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1 Introduction

Applied researchers are faced with a multitude of decisions when constructing statistical

models, such as which variables to include in the model, how those variables are related to

the outcome variable, and how that mapping may vary across the units in the population.

While theory is often helpful in addressing the first issue, it is rare that the question of

interest can be answered in complete statistical generality, necessitating decisions about the

empirical specification. This process of determining the statistical model is often ad hoc, with

the researcher adding and removing variables and interactions in a non-systematic fashion,

either as a result of intuitive exploration or in the process of producing so-called “robustness

checks.” Two major issues arise from this process: the resulting statistical model after the

search may have different statistical properties than the original model, as the result of

choosing the specification on the basis of the answers it produces. The second problem is

that the researcher often only considers a subset of the possible modeling choices, potentially

introducing specification bias in the estimates. The aim of this paper is to propose a method

that addresses both of those issues, recovering the correct specification in a systematic fashion

without introducing bias in the estimates due to the search process.

Our method builds on classification trees, a technique from the computer science and ma-

chine learning literature for grouping observations in a sample together on the basis of some

criterion function. We leverage these methods to assign statistical models to disjoint sets of

a sample. As opposed to standard mixture models, e.g., a random coefficients logit, where

individuals are assigned a type from some distribution but are assumed to follow one model,

our method assigns a model with certainty to a group of observations. Using recent results on

growing honest trees (Cappelli, Mola, and Siciliano (2002), Wager and Athey (2015), Athey

and Imbens (2015)), we randomly split our sample into two halves. In the first sample, we

estimate how models should be assigned to observations. We then estimate the parameters

of those models using the second sample. Our contribution to the econometric theory is in

showing the uniform convergence of conditional moment-based semiparametric models that

use classification trees to control for unobserved heterogeneity. Classification and regres-

sion trees are local estimators that aggregate information from the data in the shrinking

neighborhoods of the parameter space. In this paper we show that if the complexity of the

unobserved heterogeneity is relatively low (i.e. the number of components of the unobserved

heterogeneity grows sublinearly with the sample size) then classification tree does not affect

uniform convergence of the semiparametric conditional moment function over the values of
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the finite-dimensional parameter. We also show that a simple version of the bootstrap yields

valid confidence sets for estimated parameters.

Our setting is one with a long academic literature. The academic medical community has

long struggled with this issue, where it is commonly referred to as subgroup analysis.1 The

basic issue is that researchers, through statistical ignorance (or more nefarious motivations),

may search across subgroups given a treatment until they find one with a statistically sig-

nificant deviation from the baseline. Only emphasizing this finding, while typically ignoring

those other groups for which the effect is zero, leads to substantial reporting bias and can

provide misleading policy implications. This problem has become so severe in the medical

literature that it is becoming common to pre-announce your testing hypotheses in public

before engaging on a clinical trial via a “pre-analysis plan.” This practice has also started

to become more widespread in economics, particularly in development.2

The problem of determining which models apply to which groups of observations is pervasive

in economics. A simple example provides clear motivation; suppose that the researcher is

interested in estimating the relationship between some outcome, yi, and a vector of observable

characteristics, xi. A simple linear regression encapsulating these relationships might be:

yi = xiβ + εi, (1.1)

where εi is an additive error term. Ignoring complicating issues such as selection bias, omitted

variables, and measurement error, the researcher faces a problem of determining the form

of the relationship between x and y. In principle, one can run a completely nonparametric

regression, but in practice this is rarely, if ever, done for reasons of computational burden,

lack of data, and poor statistical properties. Instead, researchers often take the following ad

hoc heuristic approach to estimation.

First, either on the basis of theory or intuition, they estimate a “baseline” statistical model

that estimates a common parameter vector across all observations. This might be a simple

specification where all covariates are additive and separable. While some papers stop there,

a common next step, especially in modeling settings where the estimation’s computational

burden may not present significant barriers to repeated specification testing, is to estimate

1See, for example, Assmann, Pocock, Enos, and Kasten (2000).
2The Hypothesis Registry at J-PAL (https://www.povertyactionlab.org/Hypothesis-Registry)

is an early example; it is now subsumed by the the AEA RCT Registry (https://www.
socialscienceregistry.org/).
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a sequence of models where the parameters are allowed to vary across observations in some

observable fashion. These models often take the form of interactions between demographic

characteristics and outcomes. For example, Card (1999), in an influential chapter in the

Handbook of Labor Economics, has a section discussing observable heterogeneity with many

citations to prominent papers using statistical models with interaction effects. While econo-

metric theory exists for various specification tests for growing or pruning models, this step

is rarely guided by formal econometric intuition. Instead, the researchers consider a (small)

finite number of specifications to run and report those results as “robustness checks.” Ro-

bustness checks are pervasive throughout applied economics at the very highest level across

all fields in economics; see e.g., Chetty, Hendren, and Katz (2015) in education, Baner-

jee, Barnhardt, and Duflo (2016) in development, Collard-Wexler and De Loecker (2015) in

industrial organization, Barreca, Clay, Deschênes, Greenstone, and Shapiro (2015) in envi-

ronmental, Doyle, Graves, Gruber, and Kleiner (2015) in health, and Heckman, Pinto, and

Savelyev (2013) in labor. As a signal of what is being emphasized in graduate schools, every

single one of the 2016 Ph.D. job market candidates at a top university writing in an applied

field had some variety of robustness checks in their job market paper.3

While the desire to have a sense that one’s estimates are not sensitive to the particular

modeling choices made in forming those estimates is clearly laudable, there are two important

limitations to this approach. The first is that these checks are rarely exhaustive or guided

by some econometrically sound search process. One may erroneously conclude that the

estimates are robust simply due to the subset of specifications that were chosen. In models

with discrete variables, it is generally unheard of to see results that estimate the model on all

subsets of the data. For one reason, there are typically too many subsets to consider. This

problem becomes infinitely-dimensional when continuous variables are introduced, as any

and all sub-intervals of the continuous variable may be considered. The other reason brings

us to our second concern: the statistical properties of models constructed after a researcher

searches through the model space are not the same as those if the models were predefined.

One must account for that search process in order to engage in proper inference. That is

the exact motivation for our paper, and the rest of the paper is organized around discussing

the estimator (Section 2), developing its statistical properties (Sections 3-5), showing its

small-sample performance in a Monte Carlo (Section 6), and applying it to a regression

discontinuity design in a development setting (Section 7). Section 8 concludes.

3A majority have a section expressly labeled “Robustness Checks.”
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2 The Estimator

Decision trees are an example of a recursive binary partitioning algorithm. Trees start with

an initial “stump,” with all the data grouped together, and proceed to recursively split the

data along one dimension of the data at a time according to some criterion. For continuous

variables, the algorithm chooses a split point somewhere along their support. For discrete

variables, it searches over all disjoint binary sets. The split generates two disjoint sets of the

data, each known as a “leaf.” The algorithm repeats this process on each leaf, cutting the

data into smaller and smaller subsets until a stopping criterion is met. The literature has

considered several stopping criteria, such as requiring the number of observations in each

leaf to be above some minimum integer k, requiring the proportion of data in each leaf to

be at least some α, or requiring the improvement in the criterion function after the split to

be greater than some threshold. We will consider the use of all three of these criteria, where

their critical values will be set using cross-validation on a holdout sample.

Many variants of trees fall under the broad umbrella of decision trees. Two of the most

common are classification trees and regression trees. Classification trees vote for assignment

for an observation into a group on the basis of the observable variables; the criterion function

is typically “node impurity,” a measure of the dissimilarity of observations in a given node.

Regression trees fit the average value of the subsample’s dependent variable; the criterion

function is the mean squared error within the leaf.

Our approach uses a variant of a classification tree that we term a moment tree. Like classi-

fication trees, we seek to group together observations that have the same parameter vector

conditional on observable X. However, our criterion function is a moment function, which

models the dependent variable as some function of the observable variables, parameters, and

unobservable shocks. We recursively partition the data on the basis of observables into K

sets, X = {X1, . . . , XK}, and assign a unique parameter vector, θk, for each Xk to solve a

moment function in that subgroup:

E[m(Y ;Xk, θk)] = 0. (2.2)

If the moment function cannot be satisfied in a given sample, the leaf is assigned a value of

null.

Our approach relies on the use of so-called “honest trees,” which are implemented by splitting

the data into two samples. In the first sample, one grows the classification tree. In the
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second sample, the tree is taken as given but the values of the θ at each leaf are estimated

using the second sample. We show below formally that this guarantees that the tree is

estimated uniformly, and that the researcher can ignore the statistical error in the first

phase of estimating the model specification when calculating standard errors in the second

phase, as we show that, under certain regularity conditions, the rate of convergence of the

first step is faster than parametric.

At the stump, our model is exactly the same as a standard GMM-based model, which

encompasses an extraordinarily large class of empirical problems. One solves for the θ using

the entire sample and computes the value of the GMM criterion function. Our approach

extends the GMM approach by considering an addition step, which is to then search over all

split of the data along each X to find the split that most decreases the value of the GMM

criterion function across the two subsets.

The literature has considered many variants of the basic decision tree approach. One vari-

ation that we adopt here is the extension of our moment tree to a moment forest. Forests

are formed by repeatedly resampling the data with replacement and then growing a tree on

each resampled data set. A key difference from the standard tree is that only a random

subset of p variables are considered for splitting at each node. The estimate of θk is then

the arithmetic average of the θk across all trees in the forest. This approach has at least two

benefits; first, it is possible to show that one can reduce mean-squared prediction error down

to irreducible structural error using resampling; and second, it allows the method to scale

with large dimension X datasets, as only a subset of X is searched over at each split. To see

the first property, let φ(x) be a predictor of Y in a given sample, and let µ(x) = Ex(φ(x))

be its expectation. Then:

E([Yx − φ(x)]2) = E([(Yx − µ(x)) + (µ(x)− φ(x))]2)

= E([Yx − µ(x)]2) + 2E(Yx − µ(x))E(µ(x)− φ(x)) + E([µ(x)− φ(x)]2)

= E([Yx − µ(x)]2) + E([µ(x)− φ(x)]2)

= E([Yx − µ(x)]2) + V ar(φ(x))

≥ E([Yx − µ(x)]2).

We note that instead of estimating θ using a simple average of the θ in each tree of the

moment forest, one can instead compute an inverse-variance weighted average to increase

accuracy of the estimated parameter. Intuitively, estimates from trees with high standard
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errors are downweighted relative to more precise estimates from other trees. Standard errors

are then calculated using the bootstrap applied to the construction of the entire random

forest. While computationally intense, we have found that in practice this resampling to

greatly improve the performance of our estimator.

The next section provides a formal analysis of the econometric properties of our proposed

estimator.

3 Econometric Theory

3.1 Classification forest for moment models

We consider a general model which is defined by moment function ρ(·; ·) : Y × Θ 7→ M,

where Y is a subset of Rn, Θ is a convex compact subset of Rp and M is a subset of Rm.

We assume that the data generating process is characterized by vector of random variables

(Y,X) where random variable X takes the values in X ⊂ Rq.

The data generating process can characterized by the marginal distribution of random vector

X. We assume that this distribution has an absolutely continuous density fX(·). Our results

will apply to the cases where some of the components of X are discrete. The DGP is also

characterized by the mixture over continuous distributions fkY |X(· |x). The mixture weights

πk(·) are functions of the vector Z which is a strict subset of X. The support of Z, Z is

an open convex susbset of Rr (r < q). The number of mixture components is bounded by

K̄ <∞.

ASSUMPTION 1. Suppose that K is the actual number of mixture components. Then for

each 1 ≤ k ≤ K there exists a convex compact subset Zk ⊂ Z such that πk(z) = 1 for all

z ∈ Zk.

We formulate the econometric problem as the problem of estimation of the collection {K, {θk}Kk=1}
that includes the number of mixture components K and a set of parameters θk such that

Ek[ρ(Y ; θk) |X = x] = 0, (3.3)

where Ek[·|X = x] corresponds to the expectation taken with respect to the mixture compo-

nent k. We assume that both order and rank conditions are satisfied for each θk. Moreover

for a given fixed δ > 0 and for any k 6= p we have ‖θk − θp‖ ≥ δ.
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We now develop tree-based algorithm to estimate {K, {θk}Kk=1} in Model (3.3).

For our analysis we use the notion of the random forest that will be based on the applica-

tion of classification trees. The classification tree partitions the set Z into non-overlapping

rectangles. Then each rectangle is assigned the label k and parameter θk corresponding to

the appropriate component of the distribution mixture if such assignment is possible. We

reserve label 0 and ∅ instead of the estimated parameter for the case where a particular

element of the partition cannot be classified.

In our further analysis we assume that continuous components of Z lie in the interior of the

hypercube. This can be done without loss of generality since any open convex sets in Rr

are homeomorphic, i.e. we can define a one-to-one mapping from Z to the interior of the

hypercube in Rr. Our further analysis will then apply once Z is mapped into the hypercube.

The partitioning is performed recursively such that the algorithm begins with considering

the set S(0) = Z ⊂ Rr (parent node of the tree). For this set we select dimension 1 ≤ d ≤ r

and the threshold c such that S(0) is split into two children S(1,1) = S(0) ∩ {z ∈ S(0) | zd ≤ c}
and S(1,2) = S(0) ∩ {z ∈ S(0) | zd > c}. If the component d is discrete, then we choose a

particular value c of zd and split S(0) into two children S(1,1) = S(0) ∩ {z ∈ S(0) | zd = c} and

S(1,2) = S(0) ∩ {z ∈ S(0) | zd 6= c}.

Then at split k we choose one of k + 1 sets S(k,i). Then we choose the dimension d and,

assuming that it is continuous, we select the threshold c and construct two sets S(k+1,i) =

S(k,i) ∩ {z ∈ S(k,i) | zd = c} and S(k+1,k+2) = Sk,i ∩ {z ∈ S(k,i) | zd 6= c}. Then we re-index the

remaining sets S(k,j) as S(k+1,j).

The sequence of k splits induces the partition of Z which we denote S. By L we denote a

generic leaf of the partition. Also, let L(z) be the element of S containing the point z. L(z)

will also be called the leaf of the classification tree containing z.

Following Wager and Walther (2015) we define {α, k}-valid partition S as a partition gen-

erated by the recursive partitioning in which each node contains at least a fraction α of the

data points in its parent node for some 0 < α < 1
2

and each terminal node contains at least k

observations. Use the notation Σα,k ({zi}ni=1) to denote the set of all {α, k}-valid partitions

of the sample.

The idea behind the construction of the classification tree is the following. Suppose that L
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is a leaf of the classification tree. If L ⊆ Zk for some k, then the moment condition

E[ρ(Y, θ) |X = x] =
K∑
l=1

El[ρ(Y, θ) |X = x]πl(z) = Ek[ρ(Y, θ) |X = x] = 0

has a solution θk for each point of L. However, if L 6⊂ Zk for any k, then the moment

condition above does not have solutions.

We associate the unknown conditional expectation Ek[· |X = x] with an infinite-dimensional

parameter which we denote η ∈ H. Then we consider an estimator for the moment function

m(x; θ, η) = E[ρ(Y, θ) |X = x], denote it m̂(x; θ). We take weighting function w(·) : X 7→
Rp such that E[w(X)w(X)′] < ∞ and E[w(X)∂m(X;θ,η)

∂θ′
] has full rank for each η ∈ H and

for all θ in some fixed neighborhood of θk. In that case the finite-dimensional parameter of

interest θk is identified from any leaf L ⊆ Zk that generates function

ML(θ, η) = E [w(X)m(X; θ, η) 1{Z ∈ L}]

Then we estimate the conditional expectation that yields m(x; θ, η̂). Thus corresponding

sample analog for M(·, ·) can be constructed as

M̂L(θ, η̂) =

∑
i : zi∈L

w(xi)m(xi; θ, η̂)

#{i : zi ∈ L}

The classification will be based on the norm ‖ · ‖ and the threshold Mn > 0. For the valid

partition we define the classification tree such that for each element of partition

TS : S 7→ Θ ∪ ∅,

and

TS(L) =

{
arg infθ ‖M̂L(θ, η̂)‖, if infθ ‖M̂L(θ, η)‖ ≤Mn,

∅, otherwise.

In other words, the classification tree returns the parameter that solves the empirical moment

condition if the minimum of the moment function is below the pre-set threshold. If the

minimum is above the threshold (meaning that the solution that equates the moment function

to zero cannot be found), then the tree returns null. Inside the leaves where the minimum
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is below the threshold we can replace the procedure with solving equation

M̂L(θ, η̂) = o(1)

which corresponds to the standard Z-estimator. The leaves of the tree are then assigned

integer labels based on the inferred parameters. For a given δn > 0 we assign two leaves L

and L′ the same integer label if ‖TS(L) − TS(L′)‖ ≤ δn. The family of {α, k}-valid trees is

denoted Tα,k({zi}ni=1).

Then the partition-optimal tree can be defined using the moment function

ML(θ, η) = E[w(X)m(X; θ, η) |Z ∈ L]

and the norm ‖ · ‖ such that

T ∗S : S 7→ Θ ∪ ∅

with

T ∗S(L) =

{
arg infθ ‖ML(θ, η)‖, if infθ ‖ML(θ, η)‖ = 0,

∅, otherwise.

Further, using the notation of Wager and Walther (2015), we define partition-optimal forests

by considering a bootstrap sample of size B and the collection of {α, k}-valid classification

trees TS(1), . . . , TS(B) ∈ Tα,k ({zi}ni=1) and define {α, k}-valid random forest.

To do that let

Kk = {(L, b) ∈ Λ×{1, . . . , B} : ∀ (L, b), (L′, b′), ‖TS(b)(L)−TS(b′)(L′)‖ < δ, dH(L,L′) < ∆},

where dH(·, ·) is the Hausdorff distance. Let K̄ = ∪kK and K̄ = # K̄. Then the random

forest is defined as a mapping

H{S(b)}Bb=1
: {1, . . . , K̄} 7→ Θ ∪ ∅,

such that

H{S(b)}Bb=1
(k) =

1

#Kk
∑

(b,L)∈Kk
TS(b)(L).

The set of {α, k}-valid random forests is denoted Hα,k ({zi}ni=1). The partition-optimal forest
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is defined using the notion of the partition-optimal tree with

H∗{S(b)}Bb=1
(k) = θk, k = 1, . . . , K

for all partitions S such that for each Zk, k = 1, . . . , K there exists a leaf L ∈ S with

L ⊆ Zk.

3.2 Implementation of honest splitting rules

Wager and Athey (2015) propose to use an application of a cross-validation procedure to

evaluate the tree splits. We adapt this idea to the evaluation of moment classification trees.

We split the sample into two subsamples, where one subsample is used to estimate the

moment functions m̂(θ;x) and the other one is used to split Z into rectangles.

To implement the procedure we take the sample {yi, xi, zi}ni=1. First, we draw a subsample

of size s from this sample without replacement and split it into two non-overlapping subsets

Dt and Dv.

Second, using the subset Dt we grow the tree.

Third, once the splits are made, we compute parameters and assign labels based on the

minimization of the empirical moment function M̂L(θ, η̂) for each leaf using sample Dv.

We adhere to a specific methodology for growing the tree, since unlike standard regression

trees, the classification tree can assign a null label to elements of partition. The goal of

the recursive splitting is to ensure that estimated moment function well approximates the

true moment function defined by (3.3). Then we consider the weighted norm ‖ · ‖ with the

positive definition weighting matrix Ω such that

‖a‖2 = a′Ω a

and compute the overall prediction error for a given L as∑
i∈Dv

∑
L∈S

‖w(xi)ρ(yi; θ
∗
L)1{zi ∈ L} −ML(θ̂, η̂)1{zi ∈ L}‖2,

where

θ∗L = arg inf
θ
‖E [w(X)m(X; θ, η) 1{Z ∈ L}]‖
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and

θ̂L = arg inf
θ
‖ML(θ, η̂)‖ .

The prediction error can be further re-written as

∑
i∈Dv

∑
L∈S

(
‖w(xi)ρ(yi; θ

∗
L)‖2 + ‖ML(θ̂L, η̂)‖2 − 2 ρ(yi; θ

∗
L)′w(xi)

′ΩM(θ̂L, η̂))

)
1{zi ∈ L}.

Provided that ML(·, ·) is fixed within the leaf L and there is a single minimizer θ̂L of ML(·.η̂)

for all L ∈ S, then we can re-write∑
i∈Dv

ρ(yi; θ
∗
L)′w(xi)

′ΩML(θ̂L, η̂)) =
∑
L∈S

∑
i : zi∈L

ρ(yi; θ
∗
L)′w(xi)

′ΩML(θ̂L, η̂)).

Under technical conditions that we discuss further, we can show that

1

#{i : zi ∈ L}
∑
i : zi∈L

w(xi)ρ(yi; θ
∗
L) = M(θ̂L, η̂)) + op(1).

This means that∑
i∈Dv

ρ(yi; θ
∗
L)′w(xi)

′ΩM(θ̂L, η̂)) =
∑
L∈S

#{i : zi ∈ L}M(θ̂L, η̂))′ΩM(θ̂L, η̂)) + op(1)

=
∑
i∈Dv

‖M(θ̂L, η̂))‖2 + op(1).

and the prediction error can be re-written as∑
i∈Dv

‖w(xi)ρ(yi; θ
∗
L)‖2 −

∑
i∈Dv

‖M(θ̂L, η̂))‖2 + op(1).

In other words, the optimal partition has to maximize the variance of the moment function.

This result extends the observation in Athey and Imbens (2015) made for standard regression

trees.

Now based on this idea we can construct an actual mechanism for producing new splits. Con-

sider step k of the recursive splitting algorithm that paritionsZ into subsets S(k,1), . . . , S(k,k+1).

Next, for each i = 1, . . . , k + 1 and each dimension d we consider threshold c that generates

the new partition S(k+1,1)(i, c, d), . . . , S(k+1,k+2)(i, c, d) according to the algorithm that we
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outlined previously. In each subset S(k+1,j)(i, c, d) we estimate the moment function m(θ;x)

and define function

M̂
(k+1,j)
i,c,d (θ, η̂) =

∑
i : ziS(k+1,j)(i,c,d)

w(xi)m(xi; θ, η̂)

#{i : zi ∈ S(k+1,j)(i, c, d)}
.

Then we find the set of minimizers

θ̂
(k+1,j)
i,c,d = arg min

θ
‖M̂ (k+1,j)

i,c,d (θ, η̂)‖.

We note that we need to compute this only in the newly created elements of partition, while

functions M̂ and their minimizers on the remaining elements of partition stay the same.

Then we choose the triple (i, c, d) by maximizing the variance of the moment function

max
i,c,d

k+2∑
j=1

∥∥∥M̂ (k+1,j)
i,c,d

(
θ̂

(k+1,j)
i,c,d , η̂

)∥∥∥2

.

Step k, therefore, requires us to solve 2(k + 1) minimization problems.

4 Consistency for Classification Trees and Forests

In this section, we develop a consistency result for a single tree and then generalize it to the

random forest. Our first goal will be to show that the splits of the honest tree provide a

uniform approximation to function ML(θ, η) both over the parameter space and over the leafs

contained in Zk. Our first assumption establishes the properties of the moment function

considered in estimation. In particular, with a known infinite dimensional parameter, we

require that the moment functions have low complexity in the finite dimensional parameter.

ASSUMPTION 2. The class of functions {m(·, θ, η0), θ ∈ Θ} has envelope m̃(·) such that

m̃(·) ≤ m̄ <∞ and P m̃(·)2 <∞ and it admits polynomial discrimination.

Our results rely on the existence of a “high quality” estimator for the ancillary parameter

η. The corresponding condition is formulated as follows

ASSUMPTION 3. Suppose that there exists a uniformly consistent estimator η̂ and de-

12



terministic sequence rn →∞ such that rn n
1/4 →∞ such that

sup
x∈X ,θ∈Θ

|rn(m(x; θ, η̂)−m(x; θ, η0))| = op(1) (A.1)

and

‖η̂ − η0‖ = op(n
−1/4).

For the rate defined in Assumption 3 we can define a weighted empirical process Grn =

rn(ePn−P ) and denote its norm with respect to a function class Fn as ‖Grn‖Fn = supf∈Fn |Grnf |.
Consider sequence δn → 0, and define the class of functions

Mn =
{(
m(·, θk, η)−m(·, θk, η0)

)
1{· ∈ L}, ‖η − η0‖ ≤ δn, L ⊂ Zk, P 1{· ∈ L} ≥ V/2

}
and the shrinking neighborhood

Un = {(θ, η) : ‖θ − θk‖ ≤ δn, ‖η − η0‖ ≤ δn}.

The following condition imposes stochastic equicontinuity on the empirical process associated

with the moment function.

ASSUMPTION 4. For any δn → 0

‖Grn‖Mn = Op(1) (A.2)

and

Grn

(
m(·, θ, η)−m(·, θk, η)

)
1{· ∈ L} = Op(‖θ − θk‖), (θ, η) ∈ Un. (A.3)

Next we require the population moment function to be sufficiently smooth when estimated

on the leaves that are subsets of Zk,

ASSUMPTION 5. There exists a neighborhood of (θk, η0) such that for all L ⊂ Zk with

P 1{· ∈ L} ≥ V/2

P
(
m(·, θ, η)−m(·, θk, η0)

)
1{· ∈ L} = AL(θ − θk) +O(‖θ − θk‖2 + ‖η − η0‖2) (A.4)

and AL ≥ A for all such L.

13



The set of imposed assumptions allows us to show consistency for each honest classification

tree.

THEOREM 1. Suppose that L̂ is the leaf of honest {α, k}-valid classification tree that

returns label k and

M̂L̂(θ̂, η̂) = o(r−1
n ),

where M̂L̂(·, ·) is estimated from the subsample that was not used for splitting. Then whenever

k = O(n/V ) under Assumptions 1-5

d(θ̂, θk) = op(1).

Proof:

Consider the following decomposition

M̂L̂(θ, η̂)−ML(θ, η0) = M̂L̂(θ, η̂)− M̂L̂(θ, η0) + M̂L̂(θ, η0)− M̂L(θ, η0) + M̂L(θ, η0)−ML(θ, η0)

Assumption 3 guarantees that

sup
θ

∣∣∣M̂L̂(θ, η̂)− M̂L̂(θ, η0)
∣∣∣ = op(1).

Next consider the class of functions

Fn(L, γ) =
{
m(·, θ, η0)1{· ∈ L′} −m(·, θ, η0)1{· ∈ L}, L′ ⊆ L, e−γP1{· ∈ L′} ≤ P1{· ∈ L}

}
.

Wager and Walther (2015) establish the result that for P1{· ∈ L} ≥ V/2, the cardinality of

the set of leaves L′ that lead to class Fn(L, γ) is bounded by

2

V

(
8r2

γ2
(1− log2 round(2/V ))

)r
(1 +O(γ)) = O(γ−2r).

Let σi be the sequence of i.i.d. Radamacher random variables (i.e. Pr(σi = +1) = Pr(σi =

−1) = 1
2
. For f ∈ Fn(L, γ) we define the symmetrized empirical process

Pof =
1

n

n∑
i=1

σi f(xi).

14



Then due to the symmetrization lemma (Van Der Vaart and Wellner (1996))

P

(
sup
Fn(L,γ)

|Pf − Pf | > ε

)
≤ 4P

(
sup
Fn(L,γ)

|Pof | > ε

4

)
, forT ≥ 8ε−2

Given the sample choose g1, . . . , gM where M is the ε
8

cover of Fn(L, γ) meaning that

min
j

P|f − gj| ≤
1

8
ε, for each f ∈ Fn(L, γ).

Let f ∗ be the argmin. For any function g ∈ L1(P):

|Pog| =

∣∣∣∣∣ 1n
n∑
i=1

σif(xi)

∣∣∣∣∣ ≤ 1

n

n∑
i=1

|f(xi)| ≡ P|g|.

Now we focus on the uncertainty associated with the Radamacher sequence σi and compute

the probabilities conditional on the sample. Choose g = f − f ∗ leading to

P

(
sup
Fn(L,γ)

|Pof | > ε
4

∣∣ {xi}ni=1

)
≤ P

(
sup
Fn(L,γ)

(|Pof ∗|+ P|f − f ∗|) > ε
4

∣∣ {xi}ni=1

)
≤ P

(
max
j
|Pogj| > ε

8

∣∣ {xi}ni=1

)
M max

j
P
(
|Pogj| > ε

8

∣∣ {xi}ni=1

)
.

Now recall than gj are bounded by m̄, thus can use Hoeffding inequality

P
(
|Pogj| > ε

8

∣∣ {xi}ni=1

)
= P

(
|
n∑
i=1

σigj(xi)| > nε
8

∣∣ {xi}ni=1

)
≤ 2 exp

(
−2
(
nε
8

)2 / n∑
i=1

(2gj(xi))
2

)
≤ exp (−nε2/(128m̄)) .

Next note that since {m(·, θ, η0), θ ∈ Θ} admits polynomial discrimination then there exist

constants a > 0 and b > 0 such that the size of the cover of this class is at most aε−b. Provided

that the cardinality of approximating rectangles is at most O(γ−2r) then M ≤ O(ε−bγ−2r).

As a result

P

(
sup
Fn(L,γ)

|Pof | > ε

4

∣∣ {xi}ni=1

)
≤ 2 exp

(
O

(
2r log

1

γ
+ b log

1

ε

)
− nε2/(128(m̄)2)

)
.
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Since the right-hand side of the evaluation does not depend on the sample, this bound holds

for the unconditional probability. We also notice that the second term in the exponent

dominates the first term if
εn

log n
� O(1)

and γ = O(ε) In that case we can evaluate

P

(
sup
Fn(L,γ)

|Pof | > ε

4

)
≤ exp

(
O(−n ε2)

)
.

This shows that the choice εn
log n
� O(1) ensures that

sup
θ

∣∣∣M̂L̂(θ, η̂)− M̂L(θ, η0)
∣∣∣ = op(1).

The last term is evaluated in an analogous fashion. Therefore, we just established that

sup
θ

∣∣∣M̂L̂(θ, η̂)−ML(θ, η0)
∣∣∣ = op(1).

Provided our assumption of continuity of ML(θ, η0), this leads to consistency of the estimator

θ̂. Q.E.D.

Having established consistency of our estimator, we can now evaluate its convergence rate.

To do that we make an additional assumption regarding the differentiability of the map

associated with ML(·, ·).

ASSUMPTION 6. Map ML(·, η0) is Frechet-differentiable at θk for each L ⊂ Zk with

P1{· ∈ L} ≥ V/2 so that

‖ML(θ, η0)−ML(θ0, η0)− ṀL(θ − θ0)‖ = o(‖θ − θ0‖).

THEOREM 2. Suppose that conditions of Theorem 1 are satisfied. Then

rnd(θ̂, θk) = Op(1).

Proof:

We established that d(θ̂, θk) = o(1) and thus we can now focus on the shrinking neighborhood
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Un. Consider the empirical process

Gn f =
√
n(Pn − P )f, f ∈ Fn(L, γ).

We have demonstrated that for the choice of γ = ε the class Fn(L, γ) admits polynomial dis-

crimination with bound O(ε−2r−b). Let N(ε‖m̃‖Q,2,Fn(L, γ), L2(Q)) be the covering number

for the class Fn(L, γ). Recall that the covering integral is defined as

J(δ,Fn(L, γ)) = sup
Q

∫ δ

0

√
1 + log N(ε‖m̃‖Q,2,Fn(L, γ), L2(Q)) dε.

Provided that we were able to bound N(ε‖m̃‖Q,2,Fn(L, γ), L2(Q)) by O(ε−2r−b), then we

can evaluate the corresponding covering integral as

O(δ

√
log

1

δ
),

which is bounded from above by δ∗
√

log 1
δ∗

where δ∗ log 1
δ∗

= 1
2
. This allows us to evaluate

‖Gn‖Fn(L,ε) = O(P m̃(·)2)

using Theorem 2.14.1 in Van Der Vaart and Wellner (1996). This means that the classifi-

cation error is negligible relative to the estimation error. Thus we can use the convergence

result for standard Z-estimators adopted to the empirical process Grn applying Theorem 3.3.1

in Van Der Vaart and Wellner (1996) which yields the statement of the theorem. Q.E.D.

5 Extensions of the Moment-based Model

Previously we constructed a semiparametric model whose complexity was restricted in two

ways. First, we assumed that the moment function ρ(·; ·) is a function of a finite-dimensional

parameter vector. Second, we assumed that the heterogeneity of the sample is characterized

by a finite set of semiparametric models that reflect a finite set of applied policies or behavior

models.

We now consider extensions of our framework in two important directions. First, while

maintaining the assumption that the observed data is generated by a finite set of policies or

behaviors, we allow the models themselves to become more complex. The moment vector
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ρ(·; ·) is also characterized by an infinite-dimensional parameter. That means that we model

the data generating process using a finite set of semi-parametric or non-parametric models.

Second, we consider the same semiparametric structure with the moment function ρ(·; ·)
characterized by a finite-dimensional parameter. At the same time, we allow the set of

models to be large and potentially grow with the sample size. This extension is based on

the observation in Wager and Athey (2015) who observe that the regression tree framework

can be considered as adaptive smoothing, similar to the k-nearest neighbor estimator. In

this case, ρ(·; ·) plays the role of the local model whose parameters depend on point in the

support of conditioning variable Z.

5.1 Semiparametric model with the finite tree structure

Suppose that our Assumption 1 holds meaning that the tree structure is finite. Consider a

general moment model, as before characterized by the moment function ρ (·, ·) which is now

a function of the infinite-dimensional parameter h(·) that needs to be estimated a nuisance

parameter η (reflecting the conditional expectation)

m (x, h(·), η (·)) = E [ρ (Y, h(·)) |X = x]

The two infinite-dimensional components , h(·) ∈ Hh and η (·) ∈ Hη that are contained

in the Banach spaces Hη and Hh. The sieve approach, studied in a sequence of papers by

Chen and Shen (1998), Ai and Chen (2003) and Chen, Linton, and Van Keilegom (2003),

approximates the class of infinite dimensional functions H using a parametric family of

functions Hn whose dimension increases to infinity with the sample size n. Since in our

setup both the parameter of interest h(·) and the nuisance parameter η(·) can be infinite-

dimensional, there will be a non-trivial interaction between their asymptotic behaviors. As

a result, we choose to explicitly model η considering two most commonly used methods for

estimation of conditional expectations: orthogonal series and kernel smoothers.

The infinite-dimensional parameter of interest h(·) is assumed to be estimated using sieves.

The series estimator used to recover the conditional moment function is based on the vector

of basis functions pN(x) = (p1N(x), . . . , pNN(x))′,

m (x;h, η̂) = pN ′(x)

(
1
n

n∑
i=1

pN(xi)p
N ′(xi)

)−1
1
n

n∑
i=1

pN(xi)ρ (yi, h) . (5.4)
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The kernel estimator is defined using a multi-dimensional kernel function K(·) and a band-

width sequence bn as

m (x;h, η̂) =

(
1

nbdxn

n∑
i=1

K
(
xi−x
bdxn

))−1
1

nbdxn

n∑
i=1

K
(
xi−x
bn

)
ρ (yi, h) . (5.5)

In either case, we will denote the resulting estimator by m (x;hη̂). We then consider the

same structure for the estimator as in the parametric case where we split the support of the

conditioning covariate vector Z and estimate parameter h by setting the projected moment

function M̂L(h, η̂) in the leaf of the tree L equal to zero.

As in our analysis of parametric models, we focus on i.i.d data samples. We also impose

standard assumptions on the basis functions as in Newey (1997). Well known conditions that

satisfy Assumption 7 are available in, for example, the handbook chapter by Chen (2007).

ASSUMPTION 7. For the basis functions pN(x) the following holds:

(i) The smallest eigenvalue of E
[
pN(X) pN ′(X)

]
is bounded away from zero uniformly in

N .4

(ii) For some ζ0 (N) such that ζ0(N)2N/n→ 0, sup
x∈X
‖pN(x)‖ ≤ ζ0 (N).

(iii) The population conditional moment belongs to the completion of the sieve space and

for some α > 0,

sup
(h,η)∈Hh×Hη

sup
x∈X

∥∥m (x;h, η)− proj
(
m (x;h, η) | pN(x)

)∥∥ = O
(
N−α

)
.

Assumption 7[ii] is convenient because ρ (·) is uniformly bounded. It can potentially be

relaxed to allow for a sequence of constants ζ0(N) with sup
x∈X
‖pN(x)‖ ≤ ζ0 (N), where ζ0 (N)

grows at appropriate rates as in Newey (1997) such as ζ0(N)2N/n→ 0 as n→∞.

When all the basis functions are uniformly bounded, typically ζ0 (N) =
√
N . In the above

proj
(
m (x;h, η) | pN(x)

)
= pN (x)′

(
EpN(X)pN(X)′

)−1
EpN(X)m (X;h, η) .

4We note that the considered series basis may not be orthogonal with respect to the semi-metric defined
by the distribution of X.
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The following assumption on the moment function ρ(·) does not require smoothness or con-

tinuity (see Shen and Wong, 1994; Zhang and Gijbels, 2003).

ASSUMPTION 8. (i) The moment functions are uniformly bounded: sup
h,y
‖ρ(y, h)‖ ≤

C. The density of covariates X is uniformly bounded away from zero on its support.

(ii) Suppose that 0 ∈ Hn and for some C > 0,

sup
x∈X ,h∈Hn,|h|<C,

Var (ρ (Y, h) |X = x) = O (1) ,

(iii) For each n, the class of functions Fn = {ρ (·, h) , h ∈ Hn} is Euclidean whose graphs

form a polynomial class of sets and whose coefficients depend on the number of sieve

terms. There exist constants A, and 0+ ≤ r0 < 1
2

such that the covering number

satisfies

log N (δ,Fn,L1) ≤ An2r0 log

(
1

δ

)
,

and for r0 = 0+, n0+ is defined as log n.

Denote πnh = arg inf
h′∈Hn

‖h′ − h‖∞. And let d(·) be the metric generated by the L1 norm.

The following result extends Theorem 37 of Pollard (2012) to the case of sieve estimators. A

related idea for unconditional sieve estimation has been used in Zhang and Gijbels (2003).

LEMMA 1. Suppose that d (πn h, h) = O
(
n−φ

)
. Under Assumptions 7 and 8 for series

estimator η̂

sup
d(h,h0)=o(1),h∈Hn

|m (x;h, η̂)−m (x;h, η)| = op(1)

uniformly in x provided that N →∞, and ζ0(N)2N n2r0−1 log n→ 0.

Proof of Lemma 1

It follows directly from Assumption 7.[iii] that for (h, η) ∈ Hh ×Hη

∣∣m (x;h, η)− proj
(
m (x;h, η) |pN (x)

)∣∣ = O

(
1

Nα
+

1

nφ

)
,
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that will converge to zero if N →∞ as n→∞.

Therefore it suffices to prove Lemma 1 for

(∗) =
∣∣m (x;h, η̂)− proj

(
m (x;h, η) |pN (x)

)∣∣ .
As demonstrated in Newey (1997), for P =

(
pN(x1), . . . , pN(xn)

)′
and Q̂ = P ′P/n

‖Q̂−Q‖ = Op

(√
N

n
ζ0 (N)

)
,

and Q is non-singular by Assumption 7.[i] with the smallest eigenvalue bounded from below

by some constant λ > 0. Hence the smallest eigenvalue of Q̂ will converge to λ > 0. Following

Newey (1997) we use the indicator 1n to indicate the cases where the smallest eigenvalue of

Q̂ is above 1
2

to avoid singularities.

We consider conditional expectation E [ρ(Yi, h) |Xi = x] as a function of x (given h). We can

project this function of x on N basis vectors of the sieve space. Let β be the vector of coeffi-

cients of this projection. Denote Γ(h) = (ρ(Yi, h))ni=1 Also define G(h) = (E [ρ(Yi, h) |Xi])
n
i=1.

Then (∗) equals to a linear combination of 1n|pN ′(x)
(
β̂ − β

)
|. Note that

pN ′(x)
(
β̂ − β

)
= pN ′(x)

(
Q̂−1 P ′ (Γ−G) /n+ Q̂−1 P ′ (G− Pβ) /n

)
. (5.6)

For the first term in (5.6), we can use the result that smallest eigenvalue of Q̂ is converging

to λ > 0. Then application of the Cauchy-Schwartz inequality leads to∣∣∣∣pN ′(x)Q̂−1P ′ (Γ−G)

∣∣∣∣ ≤ ∥∥∥Q̂−1pN(x)
∥∥∥ ‖P ′ (Γ−G)‖ .

Then
∥∥∥Q̂−1pN(x)

∥∥∥ ≤ ζ0(N)
λ

,and

‖P ′ (Γ−G)‖ =

√√√√ N∑
k=1

(
n∑
i=1

pNk(xi) (Γi(h)−Gi(h))

)2

≤
√
N max

k

∣∣∣∣∣
n∑
i=1

pNk(zi) (Γi(h)−Gi(h))

∣∣∣∣∣
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Thus, ∣∣∣∣pN ′(x)Q̂−1P ′ (Γ−G)

∣∣∣∣ ≤ ζ0 (N)
√
N

λ
max
k

∣∣∣∣∣
n∑
i=1

pNk(xi) (Γi(h)−Gi(h))

∣∣∣∣∣ .
Denote µn = µN−1. Next we adapt the arguments for proving Theorem 37 in Pollard (2012)

to provide the bound for P

(
sup
Fn

1
n
‖pN ′(z)Q̂−1P ′ (Γ−G) ‖ > Nµn

)
. For N non-negative

random variables Yi we note that

P
(

max
i
Yi > c

)
≤

N∑
i=1

P (Yi > c) .

Using this observation, we can find that

P

(
sup
Fn

1

n
‖pN ′(z)Q̂−1P ′ (∆−G) ‖ > Nµn

)
≤

N∑
k=1

P

(
sup
Fn

∥∥∥∥ 1

n

n∑
i=1

pNk(xi) (Γi −Gi)

∥∥∥∥ >
√
N

ζ0 (N)
µn

)

This inequality allows us to substitute the tail bound for the class of functions m (x;h, η)

that is indexed by h, η and x by a tail bound for a much simpler class

Pn = {pNk(·) (Γ(h)−G(h)) : d(h, h0) = o(1), h ∈ Hn}.

We note that, according to Lemma 2.6.18 in Van Der Vaart and Wellner (1996), provided

that each pNk(·) is a fixed function, the covering number for Pn has the same order as

the covering number for Fn. Then we pick A to be the largest constant for the covering

numbers Akn
2r0 log

(
1
δ

)
over classes Pn. By Assumption 7.[i] and 8.[i] any f ∈ Pn is bounded

|f | < C < ∞. Next we note that Var (f) = O(1) for f ∈ Pn by Assumption 8.[ii]. The

symmetrization inequality (30) in Pollard (2012) holds if 1/ (16nµ2
n) ≤ 1

2
. This will occur

if n
N2 → ∞. Provided that the symmetrization inequality holds, we can follow the steps of

Theorem 37 in Pollard (2012) to establish the tail bound on the sample sum via a combination

of the Hoeffding inequality and the covering number for the class Pn. As a result, we obtain
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that

P

(
sup
Fn

1

n

∥∥∥∥ n∑
i=1

pNk(xi) (Γi −Gi)

∥∥∥∥ > 8

√
N

ζ0 (N)
µn

)

≤ 2 exp

(
An2r0 log

ζ0 (N)√
Nµn

)
exp

(
− 1

128

nNµ2
n

ζ0 (N)2

)
+ P

(
sup
Fn

1

n

∥∥∥∥ n∑
i=1

pNk(zi) (∆i −Gi)

∥∥∥∥2

> 64

)
.

The second term can be evaluated with the aid of Lemma 33 in Pollard (2012):

P

(
sup
Fn

1

n

∥∥∥∥ n∑
i=1

pNk(zi) (∆i −Gi)

∥∥∥∥2

> 64

)
≤ 4 exp

(
An2r0

)
exp (−n) .

As a result, we find that

P

(
sup
Fn

1

n
‖pN ′(x)Q̂−1P ′ (Γ−G) ‖ > Nµn

)
≤ 2N exp

(
An2r0 log

ζ0(N)√
Nµn

− 1

128

nNµ2
n

ζ0(N)2

)
+ 4N exp

(
An2r0 − n

)
We start the analysis with the first term. Consider the case with and r0 > 0. Then the log

of the first term takes the form

An2r0 log
(
ζ0(N)

√
N/ (µ)

)
− 1

128

n

ζ0(N)N
µ2 + log N

= An2r0 log

(
Nζ0(N)

√
Nn2r0

µn

)
− 1

128

µ2εnn

ζ0(N)2N
− An2r0 log

Nn2r0

µn
+ log N.

If N log n/n→ 0, then one needs that n
ζ0(N)2N n2r0 log n

→∞ if r0 > 0 and n
ζ0(N)2N log2 n

→∞
if r0 = 0+. Hence the first term is of o(1). This condition is also sufficient for the exponent

in the second term become infinitesimal.

Next we provide a similar result for the case where the conditional moment function is

estimated via a kernel estimator. We begin with formulating the requirement on the kernel.

ASSUMPTION 9. The kernel function K(·) is differentiable single-peaked function. More-

over, it integrates to 1, is bounded and of q-th order, and is square-integrable.

We formulate the following lemma replicating the result of Lemma 1 for the case of the kernel

estimator. For uniformity we rely on Assumption 8(i) that requires the density of covariates
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to be uniformly bounded away from zero.

LEMMA 2. Under Assumptions 8 and 9

sup
d(h,h0)=o(1),h∈Hn

|m(x;h, η̂)−m(x;h, η)| = op(1)

uniformly in x provided that bn → 0 and b−dzn n2r0−1 log n→ 0.

Using Lemmas 1 and 2 we can formulate the consistency result for the directional derivative.

Proof of Lemma 2 Recall the definition of the kernel estimator

m(x;h, η̂) =

(
1

nbdzn

n∑
i=1

K

(
x− xi
bn

))−1
1

nbdzn

n∑
i=1

ρ (yi, h)K

(
x− xi
hn

)

For the expression of interest, we can consider

m̂ (θ, η + εnw, z)− m̂ (θ, η − εnw, z)
εn

=

(
1

nbdzn

n∑
i=1

K

(
z − zi
bn

))−1

× 1

nbdzn εn

n∑
i=1

[ρ (θ, η + εnw, yi)− ρ (θ, η − εnw, yi)]K
(
z − zi
bn

)
.

Then we can consider a class of functions

Gn = {ρ (·, h)K

(
x− ·
bn

)
, h ∈ Hn, x ∈ X}.

Consider the class Gn. We can represent it as

Gn = {g = fκ : f ∈ Fn, κ ∈ F} .

N1(·) and N2(·) correspond to the L1 and L2 covering numbers. Consider the covering

numbers for classes Fn and F . We select ε > 0, then there exist m1 < N1 (ε,Fn, L1(Q))

and m2 < N1 (ε,F , L1(Q)) and covers {fj}m1
j=1 and {κi}m2

i=1 such that for f ∈ Fn and κ ∈ F
minj Q|f − fj| < ε and miniQ|κ − κi| < ε. We note that |f | ≤ C and |g| ≤ C. Consider

the cover {fjκi}j=m1,i=m2

j,i=1 noting that fjκi− fκ = (fj − f) (κi − κ) + f (κi − κ) +κ (fj − f).
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Then, in combination with Cauchy-Schwartz we have that

min
i,j

Q|κifj − κf | ≤ min
j

(
Q|fj − f |2

)1/2
min
i

(
Q|κi − κ|2

)1/2
+ C min

j
Q|fj − f |+ C min

i
Q|κi − κ|

Given the relationship between L1 and L2 covering numbers covers {fj}m1
j=1 and {κi}m2

i=1 are

sufficient to achieve minj (Q|fj − f |2)
1/2

< ε and mini (Q|κi − κ|2)
1/2

< ε. This means that

min
i,j

Q|κifj−κf | < 3Cε. Thus, the L1 covering number for Gn is bounded by a product of L2

covering numbers for F and Fn (which corresponds to the number of elements in the cover

{fjκi}j=m1,i=m2

j,i=1 .

Provided that classes Fn and F satisfy Euclidean property, we can apply Lemma 2.6.20

from Van Der Vaart and Wellner (1996). This means that the class Gn is Euclidean with

parameters depending on n. Provided that Var (g) = O (bn) for g ∈ Gn, we can use a similar

logic as in the proof of Theorem 37 in Pollard (2012) with the results similar to those in the

proof of Lemma 1. This leads to condition nbdzn
n2r0 log n

→ ∞. We note that the bias due to

kernel smoothing E [m(Xi;h, η̂)|Xi = x] = O (bmn ), where m is the order of the kernel, and

the bias due to the sieve approximation is n−φ. Then

∥∥Lεn,w1,p E [m̂ (θ, η, Zi) |Zi = z]− Lεn,w1,p m (θ, η, z)
∥∥ = O

(
bmn + nφ

)
,

which converges to zero if b−mn →∞ and nφ →∞.

Provided the unform consistency result, we can replicate our result for the finite-dimensional

parameter that is estimated using partitioning via honest trees.

THEOREM 3. Suppose that L̂ is the leaf of honest {α, k}-valid classi

cation tree that returns label k and M̂L̂(h, η̂) = o(1) where M̂L̂(·, ·) is estimated from the

subsample that was not used for splitting. Then whenever k = O(n/V ) under Assumptions

1-5 and conditions of either Lemma 1 or Lemma 2

d(ĥ, hk) = op(1).

5.2 Semiparametric model with growing tree structure

Our next extension is based on considering the model that we analyzed before but now

allow the tree to partition the support of covariates such that the number of elements in the

25



partition increases as the sample size grows.

The idea of this extension in quite straightforward. Given that Assumption 4 holds for any

decreasing sample size sequence n→∞, it would also work for any of its subsequence. The

expected number of points that falls in the leaf of volume V in the hypercube [0, 1]dz can be

minorized as nV infz fZ(z). As a result, given that k splits produce volumes of at least 2−k,

then the sufficient condition that yields the uniform consistency is that n 2−k →∞. That is

guaranteed whenever k � log n.

6 Monte Carlo Evidence

To showcase the performance of our estimator, we conduct several Monte Carlo experiments.

We first demonstrate the ability of the estimator to successfully identify heterogeneous treat-

ment effects in an experimental setting. We then consider the case of a regression discon-

tinuity design (RDD). We anticipate that these two settings will be fruitful applications of

our framework, and our Monte Carlo is designed to highlight the strengths of our approach

while also illustrating potential tradeoffs that a practitioner faces in real settings.

6.1 Monte Carlo: RCT

We consider the following data-generating process which mimics a typical randomized con-

trolled trial (RCT) design. Let the outcome variable be defined as:

Y = τ(X) ·W + ε, (6.7)

where W is an indicator for treatment, X is a vector of observable covariates, and ε is an

idiosyncratic, normally-distributed shock with mean zero and unit variance. The object of

interest is τ(X), the true treatment effect, which may be a function of the observables, X.

We initially draw two discrete X variables that are uniformly distributed over the integers

from 1 to 8; this generates 64 distinct subgroups. We consider several specifications for τ(X)

in increasing complexity. In the simplest RCT setting, W is randomly assigned independent

of X. We draw a uniform random variable and set W to one when the draw is greater than

one-half and zero otherwise.

For sake of comparison, we start with the simplest possible case: the treatment effect is

equal to ten for all treated units, and zero otherwise, generating a single treatment effect.

We highlight two features of the results, shown in Table 1. First, the estimator assigns a
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Table 1: Monte Carlo: Uniform RCT

Tree OLS
numObs / (α, k,MSE) Num Leafs Dim(τ) MSPE Dim(τ) MSPE

50 1.000 64.000 0.275 0.000 NaN
(0.01, 13, 1e-07) (0.000) (0.000) (0.221) (0.000) (NaN)
100 1.000 64.000 0.158 0.250 NaN
(0.01, 28, 1e-07) (0.000) (0.000) (0.152) (0.433) (NaN)
200 1.000 64.000 0.113 3.250 0.413
(0.01, 55, 1e-07) (0.000) (0.000) (0.050) (1.090) (0.181)
400 1.000 64.000 0.074 22.875 0.556
(0.01, 100, 1e-07) (0.000) (0.000) (0.055) (3.370) (0.074)
800 1.000 64.000 0.049 57.625 0.415
(0.01, 211, 1e-07) (0.000) (0.000) (0.037) (1.932) (0.029)
1600 1.000 64.000 0.053 64.000 0.287
(0.01, 411, 1e-07) (0.000) (0.000) (0.031) (0.000) (0.017)
3200 1.000 64.000 0.031 64.000 0.212
(0.01, 811, 1e-07) (0.000) (0.000) (0.030) (0.000) (0.015)
6400 1.000 64.000 0.028 64.000 0.152
(0.01, 1611, 1e-07) (0.000) (0.000) (0.012) (0.000) (0.012)

single treatment effect at all sample sizes for all Monte Carlo runs, consistently recovering

the true underlying model. Column 3 reports the count of all subgroups that are assigned a

statistically significant treatment effect at the five percent level; here the tree finds significant

effects for all 64 subgroups. We have assigned a k, α, and MSE through cross-validation

against a holdout sample.5 Of these parameters, α is always set at the corner solution

of α = 0.01, while k and MSE become increasing stringent. Second, the calculation of

the root mean squared prediction error (MSPE) is a useful baseline to compare following

(more complex) models against. Here, the MSPE reflects only the statistical sampling error,

whereas the more complex models we consider next have a convolution of statistical sampling

and model misspecification.

We also report the performance of OLS estimates run on each subgroup separately in the

last two columns. The estimator is badly biased at smaller samples, failing to find even a

single statistically significant treatment effect. The difference between the two estimators is

driven by the fact that the tree can group together observations from different X, while the

5k is the minimum number of observations in each leaf. α is the minimum proportion of data in each
leaf. MSE is the minimum improvement in MSE after each split.

27



Table 2: Monte Carlo: Group RCT

Tree OLS
numObs / (α, k,MSE) Num Leafs Dim(τ) MSPE Dim(τ) MSPE

50 12.875 6.625 0.971 0.000 NaN
(0.01, 1, 1e-01) (1.536) (2.595) (0.276) (0.000) (NaN)
100 8.750 6.250 0.476 0.125 NaN
(0.01, 1, 1e-01) (6.036) (2.107) (0.258) (0.331) (NaN)
200 2.125 8.000 0.178 0.625 0.413
(0.01, 7, 1e-01) (0.331) (0.000) (0.072) (0.696) (0.181)
400 2.125 8.000 0.129 7.500 0.556
(0.01, 12, 1e-01) (0.331) (0.000) (0.051) (2.000) (0.074)
800 2.000 8.000 0.080 15.125 0.415
(0.01, 1, 1e-01) (0.000) (0.000) (0.041) (2.619) (0.029)
1600 2.000 8.000 0.069 16.625 0.287
(0.01, 1, 1e-01) (0.000) (0.000) (0.028) (2.997) (0.017)
3200 2.000 8.000 0.042 18.000 0.212
(0.01, 163, 1e-02) (0.000) (0.000) (0.027) (2.828) (0.015)
6400 2.000 8.000 0.036 18.125 0.152
(0.01, 323, 1e-02) (0.000) (0.000) (0.009) (2.803) (0.012)
12800 2.000 8.000 0.019 17.250 0.099
(0.01, 1, 1e-02) (0.000) (0.000) (0.011) (2.487) (0.007)

OLS estimator is forced to estimate separately on each subgroup. At higher sample sizes,

the OLS estimator is able to recover the true number of effects, but has a large precision

penalty as it is unable to group together similar observations to improve the standard error.

This highlights one benefit of using the tree method even when the true model is a single

treatment effect.

To assess the performance of the estimator when we introduce observable heterogeneity, we

set the treatment effect to ten if the observation has x1 = 1, and zero otherwise, generating

two treatment effects. Table 2 reports the results. Initially, the tree estimates too many

splits, producing too few statistically significant treatment effects (there are 8 groups for

which the treatment effect is non-zero). Once n > 100, the estimator reconciles this error,

finding the true model and estimating the treatment effects precisely. The decrease in the

MSPE reflects this, as the rate returns to a parametric rate once the true model has been

recovered. Compared to the baseline case of a treatment effect without any observable

heterogeneity, the standard errors are approximately twice as large. OLS is biased upward

and has much large standard errors, particularly at larger sample sizes.
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Table 3: Monte Carlo: Sparse RCT

Tree OLS
numObs / (α, k,MSE) Num Leafs Dim(τ) MSPE Dim(τ) MSPE

50 1.000 0.750 1.320 0.000 NaN
(0.01, 13, 1e-07) (0.000) (0.433) (0.075) (0.000) (NaN)
100 5.750 0.625 1.119 0.125 NaN
(0.01, 1, 1e-01) (5.379) (0.484) (0.275) (0.331) (NaN)
200 2.375 0.625 1.035 0.250 0.413
(0.01, 1, 1e-01) (1.798) (0.484) (0.469) (0.433) (0.181)
400 51.500 1.000 0.784 5.125 0.556
(0.01, 1, 1e-02) (4.822) (0.000) (0.048) (1.364) (0.074)
800 32.250 1.000 0.435 10.000 0.415
(0.01, 1, 1e-02) (9.588) (0.000) (0.089) (2.693) (0.029)
1600 6.375 1.000 0.146 10.750 0.287
(0.01, 1, 1e-02) (0.992) (0.000) (0.034) (3.382) (0.017)
3200 5.250 1.000 0.078 12.500 0.212
(0.01, 1, 1e-02) (1.392) (0.000) (0.017) (2.693) (0.015)
6400 3.875 1.000 0.051 12.250 0.152
(0.01, 1, 1e-02) (0.927) (0.000) (0.020) (3.192) (0.012)
12800 3.000 1.000 0.022 11.625 0.099
(0.01, 1, 1e-02) (0.000) (0.000) (0.011) (2.643) (0.007)
25600 3.000 1.000 0.025 10.500 0.070
(0.01, 1, 1e-02) (0.000) (0.000) (0.008) (2.915) (0.003)
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We next consider a case of a sparse treatment effect, where τ(X) = 10 if and only if x1 = 1

and x2 = 1. Otherwise, τ(X) = 0. This is a challenging specification for the estimator, as

there are 63 null treatment effects which may appear to be true effects due to within-group

statistical errors. Table 3 reports the results for 500 replications.

There are several notable features. First, the classification tree has a downward bias on

the estimated number of treatment effects for the smallest sample sizes. This results from

the optimal tradeoff of variance (too few observations in each leaf) versus bias (not enough

partitions of the data to capture the true number of effects). At sample sizes of n = 400

and above, the tree grows more complex and converges to finding one statistically significant

treatment effect. The faster-than-parametric decrease in the MSPE at that threshold reflects

the decline in specification error. It is instructive to contrast the performance of the tree

against the naive OLS estimates. At the smallest sample sizes, the OLS estimator does not

find any statistically significant treatment effects. As the sample size grows, the OLS finds

an increasing number of statistically significant treatment effects. Even after the tree has

converged to the true model, the OLS estimator continues to overestimate the number of

treatment effects. Aside from its bias of estimating ten times as many treatment effects as

the truth, the OLS estimator interestingly has lower prediction error for sample sizes of 200,

400, and 800. At higher sample sizes, OLS continues to be biased and is also dominated

on prediction error by the classification tree. The relatively poor MSPE of OLS reflects the

fact that the estimator cannot group together observations to improve the precision of the

estimated treatment effect.

To consider a more complex case, we modify the data-generating process for τ(X) to be:

τ(X) = x1(1 + (x2 − 1)). (6.8)

This results in 64 treatment effects as a combination of x1 and x2. Table 4 reports the

results. We note that the optimal k = 1, which was set as the lower bound in the cross

validation search, for all sample sizes. This is driven by two factors. First, setting k higher

makes it mechanically impossible to cut the data enough times to reproduce the number

of true treatment effects. For example, when k = 25, the sample size must be at least

n = 25 · 64 = 1600 before the tree could even potentially match the true set of underlying

treatment effects. Second, all possible interactions of the two dummy variables have true

treatment effects, so this design will not experience an over-fitting problem. The optimal

size of the tree is controlled here by the acceptance criterion, which becomes more lax as the
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Table 4: Monte Carlo: RCT with Saturated Sub-Group Heterogeneity

Tree OLS
numObs / (α, k,MSE) Num Leafs Dim(τ) MSPE Dim(τ) MSPE

50 14.160 45.816 12.218 0.006 NaN
(0.01, 1, 1e-01) (1.749) (7.166) (2.798) (0.077) (NaN)
100 25.468 47.866 7.198 0.114 NaN
(0.01, 1, 1e-01) (2.273) (4.976) (2.398) (0.336) (NaN)
200 42.696 51.388 3.228 2.732 NaN
(0.01, 1, 1e-07) (2.528) (3.151) (1.161) (1.501) (NaN)
400 58.564 58.590 1.348 22.960 0.718
(0.01, 1, 1e-03) (1.964) (2.073) (0.295) (2.688) (0.107)
800 63.752 63.124 0.648 56.918 0.591
(0.01, 1, 1e-07) (0.496) (0.738) (0.091) (2.287) (0.058)
1600 64.000 63.700 0.415 63.646 0.415
(0.01, 1, 1e-07) (0.000) (0.458) (0.036) (0.522) (0.036)
3200 64.000 63.932 0.288 63.932 0.288
(0.01, 1, 1e-07) (0.000) (0.252) (0.026) (0.252) (0.026)
6400 64.000 63.994 0.201 63.994 0.201
(0.01, 1, 1e-07) (0.000) (0.077) (0.018) (0.077) (0.018)
12800 64.000 64.000 0.142 64.000 0.142
(0.01, 1, 1e-07) (0.000) (0.000) (0.012) (0.000) (0.012)
25600 64.000 64.000 0.100 64.000 0.100
(0.01, 1, 1e-07) (0.000) (0.000) (0.009) (0.000) (0.009)
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sample size grows.

The inability of the tree to grow complex enough for smaller sample sizes is reflected in

the mean squared prediction error. The MSPE exhibits monotonic but highly nonlinear

convergence. Once the threshold of n = 1600 is reached, the tree recovers the true underlying

structure and MSPE drops precipitously. Parametric error rates obtain after that point,

reflecting the independence of the tree estimation and the estimation of treatment effects,

as desired.

The OLS estimator in this case has a performance as good or better than the tree approach for

all sample sizes for which it reports prediction error. This is expected, as the OLS estimator

in this case is the true model. However, once the tree has found the true model, prediction

errors are (mechanically) identical, which highlights the independence of the honest tree’s

predictive performance from the model selection step.

6.2 Monte Carlo: RDD

Our second set of Monte Carlo experiments uses a regression discontinuity design (RDD).

RDD works by leveraging some known threshold, c, on a so-called running variable which

functions as an assignment mechanism: to the left of the threshold, units do not receive

a treatment, while those to the right of the threshold do. Assuming that units cannot

manipulate their running variable, the discontinuous treatment on either side of the threshold

can be used to estimate the causal effect of a treatment on outcomes, as sorting into the

control or treatment groups is as “good as random” under the maintained assumption.

Examples of RDD settings include the assignment of educational treatment on the basis of

test scores, and means-tested assignments of welfare, unemployment insurance, and disability

programs on labor supply.

While the RDD setting has broad empirical appeal as a method for obtaining “credible” esti-

mates of causal effects, the researcher still has to make a number of important assumptions.

Among those assumptions are classifying units into different groups where the researcher

may think that treatment effects vary. For example, the treatment effects of magnet schools

on student achievements may vary in size depending on the income of the student’s parents.

For low-income students, the effects may be much larger than for high-income students. The

researcher may split the sample into two groups and estimate separate RDD regressions on

each group, producing two treatment effects. In general, this search of the model specifica-

tion process will fail for the reasons discussed above. Our Monte Carlo illustrates how the
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present estimator can circumvent this problem by constructing a set of splits of the data

without intervention of the researcher. A second holdout sample is then used to produce

consistent estimates of the treatment effect within each sub-group.

We modify the above data-generating process by augmenting the experimental treatment to

be a function of a running variable:

Y = τ(X) ·W (R) + ε, (6.9)

where W (R) is now an indicator function that is equal to zero to left of a cutoff value, R̄

and one to the right:

W =

0 if R < R̄,

1 else.
(6.10)

This generates a sharp RDD, as opposed to a fuzzy RDD where the probability of treatment

is positive everywhere but jumps discontinuously at R̄. We draw R from uniform U [0, 1].

The object of interest is τ(X), the treatment effect as a function of the vector of covariates.

We allow the treatment effect to depend on three covariates as follows:

τ(X) =

5 if X2 < 0.67,

−2 else.
(6.11)

We augment the treatment effect by subtracting 2 if X3 = 1 and adding 5 if X3 = 2. This

generates six total treatment effects across the covariate space.

The problem facing the econometrician is deciding where to assign different treatment effects.

It is possible that one could guess the data-generating process above, but it is both unlikely

and statistically undesirable for the reasons outlined above. Our estimator circumvents this

process by estimating the partitioning of the X space in a first stage. In a second stage,

we estimate treatment effects using the standard RDD approach outlined in Imbens and

Lemieux (2008) and Lee and Lemieux (2010), using a local-linear regression around the

threshold. We control the window width around the threshold using cross-validation, and

we report results for various choices of that window width below.

We generate 500 draws of each sample size. We report an out-of-sample mean squared

prediction error for each sample size, which we constructed by generating data using the

true (known) generating process and using the estimated tree and associated RDD models
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Table 5: Monte Carlo: RDD

Count Count
numObs Dim(τ) Discrete Continuous Mean X2 MSPE Pr(Null)

500 6.587 3.207 2.380 0.539 0.918 0.000
(0.785) (0.480) (0.772) (0.252) (0.393) (0.000)

1000 6.107 3.113 1.993 0.671 0.669 0.000
(0.449) (0.317) (0.337) (0.027) (0.303) (0.000)

2000 6.133 3.087 2.047 0.675 0.497 0.000
(0.499) (0.281) (0.291) (0.026) (0.273) (0.000)

4000 6.040 3.020 2.020 0.671 0.321 0.000
(0.280) (0.140) (0.140) (0.014) (0.187) (0.000)

8000 6.027 3.013 2.013 0.670 0.246 0.000
(0.229) (0.115) (0.115) (0.013) (0.213) (0.000)

16000 6.000 3.000 2.000 0.669 0.198 0.000
(0.000) (0.000) (0.000) (0.006) (0.174) (0.000)

to compute predicted treatment effects. We then sum the squared difference from the true

value, divide by sample size, and take the square root. Table 5 shows the main results for

the model above when using all the data in sample on either side of the window (h = 0.5)

and the threshold for improvement in the tree is set to 0.1.

First, we note that the model obtains consistent estimates of the number of treatment effects

(true value: 6), the number of discrete splits (true value: 3), the number of continuous splits

(true value: 2), and the level at which the second covariate, X2, splits the sample (true

value: 0.670). This convergence to the true model is rapid—at the sample size of 16,000

there is no appreciable variation across Monte Carlo experiments in the structure of the

estimated tree. At that point, the estimator essentially recovers the true tree without error,

as would be expected given the faster-than-parametric rate of convergence of the first stage

of our estimation. The column labeled RMSPE reports the root mean squared prediction

error on out-of-sample data. The RMSPE is the composition of two sources of error: errors

in the specification of the classification tree, and errors arising from sampling error within

each leaf. For smaller sample sizes, the rate of decline in the RMSPE is driven by both

errors. As the tree converges at faster-than-parametric rates, so does the prediction error.

Beyond n = 8000, when the tree is recovered with negligible error, the RMSPE is almost

completely due to classical sampling error. At that point, the rate of convergence reverts to

the parametric
√
n rate. Finally, in the last column we report out-of-sample observations
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for which the tree is unable to produce estimates due to the starvation of a given leaf in the

second stage of our estimation process. At small samples, there are some observations which

cannot be predicted, but this is a vanishingly small problem that disappears completely at

sample sizes beyond n = 1000.

The smaller sample sizes show some regularities, particularly with respect to bias. For

one, our procedure tends to estimate too many treatment effects at smaller sample sizes,

primarily of the continuous variety. This also introduced bias in the estimate of where X2 is

split. These biases disappear rapidly as the sample size grows.

6.3 Continuous Treatment Effects

An extension of our econometric results above considers the case where K is infinite. To

demonstrate the small sample performance of our estimator in such a setting, we perform

a Monte Carlo experiment in a univariate RDD setup with the following function for the

treatment effect:

τ(xi) = sin(4πxi), (6.12)

where xi is a unidimensional covariate distributed uniformly on the unit interval. As before,

we generate a U [0, 1] running variable and assign the treatment if the running variable is

above one half. We estimate by splitting the sample in half, first fitting the tree on the first

sample, and then fitting the estimates within each leaf on the second sample. We impose that

α = 0.1 and choose the minimum number of observations in each node via cross-validation.

This guards against the possibility of growing the number of splits faster than the number

of observations, which by extension ensures that each leaf will have an infinite number of

observations in the limit, while also balancing finite-sample bias and variance.

6.4 No Error Term

We begin by running our Monte Carlos with the variance of the idiosyncratic term set to

zero. This captures the effect of pure approximation error.

The left panel of Table 6 reports the results from this experiment. As the dimension of

τ shows, the model fits an increasingly complex model to the data. This also results in a

substantial decrease in mean squared prediction error.

Figure 1 shows the fit of the moment tree in this case. First, the general fit is excellent

across the entire range of the function. There is a small bias evident at the peaks and
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Figure 1: Estimated and True Treatment Effect Function, Without Error
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Table 6: Continuous Treatment Effects

Without Error With Error
Uniform x Normal x Uniform x Normal x

n Dim(τ) RMSPE Dim(τ) RMSPE Dim(τ) RMSPE Dim(τ) RMSPE

2000 15.548 0.137 19.560 0.148 11.942 0.373 7.282 0.360
(0.976) (0.006) (0.697) (0.010) (0.755) (0.052) (0.599) (0.046)

4000 24.520 0.090 37.156 0.081 12.222 0.298 14.190 0.292
(1.044) (0.004) (1.254) (0.004) (0.667) (0.033) (0.806) (0.038)

8000 30.332 0.071 64.148 0.046 16.880 0.361 14.306 0.235
(0.823) (0.002) (1.353) (0.001) (0.840) (0.033) (0.770) (0.024)

16000 40.244 0.057 113.440 0.028 24.764 0.193 22.666 0.197
(1.339) (0.002) (1.905) (0.002) (1.168) (0.019) (1.157) (0.019)

troughs of the sine function, where the derivative is near zero. In smaller samples, the

estimator fits a constant to these neighborhoods, which leads to some minor underfitting.

This bias disappears in the large samples. By n = 16000, the underlying function is recovered

uniformly and with nearly no variance.

6.5 With Measurement Error

We now allow the error term to be drawn from a standard normal. The right panel of the

table shows the results. The trees are simpler in this case, as the estimator has to balance

variance against bias. The RMSPE is substantially larger, although it rapidly shrinks at

higher sample sizes. Figure 2 shows the resulting estimated function across the domain of

X.

6.6 Normally-Distributed Data

In this section, we show that the method works well even when data is not distributed

uniformly across the domain of interest. We draw x from a normal distribution with mean

one-half and standard deviation equal to 0.25, and truncate at zero and one, we can observe

the effect of having non-uniformly distributed data across the interval. Figure 3 plots the

estimated functions and the 95 percent confidence bands generated over 500 Monte Carlo

iterations. It is immediately apparent that the estimator is best at capturing the variation in

the underlying treatment effect function where the data is most frequent. The two tails have

more constant approximations, which hones in on the true function rapidly as the sample
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Figure 2: Estimated and True Treatment Effect Function, With Error and Optimal k
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Notes: Each figure plots the mean estimated and true treatment effect function, τ(xi), for various sample
sizes. The minimum number of observations in each leaf, k, was chosen via cross-validation. The data-
generating process is a regression discontinuity design with uniformly-distributed xi. The dashed lines
represent the 95 percent confidence interval. Results computed using 500 Monte Carlo experiments.

38



Figure 3: Estimated and True Treatment Effect Function, Normally-Distributed Data
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n = 8000 k = 400
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Notes: Each figure plots the mean estimated and true treatment effect function, τ(xi), for various sample
sizes. The minimum number of observations in each leaf, k, was chosen via cross-validation. The data-
generating process is a regression discontinuity design with truncated normal-distributed xi with mean 0.5
and standard deviation 0.25. The dashed lines represent the 95 percent confidence interval. Results computed
using 500 Monte Carlo experiments.
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size increases. This result gives confidence that the method is still able to consistently and

accurately recover the true function in reasonably-sized data sets, even when the data density

is unevenly distributed.

7 Empirical Application

The Pradhan Mantri Gram Sadak Yojana (PMGSY)—the Prime Minister’s Village Road

Program—was launched in 2000 with the goal of providing all-weather access to unconnected

habitations across India.6 The focus was on the provision of new feeder roads to localities

that did not have paved roads. By 2011, the government had upgraded or built new roads

to over 115,000 villages at a cost of nearly $30 billion.

National guidelines determine prioritization of road construction under the PMGSY. Most

importantly for this empirical exercise, road construction is supposed to occur first in large

localities, as defined by the 2001 Population Census. Program rules dictate that villages of

1000+ population were to be prioritized over villages in the population range of 500-999,

which were in turn to be prioritized over smaller villages. These rules create discontinuities

in the probability of road construction by 2011, the year for which we have outcome data

from the 2011 Population Census. Villages with baseline (2001) populations above the

population cutoffs (500 and 1000) are approximately fifteen percentage points more likely to

have received a road by 2011. We can exploit these discontinuous jumps in the probability

of road construction to estimate the impact of the PMGSY. 7

For this application, we focus on the question of the impact of road construction on the

provision of public transportation. Specifically, we estimate the impact of PMGSY road

construction on the likelihood that a village will be served by either a public or private bus

route. Access to a bus route is a critical mechanism for individuals to take advantage of

rural roads, as few individuals in these villages will own vehicles. Further, recent research

has suggested that rural demand may not be sufficient to support the provision of bus

services, which may mitigate the value of new roads Raballand, Thornton, Yang, Goldberg,

Keleher, and Müller (2011). Bryan, Chowdhury, and Mobarak (2014) find large returns to

subsidizing bus travel to nearby cities, so much so that their intervention is being scaled up

6Habitations are defined as clusters of population whose location does not change over time. They are
distinct from, but form parts of, villages as defined by the Population Census. In this paper, we aggregate
all data to the level of the census village.

7For a more detailed description of the PMGSY program, as well a comprehensive set of regression
discontinuity validity tests, see Asher and Novosad (2016).
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into a major anti-poverty program in Bangladesh. Given the high cost of road construction,

a better understanding of the conditions under which road provision leads to an expansion of

actual transportation options would help policymakers maximize the impact of infrastructure

investments.

A priori, one could hypothesize that distance to towns plays a key role in whether a village

with a new road also gets serviced by a bus route. However, the multidimensional nature

of distance to towns (i.e. distance to town * town size) forces the econometrician to make

many arbitrary decisions. Are distance effects linear, or do they take a specific non-linear

form? Is treatment heterogeneity in distance to small towns equivalent to heterogeneity in

distance to large towns? What town sizes should be used? The most common approach is

to collapse the multidimensional town distance variable into a single scalar market access

variable (e.g. Donaldson and Hornbeck (2016)) but this may not be the empirically correct

functional form. Our estimator allows the econometrician to capture a complex relationship

between town distance and treatment effects, without committing beforehand to an arbitrary

functional form.

7.1 Data

We assembled a high spatial resolution dataset that combines household and firm microdata

with village aggregates describing amenities, infrastructure and demographic information.

Data on road construction (the treatment) come from the administrative records of the

PMGSY.8 For the purposes of our analysis, all variables are aggregated to the level of the

census village, the geographic unit at which we measure outcomes. We consider a village

to be treated by the PMGSY if at least one habitation in the village received a completed

PMGSY road by 2010, the year before the most recent round of the Population Census.

The primary outcome of interest, the presence of regular bus service to a village, comes from

the 2011 Population Census. Baseline village characteristics come from the 2001 Population

Census, which was collected in the year that the first PMGSY roads were being constructed.

We also use GIS data purchased from ML Infomap to construct straight line distances from

villages to towns of different sizes.

8All data are publicly available at http://omms.nic.in. The variables used in this paper were assembled
from data scraped in January 2015.
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7.2 Empirical Strategy

The generate causal treatment estimates of roads, we use a fuzzy regression discontinuity

estimator Imbens and Lemieux (2008), that takes advantage of the quasirandom assignment

of roads to villages with populations above the thresholds stipulated by the program. The

estimator effectively compares similar villages on either side of the population threshold, and

estimates the local average treatment effect (LATE) of receiving a new road, for a village at

the threshold population:

τ =
limpop→T+ E[Yv|popv = T ]− limpop→T− E[Yv|popv = T ]

limpop→T+ E[newroadv|popv = T ]− limpop→T− E[newroadv|popv = T ]
, (7.13)

where popv is the baseline village population, T is the threshold population, and newroadv

is an indicator variable for whether village v received a new road in the sample period. The

treatment effect can be interpreted as the discontinuous change in the outcome variable at the

population threshold (the numerator) divided by the discontinuous change in the probability

of treatment (the denominator). The local average treatment effect (LATE) estimated by

our empirical design is specific to the complier set, namely those villages whose treatment

status would be zero with population below the threshold and one with population above.

The estimation follows the recommendations of Imbens and Lemieux (2008), Imbens and

Wooldridge (2009) and Gelman and Imbens (2014). We use local linear regression to control

for the running variable (village population) on either side of the threshold. We restrict

our sample to villages with population within a narrow bandwidth around the threshold,

formally popv ∈ [T − h;T + h], where h is the value of the bandwidth around threshold T .

We calculate an optimal bandwidth of 54 following Imbens and Wooldridge (2009) and use

a triangular kernel that places the most weight on observations close to the cutoff, as in Dell

(2015).

The IV estimator is a two-stage-least-squares estimator, which takes the form:

Yv,j = γ0 + γ1newroadv,j + γ2(popv,j −T ) + γ3(popv,j −T ) ∗ 1{popv,j ≥ T}+ ζXv,j + ηj + υv,j,

(7.14)

where Yv,j is the outcome of interest, T is the population threshold, popv,j is village pop-

ulation measured at baseline, Xv,j is a vector of village controls measured at baseline, and

ηj is a district-cutoff fixed effect.9 Village controls and fixed effects are not necessary for

9Village control include the baseline literacy rate, share of individuals in marginalized groups (Scheduled
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identification but improve the efficiency of the estimation. newroadv,j is instrumented by an

indicator variable that takes the value one for villages above the population threshold. γ1

captures the causal effect of being treated with a new road, for a village with population at

the treatment threshold T .

We restrict the sample to villages that did not have a paved road at the start of the program.

The PMGSY used multiple population thresholds to determine road prioritization: 1000,

500 and 250. Very few villages around the 250 population threshold received roads by 2010,

so we limit our sample to villages with populations close to 500 and 1000. Further, only

certain states followed the population threshold prioritization rules as given by the national

guidelines of the PMGSY. We worked with the National Rural Roads Development Agency to

identify the state-specific thresholds that were followed and define our sample accordingly.10

To maximize power, we pool our samples, using the same optimal bandwidth (54) for villages

close to both the 500 and 1000 thresholds.

7.3 Results

We first present our baseline RDD estimates before turning to heterogeneous treatment

effects using our two-step classification tree method above. As the RDD estimator can be

interpreted as a Wald estimator, we report the first stage in Table 7, where the outcome

variable is an indicator that takes the value one if a village received a new road by 2010.

There is a strong relationship between the instrument (being above the pre-defined popula-

tion threshold) and having a road. The second stage is reported in Table 8. We estimate

that the causal effect of a newly-built road to a rural village is to increase bus availability by

17 percentage points. The estimated effect is nominally significant at the 10 percent level.

That may be due to either sampling error, a lot of heterogeneity in the correctly specified

model, or specification error. To assess if we can improve on this estimate by accounting for

unobserved heterogeneity, we next run the moment tree estimator on the same data.

We include several covariates as possible splitting variables: state fixed effects; distance to

the nearest city with 10,000 people, 100,000 people, and 500,000 people, respectively; and

Castes and Scheduled Tribes), number of schools and medical centers, distance to nearest town, share of
irrigated land, land area, share of population employed in agriculture, and a dummy variable indicating
electrification.

10Our sample is comprised of villages from the following states, with the population thresholds used in
parentheses: Chhattisgarh (500, 1000), Gujarat (500), Madhya Pradesh (500, 1000), Maharashtra (500),
Orissa (500), Rajasthan (500).
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Table 7: First Stage RDD

(1)
Road by 2011

Road priority 0.196∗∗∗

(0.0185)

2001 Pop * 1(Pop < Cutoff) 0.0158
(0.0422)

2001 Pop * 1(Pop ≥ Cutoff) 0.0797
(0.0422)

Constant 0.262∗∗∗

(0.0132)

Observations 10086
F 188.9

Standard errors in parentheses

Table 8: IV RDD Estimates

(1)
Bus service (2011)

Road 0.171∗

(0.0862)

2001 Pop * 1(Pop < Cutoff) −0.0172
(0.0394)

2001 Pop * 1(Pop ≥ Cutoff) −0.00335
(0.0430)

Constant 0.183∗∗∗

(0.0324)

Observations 10086

Standard errors in parentheses
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an indicator for existence of a bus route in 2001, prior to the road-building program.11 As

discussed in Section 2, we use bootstrapping and inverse-variance weighting within moment

forests to produce our estimates of θ(X). We use 50 bootstrap samples, constructed by

sampling randomly with replacement from the base data set, and then split the sample in

half; in each split, we grow a moment forest of 50 trees, where we obtain the leaf structure

on the first half of the data and then estimate the RDD effect within each leaf of that tree

with the second half.12

To illustrate what is happening in our estimation, it is useful to consider the output of

a single tree. Recalling that the estimator first splits the data in half and estimates the

structure of the tree on the first half, output may look like the following:

x1 < 24.71; x0 in { 8 }; x2 < 108.99; x4 in { 0 },0.113 (0.093) [537]

x1 > 24.71; x0 in { 8 }; x2 < 108.99; x4 in { 0 },0.467 (0.712) [122]

x0 in { 22 }; x2 < 108.99; x4 in { 0 },0.591 (0.369) * [558]

x2 > 108.99; x0 in { 8 22 }; x4 in { 0 },0.070 (1.689) [268]

x0 in { 21 23 }; x4 in { 0 },0.382 (0.208) ** [3014]

x0 in { 8 22 }; x4 in { 1 },0.197 (0.375) [234]

x0 in { 21 23 }; x4 in { 1 },0.162 (0.374) [353]

Each line specifies a rule which defines a leaf of the tree, or a disjoint subset of the sample.

This is followed by the estimated treatment effect in that leaf, its standard error, star notation

indicating level of significance at the 0.10 (*), 0.05 (**), or 0.01 (***) level, and the number

of observations falling into that leaf in brackets. In this tree, there are statistically significant

effects in two of the leaves. The first is for states 21 and 23, in villages that previously did

not have bus routes; the estimated treatment effect is a 38.2 percentage point increase in the

probability of receiving a bus route after building a road. The second effect is a more complex

splitting of the data: for state 22, when the nearest city of 100,000 people is less than 108

kilometers away, and a bus route did not previously exist, the treatment effect is estimated

to be 59.1 percentage points with a standard error of 39.6 percentage points, indicating this

11Bus routes can exist at baseline in villages without paved roads, because some of these villages could be
reached on dirt roads, though not necessarily in all seasons.

12As in the Monte Carlo, the stopping criteria for growing the tree (k, α, and MSE) are set using cross-
validation. We used a holdout sample of 1,000 observations to calculate prediction error while setting the
sample sizes to grow the tree and estimate its values at 1,996 and 6,000 respectively. We used unequal
sample sizes for growing the trees since the model selection step has much faster convergence rates than the
estimation step, which therefore benefitted more from having a larger sample size. In principle these sample
sizes are also subject to cross validation to select their optimal sizes.
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effect is marginally significant at the 10 percent level. For comparison, a baseline RDD on

the entire sample finds a treatment effect of 28.8 percentage points with a standard error of

11.6 percentage points.13 Importantly, presence of a prior bus route (x4 = 1) is associated

with low and statistically insignificant treatment effect, which follows intuition given that it

is not possible for the outcome variable to grow in this subsample, though it could decline.

Finally, the tree did not split on distance to either the smaller or larger towns, indicating

that these are not key predictors of treatment effect sizes in this subsample.

This tree from the first half of the sample is only used for its structure; we use the second

sample to estimate treatment effects. This second tree is:

x2 < 108.99; x0 in { 8 22 }; x4 in { 0 },0.268 (0.110) *** [1217]

x2 > 108.99; x0 in { 8 22 }; x4 in { 0 },-0.085 (0.490) [106]

x0 in { 21 23 }; x4 in { 0 },0.487 (0.075) *** [3515]

x4 in { 1 },0.217 (0.287) [587]

The second tree has fewer nodes than the first tree. This is due to the fact that some leaves

that are estimates in the first stage do not have enough observations (or any) in the second

sample to produce valid estimates. In these cases, we “prune” that leaf and consider the

next highest level of aggregation the new terminal leaf. Interestingly, the second tree finds

an even stronger effect for states 21 and 23 without prior bus routes. The two leaves with

prior bus routes are now combined into one; there is still no significant effect. The first and

third leafs are also combined, resulting in a more precise estimate for states 8 and 22 (versus

just 22) with cities of more than 100,000 people less than 108 km away.

Two interesting outcomes of this process are that, first, the full sample treatment effect of

0.171 is a composite estimate mixing together several different estimates. It misses the much

stronger (and precise) effect in states 21 and 23 that is almost three times as large. Second,

the estimated model is more complex than anyone would ever stumble upon a priori. The

first leaf’s rule splits on a continuous variable and interacts with two other discrete variables.

We estimate the bootstrapped moment forest model under two sets of possible splitting vari-

ables. We first restrict each tree to only split on the state indicators. Under this restriction,

we obtain three statistically significant treatment effects, differentiated by Indian state. In

state 22, the estimated treatment effect is 0.232 with a standard error of 0.126. In state

13This is different from the grouped RDD effect on all the data because we are just using half of the sample
data.
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23, the estimated treatment effect is 0.301 with a standard error of 0.147. In state 21, the

estimated treatment effect is 0.292 with a standard error of 0.157. These results contrast

with the baseline homogeneous estimate in two important ways. First, the moment tree esti-

mator finds statistically significant effects for only 7389 of the 9996 sample villages. Second,

it estimates three different effects within those 7389 villages. The baseline estimate combines

both kinds of heterogeneity, resulting in a lower point estimate with a larger standard error.

We next estimate the full moment tree model, allowing for continuous variables to enter

the tree, specifically the distances to towns of different sizes. The estimator finds 3,525

statistically significant unique treatment effects across 3,603 villages. A density plot of the

range of estimates is provided in Figure 4; the vast majority of estimated effects range from

zero to 0.4. This density plot understates the incredible richness of the estimator, however,

as can be seen by plotting the distribution of treatment effects across space.

Figure 4a shows a heat map of treatment effects for all sample villages, both treated and

untreated. Treatment effects are divided into deciles, and the black areas show the smallest

treatment effects, and the bright red areas show the largest. Figure 4b presents another

heatmap of treatment effects, this time for the subset of villages with statistically significant

treatment effects (all of them positive). The maps highlight the variation in treatment

effects across states, and also as a function of proximity to urban geography. Treatment

effects are largest in Madhya Pradesh and Orissa, smaller (and not statistically significant)

in Chhattisgarh, and close to zero in Rajasthan.14 Within those states, treatment effects

are largest around the major cities of Bhubaneswar, Gwalior, Indore, Bhopal and Jabalpur.

Proximity to smaller cities does not appear to drive significant variation in treatment effects,

and Rajasthan and Chhattigarh to do not show strong heterogeneity in urban proximity. In

Figure 4b, it is clear that the proximity effect is non-linear—treatment effects become smaller

at extremely close proximity to towns, perhaps because even villages with very poor quality

access roads were already connected to bus routes in these periurban areas. While this

distribution of treatment effects is sensible and can be understood ex post, it would be

impossible to predict this set of treatment interactions a priori.

The importance of these findings are two-fold: first, the average treatment effect in the sub-

samples in Figure 4b is ranges from near zero to 0.4, which is almost three times larger than

the treatment effect found in the grouped data. Second, statistically significant treatment

14Note that this variation is not related to the size of the first stage across villages, as the first stage
estimator is in fact largest in Rajasthan.
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Figure 4: Density Plot of Treatment Effects

0
1

2
3

4
D

en
si

ty

0 .1 .2 .3 .4
se

kernel = epanechnikov, bandwidth = 0.0160

Kernel density estimate

effects only occurs in a subset of the villages. This is a highly complex nonlinear partitioning

of the original data, highlighting the fact that it is highly unlikely anyone would ever be able

to guess that this was the true model. The alternative of saturating the specification with

every combination of all discrete variables runs into the problem of how to cut the continuous

variables. There are literally an infinite number of cuts, and as such this is not a fruitful

approach. Fully nonparametric approaches are fully general, but converge so slowly that

it is unlikely to be a productive path for practitioners with finite data sets. Our estima-

tor provides a middle path that allows for arbitrary structure while retaining the efficiency

properties of pre-specified models.

8 Conclusion

We have presented a two-stage estimator for the problem of assigning statistical models to

disjoint subsets of a sample. Leveraging recent results on the estimation of honest trees, we

split the sample into two random halves. The first half is used to estimate the classification

tree assigning observations to models. The second half is used to estimating parameters

of those models within each assignment. Splitting the data in this fashion allows us to

48



Figure 5: Heatmap of Treatment Effects

(a) All Villages

(b) Statistically Significant Villages
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derive econometric results that the tree is consistently estimated, converges to the truth at a

faster-than-parametric rate, and therefore can be ignored when constructing standard errors

for the estimates in the second stage. Our method applies to all empirical settings where

the researcher has reason to believe that the estimated model may vary across units of the

sample in some observable fashion.

We show a simple application of our estimator to a roads building project in India. Using a

bootstrapped moment forest, we estimate a model that produces 3,525 statistically significant

treatment effects spread across 3,603 villages. The results highlight the heterogeneity in

treatment effects found using a regression discontinuity framework across these villages,

including the importance of proximity to large urban spaces and the variation across Indian

states. In future work, we plan to expand on these preliminary results and bring in a micro-

level data set at the household level to match with the village-building program. This will

let us to test for observable heterogeneity at a much finer level than our current data allows

for.
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