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1 Introduction

How to optimally delegate decision making is central to a variety of applications. In

organizations, headquarters delegate investment decisions to division managers who have

superior information about project benefits but also a desire for a larger empire. When

designing fiscal policy institutions, society delegates spending decisions to a government

which can better assess current social needs but tends to overweigh the value of present

spending. In a self-control context, an individual delegates consumption to his ex-post

self who learns from taste shocks but may be tempted to overconsume and undersave.

The delegation problem was first formally analyzed by Holmström (1977, 1984) and

has since been studied by an extensive literature (e.g., Melumad and Shibano, 1991;

Amador, Werning and Angeletos, 2006; Alonso and Matouschek, 2008; Amador and Bag-

well, 2013). The canonical model considers a principal who faces a better informed but

biased agent, as in the above applications. Transfers between the parties are infeasible, so

the principal simply chooses an allowable set of actions from which the agent can select.1

Optimal delegation reflects a fundamental tradeoff between commitment and flexibility:

on the one hand, commitment is valuable to limit biased decisions by the agent; on

the other hand, flexibility is valuable as the efficient action depends on the agent’s pri-

vate information, and only with discretion can the agent react to this information. A

main insight from the literature is that, under weak conditions, this commitment-versus-

flexibility tradeoff is resolved by threshold delegation. Specifically, if the agent is biased

towards higher actions, the principal optimally allows him to select any action up to a

threshold.

Threshold rules are indeed common in applications. However, real-world rules also

typically feature an “escape clause.” As reported in survey studies on capital budget-

ing (e.g., Ross, 1986; Taggart, 1987) and discussed in Harris and Raviv (1996), division

managers in organizations are given a budgetary limit but can ask for a revision of the

budget when in need. Managers must provide project documentation for headquarters to

review and approve an increase in the division’s capital allocation. Likewise, governments

are constrained by deficit limits but legal procedures exist to break these limits under

exceptional circumstances. In fact, Budina et al. (2012) find that formal escape clause

provisions are included in fiscal rules in many countries, with more recently introduced

1In various applications, like those described above, transfers are ruled out because of institutional
reasons or ethical considerations. See Alonso and Matouschek (2008) for a discussion and other examples
where transfers are not feasible.
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rules defining clearer trigger points.2 As for savings policies, most pension plans impose

minimum savings requirements, but these do not apply if an individual can document

special conditions.3 Real-world rules make use of escape clauses because agents’ pri-

vate information can often be verified, albeit at a cost. Once an agent’s information is

ascertained, the appropriate action by the agent can be selected.4

In this paper, we introduce costly state verification, as in the seminal work of Townsend

(1979), into a general delegation framework. Our main goal is to explore the conditions

under which a threshold with an escape clause (TEC), as we observe in practice, is op-

timal. We define TEC as a rule in which an agent can freely select any action up to

a threshold, and if the threshold is sufficiently binding, he can request an audit to be

assigned the efficient action by triggering the escape clause.

Costly verification has been shown to play an important role in other contexts, most

notably in models of financial contracting and tax collection (e.g., Townsend, 1979; Gale

and Hellwig, 1985; Border and Sobel, 1987; Mookherjee and Png, 1989) but also more

recently in various allocation problems (e.g., Ben-Porath, Dekel and Lipman, 2014; Er-

lanson and Kleiner, 2015). Existing work, however, focuses on environments in which the

objectives of a principal and an agent are in complete disagreement, an assumption that

is at odds with the subject of delegation theory. In a delegation problem like the one

we study, flexibility is valuable precisely because the principal and agent are in partial

agreement, namely the agent’s bias is not “extreme.” We find that this distinction has

key implications for an agent’s incentives to be audited and, in turn, for the optimal rule

for a principal. Intuitively, an agent with an extreme bias towards higher actions would

only pursue an audit to increase his action, whereas one with a moderate bias may pursue

an audit to increase or decrease his action.

2For instance, until 2010 Germany had in place an escape clause allowing for temporary deviations
from its fiscal rule in case of a “distortion of the macroeconomic equilibrium.” Since 2010, the clause
applies more precisely to “natural disasters or unusual emergency situation which are outside government
control and have major impact on the financial position of the government.” Parliament must approve
the use of the escape clause and an amortization plan for reducing the accumulated deviation. See
Budina et al. (2012), p. 42.

3For example, retirement plan distributions are not subject to early withdrawal penalties in a
number of circumstances pre-specified by the plan. See https://www.irs.gov/retirement-plans/

plan-participant-employee/retirement-topics-tax-on-early-distributions.
4Other applications include international trade agreements and price delegation in firms. Beshkar and

Bond (2016) examine the properties of an optimal trade agreement within the class of caps with escape
clauses and provide examples of agreements that take this structure. Lo et al. (2016) study the pricing
flexibility afforded to sales people, who are allowed to unilaterally offer their customers discounts up to
a certain percentage off the list price but must request approval from a supervisor for larger discounts.
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We examine a general principal-agent model with no transfers in which the agent

is biased towards higher spending relative to the principal. The agent’s private infor-

mation, or type, concerns the value of spending; a higher agent type corresponds to a

higher marginal value of spending for both the principal and the agent. We expand this

delegation model by allowing the principal to audit the agent. The principal incurs an

additive cost if she conducts an audit, which may also be partially born by the agent.

An audit verifies the agent’s type perfectly.5

For most of our analysis, we assume that the principal can fully commit to a delegation

rule. The problem can be viewed in three steps: first, the principal chooses a mapping

from the agent’s audit decision and result to a set of allowable spending; second, the

agent decides whether to seek audit, in which case the principal verifies his type; third,

the agent chooses a spending level from the allowable set. Formally, a delegation rule

is a pair of schedules specifying, for each agent type, whether he is audited or not and

his spending level.6 A delegation rule is optimal if it maximizes the principal’s expected

welfare subject to the incentive compatibility constraint that each agent type prefer his

audit assignment and spending level to those of any other type. Specifically, each agent

type must prefer his allocation to that of any other type who is not prescribed audit;

deviations to types who are audited can be trivially deterred as the principal can punish

the agent when the audit reveals that he has deviated.

Our first main result shows that if the cost of audit is sufficiently small, TEC is

optimal. Importantly, we also show that auditing all agent types is never optimal; hence,

no matter how small the audit cost is, an optimal rule prescribes no audit for some

types. The intuition why TEC is optimal is that auditing an upper region of agent

types not only allows the principal to improve the spending allocation for these types,

but is also an efficient means of imposing discipline on lower agent types who are not

audited: these types select from a set of lower spending levels and cannot mimic a higher

type who is audited. In fact, the proof of this result rests on showing that any rule

with decreasing auditing — prescribing audit for a set of agent types and no audit for

a set of higher types — can be dominated. Decreasing auditing is expensive for the

principal because it requires incentivizing types in the audit region to seek audit rather

than mimic a higher type in a no-audit region above them, and this in turn requires

inducing significant overspending in the no-audit region. We show that when the audit

5See Section 6 for a discussion of imperfect verification.
6We restrict attention to deterministic auditing in our analysis. The case of random auditing is

discussed in Section 6.
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cost is small enough, a perturbation that audits all types in the decreasing auditing region

increases the principal’s welfare.

TEC however may not be optimal when the audit cost is relatively higher. Our second

main result shows that auditing only an intermediate set of types can yield the principal

higher welfare relative to not auditing any type as well as relative to using a TEC rule.

The main reason why auditing only intermediate types can dominate not auditing any

type is that an intermediate audit region serves to discipline types in the no-audit region

below. The main reason why auditing only intermediate types can dominate TEC is

that it allows the principal to save on audit costs. We show that these benefits can

outweigh the cost of overspending that is needed to incentivize intermediate types to be

audited. Thus, when the audit cost is not low (and not high) enough, a rule that involves

decreasing auditing can be optimal.

An implication of our construction is that high commitment power from the principal’s

side is needed whenever decreasing auditing is induced. Consider the aforementioned

delegation rule where the principal only audits an intermediate set of types. To implement

this rule, the principal commits to an allocation that may be inefficient ex post, following

the audit decision and result. In particular, the rule may assign an inefficient spending

level after an audit is conducted and the agent’s type is verified, both in the case that

the agent’s seeking audit is “on path” as well as when this audit is part of a deviation.

Moreover, the rule may induce an allocation after the agent decides not to seek audit that

is inefficient conditional on no audit, i.e. when ignoring the incentives of audited types.

What happens if the principal is unable to commit ex ante to these ex-post inefficient

allocations?

Our third main result characterizes the optimal rule when the principal’s commitment

power is limited. In terms of the three-step timing described previously, limited commit-

ment means that the principal now revises the agent’s allowable spending set following

the agent’s audit decision and result. We show that under limited commitment, TEC is

optimal whenever auditing is optimal. Indeed, we prove that any incentive compatible

rule must have weakly increasing auditing everywhere. The reason is that inducing de-

creasing auditing requires incentivizing audited types not to deviate and choose a higher

spending level in a no-audit region above them, and under limited commitment it also

requires incentivizing non-audited types not to seek an audit that guarantees them ef-

ficient spending. When unable to fully commit to a rule ex ante, the principal cannot

implement the spending levels that would be required to make these deviations unattrac-
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tive, and thus decreasing auditing is not feasible. We obtain that in an environment with

limited commitment, the delegation rules that we observe in practice coincide with the

predictions of the theory.

Related literature. Our paper is related to two literatures. First, we contribute to

the literature on optimal delegation and self control, starting with Holmström (1977,

1984). Melumad and Shibano (1991) and Alonso and Matouschek (2008) study delegation

under quadratic preferences; Amador, Werning and Angeletos (2006) analyze a model

of consumption with hyperbolic preferences; and Amador and Bagwell (2013) consider

a general framework which we take as our baseline.7 As in this literature, we study a

principal-agent environment with no transfers in which the agent is better informed about

the efficient action but biased relative to the principal. In contrast to this literature,

we allow the principal to verify the agent’s information at a cost. By introducing this

additional tool, we are able to explore the conditions under which a threshold with an

escape clause is optimal, and how these conditions depend on the extent of the principal’s

commitment power.8

Second, we contribute to the literature on costly verification, starting with Townsend

(1979). Both that paper and others that followed it, including Gale and Hellwig (1985),

Border and Sobel (1987), and Mookherjee and Png (1989), analyze settings with transfers,

which we rule out. More recently, Ben-Porath, Dekel and Lipman (2014) and Erlanson

and Kleiner (2015) consider costly verification in one-good and collective allocation prob-

lems without transfers.9 Our main departure from this literature (in addition to other

differences specific to each paper) is that we study a delegation setting in which we allow

for different degrees of bias by the agent relative to the principal. This is also the main

distinction with respect to Harris and Raviv (1996), which analyzes costly verification

in a delegation model in which the agent always benefits from higher actions.10 The

7See also Athey, Atkeson and Kehoe (2005), Ambrus and Egorov (2013, 2015), and Halac and Yared
(2014, 2015).

8We study the effects of the principal not being able to commit to not changing the agent’s allowable
spending set following the audit decision and result. A different question that a literature on auditing
has investigated concerns a principal’s ability to commit to an audit strategy; see, e.g., Reinganum and
Wilde (1986), Banks (1989), and Chatterjee, Morton and Mukherji (2002).

9See also Glazer and Rubinstein (2004, 2006) and Mylovanov and Zapechelnyuk (2014), which use
different verification technologies. More broadly, there is a literature on mechanism design and imple-
mentation with evidence, including Green and Laffont (1986), Bull and Watson (2007), Deneckere and
Severinov (2008), Ben-Porath and Lipman (2012), and Kartik and Tercieux (2012).

10In their model, the agent’s marginal utility from a higher action depends on his type but is always
positive. Their model also differs from ours in other respects: there are only three agent types, the agent
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results in Harris and Raviv (1996) are consistent with our benchmark finding that TEC

is optimal for any audit cost if the agent’s bias is extreme. As previously discussed, our

interest is in understanding optimal delegation and auditing when the agent’s bias is not

extreme: the agent’s most preferred action is higher than the principal’s but not neces-

sarily the highest possible action.11 The principal as a result faces a tradeoff between

commitment and flexibility, which introduces new conceptual issues into our mechanism

design problem. In fact, the agent’s bias not being extreme implies that decreasing au-

diting is sometimes optimal in our setting, a feature that does not emerge in this related

work.

2 Model

Our baseline model of delegation is the same general principal-agent environment of

Amador and Bagwell (2013), where we focus on the case in which the agent’s bias is

towards higher actions. We extend this delegation model by allowing for costly state

verification, following Townsend (1979).

2.1 Environment

There are a principal and an agent. The state is γ ∈ Γ ≡
[
γ, γ
]

for γ > 0, with continuous

density f (γ) > 0 for all γ. The corresponding distribution function is F (γ). The level of

spending is denoted by π ∈ [π, π].

The principal’s welfare is UP (γ, π), twice continuously differentiable with ∂2UP (γ,π)
∂π2 <

0. We assume that the principal’s optimum, πP (γ) ≡ arg maxπ UP (γ, π), is interior,

and refer to it as the efficient level of spending. We impose the following single-crossing

condition:
∂2UP (γ, π)

∂γ∂π
> 0. (1)

Thus, the efficient level of spending is increasing in the state: π′P (γ) > 0.

receives a non-contingent transfer from the principal, and the principal can choose to audit the agent
with an interior probability. Harris and Raviv (1998) consider an extension of Harris and Raviv (1996)
in which capital is allocated not to one project but across multiple projects. Malenko (2016) analyzes a
dynamic version in which projects of independent and identically distributed quality arrive stochastically
over time.

11Hence, the agent may agree or disagree with the principal when she prefers a lower action, whereas
in other work the agent would always disagree with the principal about lowering the action.
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The agent’s welfare is UA (γ, π) = γπ + b (π), with b(π) twice continuously differen-

tiable and b′′ (π) < 0. We assume that the agent’s optimum, πA (γ) ≡ arg maxπ UA (γ, π),

is interior, and refer to it as the flexible level of spending. Note that the agent’s welfare

satisfies the single-crossing condition ∂2UA(γ,π)
∂γ∂π

> 0.12 We study the case in which the

agent is biased towards higher spending:

∂UA (γ, π)

∂π
>
∂UP (γ, π)

∂π
. (2)

Thus, conditional on the state, the flexible level of spending always exceeds the efficient

level: πA (γ) > πP (γ) for all γ ∈ Γ.

The state γ is private information to the agent, i.e. the agent’s type. The principal

can conduct an audit to perfectly verify γ by paying an additive cost φ > 0. The agent’s

cost of audit is αφ for α ∈ [0, 1]. This formulation allows us to cover situations in which

the agent pays no audit cost (α = 0) as well as situations in which he pays a cost no

larger than the principal’s (α ∈ (0, 1]).13

By featuring both a bias and private information by the agent, our environment gives

rise to a tradeoff between commitment and flexibility. If the agent were not biased relative

to the principal, the principal could implement the efficient level of spending by providing

full flexibility to the agent (who would in this case choose πA (γ) = πP (γ)). Similarly, if

the state γ were not the agent’s private information, the principal could implement the

efficient level of spending by committing the agent to a fully contingent spending plan.

In the presence of both a bias and private information, however, the principal cannot

implement efficient spending πP (γ) for all γ without audit, and she faces a non-trivial

tradeoff between commitment and flexibility.

Special cases. As noted in Amador and Bagwell (2013), the model of delegation de-

scribed above encompasses specific cases commonly studied in the literature. One ex-

ample is the case of quadratic preferences, examined by Melumad and Shibano (1991)

and Alonso and Matouschek (2008). Under quadratic preferences, the principal’s wel-

fare is − (γ−π)2

2
and the agent’s welfare is − (γ+β−π)2

2
, for some β > 0 representing the

agent’s bias. This formulation is equivalent to letting UP (γ, π) = γπ + b (π) − βπ and

12For both the principal and the agent’s preferences, we will refer to “single-crossing” as the (stronger)
supermodularity condition that we have assumed these preferences satisfy.

13One can also allow for the agent to pay a higher audit cost than the principal’s (namely let α > 1).
Our main results continue to hold in this case if the agent’s bias is sufficiently large.
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UA(γ, π) = γπ + b (π) for b (π) = βπ − π2

2
, and is therefore a special case of our model.

We will use the quadratic preferences case to illustrate some of our results.

Another example is the model of consumption under hyperbolic preferences, analyzed

by Amador, Werning and Angeletos (2006) and Halac and Yared (2014, 2015). The

principal’s welfare in this case is γu (c) + w (y − c) and the agent’s welfare is γu (c) +

βw (y − c), where u and w are utility functions, c and y represent consumption and

exogenous income respectively, and β ∈ (0, 1) captures the degree of present bias by the

agent. This formulation is equivalent to letting UP (γ, π) = γπ + 1
β
b (π) and UA(γ, π) =

γπ + b (π) with π = u (c) and b (π) = βw (y − u−1 (π)), and is thus also encompassed by

our model.

2.2 Timing

The order of events is as follows:

1. The principal sets a rule, which maps an audit decision and result into an allowable

spending set Π.

2. The agent chooses whether or not to seek audit, a ∈ {0, 1}, and the principal verifies

his type γ if a = 1.

3. The agent chooses a spending level π from the allowable set Π.

The above timing assumes that the agent learns his type γ before the principal sets

a rule in Step 1. Our analysis is unchanged if instead the agent learns his type after the

rule has been set, i.e. at the beginning of Step 2.

2.3 Delegation Rules

Given the game form described above, we can analyze the principal’s problem as that

of choosing a delegation rule M which consists of a pair of schedules {a (γ) , π (γ)}γ∈Γ,

specifying an audit decision and spending level for each type γ. The principal chooses a
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rule M to maximize her expected welfare:

max
{a(γ),π(γ)}γ∈Γ

∫ γ

γ

(
UP (γ, π (γ))− a (γ)φ

)
f (γ) dγ (3)

subject to

UA (γ, π (γ))− a (γ)αφ ≥ UA (γ, π (γ̂)) for all γ, γ̂ for which a (γ̂) = 0. (4)

The objective (3) is the principal’s expected welfare under a given rule, taking into

account the additive audit costs. The constraint (4) is an incentive compatibility (or

truthtelling) constraint: it guarantees that an agent of type γ prefers his assigned audit

decision and spending level, a (γ) and π (γ), to a different allocation a (γ̂) and π (γ̂) for

some type γ̂ who is not audited (that is, with a (γ̂) = 0). Note that it is sufficient to

consider deviations to non-audited types: since a deviation in which an agent of type γ

mimics an audited type γ̂ would be detected by the principal (as an audit reveals the

true type) and the principal can arbitrarily punish the agent when she learns that he has

deviated (off path), we do not need to consider such a deviation.14

We also note that the formulation above does not rule out mixed strategies by the

agent. If the agent were willing to mix over audit and no audit or over two spending

levels, he would be indifferent over these allocations, and thus the principal can select

one of these that maximizes her expected welfare.15 In fact, building on this observation,

we can show that our results are not limited to the game form in Section 2.2 but continue

to hold when allowing for any indirect mechanism specifying a message space for the

agent and a deterministic allocation function to which the principal commits. Such a

mechanism induces a game in which the agent sends a message, is either audited or not

as a function of the message, and is assigned a spending level as a function of the message

and audit result. Appendix B shows that a version of the Revelation Principle in terms of

payoffs holds in our setting, implying that to study the optimal deterministic mechanism

for the principal, it is without loss to restrict attention to deterministic direct mechanisms

(i.e. where the message space coincides with the agent’s type space) that induce truthful

reporting by the agent, as considered in program (3)-(4) above.

14The principal can punish a deviation of a type γ in which he mimics a type γ̂ 6= γ with a(γ̂) = 1
by assigning following audit some spending level π(γ̂, γ) such that UA (γ, π(γ̂, γ)) ≤ UA (γ, π (γ)). It is
clear that such a spending level exists; in fact, setting π(γ̂, γ) = π(γ) would be a sufficient punishment.

15While this selection relaxes the principal’s problem, it is not used under the optimal rule described
in our main result in Proposition 3, which induces a unique best response by the agent. Hence, the result
does not rely on selection of equilibria of the game in Section 2.2.
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Because there is a continuum of types, it is possible that the problem in (3)-(4) admit

multiple solutions that are identical everywhere except for a countable set of types. As

a means of selecting the optimum in such a situation, we say that a rule M is optimal

if it solves (3)-(4) and there is no other solution M̃ , with associated audit and spending

schedules {ã(γ), π̃(γ)}γ∈Γ, such that

UP (γ, π̃ (γ))− ã (γ)φ ≥ UP (γ, π (γ))− a (γ)φ (5)

for all γ and strictly for some γ ∈ Γ.16

3 No Verification Benchmark

Before analyzing the optimal delegation rule with verification, we review the results of

the literature by considering the optimal rule in the absence of verification. Suppose

the principal faces the constraint that a (γ) = 0 for all γ.17 The problem in (3)-(4)

subject to this additional constraint is studied by Amador and Bagwell (2013). To solve

this problem, they make the following Assumption 1 on the distribution of γ; we extend

this assumption to any truncation from above, with support [γ, γ′] for γ′ ≤ γ, density

f (γ) /F (γ′), and distribution function F (γ) /F (γ′):

Assumption 1. Take the distribution of γ truncated from above by γ′ ≤ γ. For each

such truncated distribution, there exists γ∗ such that for κ ≡ inf{γ,π}
(
∂2UP (γ,π)/∂2π

b′′(π)

)
,

(i) κF (γ)− ∂UP (γ,πA(γ))
∂π

f (γ) is nondecreasing for all γ ∈
[
γ, γ∗

]
, and

(ii) (γ − γ∗)κ ≥
∫ γ′
γ

∂UP (γ̃,πA(γ∗))
∂π

f(γ̃)
1−F (γ)

dγ̃ for all γ ∈ [γ∗, γ′], with equality at γ∗.

One can verify that for the special cases typically studied in the literature, such as

those with quadratic or hyperbolic preferences, Assumption 1 is satisfied under commonly

used distribution functions, including exponential, log-normal, and any nondecreasing

density.18 Given Assumption 1, the results in Amador and Bagwell (2013) yield:

16Although multiple solutions can in principle continue to exist under this condition, this criterion
turns out to be sufficient for our characterization.

17In this case, the constraint (4) becomes UA (γ, π (γ)) ≥ UA (γ, π (γ̂)) for all γ, γ̂.
18We note also that Assumption 1 on the original, non-truncated distribution implies that the assump-

tion is satisfied for all truncations from above if the conditions in Proposition 2 of Amador and Bagwell
(2013) hold.
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Optimal Rule without Verification

Agent’s preferred spending is ⇡A(�): � = �b0(⇡A(�))

Distributional assumption as in Amador-Bagwell 13: there is �⇤ s.t.

• inf
n

v00(⇡)+b00(⇡)
b00(⇡)

o
F (�) � v0(⇡A(�))f(�) nondecreasing for � < �⇤

• (���⇤) inf
n

v00(⇡)+b00(⇡)
b00(⇡)

o
�

R �

�
(e� � �⇤ + v0(⇡A(�⇤)) f(e�)

1�F (e�)
de� 8� 2 [�⇤, �]

Proposition

Without verification, optimal rule is a threshold ⇡⇤:

⇡ (�) = min {⇡A (�) ,⇡⇤}

Threshold with Escape Clause (TEC)

TEC consists of {⇡⇤,⇡⇤⇤} such that

1. (threshold) If no audit, ⇡ (�) = min {⇡A (�) ,⇡⇤}

2. (escape clause) If audit and ⇡P (�) � ⇡⇤⇤, then ⇡ (�) = ⇡P (�) for

� = �b0(⇡P (�)) � v0(⇡P (�))

Types with ⇡P (�) < ⇡⇤⇤ are punished if audited

Threshold with Escape Clause (TEC)

TEC consists of {⇡⇤,⇡⇤⇤} such that

1. (threshold) If no audit, ⇡ (�) = min {⇡A (�) ,⇡⇤}
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INTUITION STEP BY STEP:

We provide intuition for why decreasing auditing can improve upon no audit and TEC for 
intermediate costs.

Start with AWA:

In[41]:= Plot@8theta, theta + b, gNA@thetaD<, 8theta, thetaL, thetaH<,
PlotRange Ø 8thetaL, thetaH + b<, BaseStyle Ø 8FontSize Ø 14<,
AxesLabel Ø 8"theta", ""<, Axes Ø True, AxesOrigin Ø 8thetaL, thetaL<,
PlotStyle Ø 88Gray<, 8Gray<, 8Blue, Thickness@0.01D<<, Ticks Ø 88<, 8<<D
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� = �b0(⇡P (�)) � v0(⇡P (�))

Types with ⇡P (�) < ⇡⇤⇤ are punished if audited

Optimal Rule without Verification

Agent’s preferred spending is ⇡A(�): � = �b0(⇡A(�))

Distributional assumption as in Amador-Bagwell 13: there is �⇤ s.t.

• inf
n

v00(⇡)+b00(⇡)
b00(⇡)

o
F (�) � v0(⇡A(�))f(�) nondecreasing for � < �⇤

• (���⇤) inf
n

v00(⇡)+b00(⇡)
b00(⇡)

o
�

R �

�
(e� � �⇤ + v0(⇡A(�⇤)) f(e�)

1�F (e�)
de� 8� 2 [�⇤, �]

Proposition

Without verification, optimal rule is a threshold ⇡⇤:

⇡ (�) = min {⇡A (�) ,⇡⇤}

Figure 1: An optimal rule under no verification. The figure is drawn for the quadratic
preferences case (see Section 2.1), where we let γ = 0.5, γ = 1.5, β = 0.12, and F (γ)
uniform.

Proposition 1 (no verification). Take the distribution of γ truncated from above by

γ′ ≤ γ. If the principal is constrained to a (γ) = 0 for all γ ∈
[
γ, γ′

]
, an optimal rule is

a threshold γ∗ < γ′ such that

π (γ) = min {πA (γ) , πA (γ∗)} for γ ∈
[
γ, γ′

]
.

Under no verification, an optimal rule is a threshold γ∗ such that all types γ ≤ γ∗

spend at their flexible level and all types γ > γ∗ are bunched at the flexible spending level

of γ∗. The principal can implement this rule by setting a spending limit π∗ = πA (γ∗)

and allowing the agent to choose any spending level up to this limit.

Figure 1 illustrates an optimal rule with no verification for the case of quadratic

preferences. The level of spending is on the vertical axis and the agent’s type on the

horizontal axis. In this simple example, both efficient and flexible spending are increasing

linear functions of the state γ, and flexible spending exceeds efficient spending by a

constant amount representing the agent’s bias. The rule characterized in Proposition 1

specifies a spending level that coincides with the agent’s flexible level for γ ≤ γ∗ and

equals πA (γ∗) for γ > γ∗.

A key insight behind the result in Proposition 1 is that “holes” are suboptimal. More

precisely, the principal can always improve upon a rule as that depicted in Figure 2, which

does not allow the agent to choose a spending level π ∈ [πL, πH ], for some π < πL <

πH < π′, but allows the agent to choose spending immediately below πL and immediately
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Optimal Rule without Verification

Agent’s preferred spending is ⇡A(�): � = �b0(⇡A(�))

Distributional assumption as in Amador-Bagwell 13: there is �⇤ s.t.

• inf
n

v00(⇡)+b00(⇡)
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Proposition

Without verification, optimal rule is a threshold ⇡⇤:

⇡ (�) = min {⇡A (�) ,⇡⇤}

Optimal Rule without Verification

Distributional assumption implies a hole [⇡L,⇡H ] is suboptimal

• Key result in Amador-Werning-Angeletos 06, Amador-Bagwell 13

Now of course a hole like this would not be optimal as the types in the middle would jump up.

In[50]:= gNAC4[theta_ ); thetadpri < theta < thetapri] := thetapri + b;

Plot[{theta, theta + b, gNAC3[theta], gNAC4[theta]},
{theta, thetaL, thetaH}, PlotRange . {thetaL, thetaH + b},
BaseStyle . {FontSize . 14}, AxesLabel . {"theta", ""},
Axes . True, AxesOrigin . {thetaL, thetaL}, PlotStyle .
{{Gray}, {Gray}, {Blue, Thickness[0.01]}, {Blue, Thickness[0.01]}},

Ticks . {{}, {}}, Exclusions . {thetadpri}]

Out[51]=

theta

So in this case what we can do is impose discipline by auditing only the types in the middle:

In[52]:= gTECC[theta_ ); thetadpri < theta < thetapri] := Max[theta, ga[theta]];

Plot[{theta, theta + b, gNAC3[theta], gTECC[theta]},
{theta, thetaL, thetaH}, PlotRange . {thetaL, thetaH + b},
BaseStyle . {FontSize . 14}, AxesLabel . {"theta", ""},
Axes . True, AxesOrigin . {thetaL, thetaL}, PlotStyle .
{{Gray}, {Gray}, {Blue, Thickness[0.01]}, {Red, Thickness[0.01]}},

Ticks . {{}, {}}, Exclusions . {thetadpri}]

Out[53]=

theta
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Optimal Contract without Verification

Assumption: �f 0 (�) /f (�) � �2��
1�� for all �
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Without verification, optimal rule is a threshold g⇤:

g (�) = min {gA (�) , g⇤}

for �U 0 (gA (�)) = �W (y � gA (�))

Distributional assumption implies “holes” suboptimal

• Hole between any g and g means spending in that interval not allowed
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• Key result in Amador-Werning-Angeletos 06
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TEC consists of {g⇤, g⇤⇤} s.t.
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2. (escape clause) If audit and gP (�) � g⇤⇤, then g (�) = gP (�) for

�U 0 (gP (�)) = W 0 (y � gP (�))

Types with gP (�) < g⇤⇤ are punished if audited

Threshold with Escape Clause (TEC)

Graphical representation of escape clause
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Now of course a hole like this would not be optimal as the types in the middle would jump up.

In[50]:= gNAC4@theta_ ê; thetadpri < theta < thetapriD := thetapri + b;

Plot@8theta, theta + b, gNAC3@thetaD, gNAC4@thetaD<,
8theta, thetaL, thetaH<, PlotRange Ø 8thetaL, thetaH + b<,
BaseStyle Ø 8FontSize Ø 14<, AxesLabel Ø 8"theta", ""<,
Axes Ø True, AxesOrigin Ø 8thetaL, thetaL<, PlotStyle Ø
88Gray<, 8Gray<, 8Blue, Thickness@0.01D<, 8Blue, Thickness@0.01D<<,

Ticks Ø 88<, 8<<, Exclusions Ø 8thetadpri<D

Out[51]=

theta
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Figure 2: A rule without verification with a hole [πL, πH ]. Parameters are the same as
in Figure 1.

above πH . The hole [πL, πH ] implies that an agent of type γ for whom πA (γ) ∈ (πL, πH)

is not allowed to spend at his flexible level. Such an agent spends at the lower limit of

the hole πL < πA(γ) if his type is relatively low, but he spends at the upper limit of the

hole πH > πA(γ) if his type is higher. Assumption 1 implies that if the principal removes

the hole and allows full flexibility over [πL, πH ], the benefit of reducing overspending for

the types that bunch at πH would outweigh the (potential) cost of increasing spending

for the types that bunch at πL. Therefore, the principal is better off by closing the hole.

4 Optimal Rule

We now turn to the study of optimal delegation when costly verification is possible. The

following class of rules will play a central role in our analysis:

Definition 1. A rule is a threshold with an escape clause (TEC) if it consists of {γ∗, γ∗∗}
with γ∗ < γ∗∗ and γ < γ∗∗ < γ such that

(i) (threshold) If γ ≤ γ∗∗, a (γ) = 0 and π (γ) = min {πA (γ) , πA (γ∗)}, and

(ii) (escape clause) if γ > γ∗∗, a (γ) = 1 and π (γ) = πP (γ).

Figure 3 illustrates a TEC rule using the quadratic preferences example. Under TEC,

types γ ≤ γ∗ are not audited and spend at their flexible level, types γ ∈ (γ∗, γ∗∗] are

not audited and are bunched at the flexible spending level of γ∗, and types γ > γ∗∗ are

12



Optimal Rule without Verification

Agent’s preferred spending is ⇡A(�): � = �b0(⇡A(�))

Distributional assumption as in Amador-Bagwell 13: there is �⇤ s.t.
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Agent’s preferred spending is ⇡A(�): � = �b0(⇡A(�))

Distributional assumption as in Amador-Bagwell 13: there is �⇤ s.t.

• inf
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o
F (�) � v0(⇡A(�))f(�) nondecreasing for � < �⇤
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Proposition

Without verification, optimal rule is a threshold ⇡⇤:

⇡ (�) = min {⇡A (�) ,⇡⇤}

Threshold with Escape Clause (TEC)

TEC consists of {�⇤, �⇤⇤} such that

1. (threshold) If �  �⇤⇤, a(�) = 0 and ⇡ (�) = min {⇡A (�) ,⇡A(�⇤)}

2. (escape clause) If � > �⇤⇤, a(�) = 1 and ⇡ (�) = ⇡P (�)

One possibility is to audit everyone on top, but that’s expensive:

In[430]:= gNAC2@theta_ ê; theta < thetadpriD := Min@theta + b, thetastar@thetadpriD + bD;
gFBC@theta_ ê; theta > thetadpriD := theta;

Plot@8theta, theta + b, gNAC2@thetaD, gFBC@thetaD<,
8theta, thetaL, thetaH<, PlotRange Ø 8thetaL, thetaH + b<,
BaseStyle Ø 8FontSize Ø 14<, AxesLabel Ø 8"theta", ""<, Axes Ø True,
AxesOrigin Ø 8thetaL, thetaL<, PlotStyle Ø 88Gray<, 8Gray<,

8Blue, Thickness@0.01D<, 8Blue, Dashing@MediumD, Thickness@0.01D<<,
Ticks Ø 88<, 8<<, Exclusions Ø 8thetadpri<D

Out[431]=

theta
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Figure 3: A TEC rule. Parameters are the same as in Figure 1, with φ = 0.008
and α = 0. The solid line depicts the allocation of non-audited types; the dashed line
corresponds to audited types.

audited and are assigned their efficient spending level. This rule therefore adds an escape

clause to the threshold rule that we described in the previous section. In particular, the

principal can implement TEC by allowing the agent to choose any spending level up to

a limit π∗ = πA(γ∗) or request audit by triggering an escape clause. When the agent is

audited, he is assigned his efficient spending level provided that it is above a specified

level π∗∗ = πP (γ∗∗) (and is otherwise punished).

An important feature of TEC is that the audit function a(γ) is weakly increasing,

that is, there is no decreasing auditing:

Definition 2. A rule features decreasing auditing at γ′ if for all ε > 0 arbitrarily small,

either (i) a (γ′) < a (γ′ − ε) or (ii) a (γ′) > a (γ′ + ε). A rule features weakly increasing

auditing at γ′ if neither (i) nor (ii) holds.

Note that we will refer to decreasing/increasing auditing in the strict sense, and we

will clarify whenever we use decreasing/increasing auditing in the weak sense. Figure 4

depicts an example of a rule with decreasing auditing. This rule specifies audit only for

types between two interior cutoffs, γL and γH > γL. Types above and below this audit

region are not audited, and hence the rule features decreasing auditing at γH . We will

return to this example in Section 4.3.

Another feature of TEC is that it specifies audit for some agent types but not for all,

i.e. the principal conducts an audit only when the agent triggers the escape clause. We

begin by showing in Section 4.1 that inducing no audit for some types is in fact a property
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Optimal Rule without Verification

Agent’s preferred spending is ⇡A(�): � = �b0(⇡A(�))

Distributional assumption as in Amador-Bagwell 13: there is �⇤ s.t.
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2. (escape clause) If audit and ⇡P (�) � ⇡⇤⇤, then ⇡ (�) = ⇡P (�) for

� = �b0(⇡P (�)) � v0(⇡P (�))

Types with ⇡P (�) < ⇡⇤⇤ are punished if audited
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Higher Audit Cost

Proposition

There exist {U, W, f,�,�} such that TEC is not optimal

Show by example that decreasing auditing can dominate TEC

Intuition: Auditing only intermediate � 2 [�L, �H ] can be optimal

• Benefit over no auditing: impose discipline below �L

• Benefit over TEC: save audit costs above �H

• Cost: incentivizing audit is expensive (overspend in/above audit region)

I We show benefits can outweigh cost
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Optimal Rule without Verification

Distributional assumption implies a hole [⇡L,⇡H ] is suboptimal

• Key result in Amador-Werning-Angeletos 06, Amador-Bagwell 13

Now of course a hole like this would not be optimal as the types in the middle would jump up.

In[50]:= gNAC4[theta_ ); thetadpri < theta < thetapri] := thetapri + b;

Plot[{theta, theta + b, gNAC3[theta], gNAC4[theta]},
{theta, thetaL, thetaH}, PlotRange . {thetaL, thetaH + b},
BaseStyle . {FontSize . 14}, AxesLabel . {"theta", ""},
Axes . True, AxesOrigin . {thetaL, thetaL}, PlotStyle .
{{Gray}, {Gray}, {Blue, Thickness[0.01]}, {Blue, Thickness[0.01]}},

Ticks . {{}, {}}, Exclusions . {thetadpri}]

Out[51]=

theta

So in this case what we can do is impose discipline by auditing only the types in the middle:

In[52]:= gTECC[theta_ ); thetadpri < theta < thetapri] := Max[theta, ga[theta]];

Plot[{theta, theta + b, gNAC3[theta], gTECC[theta]},
{theta, thetaL, thetaH}, PlotRange . {thetaL, thetaH + b},
BaseStyle . {FontSize . 14}, AxesLabel . {"theta", ""},
Axes . True, AxesOrigin . {thetaL, thetaL}, PlotStyle .
{{Gray}, {Gray}, {Blue, Thickness[0.01]}, {Red, Thickness[0.01]}},

Ticks . {{}, {}}, Exclusions . {thetadpri}]

Out[53]=

theta
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1�� for all �
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• But closing hole by lowering g increases principal’s welfare

• Key result in Amador-Werning-Angeletos 06
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2. (escape clause) If audit and gP (�) � g⇤⇤, then g (�) = gP (�) for

�U 0 (gP (�)) = W 0 (y � gP (�))

Types with gP (�) < g⇤⇤ are punished if audited

Threshold with Escape Clause (TEC)

Graphical representation of escape clause

� on x axis and spending on y axis
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Now of course a hole like this would not be optimal as the types in the middle would jump up.

In[50]:= gNAC4[theta_ ); thetadpri < theta < thetapri] := thetapri + b;

Plot[{theta, theta + b, gNAC3[theta], gNAC4[theta]},
{theta, thetaL, thetaH}, PlotRange . {thetaL, thetaH + b},
BaseStyle . {FontSize . 14}, AxesLabel . {"theta", ""},
Axes . True, AxesOrigin . {thetaL, thetaL}, PlotStyle .
{{Gray}, {Gray}, {Blue, Thickness[0.01]}, {Blue, Thickness[0.01]}},

Ticks . {{}, {}}, Exclusions . {thetadpri}]

Out[51]=

theta

So in this case what we can do is impose discipline by auditing only the types in the middle:

In[52]:= gTECC[theta_ ); thetadpri < theta < thetapri] := Max[theta, ga[theta]];
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{theta, thetaL, thetaH}, PlotRange . {thetaL, thetaH + b},
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So in this case what we can do is impose discipline by auditing only the types in the middle:

In[437]:= gTECC@theta_ ê; thetadpri < theta < thetapriD := Max@theta, ga@thetaDD;

Plot@8theta, theta + b, gNAC3@thetaD, gTECC@thetaD<,
8theta, thetaL, thetaH<, PlotRange Ø 8thetaL, thetaH + b<,
BaseStyle Ø 8FontSize Ø 14<, AxesLabel Ø 8"theta", ""<, Axes Ø True,
AxesOrigin Ø 8thetaL, thetaL<, PlotStyle Ø 88Gray<, 8Gray<,

8Blue, Thickness@0.01D<, 8Blue, Dashing@MediumD, Thickness@0.01D<<,
Ticks Ø 88<, 8<<, Exclusions Ø 8thetadpri<D

Out[438]=

theta

In[439]:= gTECC@theta_ ê; thetadpri < theta < thetapriD := ga@thetaD;

Plot@8theta, theta + b, gNAC3@thetaD, gTECC@thetaD<,
8theta, thetaL, thetaH<, PlotRange Ø 8thetaL, thetaH + b<,
BaseStyle Ø 8FontSize Ø 14<, AxesLabel Ø 8"theta", ""<,
Axes Ø True, AxesOrigin Ø 8thetaL, thetaL<, PlotStyle Ø
88Gray<, 8Gray<, 8Blue, Thickness@0.01D<, 8Red, Thickness@0.01D<<,

Ticks Ø 88<, 8<<, Exclusions Ø 8thetadpri<D

Out[440]=

theta

The benefit relative to TEC is that we don’t need to audit so many types, which is expensive. As 
shown, though, the cost is that here we audit some types and we have to give them above first 
best to incentivize them to seek audit. When we do TEC, we audit everyone at the top, and then 
we can give them first best since we don’t need to provide incentives: there is no region on top 
of the audit region to which they can jump! This is why, as the cost of auditing goes down, 
eventually we prefer TEC to decreasing auditing.
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Figure 4: A rule with decreasing auditing. Parameters are the same as in Figure 3.
The solid line depicts the allocation of non-audited types; the dashed line corresponds to
audited types.

of any optimal rule. As a result, we show that to identify conditions under which TEC is

optimal, it is sufficient to find conditions under which decreasing auditing is suboptimal.

We study a simple extreme bias case in Section 4.2 and provide a characterization for

our general setting in Section 4.3.

4.1 No Auditing All

A possibility we must rule out to establish the optimality of TEC is that of auditing all

agent types. The next lemma shows this is never optimal for the principal:

Lemma 1. A rule with a (γ) = 1 for all γ ∈ Γ is not optimal.

The logic is simple. Suppose that a rule that audits all types is optimal. Such a rule

must trivially assign efficient spending to all types. Now consider a perturbation in which

the principal allows the agent to choose πP (γ) without audit. Under the perturbed rule,

a set of types [γ, γ′], for γ′ ≥ γ, will prefer πP (γ) over being audited and assigned efficient

spending. Moreover, since the agent is biased towards higher spending and pays an audit

cost no larger than the principal’s, it must be that the principal is strictly better off by

not auditing these types. Hence, we find that incentivizing low types to not overspend is

cheaper than auditing them, and thus auditing all types cannot be optimal.

Given Lemma 1, we can establish:

14



Corollary 1. If an optimal rule features auditing that is weakly increasing everywhere,

then TEC is optimal.

Since auditing all agent types is suboptimal, an optimal rule with auditing that is

weakly increasing everywhere must feature a no-audit region followed by an audit region,

i.e. there must be a type γ∗∗ such that a(γ) = 0 for γ < γ∗∗ and a(γ) = 1 for γ > γ∗∗.

Conditional on the agent’s type being in the no-audit region, an optimal rule is a threshold

γ∗ < γ∗∗ (by Proposition 1), and conditional on the agent’s type being in the audit region,

an optimal rule assigns efficient spending to all types. To prove Corollary 1, we show that

the rule that results from optimizing over each region separately is incentive compatible,

and thus optimal, over the whole set of types. Specifically, we show that an optimal rule

conditional on no-audit sets a maximum allowable spending level πA(γ∗) ≤ πP (γ∗∗), and

by optimality of γ∗∗ the principal prefers to pay the cost of auditing type γ > γ∗∗ to

assign him πP (γ) rather than bunch him at πA(γ∗). Since the agent is biased towards

higher spending and pays an audit cost no larger than the principal’s, it follows that

types γ > γ∗∗ also prefer to be audited rather than deviating to πA(γ∗). Therefore, the

resulting rule is incentive compatible and thus optimal, and it is TEC.

4.2 Extreme Bias

Suppose b (π) = 0 for all π ∈ [π, π], so that the agent’s welfare is simply UA(γ, π) =

γπ. We call this an extreme bias case because the agent always prefers higher levels

of spending: the agent’s flexible spending level is πA (γ) = π for all γ ∈ Γ.19 This

is analogous to what is assumed in other models of costly verification, including the

seminal work of Townsend (1979) and more recent contributions such as Ben-Porath,

Dekel and Lipman (2014). It is also the assumption that is maintained in the delegation

model of Harris and Raviv (1996, 1998).

An extreme bias implies that if the agent is not audited, he will choose the highest

allowable level of spending, regardless of his type. Moreover, the agent will seek an

audit only if that allows him to spend more than under no audit. As a result, the

analysis is significantly simplified. The only incentive compatible rule for an agent with

an extreme bias involves bunching all non-audited types at one spending level; that is,

flexibility has no value in this setting. Furthermore, any agent type that is audited must

19As assumed in Section 2.1, we are primarily interested in the case in which πA(γ) is interior rather
than a corner; however, we find it is instructive to study this corner case first.
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be assigned a higher spending level than that at which non-audited types are bunched.

These observations yield:

Proposition 2 (extreme bias). Suppose b (π) = 0 for all π ∈ [π, π]. Then if auditing is

optimal, TEC is optimal.

When the agent’s bias relative to the principal is extreme and auditing some types is

optimal, an optimal rule is TEC, with non-audited types γ ≤ γ∗∗ bunched and awarded

no flexibility and audited types γ > γ∗∗ spending at their efficient level. The optimality of

TEC follows from the optimality of weakly increasing auditing. Suppose for the purpose of

contradiction that an optimal rule featured decreasing auditing. Take γ′ to be a marginal

non-audited type splitting an audit region and a higher no-audit region, i.e. with a (γ′) = 0

and a (γ′ − ε) = 1 for ε > 0 arbitrarily small. Let πA (γ∗) be the level of spending at

which non-audited types are bunched. The optimality of auditing γ′ − ε implies

UP (γ′ − ε, π (γ′ − ε))− UP (γ′ − ε, πA (γ∗)) ≥ φ, (6)

where, as noted, incentive compatibility requires π(γ′ − ε) ≥ πA (γ∗), and since φ > 0,

(6) yields π(γ′ − ε) > πA (γ∗). The optimality of not auditing γ′ then implies

UP (γ′, π (γ′ − ε))− UP (γ′, πA (γ∗)) ≤ φ. (7)

However, (6) and (7) together with π(γ′−ε) > πA (γ∗) violate the single-crossing condition

(1), yielding a contradiction. Intuitively, the principal can improve upon a rule with

decreasing auditing by auditing a higher agent type instead of a lower type, as the

marginal benefit of letting the higher type spend more is higher. Note that such a

perturbation is always incentive compatible for the agent because all non-audited types

are bunched at the same spending level πA (γ∗), which (by incentive compatibility) is

lower than the spending level assigned to any audited type. This feature is of course due

to the agent’s bias being extreme.

4.3 Optimal Rule with Verification

We next study the optimal rule with verification in our general setting in which the

agent’s bias is not extreme. To this end, it is useful to consider a relaxed version of the
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problem in (3)-(4), in which we assume that the agent pays no audit cost (α = 0):

max
{a(γ),π(γ)}γ∈Γ

∫ γ

γ

(
UP (γ, π (γ))− a (γ)φ

)
f (γ) dγ (8)

subject to

UA (γ, π (γ)) ≥ UA (γ, π (γ̂)) for all γ, γ̂ for which a (γ̂) = 0. (9)

Since the original incentive compatibility constraint (4) is tighter than the relaxed con-

straint (9), if a solution to (8)-(9) satisfies (4), then it is also a solution to the problem

in (3)-(4). Furthermore, we can show that if a solution to (8)-(9) is TEC, then it will

indeed satisfy (4), implying:

Lemma 2. If a TEC rule is a solution to (8)-(9), then it is also a solution to (3)-(4).

To verify that a TEC rule {γ∗, γ∗∗} that solves (8)-(9) satisfies the original constraint

(4), we must check that an agent of type γ > γ∗∗ would prefer to pay the audit cost

αφ and spend at his efficient level πP (γ) rather than pay no audit cost and choose the

threshold flexible spending level πA (γ∗). Now TEC being a solution to (8)-(9) implies

that the principal prefers auditing such an agent type γ to assign him πP (γ) rather than

bunching this type at πA (γ∗), where πA (γ∗) ≤ πP (γ) for all γ > γ∗∗. Since the agent

is biased towards higher spending and pays an audit cost no larger than the principal’s,

the optimality of auditing γ for the principal therefore yields that auditing γ is incentive

compatible for the agent. This is the logic behind Lemma 2, and it implies that in order

to prove the optimality of TEC, it is without loss to focus on the relaxed problem in

(8)-(9).20 We thus analyze this problem for the remainder of this section.

The following two lemmas establish useful properties of any solution:

Lemma 3. If a solution to (8)-(9) prescribes audit for type γ, it has πP (γ) ≤ π (γ) ≤
πA (γ). If (9) does not bind for γ, then π (γ) = πP (γ).

Lemma 4. In any solution to (8)-(9), π (γ) is weakly increasing.

Lemma 3 states that if a type γ is audited, his assigned spending level is (weakly)

between his efficient level and his flexible level. The argument is straightforward. If as-

signed spending for type γ is either below efficient or above flexible, then either increasing

20We maintain our optimality condition (5), so that to prove the optimality of TEC, it is sufficient to
show that TEC solves (8)-(9) and no other solution provides the principal weakly larger welfare from
each type γ and strictly larger from some type γ.
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or decreasing this spending, respectively, makes the principal better off and is incentive

compatible for the agent. Since the principal maximizes her expected welfare subject to

incentive compatibility, if an audited type’s incentive compatibility constraint is slack,

the principal assigns this type efficient spending.

Lemma 4 shows that the principal assigns a spending level that is weakly increasing

in the agent’s type γ. When comparing two agent types that are not audited, the re-

sult naturally follows from incentive compatibility: a type γ cannot be assigned higher

spending than a higher type γ′ > γ, as at least one of them would have an incentive to

deviate given that preferences satisfy single-crossing. When comparing two agent types

such that (at least) one of them is audited, the result follows from optimality: if a type

γ is assigned higher spending than a higher type γ′ > γ, the principal can improve wel-

fare by swapping these types’ spending levels and audit assignments, and if incentive

compatibility was initially satisfied, it will continue to be satisfied after the swap, given

single-crossing.

To show the optimality of TEC, we must rule out decreasing auditing, namely a

situation in which a set of types is audited and a set of higher types is not audited.

Using the two lemmas above, we show that a rule with decreasing auditing must induce

significant overspending, limiting the welfare that this rule can provide to the principal:

Lemma 5. Suppose a solution to (8)-(9) features decreasing auditing at γ′ < γ. Then

the solution satisfies∫ γ
γ′ [UP (γ, πP (γ))− UP (γ, π (γ))] f (γ) dγ

1− F (γ′)
≥ η (γ′) (10)

for

η (γ′) =

∫ min{π−1
P (πA(γ′)),γ}

γ′ [UP (γ, πP (γ))− UP (γ, πA (γ′))] f (γ) dγ

1− F (γ′)
> 0. (11)

This lemma shows that under a rule featuring decreasing auditing at γ′ < γ, the

principal’s expected welfare in the region above γ′ is strictly bounded away from that

achieved under efficient spending. The reason is that such a rule must induce strict

overspending by a positive mass of types γ ≥ γ′. To see the intuition, let a(γ′) = 1 and

thus a(γ′ + ε) = 0 for ε > 0 arbitrarily small. Note that the principal must incentivize

types in the audit region below γ′ to seek audit rather than deviate and mimic a type

in the no-audit region above γ′. By Lemma 4, all types above γ′ spend more than types

below γ′, and by Lemma 3, audited types γ spend no more than their flexible amount
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πA(γ). Thus, for types in the audit region below γ′ not to deviate to the no-audit region

above γ′, we must have π(γ′ + ε) ≥ πA(γ′). Given that by Lemma 4 all types γ > γ′

spend above π(γ′ + ε), it follows that all types γ ∈ (γ′,min
{
π−1
P (πA (γ′)) , γ

}
) spend

above πA(γ′) > πP (γ), yielding the bound in (11).

The properties shown in Lemma 3-Lemma 5 are satisfied in the examples of Figure 3

and Figure 4. Importantly, Lemma 5 shows that the principal’s expected welfare under

a rule featuring decreasing auditing is bounded away from efficient welfare by a bound

that is independent of the audit cost φ. This allows us to establish our first main result:

Proposition 3 (low audit cost). Let φ ≡ min
γ∈Γ

η (γ) > 0. If φ < φ and auditing is optimal,

TEC is optimal.

Recall that by Corollary 1, if a rule with auditing that is weakly increasing everywhere

is optimal, then TEC is optimal. The proof of Proposition 3 therefore rests on showing

that, for any audit cost φ < φ, an optimal rule induces weakly increasing auditing

everywhere, i.e. decreasing auditing is suboptimal. To see why this must be true, suppose

by contradiction that an optimal rule induces decreasing auditing at some point, and let

γ∗∗ be the lowest audited type under this rule. We show that the principal can improve

upon such a rule by performing a global perturbation: in the perturbed rule, the principal

audits all types γ ≥ γ∗∗ and assigns them efficient spending, while solving for an optimal

rule without verification for types γ < γ∗∗. By Proposition 1, an optimal rule for the

no-audit region is a threshold γ∗ < γ∗∗, and since πA(γ∗) ≤ πP (γ∗∗) (by optimality of γ∗)

and α = 0, it is easy to verify that the perturbed rule is incentive compatible.

To show that the perturbation strictly raises the principal’s welfare, note first that

expected welfare conditional on γ < γ∗∗ weakly increases because it is now maximized

subject to fewer constraints: under the perturbed rule, types γ < γ∗∗ cannot mimic a

type γ̂ ≥ γ∗∗. Thus, all we need to show is that expected welfare conditional on γ ≥ γ∗∗

increases strictly, namely that the (allocative) benefit of auditing these types is strictly

greater than the additional auditing cost the principal incurs. Because audited types are

assigned efficient spending, the benefit of auditing γ ≥ γ∗∗ is weakly positive for all such

types. Moreover, note that by the contradiction assumption, there exists a type above

γ∗∗ at which the original rule features decreasing auditing. Thus, if γ′ < γ is the lowest

such type, Lemma 5 implies that the benefit of auditing types γ ≥ γ∗∗ is bounded from

below by (1 − F (γ′))η(γ′), where η(·) is defined in (11). The claim then follows in this

case from the fact that, given φ < φ, the additional cost of auditing types γ ≥ γ∗∗ is
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strictly smaller than (1−F (γ′))φ = (1−F (γ′)) min
γ∈Γ

η (γ), and hence strictly smaller than

the benefit of auditing these types. If the lowest type above γ∗∗ at which the original rule

features decreasing auditing is γ′ = γ, an analogous argument applies, as in this case the

original rule induces strict overspending by γ and the benefit of auditing this type is no

smaller than φ.

Proposition 3 implies a positive result: if the principal’s cost of audit φ is low enough,

a TEC rule as we observe in practice is optimal. But what happens if φ is higher?

Our next result shows that there exist environments and audit costs for which TEC is

suboptimal, even though the principal benefits from auditing some agent types:

Proposition 4 (intermediate audit cost). There exist {UP , b, f, φ, α} such that auditing

is optimal but TEC is not.

To prove this result, we construct examples in which auditing only an intermediate

range of types [γL, γH ] dominates both not auditing any type as well as using TEC. The

main reason why auditing only intermediate types can dominate not auditing any type is

that an intermediate audit region imposes discipline on the no-audit region below. That

is, even when the audit cost is high enough that the principal would not benefit from

auditing types in [γL, γH ] only to improve their allocation relative to flexible spending,

she may benefit from auditing these types to discipline lower types: with the intermediate

audit region, types γ < γL can no longer mimic types in [γL, γH ]. On the other hand, the

main reason why auditing only intermediate types can dominate auditing with a TEC

rule is that it allows the principal to save on audit costs. Specifically, with intermediate

auditing, the principal may be able to impose discipline on types γ < γL without pre-

scribing audit for types γ > γH as she would under a TEC rule; this will be the case

if γL has no incentive to deviate to mimic a type as high as γH . In such a situation,

intermediate auditing allows the principal to save on the cost of auditing types above γH .

These arguments yield that a rule with decreasing auditing as that depicted in Fig-

ure 4 can dominate any no-audit rule (as that in Figure 1) and any TEC rule (as that

in Figure 3), provided that the cost of audit φ is not low (nor high) enough. We em-

phasize that Proposition 4 does not rely on non-uniformity of the principal’s objective

across types or any other sort of asymmetry; in fact, we prove the result in Appendix A

by constructing examples as those depicted in our figures, with quadratic preferences

and a uniform distribution of types. We also note that while these examples imply that

decreasing auditing is optimal for some parameters when φ > φ, the optimal rule in this

case may not take the simple intermediate-auditing structure that we consider to prove
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the result. In fact, we can show that even when restricting attention to quadratic pref-

erences and a uniform distribution, there exist parameters for which TEC, no auditing,

and intermediate auditing are all dominated by a rule featuring multiple interior audit

regions.21

An interesting implication of our construction is that the principal must have strong

commitment power to implement a rule that features decreasing auditing. In particular,

take the rule depicted in Figure 4. The principal assigns spending strictly above the

efficient level to some agent types γ ∈ [γL, γH ] who are audited, that is for whom the

principal verifies the true type. By doing this, the principal incentivizes those types to

be audited: if they were instead assigned efficient spending following audit, they would

not seek an audit in the first place. The principal must be committed to allowing this

inefficient spending despite her learning the true type of the agent after the audit is

conducted. Strong commitment power from the principal is also required to incentivize

types γ < γL sufficiently close to γL to not seek audit. In the example of Figure 4,

these types are punished by the principal if they seek audit, even though ex post, once

the audit is conducted, both the principal and the agent would strictly prefer efficient

spending to punishment. Without the threat of punishment, the principal may not be

able to prevent an agent of type γ < γL sufficiently close to γL from seeking audit, as an

efficient allocation following audit would allow this agent to increase his spending.

In practice, principals may not have sufficient commitment power to implement al-

locations that are inefficient ex post, following an audit. Can headquarters commit to

an inefficient budget after verifying the benefits of a manager’s investment project? We

explore the implications of limited commitment power in the next section.

5 Limited Commitment

We study a setting in which the principal has limited commitment power. The order of

events is as follows:

1. The principal sets a rule, which maps an audit decision and result into an allowable

spending set Π.

2. The agent chooses whether or not to seek audit, a ∈ {0, 1}, and the principal verifies

his type γ if a = 1.

21Details are available from the authors upon request.
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3. The principal revises the allowable spending set Π to Π′.

4. The agent chooses a spending level π from the allowable set Π′.

The first two steps are the same as those in our environment of Section 2 with full

commitment power. What is new is Step 3: after observing the agent’s audit decision

and the result of the audit if one is conducted, the principal now revises the allowable

spending set for the agent. Note that this is a rather mild form of limited commitment.

In particular, in Step 2 we maintain the assumption that the principal is able to commit

to an audit plan, so the agent’s type is verified if and only if the agent requests audit, and

in Step 4 we maintain the assumption that the principal is able to commit to allowing the

agent to choose freely any spending level from the allowable spending set.22 Our problem

is therefore still one of delegation rather than cheap talk. The only assumption that we

relax is about the principal’s commitment to not changing the allowable spending set

following the audit decision and result; we believe lack of commitment in this respect

often shapes delegation rules in the real world.23

Limited commitment on the side of the principal matters for two reasons. First,

conditional on an audit, the principal verifies the agent’s true type γ and must necessarily

assign the agent the efficient spending level πP (γ). This is true both when the agent’s

seeking audit is on path as well as when this audit decision is part of a deviation. As

such, the agent can always choose to be audited to guarantee himself the efficient level of

spending. Importantly, this means that all agent types who are not audited must weakly

prefer their allocation under no audit to being audited and receiving efficient spending. A

second implication of limited commitment is that conditional on no audit, the principal

chooses an allocation that is optimal for the non-audited types. More precisely, when the

agent chooses not to seek audit, the principal assigns spending taking into account the

distribution of non-audited types and ignoring the incentives of audited types.

22As noted in fn. 8, there is a literature that studies auditing when the principal cannot commit to
an audit strategy. In many of the applications of our problem, however, we find that there are often
institutions ensuring that principals cannot deny an audit once it has been requested. In this sense,
the agent can always choose to trigger an audit. Lack of commitment in this respect would change the
nature of our problem, and so we leave its analysis for future work.

23It is worth noting that our results in this section are not limited to the exact game described above;
analogous to our claims in Section 2.3, our findings can be extended to variations of this game that allow
messages between principal and agent (while maintaining our assumptions on the principal’s limited
commitment). We also emphasize that throughout this section, we maintain our optimality condition
(5), so that a rule is optimal if it maximizes the principal’s expected welfare and no other rule provides
weakly larger welfare from each type γ and strictly larger welfare from some type γ.
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Limited commitment as a result implies certain conditions that any incentive com-

patible rule must satisfy. In what follows, we restrict attention to strategies that specify

piecewise continuous mappings {a(γ), π(γ)}.

Lemma 6. Under limited commitment, any incentive compatible rule must satisfy:

(i) If there is decreasing auditing at γH , then

UA (γH , πP (γH))− αφ = UA (γH , π (γH)) , (12)

where π (γH) ≡ lim
ε↓0

π (γH + ε) if a (γH) = 1. Moreover,

π (γH) > πA (γH) . (13)

(ii) If there is increasing auditing at γL, then

UA (γL, πP (γL))− αφ = UA (γL, π (γL)) , (14)

where π (γL) ≡ lim
ε↓0

π (γL − ε) if a (γL) = 1.

Part (i) shows that if γH splits an audit region from a higher no-audit region, then γH

must be indifferent between being audited and spending at the efficient level versus not

being audited and spending at π(γH) as allowed in the no-audit region above this type.

Likewise, part (ii) shows that if γL splits a no-audit region from a higher audit region,

then γL must be indifferent between being audited and spending at the efficient level

versus not being audited and spending at π(γL) as allowed in the no-audit region below

this type. This result follows from the fact that a principal with limited commitment

power assigns efficient spending whenever the agent seeks an audit, both on and off path.

Therefore, if there is a point at which an audit region either ends or starts, the marginal

audited type at such point must weakly prefer audit with efficient spending to no audit,

and the marginal non-audited type must weakly prefer no audit to audit with efficient

spending. The marginal type must thus be indifferent.

Lemma 6 also shows that for type γH as defined in the lemma, an incentive compatible

rule must set π (γH) > πA (γH). This is required to make γH indifferent between audit

and no audit: if this inequality is not satisfied, the marginal audited type would instead

prefer to deviate and not seek an audit.

For the remainder of our analysis, we require:
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Assumption 2. If

R (γ, πH) ≡ UA (γ, πP (γ))− αφ− UA (γ, πH) ≥ 0

for πH > πP (γ), then

R (γ′, πH) > 0 for all γ′ < γ.

This is a single-crossing property: we assume that if a type γ weakly prefers audit

with efficient spending πP (γ) to no audit with a higher spending level πH > πP (γ), then

any lower type γ′ < γ strictly prefers audit with efficient spending πP (γ′) to no audit

with the higher spending level πH .24 A sufficient condition for this assumption is that if

R (γ, πH) ≥ 0 for some γ ∈ Γ and πH > πP (γ), then UA (γ, πP (γ)) be convex in γ for all

γ ∈ Γ; it can be established that in this case UA (γ, πP (γ)) is convex somewhere, and a

sufficient condition is that it be convex everywhere. This convexity assumption is in fact

satisfied in the cases commonly studied in the literature, such as those with quadratic

preferences or with hyperbolic preferences under common parameterizations.25

Given Assumption 2, we obtain:

Proposition 5 (limited commitment). Under limited commitment, any incentive compat-

ible rule features weakly increasing auditing everywhere. Moreover, if auditing is optimal,

TEC is optimal.

Under limited commitment, decreasing auditing is not incentive compatible for the

principal. As we discussed in Section 4.3, decreasing auditing requires that the principal

commit to allowing the agent to spend at a level that is inefficient ex post, following

the agent’s audit decision and result. Without this commitment, the principal cannot

induce decreasing auditing, and hence any incentive compatible rule must feature weakly

increasing auditing at all types γ ∈ Γ. Analogous arguments to those behind Lemma 1

and Corollary 1 in our full-commitment environment then imply that if auditing some

agent types is optimal, a TEC rule is optimal.

A sketch of the proof of Proposition 5 is as follows. Suppose by contradiction that

there is an incentive compatible rule that induces decreasing auditing, with γH being

24Our single-crossing conditions on preferences imply that if a type γ weakly prefers audit with efficient
spending πP (γ) to no audit with a lower spending level πL < πP (γ), then any higher type γ′ > γ strictly
prefers audit with efficient spending πP (γ′) to no audit with the lower spending level πL. Assumption 2
requires that this property be maintained in the opposite direction as well.

25For example, in the hyperbolic preferences case described in Section 2.1, UA (γ, πP (γ)) will be convex
in γ if the utility functions for present and future consumption are the same and either exponential or
CRRA with a coefficient weakly greater than 1.
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a type splitting an audit region from a higher no-audit region. Given limited commit-

ment, audited types immediately below γH are assigned efficient spending, and types γ

immediately above γH spend at a level πH > πA (γ) that makes γH indifferent between

audit and no audit (cf. Lemma 6). This means that types immediately above γH must be

strictly overspending, in fact spending above their flexible level. The heart of the proof

is showing that the principal cannot commit to allowing such overspending.

It is clear that conditional on the agent not seeking an audit, the principal would like

to reduce the overspending by types immediately above γH . Reducing this overspending

is ex post incentive compatible for these types: having chosen no audit, types γ > γH

would prefer πA(γ) to πH > πA(γ). Hence, the only reason the principal would not

reduce the overspending above γH once the agent chooses no audit is if doing so would

violate incentive compatibility for some other non-audited type. Such a non-audited type

must be below γH ; specifically, there must exist a type γL < γH who is not audited and

is exactly indifferent between his assigned spending level, call it πL, and the spending

level πH > πL. In fact, because of single-crossing, this type must be the marginal type

right below the audit region that ends at γH , i.e. the rule must induce audit for types

γ ∈ [γL, γH ] and no audit for types immediately below and above this set. An example

is the rule depicted in Figure 4.

Now if the principal induces such an interior audit region [γL, γH ], then by Lemma 6

type γL must be indifferent between no audit with spending πL and audit with efficient

spending. Since we have defined γL as being indifferent between spending at πL and

spending at πH under no audit, by transitivity, we obtain that γL must be indifferent

between no audit with spending πH and audit with efficient spending. However, recall

that type γH is also indifferent between no audit with spending πH and audit with efficient

spending. Hence, by Assumption 2, γL < γH cannot hold,26 and we must have γL = γH .

This means that the principal audits a single type at this point who is indifferent between

audit with efficient spending, no audit with higher spending at πH , and no audit with

lower spending at πL. Conditional on no audit, this is thus an allocation in which the

agent faces a hole [πL, πH ], namely he is not allowed to choose spending in this set but

can choose spending immediately below and above this set. But our analysis in Section 3

shows that such a hole is suboptimal conditional on no verification; hence, following no

audit, the principal would have a strict incentive to close the hole. This shows that a rule

26If γL < γH , the indifference of type γH between audit with efficient spending and no audit with
spending πH would imply that γL strictly prefers audit with efficient spending to no audit with spending
πH , a contradiction.
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with decreasing auditing cannot be incentive compatible when the principal has limited

commitment power, allowing us to establish that TEC is optimal in this case.

It is worth pointing out that while TEC is optimal both when the principal has full

commitment power and a low audit cost (as shown in Proposition 3) as well as when

she has limited commitment power (as shown in Proposition 5), the specific details of

an optimal TEC rule vary with each case. Under full commitment, an optimal TEC

rule {γ∗, γ∗∗} is such that the principal prefers to audit types γ > γ∗∗ to assign them

efficient spending rather than bunch them at πA(γ∗) without audit, whereas the opposite

is true for types γ ∈ [γ∗, γ∗∗]. Hence, the principal is indifferent between auditing and

not auditing the threshold type γ∗∗; that is, the increase in assigned spending at γ∗∗

exactly compensates the principal for the cost φ of auditing this type. In contrast, under

limited commitment, it is the agent who is indifferent at γ∗∗: as implied by Lemma 6,

type γ∗∗ must be indifferent between being audited and assigned efficient spending versus

not being audited and assigned πA(γ∗), and thus any increase in assigned spending at

γ∗∗ must exactly compensate this type for his audit cost αφ.

6 Conclusion

This paper has studied the tradeoff between commitment and flexibility in the presence of

costly verification. We have examined a general delegation problem in which a principal

delegates decision making to an agent who has superior information about the efficient

action but is biased towards higher actions. A novel element of our framework is that

the principal can verify the agent’s private information by conducting an audit. Because

audits are costly, the principal wishes to use this technology selectively, and in a way

that supplements delegation and improves her commitment-versus-flexibility tradeoff.

Our results provide insight into how the principal achieves this by designing an optimal

delegation rule. We have shown that if the cost of audit is small enough, an optimal rule

is a threshold with an escape clause (TEC), allowing the agent to freely select any action

up to a threshold or to request audit and the efficient action if the threshold is sufficiently

binding. If the cost of audit is higher, the principal may instead prefer to prescribe audit

only for intermediate actions, still imposing some discipline on the agent but saving on

audit costs. Yet, we find that the optimality of TEC is recovered under mild limitations

to the principal’s commitment power: if the principal is unable to commit to not changing

the agent’s permissible action set following the audit decision and result, TEC is optimal
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for any audit cost for which auditing is optimal.

A main contribution of our paper is to provide a theoretical foundation for the use

of TEC in practice. As discussed in the Introduction, there is a variety of applications

where delegation rules make use of audits and often take the form of TEC, including

in capital budgeting in organizations, fiscal policy, and consumption-savings problems.

More broadly, our framework may help inform the empirical analysis of real-world rules.

Data on delegation policies and the way verification is used is increasingly available and

offers an opportunity to explore the structure of these rules in more detail. For example,

data on fiscal rules around the world may be used to study how delegation varies with

the institutional and macroeconomic context, which may affect both the cost of auditing

a government and the importance of flexibility in responding to shocks.

Lastly, by uncovering a new set of issues that arise when audits are introduced to

a setting in which both commitment and flexibility are valuable, our paper opens the

door for further work that can help understand the optimal joint design of delegation

and verification. We have focused on a simple model that emphasizes the main forces at

play but abstracts from other potentially relevant aspects, for instance associated with

more complex verification technologies. We close by discussing some possible extensions

and variations of our work.

Random auditing. Our analysis restricted attention to deterministic auditing, namely,

we assumed that the principal’s rule assigns a(γ) ∈ {0, 1} to each agent type γ. More

generally, one could allow for mechanisms in which the principal randomizes over the

audit assignment, choosing a probability of audit for each type. In our game form of

Section 2.2, random audits would be implemented by letting the agent choose in Step 2

not between audit and no-audit but rather between lotteries over audit. The literature

on financial contracting and tax collection finds that random audits can yield qualita-

tively different results compared to deterministic audits; see Border and Sobel (1987) and

Mookherjee and Png (1989).

While the study of random audits in delegation would be an interesting extension of

our work, we emphasize two points. First, as noted in the aforementioned papers, an

analysis of optimal rules with random audits requires imposing a bound on the extent to

which an agent can be punished following an audit. The reason is that, otherwise, the

efficient allocation can be approached with a rule that audits all agent types with very

low probability and arbitrarily punishes the agent when the audit verifies that he has
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deviated — such a rule would prevent deviations with a deadweight loss that approaches

zero as the probability of audit approaches zero.27 This possibility not only yields rather

implausible predictions, but also generates the problem that an optimal rule in general

will fail to exist unless a bound is imposed.

Random audits therefore demand taking a stance on how (and why) punishments

are bounded. One possibility is to consider some form of limited commitment by the

principal, as we have done in Section 5. However, that takes us to our second point: im-

plementing random audits requires high commitment power from the principal. When the

decision is simply over audit or no-audit, commitment to the audit policy would in prin-

ciple be facilitated by the fact that the principal’s execution of the agent’s audit/no-audit

request can be easily monitored. But checking that the principal implements a specific

non-degenerate lottery is more difficult, as it requires monitoring of the randomization

itself rather than its outcome. The difficulty to commit to randomized mechanisms may

be an obstacle to their implementation in applications.

Imperfect auditing. Another simplifying assumption of our setting is that the princi-

pal verifies the agent’s type perfectly when she conducts an audit. An alternative would

be to consider imperfect audits, namely audits that provide only imperfect information

about the agent’s type. For example, in the context of capital budgeting in organizations,

headquarters may review information about the benefits of a project that a manager ad-

vocates, but the available documentation may be incomplete and fail to reveal the full

merits of the project.

A simple specification that may be possible to accommodate within our framework is

when an imperfect audit either verifies the agent’s type perfectly or provides no informa-

tion (i.e., when there are no “false” audit results). Provided that available punishments

are unbounded, the principal would be able to prevent, at no cost, any deviation in which

an agent type mimics another type who is audited, as is true in our problem with perfect

audits. Yet, a difference introduced by imperfect audits is that the principal may not

observe the agent’s type and thus may not be able to assign a type-dependent spending

level following audit; the principal’s rule must specify a spending allocation for the case

of audit and no information. Allowing for imperfect audits that may produce false results

would naturally introduce further issues, as now punishing an agent type for mimicking

27In our specific game form, a rule that approaches the efficient allocation would be implemented by
inducing each agent type to choose a different lottery over audit, so the agent’s choice perfectly reveals
his type and allows the principal to assign efficient spending following no audit.
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another type who is audited would require imposing punishments on path.

How imperfect is an imperfect audit? At one extreme, if audits are sufficiently accu-

rate, we conjecture that our (qualitative) results would remain valid (where the defini-

tion of TEC would be adjusted to account for the issues discussed above). At the other

extreme, if audits are sufficiently inaccurate, they would become equivalent to money

burning, and the results of the literature on when money burning is used in an optimal

delegation rule would then apply (see Amador, Werning and Angeletos, 2006; Amador

and Bagwell, 2013; Ambrus and Egorov, 2015). More generally, it would be of interest

to explore the role of audits in delegation away from these two extremes.

Audit costs. We have assumed that audit costs are both type-independent and ex-

ogenous. An extension of our problem could explore the effects of type-dependent audit

costs: the principal’s cost of auditing the agent’s private information may be increasing in

his type, for example because more evidence is needed to verify larger projects benefits,

or one may take the view that audit costs are actually lower for extreme types, as these

states are more “visible.” One possible difficulty is that monotonicity of the spending

allocation (as shown in Lemma 4) may fail to hold if audit costs increase very rapidly

with the agent’s type. But if the audit cost function is such that the principal would still

prefer to swap the audit and spending allocations of two types γ and γ′ > γ whenever

type γ has higher spending than γ′, monotonicity will be satisfied and our analysis could

be extended to allow for type-dependent audit costs.

Another variation would be to endogenize α, so that the principal can affect the

agent’s cost of audit. In our problem with full commitment power, the principal would

optimally set α = 0, as a zero cost of audit for the agent maximally relaxes the agent’s

incentive compatibility constraint (4). Things are less straightforward in the setting of

Section 5 where the principal has limited commitment power: here the principal may

want to set a strictly positive audit cost for the agent in order to limit the set of agent

types that may want to demand audit and efficient spending.

Transfers. Our focus has been on a canonical delegation problem in which transfers

between the principal and the agent are not feasible. There are various ways in which

transfers could be introduced in our framework and used to alter the feasibility and cost of

inducing different allocations. Transfers could be contingent on the agent’s audit decision

and/or the result of the audit; moreover, the principal could offer different allowable
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spending sets for the agent to choose from and specify transfers associated with each

set. These questions are beyond the scope of our paper and so we leave them for future

research.

A Appendix: Proofs

A.1 Proof of Proposition 1

The claim follows from Proposition 1(a) in Amador and Bagwell (2013, p. 1551).

A.2 Proof of Lemma 1

Suppose by contradiction that a rule {a(γ), π(γ)}γ∈Γ with a (γ) = 1 for all γ ∈ Γ is

optimal. Since the incentive compatibility constraint (4) is trivially satisfied under this

rule, it must be that π (γ) = πP (γ) for all γ ∈ Γ. Define γ′ ∈ [γ, γ] as the solution to

UA (γ′, πP (γ′))− αφ = UA
(
γ′, πP

(
γ
))

(15)

if such a solution exists and γ′ = γ otherwise. Consider now a perturbed rule {ã(γ), π̃(γ)}γ∈Γ

with ã (γ) = 0, π̃ (γ) = πP
(
γ
)

for γ ≤ γ′, and ã (γ) = a (γ), π̃ (γ) = π (γ) for γ > γ′. By

single-crossing and the definition of γ′ in (15), the perturbed rule satisfies the incentive

compatibility constraint (4). Conditional on γ > γ′, this rule yields the same expected

welfare to the principal and the agent as the original rule. However, conditional on γ ≤ γ′,

the perturbed rule yields the agent a higher welfare than the original one, since, by (15),

UA (γ, πP (γ))− αφ ≤ UA
(
γ, πP

(
γ
))

(16)

for all γ ≤ γ′. Moreover, note that (2) implies

UA (γ, πP (γ))− UA
(
γ, πP

(
γ
))
> UP (γ, πP (γ))− UP

(
γ, πP

(
γ
))

for all γ > γ, and hence, using (16) and the fact that α ∈ [0, 1],

UP (γ, πP (γ))− φ < UP
(
γ, πP

(
γ
))

30



for all γ ≤ γ′. Conditional on γ ≤ γ′, the principal is therefore strictly better off under

the perturbed rule than under the original rule. It follows that the perturbed rule with

no audit below γ′ strictly dominates the original rule, contradicting the optimality of a

rule that audits all types.

A.3 Proof of Corollary 1

Suppose an optimal rule features auditing which is weakly increasing everywhere. By

Lemma 1, a(γ) = 0 for some γ ∈ Γ, and hence this rule must feature a no-audit region

followed by an audit region. That is, the principal solves (3)-(4) by choosing a threshold

γ∗∗ such that a(γ) = 0 for γ < γ∗∗ and a(γ) = 1 for γ > γ∗∗, and a spending allocation

π(γ) for each γ ∈ Γ.

Now consider a relaxed version of this problem in which the principal chooses an

optimal allocation in the no-audit and audit regions separately, ignoring the incentives

of types in one region to deviate to the other region. Taking the no-audit region to be

[γ, γ∗∗], it follows from Proposition 1 that an optimal allocation is a threshold γ∗ < γ∗∗

such that π (γ) = min {πA (γ) , πA (γ∗)} for each γ ∈ [γ, γ∗∗]. For the audit region (γ∗∗, γ],

since incentive compatibility is trivially satisfied, an optimal allocation assigns πP (γ) to

each γ ∈ (γ∗∗, γ]. Note that the resulting rule for the whole set Γ is TEC. Moreover,

because this rule solves a relaxed problem, it is sufficient to show that it is incentive

compatible over the whole set Γ to prove its optimality in the original problem.

To show incentive compatibility, note first that incentive compatibility within each

region is guaranteed by construction. Furthermore, since, as explained in Section 2.3,

no type would have incentives to deviate to mimic a different type which is audited,

incentive compatibility is satisfied for all γ ∈ [γ, γ∗∗]. All is left to be shown is that no

type γ ∈ (γ∗∗, γ] has incentives to deviate to mimic a type γ̂ ∈ [γ, γ∗∗]:

UA (γ, πP (γ))− αφ ≥ UA (γ, π (γ̂)) for all γ > γ∗∗, γ̂ ≤ γ∗∗.

The single-crossing condition in UA implies that a sufficient condition for the above

inequality to hold is

UA (γ, πP (γ))− αφ ≥ UA (γ, πA (γ∗)) for all γ > γ∗∗. (17)
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Now note that optimality of γ∗∗ for the principal implies

UP (γ, πP (γ))− φ ≥ UP (γ, πA (γ∗)) for all γ > γ∗∗. (18)

Given the agent’s bias (2) and α ∈ [0, 1], (18) implies (17) if πP (γ) ≥ πA(γ∗) for all

γ > γ∗∗, or equivalently since π′P (γ) > 0, if

πP (γ∗∗) ≥ πA(γ∗). (19)

We prove that the TEC rule that we constructed satisfies (19). The optimal threshold

γ∗ in the no-audit region solves

max
γ∗

{∫ γ∗

γ

UP (γ, πA(γ)) f (γ) dγ +

∫ γ∗∗

γ∗
UP (γ, πA(γ∗)) f (γ) dγ

}
.

The first-order condition yields∫ γ∗∗

γ∗

∂UP (γ, πA(γ∗))

∂πA(γ∗)
π′A(γ∗)f (γ) dγ = 0.

Note that π′A(γ∗) > 0, ∂UP (γ,πA(γ∗))
∂πA(γ∗) < 0 if πP (γ) < πA(γ∗), and ∂UP (γ,πA(γ∗))

∂πA(γ∗) > 0 if

πP (γ) > πA(γ∗). Hence, the first-order condition requires πP (γ) > πA(γ∗) for some

γ ∈ [γ∗, γ∗∗], implying that (19) must hold.

A.4 Proof of Proposition 2

Assume b (π) = 0 for all π ∈ [π, π]. Suppose by contradiction that an optimal rule specifies

a (γ) = 1 for some γ ∈ Γ but TEC is not optimal. By Lemma 1, a (γ) = 0 for some γ ∈ Γ.

Moreover, it follows from the incentive compatibility constraint (4) and b (·) = 0 that all

types γ with a(γ) = 0 are bunched at the same level of spending, and, letting such level

be πA (γ∗) for some γ∗, any type γ with a(γ) = 1 must be assigned π (γ) ≥ πA (γ∗). It

is then immediate that if an optimal rule features auditing which is weakly increasing

everywhere, it must be TEC, and hence by the contradiction assumption the optimal rule

under consideration must feature decreasing auditing. We proceed by showing that an

optimal rule cannot feature decreasing auditing at any γ′ ∈ Γ.

Consider first the case in which a (γ′) = 0, a (γ′ − ε) = 1 for some γ′ ∈ Γ and ε > 0

arbitrarily small. As shown in the text, the optimality of auditing type γ′− ε implies (6)
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and π(γ′ − ε) > πA (γ∗), whereas the optimality of not auditing γ′ implies (7). However,

the two equations together with π(γ′ − ε) > πA (γ∗) violate the single-crossing condition

(1). Contradiction.

Consider next the case in which a (γ′) = 1, a (γ′ + ε) = 0 for some γ′ ∈ Γ and ε > 0

arbitrarily small. Analogous arguments to those above apply to this case and yield a

contradiction.

A.5 Proof of Lemma 2

Suppose TEC is a solution to (8)-(9) with associated cutoffs γ∗ and γ∗∗. Note that any

rule satisfying constraint (4) will satisfy constraint (9). Hence, (8)-(9) is a relaxed version

of (3)-(4), implying that any solution to (8)-(9) that satisfies (4) will also be a solution to

(3)-(4). It follows that to prove the claim, all we need to show is that the TEC rule that

solves (8)-(9) will satisfy constraint (4). It is immediate that for any γ with a (γ) = 0,

(9) being satisfied implies that (4) will be satisfied. Now consider γ with a (γ) = 1.

Optimality of auditing type γ under a TEC rule that solves (8)-(9) implies

UP (γ, πP (γ))− φ ≥ UP (γ, πA (γ∗)) , (20)

since a perturbation that assigns no audit and spending level πA (γ∗) to a type γ > γ∗∗

is incentive compatible. Note that by the arguments in the proof of Corollary 1, a TEC

rule that solves (8)-(9) satisfies πP (γ) ≥ πA(γ∗) for all γ > γ∗∗. Hence, combining (20)

with (2) and the fact that α ∈ [0, 1] implies

UA (γ, πP (γ))− αφ ≥ UA (γ, πA (γ∗)) .

It follows that (4) is satisfied for type γ with a(γ) = 1.

A.6 Proof of Lemma 3

Suppose a rule {a(γ), π(γ)}γ∈Γ solving (8)-(9) specifies a (γ′) = 1 for some type γ′ ∈ Γ.

To prove that the rule specifies π (γ′) ≤ πA (γ′), suppose by contradiction that

π (γ′) > πA (γ′). Consider a perturbed rule {ã(γ), π̃(γ)}γ∈Γ which sets ã (γ′) = 1 and

π̃ (γ′) = πA (γ′) while keeping the allocation unchanged for all γ 6= γ′. This perturbation

strictly increases the principal’s welfare conditional on γ′, leaves the principal’s welfare

conditional on γ 6= γ′ unchanged, and is incentive compatible for the agent.
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Similarly, to prove that the rule specifies π (γ′) ≥ πP (γ′), suppose by contradiction

that π (γ′) < πP (γ′). Consider a perturbed rule {ã(γ), π̃(γ)}γ∈Γ which sets ã (γ′) = 1 and

π̃ (γ′) = πP (γ) while keeping the allocation unchanged for all γ 6= γ′. This perturbation

strictly increases the principal’s welfare conditional on γ′, leaves the principal’s welfare

conditional on γ 6= γ′ unchanged, and is incentive compatible for the agent.

Finally, we prove that the rule must specify π (γ′) = πP (γ′) if (9) does not bind for

γ′. Suppose by contradiction that (9) does not bind for γ′ and π (γ′) 6= πP (γ′). By the

claim above, π (γ′) ≥ πP (γ′), and thus the rule must set π (γ′) > πP (γ′). But then a

perturbed rule {ã(γ), π̃(γ)}γ∈Γ which sets ã (γ′) = 1 and π̃ (γ′) = π (γ′) − ε for ε > 0

arbitrarily small, while keeping the allocation unchanged for all γ 6= γ′, strictly increases

the principal’s welfare conditional on γ′, leaves the principal’s welfare conditional on

γ 6= γ′ unchanged, and is incentive compatible for the agent.

A.7 Proof of Lemma 4

Suppose by contradiction that a rule {a(γ), π(γ)}γ∈Γ that solves (8)-(9) specifies π (γ′) >

π (γ′′) for some γ′ < γ′′. We consider four cases separately.

Case 1. Suppose a (γ′) = a (γ′′) = 0. Then (9) for γ′ and γ′′ requires

UA (γ′, π (γ′)) ≥ UA (γ′, π (γ′′)) ,

UA (γ′′, π (γ′′)) ≥ UA (γ′′, π (γ′)) ,

which together imply

UA (γ′, π (γ′))− UA (γ′, π (γ′′)) ≥ UA (γ′′, π (γ′))− UA (γ′′, π (γ′′)) . (21)

However, given γ′ < γ′′ and π (γ′) > π (γ′′), (21) violates the single-crossing condition in

UA. Contradiction.

Case 2. Suppose a (γ′) = a (γ′′) = 1. By Lemma 3, π (γ′′) ≥ πP (γ′′), and thus π (γ′) >

π (γ′′) implies π (γ′) > πP (γ′′) > πP (γ′). Using Lemma 3 again, it then follows that (9)

binds for γ′, that is, there exists γ̂ ∈ Γ with a(γ̂) = 0 such that

UA (γ′, π (γ′)) = UA (γ′, π (γ̂)) . (22)
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Furthermore, note that we must have π (γ̂) ≥ π (γ′), since π (γ′) ≤ πA (γ′) and UA is

strictly concave. Incentive compatibility for γ′′ requires

UA (γ′′, π (γ′′)) ≥ UA (γ′′, π (γ̂)) ,

which, combined with the observation that

π (γ′′) < π (γ′) ≤ πA (γ′) < πA (γ′′) , (23)

implies

UA (γ′′, π (γ′)) > UA (γ′′, π (γ̂)) . (24)

Combining (22) and (24) yields

UA (γ′, π (γ̂))− UA (γ′, π (γ′)) > UA (γ′′, π (γ̂))− UA (γ′′, π (γ′)) . (25)

However, given γ′ < γ′′ and π (γ̂) ≥ π (γ′), (25) violates the single-crossing condition in

UA. Contradiction.

Case 3. Suppose a (γ′) = 1 and a (γ′′) = 0. Note that (23) must hold. Then consider a

perturbed rule {ã(γ), π̃(γ)}γ∈Γ which sets ã (γ′′) = 1 and π̃ (γ′′) = π (γ′) while leaving the

allocation for types γ 6= γ′′ unchanged. Since incentive compatibility was initially satisfied

and γ′ < γ′′ while (23) holds, this perturbation is incentive compatible. Optimality of

the original rule {a(γ), π(γ)}γ∈Γ therefore requires that this perturbation do not strictly

increase the principal’s welfare, which requires

UP (γ′′, π (γ′′)) ≥ UP (γ′′, π (γ′))− φ.

The single-crossing condition in UP then implies

UP (γ′, π (γ′′)) > UP (γ′, π (γ′))− φ. (26)

Now consider a different perturbed rule {â(γ), π̂(γ)}γ∈Γ which sets â (γ′) = 0 and π̂ (γ′) =

π (γ′′) while leaving the allocation for types γ 6= γ′ unchanged. Equation (26) implies

that this perturbation would strictly increase the principal’s welfare. Hence, optimal-

ity of the original rule {a(γ), π(γ)}γ∈Γ requires that this perturbation violate incentive
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compatibility, that is, there must exist γ̂ ∈ Γ with a(γ̂) = 0 such that

UA (γ′, π (γ̂)) > UA (γ′, π (γ′′)) . (27)

Note that since π (γ′′) < πA (γ′), we must have π (γ̂) > π (γ′′). Moreover, by incentive

compatibility being satisfied under the original rule, we have

UA (γ′′, π (γ′′)) ≥ UA (γ′′, π (γ̂)) .

Combining this equation with (27) yields

UA (γ′, π (γ̂))− UA (γ′, π (γ′′)) > UA (γ′′, π (γ̂))− UA (γ′′, π (γ′′)) . (28)

However, given γ′ < γ′′ and π (γ̂) > π (γ′′), (28) violates the single-crossing condition in

UA. Contradiction.

Case 4. Suppose a (γ′) = 0 and a (γ′′) = 1. By Lemma 3, π (γ′′) ≤ πA (γ′′), and

hence given π (γ′) > π (γ′′), incentive compatibility for type γ′′ requires π (γ′) > πA (γ′′).

Consider a perturbed rule {ã(γ), π̃(γ)}γ∈Γ which sets ã (γ′) = 1 and π̃ (γ′) = π (γ′′)

while leaving the allocation for types γ 6= γ′ unchanged. Since the original rule satisfies

incentive compatibility for γ′′, single-crossing implies that this perturbation is incentive

compatible for γ′. Optimality of the original rule {a(γ), π(γ)}γ∈Γ then requires that this

perturbation do not strictly increase the principal’s welfare, which requires

UP (γ′, π (γ′)) ≥ UP (γ′, π (γ′′))− φ.

The single-crossing condition in UP then implies

UP (γ′′, π (γ′)) > UP (γ′′, π (γ′′))− φ. (29)

Now consider a different perturbed rule {â(γ), π̂(γ)}γ∈Γ which sets â (γ′′) = 0 and

π̂ (γ′′) = π (γ′) while leaving the allocation for types γ 6= γ′′ unchanged. Equation (29)

implies that such a perturbation would strictly increase the principal’s welfare. Hence,

optimality of the original rule {a(γ), π(γ)}γ∈Γ requires that this perturbation violate
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incentive compatibility, that is, there must exist γ̂ ∈ Γ with a(γ̂) = 0 such that

UA (γ′′, π (γ̂)) > UA (γ′′, π (γ′)) . (30)

Note that since π (γ′) > πA (γ′′), we must have π (γ̂) < π (γ′). Moreover, by incentive

compatibility being satisfied under the original rule, we have

UA (γ′, π (γ′)) ≥ UA (γ′, π (γ̂)) .

Combining this equation with (30) yields

UA (γ′, π (γ′))− UA (γ′, π (γ̂)) > UA (γ′′, π (γ′))− UA (γ′′, π (γ̂)) . (31)

However, given γ′ < γ′′ and π (γ̂) < π (γ′), (31) violates the single-crossing condition in

UA. Contradiction.

A.8 Proof of Lemma 5

Suppose a rule {a(γ), π(γ)}γ∈Γ solves (8)-(9) and features decreasing auditing at some

γ′ ∈ Γ with a (γ′) = 1. Then a (γ′ + ε) = 0 for some ε > 0 arbitrarily small. Suppose it

were the case that π (γ′ + ε) = π (γ′). Then optimality of this rule would be violated, as

a perturbed rule {ã(γ), π̃(γ)}γ∈Γ which sets ã (γ′) = 0 and π̃ (γ′) = π(γ′) while keeping

the allocation unchanged for γ 6= γ′ would be incentive compatible and strictly increase

the principal’s welfare (recall φ > 0). It follows that π (γ′ + ε) 6= π (γ′), and hence by

Lemma 4, π (γ′ + ε) > π (γ′). Moreover, by Lemma 3, π (γ′) ≤ πA (γ′), and thus incentive

compatibility for γ′ would be violated if it were the case that πA (γ′) ≥ π (γ′ + ε) > π (γ′).

It therefore follows that

π (γ′ + ε) > πA (γ′) (32)

for ε > 0 arbitrarily small. Lemma 4 then implies π (γ) > πA (γ′) for γ ∈ (γ′, γ′′),

γ′′ ≡ min
{
π−1
P (πA (γ′)) , γ

}
, which implies

∫ γ′′

γ′
UP (γ, π (γ)) f (γ) dγ <

∫ γ′′

γ′
UP (γ, πA (γ′)) f (γ) dγ. (33)
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Moreover, by definition,∫ γ

γ′′
UP (γ, π (γ)) f (γ) dγ ≤

∫ γ

γ′′
UP (γ, πP (γ)) f (γ) dγ. (34)

Combining (33) and (34), and taking into account that 1− F (γ′) > 0, yields (10).

Suppose next that a rule {a(γ), π(γ)}γ∈Γ solves (8)-(9) and features decreasing audit-

ing at some γ′ ∈ Γ with a (γ′) = 0. Then a (γ′ − ε) = 1 for some ε > 0 arbitrarily small

and arguments analogous to those above can be used to establish (10).

A.9 Proof of Proposition 3

The arguments in the proofs of Lemma 1 and Corollary 1 apply to the relaxed problem,

implying that if a solution to (8)-(9) involves auditing some type γ ∈ Γ, this solution is

either a TEC rule or a rule that features decreasing auditing at some γ′ ∈ Γ. To prove

the optimality of TEC for φ < φ, we thus proceed by showing that for any such audit

cost a rule featuring decreasing auditing cannot be a solution to (8)-(9).

Suppose a rule {a(γ), π(γ)}γ∈Γ solves (8)-(9) and features decreasing auditing. Denote

by γ∗∗ the infimum of the lowest audit region under this rule. Now consider a perturbed

rule {ã(γ), π̃(γ)}γ∈Γ which sets ã (γ) = 0 for γ < γ∗∗, ã (γ∗∗) = a(γ∗∗), and ã (γ) = 1 for

γ > γ∗∗. If ã(γ) = 0, let π̃ (γ) = min {πA (γ) , πA (γ∗)} for γ∗ as defined in Proposition 1

under γ′ = γ∗∗. If ã(γ) = 1, let π̃ (γ) = πP (γ). By the arguments in the proof of

Corollary 1, this rule is incentive compatible for types prescribed no audit and sets

πA (γ∗) ≤ πP (γ∗∗). Moreover, given this inequality and the fact that α = 0, it follows

that the rule is also incentive compatible for types prescribed audit. We now show that

this rule strictly increases the principal’s expected welfare for φ < φ, contradicting the

optimality of the original rule. Denote by γ′ the lowest type above γ∗∗ featuring decreasing

auditing in the original rule. Then the change in the principal’s expected welfare from

using the perturbed rule instead of the original rule is∫ γ∗∗

γ

[UP (γ,min {πA (γ) , πA (γ∗)})− UP (γ, π (γ))] f (γ) dγ (35)

+

∫ γ

γ∗∗
[UP (γ, πP (γ))− UP (γ, π (γ))] f (γ) dγ

−
∫ γ

γ′
[φ (1− a (γ))] f (γ) dγ.
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Note that since all types above γ∗∗ are audited, the principal’s welfare conditional on

the agent’s type being in the no-audit region of the perturbed rule is optimized subject

to fewer incentive compatibility constraints in this rule compared to the original rule.

Hence, the first term in (35) is weakly positive.

To evaluate the second and third terms in (35), suppose first that γ′ < γ. Then by

Lemma 5, the second term in (35) satisfies∫ γ

γ∗∗
[UP (γ, πP (γ))− UP (γ, π (γ))] f (γ) dγ ≥

∫ γ

γ′
[UP (γ, πP (γ))− UP (γ, π (γ))] f (γ) dγ

≥ (1− F (γ′)) η (γ′) . (36)

Moreover, the third term in (35) satisfies

−
∫ γ

γ′
[φ (1− a (γ))] f (γ) dγ > − (1− F (γ′))φ

= − (1− F (γ′)) min
γ∈Γ

η (γ) . (37)

Together, (36) and (37) imply that the perturbation strictly increases welfare.

Suppose next that γ′ = γ. Analogous arguments to those above imply that the

perturbation makes the principal weakly better off conditional on γ < γ. To evaluate the

change in welfare conditional on γ = γ, note that decreasing auditing in this case implies

a (γ) = 0 and a (γ − ε) = 1 for ε > 0 arbitrarily small. Analogous arguments to those in

the proof of Lemma 5 then imply π (γ) ≥ πA (γ). Moreover, (11) implies

η (γ) = lim
γ→γ

η (γ) = UP (γ, πP (γ))− UP (γ, πA (γ)) ≥ φ > φ, (38)

where we have appealed to the definition of φ. It thus follows from (38) that the pertur-

bation strictly increases the principal’s welfare conditional on γ = γ.

A.10 Proof of Proposition 4

Consider the following quadratic-uniform setting: preferences satisfy UP (γ, π) = γπ −
π2/2 and UA (γ, π) = (γ + β) π − π2/2 for β > 0, and f (γ) = 1 for all γ ∈ Γ. In this

setting, the efficient and flexible spending levels are given by πP (γ) = γ and πA (γ) =

γ + β respectively. Let α = 0, so that the agent pays no audit cost.

We first establish that in this setting, if the audit cost φ is high enough, TEC is
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suboptimal, as it is dominated by a rule without verification.

Lemma 7. Consider the quadratic-uniform setting with α = 0. If φ > β2/2, then TEC

is not optimal.

Proof. Take the quadratic-uniform setting with α = 0 and φ > β2/2. Consider the

following problem:

max
{γ∗,γ∗∗}

{ ∫ γ∗
γ
UP (γ, πA (γ)) f (γ) dγ +

∫ γ∗∗
γ∗ UP (γ, πA (γ∗)) f (γ) dγ

+
∫ γ
γ∗∗ (UP (γ, πP (γ))− φ) f (γ) dγ

}
. (39)

Note that the solution to this program coincides with a rule without verification if it

sets γ∗∗ = γ, and it coincides with a rule that audits all types if it sets γ∗∗ = γ. By

the definition of TEC, a necessary condition for a TEC rule to be optimal is that the

solution to program (39) specify γ < γ∗∗ < γ. We show that this cannot be satisifed

when φ > β2/2.

The first-order condition for γ∗, given our assumptions on preferences and the distri-

bution of γ, implies

γ∗ = max

{
γ + γ∗∗

2
− β, γ∗∗ − 2β

}
, (40)

where we have taken into account the fact that γ∗ may be lower than γ. If the solution

to (39) sets γ∗∗ strictly interior, then the first-order condition for γ∗∗ implies

−γ∗∗ (γ∗ + β) +
(γ∗ + β)2

2
+
γ∗∗2

2
= φ.

Substituting with (40) and rearranging terms yields(
γ∗∗ −max

{
γ+γ∗∗

2
− β, γ∗∗ − 2β

}
− β

)2

2
= φ. (41)

Note that if γ∗ ≥ γ, (41) implies φ = β2/2, contradicting the assumption that φ > β2/2.

Therefore,

γ∗ < γ, (42)

and thus (41) implies

γ∗∗ = γ + 2
√

2φ.
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Substituting back into (40), we obtain

γ∗ = γ +
√

2φ− β. (43)

However, combined with (42), equation (43) implies φ < β2/2, contradicting the assump-

tion that φ > β2/2. Therefore, the solution to (39) cannot set γ∗∗ strictly interior when

φ > β2/2.

Given this lemma, we prove the proposition by showing that there exists φ > β2/2

under which a rule with auditing is optimal.

Lemma 8. Consider the quadratic-uniform setting with α = 0. If β2/2 < φ < 2β2/3 and

6β < γ − γ, then a rule with auditing is optimal.

Proof. Take the quadratic-uniform setting with α = 0, β2/2 < φ < 2β2/3, and 6β < γ−γ.

An optimal rule without verification sets π (γ) = min {πA (γ) , πA (γ∗)}, where using (40)

(with γ∗∗ = γ) and the fact that γ − 2β > γ + 4β > γ, we have

γ∗ = γ − 2β.

We construct a perturbed rule {ã(γ), π̃(γ)}γ∈Γ that features auditing and yields the prin-

cipal strictly higher expected welfare than this optimal rule without verification. For any

given γH < γ∗, define γL as the solution to

UA (γL, γL − β) = UA (γL, πA (γH)) ,

which after some algebra yields

γL = γH − 2β. (44)

Take γH < γ∗ sufficiently close to γ∗ so that γL satisfies γL − 2β > γ (note that the

assumption that 6β < γ−γ ensures that such a γH exists). Type γL is defined so that he is

indifferent between the flexible spending level of γH and the optimal spending limit under

no verification for a distribution truncated at γL (which is given by πA(γL−2β) = γL−β).

Now construct the perturbed rule as follows: if γ < γL−2β or γ > γH , then ã(γ) = 0 and

π̃(γ) = π(γ); if γ ∈ [γL − 2β, γL), then ã (γ) = 0 and π̃ (γ) = γL− β; and if γ ∈ [γL, γH ],

then ã (γ) = 1 and π̃ (γ) satisfies

UA (γ, π̃ (γ)) = UA (γ, πA (γH)) ,
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which after some algebra yields

π̃ (γ) = 2γ − γH + β.

Note that given the definition of γL, this rule is incentive compatible. The perturbation

only changes the principal’s welfare for types γ ∈ [γL− 2β, γH ]. The change in welfare is

equal to ∫ γL

γL−2β

[UP (γ, γL − β)− UP (γ, γ + β)] f (γ) dγ

+

∫ γH

γL

[UP (γ, 2γ − γH + β)− φ− UP (γ, γ + β)] f (γ) dγ.

After some algebra and substitution of (44), using our assumptions on preferences and

the distribution of γ, this simplifies to

−
∫ γH−2β

γH−4β

(γ − γH + 3β)2

2
dγ −

∫ γH

γH−2β

(γH − γ − β)2

2
dγ −

∫ γH

γH−2β

φdγ +

∫ γH

γH−4β

β2

2
dγ.

Simplifying further yields that the change in welfare is equal to

4

3
β3 − 2βφ > 0,

where the inequality follows from the assumption that φ < 2β2/3. Therefore, the per-

turbed rule with auditing strictly increases the principal’s expected welfare relative to no

verification.

It follows from Lemma 7 and Lemma 8 that in a quadratic-uniform setting with α = 0,

β2/2 < φ < 2β2/3, and 6β < γ − γ, auditing is optimal but TEC is not.

A.11 Proof of Lemma 6

Part (i). Suppose an incentive compatible rule induces decreasing auditing at γH .

Consider first the case in which a (γH) = 0 and thus a (γH − ε) = 1 for ε > 0 arbitrarily

small. Incentive compatibility for type γH requires

UA (γH , π (γH)) ≥ UA (γH , πP (γH))− αφ, (45)
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since γH can choose to be audited and guarantee himself the efficient level of spending.

Incentive compatibility for type γH − ε requires

UA (γH − ε, πP (γH − ε))− αφ ≥ UA (γH − ε, π (γH)) , (46)

since γH − ε can choose not to be audited and spend at π (γH). Given the continuity of

UA and πP in their respective arguments, we can take the limit of both sides of (46) as

ε approaches 0 to obtain

UA (γH , πP (γH))− αφ ≥ UA (γH , π (γH)) . (47)

Combining (45) and (47) yields (12).

Consider next the case in which a (γH) = 1 and thus a (γH + ε) = 0 for ε > 0

arbitrarily small. Analogous arguments to those above imply the following incentive

compatibility constraints for γH and γH + ε, respectively:

UA (γH , πP (γH))− αφ ≥ UA (γH , π (γH + ε)) , (48)

UA (γH + ε, π (γH + ε)) ≥ UA (γH + ε, πP (γH + ε))− αφ. (49)

Since the rule is piecewise continuous, limε↓0 π (γH + ε) exists and can be defined as

π (γH). Taking the limit of both sides of (48) and (49) as ε goes to 0 yields (47) and

(45), and combining these two inequalities yields (12).

To complete the proof of part (i), we show that π (γH) > πA (γH) must hold. Note that

by (12), either π (γH) > πA (γH) or π (γH) ≤ πP (γH). For the purpose of contradiction,

suppose it were the case that π (γH) ≤ πP (γH). Consider the incentive compatibility

constraint of type γH − ε for ε > 0 arbitrarily small. Take first the case in which

a (γH − ε) = 1. Then γH − ε must weakly prefer audit to no audit, which requires

UA (γH − ε, πP (γH − ε))− αφ ≥ UA (γH − ε, π (γH)) . (50)

Since πP (γH − ε) < πP (γH) < πA (γH − ε), (50) implies

UA (γH − ε, πP (γH))− αφ > UA (γH − ε, π (γH)) . (51)
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Combining (12) and (51) yields

UA (γH − ε, πP (γH))− UA (γH − ε, π (γH)) > UA (γH , πP (γH))− UA (γH , π (γH)) .

Given π (γH) ≤ πP (γH), this inequality violates the single-crossing condition in UA, thus

yielding a contradiction.

Consider next the case in which a (γH − ε) = 0. Given decreasing auditing at γH ,

in this case we must have a (γH) = 1 and a (γH + ε) = 0 for ε > 0 arbitrarily small.

Moreover, given our definition of π(γH), π (γH) ≤ πP (γH) implies limε↓0 π (γH + ε) ≤
πP (γH). By incentive compatibility, type γH must weakly prefer audit to no audit, which

requires

UA (γH , πP (γH))− αφ ≥ UA (γH , π (γH + ε)) , (52)

whereas type γH + ε must weakly prefer no audit to audit, which requires

UA (γH + ε, π (γH + ε)) ≥ UA (γH + ε, πP (γH + ε))− αφ. (53)

Combining (52) and (53) and using the fact that πA(γH) > πP (γH + ε) > πP (γH) yields

UA (γH , πP (γH + ε))−UA (γH , π (γH + ε)) > UA (γH + ε, πP (γH + ε))−UA (γH + ε, π (γH + ε)) .

Since π (γH + ε) ≤ πP (γH) ≤ πP (γH + ε) for ε approaching 0, this inequality violates

the single-crossing condition in UA, thus yielding again a contradiction.

Therefore, we obtain that π (γH) ≤ πP (γH) cannot hold and we must thus have

π (γH) > πA (γH).

Part (ii). Suppose an incentive compatible rule induces increasing auditing at γL. Then

analogous arguments to those used to prove part (i) can be applied to show that (14)

must hold at γL. Since the steps are analogous, we omit the details.

A.12 Proof of Proposition 5

To prove this result, we first establish the following lemmas.

Lemma 9. Under limited commitment, if an incentive compatible rule features increasing

auditing at γL, then

π (γL) ≤ πP (γL) , (54)
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where π (γL) ≡ lim
ε↓0

π (γL − ε) if a (γL) = 1.

Proof. Suppose an incentive compatible rule features increasing auditing at γL. By equa-

tion (14) in Lemma 6, either π (γL) > πA (γL) or π (γL) ≤ πP (γL). For the purpose of

contradiction, suppose π (γL) > πA (γL) holds. Take first the case in which a (γL) = 1,

so that a(γL − ε) = 0 for ε > 0 arbitrarily small and, given our definition of π (γL),

limε↓0 π (γL − ε) > πA (γL). By incentive compatibility, type γL − ε must weakly prefer

no audit to audit, which requires

UA (γL − ε, π (γL − ε)) ≥ UA (γL − ε, πP (γL − ε))− αφ. (55)

However, (14) and (55) together with the fact that π (γL) > πA (γL) imply that Assump-

tion 2 is violated, yielding a contradiction.

Consider next the case in which a (γL) = 0, so that a (γL + ε) = 1 for ε > 0 arbitrarily

small. By incentive compatibility, type γL+ε must weakly prefer audit to no audit, which

requires

UA (γL + ε, πP (γL + ε))− αφ ≥ UA (γL + ε, π (γL)) . (56)

Note that in this case, π (γL) > πA (γL) > πP (γL + ε) requires π (γL) > πA (γL + ε).

However, (14) and (56) together with π (γL) > πA (γL + ε) imply that Assumption 2 is

violated, yielding again a contradiction.

Therefore, we obtain that π (γL) > πA (γL) cannot hold and we must thus have

π (γL) ≤ πP (γL).

Lemma 10. Under limited commitment, if an incentive compatible rule features decreas-

ing auditing at γH , then there exists γ′ ≤ γH satisfying

UA (γ′, π (γ′)) = UA (γ′, π (γH)) (57)

for π (γ′) < πA (γ′), π (γH) ≡ lim
ε↓0

π (γH + ε) if a (γH) = 1, and either a (γ′) = 0, or

a (γ′) = 1, a (γ′ − ε) = 0 and π(γ′) ≡ lim
ε↓0

π(γ′ − ε) for ε > 0 arbitrarily small.

Proof. Suppose an incentive compatible rule features decreasing auditing at γH . By

condition (13) in Lemma 6, π (γH) > πA (γH). Consider the problem of the principal

after the audit decision a (γ) has been made and the audit result (in case of audit) has

45



been obtained:

max
{π(γ)}γ∈Γ

∫ γ

γ

UP (γ, π (γ)) f (γ) dγ (58)

subject to

π (γ) = πP (γ) if a (γ) = 1, (59)

UA (γ, π (γ)) ≥ UA (γ, π (γ̂)) for all γ, γ̂ for which a (γ) = a (γ̂) = 0. (60)

This program takes into account that the principal will assign the efficient spending

level to any agent type who chooses to be audited, and she will ignore the incentives

of audited types when deciding the spending allocation of types who choose not to be

audited. We now consider the optimal level of π (γH) given decreasing auditing at γH

and the conditions that are necessary for the principal to choose π (γH) > πA (γH).

Step 1. Consider the spending allocation conditional on no audit. Note that analogous

arguments to those used in the proof of Lemma 4 imply that π (γ) must be weakly

increasing for non-audited types γ. For each non-audited type γ, denote by π (γ) the

spending level closest to πA (γ) from below in the allowable spending set for non-audited

types (i.e., among all spending levels assigned to types who choose no audit). Analogously,

denote by π (γ) the closest spending level to πA (γ) from above in the allowable spending

set for non-audited types. Clearly, if πA (γ) is in this allowable spending set, then πA (γ) =

π (γ) = π (γ). The incentive compatibility constraint (60) together with the concavity of

UA require that if a (γ) = 0, then

π (γ) = arg max
π∈{π(γ),π(γ)}

UA (γ, π) . (61)

Step 2. As noted, given decreasing auditing at γH , the rule must set π (γH) > πA (γH).

We show that as a result, the rule must induce a (γ) = 0 and π (γ) = π (γH) for all types

γ ∈
(
γH , π

−1
A (π (γH))

)
. To see why, note first that by (61) and the single-crossing condi-

tion in UA, any type γ ∈
(
γH , π

−1
A (π (γH))

)
who is not audited necessarily chooses spend-

ing π (γ) = π (γH). Therefore, it is sufficient to show that any type γ ∈
(
γH , π

−1
A (π (γH))

)
must have a (γ) = 0. Suppose by contradiction that this were not the case. Then incen-

tive compatibility for a type γ ∈
(
γH , π

−1
A (π (γH))

)
with a(γ) = 1 requires that this type
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weakly prefer audit to no audit, which requires

UA (γ, πP (γ))− αφ ≥ UA (γ, π (γH)) . (62)

However, (12) and (62) together with the fact that γ > γH and π (γH) > πA (γ) violate

Assumption 2. The claim therefore follows.

Step 3. We show that in an incentive compatible rule, constraint (60) cannot be

uniformly slack for all γ ≤ γH and γ̂ = γH , where recall π (γH) > πA (γH) by de-

creasing auditing at γH . Suppose by contradiction that this is true. Note that from

Step 2, (60) is then uniformly slack for all γ ≤ γH and γ̂ ∈
(
γH , π

−1
A (π (γH))

)
, where

a(γ̂) = 0 for all such γ̂. Now consider the following perturbation {π̃(γ)}γ∈Γ: for ε > 0

arbitrarily small and all γ ∈
(
γH , π

−1
A (π (γH)− ε)

]
, set π̃ (γ) = π (γH) − ε; for all

γ ∈
(
π−1
A (π (γH)− ε) , π−1

A (π (γH))
)
, set π̃ (γ) = πA (γ); and for all other types leave

the spending allocation unchanged. This perturbation strictly increases the principal’s

welfare as it reduces overspending by types γ ∈
(
γH , π

−1
A (π (γH))

)
. Moreover, since (by

the contradiction assumption) (60) was uniformly slack before the perturbation for all

γ ≤ γH , it is still satisfied after the perturbation, and incentive compatibility for all types

γ ≥ γH is guaranteed as the perturbation satisfies (61). Therefore, we obtain that if (60)

is uniformly slack for all γ ≤ γH and γ̂ = γH , the principal can strictly improve upon

the original rule by reducing π (γH) after the audit decision has been made, and hence

the original rule violates incentive compatibility for the principal. The claim follows.

Step 4. By Step 3, in any incentive compatible rule with decreasing auditing at γH ,

there exists γ′ ≤ γH satisfying (57). Moreover, since decreasing auditing at γH implies

π (γH) > πA (γH) ≥ πA(γ′), this requires π (γ′) < πA (γ′). This proves the lemma.

Lemma 11. Under limited commitment, if an incentive compatible rule features de-

creasing auditing at γH , then there exists γL ≤ γH at which the rule features increasing

auditing. Moreover, a (γ) = 1 for all γ ∈ (γL, γH) and

UA (γL, π (γL)) = UA (γL, π (γH)) (63)

for π (γL) ≡ lim
ε↓0

π (γL − ε) if a (γL) = 1 and π (γH) ≡ lim
ε↓0

π (γH + ε) if a (γH) = 1.
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Proof. Suppose an incentive compatible rule features decreasing auditing at γH . By

Lemma 10, there exists a type γ′ ≤ γH satisfying (57) either with a(γ′) = 0 or at which

there is increasing auditing. We can establish that such a type is unique. Suppose by

contradiction that there are two types, γ′′ ≤ γH and γ′ < γ′′, satisfying the condition in

Lemma 10. Then

UA (γ′′, π (γ′′)) = UA (γ′′, π (γH)) , (64)

UA (γ′, π (γ′)) = UA (γ′, π (γH)) . (65)

Incentive compatibility requires

UA (γ′′, π (γ′′)) ≥ UA (γ′′, π (γ′)) , (66)

UA (γ′, π (γ′)) ≥ UA (γ′, π (γ′′)) . (67)

Combining (64)-(67) yields

UA (γ′, π (γH))− UA (γ′, π (γ′′)) ≥ UA (γ′′, π (γH))− UA (γ′′, π (γ′′)) .

Since γ′ < γ′′ and π(γH) > πA(γH) ≥ πA(γ′′) > π(γ′′) by decreasing auditing at γH

and Lemma 10, this inequality violates the single-crossing condition in UA, yielding a

contradiction. Therefore, there exists a unique type below γH for which (57) holds, and

denoting this type by γL yields (63).

Next, we show that a (γ) = 1 for all γ ∈ (γL, γH). Note first that a spending level

π ∈ (π (γL) , π (γH)) cannot be allowed by the rule under no audit, since otherwise type γL

would have a strict incentive to deviate to such a spending level. Consider the relevant

case in which γL < γH and suppose by contradiction that a (γ) = 0 for some type

γ ∈ (γL, γH). Let γ′ denote the highest such type γ. Since, as noted, spending levels

strictly between π (γL) < πA (γ′) and π (γH) > πA (γ′) are not allowed, it follows from

(63) and γ′ > γL that the rule must set π (γ′) = π (γH). Moreover, since by construction

the rule features increasing auditing at γ′, condition (14) in Lemma 6 implies

UA (γ′, πP (γ′))− αφ = UA (γ′, π (γ′)) = UA (γ′, π (γH)) . (68)

However, given (12) and (13), equation (68) violates Assumption 2. It follows that

a (γ) = 1 for all γ ∈ (γL, γH).
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We can now prove the proposition. We begin by ruling out decreasing auditing.

Suppose by contradiction that an incentive compatible rule features decreasing auditing

at some γH ∈ Γ. By Lemma 11, there must exist a type γL ≤ γH satisfying the conditions

in the lemma. We proceed in two steps.

Step 1. Suppose γL < γH . Then it follows from (14) and (63) that

UA (γL, πP (γL))− αφ = UA (γL, π (γH)) . (69)

However, (12) and (69) together with the fact that γL < γH and π (γH) > πA (γH) (by

(13)) imply that Assumption 2 is violated. Contradiction.

Step 2. By Step 1, any incentive compatible rule with decreasing auditing must have

γL = γH at each point γH at which there is decreasing auditing. Now consider the

principal’s problem (58)-(60). Let γ′ ≤ γ be the highest non-audited type. Since the types

with decreasing auditing are atomistic and the rule is piecewise continuous, following a

decision of no audit the principal solves

max
{π(γ)}γ∈Γ

∫ γ′

γ

UP (γ, π (γ)) f (γ) dγ

subject to

UA (γ, π (γ)) ≥ UA (γ, π (γ̂)) for all γ, γ̂ for which a (γ) = a (γ̂) = 0.

By Proposition 1, the solution assigns π (γ) = min {πA (γ) , πA (γ∗)} for γ ∈ [γ, γ′] and

some γ∗ < γ′. However, in this case, conditions (13) and (54) (which require π (γH) >

πA (γH) and π (γL) ≤ πP (γL) respectively) cannot be satisfied at a point γH ∈ [γ, γ′] at

which there is decreasing auditing and thus γL = γH . Contradiction.

The claims above show that under limited commitment, any incentive compatible

rule features weakly increasing auditing everywhere. Analogous arguments to those in

the proofs of Lemma 1 and Corollary 1 can then be applied to show that auditing all

types is suboptimal and TEC is thus optimal if an optimal rule features auditing that is

weakly increasing everywhere. Hence, under limited commitment, if auditing is optimal,

TEC is optimal.
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B Appendix: Other Mechanisms

In this Appendix, we show that our results under full commitment are not limited to

the game form in Section 2.2 but apply more generally when allowing for any indirect

mechanism specifying a message space for the agent and a deterministic allocation func-

tion to which the principal commits. Specifically, we prove that a Revelation Principle

in terms of payoffs holds in our setting, implying that to study the optimal deterministic

mechanism for the principal, it is without loss to restrict attention to deterministic direct

mechanisms in which the agent reports his type truthfully, as in program (3)-(4).

The usual version of the Revelation Principle cannot be directly applied to our prob-

lem because we consider a game with verification and limit attention to deterministic

allocations. We note that Townsend (1988) provides an extension of the Revelation Prin-

ciple to a class of models with verification and Strausz (2003) provides an extension to

a setting with deterministic mechanisms and one agent. Our results below build on this

work, particularly the latter.

Consider a general problem in which the principal must select a deterministic alloca-

tion specifying whether the agent is audited or not, a ∈ A ≡ {0, 1}, and the spending

level that the agent is assigned, π ∈ [π, π]. A mechanism (S, a, π) consists of a mes-

sage space for the agent S, an audit function a : S → A that commits the principal to

implement the audit assignment a(s) when the agent sends message s, and a spending

function π : S × R → π ∈ [π, π] that commits the principal to implement the spending

level π(s, r) when the agent sends message s and the audit result is r. Without loss given

our assumption that an audit verifies the agent’s type perfectly, we let r = a(s)γ, that

is, the audit result is equal to the agent’s type γ if an audit is conducted and it is equal

to 0 if an audit is not conducted (recall γ > 0).

Given a mechanism (S, a, π), the agent chooses a message. The agent’s reporting

strategy µ(γ) : Γ → S selects the message s with probability µ(s|γ). A mechanism is a

direct mechanism if S = Γ.

Proposition 6. Consider an equilibrium of a game induced by a deterministic indi-

rect mechanism (S, a, π). There exists a deterministic direct mechanism, (Γ, a, π), that

induces an equilibrium with truthful revelation yielding the principal a weakly larger ex-

pected welfare than that in the equilibrium under the indirect mechanism. Hence, an

optimal deterministic mechanism for the principal solves program (3)-(4).

Proof. Consider a deterministic mechanism (S, a, π) and equilibrium reporting strategies
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µ(γ) for each type γ ∈ Γ. For each γ, let Sγ be the set of messages that the agent sends

with positive probability, i.e. Sγ = {s|µ(s|γ) > 0}. Since µ(γ) is an equilibrium strategy,

it satisfies

UA (γ, π (s, a (s) γ))− a (s)αφ ≥ UA (γ, π (ŝ, a (ŝ) γ))− a (ŝ)αφ for all s ∈ Sγ, ŝ ∈ S, (70)

UA (γ, π (s, a (s) γ))− a (s)αφ = UA (γ, π (ŝ, a (ŝ) γ))− a (ŝ)αφ for all s, ŝ ∈ Sγ. (71)

Define the set Sγ,P as the set of messages that, given the allocation specified by the

mechanism, yield the principal the highest welfare from type γ among the messages

that are sent with positive probability under this type’s reporting strategy. That is,

Sγ,P = {s ∈ Sγ|UP (γ, π(s, a(s)γ))−a(s)φ = maxz∈Sγ{UP (γ, π(z, a(z)γ))−a(z)φ}}. Then

construct a direct mechanism (Γ, a, π) specifying: for a given s ∈ Sγ,P (arbitrarily chosen

if |Sγ,P | > 1), a(γ) = a(s), π(γ, r) = π(s, a(s)γ) if r ∈ {0, γ}, and π(γ, r) = π(s, γ̂) if

r = γ̂ ∈ Γ, γ̂ 6= γ. By construction, given this direct mechanism, it is an optimal strategy

for each type γ to report his type truthfully. This equilibrium yields each type γ the

same welfare as the equilibrium under the original indirect mechanism and it yields the

principal weakly larger expected welfare than that equilibrium. The latter follows from

the fact that the principal receives weakly larger welfare conditional on any type γ in the

equilibrium of the direct mechanism with truthful revelation. The principal’s expected

welfare is the same in the two equilibria if Sγ = Sγ,P for all γ and is strictly larger in

the equilibrium of the direct mechanism with truthful revelation if Sγ 6= Sγ,P for some γ.

This proves the first part of the proposition.

We now prove the second part, namely that an optimal deterministic mechanism

solves program (3)-(4). By the result just established, we can restrict attention to direct

mechanisms in which the agent reports his type truthfully. With some abuse of notation,

let π(γ) ≡ π(γ, a(γ)γ). The principal’s problem is

max
{a(γ),π(γ),π(γ̂,γ)}γ,γ̂∈Γ

∫ γ

γ

(
UP (γ, π (γ))− a (γ)φ

)
f (γ) dγ (72)

subject to

UA (γ, π (γ))− a (γ)αφ ≥ UA (γ, π (γ̂)) for all γ, γ̂ for which a (γ̂) = 0, (73)

UA (γ, π (γ))− a (γ)αφ ≥ UA (γ, π (γ̂, γ))− αφ for all γ, γ̂ for which a (γ̂) = 1. (74)

The only difference between this program and program (3)-(4) is that the incentive com-
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patibility constraint (74) is absent in (3)-(4). However, the principal can trivially prevent

a deviation of a type γ in which he mimics a type γ̂ with a(γ̂) = 1: as this type is audited

following the deviation, the principal can verify that he has deviated and punish him

by assigning a spending level π (γ̂, γ) such that UA(γ, π (γ̂, γ)) ≤ UA(γ, π(γ)) for γ 6= γ̂

(where it is clear that such a spending level π (γ̂, γ) exists, and in fact π (γ̂, γ) = π(γ)

would be a sufficient punishment). Therefore, the principal can satisfy (74) at no cost,

and hence the solution to this program coincides with the solution to (72)-(73), which is

equivalent to program (3)-(4).
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