative conclusions as the main results, though exact point estimates vary.

VI.B Grants' Effects on Water Pollution: Cost-Effectiveness

We now turn to estimate the cost-effectiveness of these grants. The cost-effectiveness is defined as the annual public expenditure required to decrease dissolved oxygen deficits in a river-mile by 10 percentage points or to make a river-mile fishable. These calculations use our regression estimates and the cost data.

Even without the hedonic estimates of the next section, one can combine cost-effectiveness numbers with estimates from other studies of the value of clean waters to obtain a cost-benefit analysis of these grants. Moreover, we are not aware of any existing ex post estimates of the cost required to make a river-mile fishable or to decrease dissolved oxygen deficits.

Table III presents estimates of cost-effectiveness. The simplest specification of column (1), which includes rivers with water quality data, implies that it cost \$0.67 million per year to increase dissolved oxygen saturation in a river-mile by ten percent; the broadest specification of column (3), which assumes every treatment plant has 25 miles of downstream waters affected, implies that it cost \$0.53 million per year. The annual cost to make a river-mile fishable ranges from \$1.5 to \$1.9 million.¹⁹

A few notes are important for interpreting these statistics. First, this is the average cost to supply water quality via Clean Water Act grants; the marginal cost, or the cost for a specific river, may differ. Second, measuring cost-effectiveness is insufficient to reach conclusions about social welfare; Section VII discusses peoples' value for these changes. Third, if some grant expenditures were lost to rents (e.g., corruption), then those expenditures represent transfers and not true economic costs. EPA did audit grants to minimize malfeasance. In the presence of such rents, this analysis could be interpreted as a cost-effectiveness analysis from the government's perspective.

Appendix E.2 investigates heterogeneity in grants' effects on water pollution and cost-effectiveness. Overall, this evidence does not suggest dramatic heterogeneity in cost-effectiveness. Compared to the mean grant, grants to declining urban areas are significantly less cost-effective, while grants to the generally rural counties where many people go fishing or swimming are significantly more effective. Most others are statistically indistinguishable from the mean grant, though there is some moderate (if statistically insignificant) heterogeneity in point estimates.

¹⁹The cost-effectiveness estimates for fishable regressions are based on Appendix Table VI, Row 13. The main regression estimates in Table II reflect the change in the share of pollution readings that are fishable and do not distinguish between cases where the share of readings that are fishable moved from 20 to 21 percent, or where it changed from 80 to 81 percent. The statistic we use reflects the binary cutoff of whether a majority of readings are fishable.

VI.C Pass-Through of Clean Water Act Grants to Municipal Expenditure

Table IV reports estimates corresponding to equation (5). In Panel A, the main explanatory variable excludes required municipal contributions, while Panel B includes them. Column (1) reports a basic differences-in-differences regression with nominal dollars. Column (2) uses real dollars. A city may spend a grant in years after it is received, so real pass-through may be lower than nominal pass-through. Column (3) adds river basin×year fixed effects. Column (4) reweights estimates using the inverse of the estimated propensity score for inclusion in the balanced panel of cities.

The estimates in Table IV are generally consistent with near complete pass-through, i.e., little or no crowding out or in beyond the required municipal capital copayment. Panel A estimates pass-through modestly above one since it excludes the required municipal copayment. Panel B includes the local copayment, and finds pass-through rates of 0.84 to 0.93 in real terms or 1.09 in nominal terms. These estimates are within a standard deviation of one, so fail to reject the hypothesis that the municipal wastewater investment exactly equals the cost listed in the grant project data.²⁰

We emphasize a few caveats in interpreting Table IV. First, the analysis is based on only 198 cities. The inverse propensity score reweighted estimates are designed to reflect the entire population of US cities. Second, this city-level difference-in-difference estimate cannot use the upstream-downstream comparison for identification. Third, this analysis is different from the question of what municipal spending (and pollution and home values) would be in a world without the Clean Water Act. Our estimates are consistent with no crowdout for an individual grant, but the existence of the Clean Water Act may decrease aggregate municipal investment in wastewater treatment. Appendix Figure VI shows national trends in federal versus state and local spending on wastewater treatment capital declined steadily from a total of \$43 billion in 1963 to \$22 billion in 1971 and then to \$7 billion annually by the late 1970s. Notably, almost half of this decline in state and local wastewater treatment capital spending occurred before the Clean

 $^{^{20}}$ We also explored estimates controlling for city-year population or city-year municipal revenue. These controls could help address possible omitted variables bias due to city growth in these differences-in-differences regressions, but are potentially a case of bad controls (Angrist and Pischke 2009) since they could be affected by grants. Adding population or city revenue controls to the specification of column (4) in Table IV gives estimates of 1.22 (0.30) or 0.91 (0.18) for Panel A, and 0.92 (0.22) or 0.68 (0.13) for Panel B. We discuss a range of pass-through estimates including these for cost-effectiveness and cost-benefit analysis. 21 CBO (1985) dictates this time period since it provides the national total state and local spending data underlying this graph.

Water Act. Federal spending grew to between \$10 and \$20 billion per year in the late 1970s.

Other sources note that these time series trends are consistent with aggregate crowdout (Jondrow and Levy 1984; CBO 1985). Identification from a national time series is difficult, since other national shocks like the 1973-5 and early 1980s recessions, high inflation and interest rates, and the OPEC crisis make the 1960s a poor counterfactual for the 1970s and 1980s.

Our interpretation is that once the Clean Water Act began, cities became less likely to spend municipal funds on wastewater treatment capital. In this sense, the existence of the Clean Water Act did crowd out aggregate municipal investment in wastewater treatment. But municipal investments that occurred were closely connected to grants, and point estimates imply that the grant costs in our data accurately represent the actual change in spending. Appendix E.2 discusses how cost-effectiveness numbers change with alternative estimates of crowd-out.²²

These pass-through estimates also speak to the broader "flypaper" literature in public finance, a literature named to reflect its finding that federal government spending "sticks where it hits." Researchers have estimated the pass-through of federal grants to local expenditure in education, social assistance, and other public services. A review of ten U.S. studies found pass-through estimates between 0.25 and 1.06 (Hines and Thaler 1995). Non-U.S. studies and more recent U.S. estimates find an even wider range (Gamkhar and Shah 2007). One general conclusion from this literature is that the effect of federal grants on local government expenditure substantially exceeds the effect of local income changes on local government expenditure (the latter is typically around 0.10). This literature also finds that federal grants which require local matching funds and which specify the grants' purpose, both characteristics of the Clean Water Act grants, tend to have higher pass-through rates. Our findings are consistent with both these general conclusions.

VII Demand for Water Quality

VII.A Main Results

Table V analyzes how Clean Water Act grants affect housing. Column (1) shows estimates for homes within a quarter mile of downstream waters. Column (2) adds controls for dwelling characteristics, and

 $^{^{22}}$ See Kline and Walters (2016) for a related analysis in education.

for baseline covariates interacted with year fixed effects. Column (3) include all homes within 1 mile, and column (4) includes homes within 25 miles.

Panel A reports estimates of how grants affect log mean home values. The positive coefficients in the richer specifications of columns (2) through (4) are consistent with increases in home values, though most are statistically insignificant. Column (4) implies that each grant increases mean home values within 25 miles of affected waters by two and a half hundredths of a percentage point. The 0.25 or 1.0 mile estimates are slightly larger, which is consistent with the idea that residents nearer to the river benefit more from water quality. Panel B analyzes how grants affect log mean rental values. These estimates are even less positive than the estimates for housing. The estimate in column (4), including homes within a 25 mile radius of downstream rivers, is small and statistically insignificant but actually negative.

Panels A and B reflect the classic hedonic model, with fixed housing stock. Panel C estimates the effect of grants on log housing units and Panel D on the log of the total value of the housing stock. They suggest similar conclusions as Panels A and B. Most of these estimates are small and actually negative. Two are marginally significant (Panel C, column 1), though the precision and point estimate diminish with the controls of column (2).

Figure IV shows event study graphs, which suggest similar conclusions as these regressions. Panel A shows modest evidence that in the years after a plant receives a grant, the values of homes within 0.25 miles of the downstream river increase. The increases are small and statistically insignificant in most years. Panel B shows no evidence that homes within 25 miles of the downstream river increase after a treatment plant receives a grant.

We also report a range of sensitivity analyses, which are broadly in line with the main results. Estimates appear in Appendix Table VIII and discussion appears in Appendix E.3.

VII.B Measured Benefits and Costs

We now compare the ratio of a grant's effect on housing values (its "measured benefits") to its costs. The change in the value of housing is estimated by combining the regression estimates of Table V with the baseline value of housing and rents from the census. Grant costs include local and federal capital expenditures plus operating and maintenance costs over the 30 year lifespan for which we estimate grants affect water pollution. We deflate operating and maintenance costs and rents at a rate of 7.85 percent

(Peiser and Smith 1985).²³

Column (1) of Table VI includes only owned homes within a 1 mile radius of the downstream river segments; column (2) includes homes within a 25 mile radius; and column (3) adds rental units. Column (4) includes imputed home values for the non-metro areas that were not in 1970 or 1980 census.²⁴

Considering all owner-occupied homes within 25 miles of the river, the estimated ratio of the grants' aggregate effects on home values to the grants' costs is 0.26. Adding rental units in column (3) barely changes this estimate. The main regression sample includes only a balanced panel of tracts that appear in all four censuses between 1970-2000; imputing values for missing homes hardly changes the ratio in column (4). These confidence regions do not reject the hypothesis that the ratio of the change in home values to the grants' costs is zero but do reject the hypothesis that the change in home values equals the grants' costs.

Appendix Table VII investigates heterogeneity in measured benefits and costs; Appendix E.3 discusses the results. We find suggestive evidence that ratios of measured benefits to costs follow sensible patterns, though not all estimates are precise. None of these subsets of grants considered has a ratio of measured benefits to costs above one, though many of the confidence regions cannot reject a ratio of one. The largest ratios of estimated benefits to costs are for areas where outdoor fishing or swimming is common (ratio of 0.53), for high amenity urban areas (ratio of 0.40), and in the South (ratio of 0.84).

The map in Appendix Figure VIII shows heterogeneity in the ratio of measured benefits to costs across U.S. counties. This map assumes the same hedonic price function and reflects spatial heterogeneity in housing unit density.²⁵ The map shows that the ratio of measured benefits to costs is larger in more populated counties. The bottom decile of counties, for example, includes ratios of measured benefits to costs of below 0.01. The top decile of counties includes ratios between 0.31 and 0.41. Grants and population are both skewed, so large shares of both are in the top decile. While a point estimate of 0.41 for the ratio of benefits to costs does not exceed one, one should interpret this value in light of the

²³We include all capital and operating and maintenance costs in the measure of total grant project costs. The tables separately list the different components of costs, and Section VII.C discusses possible effects of these costs on local taxes or fees. We calculate the present value of rental payouts as $rentalPayout[1 - (1 + r)^{-n}]/r$, where rentalPayout is the change in total annual rents due to the grants, r = 0.0785 is the interest rate, and n = 30 is the duration of the benefits in years.

²⁴We impute these values from a panel regression of log mean home values on year fixed effects and tract fixed effects.

 $^{^{25}}$ These estimates divide treatment plants into ten deciles of the number of housing units in the year 2000 within 25 miles of downstream river segments. They then use the regression estimates from column 4 of Table V to calculate the ratio of the change in the value of housing and grant costs, separately by decile. Finally, we average this ratio across plants in each county.

discussion from the next subsection that it may be a lower bound on true benefits.

This predictable spatial variation in the net benefits of water quality variation suggests that allowing the stringency of regulation to vary over space may give it greater net benefits (Muller and Mendelsohn 2009; Fowlie and Muller Forthcoming).

VII.C Interpreting Hedonic Estimates

We now discuss six reasons why the ratios of measured benefits to costs from the previous subsection may provide a lower bound on the true benefit/cost ratio. Appendix F discusses other reasons which we believe have weaker support.

First, people might have incomplete information about changes in water pollution and their welfare implications. Research does find statistically significant though imperfect correlation between perceived local water pollution and objectively measured local water pollution (Faulkner, Green, Pellaumail, and Weaver 2001; Poor, Boyle, Taylor, and Bouchard 2001; Jeon, Herriges, Kling, and Downing 2011; Steinwender, Gundacker, and Wittmann 2008; Artell, Ahtiainen, and Pouta 2013). Incomplete information would be especially important if pollution abatement improves health. Misperception would be less important if most benefits of surface water quality accrue through recreation or aesthetics, since failing to perceive water pollution through any means would mean its effects on recreational demand are limited. Most recent cost-benefit analyses of the Clean Water Act estimate that a substantial share of benefits come from recreation and aesthetics channels (Lyon and Farrow 1995; Freeman 2000; USEPA 2000a). Cropper and Oates (1992) describe the Clean Water Act as the only major environmental regulation of the 1970s and 1980s which does not have health as its primary goal.

Second, due to "nonuse" or "existence" values, a person may value a clean river even if that person never visits or lives near that river. We recognize both the potential importance of nonuse values for clean surface waters and the severe challenges in accurately measuring these values.²⁶ Other categories potentially not measured here include the value for commercial fisheries, industrial water supplies, lower treatment costs for drinking water, and safer drinking water.²⁷ Evidence on the existence and magnitude

 $^{^{26}}$ The USEPA's (2000a) cost-benefit analysis of the Clean Water Act estimates that nonuse values are a sixth as large as use values. This analysis, however, is subject to serious concerns about both use and non-use estimates in the underlying studies.

²⁷Flint, Michigan, has recently had high lead levels in drinking water due to switching its water source from the Detroit River to the Flint River. Flint potentially could have prevented these problems by adding corrosion inhibitors (like orthophosphate),

of the benefits from these other channels is limited, though as mentioned above, recreation and aesthetics are believed to account for a large majority of the benefits of clean surface waters.

Third, these grants could lead to increased city taxes, sewer fees, or other local costs that depress home values. Table VI separately lists three types of costs: federal expenditures on capital, local expenditures on capital, and operation and maintenance costs. The ultimate entity responsible for local capital costs and operation and maintenance costs is ambiguous since local governments may receive other payments from state or federal governments to help cover these costs. But if local governments ultimately pay these costs, they could depress home values.

A few pieces of evidence help evaluate the relevance of these issues. One is to estimate hedonic regressions excluding housing units in the same city as the wastewater treatment plant. This is potentially informative since increased taxes, sewer fees, or changes in other municipal expenditures are likely to be concentrated in the municipal authority managing the treatment plant, whereas the change in water quality is relevant for areas further downstream. Row 12 of Appendix Table VIII reports this specification and finds similar and if anything slightly less positive change in home values than the main results estimate, which is the opposite of what one would expect if city taxes, sewer fees, or other local costs depressed home values. Another test comes from the fact that the 1980-2000 gross rent data reported in the census include utilities costs. If sewer fees were particularly important, then one would expect rents to increase more than home values do; if anything, the estimates of Table V suggest the opposite. Finally, we can recalculate the ratios in Table VI considering only subsets of costs. The ratio of the change in housing values to federal capital costs in columns (2)-(4) of Table VI ranges from 0.8 to 0.9; the ratio of the change in housing values to the sum of federal capital costs and operating costs (but excluding local capital costs) in these columns is around 0.3. None of these ratios exceeds one, though they are closer to one than are the values in Table VI.

Fourth, this analysis abstracts from general equilibrium changes. One possible channel is that wages change to reflect the improvement in amenities (Roback 1982). A second general equilibrium channel is that the hedonic price function may have shifted. In the presence of such general equilibrium changes, our estimates could be interpreted as a lower bound on willingness to pay (Banzhaf 2015).

which are used in many cities including the Detroit water that Flint previously used, at low cost. Drinking water treatment falls under a separate set of regulations, the Safe Drinking Water Act.

Other possible general equilibrium channels describe reasons why the effects of cleaning up an entire river system could differ from summing up the effects of site-specific cleanups. One such channel involves substitution—cleaning up part of a river in an area with many dirty rivers might have different value than cleaning up a river in an area with many clean rivers. Another possible channel involves ecology. The health of many aquatic species (so indirectly, the benefit people derive from a river) may depend nonlinearly on the area of clean water. Our approach focuses on the effects of cleaning up an individual site and is not as well suited to capture the potentially distinct effects of cleaning up entire river systems.

Fifth, the 25 mile radius is only designed to capture 95 percent of recreational trips. The last 5 percent of trips might account for disproportionate surplus because they represent people willing to travel great distances for recreation. Alternatively, the most distant travelers might be marginal. Our recreation data also represent all trips, and water-based recreation trips might require different travel distances.

Finally, we interpret our pass-through estimates cautiously since they reflect only 198 cities, do not use upstream waters as a comparison group, and reflect pass-through of marginal changes in investment, rather than the entire Clean Water Act. Appendix E.3 discusses interpretations of our housing estimates under alternative pass-through numbers.

VIII Conclusions

This paper assembles an array of new data to assess water pollution's trends, causes, and welfare consequences. We find that by most measures, U.S. water pollution has declined since 1972, though some evidence suggests it may have declined at a faster rate before 1972. The share of waters that are fishable has grown by 12 percentage points since the Clean Water Act.

We study \$650 billion in expenditure due to 35,000 grants the federal government gave cities to improve wastewater treatment plants. Each grant significantly decreased pollution for 25 miles downstream, and these benefits last for around 30 years. We find weak evidence that local residents value these grants, though estimates of increases in housing values are generally smaller than costs of grant projects.

Our estimated ratio of the change in housing costs to total grant costs may provide a lower bound on the true benefit/cost ratio of this grant program since we abstract from nonuse ("existence") values, general equilibrium effects, potential changes in sewer fees, and the roughly five percent longest recreational trips. The point estimates imply that the benefits of the Clean Water Act's municipal grants exceed their costs if these unmeasured components of willingness to pay are three or more times the components of willingness to pay that we measure. As mentioned in the introduction, other recent analyses estimate benefits of the Clean Water Act that are smaller than its costs, though these other estimates note that they may also provide a lower bound on benefits. For example, the U.S. Environmental Projection Agency's (2000a; 2000c) estimate of the benefit/cost ratio of the Clean Water Act is below 1, though the EPA's preferred estimate of the benefit/cost ratio of the Clean Air Act is 42 (USEPA 1997).²⁸

It may be useful to highlight differences in how the Clean Air and Clean Water Acts answer four important questions about environmental regulation. These comparisons also highlight features of the Clean Water Act which are not widely recognized and could lead it to have lower net benefits than some other environmental regulation.

First is the choice of policy instrument. Market-based instruments are believed to be more costeffective than alternatives. Parts of the Clean Air Act use cap-and-trade systems, but nearly none of the Clean Water Act does. The grants we study actually subsidize the adoption of pollution control equipment, which is a common policy globally that has undergone little empirical economic analysis.

A second question is scope. Cost-effective regulation equates marginal abatement costs across sources, which requires regulating all sources. The Clean Air Act covers essentially all major polluting sectors. The Clean Water Act, by contrast, mostly ignores "non-point" pollution sources like agriculture. Ignoring such a large source of pollution can make aggregate abatement more costly.

A third question involves substitution. Optimizing consumers should equate the marginal disutility of pollution to the marginal cost of protection from pollution. People breather the air quality where they live, and relocating to another airshed or some other defenses against air pollution are costly (Deschenes, Greenstone, and Shapiro 2017). For water pollution, however, people can more easily substitute between nearby clean and dirty rivers for recreation.

A fourth question involves health. Air is typically unfiltered when it is inhaled, so air pollution is believed to have large mortality consequences that account for much of the benefits of air pollution regulation. Surface waters, by contrast, are typically filtered through a drinking water treatment plant

²⁸Analyses of the Clean Air Act relying solely on hedonic estimates generally have smaller cost-benefit ratios; the EPA's benefit numbers for air pollution rely heavily on estimated mortality impacts.

before people drink them. Most analyses of recent U.S. water quality regulation count little direct benefit from improving human health (Lyon and Farrow 1995; Freeman 2000; USEPA 2000a; Olmstead 2010).²⁹

Finally, we note one similarity between and air water pollution that may be relevant to policy design. We find some evidence that the net benefits of Clean Water Act grants vary over space in tandem with population density and the popularity of water-based recreation. Related patterns have been found for air pollution, and suggest that allowing the stringency of pollution regulation to vary over space has potential to increase social welfare.

Iowa State and CARD

Yale University and NBER

References

- ADLER, R. W., J. C. LANDMAN, AND D. M. CAMERON (1993): The Clean Water Act 20 Years Later. NRDC.
- AIDT, T. S. (1998): "Political internalization of economic externalities and environmental policy," Journal of Public Economics, 69, 1–16.
- ALBOUY, D. (2016): "What are Cities Worth? Land Rents, Local Productivity, and the Total Value of Amenities," *Review of Economics and Statistics*, 98(3), 477–487.
- ALSAN, M., AND C. GOLDIN (Forthcoming): "Watersheds in Child Mortality: The Role of Effective Water and Sewerage Infrastructure, 1880 to 1920," *Journal of Political Economy*.
- AMERICAN SOCIETY OF CIVIL ENGINEERS (2011): "Failure to Act: The Economic Impact of Current Investment Trends in Water and Wastewater Treatment Infrastructure," Discussion paper, ASCE.
- ANGRIST, J. D., AND J.-S. PISCHKE (2009): Mostly Harmless Econometrics: An Empiricist's Companion. Princeton University Press.
- ARTELL, J., H. AHTIAINEN, AND E. POUTA (2013): "Subjective vs. objective measures in the valuation of water quality," *Journal of Environmental Economics and Management*, 130, 288–296.
- BANZHAF, H. S. (2015): "Panel Data Hedonics: Rosen's First Stage and Difference-in-Differences as "Sufficient Statistics"," Mimeo, Georgia State.
- BECKER, R. A. (2016): "Water Use and Conservation in Manufacturing: Evidence from U.S. Microdata," Water Resources Management, 30(12), 4185–4200.
- BOSCOE, F. P., K. A. HENRY, AND M. S. ZDEB (2012): "A Nationwide Comparison of Driving Distance Versus Straight-Line Distance to Hospitals," *Professional Geographer*, 64(2), 188–96.

²⁹This contrasts with the regulation of surface water quality in developing countries and in the historic U.S. (Ebenstein, 2012; Alsan and Goldin, Forthcoming), where drinking water is less well filtered, piped water access less widespread, and stringent drinking water standards less common or less well enforced.

- BUREAU, U. C. (1971): "1967 Census of Manufactures: Water Use in Manufacturing," Discussion paper, U.S. Census Bureau.
- CARSON, R. T., AND R. C. MITCHELL (1993): "The Value of clean water: The public's willingness to pay for boatable, fishable, and swimmable quality water," *Water Resources Research*, 29(7), 2445–2454.
- CBO (1985): "Efficient Investment in Wastewater Treatment Plants," Discussion paper, Congressional Budget Office.
- COHEN, A., AND D. A. KEISER (2017): "The effectiveness of incomplete and overlapping pollution regulation: Evidence from bans on phosphate in automatic dishwasher detergent," *Journal of Public Economics*, 150, 53–74.
- CROPPER, M., AND W. E. OATES (1992): "Environmental Economics: A Survey," Journal of Economic Literature, 30(2), 675–740.
- CURRIE, J., J. G. ZIVIN, K. MECKEL, M. NEIDELL, AND W. SCHLENKER (2013): "Something in the water: contaminated drinking water and infant health," *Canadian Journal of Economics*, 46(3), 791–810.
- DESCHENES, O., M. GREENSTONE, AND J. S. SHAPIRO (2017): "Defensive Investments and the Demand for Air Quality: Evidence from the NOx Budget Program," *American Economic Review*, 107(10), 2958–89.
- EARNHART, D. (2004a): "Panel Data Analysis of Regulatory Factors Shaping Environmental Performance," Review of Economics and Statistics, 86(1), 391–401.

- EBENSTEIN, A. (2012): "The Consequences of Industrialization: Evidence from Water Pollution and Digestive Cancers in China," *Review of Economics and Statistics*, 94(1), 186–201.
- FAULKNER, H., A. GREEN, K. PELLAUMAIL, AND T. WEAVER (2001): "Residents' perceptions of water quality improvements following remediation work in the Pymme's Brook catchment, north London, UK," Journal of Environmental Management, 62, 239–254.
- FOWLIE, M., AND N. MULLER (Forthcoming): "Market-based emissions regulation when damages vary across sources: What are the gains from differentiation?," *Journal of the Association of Environmental and Resource Economists.*
- FREDRIKSSON, P. G. (1998): "Environmental policy choice: Pollution abatement subsidies," Resource and Energy Economics, 20(1), 51–63.
- FREEMAN, A. M. (2000): Public Policies for Environmental Protection chap. Water Pollution Policy, pp. 169–213. Resources.
- GAMKHAR, S., AND A. SHAH (2007): Intergovernmental Fiscal Transfers: Principles and Practicechap. The Impact of Intergovernmental Fiscal Transfers: A Synthesis of the Conceptual and Empirical Literature, pp. 225–258. World Bank.

⁽²⁰⁰⁴b): "Regulatory factors shaping environmental performance at public-owned treatment plants," *Journal of Environmental Economics and Management*, 48, 655–681.
- GIANESSI, L. P., AND H. M. PESKIN (1981): "Analysis of National Water Pollution Control Policies:
 2. Agricultural Sediment Control," *Water Resources Research*, 17(4), 803–821.
- GLAESER, E. L., AND J. GYOURKO (2005): "Urban Decline and Durable Housing," Journal of Political Economy, 113(2), 345–375.
- GREENSTONE, M., AND R. HANNA (2014): "Environmental Regulations, Air and Water Pollution, and Infant Mortality in India," *American Economic Review*, 104(10), 3038–72.
- HARRINGTON, W. (2004): Choosing Environmental Policy: Comparing Instruments and Outcomes in the United States and Europe chap. Industrial Water Pollution in the United States: Direct Regulation or Market Incentive?, pp. 67–90. Resources for the Future.
- HAUSMAN, J. (2012): "Contingent Valuation: From Dubious to Hopeless," Journal of Economic Perspectives, 26(4), 43–56.
- HINES, J. R., AND R. H. THALER (1995): "The Flypaper Effect," Journal of Economic Perspectives, 9(4), 217–226.
- HINES, N. W. (1967): "Nor Any Drop to Drink: Public Regulation of Water Quality. Part I: State Pollution Control Programs," *Iowa Law Review*, 186.
- JEON, Y., J. A. HERRIGES, C. L. KLING, AND J. DOWNING (2011): The International Handbook on Non-Market Environmental Valuationchap. The role of water quality perceptions in modelling lake recreation demand, pp. 74–101. Edward Elgar.
- JONDROW, J., AND R. A. LEVY (1984): "The Displacement of Local Spending for Pollution Control by Federal Construction Grants," *American Economic Review Papers and Proceedings*, 74(2), 174–8.
- KAHN, M. E., P. LI, AND K. ZHAO (2015): "Water Pollution Progress at Borders: The Role of Changes in China's Political Proposition Incentives," *American Economic Journal: Economic Policy*, 7(4), 223– 242.
- KEISER, D. A. (2016): "The Missing Benefits of Clean Water and the Role of Mismeasured Pollution Data," Mimeo, Iowa State.
- KLINE, P., AND C. WALTERS (2016): "Evaluating Public Programs with Close Substitutes: The Case of Head Start," *Quarterly Journal of Economics*, 131(4), 1795–1848.
- KLING, C. L., D. J. PHANEUF, AND J. ZHAO (2012): "From Exxon to BP: Has Some Number Become Better than No Number," *Journal of Economic Perspectives*, 26(4), 3–26.
- KNOPMAN, D. S., AND R. A. SMITH (1993): "Twenty Years of the Clean Water Act: Has U.S. Water Quality Improved?," *Environment*, 35(1), 17–41.
- KOHN, R. E. (1992): "When Subsidies for Pollution Abatement Increase Total Emissions," Southern Economic Journal, 59(1), 77–87.
- KUWAYAMA, Y., AND S. OLMSTEAD (2015): Handbook on the Economics of Natural Resources chap. Water quality and economics: willingness to pay, efficiency, cost-effectiveness, and new research frontiers, pp. 474–501. Robert Halvorsen and David F. Layton.

- LEGGETT, C. G., AND N. E. BOCKSTAEL (2000): "Evidence of the Effects of Water Quality on Residential Land Prices," *Journal of Environmental Economics and Management*, 39, 121–144.
- LIPSCOMB, M., AND A. M. MOBARAK (2017): "Decentralization and Pollution Spillovers: Evidence from the Re-drawing of Country Borders in Brazil," *Review of Economic Studies*, 84(1), 464–502.
- LUTZ, B. (2010): "Taxation with Representation: Intergovernmental Grants in a Plebiscite Democracy," *Review of Economics and Statistics*, 92(2), 316–332.
- LYON, R. M., AND S. FARROW (1995): "An economic analysis of Clean Water Act issues," Water Resources Research, 31(1), 213–223.
- MCFADDEN, D., AND K. TRAIN (eds.) (2017): Contingent Valuation of Environmental Goods. Edward Elgar.
- MEHAN III, G. T. (2010): "A Symphonic Approach to Water Management: The Quest for New Models of Watersed Governance," Journal of Land Use & Environmental Law, 26(1), 1–33.
- MILLOCK, K., AND C. NAUGES (2006): "Ex Post Evaluation of an Earmarked Tax on Air Pollution," Land Economics, 82(1), 68–84.
- MOELTNER, K., AND R. VON HAEFEN (2011): "Microeconometric Strategies for Dealing with Unobservables and Endogenous Variables in Recreation Demand Models," *Annual Reviews of Resource Economics*, 3, 375–96.
- MUEHLENBACHS, L., E. SPILLER, AND C. TIMMINS (2015): "The Housing Market Impacts of Shale Gas Development," *American Economic Review*, 105(12), 3633–59.
- MULLER, N. Z., AND R. MENDELSOHN (2009): "Efficient Pollution Regulation: Getting the Prices Right," *American Economic Review*, 99(5), 1714–1739.
- MULLER, N. Z., R. MENDELSOHN, AND W. NORDHAUS (2011): "Environmental Accounting for Pollution in the United States Economy," *American Economic Review*, 101(5), 1649–1675.
- MURDOCK, J. (2006): "Handling unobserved site characteristics in random utility models of recreational demand," Journal of Environmental Economics and Management, 51(1), 1–25.
- NIXON, R. (1972): "Presidential Veto Message: Nixon Vetoes Water Pollution Act," CQ Almanac.
- OATES, W. E. (1999): "An Essay on Fiscal Federalism," Journal of Economic Literature, 37, 1120–1149.
- OLMSTEAD, S. M. (2010): "The Economics of Water Quality," *Review of Environmental Economics* & *Policy*, 4(1), 44–61.
- OLMSTEAD, S. M., L. A. MUEHLENBACHS, J.-S. SHIH, Z. CHU, AND A. J. KRUPNICK (2013): "Shale gas development impacts on surface water quality in Pennsylvania," *Proceedings of the National Academy of Sciences*, 110(13), 4962–4967.
- PEISER, R. B., AND L. B. SMITH (1985): "Homeownership Returns, Tenure Choice and Inflation," Real Estate Economics, 13(4), 343–360.
- POOR, P. J., K. J. BOYLE, L. O. TAYLOR, AND R. BOUCHARD (2001): "Objective versus Subjective Measures of Water Clarity in Hedonic Property Value Models," *Land Economics*, 77(4), 482–493.

- POWELL, M. (1995): "Building a National Water Quality Monitoring Program," Environmental Science & Technology, 29(10), 458A-463A.
- ROBACK, J. (1982): "Wages, Rents, and the Quality of Life," Journal of Political Economy, 90(6), 1257–1278.
- SHAPIRO, J. S., AND R. WALKER (Forthcoming): "Why is Pollution from U.S. Manufacturing Declining? The Roles of Environmental Regulation, Productivity, and Trade," *American Economic Review*, NBER Working Paper No. 20879.
- SIGMAN, H. (2002): "International Spillovers and Water Quality in Rivers: Do Countries Free Ride?," American Economic Review, 92(4), 1152–1159.
 - (2003): "Letting States Do the Dirty Work: State Responsibility for Federal Environmental Regulation," *National Tax Journal*, 56(1), 107–122.

(2005): "Transboundary Spillovers and Decentralization of Environmental Policies," *Journal of Environmental Economics and Management*, 50, 82–101.

- SMITH, R. A., R. B. ALEXANDER, AND M. G. WOLMAN (1987): "Water-Quality Trends in the Nation's Rivers," Science, 235(4796), 1607–1615.
- SMITH, V. K., AND W. H. DESVOUSGES (1986): Measuring Water Quality Benefits. Kluwer.
- SMITH, V. K., AND C. V. WOLLOH (2012): "Has Surface Water Quality Improved Since the Clean Water Act?," NBER Working Paper 18192.
- STEINWENDER, A., C. GUNDACKER, AND K. J. WITTMANN (2008): "Objective versus subjective assessments of environmental quality of standing and running waters in a large city," *Landscape and Urban Planning*, 84, 116–126.

STIGLER, G. J. (1952): The Theory of Price. Macmillan.

STIGLER, G. J. (1966): The Theory of Price. Macmillan.

TIME (1969): "The Cities: The Price of Optimism," Time Magazine, August 1.

USDOT (2009): 2009 National Household Travel Survey. Federal Highway Administration.

USEPA (1974): "National Water Quality Inventory. 1974 Report to the Congress. Volume II," Discussion paper, USEPA.

(1975): "Clean Water Construction Grants Program News," Discussion paper, USEPA.

— (1980): "Handbook of Procedures: Construction Grants Program for Municipal Wastewater Treatment Works," Discussion paper, USEPA, Second Edition.

(1997): "The Benefits and Costs of the Clean Air Act, 1970 to 1990," Discussion paper, USEPA.

(2000a): "A Benefits Assessment of Water Pollution Control Programs Since 1972: Part 1, The Benefits of Point Source Controls for Conventional Pollutants in Rivers and Streams: Final Report," Discussion paper, USEPA.

(2000b): "Liquid Assets 2000: America's Water Resources at a Turning Point," Discussion paper, Office of Water.

(2000c): "A Retrospective Assessment of the Costs of the Clean Water Act: 1972 to 1997: Final Report," Discussion paper, USEPA.

(2000b): Progress in Water Quality: An Evaluation of the National Investment in Municipal Wastewater Treatment. USEPA.

(2001): "The National Costs to Implement TMDLs (Draft Report): Support Document 2," Discussion paper, USEPA.

(2002): "The Clean Water and Drinking Water Infrastructure Gap Analysis," Discussion paper, USEPA.

(2007): "30 Years of the NADP," Discussion paper, USEPA.

(2016): "ATTAINS, National Summary of State Information," Accessed June 15, 2016.

- USGAO (1994): "Water Pollution: Information on the Use of Alternative Wastewater Treatment Systems," Discussion paper, USGAO.
- WU, J., R. M. ADAMS, C. L. KLING, AND K. TANAKA (2004): "From Microlevel Decisions to Landscape Changes: An Assessment of Agricultural Conservation Policies," *American Journal of Agricultural Economics*, 86(1), 26–41.

FIGURE I National Maps of Water Pollution Data

Notes: In Panel A, rivers are colored by Stream Level from the National Hydrography Dataset. Streams that flow into oceans, Great Lakes, Canada or Mexico and are the darkest. Streams that flow into these are lighter; streams that flow into these are still lighter, etc. Panel B includes wastewater treatment plants used in analysis (continental U.S., within 1km of a river, etc.). Panel C shows monitoring sites appearing in years 1962-2001.

FIGURE II Water Pollution Trends, 1962-2001

Notes: Graphs show year fixed effects plus a constant from regressions which also control for monitoring site fixed effects, a day-of-year cubic polynomial, and an hour-of-day cubic polynomial, corresponding to equation (1) from the text. Connected dots show yearly values, dashed lines show 95% confidence interval, and 1962 is reference category. Standard errors are clustered by watershed.

FIGURE III Effects of Clean Water Act Grants on Water Pollution: Event Study Graphs

Notes: Graphs show coefficients on downstream times year-since-grant indicators from regressions which correspond to the specification of Table II. These regressions are described in equation (4) from the main text. Data cover years 1962-2001. Connected dots show yearly values, dashed lines show 95% confidence interval. Standard errors are clustered by watershed.

FIGURE IV Effects of Clean Water Act Grants on Log Mean Home Values: Event Study Graphs

Notes: Graphs show coefficients on year-since-grant indicators from regressions corresponding to the specification of Table V, columns (2) and (4). Connected dots show yearly values, dashed lines show 95% confidence interval. Standard errors are clustered by watershed. Panels A and B show different ranges of values on their y-axes. Data cover decennial census years 1970-2000.

	Main Pollution						
_	Measures		Other Pollution Measures				
	Dissolved		Biochemical			Total	
	Oxygen	Not	Oxygen	Fecal	Not	Suspended	
	Deficit	Fishable	Demand	Coliforms	$\mathbf{Swimmable}$	Solids	
	(1)	(2)	(3)	(4)	(5)	(6)	
Panel A. Linear Trend	l						
Year	-0.240***	-0.005***	-0.065***	-81.097^{***}	-0.005***	-0.915***	
	(0.0296)	(0.0003)	(0.0050)	(8.3260)	(0.0003)	(0.0921)	
Panel B. 1972 Trend H	Break						
Year	-1.027***	-0.015***	-0.124***	-255.462^{***}	-0.018***	-1.113*	
	(0.147)	(0.002)	(0.020)	(82.529)	(0.002)	(0.574)	
Year *	0.834***	0.011***	0.062***	179.134**	0.014^{***}	0.203	
1[Year>=1972]	(0.157)	(0.002)	(0.021)	(81.457)	(0.002)	(0.596)	
1972 to 2001 change	-5.583	-0.118	-1.794	-2,213.510	-0.114	-26.363	
_	(0.902)	(0.009)	(0.148)	(236.581)	(0.010)	(2.777)	
Ν	5,852,148	10,969,154	1,273,390	2,070,351	10,969,154	1,720,749	
Dep. Var. Mean	17.78	0.25	3.98	2,958.11	0.50	49.75	
Monitor Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	
Season Controls	Yes	Yes	Yes	Yes	Yes	Yes	
Time of Day Controls	Yes	Yes	Yes	Yes	Yes	Yes	

TABLE IWATER POLLUTION TRENDS, 1962-2001

Notes: Each observation in the data is a pollution reading. Data includes years 1962-2001. Dissolved oxygen deficit equals 100 minus dissolved oxygen saturation, measured in percentage points. Season controls are a cubic polynomial in day of year. Time of Day controls are a cubic polynomial in hour of day. In Panel B, the year variables are recentered around the year 1972. The 1972 to 2001 change equals the fitted value Year*29 + Year*1[Year \geq 1972]*29. Dependent variable mean refers to years 1962-1971. Standard errors are clustered by watershed. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***).

	Main Pollution						
	Measures		Other Pollution Measures				
	Dissolved		Biochemical			Total	
	Oxygen	Not	Oxygen	Fecal	Not	Suspended	
	Deficit	Fishable	Demand	Coliforms	Swimmable	Solids	
	(1)	(2)	(3)	(4)	(5)	(6)	
Downstream	-0.681***	-0.007**	-0.104**	-204.059**	-0.004*	-0.497	
* Cumul. # Grants	(0.206)	(0.003)	(0.041)	(98.508)	(0.002)	(0.635)	
Ν	$55,\!950$	60,400	28,932	$34,\!550$	60,400	30,604	
Dep. Var. Mean	17.092	0.328	4.411	5731.028	0.594	42.071	
Fixed Effects:							
Plant-Downstream	Yes	Yes	Yes	Yes	Yes	Yes	
Plant-Year	Yes	Yes	Yes	Yes	Yes	Yes	
DownstBasin-Year	Yes	Yes	Yes	Yes	Yes	Yes	
Weather	Yes	Yes	Yes	Yes	Yes	Yes	

TABLE II EFFECTS OF CLEAN WATER ACT GRANTS ON WATER POLLUTION

Notes: Each observation in a regression is a plant-downstream-year tuple. Data cover years 1962-2001. Dissolved oxygen deficit equals 100 minus dissolved oxygen saturation, measured in percentage points. Dependent Variable Mean describes mean in years 1962-1972. Standard errors are clustered by watershed. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***).

		(·	/
	(1)	(2)	(3)
1. Total Costs	296,757	$396,\!802$	549,890
2. Federal Capital Costs	87,926	$117,\!691$	$164,\!413$
3. Local Capital Costs	$37,\!296$	49,958	68,309
4. Operation & Maintenance Costs	$171,\!536$	229,153	317,168
5. River-Miles Made Fishable	$5,\!188$	9,000	12,260
6. River Miles * Pct. Saturation Increase / 10	14,721	$25,\!536$	34,787
7. Annual Cost to Make a River-Mile Fishable	1.91 [1.35, 3.22]	1.47 $[1.04, 2.48]$	1.50 [1.06, 2.53]
8. Annual Cost to Increase Dissolved Oxygen Saturation in a River-Mile by 10%	0.67 [0.42 , 1.65]	0.52 [0.33 , 1.27]	0.53 [0.33, 1.29]
Plants with Water Quality Data	Yes		
Georeferenced Plants		Yes	
Assume 25 Miles Downstream			Yes

 TABLE III

 COST EFFECTIVENESS OF CLEAN WATER ACT GRANTS (\$2014 MN)

Notes: Dollar values in \$2014 millions. Brackets show 95% confidence intervals. Rows 2-3 are aggregated from GICS microdata. Row 4 is calculated following the method described in Appendix B.4. Row 5 is calculated by multiplying each grant by the parameter estimate in Appendix Table VI, Row 13, Column 2, and applying the result to all waters within 25 miles downstream of the treatment plant. Row 6 is calculated by multiplying each grant by the parameter swithin 25 miles downstream of the treatment plant. Row 7 equals row 1 divided by thirty times row 5, since it assumes water quality improvements accrue for 30 years. Row 8 equals row 1 divided by thirty times row 6. Column 1 includes only plants analyzed in Column 2 of Table II. Column 2 includes plants in continental U.S. with latitude and longitude data. Column 3 includes all plants and grants with minimum required data (e.g., grants linked to the exact treatment plant even if without latitude or longitude data) and assumes all plants have 25 miles of rivers downstream.

	CAPITA	L SPENDING		
	(1)	(2)	(3)	(4)
Panel A. Federal Grant Fu	inds			
Federal Grant Funds	1.52^{***}	1.26^{***}	1.13***	1.19^{***}
	(0.29)	(0.22)	(0.27)	(0.31)
Panel B. Grant Project Co	sts			
Grant Project Costs	1.09***	0.93***	0.84^{***}	0.89***
	(0.21)	(0.16)	(0.19)	(0.23)
City FE and Year FE	Yes	Yes	Yes	Yes
Real Costs		Yes	Yes	Yes
Basin-by-Year FE			Yes	Yes
Propensity Score Reweight				Yes

TABLE IV PASS-THROUGH OF GRANTS TO MUNICIPAL SEWERAGE CAPITAL SPENDING

Notes: Dependent variable is municipal sewerage capital investment. Municipal and grant costs are cumulative since 1970. Grant project costs include federal grant amount and required local capital expenditure. Municipal spending data from Annual Survey of Governments and Census of Governments. Data include balanced panel of cities over years 1970-2001, see text for details. Propensity score for appearing in the balanced panel of cities is estimated as a function of log city population, log city total municipal expenditure, city type (municipality or township), and census division fixed effects, where city population and expenditure are averaged over all years of the data. Standard errors are clustered by city. Sample size in all regressions is 6,336. Asterisks denote p-value < 0.10 (*), <0.05 (**), or 0.01 (***).

	(1)	(2)	(3)	(4)
Panel A. Log Mean Home Values				
Cumulative Grants	-0.00022	0.00076	0.002486^{*}	0.00024
	(0.002507)	(0.001409)	(0.001271)	(0.000328)
Panel B. Log Mean Rental Values				
Cumulative Grants	0.00005	-0.00078	0.00007	-0.00012
	(0.001682)	(0.000832)	(0.000714)	(0.000158)
Panel C. Log Total Housing Units				
Cumulative Grants	-0.006965**	-0.00031	-0.00031	-0.00016
	(0.003180)	(0.001176)	(0.000939)	(0.000241)
Panel D. Log Total Value of Housing Sto	ck			
Cumulative Grants	-0.006356*	0.00010	0.00144	-0.00015
	(0.003275)	(0.001878)	(0.001592)	(0.000461)
Plant FE, Basin-by-Year FE	Yes	Yes	Yes	Yes
Dwelling Characteristics		Yes	Yes	Yes
Baseline Covariates * Year		Yes	Yes	Yes
Max Distance Homes to River (Miles)	0.25	0.25	1	25

TABLE V EFFECTS OF CLEAN WATER ACT GRANTS ON HOUSING DEMAND

Notes: Analysis includes homes within a given distance of downstream river segments. Data include decennial census years 1970-2000. Cumulative grants include grants in all previous years, not only census years. See main text for description of dwelling and baseline covariates. Home prices and rents are deflated to year 2014 dollars by the Bureau of Labor Statistics consumer price index for urban consumers. Standard errors are clustered by watershed. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***).

	(1)	(2)	(3)	(4)
Ratio: Change in Home	0.06	0.26	0.22	0.24
Values / Costs	(0.03)	(0.36)	(0.36)	(0.41)
p-value: Ratio $= 0$	[0.05]	[0.46]	[0.55]	[0.56]
p-Value: Ratio $= 1$	[0.00]	[0.04]	[0.03]	[0.06]
Change in Value of Housing (\$Bn)	15.92	89.25	73.7	91.97
Costs (\$Bn)				
Capital: Fed.	86.24	102.26	102.26	114.16
Capital: Local	35.81	41.81	41.81	48.00
Variable	166.1	197.36	197.36	222.81
Total	288.15	341.44	341.44	384.97
Max Distance Homes to River (Miles)	1	25	25	25
Include Rental Units			Yes	Yes
Include Non-Metro Areas				Yes

 TABLE VI

 CLEAN WATER ACT GRANTS: COSTS AND EFFECTS ON HOME VALUES (\$2014BN)

Notes: All values in billions (\$2014). Calculations include grants given in years 1962-2000. Ninety-five percent confidence regions are in brackets. Estimates come from regression specifications corresponding to Table V, columns (3) and (4).

Online Appendix: Consequences of the Clean Water Act and the Demand for Water Quality

David A. Keiser Iowa State University and CARD dkeiser@iastate.edu Joseph S. Shapiro Yale University and NBER joseph.shapiro@yale.edu

Contents

A	Expenditure on Water Pollution Abatement	3
В	Data Details B.1 Deflator	4 4 4 8 10 12 12
C D	B.8 Data for Analyzing Heterogeneous Effects Spatial and Other Matching Across Datasets Cross-Sectional Water Pollution Around Wastewater Treatment Plants	13 14 15
Е	Sensitivity Analyses E.1 Pollution Trends E.2 Effects of Clean Water Act Grants on Pollution: Sensitivity and Heterogeneity E.3 Hedonic Estimates: Sensitivity and Heterogeneity	16 16 17 19
F	Interpreting Hedonic Estimates	21

¹We thank Olivier Deschenes for providing the weather data and Michael Greenstone for providing the 1972-1977 nonattainment data.

A Expenditure on Water Pollution Abatement

This Appendix reviews available data on expenditures for abating water pollution and air pollution. Measuring such expenditures is difficult. The first attempt by the Bureau of Economic Analysis (BEA) to measure pollution abatement costs describes five challenges (Cremeans and Segel 1975) including determining counterfactual pollution abatement; the problem that many abatement technologies also have valuable byproducts; the proper classification of capital goods used for abatement; the difficulty in recognizing business decisions as environmental or not; and the separation of pollution abatement expenditures from expenditures for industrial safety and related purposes. These are only accounting challenges; an additional challenge is that even correct accounting measures do not equal full economic costs. Our goal is simply to describe available estimates, recognizing these caveats.

We consider three sets of estimates: BEA annual accounts for the period 1972-1994; Census abatement cost surveys for manufacturing combined with EPA expenditure records for government; and EPA reports on the costs of the Clean Water Act and Clean Air Act. All three methods suggest that total expenditure on water pollution abatement since the Clean Water Act has exceeded \$1 trillion (\$2014), which is over \$100 per person-year, or equivalently, annual expenditure just over half a percent of GDP. All three methods also imply that expenditure on water pollution abatement has exceeded expenditure on air pollution abatement.

The first set of estimates comes from the Bureau of Economic Analysis (BEA) for the years 1972-1994 (Vogan 1996).² The BEA estimates aggregate expenditure on water pollution abatement in the period 1972-1994 of \$1.3 or \$1.4 trillion (\$2014) when deflated using quantity or price indices, respectively. Private business accounts for two-thirds of these expenditures, and government for the remaining one-third. The BEA data report total air pollution abatement expenditures at \$1.0 to \$1.4 trillion (\$2014) using quantity or price indices, respectively, including expenditures by private households (e.g., for vehicles). This indicates that water pollution abatement expenditures exceed air pollution abatement expenditures by 6 to 27 percent.

The second set of estimates comes from the Census Bureau for private industry and EPA for government sources. The Census conducted the Pollution Abatement Costs and Expenditures survey annually between 1972 and 1994. We sum capital and operating costs from this survey, and linearly interpolate for the year 1987 (which had no survey). These data indicate total 1973-1994 abatement expenditures of \$315 billion for water pollution abatement and \$338 billion for air pollution abatement (\$2014). These numbers include only the manufacturing sector. Our EPA data on the construction grants program indicate that local governments spent about \$215 billion in federal grant funds, supplemented by local expenditures, and a federal Revolving Loan fund.³

The third set of estimates is from EPA reports on the costs of the Clean Air and Clean Water Acts (USEPA 1997, 2000). In 1990, the compliance cost of the Clean Air Act was about \$25 billion (\$1990). In 1994, the cost of water pollution abatement was \$44.6 billion (\$1997), though \$32 billion of this would have been spent even without the Clean Water Act. These reports provide no evidence on trends in these numbers. Under the strong assumption that they had been constant over the period 1972-2001, they imply costs of \$2.5 trillion

 $^{^{2}}$ The BEA reports both quantity and price deflators indexed to 1992. We deflate all BEA values to 1992. For comparability with the rest of the paper, which reports figures in 2014 dollars, we then deflate these values to the year 2014 using the 1992 and 2014 Construction Price Index of Engineering News Records.

 $^{^{3}}$ A study by the U.S. Conference of Mayors (Anderson 2010) estimates that local governments spent \$1.4 trillion (\$2008) on wastewater treatment between 1956 and 2008. Another estimate of these expenditures is a report by the Congressional Budget Office (CBO 1985) which reports that total annual wastewater spending by federal, state, and local governments was above \$7 billion (in 1983 dollars) in each year between 1972 and 1983. Extrapolating to the entire period 1972-2016 implies total expenditure was above \$753 billion (2014\$).

for water pollution and \$1.8 trillion for air pollution (\$2014).

B Data Details

For each dataset, this section provides additional details on the data and on tests undertaken to probe their accuracy.

B.1 Deflator

To express investments in wastewater treatment capital in real dollars, we deflate all capital expenditures by the Construction Cost Index of the Engineering News Record (ENR). Published annually since 1908, this index reflects the cost of 200 hours of common labor including wages and fringe benefits, the cost of 2,500 pounds of fabricated structural steel, 1.128 tons of bulk portland cement, and 1,088 board feet of 2x4 lumber. To obtain the index, ENR averages the cost across 20 large cities. The closest series published by the federal government is the Census' construction price index for single-family homes.

To express housing values and rents in real dollars, we deflate these values by the Bureau of Labor Statistics Consumer Price Index for urban consumers.

B.2 National Hydrography Dataset (NHD)

EPA and USGS designed the general attributes of NHD, and a private contractor developed it. The first version of NHD appeared in 2006, while version 2 with more detail was released in 2012.⁴ These data include physical features of every surface water in the U.S. including rivers, streams, ditches, canals, lakes, ponds, and others.

NHD includes a variety of identifying variables that the main text describes with more common language. We use the term "watershed" to describe what hydrologists and NHD call an 8-digit hydrologic unit code (HUC). We use the term "river" to describe what NHD calls a "levelpathi." We use the terms "river basin" or just "basin" to describe a 4-digit HUC. NHD classifies 1 million distinct rivers, though most are not conventional rivers (e.g., many "rivers" are seasonal streams less than one mile long), and only 70,000 levelpathis are named. We use the phrase "river segment" to describe what NHD calls a "comid." A comid is a unique identifier code for a specific line segment in NHD. On average a comid is 1.2 miles long. A comid connects a set of points, and we refer to these points as "stream nodes." NHD also includes a more coarse partition of rivers called reach codes which we do not utilize.

We use NHD's "flowline" features to describe upstream and downstream relationships of rivers and streams. In many cases, the "flowline" data include flows through lakes, ponds, and other types of water bodies.

B.3 Water Pollution Data

This section provides additional information on the data then explains how we extract and clean it. About 83 percent of the data come from rivers and the rest from lakes (Appendix Table I). The average monitoring site

⁴Since the 1970s, the EPA has developed increasingly detailed hydrologic data on U.S. water networks. This sequence of data includes Reach File 1 (created in 1975); Reach File 2 (created in 1987); and and Reach File 3 (available in 1993). Technically, the National Hydrography Dataset Plus is an application of the National Hydrography Dataset, which also incorporates information from the 30-meter National Elevation Dataset and the National Watershed Boundary Dataset.

appears in 10 different years and has 25 to 40 total readings per pollutant. About 25 percent of monitoring sites are in metro areas but only 15 percent of the U.S. land area is in metro areas, so they sightly over-represent metro areas. Monitoring is somewhat evenly spread through the 1970s, 1980s, and 1990s, though much less common in the 1960s.

Plotting densities of the raw data helps illustrate some of their properties (Appendix Figure I). Dissolved oxygen deficits follow a roughly normal distribution, while BOD, fecal coliforms, and TSS are more skewed. The dissolved oxygen deficit distribution is smoother than the others because its sample size is bigger. Some reports list pollution only out to two, one, or zero decimal points, which leads to heaping in the raw data and visible pileups at some round numbers.

We download the Storet Legacy data from U.S. EPA's Storet Legacy Data Center and Storet and NWIS data from the Water Quality Portal. Several decisions are required to extract data from the three repositories of water pollution data and to make them comparable. We describe steps for each issue in turn, and then steps taken to make the three repositories comparable.

Ambient Monitoring in Rivers and Lakes. Our analysis includes only rivers and lakes. This excludes estuaries, oceans, wells, pipes, canals, sampling inside industrial plants, and other sites, though these other types are uncommon in the pollution data. In Storet Legacy, we identify streams and lakes using the Storet Legacy station type field provided by the station files. We also remove measurements where the Primary Activity is Effluent Permit Condition, Effluent(Sample), Biological, or Tissue. We also exclude records where the Secondary Activity Category is Dredge, Core, Ground Water, or others that are clearly not river or lake samples, such as Standard Deviation or Sum of Squares. Additionally in all three repositories, we exclude records around dams since they are highly dependent on dam operations and often intended for dam monitoring; these are identified from the word, "Dam," in the station name or description.

In Modern Storet and NWIS, we limit the data to rivers/streams and lakes in a few steps. First, we restrict the sample media to surface water. We also restrict the media subtype to Surface Water, which removes typically less than 1 percent of records that are coded as other media subtype such as Effluent or Groundwater. For Modern Storet, the media subtype field is only populated for approximately 20 to 30 percent of observations. Of those coded, typically less than 1 percent of records are classified as something other than "Surface Water." Thus, for Modern Storet, we keep records where the media subtype is missing to preserve a large amount of data given that nearly all records that are coded are for surface water. Next, we limit the site type to lake, reservoir, impoundment, or stream. We distinguish streams and lakes in the NWIS station data using the provided monitoring location type name field in the station file. Streams are identified as "Stream," "Stream: Canal," "Stream: Ditch," or "Stream: Tidal stream." Lakes are identified as "Lake, Reservoir, Impoundment." For Modern Storet, we also identify streams and lakes using the monitoring location type name field. For Modern Storet, streams are identified as "River/Stream," "River/Stream Ephemeral," "River/Stream Intermittent," "River/Stream Perennial," "Riverine Impoundment," "River/stream Effluent-Dominated," "Canal Drainage," "Canal Irrigation," "Canal Transport," "Channelized Stream," "Floodwater," "Floodwater Urban," or "Floodwater non-Urban." Lakes are identified as "Lake," "Reservoir," "Great Lake," "Pond-Anchialine," or "Pond-Stormwater."

Measures of Water Pollution. Storet Legacy and NWIS classify each measure of water pollution according to a single parameter code. These parameter codes classify water quality parameters according to a broadly defined characteristic (e.g., biochemical oxygen demand) and the method for measuring the pollutant (e.g., the temperature at which the measurement is taken and the incubation time period). For example, the parameter code 00310 describes biochemical oxygen demand, measured at a temperature of twenty degrees Celsius, over a five day incubation period. The parameter code 00306 describes biochemical oxygen demand, also measured at twenty degrees Celsius, but only over a four day incubation period. For each measure

of water pollution that we use, we start by choosing the parameter code which has the most observations in STORET Legacy. In nearly all cases, this parameter code corresponds to the parameter code given in the EPA's first major water pollution report after the Clean Water Act (USEPA 1974c). We also include parameter codes which are comparable to this main code(s) (e.g., measured in different units or a different device) if they have at least 10,000 observations in Storet Legacy. We use this rule because Storet Legacy has the largest number of observations among the three repositories used in the study, and the largest share of observations concentrated around the early 1970s when the Clean Water Act began. For NWIS data, we use the same parameter codes as Storet Legacy to extract corresponding measures of water quality from the Water Quality Portal.

Modern Storet does not use a parameter code, but rather identifies water quality parameters according to characteristic names. We take several steps to match these characteristics in Storet to those pollutants in Storet Legacy and NWIS repositories. We utilize concordance tables provided by EPA and the Water Quality Portal that map Storet Legacy and NWIS parameter codes to Modern Storet "search names."⁵

A single characteristic name often corresponds to multiple parameter codes. The EPA concordance provides the meaning of parameter codes, including information on sample preparation (e.g., details regarding filter size), whether the measurement was in the field or laboratory, measurement units, result sample fraction (e.g., total versus dissolved), result temperature basis, result statistical basis (e.g., mean, median), additional comments, and additional measurement method details. We supplement this information with a similar table from the Water Quality Portal website that provides a few additional details for each parameter code including result time basis, result weight basis and result particle size basis.

Between these two files, we note which aspects distinguish certain parameter codes from others and use these to restrict and subsequently match Modern Storet pollution records to Storet Legacy and NWIS records by pollutant. In addition to the characteristic name, the main distinguishing aspect of a measure of water pollution is the result sample fraction field that often identifies total versus dissolved measurements. For biochemical oxygen demand and fecal coliforms, we also restrict based on the result temperature basis (20 degrees Celsius or missing and 45 degrees Celsius or missing respectively) and result time basis (5 day or missing and 24 hours or missing respectively). For dissolved oxygen, we convert dissolved oxygen in mg/L to dissolved oxygen saturation (%) using a standard formula (Lung 2001).⁶

Sample Exclusions. We impose several sample exclusions. We keep observations with non-missing observation date, latitude, and longitude, within the continental U.S. We limit to latitude and longitude observations which are located within a U.S. county, as defined by the 2010 edition of the year 2000 Census Topologically Integrated Geographic Encoding and Referencing (TIGER) shapefiles. We also limit to observations within a U.S. hydrologic unit code (HUC), according to the 1994 1:250,000-scale HUC shapefile of the U.S. Geological Survey. We define each monitoring site's county and HUC based on its latitude and longitude as of the year 2000 (for counties) and 1994 (for HUCs), which implicitly addresses the potential

⁵The U.S. EPA provides several crosswalks to identify measurements in Storet that are comparable to those in the Storet Legacy and NWIS repositories (ftp://ftp.epa.gov/storet/modern/reference_tables/Characteristic_Parameter_Code_Map/). In particular, we use the crosswalk STORET_Modern_vs_NWIS.xls. The water quality portal table links a parameter code to characteristic name, measurement unit code, result sample fraction, result temperature basis, result statistical basis, result time basis, result weight basis, result particle size basis, and medium. (http://waterqualitydata.us/public_srsnames/)

⁶The formula is $DO_{perc} = \frac{DO_{mgl}}{468/(31.5+T)}$ where T is the water temperature in Celsius. We only apply this conversion for observations which record both dissolved oxygen in mg/L and water temperature, and for station-days which do not already have dissolved oxygen saturation (%) defined. When applied to stations which do have dissolved oxygen saturation defined, regressing the reported level of dissolved oxygen saturation on the value obtained from this conversion obtains a coefficient of 0.996 with a standard error of 0.001.

issues of changing boundary definitions for counties and HUCs over time. We also limit analysis to ambient monitoring. To limit the influence of outliers, for each reading above the 99th percentile of the distribution of readings, separately by pollutant, we recode the result to equal the 99th percentile. To ease interpretation, we define all pollution outcomes so that lower levels of the outcome represent cleaner water.

For NWIS, we exclude records of Spills, Hurricanes, and Storms by limiting to routine hydrologic events. Modern Storet and Storet Legacy, unlike NWIS, provide no information on hydrologic events. We convert all temperature readings to degrees Fahrenheit. For other pollutants, we keep all records with unit data that are easily converted to standard units. For Storet Legacy and NWIS, we keep observations with missing units since parameter codes are already assigned to specific units. For Modern Storet, we keep observations with missing units except for dissolved oxygen and temperature. We exclude observations with missing units for dissolved oxygen and temperature since we are unable to distinguish between mg/l and percent saturation in the dissolved oxygen data and degrees C and degrees F in the temperature data.

Definitions of Geographic Variables. We use a few steps to define geographic variables. Storet Legacy has separate files describing stations and describing actual pollution readings. Geographic identifiers like latitude, and longitude appear in both. We prioritize values of these variables from station files. When those are missing, we supplement them with values from the results files.

Types of Water Pollution. We use a few criteria to choose additional measures of pollution for sensitivity analysis in Appendix Table IV. This is important—one of our repositories alone, Storet Legacy, includes 16,000 different measures of water pollution. We partly take this list of additional pollutants from the EPA's (1974a) first major assessment of water pollution after the Clean Water Act was passed. These additional pollutants include water temperature, ammonia-nitrogen (total as N), nitrates (total as N), total nitrite plus nitrate, orthophosphate (dissolved as P),⁷ total phosphorus, total and dissolved chlorides, color, total phenols, total dissolved solids, dissolved sulfate, total coliforms, and turbidity.⁸ Finally, we add total nitrogen as a key measure of nutrient pollution, and lead and mercury as important heavy metals. Standard water quality monitoring programs collect data on the main pollutants in Appendix Table IV somewhat more cautiously since fewer monitoring programs collect data on many of these pollutants, which makes estimates with these other pollutants both potentially less precise and less representative.

Specific Monitor Networks. For NWIS, we identify stations that are a part of several networks specifically designed by USGS to examine long-term trends in water quality. These networks are NASQAN, NAWQA, and HBN. Station identifiers were obtained from USGS. We obtained NASQAN and HBN station identifiers through a request from USGS. NAWQA site identifiers were downloaded from a USGS website using filters on "stream" and "lake" for site types (http://cida.usgs.gov/nawqa_queries_public/jsp/sitemaster.jsp). Our NASQAN and HBN samples include only the original NASQAN and HBN networks, which spanned the years 1974-1995. Our NAWQA sample includes both the NAWQA networks focused on streams/rivers and on lakes. We add "USGS-" to the stationid field and match these station files to monitoring files provided by the Water Quality portal. In several cases, monitoring was performed at these stations even when they were not officially part of their designated networks. We include all monitoring results during the years 1962-2001.

Station Definitions. Some stations change name slightly—for example, the same station may have

⁷The 1974 report includes total soluble phosphate to determine reference levels. We choose to use orthophosphate (dissolved as P) instead. The number of records in Storet Legacy corresponding to total soluble phosphate (38,000) is far fewer than the 870,000 monitoring results for orthophosphate (dissolved as P).

⁸We add dissolved chlorides and dissolved sulfate to this list since the unique pollutant parameter codes listed in the NWQI Report for chlorides and sulfate refer to total chlorides and total sulfate in Storet Legacy, but dissolved chlorides and dissolved sulfate in the NWIS.

similar names in Modern Storet and in Storet Legacy. In regressions that include station fixed effects or allow station-level autocorrelation, we define a station as a unique latitude and longitude pair. For these reasons, the main text generally refers to stations as "monitoring sites."

In our data, the tuple of a station's name, the name of the agency that manages it, and the repository (Storet Legacy, Modern Storet, or NWIS) uniquely identifies a station. When we pool the three repositories, 5-10 percent of "stations" that appear unique by this definition have the same longitude and latitude as another "station." This is typically because a single station appears in both Storet Legacy and Modern Storet but with slightly different station codes. This motivates our use of longitude and latitude to define monitoring sites.

In a few cases, individual pollution readings (i.e., records) appear in both Storet Legacy and Modern Storet. We identify and remove such duplicates based on station latitude and longitude, reading date and time, and reading value.

Monitoring Depth. We do not account for reading depth since many depth values have missing units and our inspection suggests different monitors use different depth units.

Measurement Limits We capture special cases where the pollutant could not be measured or the measurement was outside of standard detection limits. For NWIS and Storet, we flag records with nonmissing information in the detection type field. For example, this includes records coded with "Historical Lower Reporting Limit," "Upper Reporting Limit," or "Estimated Detection Level." For flagged records, we then let the result value equal the detection limit if the result value is missing and the detection limit is not missing. We also restrict the detection limit to be greater than zero except for temperature. For Storet Legacy, we use the "remarks" field to flag similar records. This includes remarks coded as "B," "C," "I," "J," "K," "L," "M," "N," "O," "P," "T," "U," "W," "Z," and "\$," where the key is provided by the U.S. EPA (http://www.epa.gov/storet/legacy_remark.pdf). We make no changes to the reported measurement since the remarks suggest that the reported measurement equals the result value. In one sensitivity analysis, we take readings with the "Below Detection Limit" (BDL) field coded as "Lower Limit" or "Other," and replace them as half the listed value.

Measurement Time. For observations with missing information on the measurement time, we create a missing hour indicator and include it alongside controls for a cubic polynomial in hour. For Storet Legacy and Modern Storet, we also code this indicator for hour equal to 0 since there is a pileup of observations at this hour.

Test of Dissolved Oxygen Data Quality. Standard hydrology textbooks predict that dissolved oxygen deficits should increase with temperature, in summer (when flows are lower and temperatures higher), and in morning. The time-of-day patterns of dissolved oxygen are due to photosynthesis adding oxygen during the day and respiration removing oxygen at night. Appendix Figure II plots regressions of dissolved oxygen deficits on binned indicators for each of these physical factors, while including monitor fixed effects. The patterns closely follow standard chemistry predictions. We interpret this as one additional piece of evidence that these data provide good quality measures of water pollution.

B.4 Grants

The average government manages multiple plants, and the average plant receives multiple grants. Governments include cities, towns, sewage or water districts, and environmental agencies. After 1987, small grants to a few areas, mainly islands and Washington DC, continued through the year 2000. Two-thirds of U.S. wastewater treatment plants in the analysis sample received at least one grant (Appendix Table II).

The \$650 billion total cost mentioned in the main text includes only grants given in years 1972 or later with non-missing award date. An additional approximately \$135 billion in expenditure occurred due to grants given in years before 1972.

A local government could receive at least three grants for a single project. The first grant was for creating a facility plan, the second was for detailed engineering plans, and the third was for construction. Money was disbursed as it was spent and EPA reviewed projects after completion. The grants data used for analysis exclude the very few grants in the raw data that list either the federal or total (federal+local) cost as zero.

The microdata we obtain on grants are up to 50 years old, from an era when computers were rare, so we sought to corroborate the accuracy of the data.

In order to test the accuracy of the microdata on 35,000 grants, we compare the grants against several published reports describing this program. A USEPA (2000b) report and associated book (Stoddard, Harcum, Simpson, Pagenkopf, and Bastian 2002) were based on detailed data describing these grants. Andy Stoddard and Jon Harcum generously shared the microdata underlying these reports. The grants data they analyze exactly mirror ours, with two exceptions. First, the aggregate nominal figure they report for grants (\$61 billion) reflects both federal and associated municipal capital spending. Second, they only obtained records of 10,000 grants. This appears to be because their data apply several exclusion criteria.

We also compared individual grants in the microdata we received against published reports we found that list individual grants given in early years (USEPA 1974a,b). The grants in our microdata also appear in these printed volumes, with the same plant and government authority listed. Grant dates are similar in the microdata and 1970s reports, though some differ by several months. The dollar amounts of individual grants have the same order of magnitude but the exact amounts differ. This may be because funds requested, approved, and disbursed can differ, and can take over a decade to finalize.

One sensitivity analysis in our paper looks only at grants given for construction rather than engineering plans. Following Stoddard, Harcum, Simpson, Pagenkopf, and Bastian (2002), we define a grant as for construction if the grants microdata list the grant "Step" as equal to three or four, and if the grant also lists the facility number of the plant receiving the grant.

Operating and Maintenance Costs. Clean Water Act grants involve three types of costs: federal grants for capital, local matching expenditures for capital, and expenditures for operating and maintenance (O&M). Our grants microdata report only the first two costs, so we estimate the third from other sources.

National data are consistent with the idea that the ratio of lifetime O&M costs to upfront capital costs increased almost linearly from 130 percent in 1972 to 259 percent in 1996. We linearly extrapolate these values to years before and after 1972-1996. These values reflect several sources. Two independent sources provide identical reports that concrete structures of treatment plants have a useful life of 50 years but mechanical and electrical components have a useful life of 15-25 years (American Society of Civil Engineers 2011 and USEPA 2002). We assume grants require O&M expenditures for 30 years.

We combine this 30 year statistic with the estimated ratio of O&M costs to capital stock in a typical year. This ratio grew almost linearly from 3.7 percent in 1972 to 7.4 percent in 1996 (USEPA 2002). These values reflect historic census records on O&M expenditures and perpetual inventory estimates of capital stocks (U.S. Army Corps of Engineers 1994), both for sewerage infrastructure.

These values represent the most accurate estimates of O&M costs that we can discern. Nonetheless, it is informative to compare these values against other estimates of these costs. One survey of 226 Clean Water Act projects found a ratio of annual O&M costs to upfront capital costs of 3.76% to 3.96% (Lake, Hanneman, and Oster 1979).⁹ The ratio was similar across different community sizes and government types.

⁹This study reports the ratio as 3.96% on p. 42 and 3.76% on p. 110. The reason for the discrepancy is unclear.

These values are similar to the aforementioned numbers that we use, which report a ratio of 3.7% in 1972. A second source reports the prediction that for a typical city of 25,000 people, the total cost of building a treatment plant is about \$4.6 million, and the expected real annual O&M cost is about \$200,000 (USEPA 1979). The ratio of annual O&M costs to upfront capital costs in this second source is 4.3%, which is the value for the year 1976 implied by the data we use. A third source is an ex ante engineering prediction that lifetime O&M costs are 93 percent of upfront capital costs (Hitchcock and Giggey 1975).¹⁰ The reason why the engineering predictions in this third study are smaller than the ex post realized costs we use is unclear, though engineering predictions have underestimated the costs of energy and environmental investments in other settings also. A fourth source indicates that nominal operations and maintenance cost per unit volume treated increased perhaps more rapidly than these numbers suggest, by nearly 5 percent per year during the period (U.S. Army Corps of Engineers 1994). Other studies report aggregate national trends in real total operations and maintenance costs over parts of this period, which were fairly flat between 1977 and 1987 then increasing, and in the real total value of the capital stock over this period, which increased steadily after 1977 (U.S. Army Corps of Engineers 1994; USEPA 2002).

The preceding paragraph describes several snapshots of operating and maintenance costs. They are in the ballpark of the main estimates we use, which cover the period 1972-1996, though some numbers in the previous paragraph would imply higher or lower operations and maintenance costs than our main estimates. Linearly interpolating the values from the previous paragraph to form a complete time-series of these costs would require strong assumptions on how to extrapolate data points for one or a few years out to several decades. Section VII.C of the main text describes a more conservative and simple calculation, which is to ask how cost estimates would change under the assumption that no operations and maintence costs are included in the benefit-cost calculation.

B.5 Census Data from Geolytics

For each census tract, the Geolytics Neighborhood Change database reports mean or total values for the relevant housing and population variables we use. We measure the mean home value in a tract as the total value of specified owner-occupied housing divided by the total number of specified owner-occupied housing units. In years 1970 and 1980, these data cover non-condominium housing units only. The housing data comes from the census "long form," which is given to 1 in 6 households. The actual census questionnaire has homeowners estimate the value of their property as falling into one of several bins.

We use a version of these data in which Geolytics has concorded all tract boundaries to the year 2010 boundaries. We use information on resident demographics, total population, physical features of housing (e.g., the number of rooms), home values, and rents. Some regressions control for housing structure characteristics. Because each observation is a census tract (which is subsequently aggregated to buffer a given distance from a river), we measure these structural characteristics as the share of homes with a given characteristic. The rental data for 1970 are "contract rents," which report the amount paid from renter to owner; the rental data for 1980-2000 are "gross rents," which include the contract rent plus utilities and fuels, if these are paid by the renter. As with home values, the actual census questionnaire has renters enter their contract rent as falling into one of several bins.

¹⁰This study reports O&M predicted costs for different categories of water pollution abatement expenditures. We obtain a national number by combining the category-specific O&M predictions from this study with category-specific capital expenditures under the Clean Water Act from Stoddard, Harcum, Simpson, Pagenkopf, and Bastian (2002).

The census home values data reflect self-reported home values, rather than actual transaction values. The census data are also top-coded. Many studies find high correlation between self-reported home values and sales price indices, either in the cross-section or time-series (James R. Follain and Malpezzi 1981; Ihlanfeldt and Martinez-Vazquez 1986; John L. Goodman and Ittner 1992; DiPasquale and Somerville 1995; Kiel and Zabel 1999; Banzhaf and Farooque 2013; Benítez-Silva, Eren, Heiland, and Jiménez-Martín 2015), suggesting that self-reports provide some important information about true market values. Because home values are the dependent variable in hedonic regressions, using self-reported home values in the presence of classical measurement error may decrease the precision of estimates but not create attenuation bias (Griliches and Hausman 1986; Bound and Krueger 1991).

These studies, however, also find some inaccuracies of self-reported home values. One issue is bias—in most studies, homeowners overestimate the market value of their property by 5-10 percent. Another concern is inertia—owner-occupants who have not purchased a home recently may be slow to update their beliefs about a home's value (Kuzmenko and Timmins 2011; Henriques 2013). This inertia appears to be consistent with a simple Bayesian updating model, specifically, a Kalman filter (Davis and Quintin 2017). But this means that homeowners may be slow to reflect changes in local amenities due to investments in surface water quality. Longstanding rental tenants often receive tenure discounts, though we are not aware of direct evidence on the speed with which such discounts adjust to changes in amenities. As one way to address these concerns, in analyzing home values and rents, we report specifications which allow homeowners and renters up to 10 years to reflect changes in water quality.

In regressions involving home values, the controls for structure characteristics are allowed to have different coefficients in each year, and include the following: number of bedrooms, number of housing units in building, number of stories in building, heating fuel, cooking fuel, hot water fuel, heating equipment type, sewer type, plumbing type, year built, air conditioning, kitchen, number of bathrooms, and water access. All variables are expressed as share of housing units with the indicated characteristic. All categorical variables (e.g., number of bedrooms) are expressed as the share of housing units with each possible category. The 1970 characteristics are the following: distance to central business district; share of population that is black; share of population over age 65; share of population under age 6; share with a college degree; share on public assistance; income per family; and all the 1970 structure characteristics.

We define city centers for all Standard Metropolitan Statistical Areas (SMSAs) as follows. The definition of central business district locations used in most research comes from the 1982 Census of Retail Trade. This definition has two downsides in our setting—it is potentially endogenous to the Clean Water Act, since the definition was constructed ten years after the Act and since cleaning up rivers might shift the location of businesses; and it includes a limited number of cities. Instead, for each Standard Metropolitan Statistical Area (SMSA), we use the 1970 Population Census to construct an original definition of the city center as the latitude and longitude of the census block centroid which has the greatest population density. In cities with a central business district defined from the 1982 Census of Retail Trade, this typically ends up defining close but not identical definitions of city centers. For census tracts within an SMSA, we then define distance to the city center as distance to the city center of that SMSA. For census tracts outside an SMSA, we define the distance to the closest city center overall.

B.6 Municipal Expenditure Data

We impose a few sample restrictions to ensure that we accurately measure the response of municipal spending to federal grants. We restrict the sample to governments appearing in all years 1970-2001.¹¹ This is important since the data report capital expenditures but not capital stocks, and missing some years of municipal expenditures data could underestimate the response of municipal spending to federal grants. We also restrict the sample to municipalities and townships, which we collectively refer to as cities. This restriction excludes state governments, county governments, special districts, school districts, and the federal government. Finally, we exclude cities which have other governments with similar names in the same state, and cities that have sever districts, counties, or other nearby related governments that may receive or spend grants. We make these exclusions because they help accurately measure sewerage capital and grant receipt. We identify such cities both using listings of sewer districts and local counties in the survey and census of governments, and using grants which list the authority receiving the grant as a sewer board, county agency, or other local government that is not a city. Many grants go to water boards, sewer districts, county agencies, or other local governments which have separate financial management from a city. Such grants would not appear in the city's financial records, but the grants data do not always distinguish which local government administered the grant. These restrictions leave a balanced panel of 198 cities. As noted in the main text, because this sample is relatively small, we report one specification using inverse propensity score reweighting to match the characteristics of a broader sample of cities.¹²

B.7 Additional Environmental Data¹³

We measure county-year-day air temperature and precipitation using data from the National Climate Data Center Summary of the Day files (file TD-3200). We use information on the daily maximum temperature, daily minimum temperature, and daily total precipitation. We use only weather stations reporting valid readings for every day in a year. To obtain county-level values, we take an inverse-distance weighted mean of data from stations within a 300 kilometer radius of the county centroid. Weights equal a monitoring site's squared distance to the county centroid, so more distant monitoring sites receive less weight.

As mentioned in the main text, we report one specification controlling for two separate counts of polluting industrial plants. The 1972 Census of Manufactures asked every U.S. manufacturing plant whether it used more than 20 million gallons of water per year, and the roughly 10,000 plants indicating that they used this much water appeared in the 1973 SWUM. For each wastewater treatment plant in our data, we count the

¹¹The census has these data for the year 1967 and then annually beginning in 1970; our sample begins in 1970 since we need a balanced panel. All governments report data in years ending in 2 and 7 (1972, 1977, etc.). Other years contain a probabilistic sample of governments. In most years, the largest cities measured by population, total revenue, or expenditure are sampled with certainty. Among smaller cities, sampling probabilities vary by region, type of government, and size. The balanced panel is the main limiting factor in our data extract, since less than 1,000 cities appear in all years of the data 1970-2001. The "year" in these data refers to each local government's fiscal year. We convert the data to calendar years using data from these surveys on the month when each government's fiscal year ends, assuming that government expenditure is evenly distributed across months. For the few governments that don't report when their fiscal year ends, we assume they report by calendar year.

¹²We estimate the propensity score from a probit using all cities. The estimated propensity score is a function of the city's log mean total expenditure across all years 1970-2001 when it appears in the census or survey of governments, the city's log mean population, an indicator for being a municipality (rather than township), and census division fixed effects. Cities with lower expenditure and in the West and South are significantly more likely to appear in the sample; conditional on the other variables, population does not significantly predict appearance in the sample.

¹³We thank Olivier Deschenes for providing the weather data and Michael Greenstone for providing the 1972-1977 nonattainment data.

number of manufacturing plants in the same county which use at least 20 million gallons of water in 1972. We control for these counts, interacted with a downstream indicator and interacted with year fixed effects. Although these data only directly measure total water use and not total water pollution emissions, the SWUM survey questions and resulting report both focus on water pollution,¹⁴ and plants with extensive water use also emit large amounts of water pollution. For example, the industries that consume the most water in the 1978 version of these data (Becker 2016) – blast furnaces and steel mills, industrial organic chemicals, petroleum refining, and paper mills – are also the industries that emit the most water pollution.

The current EPA PCS data list the first year a plant received a water pollution emissions permit. These data suffer from incomplete reporting, since not all states and plants uploaded data to the EPA's centralized database. They also suffer from sample selection, since plants which closed may not appear in the data. In counting the number of industrial pollution emitters from PCS, we exclude wastewater treatment plants (Standard Industrial Classification 4952).

Some sensitivity analyses control for county×year×pollutant nonattainment designations. For years after 1977, these data come from the EPA Green Book. Data for years 1972-1977 are constructed from raw monitors based on the reported nonattainment rule. We define ozone nonattainment to include all ozone or nitrogen oxides designations, and we define particulate matter nonattainment to include Total Suspended Particulates (TSPs), particulates smaller than 10 micrometers (PM_{10}), and particulates smaller than 2.5 micrometers ($PM_{2.5}$). Our binary measures of nonattainment include all partial, whole-county, and other types of nonattainment.

Farms, confined animal feeding operations (CAFOs), and other agricultural or "non-point" sources are not likely to be a major source of confounding variation during this time period since they were not regulated under the first few decades of the Clean Water Act. The Safe Drinking Water Act was passed in 1974, just after the Clean Water Act. It is not a likely source of confounding variation since its goal is to improve the quality of tap water, not ambient river water. It also focused on establishing water standards and overseeing local authorities that enforce those standards, rather than on providing grant funds to improve infrastructure.

B.8 Data for Analyzing Heterogeneous Effects

Appendix Table VII analyzes how the effects of grants on water pollution and housing values differs for certain subsets of grants. This subsection describes how we define these subsets.

Row 1 of Appendix Table VII distinguishes grant projects which have a total cost (including federal and local contributions) above \$1.2 million, measured in \$2014. This is the median cost.

Row 2 of Appendix Table VII describes grants to plants that have secondary or tertiary baseline abatement technology. These plant-level abatement technology data come from the Clean Watershed Needs Survey. Only available data for the 1978, 1984, and 1986 years of this survey cover all plants and include accurate plant identifier codes.¹⁵

These abatement technology data have several limitations. Only about 40 percent of grants or real grant dollars were given after 1978. Additionally, only having reports for 1976, 1984, and 1986 implies that without some kind of interpolation, abatement technologies are only directly reported for three years which together account for about 15 percent of grants or grant dollars. The CWNS data contain two possible measures of a plant's abatement technology: one is a field where the respondent writes in the level of treatment stringency

¹⁴The SWUM microdata were recently recovered from a historic Census Univac system. Unfortunately the water pollution data in that survey were not available. We thank Randy Becker for helping access and interpret the SWUM data.

¹⁵The available microdata from the 1976 survey exclude over half the plants. The 1980 and 1982 surveys have incorrect plant identifier codes that can only be linked with substantial classification error to other years of the survey.

(primary, advanced primary, secondary, advanced secondary, or tertiary). The other is a list of all the different abatement technologies the plant uses. The 1984 plant codebook classifies lists of abatement technologies into primary, secondary, and tertiary. Between these two reports, only 45 percent of plant-year observations have the same level of treatment (primary, secondary, or tertiary). In the self-reported level of treatment, a third of plants that report a change in the treatment level report a decrease in the level. In the lists of abatement technologies, large shares of plants that report changes in an abatement technology reports its disappearance–for example, plants are almost as likely to report losing a trickling filter or activated sludge process (which are the two most common types of secondary treatment) as to report gaining one. We use secondary and tertiary classifications based on listed abatement technologies, which appear to have a lower level of gross reporting errors than the handwritten secondary or tertiary entries.

Row 3 of Appendix Table VII describes grants to plants with baseline pollution above the median. We measure baseline pollution as the mean pollution level for each watershed as measured in the years 1962-1971. Baseline pollution levels are calculated separately for dissolved oxygen and for the fishable standard.

Row 4 of Appendix Table VII considers states that have decentralized authority to implement the Clean Water Act NPDES program.¹⁶ This measure indicates whether a state holds authority to administer NPDES permits.

Row 5 of Appendix Table VII considers counties that have above-median shares of people who report outdoor fishing or swimming in the previous year. We obtain these data from the confidential version of the National Survey on Recreation and the Environment (NSRE) years 1999-2009. Fishing is defined as coldwater or warmwater fishing in rivers, lakes, or streams. Swimming includes swimming in streams, lakes, ponds, or the ocean. (A separate question that we don't use asks about swimming in swimming pools.) Our sample includes approximately 85,000 households. Earlier versions of the survey have been conducted intermittently since 1960; however, county and state participation shares are unavailable from earlier years. The NSRE is a partnership between the USDA Forest Service Southern Research Station, The National Oceanic and Atmospheric Administration, the University of Georgia, the University of Tennessee and other federal, state or private sponsors. The survey is a randomized telephone survey of households across the U.S. Unfortunately, state- or county-level rates of fishing participation for the entire U.S. are not available from years before the Clean Water Act.

Row 6 of Appendix Table VII uses data on environmental views from the "Total Green Index" of Hall and Kerr (1991). States with Pro-Environmental Views are defined as those with above-median values of the total green index.

Row 7 of Appendix Table VII uses data on city growth and amenities. To identify declining urban areas, we follow Glaeser and Gyourko (2005) by taking 1970-2000 city population growth rate as reported in the 1972 and 2000 city data books (Haines and ICPSR 2010). We define declining urban areas as cities with population above 25,000 in the year 1970 which had a population decline of five percent or more by the year 2000. High amenity areas are defined as counties in an SMSA with above-median total amenity value, as reported in Albouy (2016), Appendix Table A1.

Row 8 of Appendix Table VII uses each monitoring site's location to identify its census region.

C Spatial and Other Matching Across Datasets

Conducting the analysis of this paper requires linking several datasets. To link monitors and treatment plants to rivers, we use the fact that rivers in NHD are internally defined as 70 million distinct longitude and latitude

¹⁶These data are obtained from https://www.epa.gov/npdes/npdes-state-program-information (accessed August 31, 2016).

points connected by straight lines. We refer to these points as stream nodes. We identify the location where each treatment plant discharges waste using longitude and latitude values from the 1984-1996 CWNS. For each monitor and treatment plant, we then find the nearest stream node. All treatment plants in the analysis sample are within 0.6 miles of a stream node.

To measure distances upstream and downstream along rivers, we use files in NHD which list, for each stream node, the node(s) that are immediately upstream and/or downstream. We recursively construct a network tree that defines, for each treatment plant, all stream nodes that are upstream or downstream. We construct this algorithm to follow these flow relationships when one river flows into another, when rivers cross watersheds, or when the flow network passes through lakes, estuaries, and other types of water. Finally, we calculate distances between stream nodes and sum them to measure the distance along a river between a treatment plant and pollution monitor.

We also link treatment plants to upstream and downstream census tracts. For each treatment plant, we construct buffers of a given radius around river segments upstream and downstream of the plant. We define one buffer to include all homes within 1 mile of those rivers, and another buffer to include homes 0 to 25 miles from those rivers. Many census tracts span multiple buffers. For each tract, we calculate the share of the tract's area which is in each buffer. For each tract, we measure population and housing characteristics within a buffer by multiplying the total within the tract by the share of the tract's area within the buffer.

Finally, we link each grant to the exact wastewater treatment plant receiving the grant. The Freedom of Information Act (FOIA) data we received list an identifier code for the facility receiving the grant. These same identifier codes appear in the Clean Watershed Needs Survey (CWNS), so they let us precisely identify the wastewater treatment plant receiving the grant. In some cases where the facility identifier code is missing, CWNS itself lists the grant code which a plant used, and this grant code matches the grant codes used in the FOIA data. These two links unique identify the facility receiving a grant for about 76 percent of grants and 87 percent of grant dollars.

D Cross-Sectional Water Pollution Around Wastewater Treatment Plants

We use the following equation to estimate how water pollution changes as a river flows past a wastewater treatment plant:

$$Q_{pdy} = \beta d_d + \mu_{py} + X'_{pdy}\gamma + \epsilon_{pdy}$$

Each observation in these data represents a plant-downstream-year tuple. Here Q_{pdy} measures pollution at plant p in year y and downstream location d. Location d = 1 includes areas downstream of the treatment plant, and location d = 0 includes areas upstream of the treatment plant. The plant×year fixed effects μ_{py} imply that these comparisons are made within a river×year, so they measure how water pollution changes as the river flows past the wastewater treatment plant. The coefficient β represents the mean difference in pollution between downstream and upstream waters near a treatment plant. We include temperature and precipitation controls X_{pdy} .

These comparisons are cross-sectional and do not analyze changes in a river over time. Because wastewater treatment plants may locate near other pollution sources, such as urban runoff and industrial plants, these regressions do not identify the effect of wastewater treatment plants on water pollution. Area characteristics may also differ in the cross-section between upstream and downstream areas. Indeed, the average upstream and downstream monitoring sites are 20 miles apart. Compared to upstream areas, downstream areas have similar population density and share of families on welfare, though slightly lower share of adults with a college degree and slightly greater share population black.¹⁷ These cross-sectional differences are another reason that our research design exploits the timing of grants across treatment plants.

As a river passes a wastewater treatment plant, data show large and statistically significant increases in pollution (Appendix Table V). Dissolved oxygen deficits rise by 1.2 percent saturation, which is an increase of ten percent relative to the upstream pollution level. Fecal coliforms increase the most as a river passes a treatment plant, by about 40 percent. Other pollutants increase by smaller amounts. The probability that a river is not fishable rises by about 4 percentage points as a river passes a wastewater treatment plant.

E Sensitivity Analyses

E.1 Pollution Trends

This subsection reports sensitivity analyses for pollution trends; most are qualitatively and quantitatively similar to the main results.

Rows 2-6 of Appendix Table III consider important subsamples. Row 2 only uses long-term stations, which begin operating by the year 1971 and report data through at least the year 1988, since the grants program largely converted into a subsidized loans program in 1987. Row 3 restricts the sample to the largely metro counties that had some home values data in all four decennial censuses 1970-2000; as mentioned earlier, the 1970-80 censuses excluded many non-metro areas. Rows 4-6 separately estimate results for the three pollution data repositories – NWIS, Storet Legacy, and Modern Storet – since each has different coverage and affiliated organizations which collect the data.

Rows 7-11 of Appendix Table III report sensitivity analyses prompted in part from discussing this analysis with hydrologists. Row 7 limits the sample to include only stations which have at least 25 readings, since these may have higher-quality data. Row 8 controls for the level of instantaneous stream flow, as measured at the same station and time as pollution, and so is limited to to "stream gauge" observations recording both streamflow and pollution. Row 9 uses data from only the months of July and August, since this is when streamflows are lowest, temperatures are greatest, and pollution concentrations are highest. Row 10 takes readings which indicate that they are below a monitor's detection limit ("BDL"), and replaces them with half the recorded value. (The main analysis uses the reported value for these BDL readings.) Row 11 specifies the pollutants with skewed distributions (BOD, fecal coliforms, and TSS) in logs rather than levels.

Rows 12-13 of Appendix Table III reports an alternative water pollution index. Row 12 reports results where each observation describes mean values for a river-year. In this specification, a "river" is defined as a unique combination of a watershed and river code.¹⁸ Row 13 defines the dependent variable as an indicator for whether more than 50 percent of pollution readings in the river-year are below the fishable or swimmable standard.

Rows 14-16 of Appendix Table III report results separately for three small and well-documented networks of high-quality monitoring sites, all managed by USGS. Row 14 shows estimates for the National Stream Quality Accounting Network (NASQAN). Row 15 shows estimates for the National Water-Quality Assessment

¹⁷The census tracts of downstream monitoring sites have population density of 835 persons per square mile; upstream areas have density of 862. Downstream areas have 4.88 percent of families on welfare, while upstream areas have 4.81 percent of families on welfare; downstream areas have 9.2 percent of adults with a college degree while upstream areas have 9.9 percent of adults with a college degree, and downstream areas have 8.5 percent of population black while upstream areas have 7.7 percent of population black. These values use 1970 census data.

¹⁸A river here is defined as a "levelpathi" from NHD.

(NAWQA) (Smith, Alexander, and Wolman 1987; Alexander, Slack, Ludtke, Fitzgerald, and Schertz 1998; Rosen and Lapham 2008). Row 16 shows estimates for the Hydrologic Benchmark Network (HBN), which includes a small number of watersheds expected to have "minimal" effects from human activity (Alexander, Slack, Ludtke, Fitzgerald, and Schertz 1998). HBN shows smaller trends than the main sample for BOD, fecal coliforms, and TSS, which is consistent with anthropogenic causes of these pollutants in the national data.

Rows 17-25 of Appendix Table III report other important sensitivity analyses. Row 17 allows arbitrary autocorrelation within both watersheds and years. Row 18 limits the sample to lakes. An important paper finds that dissolved oxygen in lakes has not changed since the Clean Water Act (Smith and Wolloh 2012), and Row 18 corroborates that finding. But the lake point estimate for dissolved oxygen deficits is negative, all other pollutants in lakes show downward trends, and nearly all of the other sensitivity analyses in Appendix Table III also show statistically significant downward trends. These results suggest that broader trends in water pollution differ from patterns evident in dissolved oxygen in lakes. Row 19 adds controls for temperature and precipitation. These are relevant since climate change is increasing air temperatures, but hotter temperatures can increase dissolved oxygen deficits. In row 20 each observation is the mean value in the county-year, and regressions are generalized least squares weighted by the population in the county-year. This may better reflect the trends experienced by the average person. Row 21 interacts the time-of-day and day-of-year controls with river basin region fixed effects, to capture the idea that seasonality and time patterns may differ across space. Rows 22-25 report estimates separately for each of the four census regions; all pollutants are declining in all regions, though declines were more rapid in the Northeast.

E.2 Effects of Clean Water Act Grants on Pollution: Sensitivity and Heterogeneity

This subsection reports sensitivity analyses for effects of Clean Water Act grants on pollution. Rows 1-13 of Appendix Table VI report the sensitivity analyses used for analyzing trends. Most of these give broadly similar results to the main specification. The alternative definitions of the "fishable" and "swimmable" standards do give more variable results—for example, defining fishable and swimmable as an indicator for whether 50% of readings are below the standard shows that each grant decreases the probability that waters violate the fishable standard by 2.4 percentage points, but does not significantly change the probability that waters are swimmable.

We also estimate sensitivity analyses which we do not report for trends regressions, and most also give similar results. Row 14 includes dummies for the range of distances from 0-25 miles, 25-50, 50-75, and 75-100 miles. These analyses show that the effect of grants on water pollution is concentrated within 25 miles. For BOD and dissolved oxygen, small and statistically insignificant effects may appear at further distances. Row 15 considers the subsample of plants with pollution monitoring sites at least 10 miles upstream and downstream.

Rows 16-20 of Appendix Table VI describe other ways of measuring grants. Row 16 includes only grants that are for physical construction, and excludes grants for architectural or engineering plans. Row 17 includes separate indicators for each possible cumulative grant that a plant received. All grants appear to decrease pollution, though later grants may have had larger effects, and most pollutants show a positive dose-response function. Row 18 controls for both the cumulative number of grants to any plants within 25 miles upstream and also (separately) for grants to plants within 25 miles downstream, which hardly changes estimates. This control is designed to address the possible concern that facilities may be located near each other in rivers, and

nearby plants may receive grants at similar times.¹⁹ Row 19 includes controls for the number of grant projects of three different magnitudes (roughly terciles of the grant size distribution). The smallest grant projects have no clear effects on pollution, moderate-size projects lead to statistically insignificant decreases in pollution, and the largest projects produce the clearest decreases in pollution. Row 20 replaces the cumulative number of grants with a measure of the log of the cumulative real grant dollars provided, and indicates that a one percent increases in grant size increases the probability that downstream rivers are fishable by about 1 percent. To avoid excluding all the many plant×downstream ×year observations with zero cumulative grants, we specify row 20 as ln(cumulativeDollars + 0.01).

Rows 21-26 of Appendix Table VI present several other important sensitivity analyses. Row 21 shows a differences-in-differences specification using data only from downstream waters. This specification includes plant fixed effects and water basin×year fixed effects, and reports the coefficient on a variable measuring the cumulative number of grants a plant has received. Row 22 allows arbitrary autocorrelation of confidence regions within year and within watershed. Row 23 includes monitoring sites on other rivers than the river where the wastewater treatment plant is directly located. Row 24 excludes small wastewater treatment plants that never received a grant. Row 25 shows unweighted OLS estimates. Row 26 adds several potentially important control variables, each interacted with a downstream indicator: whether the county of the wastewater treatment plant is the Clean Air Act, separately for each air pollutant; the total population in the county-year of the wastewater treatment plant; and two indicators for the number of polluting industrial plants in the county-year of the wastewater treatment plant, extracted from the databases SWUM and PCS as described earlier.²⁰

Finally, we estimate the effect of these grants on other pollutants (Appendix Table IV, column 2). We find no effect of a grant on any of the industrial pollutants (lead, mercury, or phenols), and perverse signs for two of the three. It is not impossible for a grant to affect these industrial pollutants, since some industrial waste can flow through treatment plants, but the lack of substantive effects on any of these three and incorrect signs are consistent with the idea that these grants are not correlated with unobserved variables like industrial activity or industrial water pollution regulations. We also detect no effects of grants on most measures of nutrients or more general water quality measures such as chlorides, stream flow, or temperature.

The main text uses these regressions to calculate the cost-effectiveness of grants. It is also useful to consider how our cost-effectiveness estimates would change under different assumptions about crowd out. Table III shows that it costs \$0.53 million annually to increase dissolved oxygen saturation in a river-mile by 10 percent, and \$1.5 million annually to make a river-mile fishable. Our real pass-through point estimate of 0.89 from column (4) of Table IV implies cost-effectiveness numbers of \$0.47 million for oxygen and \$1.34 million for the fishable standard. The 95 percent confidence region for our real pass-through estimate ranges from 0.44 to 1.34, which implies a range of cost-effectiveness values between \$0.23 million and \$0.71 million for oxygen, and between \$0.66 million and \$2.01 million for fishable. All these estimates represent the cost per year to make a river mile fishable or to increase dissolved oxygen saturation by 10 percent for a year.

¹⁹Around half of the plants we analyze have at least one other plant within 25 miles upstream or 25 miles downstream, and the mean plant in our data has 1.7 other plants within 25 miles upstream or 25 miles downstream.

²⁰Because the SWUM data are only observed in 1972, they are interacted with a full set of year indicators, in addition to the interaction with downstream indicators.

Heterogeneity

For several attributes of grants, we estimate regressions like equation (3), but include an additional interaction of the main downstream×grants term with a given binary characteristic of grants.²¹ Appendix B.8 describes measurement of these characteristics.

Columns (1)-(2) of Appendix Table VII report these estimates, and columns (5)-(6) use these regressions along with data on grant costs to estimate cost-effectiveness. We compare these cost-effectiveness values against the numbers in Table III, rows 7-8, column 3, to see how they compare to the average grant. Row 1 finds that grant projects above the median size (\$1.2 million) cause larger decreases in pollution. Because these larger grants cost more, however, columns (5)-(6) suggest they are slightly less cost effective than the mean grant. Row 2 analyzes grants for plants that initially had more advanced (secondary or tertiary) abatement technology. If plants face increasing marginal abatement costs, then grants given to plants with better initial technology might be less cost-effective.²² Row 2 does not provide evidence to support this hypothesis, and the point estimates actually suggest that grants to plants with tertiary technology are more cost-effective. These estimates are imprecise, however, and we interpret them cautiously given the poor quality of the data on abatement technologies (see Appendix B.8). Row 3 suggests that grants to more polluted areas decrease pollution more and are slightly less cost-effective. Row 4 suggests that grants to state-years with decentralization authority to manage NPDES permits are more effective, and have similar cost-effectiveness.

Rows 5-7 of Appendix Table VII study three additional dimensions of heterogeneity which are more relevant to housing markets. We discuss them briefly here. Row 5 finds that grants to counties with a large share of people who do outdoor fishing or swimming are significantly more cost-effective.²³ These counties may be more rural, so may face lower wage and construction costs. Row 6 finds that states with pro-environmental views have slightly more cost-effective grants. Row 7 considers two sets of cities highlighted in the urban economics literature—declining older cities (Glaeser and Gyourko 2005), and high amenity cities (Albouy 2016). Both groups of cities have low cost effectiveness. High amenity areas may face high wages and construction costs, while declining urban areas may have governments which are less effective at managing grants. Row 8 compares across the four census regions; only the Northeast has significantly lower cost-effectiveness, which occurs in part because grants there are estimated to decrease pollution less.

E.3 Hedonic Estimates: Sensitivity and Heterogeneity

Appendix Table VIII reports sensitivity analyses for the effect of grants on home values. Columns (1)-(3) report effects of grants on log mean home values for different radii. Columns (4)-(6) analyze rental values. Columns (7)-(12) report estimates for residential characteristics like income, education, race, and age. If residents value characteristics of neighbors and grants change those characteristics, then looking only at price or quantity effects could poorly measure willingness to pay (Bayer, Ferreira, and McMillan 2007; Greenstone and Gallagher 2008).

Each row describes different analyses. Row 2 excludes all housing units within a 1-mile radius in any direction of the treatment plant, to address the possibility that grants change local disamenities from a

 $^{2^{11}}$ If Z_{py} is a characteristic of plant p in year y, we add the controls $G_{py}d_dZ_{py}$ and $Z_{py}\eta_{dwy}$ to equation (3). The term $Z_{py}\eta_{dwy}$ allows the downstream×basin×year fixed effects to vary with the binary characteristic Z_{py} .

 $^{^{22}}$ Advanced abatement technologies can target pollutants which more basic abatement technologies do not target. So it is plausible that the marginal abatement cost curve for an individual emitted pollutant is increasing, but the curve for ambient levels of an omnibus measure of water pollution like dissolved oxygen or fishability is not substantially increasing over the range of technologies we observe.

²³As described in Appendix B.8, the measure of swimming includes only natural water bodies and excludes swimming pools.

plant like noise or odor. Row 3 allows two-way clustering of standard errors by watershed and also by year. The richest specifications of Table V include baseline controls interacted with year fixed effects; row 4 removes these baseline controls. Row 5 reports a differences-in-differences-in-differences regression comparing upstream versus downstream home values.²⁴ Row 6 reports unweighted OLS estimates. Row 7 replaces downstream×basin×year fixed effects with downstream×year fixed effects and basin linear time trends. Row 8 reports estimates only for grants given in the year 1972. If communities in later years knew in advance a plant would receive a grant, then estimates for later years could be confounded by homeowner expectations. Row 9 reports the change in housing values around 1987 for plants that never received a grant. If homeowners had accurate expectations about future grants, these plants may have experienced a decrease in home values once the grants largely ceased. Row 10 allows grants to affect outcomes after 10 years, which may be important if local public goods are only gradually incorporated into self-reported housing values.

Appendix Table VIII suggests little evidence that grants changed the composition of local residents (columns 7-12). All these point estimates are small, and most are statistically indistinguishable from zero. More broadly, these estimates do not change our qualitative conclusions about how grants affect housing values (columns 1-6), though point estimates do vary. There is modest evidence that home values (though not rents) increase within 0.25 or 1.0 miles of affected waters, though point estimates within 25 miles are uniformly small and indistinguishable from zero. The unweighted estimates for housing (though not rents) are more positive, which may suggest larger effects for less densely populated areas, where outdoor fishing and swimming may be more common.

It is also useful to consider how alternative pass-through numbers would change the interpretation of our results. The point estimate in column (4) of Table IV implies that each dollar of federal grants leads to 89 cents of additional municipal capital spending. In terms of Table VI, this point estimate of pass-through would imply that the ratio of the change in housing values to costs is 0.27. The 95 percent confidence interval of our pass-through estimate ranges from 0.44 to 1.34; in terms of Table VI, this implies the ratio of the change in housing values to costs is 0.27. The 95 percent confidence interval of our pass-through estimate ranges from 0.44 to 1.34; in terms of Table VI, this implies the ratio of the change in housing values to costs ranges between 0.18 and 0.55. Alternatively, one way to assess the importance of crowdout is to ask: what value of pass-through would be needed to make the change in housing values exceed costs? Table VI implies that for any pass-through rate above 0.24, costs exceed the change in housing values.

Heterogeneity

We now analyze variation across groups of grants in the ratio of a grant's measured benefits to its costs. This is useful to determine what types and levels of investment may be particularly valuable. For several attributes of grants, we therefore estimate regressions like equation (6), but include an additional interaction of the main grants term with a given binary characteristic of grants.²⁵

Columns (3) and (4) of Appendix Table VII show regression estimates which allow the hedonic price function to differ across census regions and other divisions of the data. Column 7 shows the ratio of measured benefits to costs. Rows 1-4 consider heterogeneity most relevant for grants' effects on pollution. The ratio of measured benefits to costs is not significantly different from that of the average grant for any of these rows. Row 5 considers grants to areas where a large share of people go fishing or swimming. The ratio of measured benefits to costs here is double the ratio for the mean grant. Row 6 finds that grants to states with pro-environmental views also have a greater ratio than that of the mean grant. Row 7 finds that grants to

 $^{^{24}}$ In this sensitivity analysis, we draw a straight line through the treatment plant which is perpendicular to the river as it flows through the treatment plant. We put homes upstream of this line in the upstream group, and similarly for downstream homes.

²⁵Formally, if Z_{py} is a characteristic of plant p in year y, we add the controls $G_{py}Z_{py}$ and $Z_{py}\eta_{wy}$ to equation (6). The term $Z_{py}\eta_{wy}$ allows basin×year fixed effects to vary with the binary characteristic Z_{py} .

declining urban areas (Glaeser and Gyourko 2005) have actually negative (but statistically indistinguishable from zero) ratios, while the ratio for high amenity areas (Albouy 2016) is greater. Finally, row 8 tests for differences in the housing market response by census region. This specification finds that grants to the West and Northeast have smaller ratios, while grants to the South have larger ratios around 0.84. None of these ratios in rows 5-8 are significantly different than that of the mean grant.

F Interpreting Hedonic Estimates

Section VII.C in the main text describes several reasons for why the hedonic model might provide a lower bound on willingness to pay for Clean Water Act grants. This section describes several additional possible reasons which we believe have weaker empirical support.

First, the effects of these grants could have been reflected in changes in housing supply or in the characteristics of local residents (Greenstone and Gallagher 2008). As discussed earlier, Table V and Appendix Table VIII show little evidence of changes in either.

Second, people might not fully consider recreational demand or aesthetics when buying a home. Applications of the hedonic model generally assume that homeowners have complete information about the attributes of the home they are buying, not least because a home is typically a person's largest purchase. This common assumption seems plausible in this setting.

Third, if homeowners already expected a grant in a given year, then that grant might affect home prices before it was received. Qualitative evidence on such expectations is ambiguous. As Section II.A explains, states were supposed to discuss priority lists in public hearings, which could provide public knowledge about plants that might soon receive grants. The extent of such public knowledge is unclear, however, and both priority lists and the national budget of the grants program changed substantially between years. Available quantitative evidence does not show clear support for this idea. Homeowner expectations formed in the year(s) before a grant would create a positive pretrend in home values, but Figure IV shows a flat pre-trend in the ten years before a grant. If expectations played a large role overall, then grants given in the first year of the program (1972) might have larger effects since these were largely unexpected. Row 8 of Appendix Table VIII estimates only the effect of grants given in the year 1972, and finds similar effects to the overall estimates of Row 1. Finally, we test for a change in home values in 1987, the year the grants largely concluded, for plants that failed to receive a grant. The point estimates for this are negative but not statistically distinguishable from either zero or the main estimates (Row 9).

References

- ALBOUY, D. (2016): "What are Cities Worth? Land Rents, Local Productivity, and the Total Value of Amenities," *Review of Economics and Statistics*, 98(3), 477–487.
- ALEXANDER, R. B., J. R. SLACK, A. S. LUDTKE, K. K. FITZGERALD, AND T. L. SCHERTZ (1998): "Data from selected U.S. Geological Survey national stream water quality monitoring networks," *Water Resources Research*, 34(9), 2401–2405.
- AMERICAN SOCIETY OF CIVIL ENGINEERS (2011): "Failure to Act: The Economic Impact of Current Investment Trends in Water and Wastewater Treatment Infrastructure," Discussion paper, ASCE.

- ANDERSON, R. F. (2010): "Trends in Local Government Expenditures on Public Water and Wastewater Services and Infrastructure: Past, Present and Future," Discussion paper, U.S. Conference of Mayors -Mayors Water Council.
- BANZHAF, H., AND O. FAROOQUE (2013): "Interjurisdictional housing prices and spatial amenities: Which measures of housing prices reflect local public goods?," *Regional Science and Urban Economics*, 43, 635–648.
- BAYER, P., F. FERREIRA, AND R. MCMILLAN (2007): "A Unified Framework for Measuring Preferences for Schools and Neighborhoods," *Journal of Political Economy*, 115(4), 588–638.
- BECKER, R. A. (2016): "Water Use and Conservation in Manufacturing: Evidence from U.S. Microdata," Water Resources Management, 30(12), 4185–4200.
- BENÍTEZ-SILVA, H., S. EREN, F. HEILAND, AND S. JIMÉNEZ-MARTÍN (2015): "How well do individuals predict the selling prices of their homes?," *Journal of Housing Economics*, 29, 12–25.
- BOUND, J., AND A. B. KRUEGER (1991): "The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right?," *Journal of Labor Economics*, 9(1), 1–24.
- CBO (1985): "Efficient Investment in Wastewater Treatment Plants," Discussion paper, Congressional Budget Office.
- CREMEANS, J. E., AND F. W. SEGEL (1975): "National Expenditures for Pollution Abatement and Control, 1972," Survey of Current Business, 55(2), 8–11, 35.
- DAVIS, M. A., AND E. QUINTIN (2017): "On the Nature of Self-Assessed House Prices," *Real Estate Economics*, 45(3), 628–649.
- DIPASQUALE, D., AND C. SOMERVILLE (1995): "Do House Price Indices Based on Transacting Units Represent the Entire Stock? Evidence from the American Housing Survey," *Journal of Housing Economics*, 4, 195–229.
- GLAESER, E. L., AND J. GYOURKO (2005): "Urban Decline and Durable Housing," Journal of Political Economy, 113(2), 345–375.
- GREENSTONE, M., AND J. GALLAGHER (2008): "Does Hazardous Waste Matter? Evidence from the Housing Market and the Superfund Program," *Quarterly Journal of Economics*, 123(3), 951–1003.
- GRILICHES, Z., AND J. A. HAUSMAN (1986): "Errors in Variables in Panel Data," *Journal of Econometrics*, 31, 93–118.
- HAINES, M. R., AND ICPSR (2010): "Historical, Demographic, Economic, and Social Data: The United States, 1790-2002,".
- HALL, B., AND M. L. KERR (1991): 1991-1992 Green Index: A State-by-State Guide to the Nation's Environmental Health. Island Press.
- HENRIQUES, A. M. (2013): "Are Homeowners in Denial about their House Values? Comparing Owner Perceptions with Transaction-Based Indexes," Mimeo, Federal Reserve Board.
- HITCHCOCK, C. Y., AND M. D. GIGGEY (1975): "Report to National Commission on Water Quality on assessment of technologies and costs for publicly owned treatment works under public law 92-500," Discussion paper, Metcalf & Eddy, Inc.
- IHLANFELDT, K. R., AND J. MARTINEZ-VAZQUEZ (1986): "Alternative Value Estimates of Owner-Occupied Housing: Evidence on Sample Selection Bias and Systematic Errors," *Journal of Urban Economics*, 20, 356– 369.
- JAMES R. FOLLAIN, J., AND S. MALPEZZI (1981): "Are Occupants Accurate Appraisers?," Review of Public Data Use, 9(1), 47–55.
- JOHN L. GOODMAN, J., AND J. B. ITTNER (1992): "The Accuracy of Home Owners' Estimates of House Value," *Journal of Housing Economics*, 2, 339–357.
- KIEL, K. A., AND J. E. ZABEL (1999): "The Accuracy of Owner-Provided House Values: The 1978-1991 American Housing Survey," *Real Estate Economics*, 27(2), 263–298.
- KUZMENKO, T., AND C. TIMMINS (2011): "Persistence in Housing Wealth Perceptions: Evidence from the Census Data," Mimeo, Duke.
- LAKE, E. E., W. M. HANNEMAN, AND S. M. OSTER (1979): Who Pays for Clean Water? The Distribution of Water Pollution Control Costs. Westview Press.
- LUNG, W.-S. (2001): Water Quality Modeling for Wasteload Allocations and TMDL. Wiley.
- ROSEN, M. R., AND W. W. LAPHAM (2008): "Introduction to the U.S. Geological Survey National Water-Quality Assessment (NAWQA) of Ground-Water Quality Trends and Comparison to Other National Programs," *Journal of Environmental Quality*, 37, S–190 to S–198.
- SMITH, R. A., R. B. ALEXANDER, AND G. WOLMAN (1987): "Water-Quality Trends in the Nation's Rivers," *Science*, 235(4796), 1607–1615.
- SMITH, V. K., AND C. V. WOLLOH (2012): "Has Surface Water Quality Improved Since the Clean Water Act?," NBER Working Paper 18192.
- STODDARD, A., J. B. HARCUM, J. T. SIMPSON, J. R. PAGENKOPF, AND R. K. BASTIAN (2002): Municipal Wastewater Treatment: Evaluating Improvements in National Water Quality. Wiley.
- U.S. ARMY CORPS OF ENGINEERS (1994): "Consolidated Performance Report on the Nation's Public Works: An Update," Discussion paper, US Army Corps of Engineers.
- USEPA (1974a): "Awards Register Volume II. Grants Assistance Programs. Showing Projects Awarded in Fiscal Year 1974.," Discussion paper, USEPA.

(1974b): "Awards Register. Volume III. Grants Assistance Programs. Showing Projects Awarded in Fiscal Year 1974.," Discussion paper, USEPA.

(1974c): "National Water Quality Inventory. 1974 Report to the Congress. Volume II," Discussion paper, USEPA.

(1979): "1978 Needs Survey.. Conveyance and Treatment of Municipal Wastewater. Summaries of Technical Data," Discussion paper, USEPA.

(1997): "The Benefits and Costs of the Clean Air Act, 1970 to 1990," Discussion paper, USEPA.

(2000): "A Retrospective Assessment of the Costs of the Clean Water Act: 1972 to 1997: Final Report," Discussion paper, USEPA.

(2000b): Progress in Water Quality: An Evaluation of the National Investment in Municipal Wastewater Treatment. USEPA.

(2002): "The Clean Water and Drinking Water Infrastructure Gap Analysis," Discussion paper, USEPA.

VOGAN, C. R. (1996): "Pollution Abatement and Control Expenditures," *Survey of Current Business*, September, 48–67.

APPENDIX FIGURE I Densities of Raw Pollution Readings

Panel C. Fecal Coliforms

Panel E: Log Fecal Coliforms

Notes: Data include years 1962-2001.

Panel F. Log Total Suspended Solids

APPENDIX FIGURE II Patterns in Dissolved Oxygen Deficits

Notes: Figures show coefficients from a regression of dissolved oxygen deficit on monitoring station fixed effects and on dummy variables for the indicated controls. Data use only dissolved oxygen measured in mg/L. Dissolved oxygen deficit is measured as 15 minus the reported level of dissolved oxygen in mg/L. Data cover years 1962-2001.

APPENDIX FIGURE III Water Pollution Trends, Other Pollution Measures, 1962-2001

Notes: These graphs show year fixed effects plus the constant from regressions which control for monitoring site fixed effects, year fixed effects, day-of-year cubic polynomial, and hour-of-day cubic polynomial, corresponding to equation (1) in the text. Connected dots show yearly values, dashed lines show 95% confidence interval, and 1962 is reference category. Standard errors are clustered by watershed.

APPENDIX FIGURE IV Effects of Clean Water Act Grants on Water Pollution, Event Study, Other Pollution Measures

Notes: Graphs show coefficients on downstream times year-since-grant indicators from regressions which correspond to the specification of Table II. These regressions are described in equation (4) from the main text. Connected dots show yearly values, dashed lines show 95% confidence interval. Data cover years 1962-2001. Standard errors are clustered by watershed.

APPENDIX FIGURE V Effects of Clean Water Act Grants on Water Pollution by Distance Downstream from Treatment Plant

Notes: Graphs show distance-from-plant times cumulative grant indicators from regressions which also control for plant-by-distance, plant-by-year, and distance-by-water basin-by-year fixed effects. These regressions are similar to equation (4) in the text, though with indicators for distance-from-plant rather than years-since-grant. Connected dots show yearly values, dashed lines show 95% confidence interval. Data cover years 1962-2001. Standard errors are clustered by watershed.

APPENDIX FIGURE VI Federal and Local Wastewater Treatment Capital Spending 1960-1983

Notes: State and local data from CBO (1985). Federal data from GICS. All values deflated by Engineering News Record construction price index. The vertical black line shows 1972, when the U.S. government passed the Clean Water Act.

APPENDIX FIGURE VIII Ratio of Change in Housing Values to Grant Costs, by County

Notes: We divide treatment plants into ten deciles based on the population in the year 2000 which is within a 25 mile radius in any direction of the river segments that are up to 25 miles downstream of the plant and on the same river as the plant. For each decile, we calculate the total value of owned homes and rentals satisfying the same criteria (within a 25 mile radius, etc.). To estimate the change in housing values, we apply the regression estimates from column (4) of Table VI, and assume improvements last 30 years. For each decile, we measure costs using the grants data. For each decile, we divide the total change in housing values by total costs. Finally, we calculate the unweighted average of this ratio across all plants in a county, and the map plots the result. Counties in white have no treatment plants or missing data.

		Biochemical			Total
		Oxygen	Dissolved	Fecal	Suspended
	Pooled	Demand	Oxygen Deficit	Coliforms	Solids
	(1)	(2)	(3)	(4)	(5)
Mean		3.10	19.85	$1,\!656.46$	51.73
Standard Deviation		4.26	28.31	$7,\!178.04$	132.13
5th Percentile		0.30	-15.40	0.00	1.00
95th Percentile		10.00	80.46	6,000.00	210.00
Number of Distinct					
Observations	$10,\!991,\!992$	$1,\!285,\!357$	$5,\!883,\!715$	$2,\!086,\!392$	1,736,528
Monitoring Sites	180,075	$55,\!188$	154,769	$82,\!153$	$70,\!615$
River Segments	$96,\!674$	$35,\!596$	86,941	50,073	44,889
Rivers	46,369	$16,\!987$	41,748	$25,\!043$	22,343
Mean Years per Monitoring Site	10	11	10	11	10
Mean Readings per Monitoring Site	61	23	38	25	25
Share in Metro Areas	0.26	0.29	0.26	0.25	0.27
Share from each repository:					
Storet Legacy	0.63	0.65	0.62	0.63	0.66
Storet	0.22	0.22	0.23	0.22	0.21
NWIS	0.14	0.14	0.15	0.15	0.12
Share from each type of surface water:	:				
Rivers	0.83	0.96	0.76	0.92	0.90
Lakes	0.17	0.04	0.24	0.08	0.10
Share of readings from each Census Re	egion:				
Northeast	0.07	0.06	0.08	0.06	0.05
Midwest	0.27	0.23	0.25	0.24	0.39
South	0.50	0.59	0.49	0.53	0.41
West	0.17	0.13	0.18	0.17	0.15
Share of readings from					
1962-1971	0.08	0.14	0.08	0.07	0.04
1972-1981	0.32	0.38	0.28	0.43	0.30
1982-1991	0.29	0.26	0.30	0.26	0.31
1992-2001	0.31	0.23	0.34	0.24	0.35
Share of readings from monitoring site	s operating in				
One Decade	0.28	0.27	0.31	0.28	0.33
Two Decades	0.30	0.30	0.31	0.29	0.31
Three Decades	0.29	0.25	0.29	0.32	0.27
Four Decades	0.13	0.18	0.09	0.11	0.09

APPENDIX TABLE I WATER POLLUTION DESCRIPTIVE STATISTICS

Notes: Data cover years 1962-2001. Metro areas are defined as tracts from the 1970 census with non-missing home values data. Dissolved oxygen deficit equals 100 minus dissolved oxygen, measured in percent saturation. River segments are "comid"s, rivers are "levelpathi"s, as defined in the National Hydrography Dataset Plus, Version 2.1.

		Regression
	All	Sample
	(1)	(3)
Number of Plants	$18,\!455$	7,074
Number of Grants	20,430	9,670
Mean Number of Grants:		
All Plants	1.11	1.37
Plants with ≥ 1 Grant	1.99	2.10
Share of Plants Receiving Following Number of O	Grants:	
None	0.44	0.35
Exactly 1	0.24	0.27
Exactly 2	0.17	0.20
3 to 5	0.13	0.16
6 or More	0.01	0.02
Federal Contribution for a Grant (\$2014 Millions	;)	
Mean	8.05	9.22
5th Percentile	0.03	0.04
50th Percentile	0.86	1.16
95th Percentile	32.30	39.72
Total Cost of a Grant Project (\$2014 Millions)		
Mean	26.92	31.09
5th Percentile	0.10	0.12
50th Percentile	2.91	3.91
95th Percentile	108.35	135.76

APPENDIX TABLE II DESCRIPTIVE STATISTICS FOR TREATMENT PLANTS AND GRANTS

Notes: Table counts multiple grants to the same plant in a single year as one grant. Total cost of a grant project includes federal contribution, local capital cost, and operating and maintenance costs. Grant values are deflated using the Engineering News Record construction price index. Plants with zero grants, listed in columns (1) and (2), are plants that appear in in 1976, 1978, 1984, 1986, or 1988 Clean Watershed Needs Surveys (CWNS) with strictly positive population served, and which do not appear in the federal grants data. These are the only five years of the CWNS which were collected during the years of the grants program and which have accurate identifier codes for treatment plants. Data cover years 1962-2001.

	Main Pollu	tion Measures	Other Pollution Measures			
	Dissolved Oxygen Deficit (1)	Not Fishable (2)	Biochemical Oxygen Demand (3)	Fecal Coliforms (4)	Not Swimmable (5)	Total Suspended Solids (6)
1. Main Estimates	-0.240***	-0.005***	-0.065***	-81.097***	-0.005***	-0.915***
	(0.030)	(0.000)	(0.005)	(8.326)	(0.000)	(0.092)
Important Subsamples						
2. Long-Term Stations	-0.190***	-0.005***	-0.069***	-93.915^{***}	-0.005***	-1.013^{***}
$({\leq}1971$ to ${\geq}1988)$	(0.042)	(0.000)	(0.007)	(12.661)	(0.000)	(0.130)
3. Counties in Balanced Panel	-0.330***	-0.006***	-0.096***	-92.178***	-0.006***	-1.003***
of Home Values Data	(0.046)	(0.000)	(0.008)	(12.067)	(0.000)	(0.126)
4. USGS NWIS Repository	-0.215***	-0.004***	-0.066***	-103.894***	-0.005***	-0.875***
	(0.027)	(0.000)	(0.009)	(16.902)	(0.000)	(0.181)
5. Storet Legacy Repository	-0.279***	-0.005***	-0.067***	-70.937***	-0.005***	-0.889***
	(0.044)	(0.000)	(0.006)	(8.585)	(0.000)	(0.093)
6. Modern Storet Repository	-0.117***	-0.004***	-0.055***	-91.453***	-0.004***	-1.003***
	(0.037)	(0.000)	(0.008)	(12.254)	(0.000)	(0.191)
Standard Water Quality Tests						
7. Exclude Stations with Less	-0.239***	-0.005***	-0.065***	-80.523^{***}	-0.005***	-0.928***
than 25 Readings	(0.030)	(0.000)	(0.005)	(8.415)	(0.000)	(0.096)
8. Stream Gauge Observations,	-0.288***	-0.005***	-0.077***	-97.988***	-0.006***	-0.961***
Control for Flow	(0.024)	(0.000)	(0.009)	(14.882)	(0.000)	(0.214)
9. July-August Only	-0.259***	-0.005***	-0.068***	-86.831***	-0.004***	-0.870***
	(0.045)	(0.000)	(0.007)	(8.603)	(0.000)	(0.105)
10. Readings Below Limit ("BDL")	-0.240***	-0.005***	-0.068***	-80.881***	-0.005***	-0.917***
Equal Half Listed Value	(0.030)	(0.000)	(0.005)	(8.331)	(0.000)	(0.092)
11. Logs, Not Levels			-0.014***	-0.030***		-0.015***
	_	—	(0.002)	(0.002)	_	(0.001)
Other Fishable and Swimmable Defin	itions					
12. River-Year Means		-0.003***			-0.003***	
		(0.000)			(0.000)	
13. River-Year Means,		-0.004***			-0.005***	
50% Fish/Swim Defn.		(0.000)			(0.000)	

APPENDIX TABLE III WATER POLLUTION TRENDS, SENSITIVITY ANALYSIS

	Sta	ndards				
	Dissolved		Biochemical	Total		
	Oxygen		Oxygen	Fecal	Not	Suspended
	Deficit	Not Fishable	Demand	Coliforms	Swimmable	Solids
	(1)	(2)	(3)	(4)	(5)	(6)
Well-Documented USGS Networks						
14. NASQAN Network	-0.237***	-0.004***	-0.040***	-55.013^{***}	-0.007***	-1.615^{***}
	(0.027)	(0.000)	(0.013)	(8.154)	(0.001)	(0.437)
15. NAWQA Network	-0.317***	-0.005***	-0.086***	-91.404***	-0.008***	-0.913***
	(0.037)	(0.001)	(0.021)	(18.533)	(0.001)	(0.311)
16. HBN Network	-0.352***	-0.002***	0.003	0.841	-0.006***	-0.146
(Isolated, Natural Areas)	(0.080)	(0.001)	(0.014)	(1.929)	(0.001)	(0.333)
Other Important Sensitivity Analyses	_					
17. Cluster by Watershed And	-0.240***	-0.005***	-0.065***	-81.097***	-0.005***	-0.915***
and Year	(0.034)	(0.000)	(0.006)	(10.426)	(0.000)	(0.142)
18. Lakes	-0.069**	-0.001	-0.035***	-4.495**	-0.001*	-0.489***
	(0.035)	(0.000)	(0.008)	(2.041)	(0.001)	(0.146)
19. Weather Controls	-0.239***	-0.005***	-0.065***	-81.692***	-0.005***	-0.977***
	(0.030)	(0.000)	(0.005)	(8.293)	(0.000)	(0.091)
20. County-Year Means,	-0.227***	-0.004***	-0.100***	-100.941***	-0.004***	-1.349***
Population-Weighted	(0.054)	(0.000)	(0.015)	(13.335)	(0.000)	(0.323)
21 Flexible Seasonality and Time	-0 241***	-0.005***	-0.066***	-77 773***	-0.004***	-0.885***
21. Texible Seasonancy and Third	(0.031)	(0.000)	(0.005)	(7.283)	(0.000)	(0.097)
	a secolululu		e en edului		o o o mituluit	o mo o dalah
22. Census Region: Northeast	-0.475***	-0.006***	-0.071***	-75.657**	-0.007***	-0.793***
	(0.126)	(0.001)	(0.011)	(31.541)	(0.001)	(0.159)
23. Census Region: Midwest	-0.261***	-0.005***	-0.064***	-74.061***	-0.005***	-0.783***
	(0.035)	(0.000)	(0.008)	(12.501)	(0.000)	(0.179)
24 Course Daview Courth	0 107***	0.004***	0.069***	00 200***	0.004***	0.010***
24. Census Region: South	-0.18(*****	-0.004	-0.062	-90.399	-0.004	-0.812
	(0.047)	(0.000)	(0.007)	(12.394)	(0.001)	(0.079)
25. Census Region: West	-0.256***	-0.004***	-0.098***	-56.476***	-0.004***	-1.706***
	(0.056)	(0.000)	(0.020)	(11.308)	(0.001)	(0.291)

APPENDIX TABLE III								
WATER POLLUTION	TRENDS,	SENSITIVITY	ANALYSIS	(CONTINUED))			

Notes: Standard errors are clustered by watershed. Regressions include monitoring site fixed effects, season controls, and hour controls, except where otherwise noted. See text for details. Data cover years 1962-2001. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***).

		Downstream $*$		
	Trend	Cumulative $\#$ of Grants		
	(1)	(2)		
Industrial Pollutants				
1. Lead $(\mu g/L)$	-0.099***	-0.336		
	(0.004)	(0.541)		
Dependent Variable Mean	2.332	22.809		
Ν	477,426	20,524		
2. Mercury $(\mu g/L)$	-0.011***	0.019		
	(0.001)	(0.014)		
Dependent Variable Mean	0.265	0.285		
N	437,351	16,090		
3. Phenols $(\mu g/L)$	-2.351**	11.162^{*}		
	(1.056)	(6.045)		
Dependent Variable Mean	79.095	12.023		
N	147,509	6,856		
Nutrients				
4. Ammonia (mg/L)	-0.039***	-0.029**		
	(0.002)	(0.012)		
Dependent Variable Mean	-2.371	0.433		
N	1,646,149	35,216		
	, ,	,		
5. Nitrates (mg/L)	0.002	0.023		
	(0.002)	(0.035)		
Dependent Variable Mean	-1.147	1.175		
N	697,682	15,418		
	,	,		
6. Nitrite Nitrate (mg/L)	0.004^{***}	0.067**		
	(0.001)	(0.032)		
Dependent Variable Mean	-1.059	1.321		
N	$1,\!453,\!593$	26,782		
7. Nitrogen (mg/L)	-0.003**	2.119		
	(0.001)	(48.402)		
Dependent Variable Mean	3.139	2005.864		
N	$739,\!175$	7,618		
8. Orthophosphate (mg/L)	-0.024***	-0.015*		
	(0.003)	(0.008)		
Dependent Variable Mean	-3.482	0.224		
N	825,871	11,756		
	,			
9. Phosphorus (mg/L)	-0.006***	0.001		
	(0.000)	(0.008)		
Dependent Variable Mean	0.248	0.344		
N	2,375,437	35,430		
(Continued next page)		,		

APPENDIX TABLE IV RESULTS FOR OTHER MEASURES OF WATER POLLUTION

(Continued next page)

		Downstream *
	Trend	Cumulative $\#$ of Grants
	(1)	(2)
<u>General Water Quality Measures</u>		
10. Dissolved Chlorides (mg/L)	0.002	-8.638
	(0.001)	(8.205)
Dependent Variable Mean	3.054	106.341
N	1,042,847	$16,\!340$
	, ,	
11. Total Chlorides (mg/L)	-0.002	-16.476
	(0.002)	(11.705)
Dependent Variable Mean	3.700	146.167
N	1,530,675	19,602
12. Total Coliforms (count/100mL)	-0.047***	-2841.798
	(0.007)	(2094.212)
Dependent Variable Mean	6.453	33388.102
N	703.289	12.668
	,	,
13. Color (PCU)	0.001	1.381
	(0.001)	(1.047)
Dependent Variable Mean	3 340	32 260
N	632713	11 496
	002,110	11,100
14 pH (pH units)	0.007***	-0.006
ii. pii (pii amos)	(0.001)	(0, 005)
Dependent Variable Mean	7 430	7 508
N	6 614 284	65 370
11	0,014,204	00,010
15 Total Dissolved Solids (mg/L)	0.000	-95 790*
19. Total Dissolved Solids (ling/L)	(0.000)	(14.071)
Dopondont Variable Mean	5.418	443 611
N	1 884 714	28 186
1	1,004,714	20,100
16 Dissolved Sulfate (mg/L)	0.001*	9 983
10. Dissolved Sulfate (ling/L)	-0.001	(2.482)
Dependent Variable Mean	(0.001)	(2.402) 102.27
N	0.07 205 262	15.064
1	005,200	15,904
17 Stream Flow (Instangancous, CFS)	0.000	55 491
11. Stream Flow (Instanganeous, CFS)	(0.000)	(60, 426)
Dependent Variable Mean	(0.001)	(09.420) 2264 542
N	4.120	2204.343
IN	2,019,014	24,100
18 Town anothing (E)	0.094***	0.069
16. Temperature (F)	(0.024)	-0.002
Deven level Verial la Marco	(0.005)	(0.052)
Dependent Variable Mean	00.001	08.973 CO. 020
1N	11,027,029	68,838
	0 400***	0 (227
19. Iurbidity (NIU)	-0.488***	-0.637
	(0.049)	(0.432)
Dependent Variable Mean	21.546	26.419
Ν	2,433,788	30,592

APPENDIX TABLE IV RESULTS FOR OTHER MEASURES OF WATER POLLUTION (CONTINUED)

Notes: Standard errors are clustered by watershed. Data cover years 1962-2001. All pollutants except mercury, phenols, phosphorus, pH, temperature, and turbidity are in logs. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***).

	Main Polluti	on Measures				
	Dissolved		Biochemical			Total
	Oxygen	Not	Oxygen	Fecal	Not	Suspended
	Deficit	Fishable	Demand	Coliforms	Swimmable	Solids
	(1)	(2)	(3)	(4)	(5)	(6)
Downstream	1.234***	0.040***	0.611^{***}	906.457***	0.052^{***}	5.240***
	(0.370)	(0.004)	(0.088)	(218.677)	(0.005)	(1.245)
Ν	59,150	$63,\!698$	31,452	37,446	$63,\!698$	33,392
Dep. Var. Mean	12.02	0.19	3.24	2,162.94	0.46	45.78
Plant-by-Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Weather	Yes	Yes	Yes	Yes	Yes	Yes

APPENDIX TABLE V WATER POLLUTION UPSTREAM VERSUS DOWNSTREAM OF TREATMENT PLANTS

Notes: Each observation in a regression is a plant-downstream-year tuple. Data cover years 1962-2001. Dissolved oxygen deficit equals 100 minus dissolved oxygen saturation, measured in percentage points. Dependent variable mean is for upstream pollution. Standard errors are clustered by watershed. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***).

	Main Pollut	tion Measures	Other Pollution Measures					
	Dissolved		Biochemical			Total		
	Oxygen		Oxygen	Fecal	Not	Suspended		
	Deficit	Not Fishable	Demand	Coliforms	Swimmable	Solids		
	(1)	(2)	(3)	(4)	(5)	(6)		
1. Main Estimates	-0.681***	-0.007**	-0.104**	-204.059**	-0.004*	-0.497		
	(0.206)	(0.003)	(0.041)	(98.508)	(0.002)	(0.635)		
Important Subsamples								
2. Long-Term Stations	-1.327***	-0.031***	-0.204	-447.958	-0.008**	-1.991		
$({\leq}1971$ to ${\geq}1988)$	(0.307)	(0.011)	(0.128)	(343.889)	(0.003)	(2.006)		
3. Facilities with Balanced	-0.698***	-0.007**	-0.095**	-168.291	-0.004	-0.569		
Panel of Home Values	(0.216)	(0.003)	(0.045)	(110.788)	(0.002)	(0.728)		
4. USGS NWIS Repository	-0.601	-0.014***	0.185	-11.489	-0.021**	4.382**		
	(0.864)	(0.005)	(0.213)	(199.026)	(0.010)	(1.802)		
5. Storet Legacy Repository	-0.418	-0.007	-0.130**	-243.637*	0.000	-0.782		
	(0.254)	(0.005)	(0.063)	(128.624)	(0.003)	(0.552)		
6. Modern Storet Repository	-1.076**	-0.007	-0.152*	-371.895**	-0.010*	-0.556		
	(0.470)	(0.005)	(0.077)	(163.474)	(0.005)	(0.408)		
7. Only Years ≥1972	-0.689***	-0.009***	-0.120**	-102.068	-0.002	-0.403		
	(0.211)	(0.003)	(0.057)	(80.653)	(0.002)	(0.666)		
Standard Water Quality Tests								
8. Exclude Stations with Less	-0.729***	-0.008***	-0.113**	-131.616	-0.004**	-0.313		
than 25 Readings	(0.241)	(0.003)	(0.053)	(122.135)	(0.002)	(0.667)		
9. Stream Gauge Observations,	-0.746*	-0.012**	-0.152	-79.395	-0.007	2.690		
Control for Flow	(0.443)	(0.006)	(0.129)	(104.851)	(0.006)	(1.901)		
10. July-August Only	-1.299***	-0.015***	-0.134**	-102.118	-0.011***	-0.056		
	(0.384)	(0.004)	(0.060)	(157.806)	(0.004)	(0.917)		
11. Readings Below Limit	-0.683***	-0.007**	-0.103***	-203.296**	-0.004*	-0.499		
Equal Half Listed Value	(0.206)	(0.003)	(0.040)	(98.556)	(0.002)	(0.634)		
12. Logs, Not Levels		_	-0.009	-0.009		-0.004		
			(0.007)	(0.024)	—	(0.009)		
Other Fishable and Swimmable De	finitions							
13. 50% Fishable-Swimmable		-0.024***			0.003			
Definition		(0.005)			(0.006)			

APPENDIX TABLE VI

SENSITIVITY ANALYSIS: EFFECTS OF CLEAN WATER ACT GRANTS ON WATER POLLUTION

(Continued next page)

	Main Pollu	tion Measures	Other Pollution Measures				
-	Dissolved Oxygen Deficit	Not Fishable	Biochemical Oxygen Demand	Fecal Coliforms	Not Swimmable	Total Suspended Solids	
	(1)	(2)	(3)	(4)	(5)	(6)	
Other Distances Upstream and Dow	nstream of 'I	<u>'reatment Plant</u>					
14. Separate by Downstream Dist.	0.000***	0.000***	0.000**	040 450***	0.000	1 100**	
0 to 25 Miles Downstream	$-0.609^{+0.00}$	$-0.009^{-0.00}$	-0.089^{++}	-242.452^{++++}	-0.002	-1.109^{++}	
25 to 50 Miles Descenteration	(0.187)	(0.002)	(0.038)	(76.392)	(0.002)	(0.503)	
25 to 50 Miles Downstream	-0.122	(0.007)	-0.066^{+}	144.(3)	(0.004)	-0.112	
50 to 75 Miles Domestroom	(0.318)	(0.005)	(0.037)	(105.492) 147.097	(0.004)	(1.173)	
50 to 75 Miles Downstream	(0.029)	(0.002)	-0.030	14(.02)	(0.001)	-0.073	
75 to 100 Miles Description	(0.259)	(0.004)	(0.051)	(99.837)	(0.003)	(0.935)	
75 to 100 Miles Downstream	0.845	(0.000)	-0.195	-109.594	0.006	0.047	
	(0.054)	(0.005)	(0.129)	(121.337)	(0.008)	(1.120)	
15 Plants with Monitors > 10 Mi	-0 744***	-0.008***	-0 119***	-232 851**	-0.005**	-0 203	
Upstream and Downstream	(0.218)	(0.003)	(0.039)	(112.330)	(0.002)	(0.556)	
Other Specifications for Measuring (Frants	(0.000)	(0.000)	(112:0000)	(0.002)	(0.000)	
16. Grants for Construction	-1.180***	-0.010***	-0.127**	-116.894	-0.006**	-0.360	
	(0.222)	(0.004)	(0.051)	(130.419)	(0.003)	(0.787)	
			· · · ·	· · · · ·	· · · ·		
17. Cumulative number of grants							
One	-0.853*	-0.009	0.034	-513.221*	-0.011	1.213	
	(0.509)	(0.007)	(0.119)	(284.849)	(0.008)	(2.011)	
Two	-1.066	-0.021**	-0.222	-574.140*	-0.017	0.779	
	(0.675)	(0.011)	(0.158)	(336.056)	(0.011)	(2.586)	
Three	-0.996	-0.009	-0.334*	-437.879	-0.017	0.562	
	(0.942)	(0.013)	(0.173)	(395.305)	(0.014)	(3.482)	
Four	-2.168^{**}	-0.028**	-0.336	-755.137	-0.023	-6.278*	
	(1.008)	(0.013)	(0.259)	(499.611)	(0.015)	(3.586)	
Five or More	-4.006***	-0.043**	-0.539	-1115.660	-0.027*	-5.797	
18 Control for Cumulative	0 803***	0 008***	0 000**	270 674***	0.002	0.673	
Upstream Grants	(0.214)	(0.003)	(0.048)	(89.902)	(0.003)	(0.654)	
	(**===)	(01000)	(010-0)	(******_)	(0.000)	(0.000-)	
19. Cumulative Grants by Grant Pr	oject Amou	nt					
0 to 0.4 million	1.124^{*}	0.011	-0.115	-77.641	0.012	1.976	
	(0.626)	(0.008)	(0.171)	(374.399)	(0.008)	(2.814)	
0.4 to 3.5 million	-0.592	-0.005	-0.172*	-76.235	-0.002	0.208	
	(0.517)	(0.006)	(0.099)	(234.044)	(0.006)	(1.419)	
> \$3.5 Million	-0.971***	-0.009***	-0.090**	-249.046*	-0.006**	-0.714	
	(0.213)	(0.003)	(0.044)	(143.616)	(0.003)	(0.705)	
20 Lon Cumulation Deal Court	0.040***	0.000**	0.055	200 120*	0.009	1 020	
20. Log Cumulative Real Grant $Dollars (PPr)$	-0.942	-0.009	-0.055	-300.132°	-0.008	-1.232	
Continued point page)	(0.309)	(0.004)	(0.077)	(180.073)	(0.005)	(1.197)	
(Commuted next page)							

APPENDIX TABLE VI SENSITIVITY ANALYSIS: EFFECTS OF CLEAN WATER ACT GRANTS ON WATER POLLUTION (CONTINUED)

	Main Pollut	tion Measures	Other Pollution Measures			
	Dissolved		Biochemical			Total
	Oxygen		Oxygen	Fecal	Not	Suspended
	Deficit	Not Fishable	Demand	Coliforms	Swimmable	Solids
	(1)	(2)	(3)	(4)	(5)	(6)
Other Important Sensitivity Analyse	<u>es</u>					
21. Differences-in-Differences	-0.619***	-0.009***	-0.083	-288.184^{***}	-0.003*	-0.924**
Downstream Areas Only	(0.157)	(0.002)	(0.057)	(71.059)	(0.002)	(0.407)
22. Cluster by Watershed	-0.681***	-0.007**	-0.104**	-204.059**	-0.004*	-0.497
and Year	(0.201)	(0.003)	(0.039)	(84.722)	(0.002)	(0.608)
23. Include Monitors on	-0.264	-0.004**	0.001	-198.913*	0.001	0.279
Other Rivers	(0.191)	(0.002)	(0.048)	(104.392)	(0.002)	(0.745)
24. Exclude Plants with	-0.627**	-0.007**	-0.074	-268.193*	-0.003	-0.233
No Grants	(0.252)	(0.003)	(0.054)	(160.472)	(0.003)	(0.773)
25. Unweighted	-0.793***	-0.004**	-0.108**	-316.697**	-0.003	-0.738
-	(0.194)	(0.002)	(0.053)	(133.596)	(0.003)	(1.214)
26. Control for Downstream *	-0.814***	-0.009***	-0.110***	-219.371***	-0.007***	-0.369
Nonattainment, Industrial Sources, Population	(0.180)	(0.003)	(0.036)	(70.975)	(0.002)	(0.607)

APPENDIX TABLE VI SENSITIVITY ANALYSIS: EFFECTS OF CLEAN WATER ACT GRANTS ON WATER POLLUTION (CONTINUED)

Notes: "Long Term Stations" includes only stations which begin operating by 1971 and continue through at least 1988. "Control for Stream Gauge Flow" includes only stations which report instantaneous stream flow at the same time they report pollution, and it controls for streamflow. "Include Monitors on Other Rivers" includes monitors on rivers different than the treatment plant, but that eventually flow into or out of the treatment plant s river. Data cover years 1962-2001. Standard errors are clustered by watershed. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***).

		Regre	ssions		Fitted Values		
							Change in
	Dissolved		Log Moon		Cost Por Unit		Housing
	Oyvgen	Not	Home	Log Mean	Dissolved	Cost Per River-	Values /
Dependent Variable	Deficit	Fishable	Values	Bents	Oxygen	Mile Fishable	Costs
Dependent (anabie	(1)	(2)	(3)	(4)	(5)	(6)	(7)
1. Cumulative Grants	0.129	-0.011	-0.00019	-0.00068		(-) 	
	(0.404)	(0.010)	(0.00081)	(0.00044)			
* Grant Projects	-0.874**	-0.010	0.00052	0.00067	0.74	2.54	0.25
Above \$1.2 Million	(0.432)	(0.012)	(0.00082)	(0.00043)	[0.51, 1.32]	[1.66, 5.46]	(0.26)
2. Cumulative Grants	-0.589	-0.043***	0.00101	-0.00061			
	(0.564)	(0.014)	(0.00113)	(0.00048)			
* Baseline Treatment:	-0.076	0.025^{*}	-0.00128	0.00047	0.42	1.60	-0.42
Secondary	(0.595)	(0.015)	(0.00115)	(0.00051)	[0.24, 1.69]	[0.94, 5.57]	(0.67)
* Baseline Treatment:	-1.266	-0.008	-0.00103	-0.00015	0.20	0.72	-0.35
Tertiary	(0.948)	(0.034)	(0.00137)	(0.00054)	[0.11, 0.70]	$[0.35, \infty)$	(1.00)
3. Cumulative Grants	-0.379	-0.008	0.00054	-0.00024			
	(0.231)	(0.007)	(0.00085)	(0.00033)			
* Baseline Pollution	-0.264	-0.015	-0.00033	0.00011	0.75	2.13	0.19
Above Median	(0.297)	(0.009)	(0.00095)	(0.00043)	[0.47, 1.90]	[1.40, 4.52]	(0.43)
	. ,		. ,	. ,			
4. Cumulative Grants	-0.510**	-0.008	-0.00014	0.00016			
	(0.202)	(0.008)	(0.00076)	(0.00036)			
* State Authority to	-0.122	-0.012	0.00030	-0.00050	0.52	1.65	0.07
Administer NPDES	(0.173)	(0.007)	(0.00091)	(0.00042)	[0.35, 1.06]	[1.10, 3.27]	(0.44)
5 Cumulative Grants	-0 441**	-0.018***	0.00016	-0.00005			
	(0.185)	(0.006)	(0.00035)	(0.00019)			
* Outdoor Fishing or	-0.438	-0.003	0.00038	-0.00020	0.42	1.73	0.53
Swimming is Common	(0.281)	(0.012)	(0.00063)	(0.00026)	[0.28, 0.84]	[0.92, 15.89]	(0.68)
	a a a a dalah						
6. Cumulative Grants	-0.632***	-0.012**	0.00015	-0.00016			
* 0	(0.166)	(0.005)	(0.00048)	(0.00021)			
* States with Pro-	0.044	-0.017^{*}	0.00026	(0.00010)	0.53	1.08	(0.32)
Environmental Views	(0.322)	(0.010)	(0.00062)	(0.00027)	[0.28, 5.78]	[0.71, 2.26]	(0.33)
7. Cumulative Grants	-0.027	-0.020	-0.00074	-0.00340**			
	(0.500)	(0.014)	(0.00241)	(0.00133)			
* Declining Urban	0.381	-0.003	-0.00091	-0.00007	N.A.	8.99	-3.04
Areas	(0.390)	(0.011)	(0.00069)	(0.00037)	N.A.	[3.65, ∞)	(2.81)
* High Amenity Areas	-0.628	0.003	0.00110	0.00335^{**}	0.91	3.55	0.40
	(0.532)	(0.015)	(0.00243)	(0.00134)	[0.54, 2.91]	[2.06, 13.09]	(0.45)
8. Cumulative Grants	-0.644*	-0.017	0.00012	-0.00023	0.59	2.31	0.05
(Reference: West)	(0.354)	(0.013)	(0.00079)	(0.00031)	[0.29 ∞]	[0.90 ∞]	(0.87)
* Midwest	-0.446	-0.009	0.00012	0.00030	0.30	1.28	0.29
	(0.421)	(0.016)	(0.00090)	(0.00035)	[0.22 . 0.49]	[0.79, 3.48]	(0.45)
* South	0.486	-0.003	0.00084	-0.00033	2.12	1.70	0.84
	(0.446)	(0.017)	(0.00106)	(0.00046)	[0.48 .∞]	[0.82, 20.02]	(0.77)
* Northeast	0.579	0.014	-0.00022	0.00032	13.00	28.86	-0.08
	(0.475)	(0.016)	(0.00112)	(0.00046)	[1.23,∞]	[3.89 , ∞]	(0.86)

APPENDIX TABLE VII HETEROGENEITY OF CLEAN WATER ACT GRANTS ON WATER POLLUTION AND HOME VALUES

Notes: Each row 1-8 comes from a separate regression. Rows also control for downstream*year indicators interacted with the variable examined in each row. The median grant project is \$1.2 million. Data cover 1962-2001. Dollars are in \$2014 Columns (5) and (6) are in million dollars. Asterisks in columns (1)-(4) denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***). Columns (5)-(7) reflect the sum of the reference category and the interaction term of interest. Brackets in columns (5)-(6) show 95% confidence regions. N.A. indicates non-positive cost-effectiveness.

				01110111111	1 11111111	515, 110 MIL	VILOLD	B	<i>a</i> 11	DI 1 (04)	D. L.:	D L I
	_						Mean	Families on	College	Black (%)	Population	Population
	Log Home Values		Log Rents		0- 3-51	Family	Public	Graduates		Under Age	Age 65 or $O(1)$	
	0.25 Mi.	1 Mi.	25 Mi.	0.25 Mi.	1 Mi.	25 Mi.	Income	Assistance	(%)	(10)	0 (%)	Older(%)
1 M. Dath star	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
1. Main Estimates	(0.0008)	0.0025^{*}	(0.0002)	-0.0008	0.0001	-0.0001	-0.0002	0.0000	(0.0000)	-0.0001	0.0000	0.0000
	(0.0014)	(0.0015)	(0.0005)	(0.0008)	(0.0007)	(0.0002)	(0.0005)	(0.0000)	(0.0001)	(0.0001)	(0.0000)	(0.0000)
2 Exclude 1-Mile Badius		0.0023*	0.0002		0.0000	-0.0001	-0.0002	0.0000	0.0000	-0.0001	0.0000	0.0000
Around Treatment Plant		(0.0013)	(0.0002)		(0.0007)	(0.0001)	(0.0002)	(0.0000)	(0.0001)	(0.0001)	(0,0000)	(0.0000)
		(010020)	(0.000)		(0.0001)	(0.000-)	(0.0000)	(0.0000)	(010002)	(0.000-)	(010000)	(0.0000)
3. Cluster by Watershed	0.0008	0.0025	0.0002	-0.0008	0.0001	-0.0001	-0.0002	0.0000	0.0000	-0.0001	0.0000	0.0000
and Year	(0.0033)	(0.0027)	(0.0005)	(0.0013)	(0.0011)	(0.0002)	(0.0004)	(0.0001)	(0.0002)	(0.0002)	(0.0000)	(0.0000)
	(010000)	(0.00-1)	(0.0000)	(010020)	(0.000000)	(0.000-)	(0.000-)	(0.000-)	(0.000-)	(0.000-)	(010000)	(0.0000)
4 No baseline controls	-0.0002	0.0016	0.0000	0.0000	0.0005	-0.0003	-0.0013**	0.0001	-0.0002	0.0003	0.0000	0.0000
1. Ito basenne controls	(0.0002)	(0.0023)	(0.0006)	(0.0017)	(0.0013)	(0.0003)	(0.0005)	(0.0001)	(0.0002)	(0.0002)	(0.0000)	(0.0001)
	(0.0025)	(0.0023)	(0.0000)	(0.0017)	(0.0013)	(0.0003)	(0.0005)	(0.0001)	(0.0002)	(0.0002)	(0.0000)	(0.0001)
5 Trials Differences	0.0057*	0.0067**	0.0010	0.0095*	0.0016	0.0000	0.0007	0.0000	0.0000	0.0002	0.0000	0.0000
5. Triple-Difference	0.0057*	0.0067444	0.0010	0.0025*	0.0016	0.0000	-0.0007	0.0000	0.0000	0.0003	0.0000	0.0000
Regression	(0.0033)	(0.0031)	(0.0012)	(0.0015)	(0.0015)	(0.0006)	(0.0006)	(0.0001)	(0.0003)	(0.0005)	(0.0000)	(0.0001)
6. OLS	0.0049^{***}	0.0042^{***}	0.0010	0.0015	0.0011	-0.0001	-0.0001	-0.0001	0.0001	-0.0002	0.0000	0.0001
	(0.0017)	(0.0016)	(0.0008)	(0.0012)	(0.0012)	(0.0007)	(0.0004)	(0.0001)	(0.0002)	(0.0002)	(0.0000)	(0.0001)
7. Year Fixed Effects and	0.0008	0.0025^{*}	0.0002	-0.0008	0.0001	-0.0001	-0.0002	0.0000	0.0000	-0.0001	0.0000	0.0000
Basin-by-Year Trends	(0.0014)	(0.0013)	(0.0003)	(0.0008)	(0.0007)	(0.0002)	(0.0003)	(0.0000)	(0.0001)	(0.0001)	(0.0000)	(0.0000)
8. Grants Given in 1972	-0.0106	-0.0030	0.0018	0.0036	0.0043	0.0009	0.0012	-0.0008***	0.0005	-0.0001	-0.0001	0.0001
	(0.0083)	(0.0078)	(0.0026)	(0.0052)	(0.0051)	(0.0014)	(0.0017)	(0.0002)	(0.0006)	(0.0006)	(0.0001)	(0.0002)
	()	()	()	()	()	()	(*****)	()	()	()	()	()
9 Plants Without Grants	-0.0046	-0.0044	-0.0008	0.0010	-0.0005	0.0001	0.0006	-0.0001	-0.0001	0.0000	0.0000	0.0001
1087 Effect	(0.0043)	(0.0044)	(0.0012)	(0.0026)	(0.00000)	(0.0006)	(0,0000)	(0.0001)	(0.0003)	(0.0004)	(0,0000)	(0.0001)
1907 Effect	(0.0045)	(0.0044)	(0.0012)	(0.0020)	(0.0022)	(0.0000)	(0.0003)	(0.0001)	(0.0003)	(0.0004)	(0.0000)	(0.0001)
10 Effect 10 Veens	0.0017	0.0015	0.0009	0.0009	0.0001	0.0001	0.0001	0.0000	0.0001**	0.0000	0.0000	0.0000
10. Effect 10+ Tears	(0.0017	0.0015	0.0002	0.0002	(0.0001	(0.0001)	(0.0001	0.0000	(0.0001	0.0000	0.0000	0.0000
After a Grant	(0.0018)	(0.0015)	(0.0003)	(0.0006)	(0.0005)	(0.0001)	(0.0002)	(0.0000)	(0.0000)	(0.0001)	(0.0000)	(0.0000)
11 TT 1			0.0000			0.0002	0.0001	0.0000	0.0000	0.0001	0.0000	0.0000
11. Urban treatment plants			0.0000			-0.0002	-0.0001	0.0000	0.0000	-0.0001	0.0000	0.0000
			(0.0003)	_		(0.0001)	(0.0002)	(0.0000)	(0.0001)	(0.0001)	(0.0000)	(0.0000)
12. Urban treatment plants			0.0000			-0.0002	-0.0001	0.0000	0.0000	-0.0001	0.0000	0.0000
excluding own-town			(0.0003)			(0.0001)	(0.0002)	(0.0000)	(0.0001)	(0.0001)	(0.0000)	(0.0000)

APPENDIX TABLE VIII SENSITIVITY ANALYSIS, HOME VALUES

Notes: Unless otherwise noted, all regressions include homes within 25 miles of the river of interest. Regression specification corresponds to column (4) of Table V. Regressions weighted by denominator of response variable. Rows 11-12 are limited to treatment plants located in a Census designated Place (city, town, or village); row 12 excludes housing units in the same Census-designated Place as the treatment plant. Data includes decennial census years 1970-2000. Standard errors clustered by watershed. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***).