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1 Introduction

A fundamental issue in economic growth and development is identifying the policies and

institutions that account for the large differences in total factor productivity (TFP) and

output per capita across countries. A recent literature has emphasized factor misallocation

across heterogeneous production units for aggregate TFP differences.1 While the empirical

evidence of factor misallocation across countries is overwhelming, the connection with the

specific policies and institutions that create the bulk of misallocation remain elusive.2 In this

paper, we assess the quantitative impact of a specific policy—firing costs—on aggregate TFP

in a framework where the distribution of establishment-level productivity is not invariant

to the policy. We focus on firing costs because unlike other specific policies, firing costs are

easily measurable in the data, show substantial variation across countries, and have been

studied extensively in the misallocation literature. Whereas the literature has attributed a

relatively small quantitative impact of firing costs on aggregate productivity (e.g., Hopen-

hayn and Rogerson 1993 and Hopenhayn 2014), we show that empirically-plausible measures

of firing costs generate larger aggregate TFP loses arising from changes in the distribution

of establishment productivity.

We consider an otherwise standard model of producer heterogeneity building on the seminal

works of Hopenhayn (1992) and Hopenhayn and Rogerson (1993). The model is set up in

continuous time for analytical tractability. Establishments are heterogeneous in their TFP

that follows a stochastic process over time. Crucially, and differently from the related pre-

vious literature, policies that distort the size of establishments such as firing costs, have an

effect on the evolution of productivity for individual establishments and, hence, on the sta-

1See Banerjee and Duflo (2005), Restuccia and Rogerson (2008), and Hsieh and Klenow (2009).
2Some of the specific policies and institutions studied in accounting for factor misallocation and aggregate

TFP losses include firing costs (Hopenhayn and Rogerson, 1993), size-dependent policies (Guner et al., 2008),
financial frictions (Buera et al. 2011, Midrigan and Xu 2014, and Moll 2014), among many others. See
discussions of the literature in Restuccia and Rogerson (2013), Restuccia (2013), Hopenhayn (2014), and
Restuccia and Rogerson (2016).
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tionary distribution of productivity across establishments and aggregate TFP. A well-known

property of firing costs in the context of dynamic models of producer heterogeneity is that

the policy generates an inaction zone in employment decisions whereby small but successful

establishments remain small and large but relatively less successful establishments remain

large. This type of inaction in employment decisions to changes in productivity generates

factor misallocation as the policy weakens the connection between the allocation of employ-

ment and productivity across establishments. In addition, in our framework we show that

this policy also alters the distribution of productivity across establishments contributing

to a substantial reduction in aggregate productivity (beyond static factor misallocation).

Our model also differs from the literature on firing costs in that rather than a continuous

choice of employment, establishments choose among a finite discrete set of employment lev-

els. This feature together with production heterogeneity imply dispersion in the value of

marginal products even in an undistorted economy with no firing costs. This dispersion can

be interpreted as arising from “real” adjustment costs and is not treated as misallocation

in our analysis.3 Importantly, firing costs create misallocation by inducing inaction in em-

ployment decisions but interact with discrete employment levels by reducing the adjustment

costs present in the undistorted economy. As a result, to the extent that in real economies

there are frictions in the adjustment of employment among establishments that are not due

to policies, our model with this feature provides a more accurate assessment—or represent

a more conservative estimate—of the firing cost policy than in a setting with continuous

employment choices.

We calibrate a benchmark economy with no firing costs to micro and macro data for the

United States and consider quantitative experiments that increase the size of firing costs—

the cost for an individual establishment to reduce employment—with a range from 6 months’

wages to 5 year’s wages. Relative to the benchmark economy with no firing costs, aggregate

3In the analysis that follows our results on output and productivity are reported relative to a benchmark
economy with no firing costs.
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TFP in the economy with a firing cost of 6 months’ wages is 0.96 and in the economy with 5

year’s wages is 0.79. These are very large TFP losses when compared to the previous liter-

ature in the context of models with exogenous distributions of establishment productivity.4

Interestingly, when we decompose the total effect of firing costs on aggregate TFP between

static factor misallocation and dynamic misallocation (as changes in the productivity distri-

bution of establishments), we find that dynamic misallocation accounts for around 80 percent

of the total effect. This implies that the quantitative effect of static factor misallocation is

of similar magnitude than that in the existing literature. For example, in a closely related

framework to ours in Hopenhayn (2014) with no entry/exit but instead with continuous em-

ployment choices, the TFP loss due to factor misallocation of a firing cost policy equivalent

to 5 year’s wages is 7.5 percent, whereas the TFP loss of factor misallocation of the same

policy in our model with discrete employment levels is 4.8 percent. But the policy translates

into a 20.7 percent TFP loss in our framework when accounting for the endogenous change

in the distribution of productivity.

A desirable property of our framework is that we are able to provide direct analytical re-

sults on the main variables of interest. Following the seminal work of Dixit (1989) in the

benchmark economy with no firing costs there is only one threshold productivity for which

large establishments become small and small establishments become large, in economies with

firing costs there is an inaction zone, a range of productivity for which establishments re-

main either large or small. Additionally, the inaction zone becomes larger with increases

in firing costs and general equilibrium effects shift the inaction zone towards lower levels

of productivity. This property of establishment decisions entails misallocation: large but

less productive establishments remain large and small but more productive establishments

remain small. As a result, relative to an undistorted economy, more employment is allocated

in less productive establishments and less employment in more productive establishments

4See, for instance, Hopenhayn and Rogerson (1993), Moscoso-Boedo and Mukoyama (2012), and Hopen-
hayn (2014). See also the partial equilibrium analysis in Bentolila and Bertola (1990).
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with firing costs.

Furthermore, we fully characterize the endogenous productivity distribution of establish-

ments and show how changes in firing costs impact the distribution by making the dis-

tribution flatter and reducing its average productivity. We solve the model using Laplace

transforms techniques, which allows us to fully characterize how changes in firing costs im-

pact the rate at which establishments adjust their size by firing or hiring workers. This

characterization allows us to connect the model with well-known moments in the data such

as growth rate of firms and the Gini coefficient of the establishment-size distribution. In the

model, higher firing costs reduce the average productivity of the economy.

As discussed earlier, our paper relates closely to the literature assessing the aggregate pro-

ductivity losses of firing costs such as Hopenhayn and Rogerson (1993), Moscoso-Boedo and

Mukoyama (2012), and Hopenhayn (2014). A critical distinction between our framework

and these previous works is that firing costs affect the distribution of productivity which

greatly contribute to amplify the negative impact of the policy on aggregate productivity.5

More broadly, our paper shares with a growing literature emphasizing the dynamic effects

of distortionary policies.6 We differ from this literature in quantifying the effect of a specific

measurable policy. A key property of the distortionary effects of firing costs is its connection

with the inaction zone in employment decisions. In this respect, firing costs share with many

other policies and institutions that tend to produce inaction zones.7 For example, in our

framework, there is an equivalence between firing and hiring costs. We use this equivalence

to relate our work to previous analysis of size-dependent policies such as the work by Guner

et al. (2008) and more recently the empirical analysis in Gourio and Roys (2014) and Gar-

icano et al. (2013) using micro data from France. Our analysis reveals the importance of

5Related to our work is also the analysis in Mukoyama and Osotimehin (2016), studying the effects of
firing costs in a model of endogenous growth.

6See for instance Hsieh and Klenow (2014), Da-Rocha et al. (2014), Guner et al. (2015), Bento and
Restuccia (2016), among many others.

7See for instance a trade model of inaction (decision to export or not) in Impullitti et al. (2013).
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considering the dynamic productivity effects of the policy for a more accurate quantitative

assessment of the aggregate impacts of these policies.

The remainder of the paper is organized as follows. In the next section and Section 3, we

describe the economic environment in detail and characterize its main properties. Section

4 calibrates a benchmark economy with no firing costs to data for the United States and

perform a series of quantitative experiments to asses the aggregate implications of firing

costs. We conclude in Section 5. Appendix A contains the formal proofs of all the lemmas

in the paper.

2 Model

Our framework builds from the work of Hopenhayn (1992), Hopenhayn and Rogerson (1993),

and Dixit (1989). Establishments hire labor in a competitive market and their productivity

follows a stochastic process. Time is continuous and the horizon is infinite. We focus on

a stationary equilibrium of this model and study the impact of firing costs on aggregate

measures of TFP and output.

2.1 General description

The unit of production in the economy is the establishment. Establishments are heteroge-

neous in their productivity z. They are described by a production function f(z, n) that uses

labor to produce output. The function f is assumed to exhibit decreasing returns to scale

in labor and to satisfy the usual Inada conditions. The production function is given by:

f(z, n) = znα, α ∈ (0, 1).

6



We assume for simplicity that establishments can only hire two different amounts of labor

n1 and n2, where n2 is larger than n1. This assumption implies that there will be dispersion

in marginal products across establishments even when the economy features no firing costs.

We will discuss in our results that this assumption of discrete employment levels makes the

quantitative implications of firing costs on output and productivity conservative relative to

a setting with continuous employment.

Establishment’s productivity z follows a Geometric Brownian motion, that depends on the

establishment size, the Geometric Brownian motions are given by:

dz = µ1zdt+ σzdwz and dz = µ2zdt+ σzdwz,

where the drift of the Brownian motion µi depends on the establishment’s size and the

standard deviation σ is the same for both sizes. There is a mass one of infinitely-lived

households with preferences over consumption goods and labor supply described by the

utility function, ∫ ∞
0

e−ρt [u(c)− v(n)] dt,

where c is consumption, n is labor supply, and ρ is the discount rate. Households own equal

shares of the establishments. We next introduce firing costs that distort the decision of

establishments to adjust their size.

2.2 Policy distortions

In a distorted economy, we assume that establishments have to pay a firing cost τ in units of

labor per worker in order to reduce employment from large n2 to small n1. The firing costs

policy creates inertia in employment decisions because establishments delay their decisions

of firing and hiring workers and consequently adjusting their employment size. We assume

that the revenue from firing costs paid by establishments is redistributed to households in
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the form of a lump-sum transfer T .

2.3 Incumbents’ problem

Incumbents maximize the present value of profits. At each point in time, establishments

observe their current TFP shock z and their employment size ni, where i ∈ {1, 2}, and

decide to keep their current size or to adjust by hiring or firing workers. This is a standard

optimal switching problem described by Dixit (1989). The problem is characterized by the

value function at the current state and by the value matching condition at the switching

points. We first describe the dynamic problem of a small incumbent n1 and then we describe

the dynamic problem of a large incumbent n2.

Small establishments observe their productivity and choose to keep their current size n1 or

to hire workers and become large n2. They receive revenue from selling output and pay a

wage bill at every point in time. Formally, the dynamic problem of a small establishment is

defined by:

ρV1(z) = znα1 − wn1 + Ez
dV1(z)

dt
, (1)

s.t. dz = µ1zdt+ σzdwz,

and by the value matching condition at the switching point z1 where small establishments

hire workers and become larger, V1(z1) = V2(z1), and the smooth pasting condition at the

switching, V ′1(z1) = V ′2(z1).

Large establishments observe their current productivity z and choose to keep their current

size n2 or to fire workers and become small n1, paying firing costs τw(n2−n1). Large estab-

lishments receive revenue from selling output and pay a wage bill. Formally, the dynamic
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problem of a large establishment is defined by:

ρV2(z) = znα2 − wn2 + Ez
dV2(z)

dt
, (2)

s.t. dz = µ2zdt+ σzdwz,

and by the value matching condition at the switching point z2, where large establishments are

indifferent between paying the firing costs τ and become small or being large, V1(z2)−τw(n2−

n1) = V2(z2), and the smooth pasting condition at the switching point, V ′1(z2) = V ′2(z2). In

Lemma 1 we characterize the value function of small V1(z) and large V2(z) establishments

and the two policy functions {z1, z2}.

Lemma 1. Given a wage rate w, interest rates ρ, and firing costs τ , the value function of

small establishments V1(z) and the value function of large establishments V2(z) that solve the

small establishment’s problem (1) and the large establishment’s problem (2) are given by

Vi(z) =
ni

α

ρ− µi
z − wni

ρ
+Biz

βi ,

where βi = −
(
µi
σ2 − 1

2

)
±
√(

µi
σ2 − 1

2

)2
+ 2ρ

σ2 for i ∈ {1, 2}, and the constants {B1, B2} and the

policy functions {z1, z2} solve the two value matching conditions and the two smooth pasting

conditions together.

Proof See Appendix A.1.

In order to fully characterize the impact of firing costs on the optimal decision of establish-

ments, we choose the positive root β1 for small establishments and the negative root β2 for

large establishments. The positive root for small establishment has the desirable property

that the option value of becoming larger increases when the productivity increases, while the

negative root for large establishment has the desirable property that the option of becoming

smaller decreases when the productivity increases. In the next Lemma 2, we show that B1

9



and B2 are positive.

Lemma 2. If β1 is the positive root and β2 is the negative root, then B1 and B2 are positive.

Proof See Appendix A.2.

The value functions of large and small establishments have an intuitive interpretation, where

the first two terms are the present value of being a small or a large establishment when

switching is not allowed and the the last term is the present value of the switching option.

Changes in the firing costs have two effects on the incumbents’ problem. It has a direct

effect on the present value of being large and small through the constants B1 and B2 and a

general equilibrium effect through changes in wages. In the next Lemma 3 we characterize

these two effects.

Lemma 3. Given a wage rate w, interest rates ρ, and firing costs τ .

1) The inaction rate, θ = z2/z1, is the solution of the following non-linear equation:

ϕ(θ) =
(Ω1(θ) + 1)

(Ω1(θ)θβ1 + θβ2)
=

1

1− ρτ
, (3)

where Ω1(θ) = (1−β1)β2
(1−β2)β1

(θ1−β2−1)(θβ2−β1−1)
(θ1−β1−1)(θβ1−β2−1) .

2) The policy functions z1 and z2 are given by:

z1 = κΩ2(θ)w and z2 = θz1, (4)

where Ω2(θ) = β1β2(θβ2−β1−1)(θβ1−β2−1)
((1−β1)β2(θ1−β2−1)(θβ2−β1−1)+(1−β2)β1(θ1−β1−1)(θβ1−β2−1))

.

Proof See Appendix A.3.

Lemma 3 is key to understand the model dynamics. In the first part of Lemma 3, we

characterize the inaction rate θ, which is a function of the productivity process, summarized

by β1 and β2, the interest rates ρ, and firing costs τ . Overall, an increase in firing costs
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generates a decrease in the inaction rate. In an economy without firing costs, the inaction

rate is equal to one and establishments do not delay their decision of firing and hiring workers.

In this case, there is a unique switching point and no inaction zone.

An important result from Lemma 3 is that the inaction rate is independent of prices, but

the policy functions are linear in prices. A reduction in the wage rate moves the policy

functions to the left, reducing the average productivity in the economy. The final impact of

an increase in firing costs on the inaction zone depends on the combination of the impact

on the inaction rate, summarized by θ, and on the general equilibrium impact on the wage

rate w.

In Figure 1, we illustrate these two mechanisms. In the left panel, we illustrate how a

decrease in the inaction rate, increases the inaction zone measured by the area between z1

and z2. In the right panel, we illustrate how an increase in firing costs τ reduces the inaction

rate θ∗.

-

6

z

n

6

?n1

n2

z1z2

1− θ∗

-

6

θ

ϕ

1
1−ρτ

θ∗

ϕ(θ)

Figure 1: Inaction Zone and Inaction Zone Rate

The results in Lemma 3 are not restricted to firing costs. Instead, these results can be

easily extended to the case where the costs are on hiring workers instead of firing and this

is relevant empirically as many labor market policies generate costs associated with hiring
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workers above a certain threshold size. We establish an equivalence between firing costs and

hiring costs. The equivalence allows us to relate our results to the broad literature on size-

dependent policies in Guner et al. (2008) and Gourio and Roys (2014).8 We can rewrite the

small and large establishment’s problem where establishments face hiring costs τh instead of

firing costs τ . The new value-matching conditions are:

V1(z1) = V2(z1)− τhw(n2 − n1),

V1(z2) = V2(z2),

and the new smooth pasting conditions are the same in both the firing costs and hiring costs

problem. In Lemma 4 we show that solving the model with hiring costs is equivalent to

solving the model with firing costs.

Lemma 4. Given hiring costs τh, there is firing costs τ that generates the same inaction

zone rate, given by:

1

1− ρτ
= 1 + ρτh,

where ρ is the interest rate.

Proof See Appendix A.4.

Lemma 4 demonstrates that there is a simple relationship between firing costs τ and hiring

costs τh. Given firing costs τ , we can find hiring costs τh that generates the same inaction

zone, and consequently the same equilibrium in both economies. In the next section, we

characterize the stationary distribution.

8Gourio and Roys (2014) study a size-dependent regulation in the form of firing costs in France that only
apply to establishments with 50 or more employees.
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2.4 Stationary distribution

We first characterize the stationary distribution in a distorted economy with firing costs and

then we solve for the stationary distribution of the undistorted economy.

2.4.1 Distorted economy

We characterize the solution of the stationary distribution of large establishments, leaving

the solution of the stationary distribution of small establishments to the Appendix A.5. In

order to solve for the stationary distribution, it is easier to work in the logarithm of the

establishment productivity z instead of levels. Let x be the logarithm of an establishment

with productivity z and size i relative to the switching point zi, that is x = log(z/zi). The

variable x is equal to zero at the switching point and has domain in [0,+∞).

Let m2(x, t) denote the number density function of large establishments with productivity

x at time t. At time t, the total number of large establishment is equal to the integral from

zero to plus infinity of the number density function, M2(t) =

∫ +∞

0

m2(x, t)dx. The large

establishments’ productivity process can be characterized by a modified Kolmogorov-Fokker-

Planck equation of the form:

∂m2(x, t)

∂t
= −µ̂2

∂m2(x, t)

∂x
+
σ2

2

∂2m2(x, t)

∂x2
+B2(x, t), (5)

where the drift µ̂i is equal to µi − σ2

2
and the function B2(x, t) is the mass of new large

establishments that arrive with productivity x at time t.9 The modified Kolmogorov-Fokker-

Planck equation (5) is supplemented by two boundary conditions:

lim
x→+∞

m2(x, t) = 0 and lim
x→+∞

∂m2(x, t)

∂x
= 0.

9We can rewrite the Geometric Brownian motion of large and small establishments as a Brownian motion
in the logarithm of the establishment productivity zi as dxi = µ̂idt+ σdwz.
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The two boundary conditions guarantee that there is no establishments’ mass at the upper

limit and that the function is smooth at the upper limit. We are interested in the stationary

distribution of the number density function and consequently we are looking for a solution

that is separable in time, that is m2(x, t) = M2(t)f2(x) and B2(x, t) = M2(t)b2(x); where

f2(·) is the large establishments’ probability density function and b2(x) is a Dirac delta

function that describes the arrival of new establishments. After making this restriction, we

can rewrite Kolmogorov-Fokker-Planck equation (5) as:

M ′
2(t)

M2(t)
f2(x) = −µ̂2f

′
2(x) +

σ2

2
f ′′2 (x) + b2(x), (6)

where
M ′2(t)

M2(t)
is the growth rate of establishments over time denoted by η2 and two boundary

conditions:10

lim
x→+∞

f2(x) = 0 and lim
x→+∞

f ′2(x) = 0. (7)

These two conditions are supplemented by the additional conditions that guarantee that

f2(·) is a pdf:

f2(x) ≥ 0 and

∫ +∞

0

f2(x)dx = 1. (8)

In our model, arrival at the large establishment’s distribution occurs at the switching point

x1 = log(z1/z2). In this point, small establishments choose to hire more workers and become

large. Mathematically, we can express the arrival using a Dirac delta function:

δ(x− x1) =

 +∞ if x = x1

0 if x 6= x1,
(9)

10Note that we can rewrite the separation rate as M2(t) = eη2tM2(0). When η2 is equal to zero the mass
of large establishments does not grow over time.
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the function is equal to infinity at the point in which new establishments enter x1 and zero

otherwise. Let b̂2 be the arrival rate at point x, the function b2(x) can be described as:

b2(x) = b̂2δ(x− x1). (10)

The Dirac delta function has two desirable properties: First, the integral over the domain is

the arrival rate b̂2,

∫ ∞
0

b̂2δ(x− x1)dx = b̂2 and second, the integral weighted by the density

function is the mass of establishments at the switching point

∫ ∞
0

δ(x−x1)f2(x)dx = f2(x1).

The constraints in equations (7) to (10) restrict the separation rate η2, after integrating the

Kolmogorov-Fokker-Planck equation (6), applying the boundary conditions, and using the

Dirac delta function’s properties, we find that growth rate of large establishments is given

by:

η2 = −µ̂2f2(0) +
σ2

2
f ′2(0) + b̂2. (11)

The expression for η2 has a very intuitive interpretation, it states that the growth rate of

the number (mass) of large establishments η2 is equal to the rate at which the number of

small establishments decide to hire workers and become large b̂2, minus the rate at which

large establishments decide to fire workers and become small, µ̂2f2(0)− σ2

2
f ′2(0). As a result,

the large establishments’ mass grows when the hiring rate is larger than the firing rate, and

it is constant when both are equal. Since we are solving for the stationary equilibrium, we

restrict the solution to an economy with a constant mass of establishments of each size, that

is η2 equal to zero. We can now solve for the stationary distribution f2(·).

After substituting η2 equal to zero into the Kolmogorov-Fokker-Planck equation (6), we find

the following second order differential equation:

− µ̂2f
′
2(x) +

σ2

2
f ′′2 (x) + b̂2δ(x− x1) = 0, (12)
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which supplemented by the boundary conditions and by f2(·) being a pdf completely char-

acterize the problem. The presence of the Dirac delta functions in (12) indicates that we

cannot expect classical solutions to the problem in C2[0,+∞). We thus look for solutions

f2(x) such that f2(x) ∈ C2[0,+∞) ∪ L1[0,∞) and f2(x) has continuous second derivatives

for all x ∈ [0,+∞) except perhaps at x = x1.

We solve the second-order differential equation using Laplace transforms.11 In order to the

probability density function be bounded we need to impose a boundary condition at 0. This

boundary condition guarantees that the mass of establishments that are indifferent between

switching or not is equal to zero, f2(0) = 0. In Lemma 5 we characterize the small and large

establishments’ stationary distributions.12

Lemma 5. Let x1 = log(z1/z2) be the switching point, where small establishments that be-

come large enter the large establishment distribution, and let x2 = log(z2/z1) be the switching

point, where large establishments that become small enter the small establishment distribu-

tion. The stationary distribution of small establishments f1(·) and the stationary distribution

11Laplace transforms are given by

L [f ′(x)] = sL [f(x)]− f(0),

L [f ′′(x)] = s2L [f(x)]− sf(0)− f ′(0),

L [δ(x− x∗)] = e−sx∗

After applying Laplace transforms to equation (12), we find the following Laplace transforms equation:

(s2 − γ1s)Y (s) = f ′2(0) + (s− γ1)f2(0)− γ2e−sx1 .

After applying the Laplace inverse and some algebraic manipulation, we find the following solution to the
boundary value problem:

f2(x) =
f ′2(0)

γ1
(eγ1x − 1)− γ2

H(x1)

γ1

[
eγ1(x−x1) − 1

]
+ f2(0),

where H(x1) is Heaviside step function given by:

H(x1) =

{
0 if x ≤ x1,
1 if x > x1.

12 The characterization of the stationary distribution of small establishments follows the same methodology
and we leave it to the Appendix A.5.
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of large establishments f2(·) are given by:

f1(x) =


−1
x2

(eα1(x−x2) − eα1x) ∀x ∈ (−∞, x2]

−1
x2

(1− eα1x) ∀x ∈ (x2, 0)

and

f2(x) =


1
x1

(1− eγ1x) ∀x ∈ [0, x1)

1
x1

(eγ1(x−x1) − eγ1x) ∀x ∈ (x1,+∞)

where γ1 =
2µ̂2

σ2
and α1 =

2µ̂1

σ2
.

Proof See Appendix A.6.

In Figure 2 we illustrate the stationary distribution of small and large establishments, and

the stationary equilibrium dynamics. A small establishment hire workers at x equal to zero,

at this point the establishment leaves the small establishments’ distribution and enter the

large establishments’ distribution at point x2. This establishment will stay at the large

establishments’ distribution until its productivity reaches the point x equal to zero, at this

point this establishment fires workers, becomes small again, and a new cycle starts. The

rectangular area between the switching points and zero is the inaction zone caused by the

firing costs policy, in the absent of firing costs large and small establishments switch at the

same point and there is no inaction zone. In the next section, we examine the stationary

distribution of an undistorted economy.
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−∞ x1 = log(z2/z1)

∞x2 = log(z1/z2)

f 2

f 1

Figure 2: Stationary Distribution Dynamics

2.4.2 Undistorted economy

We characterize the stationary distribution of the undistorted economy following the same

methodology as in the distorted economy. In the undistorted economy, there is an unique

switching point z∗. We solve the economy again in logs and after the renormalization, the

switching point is equal to zero, x∗ = log(z∗/z∗) = 0. The stationary distribution of large

establishments in the undistorted economy is the solution of a modified Kolmogorov-Fokker-

Planck equation that after following the same steps as in the distorted economy we obtain

the following second-order differential equation:

− µ̂2f
′
2(x) +

σ2

2
f ′′2 (x) + b̂2δ(x) = 0, (13)

subject to the respective boundary conditions and f2(·) being a pdf. The main difference

between the distorted and the undistorted economy is that in the undistorted economy there

is no inaction zone and establishments hire and fire workers in the same point x∗. We
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solve the boundary-value problem using Laplace transforms.13 After applying the Laplace

transforms, we find that the large establishments’ boundary conditions are satisfied only

when µ̂2 is negative, and following the same methodology to small establishments, we find

that the small establishments’ boundary conditions are satisfied only when µ̂1 is positive.

These two equilibrium conditions imply that small establishments grow at a faster rate than

large establishments and that the distribution is stationary. In Lemma 6 we formalize this

result.

Lemma 6. If γ1 is negative and α1 is positive, the stationary distribution of small establish-

ments f1(·) and the stationary distribution of large establishments f2(·) are given by:

f1(x) = α1e
α1x, x ≤ 0,

f2(x) = −γ1eγ1x, x ≥ 0,

where γ1 = 2µ̂2
σ2 and α1 = 2µ̂1

σ2 .

Proof See Appendix A.7.

In the next section, we discuss the necessary equilibrium conditions to find a stationary

equilibrium.

13After applying Laplace transforms on the large establishments’ second order differential equation (13)
we obtain the following differential equation:

(s2 − γ1s)Y2(s) = (f ′2(0)− γ1f2(0)− γ2) + sf2(0),

because the growth rate of large establishments is zero in equilibrium, the second term between parenthesis
must be zero, leading to the following solution to the stationary distribution of large establishments:

Y2(s) =
f2(0)

(s− γ1)
,

and after solving for the Laplace inverse we obtain the following pdf f2(x) = f2(0)eγ1x. We solve for the
constants f2(0) to guarantee that the integral over the domain is equal to one.
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2.5 Flow condition

Our focus is on the stationary equilibrium where the distribution of small establishments

f1(·) and large establishments f2(·) are constant, and the mass of small M1 and large estab-

lishments M2 are also constant. In order to guarantee that in the stationary equilibrium,

the mass of small and the mass of large establishments are constant, it is necessary that the

mass of establishments that leaves an establishment’s size distribution is the same as the

mass of establishments that enter on the other distribution.

The mass of establishments that leaves a distribution is equal to the total mass of establish-

ments multiplied the rate at which establishments reach the switching points, normalized to

zero, and the mass of establishments that arrives is equal to the born rate multiplied by the

mass. This condition gives rise to the following two equilibrium conditions one to small and

another one to large establishments:

M1

(
−µ̂1f1(0) +

σ2

2
f ′1(0)

)
= −M2b̂2, (14)

−M2

(
−µ̂2f2(0) +

σ2

2
f ′2(0)

)
= M1b̂1. (15)

These two conditions guarantee that the total of mass of establishment is constant in the

stationary equilibrium.

2.6 Household’s problem

Households solve a static consumption-leisure maximization problem:

max
c,n

[u(c)− v(n)] ,
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subject to the budget constraint c = wn + Π + T , where the right-hand side of the budget

constraint is given by the wage income wn, the lump-sum transfer given by the government

T , and the total profits of operating establishments Π. Now, we are ready to define the

equilibrium.

2.7 Equilibrium definition

Definition The stationary equilibrium for this economy is an stationary distribution for

small and large establishments {f1(·), f2(·)}, a value function for small and large establish-

ments {V1(·), V2(·)}, a mass of small and large establishments {M1,M2}, a policy function for

small and large establishments {z1, z2}, prices {w, ρ}, profits Π, transfer T , and household

allocations {c, n}, such that:

i) Given prices and profits, the allocations {c, n} solve the household’s problem.

ii) Given prices, incumbents’ policy functions {z1, z2} and value functions {V1(·), V2(·)}

solve the incumbents’ problem.

iii) The stationary distributions {f1(·), f2(·)} solve the Kolmogorov-Fokker-Planck equa-

tions and determine aggregate profits.

iv) Labor market clears.

v) The flow conditions are satisfied.

vi) The government budget constraint is satisfied, T = τ(n2 − n1)w.

vii) Mass condition M = M1 +M2.

Conditions (i) and (ii) are standard. Condition (iii) is the key condition to find the station-

ary distribution. Condition (iv) is the labor market clearing and condition (v) guarantees
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that the total mass of establishments is constant. Last, condition (vi) guarantees that the

government budget constraint is satisfied and condition (vii) that the mass of establishments

clears. In the next section, we characterize the stationary equilibrium.

3 Solution and characterization

The model is very tractable and we characterize key stationary equilibrium properties in more

detail. From the flow conditions, we characterize the mass of small and large establishments.

After substituting the stationary distributions from Lemma 5 into equations (14) and (15)

we obtain the following condition:

M1
µ̂1

σ2
= −M2

µ̂2

σ2
. (16)

From this condition we obtain the mass of establishments as a function of the stochastic

process. In the case where the drift of small establishments is larger in absolute value

than the drift of large establishments, the above expression implies that in the stationary

equilibrium the mass of small establishments is smaller than the mass of large establishments.

This guarantees that the flows of large and small establishments is constant in the stationary

equilibrium.

We normalize the total mass of establishments to be equal to one. Finding the share of small

and large establishments consist in solving equation (16). Solving the stationary equilibrium

is very simple now, for a given firing costs τ , from Lemma 3, we find the inaction rate θ.

Since profits are linear in wages, the equilibrium wage can be found by solving the labor

market clearing condition, and then after applying the second part of Lemma 3, we find the

policy functions and then the stationary distribution.14

14We leave the formal solution of the stationary equilibrium to the Appendix A.8.
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In Figure 3, we illustrate the impact of firing costs on the stationary distribution. Panel (a)

illustrates the impact of firing costs on the entire distribution, whereas panel (b) focus on

the distribution of large establishments.

x
0

1
x1

(1− eγ1x)
1
x1

(eγ1(x−x1) − eγ1x)

− 1
x2

(1− eα1x)

− 1
x2

(eα1(x−x2) − eα1x)

−γ1eγ1xα1e
α1x

(a) Distribution of (log) TFP

z
z∗

g2(z)

z1/z2z2

g′2(z)

(b) Misallocation Decomposition

Figure 3: Distribution Dynamics

Notes: The figure reports the stationary distribution of establishment TFP for undistorted and distorted

economies. Dashed lines represent the distribution of the undistorted benchmark economy and solid lines for

the distorted economy. Panel (a) reports the distributions of log establishment TFP for the entire economy.

Panel (b) reports the distribution of TFP levels of large establishments. The TFP level, z∗ is the switching

point in the benchmark economy, whereas (z2, z1) is the inaction zone in the distorted economy.

The distribution of TFP in the benchmark economy denoted by f is a combination of the

TFP distribution of large and small establishments. An increase in firing costs makes the

distribution flatter because of inaction. In panel (b), the effect of firing costs is decomposed

into two effects: (i) static misallocation - caused by large establishments that wait longer to

switch reducing the average productivity of large establishments, this is represented by the

area between z2 and z∗, and (ii) dynamic misallocation - caused by the impact firing costs

on the selection of establishments that enter the large establishments’ distribution. When

there are firing costs small establishments wait for a larger productivity to hire workers and

become large, as result, small establishments enter the large establishment’s distribution

with higher productivity. This effect is represented by the area after z1/z2 between the

undistorted economy’s density function and the distorted economy’s density function.
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Since an objective of the paper is to understand the impact of firing costs on aggregate TFP,

we now characterize aggregate TFP in the model as:

TFP = (1− s)E1z + sE2z,

which is the weighted average of the productivity of large and small establishments.15

Changes in firings costs impact aggregate TFP by altering the distribution of large and

small establishments.

4 Quantitative analysis

We consider a benchmark economy with no firing costs and calibrate this economy to data

for the United States. We then study the quantitative impact of firing costs.

4.1 Calibration

We calibrate a benchmark economy with no firing costs to data for the United States. Our

main objective is to study the quantitative impact of firing costs on the distribution of

establishments and on aggregate outcomes relative to the undistorted economy in the same

spirit of Restuccia and Rogerson (2008) and Hsieh and Klenow (2009). We start by defining

briefly our benchmark undistorted economy.

To calibrate this economy, we start by selecting a set of parameters that are standard in the

literature, these parameters have either well-known targets which we match or the parameter

values have been well discussed in the literature. Our calibration follows closely Hopenhayn

and Rogerson (1993). A model period is set to 5 years. Preferences are given by the following

15The weight s is given by s =
M1n

α
1

M1nα
1 +M2nα

2
and M1 is given by M1 = −µ̂2

µ̂2−µ̂1
, where we assume that

M1 +M2 = 1.
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utility function:

[u(c)− v(n)] =
c1−η

1− η
− An.

We select η to be equal to 0.5 and normalize A to be equal to 1. We select M1 equal to

0.5 and we focus on a symmetric stationary equilibrium where the share of large and small

establishments is the same. We normalize the size of small establishments n1 to be equal 1

and we choose the size of large establishments n2 to be equal to 124.2 to match the average

size of establishments equal to 61.7 from Hopenhayn and Rogerson (1993).

Following the literature we assume decreasing returns in the establishment-level production

function and set α equal to 0.64, e.g. Hopenhayn and Rogerson (1993). We select the

discount rate ρ to generate an annual real interest rate of 0.04. We set µ1 equal to 0.27 to

match a 5 percent growth in productivity from Hsieh and Klenow (2014).

We calibrate the remaining parameter σ2 by solving the stationary equilibrium so that the

Gini coefficient of large establishment’s size distribution in the model, −1/(4µ̂2/σ
2 + 1),

matches the corresponding target in the data which is equal to 0.89 from Luttmer (2010).

Table 1 summarizes the calibrated parameter values.

Table 1: Benchmark Calibration to U.S. Data

Parameter Value Target

A 1 Normalization
α 0.64 Literature
ρ 0.04 Literature
η 0.05 Literature
n1 1.00 Normalization
n2 124.20 Average firm size
M1 0.50 Employment share
µ1 0.27 Productivity Growth Rate
σ 0.52 Gini coefficient
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4.2 Firing costs

We quantify the impact of firing costs on aggregate TFP and output by comparing these

statistics in each distorted economy relative to the benchmark undistorted economy.

We study the impact of different firing cost policies by changing τ and report statistics

relative to the benchmark economy. Firing cost τ has a direct interpretation with other

values in the model. Since a period in the model is equal to 5 years, a value of τ equal

to 0.1 corresponds to firing costs equivalent to 6 months’ wages, a value of τ equal to 0.2

corresponds to firing costs of 1 year’s wages, and a value of τ equal to 1 corresponds to firing

costs of 5 year’s wages. We report the results of these experiments in Table 2 for a number

of statistics such as aggregate output, aggregate TFP, and wages. All statistics are reported

relative to the benchmark economy in percent.

Table 2: Effects of Changes in Firing Costs τ

τ

0.1 0.2 1.0

Relative Y 97.9 95.8 79.4
Relative TFP 97.9 95.8 79.4
Relative wages 98.9 97.7 89.1

Notes: Values for τ of 0.1, 0.2, and 1 represent firing costs equivalent to 6 months, 1 year, and 5 year’s

wages. Statistics reported relative to the benchmark economy in percent.

In Table 2 firing costs have a substantial negative impact on aggregate output and TFP.

An economy with 6 months’ wages of firing costs has aggregate output and TFP that is

97.9 percent of the benchmark economy. While an economy with 1 year’s wage of firing

costs has aggregate output and TFP that is 95.8 percent of the benchmark economy, and

an economy with 5 years of firing costs has aggregate output and TFP of 79.4 percent of

the undistorted economy. The negative impact on TFP is much larger than estimates from

the related literature. For example, Hopenhayn and Rogerson (1993) estimate an impact on

26



Table 3: Effects of Changes in Firing Costs τ

τ

0.1 0.2 1.0

Inaction rate θ 0.68 0.61 0.39
Decision rule z1 1.17 1.20 1.21
Decision rule z2 0.80 0.74 0.48

Notes: Values for τ of 0.1, 0.2, and 1 represent firing costs equivalent to 6 months, 1 year, and 5 years’

wages. Statistics reported relative to the benchmark economy in percent.

average productivity relative to a benchmark economy of 99.2 percent for 6 months’ wages

and 97.9 percent to 1 year’s wage and Hopenhayn (2014) estimates the TFP loss of a firing

cost of 5 year’s wages at 7.5 percent.

Overall, differences in output and TFP relative to the benchmark economy are increasing

in the amount of firing costs, more firing costs implies lower TFP and consequently output.

Firing costs distort the employment decisions of establishments. Table 3 contains all this

information relative to the benchmark economy. The first result from Table 3 is that increases

in firing costs decrease the inaction zone rate, increasing the inaction zone, measured by the

difference between z1 and z2.

In Figure 4, we plot the distribution of establishment TFP of the undistorted economy, the

distribution of an economy with 6 months of firing costs, and an economy with a year of

firing costs. The increase in the inaction zone makes the TFP distribution flatter, increasing

its variance. Since wages also decrease, from Table 2, the overall effect on the distribution

of TFP is both a move to the left of the distribution, caused by lower wages, and a flatter

distribution from the increase in the inaction zone.

We now discuss the implications for the results of our assumption of discrete levels of em-

ployment relative to a model with continuous employment such as that in Hopenhayn and

Rogerson (1993) and Hopenhayn (2014). We first note that our model features dispersion
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Figure 4: Stationary Distribution of Establishment TFP for Different Firing Costs
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in marginal products of labor across establishments even in the undistorted economy as

there is dispersion in productivity within large and small establishments due to the discrete

nature of employment levels.16 This dispersion reduces aggregate output and productivity

relative to an economy with continuous employment, but in our assessment of firing costs

we quantify their impact relative to the benchmark economy with discrete levels of employ-

ment. More importantly, the impact of firing costs on aggregate output and productivity is

smaller in a framework with discrete levels of employment than in an economy with continu-

ous employment. The reason is that firing costs mitigate the cost associated with adjusting

employment for other reasons. To the extent that firms in the real world face frictions in

the adjustment of labor that are not due to policy distortions, our model with discrete levels

of employment provides a more accurate—or at least a more conservative—assessment of

the quantitative impact of firing costs on aggregate productivity across countries than in a

setting with continuous employment choices. Nevertheless, our results indicate substantial

amplification effects of firing costs policies due to changes in the distribution of productivity.

16One interpretation of the dispersion in marginal products in the benchmark economy is “real” factor
adjustment costs.
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4.3 Static and dynamic misallocation

The impact of firing costs on misallocation can be decomposed in two effects: a static and

a dynamic. The static effect is the classic impact on the policy function of small and large

establishments, which causes large establishments to switch at lower levels of productivity

and small establishments to switch at higher levels productivity. The dynamic effect is due

to changes in the average productivity of switching establishments. Since in our model the

productivity distribution of establishments is endogenous, when large firms start switching

at lower levels of productivity, this also impacts on the distribution of productivity of small

establishments as switchers to low employment have on average lower productivity than

before, and the opposite is true for large establishments as small firms start switching at

higher level of productivity, the average productivity of switchers to high employment is

higher than before. In Table 4 we quantify these two effects of misallocation on aggregate

TFP.

Table 4: Static and Dynamic Misallocation

τ 0.1 0.2 1.0

Relative TFP 97.8 95.7 79.3
Decomposition:

Static misallocation (%) 10.0 13.0 23.0
Dynamic misallocation (%) 90.0 87.0 77.0

Notes: Values for τ of 0.1, 0.2, and 1 represent firing costs equivalent to 6 months, 1 year, and 5 years’

wages. TFP is reported relative to the benchmark economy in percent.

From Table 4 we observe that the bulk of the negative effects of firing costs on aggregate TFP

are due to dynamic misallocation. When firing costs are the equivalent of 6 months’ wages,

the TFP loss is around 2.2 percent: 90 percent due to dynamic misallocation (2 percent

TFP loss) and 10 percent due to static misallocation (0.2 percent TFP loss). When firing

costs are the equivalent of 5 year’s wages, the TFP loss is 20.7 percent: static misallocation
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accounts for 23 percent (4.8 percent TFP loss) and dynamic misallocation accounts for

77 percent (16 percent TFP loss). As firing costs increase static misallocation becomes

more relevant, but not nearly as relevant as dynamic misallocation. As discussed earlier,

because of our assumption of discrete employment levels, the static effect of misallocation on

TFP is smaller in our model than in models with continuous employment. For instance, in

Hopenhayn and Rogerson (1993), firing costs equivalent to 6 months’ wages reduce average

productivity by 0.8 percent compared to 0.2 percent in our model. In Hopenhayn (2014),

firing costs equivalent to 5 year’s wages reduce TFP by 7.5 percent compared to 4.8 percent

in our model. Nevertheless, in all these cases, the total effect of misallocation on TFP is

much larger in our model because of the negative effect of firing costs on the productivity

distribution.

5 Conclusions

We developed a tractable framework with heterogeneous production units that builds on the

work of Dixit (1989), Hopenhayn (1992), and Hopenhayn and Rogerson (1993). We showed

that in this framework firing costs not only impact the employment decision of establishments

of firing and hiring workers as emphasized by the existing literature, but also impact the

distribution of productivity across establishments. We showed that in a calibrated version of

the model, firing costs have a substantial negative impact on aggregate TFP, a quantitative

effect that is orders of magnitude larger than in the earlier literature. We decomposed the

effect of firing costs on aggregate TFP in two channels: a static misallocation effect and

a dynamic effect through changes in the distribution of establishment productivity. This

decomposition allows us to show that the quantitative impact of the static misallocation

channel is in line with previous estimates in the literature and that the bulk of the effect

of firing costs on aggregate TFP in our model is due to the dynamic channel affecting the

distribution of establishment TFP.
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We also established an equivalence between firing costs and hiring costs. This equivalence

allows us to connect our findings to the vast literature that studies the impact of specific

size-dependent policies on aggregate productivity. In future work, this equivalence could

help connect our framework with micro data in specific contexts to obtain more accurate

empirical estimates of the impact of the much broader size-dependent policies on aggregate

TFP.
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A Appendix

A.1 Proof Lemma 1

The proof is by guessing and verifying. We guess the following functional form for the value
function Wi(z) = ai +Aiz+Biz

βi and solving the Hamilton-Jacobi-Bellman equation we find that

ai = −wni
ρ

, Ai =
ni

α

ρ− µi
and βi is equal to

βi = −
(
µi
σ2
− 1

2

)
±

√(
µi
σ2
− 1

2

)2

+
2ρ

σ2
. (17)

Finally from the boundary and smooth pasting conditions we find B1, B2, z1, and z2 solving the
following system of nonlinear equations:

(1− β1)B1z
β1
1 = (a2 − a1) + (1− β2)B2z

β2
1 , (18)

(1− β1)B1z
β1
2 = (a2 − a1) + (1− β2)B2z

β2
2 + τ(n2 − n1)w, (19)

β1B1z
β1
1 = (A2 −A1)z1 + β2B2z

β2
1 , (20)

β1B1z
β1
2 = (A2 −A1)z2 + β2B2z

β2
2 . (21)

And this conclude the proof. �

A.2 Proof Lemma 2

First we need to show that the positive root of (17) is greater than one. First note that this
polynomial is convex, since Ω′′(β) = 1, and at zero Ω(0) = − ρ

σ2 , which is negative. So, Ω(β) has
a positive and a negative root. At one Ω(1) = µ1

σ2 − ρ
σ2 , since ρ is greater than µ1, Ω(1) is also

negative. Consequently, the positive root must be greater than one. Now, we can prove that B1

and B2 are positive.

From Lemma 1 and the two equations on the smoothing pasting conditions (21) and (21), we can
write B1 and B2 as a function of parameters, z1 and z2, the constant B2 is equal to:

B2 =
(A2 −A1)(z

1−β1
2 − z1−β11 )

β2(z
β2−β1
1 − zβ2−β12 )

. (22)

Note that the numerator is positive (negative), because A2 − A1 is positive and (z1−β12 − z1−β11 )
is positive, since z1 > z2 and β1 > 1, as we can see from (β1 < 1). The denominator is also

positive, because β2 is negative and (zβ2−β11 − zβ2−β12 ) is algo negative. As a result B2 is positive.
Substituting the expression for B2 into equation (21), we find B1 equal to:

B1 =
(A2 −A1)(z1z2)

−β1(zβ21 z2 − z1zβ22 )

β1(z
β2−β1
1 − zβ2−β12 )

. (23)

Note that the numerator is negative, because z1 > z2 and zβ21 < zβ22 since β2 < 0. In addition, the
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denominator is also negative, because (zβ2−β11 − zβ2−β11 ) is negative and β1 is positive, as result B1

is positive. �

A.3 Proof Lemma 3

In order to characterize the inaction zone rate, we first assume that z2 = θz1 for a θ ∈ (0, 1],
substituting z2 = θz1 into the expression of B1 in equation (23) and B2 into equation (22), we find:

B1 =
(A2 −A1)z

1−β1
1 (θ1−β2 − 1)

β1(θβ1−β2 − 1)
, (24)

B2 =
(A2 −A1)z

1−β2
1 (θ1−β1 − 1)

−β2(θβ2−β1 − 1)
. (25)

Second we divide both sides of of the boundary condition (18) and the boundary condition (20) by
(1− β2)B2 and we substitute z2 = θz1 to obtain:

(1− β1)B1

(1− β2)B2
zβ11 − z

β2
1 =

(a2 − a1)
(1− β2)B2

, (26)

(1− β1)B1

(1− β2)B2
(θz1)

β1 − (θz1)
β2 =

(a2 − a1) + τ(n2 − n1)w
(1− β2)B2

. (27)

We can substitute B1 and B2 from equation (24) and (25) into equation (26) and (27) and divide
the two equations to obtain:

ϕ(θ) =
(Ω1(θ) + 1)

(Ω1(θ)θβ1 + θβ2)
=

1

1− ρτ
,

where Ω1(θ) = (1−β1)β2
(1−β2)β1

(θ1−β2−1)(θβ2−β1−1)

(θ1−β1−1)(θβ1−β2−1) .

To find z1 we can substitute B1 and B2 from equations (26) and (27) into the boundary condition
(18), after some algebraic manipulation we find z1 equal to:

z1 =
−
[
n2
ρ −

n1
ρ

]
[

nα2
ρ−µ2 −

nα1
ρ−µ1

]Ω2(θ)w,

where Ω2(θ) = β1β2(θβ2−β1−1)(θβ1−β2−1)
((1−β1)β2(θ1−β2−1)(θβ2−β1−1)+(1−β2)β1(θ1−β1−1)(θβ1−β2−1))

. �

A.4 Proof Lemma 4

Consider the optimal switching problem of small and large establishments facing a hiring cost.
This problem is characterized by the two value matching conditions one for small and one for large
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establishments and by the two smoothing pasting conditions:

V1(z1) = V2(z1)− τhw(n2 − n1),
V1(z2) = V2(z2),

V ′1(z1) = V ′2(z1),

V ′1(z2) = V ′2(z2).

From Lemma 1 we know that the solution of this problem is given by two roots that solve the

polynomial βi = −
( µi
σ2 − 1

2

)
±
√( µi

σ2 − 1
2

)2
+ 2ρ

σ2 for i ∈ {1, 2}, and by the constants {B1, B2} and

the policy functions {z1, z2} solve the two value matching conditions and the two smoothing pasting
conditions together. Note that for a given stochastic process for small and large establishments the
two roots are the same in the case of firing or hiring costs. Following the same methodology as
Lemma 3, we find:

ϕ(θ) =
(Ω1(θ) + 1)

(Ω1(θ)θβ1 + θβ2)
= 1 + ρτh,

where Ω1(θ) = (1−β1)β2
(1−β2)β1

(θ1−β2−1)(θβ2−β1−1)
(θ1−β1−1)(θβ1−β2−1) . Since ϕ(θ) only depends on β1 and β2 that are indepen-

dent of the costs we find that for a given hiring costs τh there exist a firing costsτ that solves

1

1− ρτ
= 1 + ρτh

and generate the same inaction zone rate θ. �

A.5 Small establishment’s stationary distribution

In order to find the stationary distribution of small establishments we apply the same methodology
as in the distribution of large establishments. First, let m1(x, t) denote the number density func-
tion of small establishments. At time t, the small establishments productivity process follows the
modified Kolmogorov-Fokker-Planck equation below:

∂m1(x, t)

∂t
= −µ̂1

∂m1(x, t)

∂x
+
σ2

2

∂2m1(x, t)

∂x2
+B1(x, t), (28)

where the function B1(x, t) are the new small establishment that arrival with productivity x at
time t. The partial differential equation (28) is supplement by the two boundary conditions

lim
x→−∞

m1(x, t) = 0 and lim
x→−∞

∂m1(x, t)

∂x
= 0

where in the case of small establishments the boundary conditions are at the bottom of the dis-
tribution. We are interested in solving for the steady state productivity distribution, as in the
case of large establishments, we look for a solutions with the form m1(x, t) = M1(t)f1(x) and
B1(x, t) = M1(t)b1(x), where substituting in the Kolmogorov-Fokker-Planck equation we find:

M ′1(t)

M1(t)
f1(x) = −µ̂1f ′1(x) +

σ2

2
f ′′1 (x) + b1(x− x2), (29)
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and the new boundary conditions:

lim
x→−∞

f1(x) = 0,

lim
x→−∞

f ′1(x) = 0,

and the additional requirement that f1(x) is also a pdf leads to the conditions:

f1(x) ≥ 0,∫ 0

−∞
f1(x)dx = 1,

where now differently from large establishments, small establishment domain is from minus infinity
to zero. As in the large establishment problem, we calculate the separation rate of small establish-
ments by integrating equation (29) from minus infinity to zero, where small establishment decide
to become large. The growth rate for small establishment η1, is given by

η1

∫ 0

−∞
f1(x)dx =

(
−µ̂1f1(x) +

σ2

2
f ′1(x)

)∣∣∣∣x=0

−∞
+

∫ +∞

0
b̂1δ(u)du,

and applying the boundary conditions and using the delta function, we find that growth rate of
small firms is equal to:

η1 = −µ̂1f1(0) +
σ2

2
f ′1(0) + b̂1,

which has the same interpretation as in the large establishment case. As in the large establishments,
we look for the stationary equilibrium in which the number of small establishments does not grow
over time, which restricts η1 to be equal to zero. Now, we can rewrite the Kolmogorov-Fokker-
Planck equation by substituting η1 we obtain:

−µ̂1f ′1(x) +
σ2

2
f ′′1 (x) + b̂1δ(x− x2) = 0,

subject to the boundary conditions f1(0) ≥ 0 and

∫ 0

−∞
f1(x)dx = 1. Therefore, the stationary pdf

is the solution of the boundary-value problem that consists of solving the equation:

f ′′1 (x)− α1f
′
1(x) + α2δ(x− x2) = 0,

and the boundary conditions f1(0) ≥ 0 and

∫ 0

−∞
f1(x)dx = 1, where the constants α1 and α2 are

given by

α1 =
2µ̂1
σ2

and α2 =
2b̂1
σ2

.

37



A.6 Proof Lemma 5

The stationary pdf is the solution of the boundary-value problem that consists of solving the
equation:

f ′′2 (x)− γ1f ′2(x) = −γ2δ(x− x1),

subject to the boundary conditions f2(0) ≥ 0 and

∫ +∞

0
f2(x)dx = 1. As in the undistorted economy

case, Lemma 6, we are going to use Laplace transforms. After some algebraic manipulation we
obtain the following equation:

(s2 − γ1s)Y (s) = f ′2(0) + (s− γ1)f2(0)− γ2e−sx1 ,

and

Y (s) =
f ′2(0) + (s− γ1)f2(0)− γ2e−sx1

(s− γ1)s
.

Note that Laplace inverses of each component is equal to:

L −1
[

1

s(s− γ1)

]
=

1

γ1
(eγ1x − 1) ,

L −1
[

1

s

]
= 1,

L −1
[

e−sx1

s(s− γ1)

]
=

H(x1)

γ1

[
eγ1(x−x1) − 1

]
,

where H(x1) is Heaviside step function given by:

H(x1) =

{
0 if x ≤ x1,
1 if x > x1.

Substituting the Laplace inverses in the second oder differential equation give us the stationary
distribution for large firms:

f2(x) =
f ′2(0)

γ1
(eγ1x − 1)− γ2

H(x1)

γ1

[
eγ1(x−x1) − 1

]
+ f ′2(0).

Note that f2(0) must be equal to zero in order to the integral to be bounded. This boundary
condition guarantee the mass of firms that are indifferent between switching or not is equal to zero.
Now substituting the Heaviside step function H(x1) we find:

f2(x) =


f ′2(0)
γ1

(eγ1x − 1) if x ≤ x1,

f ′2(0)
γ1

(eγ1x − 1)− γ2
γ1

[
eγ1(x−x1) − 1

]
if x > x1.

We only need to solve for f ′2(0) to have the complete characterization of the large establishments
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distributions. We find f ′2(0) to guarantee that that the integral of f2(·) is one.

f ′2(0)

γ1

∫ +∞

0
(eγ1x − 1) dx− γ2

γ1

∫ +∞

x1

(
eγ1(x−x1) − 1

)
dx = 1,

where we can rewrite the integral above as:

f ′2(0)

γ1

∫ +∞

0
eγ1xdx− γ2

γ1

∫ +∞

x1

eγ1(x−x1)dx− f ′2(0)

γ1

∫ x1

0
1dx−

(
f ′2(0)

γ1
− γ2
γ1

)∫ +∞

x1

1dx = 1.

The last term of the integral is zero, so the mass of establishments is constant in equilibrium, by
integrating all the other terms we find the following expression:

−f
′
2(0)

γ21
+
γ2
γ21
− f ′2(0)

γ1
x1 = 1.

Substituting γ2 gives

−f
′
2(0)

γ21
+
f ′2(0)

γ21
− f ′2(0)

γ1
x1 = 1,

as a result, f ′2(0) = − γ1
x1

= − 2µ̂2
x1σ2 .

Now we can solve for the small establishment’s distribution, first we are going to change variables.
Let f1(x) = g(−y) and δ(x) = δ(−y), we can rewrite the second order differential equation for
small establishment as:

g′′(−y) + α1g
′(−y) = −α2δ(−y − x2).

After some algebraic manipulation we obtain the following equation:

(s2 − α1s)Y (s) = −g′(0) + (s+ α1)g(0)− α2e
−sx2

and

Y (s) =
−g′(0) + (s+ α1)g(0)− α2e

−sx2

(s+ α1)s
.

Applying the Laplace inverse as in the large establishment case we obtain the following equation:

g(−y) =
−g′(0)

α1

(
1− e−α1y

)
− α2

α1
H(x2)

[
1− (y − x2)e−α1(y+x2)

]
+ g(0),

using that

f1(x) =
f ′1(0)

α1
(1− eα1x) +

α2

α1
[1−H(x2)]

[
eα1(x−x2) − 1

]
+ f1(0).

Note that again as in the large establishment case we need to impose the boundary condition
f1(0) = 0 to guarantee that integral is bounded and we use again the symmetric Heavside function
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H(x2) equal to

1−H(x2) =

{
0 if x ≥ x2,
1 if x < x2.

Last we obtain the following stationary distribution,

f1(x) =


f ′1(0)
α1

(1− eα1x) + α2
α1

(1− eα1(x−x2)) if x < x2,

f ′1(0)
α1

(1− eα1x) if x ≥ x2.

We only need to solve for f ′1(0) to have the complete characterization of the small establishments
distribution. We find f ′1(0) to guarantee that the integral of f1(x) is one.

f ′1(0)

α1

∫ 0

−∞
(1− eα1x) dx+

α2

α1

∫ x2

−∞

(
1− eα1(x−x2)

)
dx = 1,

where we can rewrite the integral above as:

−f
′
1(0)

α1

∫ 0

−∞
eα1xdx− α2

α1

∫ x2

−∞
eα1(x−x2)dx− f ′1(0)

α1

∫ x1

0
1dx−

(
f ′1(0)

α1
+
α2

α1

)∫ x2

−∞
1dx = 1.

From the labor market clearing we find that the last term of the integral is zero, by integrating all
the other terms we find the following expression:

−f
′
1(0)

α2
1

− α2

α2
1

− f ′1(0)

α1
x2 = 1.

Substituting α2 we obtain

−f
′
1(0)

α2
1

+
f ′1(0)

α2
1

− f ′1(0)

α1
x2 = 1,

as a result, f ′1(0) = −α1

x2
= − 2µ̂1

x2σ2
. �

A.7 Proof Lemma 6

The stationary large establishment’s pdf is the solution of the following second order differential
equation

f ′′2 (x)− γ1f ′2(x) = −γ2δ(x),

where the constants γ1 and γ2 are given by γ1 =
2µ̂2
σ2

and γ2 =
2b̂2
σ2

, subject to the boundary

conditions f2(0) ≥ 0 and

∫ +∞

0
f2(x)dx = 1.

We solve the boundary-value problem using Laplace transforms. By applying Laplace transforms
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in equation (A.7) we obtain:

(s2 − γ1s)L [f(x)]− (s− γ1)f2(0)− f ′2(0) = −γ2L [δ(x)],

and after some algebraic manipulation, we find:

(s2 − γ1s)Y (s) = (f ′2(0)− γ1f2(0)− γ2) + sf2(0).

First note that the first term between parenthesis in the right hand side is equal to zero, because
the growth rate of large firms η2 is equal to zero. So, we can simplify the expression and above and
obtain:

Y (s) = f2(0)
1

(s− γ1)
,

and after solving for the Laplace inverse we obtain f2(x) = f2(0)eγ1x. Now we need to find the
constant f2(0) = −γ1 to guarantee that the integral over the domain is equal to one. In addition,
note that the solution above only satisfy the boundary condition for γ1 negative.

For the small establishment distribution, we are going to follow the same methodology. The sta-
tionary small establishment’s pdf is the solution of the following second order differential equation

f ′′1 (x)− α1f
′
1(x) = −α2δ(x),

subject to the boundary conditions f1(0) ≥ 0 and

∫ 0

+∞
f2(x)dx = 1. We solve the boundary-value

problem using Laplace transforms and after some algebraic manipulation we obtain:

(s2 − α1s)Y (s) = (f ′1(0)− α1f1(0)− α2) + sf1(0),

as in the large establishment’s distribution, the term between the parenthesis is also zero, because
small establishments do not grow η1 = 0. We can simplify the expression and above and obtain:

Y (s) = f1(0)
1

(s− α1)
,

and after solving for the Laplace inverse we obtain f1(x) = f1(0)eα1x. Now we need to find the
constant f1(0) = α1 to guarantee that the integral over the domain is equal to one. In addition,
note that the solution above only satisfy the boundary condition for α1 positive. �

A.8 Stationary equilibrium

Formally, we find M1,M2, z1, z2, and w are obtained by solving the following 5 equations:

(1) The inaction rate θ is found by solving the non-linear equation from Lemma 3:

(Ω1(θ) + 1)

(Ω1(θ)θβ1 + θβ2)
=

1

1− ρτ
,
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where Ω1(θ) = (1−β1)β2
(1−β2)β1

(θ1−β2−1)(θβ2−β1−1)
(θ1−β1−1)(θβ1−β2−1) and βi = −

( µi
σ2 − 1

2

)
±
√( µi

σ2 − 1
2

)2
+ 2ρ

σ2 for i ∈
{1, 2}.

(2) We find the mass of small establishments M1 using the enter and exit condition:

M1
µ̂1
σ2

= −(1−M1)
µ̂2
σ2
,

and

(3) we find M2 as a residual since M2 = 1−M1

(4) The wage w is found using the labor market clearing condition:

w = A
−1

(η−1)

(
M1n

α
1

α1

1 + α1
κΩ2(θ) +M2n

α
2

γ1
1 + γ1

κΩ2(θ)θ

) −η
(η−1)

,

where γ1 = 2µ̂2
σ2 , α1 = 2µ̂1

σ2 , and Ω2(θ) = β1β2(θβ2−β1−1)(θβ1−β2−1)
((1−β1)β2(θ1−β2−1)(θβ2−β1−1)+(1−β2)β1(θ1−β1−1)(θβ1−β2−1))

.

(5) The policy functions z1 and z2 are now characterized using Lemma 3:

z1 = κΩ2(θ)w and z2 = θz1

where Ω2(θ) = β1β2(θβ2−β1−1)(θβ1−β2−1)
((1−β1)β2(θ1−β2−1)(θβ2−β1−1)+(1−β2)β1(θ1−β1−1)(θβ1−β2−1))

.

In order to calculate TFP we defineψ as the share of small establishments and 1 − ψ the share of
large establishments. Then, the share of small establishment are such that ψµ̂1 = −(1 − ψ)µ̂2, as
result, ψ = −µ̂2

µ̂2−µ̂1 , and aggregate TFP in the model is defined by:

TFP =
ψnα1E1z + (1− ψ)nα1E2z

ψnα1 + (1− ψ)nα2
.

In the case where there is no firing costsTFP is given by:

TFPu =
ψnα1

α1
(1+α1)z∗ + (1− ψ)nα2

γ1
(1+γ1)

z∗

ψnα1 + (1− ψ)nα2
,

while in the case where there is firing costs, the TFP in the economy is given by:

TFPd =
ψnα1

α1
(1+α1)z1

(
ex2
x2
− 1

x2

)
+ (1− ψ)nα2

γ1
(1+γ1)

z2

(
ex1
x1
− 1

x1

)
ψnα1 + (1− ψ)nα2

.
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