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1. Introduction

In a regression discontinuity (RD) design, treatment assignment is determined by whether a

special covariate, the running variable, falls to the left or the right of a fixed cutoff value.

The treatment’s average causal effect among units at the cutoff is then estimated by what

effectively amounts to a comparison of the average outcomes (and treatment probabilities, in

the case of a fuzzy design with imperfect compliance) of units in small neighborhoods on

either side of the cutoff. Thus, the key assumption for the validity of such an analysis is that

the distribution of units’ potential outcomes varies continuously with the running variable

around the cutoff. This ensures that the only systematic difference between units that are

close to but on different sides of the cutoff is their treatment assignment.

Continuity of the potential outcome distribution given the running variable, however, may

not be a credible assumption in many empirical settings where the running variable is not

exogenously determined. Consider, for instance, studying the effect of a program that offers

financial aid to students who score above a certain threshold on a test. Since the program

affects incentives, it likely affects the running variable, i.e. test scores. This fact alone does

not invalidate the key identifying assumption for an RD analysis, and published empirical

papers in which the running variable is not exogenous abound in the literature (e.g., Solis,

2017). Yet, problems arise in such settings if, for instance, students whose score came up

short might bargain with their teacher for extra points, or teachers might proactively give

extra points to certain students with scores below the threshold. If the potential outcomes of

students who become eligible for financial aid through such channels differ from those of the

overall student population close to the cutoff, a conventional RD analysis is generally invalid.

Evidence for violations of the continuity condition on the distribution of potential outcomes

has been documented in many contexts.1

Following now standard terminology, we refer to all setups in which such violations

occur as RD designs with a manipulated running variable.2 The practical importance of

this issue is widely recognized in the literature. Following McCrary (2008), who argues

that a jump in the density of the running variable at the cutoff is a strong indication of

manipulation, it has become common empirical practice to test for the presence of such a

jump. If the corresponding null hypothesis is not rejected, researchers typically proceed with

their RD analysis under the assumption that continuity of the potential outcome distribution

1See, for instance, Urquiola and Verhoogen (2009), Camacho and Conover (2011), Scott-Clayton (2011),
Card and Giuliano (2014), or Dee, Dobbie, Jacob, and Rockoff (2016), among many others.

2This terminology is not unproblematic, as it can be understood as suggesting that observational units
are engaging in a form of wrongdoing. This might be the case in some settings. However, as we argue more
carefully below, there can also be other actors within the respective institutional contexts that are violating
the rules, and manipulated running variables can even occur if no rules are violated at all.
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is satisfied. In contrast, the cutoff is often no longer used for inference on treatment effects if

the null hypothesis is rejected.3 This practice is problematic for at least two reasons. First, a

non-rejection may not be due to the absence of manipulation but to a lack of statistical power,

e.g. due to a small sample size. Units just to the left and right of the cutoff could still differ in

their unobservable characteristics in this case, and estimates ignoring this possibility may be

severely biased. Second, even if one correctly rejects the null hypothesis of no manipulation,

the extent of the problem may be modest, and the data may remain informative. In this

paper, we propose a systematic approach to dealing with the issue of potentially manipulated

running variables in RD designs, which addresses both of these concerns.

We begin by laying out a simple yet general model that posits the existence of two

unobservable types of units: always-assigned units, for which the realization of the running

variable is always on one side of the cutoff (normalized to be the right side); and potentially-

assigned units, for which the standard assumptions of an RD design are valid. The standard

RD framework is a special case of our model in which always-assigned units are absent. This

setup is able to capture a wide range of empirical scenarios of manipulation by appropriately

assigning the two labels to specific groups of units. The only substantial requirement is that

manipulation of the running variable occurs through a form of “one-sided” selection.

We then avoid making a binary decision about whether the RD design is affected by

manipulation (i.e. whether always-assigned units are present), and let the data decide about

the extent and “worst case” impact of the issue. This line of reasoning leads to bounds

on causal parameters in two steps. First, we use the magnitude of the discontinuity in the

density of the running variable at the cutoff to identify the proportion of always-assigned

units among all units close to the cutoff. Second, we use this information to bound treatment

effects by finding those “worst case” scenarios in which the distribution of outcomes among

always-assigned units takes its “highest” and “lowest” feasible value (in a stochastic dominance

sense). For sharp RD designs, the bounds are simply obtained by trimming the tails of the

outcome distribution among units just to the right of the cutoff.4 For fuzzy RD designs, the

bounds are more elaborate in structure due to the various shape restrictions implied by our

model. To the best of our knowledge, these types of bounds are new to the literature. As

3Some studies also rely on ad-hoc “fixes.” For instance, the “doughnut-hole” approach is sometimes used
in the existing literature to estimate causal parameters in cases of potential manipulation. This method
excludes observations around the cutoff somewhat heuristically, and then relies on extrapolation outside the
range of the remaining data to recover estimates of treatment effects at the cutoff for a population of units
that may or may not be actually observed at the cutoff under any circumstances. As we discuss below, this
approach is problematic in several ways and goes against the spirit of the usual RD identification argument.

4This result shares similarities with that of Horowitz and Manski (1995) or Lee (2009); and some applied
papers have used heuristic arguments to arrive at some version of this strategy (e.g. Card, Dobkin, and
Maestas, 2009; Sallee, 2011; Anderson and Magruder, 2012; Schmieder, von Wachter, and Bender, 2012). Our
contribution with regard to the sharp design is thus mainly to formalize this approach.
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extensions of our main results, we show that the bounds can be sharpened by using covariate

information, or by imposing further assumptions about the behavior of economic agents. We

also show that one can identify the distribution of covariates among always-assigned and

potentially-assigned units at the cutoff, which is helpful to characterize these groups.

To implement our identification results in practice, we describe computationally convenient

sample analogue estimators of our bounds, and confidence intervals for the causal parameters

of interest based on recent methods from the literature on set inference (e.g., Imbens and

Manski, 2004; Stoye, 2009; Andrews and Soares, 2010). Software packages that implement

our methods in R and Stata are available on the authors’ websites. Our confidence intervals

provide reliable inference on treatment effects in cases where manipulation clearly occurs.

However, we also recommend their use in applications where it seems unclear whether the

standard RD assumptions are satisfied in order to ensure that inference is robust against the

possibility of manipulation.

Lastly, we illustrate the usage of our approach by applying it to estimate the effect

of unemployment insurance (UI) around an eligibility cutoff in Brazil. We find significant

evidence of manipulation and selection at the cutoff, and our bounds imply that the magnitude

of naive RD estimates may be heavily affected by selection. Nevertheless, we are able to infer

that UI takeup increases the covered UI duration by at least 35.4 days or at least .236 month

per month of potential UI duration. This estimate is almost twice as large as estimates

around another discontinuity, and thus for another group of workers, in Brazil (Gerard and

Gonzaga, 2016). Behavioral responses to UI benefits are thus relatively large in our sample.

The rest of the paper is organized as follows. Section 2 introduces our general framework

for RD designs with a manipulated running variable. Section 3 contains our main partial

identification results, and Section 4 presents useful extensions. Sections 5 discusses estimation

and inference. Section 6 then implements our approach in our empirical application. Section 7

concludes. Proofs and additional material can be found in the Appendix.

2. Model and Parameters of Interest

The conventional identification argument used in the RD literature relies on the assumption

that the conditional distribution of units’ unobservable characteristics given the running

variable does not change in a discontinuous manner at the cutoff. This condition implies

that units on different sides of the cutoff are “comparable” except for their treatment

assignments. Treatment effects can then be identified by comparing their respective outcomes

(and treatment probabilities). As pointed out above, however, this assumption might not

be credible in many empirical contexts. We refer to all setups where the usual continuity

condition on the distribution of potential outcomes does not hold as RD designs with a
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manipulated running variable. In this section, we introduce a general model for setups in

which manipulation (possibly) occurs, discuss its applicability, and clarify the interpretation

of the parameters of interest.

2.1. Model. The general structure of our setup is the same as that of a conventional RD

design. We observe independent data points (Xi, Yi, Zi, Di), i = 1, . . . , n, where Xi is the

running variable, Yi is the outcome of interest; Zi denotes the treatment assignment, with

Zi = 1 if unit i is assigned to receive the treatment, and Zi = 0 otherwise, and Di is the actual

treatment status, with Di = 1 if unit i receives the treatment, and Di = 0 otherwise. The

treatment assignment satisfies Zi = I (Xi ≥ c) for some fixed cutoff value c. The RD design

is said to be sharp if every unit complies with its treatment assignment, i.e. Di = Zi for all i;

otherwise it is said to be fuzzy. Following Rubin (1974), we then posit potential outcomes Yi(d),

for d ∈ {0, 1}, corresponding to the outcome unit i would have experienced had it received

treatment d; and potential treatment states Di(x), for x ∈ supp(Xi), corresponding to the

treatment status unit i would have experienced if its realization of the running variable had

been x. The observed outcome and treatment status are thus Yi = Yi(Di) and Di = Di(Xi),

respectively. We also define D+

i = Di(c
+) ≡ limx↓c Di(x) and D−

i = Di(c
−) ≡ limx↑c Di(x).5

Extending the conventional RD setup, we now posit the existence of two unobservable

types of units in the observed data: always-assigned units, whose value of the running variable

always takes values on only one side of the cutoff, which we normalize to be the right side

without loss of generality; and potentially-assigned units, who can potentially be observed

on both sides of the cutoff, and for which we will assume the standard RD framework to be

valid. The standard “no manipulation” RD framework is a special case of this setup in which

always-assigned units are absent. We discuss how a wide range of empirical scenarios fit this

framework below. Let Mi ∈ {0, 1} denote the unobserved type of unit i, with Mi = 1 if unit

i is always-assigned and Mi = 0 if it is potentially-assigned. We use the following notation to

categorize units according to their compliance with the treatment assignment, and whether

they are potentially- or always-assigned:

Cm = {D+ > D−, M = m}, compliers of type m;

Am = {D+ = D− = 1, M = m}, always-takers of type m;

Nm = {D+ = D− = 0, M = m}, never-takers of type m;

5Throughout the paper, we use the notation that g(c+) = limx↓c g(x) and g(c−) = limx↑c g(x) for a generic
function g(·). We also follow the convention that whenever we take a limit we implicitly assume that this
limit exists and is finite. Similarly, whenever an expectation or some other moment of a random variable is
taken, it is implicitly assumed that the corresponding object exists and is finite.
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for m ∈ {0, 1}.6 As shown below, it can be necessary to allow for all three types of compliance

patterns among always-assigned units in some settings, although it may be reasonable to

restrict always-assigned units to be compliers in other contexts. We formally impose three

assumptions.

Assumption 1. (i) P(D = 1|X = c+, M = 0) > P(D = 1|X = c−, M = 0); (ii) P(D+ ≥
D−|X = c, M = 0) = 1; (iii) P(Y (d) ≤ y|D+ = d1, D− = d0, X = x, M = 0), E(Y (d)|D+ =

d1, D− = d0, X = x, M = 0) and P(D+ = d1, D− = d0|X = x, M = 0) are continuous in x at

c for d, d0, d1 ∈ {0, 1} and all y; (iv) FX|M=0(x) is differentiable in x at c, and the derivative

is strictly positive.

This assumption implies that the standard conditions from the RD literature are satisfied

among potentially-assigned units.7 Assumption 1(i) requires that the treatment probability

changes discontinuously at the cutoff value. Assumption 1(ii) is a monotonicity condition

stating that the response of treatment selection to crossing the cutoff is monotone for

every unit. This rules out the existence of so-called “defiers”. Assumption 1(iii) is the key

continuity condition which roughly speaking requires the distributions of potential outcomes

and potential treatment states to be the same on both sides of the cutoff. Assumption 1(iv)

implies that the running variable has a positive density at the cutoff, and thus that there

are potentially-assigned units close to the cutoff on either side. Without this condition,

it would not be possible to compare units just above and below the cutoff. Note that

Assumptions 1(i)-(iii) simplify to the condition that E(Y (d)|X = x, M = 0) is continuous in

x at c for d ∈ {0, 1} for the special case of a sharp RD design.

Assumption 2. The derivative of FX|M=0(x) is continuous in x at c.

Assumption 2 is a weak regularity condition on the distribution of the running variable

among potentially-assigned units. Together with Assumption 1(iv), this assumption implies

that the density of Xi among potentially-assigned units is smooth and strictly positive over

some open neighborhood of c. Continuity of the running variable’s density around the cutoff

is a reasonable condition in applications, and is generally considered to be an indication for

the absence of manipulation in the applied literature (e.g. Lee, 2008; McCrary, 2008).

6The existence of “defiers”, i.e. units with D+ < D−, is ruled out by Assumption 1(ii). We therefore do
not introduce notation for defiers in our paper. Note that assuming the absence of defiers is standard in the
literature on RD designs without manipulation.

7We formalize the notion of a RD design in terms of continuity conditions on the distributions of potential
outcomes and treatment states as in Frandsen, Frölich, and Melly (2012), Dong (2017) or Bertanha and
Imbens (2016). This leads to the same identification results as directly imposing the local independence
condition that the treatment effect is independent of the treatment status conditional on the running variable
near the cutoff, as in Hahn, Todd, and Van der Klaauw (2001).
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Assumption 3. (i) P(X ≥ c|M = 1) = 1, (ii) FX|M=1(x) is right-differentiable in x at c.

Assumption 3 is the only restriction we impose on always-assigned units. Its first part,

together with Assumption 1, implies that the running variable only takes on values to the

right of the cutoff among those units that are problematic for the validity of the RD design.

This (local) one-sided manipulation assumption is key for the identification argument in

the next section as it allows us to identify the proportion of always-assigned units among

all units close to the cutoff. As we discuss below, it is also realistic in many (although not

in all) empirical settings. The second part rules out mass points in the distribution of Xi

among always-assigned units around the cutoff. In particular, it rules out that the running

variable is exactly equal to the cutoff value for some (or all) always-assigned units. If this

was the case, one could identify units whose value of the running variable is equal to the

cutoff as always-assigned, and simply remove them from the analysis. Finally, together with

Assumption 2, Assumption 3 also implies that the running variable is continuously distributed

in the full population, with a density that is generally discontinuous at c.

Remark 1. Our parameters of interest, formally defined below, are treatment effects for

populations of units whose actual realization of the running variable is at the cutoff. Our

approach therefore does not require assuming the existence of a hypothetical “true” running

variable value that one would observe if one could “close” the institutional channel that leads

to a manipulated running variable. It also avoids making strong assumptions about how such

a “true” value and the actually observed value are related, which means that our setup can

be applied to a wider range of empirical settings, as we illustrate below.

2.2. Applicability of our Model. Our simple model turns out to be quite general, as

it is able to capture a wide range of empirical scenarios of manipulation by appropriately

assigning the labels of always-assigned and potentially-assigned to specific groups of units.

To illustrate this point, consider a transfer program for which eligibility is based on a cutoff

value of a poverty score, and the formula that creates the score takes as inputs household

characteristics and assets recorded during home visits by local administrators. There might

also be other criteria that make a household (in-)eligible irrespective of the poverty score, so

that the resulting RD design could in principle be fuzzy.8 The following examples illustrate

how various empirical scenarios are accommodated by our model. They also show why it may

be necessary to allow always-assigned units to be compliers, never-takers, or always-takers in

some settings, while in others it can be reasonable to assume that all of them are compliers.

8These types of programs are common in developing countries, and various types of manipulation have
been documented for them (Camacho and Conover, 2011).
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Example 1 (“Unsystematic” Misreporting). There might be concerns of manipulation

whenever a running variable can be affected by some agents’ behaviors. Running variables are

commonly endogenous, misreported, or mismeasured in the empirical literature, and this may

certainly affect the composition of the units observed around the cutoff. However, it is not

sufficient to create a manipulated running variable in the sense used in this paper. Suppose for

example that the formula for the poverty score is not publicly known. Then, even if households

might misreport or genuinely modify their input variables (within reasonable bounds), they

may not be able to ensure program assignment. All households are potentially-assigned in

this case; households just above and below the cutoff are still comparable; and a standard RD

analysis could estimate causal parameters for those households with realized poverty scores

at the cutoff. This is a trivial special case of our general model in which always-assigned

units are absent.

Example 2 (“Systematic” Misreporting). Suppose that some households know the poverty

score formula, and local administrators are unwilling or unable to recognize whether a

household reports inaccurate information as long as it is within reasonable bounds. Some

households with knowledge of the formula, and whose poverty score would otherwise fall to

the left of the cutoff, may then be able to misreport their inputs such that their score is to the

right of the cutoff. The assumption of one-sided manipulation is likely to hold, e.g. if program

assignment is weakly desirable for all households (they can always refuse to participate).

They might also have an incentive to report data that put them barely above the cutoff but

not exactly at the cutoff, e.g. in order to avoid detection. This makes the assumption of a

continuously distributed running variable among always-assigned units palatable. If these

misreporting households are systematically different from the other households with poverty

scores in the vicinity of the cutoff, the distribution of potential outcomes may be discontinuous

at the cutoff, and conventional RD analysis is invalid. In our model, the households with

knowledge of the formula that misreport data are always-assigned, while all other households

are potentially-assigned. Given that always-assigned households actively violate the rules of

the program, it may be reasonable to assume that all of them are compliers (i.e. all of them

participate in the transfer program if and only if their poverty score is above the cutoff).

Example 3 (“Systematic” Misreporting with Partial Verification Checks). Suppose that the

same households as above misreport their data to try to ensure program assignment, but

that some local administrators now thoroughly verify the information provided to them. As a

result, only a fraction of the households is able to carry out its intended misreporting. Those

households that succeed in misreporting their data are always-assigned in our setup. The

households whose misreporting efforts fail are classified as potentially-assigned along with
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those that did not make any misreporting attempt, provided that local administrators simply

enter the correct information if they detect misreporting. Indeed, this type of households –

that would unsuccessfully misreport their information if their correct score fell to the left of

the cutoff – also exists on the right of the cutoff; they just did not need to try to misreport

any data given that they were already on the right of the cutoff. Suppose instead that

local administrators apply a penalty by removing households from the data if they detect

misreporting. In that case, the same type of households will not be observed on the left of

the cutoff anymore, but only exists on the right of the cutoff. They will thus be classified as

always-assigned together with the households who were able to carry out their misreporting.

In both cases, it seems reasonable to assume again that all always-assigned units are compliers.

Example 4 (“Systematic” Misreporting by Administrators). Suppose that all households

report their information truthfully, but that local administrators sometimes misreport the

information that they receive. This may lead to a manipulated running variable even though

the observational units, i.e. the households, do not engage in any manipulation themselves.

For instance, local administrators may increase the score of households who support the local

government and whose score would otherwise fall to the left of the cutoff. Conventional RD

analysis is invalid in this case too, e.g. if a household’s political leanings correlates with the

effect of program participation. Our general model also likely applies. Manipulation is likely

to be one-sided and local administrators are unlikely to misreport information such that the

modified scores are equal to the cutoff (e.g. to avoid detection by central administrators).

Households with misreported data are then always-assigned, and all others are potentially-

assigned. Note that some always-assigned households might now refuse to participate in the

program (e.g. if it comes with social stigma), or might have qualified even with a lower poverty

score. Always-assigned households may thus be compliers, never-takers, or always-takers

in this scenario. Alternatively, suppose that local administrators also decrease the score of

political opponents whose score would otherwise fall to the right of the cutoff. This would be

a situation in which our model does not apply because of two-sided manipulation.

Example 5 (Manipulation through Location Selection). Manipulation of the running variable

does not require that any agent engages in some form of wrongdoing. Suppose that there is no

misreporting whatsoever, but that the program only exists in some localities. Households in

other localities may then choose to move to become eligible for the program. If the formula is

known, the probability of moving may increase discontinuously for households whose poverty

score would fall above the cutoff conditional on living in an eligible locality. As a result, the

density of the poverty score may be discontinuous at the cutoff and, to the extent that the

potential outcomes of movers differ from those of incumbent residents observed around the
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cutoff, a conventional RD analysis may be invalid. Moreover, the assumptions of one-sided

manipulation and of a continuously distributed running variable among always-assigned units

are reasonable if the program is weakly desirable. Those households who move because they

know that they are eligible for the program at destination are then the always-assigned units

in our model (they are responsible for the discontinuity in the moving probability) and they

are all likely to be compliers in this setting.

Example 6 (Second Home Visit). Suppose that households’ information is measured with

some error in any given home visit, and that households can request a second home visit

after learning the value of their score by arguing that their information was mismeasured in

the first visit. Additionally, only the score based on the most recent visit, which determines

program eligibility, is observed by the econometrician. Let Xji be the poverty score for

household i based on visit j, which is assumed to be smoothly distributed at the cutoff, and

suppose that households request a second visit if and only if they were ineligible based on the

first visit. The observed poverty score is then: Xi = X1i · I (X1i ≥ c) + X2i · I (X1i < c). Its

density is discontinuous at the cutoff as long as error terms are imperfectly correlated across

visits. The excess density is due to households whose score fell on the right side of the cutoff

in the first visit; those are the always-assigned units in our model. Moreover, to the extent

that their potential outcomes differ from those of households observed on the left of the cutoff

(whose poverty score fell on the left in both visits), a conventional RD analysis is invalid.9

Depending on the details of the program, this is also a case in which it may be reasonable to

allow always-assigned households to be compliers, never-takers, or always-takers.

Having gone through the above examples, one can easily construct further variants that

also fit into our model. The examples also have natural analogues in other contexts. For

instance, Example 3 and 4 correspond to the two manipulation scenarios for the financial aid

example of the introduction. In sum, our model applies to a wide range of empirical settings,

although with some exceptions.

2.3. Parameter of Interest. The parameter of interest in RD designs without manipulation

is usually the local average treatment effect among compliers at the cutoff, which in our

notation is given by

Γ ≡ E(Y (1) − Y (0)|X = c, D+ > D−).

9In contrast, if feasible, a RD analysis based on X1i or X2i|X1i < c could be valid in this setting.
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When the running variable is potentially manipulated one has to be careful with this definition,

however, as the concern about manipulation implies that the function

x Ô→ E(Y (1) − Y (0)|X = x, D+ > D−)

may not be continuous at x = c due to the possible shift in the composition of units. Even if

we assume that the function is either right- or left-continuous, there is generally no economic

reason that dictates whether its value at x = c should be equal to its right or its left limit.

Under manipulation, Γ could therefore be equal to either of two local average treatment

effects among compliers at the cutoff, based on the left and right limits:

Γ− ≡ E(Y (1) − Y (0)|X = c−, D+ > D−) and

Γ+ ≡ E(Y (1) − Y (0)|X = c+, D+ > D−).

It is important to note that we can always define Γ− and Γ+, irrespective of whether the

running variable is manipulated or not. The two quantities simply coincide with each

other, and with Γ, in the absence of manipulation. In contrast, we generally have Γ− Ó= Γ+

when the composition of units shifts discontinuously around the cutoff. In this paper, we

present identification results for both Γ− and Γ+, which are well-defined causal effects for the

population that is actually observed at the cutoff.

For two reasons, we focus on Γ− in our main analysis, and present results for Γ+ as an

extension. First, we consider Γ− to be the more natural analogue of the usual RD parameter

under manipulation, as both can be interpreted as the causal effect among the subgroup of

units at the cutoff for which the usual RD assumptions hold. To see that Γ− carries this

interpretation, note that in our setup the defining property of potentially-assigned (M = 0)

units is that the usual RD framework applies to them, that the function

x Ô→ E(Y (1) − Y (0)|X = x, D+ > D−, M = 0)

is therefore continuous at x = c, and that there are only potentially-assigned units to the left

of the cutoff in our setup. Taken together, it follows that

Γ− = E(Y (1) − Y (0)|X = c, D+ > D−, M = 0).

This is important because it means that we can consider inference on Γ in the absence of

manipulation as a special case of inference on Γ− in our general setup, the special case

being the absence of always-assigned units. Inference on Γ− is therefore a meaningful goal

in empirical applications in which it is unclear whether the RD design is impacted by
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manipulation or not, while Γ could potentially not be well-defined in such contexts (if the

design is in fact impacted by manipulation).

Second, Γ− carries the same notion of “policy relevance” under manipulation of the running

variable as the usual RD parameter does in setups without manipulation, in the sense that it

corresponds to the treatment effect for a group of units whose treatment status would change

following a marginal change in the level of the cutoff. In many settings, potentially-assigned

compliers may in fact be the only group of units whose treatment assignment changes in

response to a marginal cutoff change: whenever always-assigned units are above the cutoff

due to some active behavior on their part, such as misreporting information, they would

likely remain above the cutoff even if its value increases slightly.10

Remark 2. Quantile treatment effects can be an attractive alternative to average effects

in applications because they are less sensitive to variation in the outer tails of the outcome

distribution. We show below that it is straightforward to extend our results regarding the

identification of Γ− and Γ+ to their respective quantile counterparts, given by

Ψ−(u) ≡ QY (1)|X=c−,D+>D−(u) − QY (0)|X=c−,D+>D−(u) and

Ψ+(u) ≡ QY (1)|X=c+,D+>D−(u) − QY (0)|X=c+,D+>D−(u),

for some quantile level u ∈ (0, 1).

Remark 3. We would like to emphasize that our parameters of interest are causal effects for a

population that is actually observed at the cutoff, and not some hypothetical population that

one would observe at the cutoff under some circumstance. We see this as an advantage relative

to the “doughnut hole” approach that is sometimes used in applications where manipulation

is a concern. This method excludes observations around the cutoff, and extrapolates trends

estimated among units outside of the excluded range to the cutoff. The result of this exercise

in then often interpreted as a causal effect for a population that would be observed at the

cutoff if the distribution of potential outcomes there would follow its trend from outside the

excluded range. This hypothetical population is in particular often considered to be the

one that would be observed in a counterfactual setting in which the channel that leads to a

manipulated running variable has been “closed”. Such an interpretation does not only require

strong assumptions regarding how manipulation occurs, but also statistical assumptions

10This is likely, for instance, in the examples of Systematic Misreporting by households or administrators.
In contrast, always-assigned units just above the cutoff would likely change their treatment status in the
Location Selection example. Finally, in the Second Home Visit example, units whose poverty score was just
above the cutoff after the first visit would not be automatically eligible anymore following a small increase in
the cutoff; some units, however, would likely remain eligible thanks to a higher poverty score after the second
visit. Of course, by definition, no always-assigned unit would gain eligibility following a decrease in the cutoff.
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implying that extrapolation biases are small. No such assumptions are required in our case.

3. Identification: Main Results

In this section, we derive our main results regarding the identification of Γ−. We first state

some preliminary results, then consider the relatively simple case of a sharp RD design, before

finally analyzing the general case of a fuzzy RD design.

3.1. Preliminaries. Since it is not possible to determine whether a specific unit is of

the always-assigned or the potentially-assigned type, this parameter is generally not point

identified under manipulation of the running variable. We therefore derive sharp lower and

upper bounds on Γ− for both sharp and fuzzy RD designs. Our general strategy is to first

obtain sharp lower and upper bounds, in a first-order stochastic dominance sense, on the

c.d.f.s FY (d)|X=c,C0
for d ∈ {0, 1}.11 Once these have been obtained, it follows from Stoye

(2010, Lemma 1) that sharp upper and lower bounds on Γ− are given, respectively, by

ΓU
− ≡

∫
ydF U

1
(y) −

∫
ydF L

0
(y) and ΓL

− ≡
∫

ydF L
1

(y) −
∫

ydF U
0

(y).

Given bounds on the c.d.f.s of potential outcomes, it would be straightforward to consider

quantile treatment effects as well. Note that, for notational convenience, all results in this

section are stated for the special case of a continuously distributed outcome variable; we

extend our results to outcomes whose distribution has mass points in Appendix B.

Our analysis repeatedly uses an important intermediate quantity, the proportion of

always-assigned units among all units just to the right of the cutoff, which we denote by

τ ≡ P(M = 1|X = c+). (3.1)

While we cannot observe or infer the type of any given unit, under our assumptions we can

point identify τ from the size of the discontinuity in the density fX of the observed running

variable at the cutoff. We formally state this insight in the following Lemma.

Lemma 1. If Assumptions 1–3 hold, then τ = 1 − fX(c−)/fX(c+) is point identified.

3.2. Sharp RD Designs. In a sharp RD design every unit is a complier, and thus receives

the treatment if and only if its value of the running variable is to the right of the cutoff. Since

every unit just to the left of the cutoff is potentially-assigned, the distribution of Y in this

11That is, we derive c.d.f.s F U
d and F L

d that are feasible candidates for FY (d)|X=c,C0
in the sense that they

are compatible with our assumptions and the population distribution of observable quantities, and that are
such that F U

d ² FY (d)|X=c,C0
² F L

d , where ² denotes first-order stochastic dominance. For two generic c.d.f.s
A and B, we say that A ² B if and only if A(y) ≤ B(y) for all y.
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subpopulation coincides with the distribution of Y (0) among potentially-assigned compliers

(C0) at the cutoff:

FY (0)|X=c,C0
(y) = FY |X=c−(y).

To bound Γ−, we therefore only need to bound the distribution of Y (1) among potentially-

assigned compliers at the cutoff. Information about Y (1) is only contained in the subpopula-

tion of treated units, which contains potentially- and always-assigned compliers (C0 and C1).

Sharpness of the RD design then implies that

P(C1|X = c+) = τ,

Since this quantity is point identified by Lemma 1, we proceed analogously to Horowitz and

Manski (1995) or Lee (2009) to obtain a bound on FY (1)|X=c,C0
(y). In particular, a sharp

upper bound on FY (1)|X=c,C0
(y), in a first-order stochastic dominance sense, is obtained by

truncating the distribution FY |X=c+(y) below its τ -quantile. A sharp lower bound is obtained

analogously by truncating FY |X=c+(y) above its (1 − τ)-quantile. That is, the bounds on

FY (1)|X=c,C0
(y) are given, respectively, by

F U
1,SRD(y) = FY |X=c+,Y ≥Q

Y |X=c+ (τ)(y) and F L
1,SRD(y) = FY |X=c+,Y ≤Q

Y |X=c+ (1−τ)(y).

These bounds correspond to the “extreme” scenarios in which the proportion 1 − τ of units

just to the right of the cutoff with either the highest or the lowest outcomes are the potentially-

assigned units. These bounds are sharp because both “extreme” scenarios are empirically

feasible. The following theorem translates these findings into explicit bounds on Γ−.

Theorem 1. Suppose Assumptions 1–3 hold, that P (D+ > D−) = 1, and that FY |X=c+(y) is

continuous in y. Then sharp lower and upper bounds on Γ− are given by

ΓL
−,SRD = E(Y |X = c+, Y ≤ QY |X=c+(1 − τ)) − E(Y |X = c−) and

ΓU
−,SRD = E(Y |X = c+, Y ≥ QY |X=c+(τ)) − E(Y |X = c−),

respectively.

3.3. Fuzzy RD Designs. In a fuzzy RD design with a manipulated running variable, the

population might contain always-takers and never-takers in addition to compliers, and each

unit is either potentially assigned or always-assigned. As shown in Table 1, there are thus

six different types of units and four possible combinations of treatment assignments and

treatment decisions that are relevant for our analysis. To derive bounds on the distributions

of the two potential outcomes among potentially-assigned compliers (C0) at the cutoff, we

13



Table 1: Allocation of Units’ Types in the Fuzzy RD Design

Subset of population Types of units present
X = c+, D = 1 C0, C1, A0, A1

X = c−, D = 1 A0

X = c+, D = 0 N0, N1

X = c−, D = 0 C0, N0

Note: See Section 2.1 for a definition of units’ types.

begin by introducing the following notation for the proportion of always-assigned units among

those units with treatment status d ∈ {0, 1} just to the right of the cutoff:

τd ≡ P(M = 1|X = c+, D = d), d ∈ {0, 1}. (3.2)

We then proceed in three steps. In Step 1 and 2 we obtain bounds on the distribution of

potential outcomes under treatment and non-treatment, respectively, for the hypothetical

case in which the true values of τ1 and τ0 are known. In Step 3, we then derive our final

bounds on Γ−, given that the true values of τ1 and τ0 are in fact unknown.

Step 1: Distribution of Potential Outcome under Treatment. We begin by consid-

ering bounds on FY (1)|X=c,C0
. Information about the distribution of Y (1) is only contained in

the data on treated units. From Table 1, we see that the subpopulation of treated units just

to the left of the cutoff consists exclusively of potentially-assigned always-takers (A0). The

c.d.f. FY (1)|X=c,A0
is therefore point identified:

FY (1)|X=c,A0
(y) = FY |X=c−,D=1(y).

Using simple algebra, we find that the proportion of A0 units among treated units just to the

right of the cutoff, which we denote by κ1, is point identified as well:

κ1 ≡ P(A0|X = c+, D = 1) = (1 − τ) · E(D|X = c−)

E(D|X = c+)
. (3.3)

To simplify the notation, we also define

G(y) ≡ FY (1)|X=c,C0∪C1∪A1
(y).

14



It then follows from the law of total probability that this c.d.f. is also point identified:12

G(y) =
1

1 − κ1

(
FY |X=c+,D=1(y) − κ1FY |X=c−,D=1(y)

)
.

The c.d.f. FY (1)|X=c,C0
can now be bounded sharply by considering the two “extreme” scenarios

in which potentially-assigned compliers (C0) are those units just to the right of the cutoff in

the subpopulation C0 ∪ C1 ∪ A1 with either the highest or the lowest outcomes. The share of

C0 units in this subpopulation is

P(C0|X = c+, C0 ∪ A1 ∪ C1) = 1 − τ1

1 − κ1

.

Given knowledge of τ1, we therefore obtain a sharp upper bound on FY (1)|X=c,C0
, in a first-

order stochastic dominance sense, by truncating the distribution G below its τ1/(1 − κ1)

quantile. Analogously, we obtain a sharp lower bound by truncating G above its 1−τ1/(1−κ1)

quantile. With some algebra, these bounds on FY (1)|X=c,C0
given knowledge of (τ1, τ0) can be

written, respectively, as

F U
1,F RD(y, τ1, τ0) =

(1 − κ1) · G(y) − τ1

1 − κ1 − τ1

· I
{

y ≥ G−1

(
τ1

1 − κ1

)}
and

F L
1,F RD(y, τ1, τ0) =

(1 − κ1) · G(y)

τ1

· I
{

y ≤ G−1

(
1 − τ1

1 − κ1

)}
,

Step 2: Distribution of Potential Outcome under Non-Treatment. Next, we consider

bounds on FY (0)|X=c,C0
. Information about the distribution of Y (0) is only contained in the

data on untreated units. From Table 1, we see that untreated potentially-assigned compliers

(C0) are never observed in isolation just to the left of the cutoff, but only together with

potentially-assigned never-takers (N0). Given knowledge of τ0, the share of the latter type of

units, which we denote by κ0 · (1 − τ0), is point identified:

P(N0|X = c−, D = 0) = κ0 · (1 − τ0), κ0 =
1

1 − τ
· 1 − E(D|X = c+)

1 − E(D|X = c−)
. (3.4)

If we were to use only information from untreated units just to the left of the cutoff, we could

therefore obtain lower and upper bounds on FY (0)|X=c,C0
(y) by truncating the distribution

FY |X=c−,D=0(y) below its κ0 ·(1−τ0) quantile and above its 1−κ0 ·(1−τ0) quantile, respectively.

However, such bounds are generally not sharp. This is because they correspond to “extreme”

scenarios in which potentially-assigned never-takers (N0) have either the highest or the lowest

outcomes among untreated units just to the left of the cutoff. By Assumption 1, however, the

12Note that the quantity on the right-hand-side of the following equation is guaranteed to be a proper
c.d.f. in our model. If empirically that would turn out not to be the case, this would mean that our model is
rejected by the data.
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c.d.f. FY (0)|X=x,N0
(y) varies continuously in x around the cutoff, and thus these two “extreme”

scenarios might be at odds with the distribution of outcomes that we observe among untreated

units just to the right of the cutoff. Indeed, from Table 1, we see that the subpopulation of

untreated units just to the right of the cutoff also contains potentially-assigned never-takers,

together with always-assigned never-takers (N1), and their share in this subpopulation is

P(N0|X = c+, D = 0) = 1 − τ0.

We can thus write the density fY (0)|X=c,N0
(y) in two different ways using information from

either side of the cutoff (assuming κ0 > 0 and τ0 < 1):

fY (0)|X=c,N0
(y) =

fY |X=c−,D=0(y) − (1 − κ0 · (1 − τ0))fY (0)|X=c,C0
(y)

κ0 · (1 − τ0)
and (3.5)

fY (0)|X=c,N0
(y) =

fY |X=c+,D=0(y) − τ0fY (0)|X=c,N1
(y)

1 − τ0

. (3.6)

To be compatible with the distribution of Y among untreated units on either side of the

cutoff, any feasible candidate for fY (0)|X=c,N0
(y) thus has to be such that

fY (0)|X=c,N0
(y) ≤ s(y, τ0)

for all y ∈ R, where

s(y, τ0) ≡ 1

1 − τ0

· min
{

1

κ0

· fY |X=c−,D=0(y), fY |X=c+,D=0(y)
}

.

This is because otherwise one of the density functions fY (0)|X=c,C0
(y) or fY (0)|X=c,N1

(y) would

have to take a negative value in order for equations (3.5)–(3.6) to be satisfied. The most

“extreme” feasible candidates for FY (0)|X=c,N0
(y), which put as much probability mass as

possible to one of the tail regions of the support of the outcome variable, are then given by

F U
Y (0)|X=c,N0

(y) =
∫ y

−∞
s(t, τ0)I {t ≥ qU(τ0)} dt and

F L
Y (0)|X=c,N0

(y) =
∫ y

−∞
s(t, τ0)I {t ≤ qL(τ0)} dt,

respectively, where qU(τ0) and qL(τ0) are constants such that

∫ ∞

qU (τ0)

s(t, τ0)dt =
∫ qL(τ0)

−∞
s(t, τ0)dt = 1. (3.7)

We illustrate this construction in Figure 3.1. The “extreme” candidates for FY (0)|X=c,N0
(y)

directly correspond to “extreme” candidates for the density fY (0)|X=c,C0
(y) through the

relationship (3.5), which in turn yields the following sharp upper and lower bounds, in a
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Figure 3.1: Construction of upper and lower bounds for FY (0)|X=c,N0
. The solid and dotted lines

represent the graph of the functions fY |X=c−,D=0(y)/((1 − τ0)κ0) and fY |X=c+,D=0(y)/(1 − τ0),
respectively. The function s(y, τ0) is the pointwise minimum of these two functions. The upper
contours of the shaded areas (1) and (2) then correspond to the densities of F L

Y (0)|X=c,N0
and

F U
Y (0)|X=c,N0

, respectively, as the constants qL(τ0) and qU (τ0) are chosen such that the surface of

the shaded areas is equal two 1. Note that it is not necessarily the case that qL(τ0) < qU (τ0).

first-order stochastic dominance sense, on the c.d.f. FY (0)|X=c,C0
given knowledge of (τ1, τ0):

F U
0,F RD(y, τ1, τ0) =

FY |X=c−,D=0(y) − κ0 · (1 − τ0)F
L
Y (0)|X=c,N0

(y)

1 − κ0 · (1 − τ0)
and

F L
0,F RD(y, τ1, τ0) =

FY |X=c−,D=0(y) − κ0 · (1 − τ0)F
U
Y (0)|X=c,N0

(y)

1 − κ0 · (1 − τ0)
.

If the envelope function s(·, τ0) happens to be a proper density these two bounds coincide,

and the c.d.f. FY (0)|X=c,C0
is point identified. This would be the case, for example, if τ0 = 0

(no untreated always-assigned units just to the right of the cutoff) or E(D|X = c+) = 1 (no

untreated units of any type just to the right of the cutoff).

Step 3: Bounds on Parameter of Interest. The analysis in Steps 1 and 2 shows that if

we knew the values of τ1 and τ0, sharp upper and lower bounds on the local average treatment
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effect Γ− would be given by

ΓU
−,F RD(τ1, τ0) ≡

∫
ydF U

1,F RD(y, τ1, τ0) −
∫

ydF L
0,F RD(y, τ1, τ0) and

ΓL
−,F RD(τ1, τ0) ≡

∫
ydF L

1,F RD(y, τ1, τ0) −
∫

ydF U
0,F RD(y, τ1, τ0),

(3.8)

respectively. However, these bounds are not directly feasible, as the population values of τ1

and τ0 are generally unknown. Nevertheless, the two values can be shown to be partially

identified. To see this, note that there are four logical restrictions on the range of their

plausible values. First, since τ1 and τ0 are probabilities, it has to be the case that

(τ1, τ0) ∈ [0, 1]2 (3.9)

Second, by the law of total probability, it must hold that

τ = τ1 · E(D|X = c+) + τ0 · (1 − E(D|X = c+)). (3.10)

Third, our monotonicity condition in Assumption 1(i) implies that

E(D|X = c+) · 1 − τ1

1 − τ
> E(D|X = c−). (3.11)

Note that this condition can be equivalently stated as τ1 < 1 − κ1, and ensures that the c.d.f.

G in Step 1 is truncated at a proper quantile level. Finally, requiring the terms qU(τ0) and

qL(τ0), defined in (3.7), to be well-defined implies that

∫
s(y, τ0) ≥ 1. (3.12)

These four conditions exhaust the informational content of our model regarding the possible

values of (τ1, τ0). Therefore the set T of candidates that satisfy these four restrictions,

formally given by

T ≡ {(τ1, τ0) : conditions (3.9)–(3.12) are satisfied},

is the sharp identified set for (τ1, τ0). Using this result, we can now find sharp bounds on Γ−

by finding those values of (τ1, τ0) ∈ T that lead to the most extreme values of the quantities

defined in (3.8).13 These bounds on Γ− are sharp because they are based on assigning “worst

case” distributions of the potential outcomes to each of the six groups mentioned in Table 1

that satisfy our assumptions and are compatible with the distribution of observables.

13Note that under the model in Section 2.1 the set T has to be non-empty. If empirically this would turn
out not to be the case, this would mean that our model is rejected by the data.
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Theorem 2. Suppose that Assumptions 1–3 hold, and that FY |XD (y|c+, d) and FY |XD (y|c−, d)

are continuous in y for d ∈ {0, 1}. Then sharp lower and upper bounds on Γ− are given by

ΓL
−,F RD = inf

(t1,t0)∈T
ΓL

−,F RD(t1, t0) and ΓU
−,F RD = sup

(t1,t0)∈T

ΓU
−,F RD(t1, t0),

respectively.

4. Identification: Further Results and Extensions

The results in the previous section can be extended in various ways. In this section, we

show that additional behavioral assumptions can lead to more narrow bounds on Γ−, that

covariates can be used to tighten the bounds as well, and that the distribution of covariates

among always-assigned and potentially-assigned units is point identified in our model. Finally,

we present results regarding the identification of the parameter Γ+.

4.1. Adding Behavioral Assumptions in Fuzzy RD Designs. The bounds in Theorem 2

can be narrowed by imposing stronger assumptions on the units’ behavior, which relate to

behavioral restrictions that arise naturally in certain empirical contexts. Consider for instance

settings where always-assigned units obtain values of the running variable to the right of

the cutoff by taking conscious actions. Since such units actively choose to be eligible for

the treatment, it seems plausible to assume that their probability of actually receiving the

treatment conditional on being eligible is relatively high in some appropriate sense.

First, one might be willing to assume that always-assigned units are at least as likely to

get treated as eligible potentially-assigned units, implying the following corollary:

Corollary 1. Suppose that the conditions of Theorem 2 hold, and that E(D|X = c+, M =

1) ≥ E(D|X = c+, M = 0). Then and sharp lower and upper bounds on Γ− are given by

ΓL
−,F RD(a)

= inf
(t1,t0)∈Ta

ΓL
−,F RD(t1, t0) and ΓU

−,F RD(a)
= sup

(t1,t0)∈Ta

ΓU
−,F RD(t1, t0),

respectively, where Ta ≡ {(t1, t0) : (t1, t0) ∈ T and t1 ≥ τ}.

We see that the additional restriction of Corollary 1 relative to Theorem 2 increases the

lowest possible value of τ1 from max{0, 1 + (τ − 1)/E(D|X = c+)} to τ , and correspondingly

decreases the largest possible value for τ0 from min{1, τ/(1 − E(D|X = c+))} to τ . This

follows from a simple application of Bayes’ Rule, and means that Ta ⊂ T . We then obtain

bounds on Γ− that are (weakly) narrower, as optimization is carried out over a smaller set.

Second, in some cases, it may be reasonable to drive this line of reasoning further and

assume that always-assigned units always receive the treatment, which is equivalent to

assuming that no always-assigned unit is a never-taker. This implies the following corollary:
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Corollary 2. Suppose that the conditions of Theorem 2 hold, and that E(D|X = c+, M =

1) = 1. Then τ1 = τ/E(D|X = c+) and τ0 = 0 are point identified; and sharp lower and

upper bounds on Γ− are given by

ΓL
−,F RD(b)

= ΓL
−,F RD

(
τ

E(D|X = c+)
, 0

)
and ΓU

−,F RD(b)
= ΓU

−,F RD

(
τ

E(D|X = c+)
, 0

)
,

respectively.

Under the conditions of Corollary 2, the set of feasible values of (τ1, τ0) shrinks to a

singleton, which means that sharp bounds on our parameter of interest can be defined without

invoking an optimization operator. Moreover, we can see from Table 1 that due to the

absence of always-assigned never-takers the distributions FY (0)|X=c,N0
and FY (0)|X=c,C0

are

point identified in this case. Finally, inspection of Table 1 shows that assuming that all

always-assigned unit are compliers does not provide any additional identifying power.

4.2. Using Covariates to Tighten the Bounds. Following arguments similar to those in

Lee (2009), covariates that are measured prior to treatment assignment can also be used to

narrow the bounds on Γ− that we derived above. Let W be a vector of such covariates, and

denote its support by W . The idea is that, if the outcome distribution or the proportion of

always-assigned units varies with W , trimming units based on their position in the outcome

distribution conditional on W leads to units with less extreme values in the overall outcome

distribution being trimmed, which narrows the bounds.

For the sharp RD design, the sharp upper and lower bounds on FY (1)|X=c,C0
become:

F U
1,SRD(W )

(y) =
∫

FY |X=c+,W =w,Y ≥Q
Y |X=c+,W =w

(τ(w))(y)dFW |X=c−(w) and

F L
1,SRD(W )

(y) =
∫

FY |X=c+,W =w,Y ≤Q
Y |X=c+,W =w

(1−τ(w))(y)dFW |X=c−(w),

where τ(w) = P(M = 1|X = c+, W = w) is a conditional version of τ defined as in (3.1),

which is point identified as τ(w) = 1−fX|W (c−, w)/fX|W (c+, w) through arguments analogous

to those used in the proof of Lemma 1, conditioning on W = w throughout. The next corollary

gives the resulting sharp lower and upper bounds on Γ−.

Corollary 3. Suppose that the assumptions of Theorem 1 hold, mutatis mutandis, with
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conditioning on the covariates W . Then sharp lower and upper bounds on Γ− are given by

ΓL
−,SRD(W )

=
∫

E(Y |X = c+, W = w, Y ≤ QY |X=c+,W =w(1 − τ(w)))dFW |X=c−(w)

− E(Y |X = c−) and

ΓU
−,SRD(W )

=
∫

E(Y |X = c+, W = w, Yi ≥ QY |X=c+,W =w(τ(w)))dFW |X=c−(w)

− E(Y |X = c−),

respectively.

To state a similar result for the fuzzy RD design, we need to define conditional versions of τ1,

τ0, T , κ1 and κ0 in the same fashion. We denote the resulting quantities by τ1(w), τ0(w), T (w),

κ1(w) and κ0(w), respectively. We then define conditional versions of F U
d,F RD(y, τ1, τ0) and

F U
d,F RD(y, τ1, τ0), denoted by F U

d,F RD|W =w(y, τ1(w), τ0(w)) and F U
d,F RD|W =w(y, τ1(w), τ0(w)),

respectively, for d ∈ {0, 1}. These objects are constructed following the steps in the previous

section by conditioning on W = w throughout. We also define the set TW = {(t1(·), t1(·)) :

(t1(w), t1(w)) ∈ T (w) for all w ∈ W}. Finally, we denote the proportion of potentially-

assigned compliers (C0) conditional on W = w just to the left of the cutoff by

P(C0|X = c−, W = w) =
1 − τ1(w)

1 − τ(w)
E(D|X = c+, W = w) − E(D|X = c−, W = w)

≡ Π−,W =w(τ1(w), τ0(w)).

With this notation, we can then construct sharp upper and lower bounds on FY (1)|X=c,C0

and FY (0)|X=c,C0
given (hypothetical) knowledge of the function w Ô→ (τ1(w), τ0(w)). These

bounds are given by

F U
d,F RD(W )

(y, τ1(·), τ0(·)) =
∫

F U
d,F RD|W =w(y, τ1(w), τ0(w))ω(w, τ1(w), τ0(w))dFW |X=c−(w)

F L
d,F RD(W )

(y, τ1(·), τ0(·)) =
∫

F L
d,F RD|W =w(y, τ1(w), τ0(w))ω(w, τ1(w), τ0(w))dFW |X=c−(w),

for d ∈ {0, 1}, where

ω(w, τ1(w), τ0(w)) ≡ Π−,W =w(τ1(w), τ0(w))
∫

Π−,W =w(τ1(w), τ0(w))dFW |X=c−(w)
.

The resulting sharp upper and lower bounds on the local average treatment effect Γ− given
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(hypothetical) knowledge of the function w Ô→ (τ1(w), τ0(w)) are given by

ΓU
−,F RD(W )

(τ1(·), τ0(·))

≡
∫

ydF U
1,F RD(W )

(y, τ1(·), τ0(·)) −
∫

ydF L
0,F RD(W )

(y, τ1(·), τ0(·)) and

ΓL
−,F RD(W )

(τ1(·), τ0(·))

≡
∫

ydF L
1,F RD(W )

(y, τ1(·), τ0(·)) −
∫

ydF U
0,F RD(W )

(y, τ1(·), τ0(·)),

respectively. The following corollary gives the feasible sharp bounds on Γ−, using the fact

that the function w Ô→ (τ1(w), τ0(w)) is partially identified.

Corollary 4. Suppose that the assumptions of Theorem 2 hold, mutatis mutandis, with

conditioning on the covariates W . Then sharp lower and upper bounds on Γ− are given by

ΓL
−,F RD(W )

= inf
(t1(·),t0(·))∈TW

ΓL
−,F RD(t1(·), t0(·)) and

ΓU
−,F RD(W )

= sup
(t1(·),t0(·))∈TW

ΓU
−,F RD(t1(·), t0(·)),

respectively.

4.3. Characteristics of Always- and Potentially-Assigned Units. It is not possible to

determine whether any given unit belongs to the group of always-assigned or potentially-

assigned units in our model. This does not mean, however, that it is impossible to give any

further characterization of these two groups. In particular, if the data include a vector W of

covariates that are measured prior to treatment assignment, and whose conditional distribution

given the running variable does not change discontinuously at c among potentially-assigned

units, one can identify the distribution of these covariates among both always-assigned and

potentially-assigned units. This information could be useful, for instance, for targeting policies

aimed at mitigating manipulation. The following corollary formally states this result.

Corollary 5. Suppose that Assumptions 1–2 hold, that P(W ≤ w|X = x, M = m) is

continuous in x at c for m ∈ {0, 1}. Then

P(W ≤ w|X = c, M = 1) =
1

τ
(P(W ≤ w|X = c+) − P(W ≤ w|X = c−))

+ P(W ≤ w|X = c−) and

P(W ≤ w|X = c, M = 0) = P(W ≤ w|X = c−).

Of course, identification of the distribution of W immediately implies identification of

moments, quantiles, and related summary statistics.
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4.4. Causal Effects for Units Just to the Right of the Cutoff. The parameter Γ− that

we considered so far is the local average treatment effect among compliers whose realization

of the running variable is just to the left of the cutoff. As pointed out in Section 2.3, a

possible alternative parameter of interest is

Γ+ ≡ E(Y (1) − Y (0)|X = c+, D+ > D−),

the causal effects among compliers whose realization of the running variable is just to the

right of the cutoff. The main conceptual difficulty for identification in this case is that,

by definition, there is no always-assigned complier that does not receive the treatment.

Any bounds analysis therefore must rely on some additional assumption, at least for the

average treatment effect, that specifies a “worst case” value for the outcome variable in this

counterfactual scenario. To make progress, we impose the assumption that the outcome

variable has bounded support conditional on the running variable in some neighborhood of

the cutoff. This type of assumption is common in the partial identification literature (cf.

Manski, 1990) and is natural for binary outcomes, for example. However, it is restrictive in

general and difficult to justify for some outcomes commonly studied in economics, like wages.

Assumption 4. There are constants Y L and Y U such that P(Y L ≤ Y (0) ≤ Y U |X = x) = 1

and P(Y L ≤ Y (1) ≤ Y U |X = x) = 1 for every x in some open neighborhood of the cutoff.

Note that this assumption is not necessary for obtaining bounds on the c.d.f.s of the two

potential outcomes, but only to translate bounds on these c.d.f.s into bounds on the (local)

average treatment effect. Bounds on quantile treatment effects could be obtained without the

assumption that the outcome has bounded support (except for extreme quantile levels).

We now study identification of Γ+ under this additional assumption. Paralleling the

discussion in Section 3, we begin with the sharp RD design before turning to the more general

fuzzy RD design. Note that, using notation from Section 3, we have that {D+ > D−} = C0 ∪
C1, and thus the parameter of interest can be written as Γ+ = E(Y (1)−Y (0)|X = c+, C0∪C1).

Sharp RD Designs. In the Sharp RD design every unit just to the right of the cutoff is a

complier, and thus the distribution of Yi given Xi = c+ coincides with the distribution of

Yi(1) among compliers (C1 or C0) just to the right of the cutoff:

FY (1)|X=c+,C0∪C1
(y) = FY |X=c+(y).

On the other hand, we have that

FY (0)|X=c+,C0∪C1
(y) = τFY (0)|X=c+,C1

(y) + (1 − τ)FY (0)|X=c+,C0
(y).
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Since there exist no untreated always-assigned compliers, we can only deduce from Assumption

4 that the potential outcome Yi(0) of always-assigned compliers is bounded between Y L and

Y U . This, and the continuity conditions on potentially-assigned units in Assumption 1, then

lead to the following sharp bounds on FY (0)|X=c+,C0∪C1
(y):

F U
0,+,SRD(y) = (1 − τ)FY |X=c−(y) + τI

{
y ≥ Y U

}
and

F L
0,+,SRD(y) = (1 − τ)FY |X=c−(y) + τI

{
y ≥ Y L

}
.

The following corollary gives the resulting sharp lower and upper bounds on the average

treatment effect Γ+.

Corollary 6. Suppose Assumptions 1–4 hold, that P (D+ > D−) = 1. Then sharp lower and

upper bounds on Γ+ are given by

ΓL
+,SRD = E(Y |X = c+) − (1 − τ)E(Y |X = c−) − τY U and

ΓU
+,SRD = E(Y |X = c+) − (1 − τ)E(Y |X = c−) − τY L,

respectively.

Fuzzy RD Designs. For the Fuzzy RD design, our strategy is to first derive bounds for the

hypothetical case in which the true values of (τ1, τ0) and λ ≡ P(A1|X = c+, D = 1, M = 1),

the proportion of always-takers among the treated always-assigned units just to the right of

the cutoff, are known. In a second step, we then extend this result to our actual setting in

which we only know that (τ1, τ0) ∈ T and that λ ∈ [0, 1].

We begin by considering the c.d.f. FY (1)|X=c+,C0∪C1
(y). Recall from Step 1 in Section 3.3

that we can point identify the c.d.f. G(y) ≡ FY (1)|X=c+,C0∪C1∪A1
(y) from the data on treated

units, and note that P(A1|X = c+, C0 ∪ C1 ∪ A1) = 1 − λτ1/(1 − κ1). By truncating the

distribution G(y) appropriately, we thus arrive at the following sharp upper and lower bounds

on FY (1)|X=c+,C0∪C1
(y):

F U
1,+,F RD(y, τ1, τ0, λ) =

(1 − κ1)G(y) − λτ1

1 − κ1 − λτ1

· I
{

y ≥ G−1

(
λτ1

1 − κ1

)}
and

F L
1,+,F RD(y, τ1, τ0, λ) =

(1 − κ1)G(y)

λτ1

· I
{

y ≤ G−1

(
1 − λτ1

1 − κ1

)}
.

Now consider the c.d.f. FY (0)|X=c+,C0∪C1
(y), which can be written as

FY (0)|X=c+,C0∪C1
(y) = s(τ1, λ)FY (0)|X=c+,C0

(y) + (1 − s(τ1, λ))FY (0)|X=c+,C1
(y)
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where

s(τ1, λ) ≡ P(C0|X = c+, C0 ∪ C1) =
(1 − τ1)E(D|X = c+) − (1 − τ)E(D|X = c−)

(1 − λτ1)E(D|X = c+) − (1 − τ)E(D|X = c−)
.

is the proportion of potentially-assigned units among all compliers just to the right of the

cutoff. The term FY (0)|X=c+,C0
(y) = FY (0)|X=c−,C0

(y) can then be bounded as in Step 2 of

Section 3.3, and bounds on FY (0)|X=c+,C1
(y) follow from Assumption 4:

F U
0,+,F RD(y, τ1, τ0, λ) = s(τ1, λ)F U

0,F RD(y, τ1, τ0) + (1 − s(τ1, λ))I
{
y ≥ Y U

}
and

F L
0,+,F RD(y, τ1, τ0, λ) = s(τ1, λ)F L

0,F RD(y, τ1, τ0) + (1 − s(τ1, λ))I
{
y ≥ Y L

}
,

Taken together, the sharp bounds on the local average treatment effect Γ+ for known values

of τ1, τ0 and λ are

ΓU
+,F RD(τ1, τ0, λ) ≡

∫
ydF U

1,+,F RD(y, τ1, τ0, λ) −
∫

ydF L
0,+,F RD(y, τ1, τ0, λ),

ΓL
+,F RD(τ1, τ0, λ) ≡

∫
ydF L

1,+,F RD(y, τ1, τ0, λ) −
∫

ydF U
0,+,F RD(y, τ1, τ0, λ).

We can then give sharp bounds on Γ+ by finding those values of (τ1, τ0) ∈ T and λ ∈ [0, 1]

that lead to the most extreme values of the just-defined quantities.14

Corollary 7. Suppose Assumptions 1–4 hold, and that FY |XD (y|c+, d) and FY |XD (y|c−, d)

are continuous in y for d ∈ {0, 1}. Then sharp lower and upper bounds on Γ+ are given by

ΓL
+,F RD = inf

(t1,t0,l)∈T ×[0,1]

ΓL
+,F RD(t1, t0, l) and

ΓU
+,F RD = sup

(t1,t0,l)∈T ×[0,1]

ΓU
+,F RD(t1, t0, l),

respectively.

5. Estimation and Inference

While our main focus in this paper is on deriving identification results for causal effects in

RD designs with a manipulated running variable, this section also discusses some methods for

estimation and inference, based on the results in Section 3. These methods can be extended

in a straightforward manner to the results derived in Section 4. Software packages that

implement these methods are available on the authors’ websites. Our approach uses a number

of different techniques that are well-understood individually, but whose combination requires

14Note that more narrow versions of these bounds on Γ+ can be obtained by using arguments analogous to
those used to tighten the bounds on Γ− in Sections 4.1 and 4.2.
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a tedious theoretical analysis. We therefore do not present any formal results in this paper; a

full econometric analysis will be developed separately.

5.1. Estimation of the Bounds. Our bounds on Γ− can be estimated through a “plug-in”

approach that replaces unknown population quantities with suitable sample counterparts.

Following the recent RD literature, we focus on flexible nonparametric methods, and in

particular local polynomial smoothing (Fan and Gijbels, 1996), for the construction of these

sample counterparts. To simplify the exposition, we use the same polynomial order p,

bandwidth h and kernel function K(·) in all intermediate estimation steps in this paper. We

also use the notation that πp(x) = (1/0!, x/1!, x2/2!, . . . , xp/p!)′ and Kh(x) = K(x/h)/h for

any x ∈ R, and define the (p + 1)-vector e1 = (1, 0, . . . , 0)′. The data are an independent

sample {(Yi, Di, Xi), i = 1, . . . , n} of size n.

Proportion of Always-Assigned Units. Following the result in Lemma 1, estimating τ

requires estimates of the right and left limits of the density at the cutoff. There are a number

of nonparametric estimators that can be used to estimate densities at boundary points; see

for example Lejeune and Sarda (1992), Jones (1993), Cheng (1997) or Cattaneo, Jansson,

and Ma (2017). Here we use a minor variation of the procedure in Cheng (1997), which also

forms the basis for the McCrary (2008) test, and estimate fX(c+) and fX(c−) by

f̂+ = e
′
1

argmin
β∈Rp+1

n∑

i=1

(f̂(Xi) − πp(Xi − c)′β)2Kh(Xi − c)I {Xi ≥ c} , and

f̂− = e
′
1

argmin
β∈Rp+1

n∑

i=1

(f̂(Xi) − πp(Xi − c)′β)2Kh(Xi − c)I {Xi < c} ,

respectively, where f̂(Xi) = (1/n)
∑n

j=1
Kb(Xj − Xi) and b is another bandwidth. Since by

assumption the proportion of always-assigned units among units just to the right of the cutoff

has to be non-negative, our estimate of τ is then given by

τ̂ = max{τ̃ , 0}, with τ̃ = 1 − f̂−/f̂+.

Conditional Expectation, Distribution, and Density Functions. The local polyno-

mial regression estimates of g+ = E(Di|Xi = c+) and g− = E(Di|Xi = c−), the conditional

treatment probabilities on either side of the cutoff, are given by

ĝ+ = e
′
1

argmin
β∈Rp+1

n∑

i=1

(Di − πp(Xi − c)′β)2Kh(Xi − c)I {Xi ≥ c} , and

ĝ− = e
′
1

argmin
β∈Rp+1

n∑

i=1

(Di − πp(Xi − c)′β)2Kh(Xi − c)I {Xi < c} ,
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respectively (Fan and Gijbels, 1996). The conditional c.d.f.s FY |X=c+,D=d(y) and FY |X=c−,D=d(y)

are estimated by

F̂Y |X=c+,D=d(y) = e
′
1

argmin
β∈Rp+1

n∑

i=1

(I {Yi ≤ y} − πp(Xi − c)′β)2Kh(Xi − c)I {Xi ≥ c} , and

F̂Y |X=c−,D=d(y) = e
′
1

argmin
β∈Rp+1

n∑

i=1

(I {Yi ≤ y} − πp(Xi − c)′β)2Kh(Xi − c)I {Xi < c} ,

respectively, which for every y ∈ R corresponds to a local polynomial regression with

I {Yi ≤ y} as the dependent variable (Hall, Wolff, and Yao, 1999). Finally, we estimate the

conditional p.d.f.s fY |X=c+,D=d(y) and fY |X=c−,D=d(y) by

f̂Y |X=c+,D=d(y) = e
′
1

argmin
β∈Rp+1

n∑

i=1

(Kb(Yi − y) − πp(Xi − c)′β)2Kh(Xi − c)I {Xi ≥ c} , and

f̂Y |X=c−,D=d(y) = e
′
1

argmin
β∈Rp+1

n∑

i=1

(Kb(Yi − y) − πp(Xi − c)′β)2Kh(Xi − c)I {Xi < c}

respectively, which for every y ∈ R corresponds to a local polynomial regression with Kb(Yi−y)

as the dependent variable, where b is another bandwidth (Fan, Yao, and Tong, 1996).

Final Bounds Estimates. We describe the construction of our final estimates of the bounds

on Γ− for the general case of a Fuzzy RD design described in Theorem 2. Bounds for the

sharp case can be obtained similarly. We begin by noting that the set T is a straight line in

the unit square, and can therefore be represented in terms of the location of the endpoints of

the line. That is, we can write

T = {(η1(t), η0(t)) : t ∈ [0, 1]} with ηd(t) = τL
d + t · (τU

d − τL
d )

for d ∈ {0, 1}, where

τL
1

= max

{
0, 1 − 1 − τ

g+

}
,

τU
0

= min

{
1,

τ

1 − g+

}
,

τU
1

= min

{
1 − (1 − τ) · g−

g+
,
τ − max{0, 1 − ∫

s̃(y)dy}(1 − g+)

g+

}
,

τL
0

= max

{
0, τ − (1 − τ) · (g+ − g−)

1 − g+
, 1 −

∫
s̃(y)dy

}
,

with s̃(y) = min{fY |X=c−,D=0(y)/κ0, fY |X=c+,D=0(y)}. Dropping the “FRD” subscript to

simplify the notation, the bounds on Γ− from Theorem 2 can then be written as

ΓL
− = inf

t∈[0,1]

ΓL
−(η1(t), η0(t)) and ΓU

− = sup
t∈[0,1]

ΓU
−(η1(t), η0(t)).
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This expression is convenient because it makes the area over which optimization takes place

free of unknown quantities that have to be estimated. Next, we put

Γ̂j
−(t1, t0) =

∫
ydF̂ j

1 (y, t1, t0) −
∫

ydF̂ j
0 (y, t1, t0), j ∈ {U, L},

where for j ∈ {U, L} and d ∈ {0, 1} the function F̂ j
d (y, t1, t0) is a sample analogue estimator

of the function F j
d,F RD(y, t1, t0) defined in Section 3. Specifically, we put

F̂ U
1

(y, t1, t0) =
(1 − κ̂1)Ĝ(y) − t1

1 − κ̂1 − t1

· I
{

y ≥ Ĝ−1

(
t1

1 − κ̂1

)}
,

F̂ U
0

(y, t1, t0) =
F̂Y |X=c−,D=0(y) − κ̂0 · (1 − t0)F̂

L
Y (0)|X=c,N0

(y, t0)

1 − κ̂0 · (1 − t0)
.

The functions F̂ L
1

and F̂ L
0

are defined similarly. Here we use the notation that

Ĝ(y) =
F̂Y |X=c+,D=1(y) − κ̂1F̂Y |X=c−,D=1(y)

1 − κ̂1

,

F̂ L
Y (0)|X=c,N0

(y, t0) =
∫ y

−∞
ŝ(u, t0)I {u ≥ q̂L(t0)} du,

ŝ(y, t0) =
min

{
f̂Y |X=c−,D=0(y)/κ̂0, f̂Y |X=c+,D=0(y)

}

1 − t0

,

κ̂1 =
(1 − τ̂)ĝ−

ĝ+
, κ̂0 =

1 − ĝ+

(1 − τ̂)(1 − ĝ−)
;

with q̂L(t0) the value that satisfies
∫ q̂L(t0)

−∞ ŝ(y, t0)dy = 1. We then define the functions

η̂d(t) = τ̂L
d + t · (τ̂U

d − τ̂L
d ), d ∈ {0, 1},

where for j ∈ {U, L} and d ∈ {0, 1} the term τ̂ j
d is the obvious sample analogue estimator of

the point τ j
d introduced above. Finally, our estimates of the lower and upper bounds on Γ−

are given, respectively, by

Γ̂L
− = inf

t∈[0,1]

Γ̂L
−(η̂1(t), η̂0(t)) and Γ̂U

− = sup
t∈[0,1]

Γ̂U
−(η̂1(t), η̂0(t)).

In our application below, we use grid search to solve the two optimization problems in the

previous equation.

5.2. Inference. In order to quantify sampling uncertainty about Γ−, we construct confidence

intervals that are “manipulation-robust” in the sense that they are valid irrespective of the

true value of τ . Such a construction involves a number of complications which we describe in

this subsection. We focus again on the general setup of Theorem 2, as the procedure works
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analogously for the sharp case.

The first conceptual complication is due to the presence of an optimization operator in

the definition of the bounds, which we address using the intersection-union testing principle

of Berger (1982).15 The main idea is the following. Suppose that for every t ∈ [0, 1] we had a

1 − α confidence interval CF RD
1−α (t) for Γ− that was valid if the true value of (τ1, τ0) was equal

to (η1(t), η0(t)). Then the intersection-union principle implies that CF RD
1−α = ∪t∈[0,1]CF RD

1−α (t) is

a 1 − α confidence interval for Γ−. That is, a candidate value for Γ− is outside of CF RD
1−α if and

only if it is outside of CF RD
1−α (t) for all t ∈ [0, 1]. An important feature of this approach is that

both the “fixed t” and the overall confidence interval have level 1 − α: there is no need for a

multiplicity adjustment to account for the fact that we are implicitly testing a continuum of

hypotheses. Berger (1982) also shows that this approach has strong power properties.

The second conceptual complication then involves the construction of a “fixed t” confidence

interval. If the estimates Γ̂L
−(η̂1(t), η̂0(t)) and Γ̂U

−(η̂1(t), η̂0(t)) were jointly asymptotically

normal irrespective of the true value of τ , one could use the approach proposed by Imbens

and Manski (2004) and Stoye (2009) for this purpose. However, our bound estimates are

only jointly asymptotically normal (under appropriate regularity conditions) if τ > 0. For

τ = 0, their limiting distribution is non-Gaussian, as the estimated level of manipulation

τ̂ = max{0, 1 − f̂−/f̂+} fails to be asymptotically normal in this case.16 A Gaussian

approximation to the distribution of the “fixed t” estimates is thus typically poor in finite

samples if τ is not well-separated from zero. The standard bootstrap is unable to provide a

remedy in this case (Andrews, 2000).

We therefore propose an approach similar to moment selection in the moment inequality

literature (e.g. Andrews and Soares, 2010; Andrews and Barwick, 2012). Roughly speaking,

we estimate the limiting distribution of the estimated bounds for a level of manipulation that

is tilted away from zero, unless the empirical estimate τ̂ is very large relative to its standard

error.17 For convenience, we implement this approach via the bootstrap. Specifically, we

construct a bootstrap distribution under which the bootstrap analogue of τ̃ = 1 − f̂−/f̂+ is

centered around max{τ̂ , κnσ̂τ̃ }, where σ̂τ̃ is the standard error of τ̃ , and κn is a sequence of

constants that slowly tends to infinity. Following much of the moment inequality literature,

15Our problem differs from the one in Chernozhukov, Lee, and Rosen (2013), who study inference on
intersection bounds of the form [supv θ(v), infv θ(v)]. It is more accurately described as an example of union

bounds, as the role of the inf and the sup operator in the definition of the identified set is reversed relative
to Chernozhukov, Lee, and Rosen (2013). We are not aware of any existing general results on inference for
union bounds, but the intersection-union testing principle provides a straightforward solution.

16Under standard regularity conditions
√

nh(τ̂ − τ)
d→ max{0, Z} if τ = 0, where Z is a Gaussian random

variable with mean zero.
17Note that the distributions of Γ̂L

−(η̂1(t), η̂0(t)) and Γ̂U
−(η̂1(t), η̂0(t)) are increasing in τ in a stochastic

sense.
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we choose κn = log(n)1/2 in this paper. The algorithm for our bootstrap is as follows.

1. Generate bootstrap samples {Yi,b, Di,b, Xi,b}n
i=1

, b = 1, . . . , B by sampling with replace-

ment from the original data {Yi, Di, Xi}n
i=1

; for some large integer B.
2. Calculate τ̃ ∗

b = 1 − f̂−
b /f̂+

b , and put σ̂τ̃ as the sample standard deviation of {τ̃ ∗
b }B

b=1
.

3. Calculate τ̃b = τ̃ ∗
b − τ̃ + max{τ̂ , κnσ̂τ̃ } and τ̂b = max{τ̃b, 0}.

4. For j ∈ {U, L}, calculate Γ̂j
−(η̂1(t), η̂0(t)) using the redefined estimate τ̂b from the

previous step, and put σ̂j(t) as the sample standard deviation of {Γ̂j
−(η̂1(t), η̂0(t)}B

b=1
.

Now define Γ̂L∗
− (t) and Γ̂U∗

− (t) exactly as Γ̂L
−(η̂1(t), η̂0(t)) and Γ̂U

−(η̂1(t), η̂0(t)), with the excep-

tion that τ̂ ∗ = max{τ̃ , κnσ̂τ̃ } is used instead of τ̂ . Following Imbens and Manski (2004) and

Stoye (2009), our “fixed t” confidence interval for Γ− with level 1 − α is then given by

CF RD
1−α (t) =

[
Γ̂L∗

− (t) − rα(t) · σ̂L(t), Γ̂U∗
− (t) + rα(t) · σ̂U(t)

]
,

where rα(t) is the value that solves the equation

Φ

(
rα(t) +

Γ̂U∗
− (t) − Γ̂L∗

− (t)

max{σ̂L(t), σ̂U(t)}

)
− Φ(−rα(t)) = 1 − α,

and Φ(·) is the CDF of the standard normal distribution. The final intersection-union

confidence interval for Γ− is then given by

CF RD
1−α =

[
inf

t∈[0,1]

(
Γ̂L

−(t) − rα(t) · σ̂L(t)
)

, sup
t∈[0,1]

(
Γ̂U

−(t) + rα(t) · σ̂U(t)
)]

.

We remark that this construction does not account for discontinuities in the limiting

distribution of the “fixed t” estimates at those values of τ under which one of the various

max and min operators in the definition of the function ηd(·) becomes binding. We expect

this to have only minor importance in practice, and therefore do not include any “safeguards”

against such cases into our bootstrap procedure. We also note that construction implicitly

assumes that the two functions involved in the definition of the term s(y, τ0) cross at a finite

number of points. If that was not the case the presence of the max operator would generate

a bias, and one would have to use techniques analogous to those in Anderson, Linton, and

Whang (2012) to remove it.

5.3. “Fixed τ” Inference. The confidence interval construction in the previous subsection

takes a deliberately agnostic view about the true value of τ . This view can be overly

pessimistic in certain contexts. Suppose for example that a researcher strongly believes that

manipulation is either fully absent or at least of negligible magnitude in a particular setting,

and that this belief is confirmed by a point estimate of τ that is close to zero. Now, if the
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corresponding standard error of τ̂ is large, the confidence interval proposed in the previous

subsection is typically rather wide, as the data by themselves do not rule out a high level of

manipulation. We argue that in such a scenario researcher might want to consider alternative

confidence intervals for Γ− that are computed under the assumption that the value of τ is

known to be some τ ∗ ≥ 0. Such a confidence interval C1−α(τ ∗) can be calculated through the

following modified bootstrap algorithm.

1. For τ ∗ ∈ [0, 1] and t ∈ [0, 1], define Γ̂L
−(τ ∗, t) and Γ̂U

−(τ ∗, t) exactly as Γ̂L
−(η̂1(t), η̂0(t))

and Γ̂U
−(η̂1(t), η̂0(t)), with the exception that τ ∗ is used instead of τ̂ .

2. Generate bootstrap samples {Yi,b, Di,b, Xi,b}n
i=1

, b = 1, . . . , B by sampling with replace-

ment from the original data {Yi, Di, Xi}n
i=1

; for some large integer B.
3. For j ∈ {U, L}, calculate Γ̂j

−,b(τ
∗, t), and put σ̂j(τ ∗, t) as the sample standard deviation

of {Γ̂j
−,b(τ

∗, t)}B
b=1

.
4. Compute the 1 − α confidence interval

CF RD
1−α (τ ∗)

=

[
inf

t∈[0,1]

(
Γ̂L

−(τ ∗, t) − rα(τ ∗, t) · σ̂L(τ ∗, t)
)

, sup
t∈[0,1]

(
Γ̂U

−(τ ∗, t) + rα(τ ∗, t) · σ̂U(τ ∗, t)
)]

,

where rα(τ ∗, t) is the value that solves the equation

Φ

(
rα(τ ∗, t) +

Γ̂U
−(τ ∗, t) − Γ̂L

−(τ ∗, t)

max{σ̂L(τ ∗, t), σ̂U(τ ∗, t)}

)
− Φ(−rα(τ ∗, t)) = 1 − α.

For τ ∗ = 0 this algorithm yields the usual “no manipulation” confidence interval, and generally

C1−α(τ ∗) becomes wider as τ ∗ increases.

To see why such confidence intervals can be useful, suppose that researcher’s main goal

is testing the hypothesis that Γ− = 0 against the alternative that Γ− Ó= 0. Remember that

Γ− corresponds to the usual “no manipulation” RD parameter if τ = 0 (i.e. always-assigned

units are absent). The researcher can then plot the upper and lower boundary of C1−α(τ ∗)

as a function of τ ∗, and check graphically for which levels of manipulation the value of 0 is

contained in the confidence interval. The largest value of τ ∗ for which 0 /∈ C1−α(τ ∗) is then

called the breakdown point of the null hypothesis that Γ− = 0 (cf. Horowitz and Manski, 1995;

Masten and Poirier, 2017). For example, suppose that 0 /∈ C1−α(0), but that 0 ∈ C1−α(τ ∗) for

τ ∗ ≥ 0.1. Then the researcher can report that in his preferred “no manipulation” specification

the null hypothesis Γ− = 0 is rejected at the critical level α, and that at least a 10% level of

manipulation around the cutoff would be needed to reverse this result (the researcher can

then argue why for institutional reason such a high value of τ is implausible in the particular

setting, even if it is not formally rejected by the data). We believe that such an exercise
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is a useful robustness check for every RD study, including those in which manipulation is

generally not believed to be an issue.

6. Empirical Application

In this section, we apply the methods developed above to bound treatment effects of un-

employment insurance (UI) on (formal) reemployment around an eligibility cutoff in Brazil.

UI programs often feature discontinuities in the level or duration of potential UI benefits

based on the value of some running variable, such as age at layoff or the number of months

of employment prior to layoff. RD designs are thus natural empirical strategies to estimate

this effect. At the same time, the possibility that manipulation of the running variable could

invalidate the standard assumption for a RD design is a concern in the UI context, and it

is discussed explicitly in prominent papers in the literature (e.g. Card, Chetty, and Weber,

2007; Schmieder, von Wachter, and Bender, 2012). Employers may put some workers on

temporary layoff once they are eligible for UI (Feldstein, 1976). Some workers may provoke

their layoff or ask their employer to report their quit as a layoff once they are eligible for

UI (Hopenhayn and Nicolini, 2009).18 Finally, our key identifying assumption (“one-sided

manipulation”) is likely to apply, as displaced workers are likely to have a weak preference

for being eligible for UI benefits (they always have the choice to not take up UI). Moreover,

in most countries (the US being a notable exception), employers have no incentive to lay off

their workers before they become eligible for UI as UI benefits are not experienced-rated.

The setting of our application is also interesting in itself. UI programs have been adopted in

a number of developing countries. Yet, the existing evidence for countries with high informality

remains limited. One reason is that the concern of manipulation around discontinuities in

potential UI benefits may be more severe in these countries, complicating the estimation of

treatment effects. The utility costs of being formally laid off when eligible for UI may be

relatively low for some workers if they can work informally while drawing UI benefits.

6.1. Institutional Details, Data, and Sample Selection. Our empirical exercise focuses

on an eligibility cutoff in the Brazilian UI program. In the interest of space, we present

the institutional details and the data succinctly. For more details, see Gerard and Gonzaga

(2016), which study other aspects of the Brazilian UI program.

Institutional Details. In Brazil, a worker who is reported as involuntarily laid off from

a private-sector formal job is eligible for UI under two conditions. First, she must have at

18Alternatively, workers laid off with a value of the running variable to the left of the relevant cutoff may
lobby their employers to lay them off on a later date. The manipulation in our empirical application is likely
the result of a combination of these different types of behaviors (and possibly others).
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least six months of continuous job tenure at layoff. Second, there must be at least 16 months

between the date of her layoff and the date of the last layoff after which she applied for

and drew UI benefits. We focus on the eligibility cutoff created by the second condition.

The 16-month cutoff is more arbitrary and thus less likely to coincide with other possible

discontinuities.19 Workers who satisfy the two conditions can withdraw monthly UI payments

after a 30-day waiting period and until they are formally reemployed or exhaust their potential

UI duration. The potential UI duration is equal to three, four, or five months of UI benefits if

workers accumulated more than 6, 12, or 24 months of formal employment in the 36 months

prior to layoff, respectively. The benefit level depends on workers’ average wage in the three

months prior to layoff. The replacement rate is 100% at the bottom of the wage distribution

but is already down to 60% for a worker who earned three times the minimum wage (see

Appendix for the full schedule). Finally, UI benefits are not experience-rated in Brazil.

Data. Our empirical analysis relies on two administrative datasets. The first one is a

longitudinal matched employee-employer dataset covering by law the universe of formal

employees. Every year, firms must report all workers formally employed at some point during

the previous calendar year. The data include information on wage, tenure, age, gender,

education, and sector of activity. The data also include hiring and separation dates, as

well as the reason for separation. The second dataset is the registry of all UI payments.

Individuals can be matched in both datasets as they are identified through the same ID

number. Combining the datasets (we have both from 2002 to 2010), we can study the effect

of UI on the time it takes for displaced formal workers to find a new formal job. Gerard

and Gonzaga (2016) show that it is the relevant outcome to study in order to measure the

efficiency cost from the usual moral hazard of UI in a context of high informality.

Sample selection. Our sample of analysis is constructed as follows. First, we consider all

workers, between 18 and 55 years old, who lost a private-sector full-time formal job between

2004 and 2008. We start in 2004 to identify workers who were displaced from another formal

job about 16 months earlier. We end in 2008 to observe two years after layoff for all workers.

Second, we keep workers who had more than six month of job tenure at layoff (the other

eligibility condition). Third, we restrict attention to workers for whom the difference between

the layoff date and the date of their previous layoff fell within 50 days of the 16-month

eligibility cutoff. Finally, we limit the sample to workers who exhausted their UI benefits

after the previous layoff such that the change in eligibility at the 16-month cutoff is sharp.

19For instance, six months of job tenure may be a salient milestone for evaluating employees’ performance.
Gerard and Gonzaga (2016) show evidence of manipulation around the six-month cutoff as well. This has
been confirmed recently by Carvalho, Corbi, and Narita (2017).
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Workers who find a new formal job before exhausting their benefits are entitled to draw

the remaining benefits after a new layoff, even if it occurs before the 16-month cutoff. To

implement this restriction, we select workers who drew the maximum number of benefits

after the previous layoff (about 40% of cases) because we measure the number of UI benefits

a worker is eligible for imprecisely in the data.20

Our sample ultimately consists of 169,575 workers with a relatively high attachment to

the formal labor force, high turnover rate, and high ability to find a new formal job rapidly.21

These are not the characteristics of the average displaced formal employee or UI taker in

Brazil, but characteristics of workers for whom the 16-month cutoff may be binding.

6.2. Graphical Evidence. Figure 6.2 displays some patterns in our data. Observations

are aggregated by day between the layoff date and the 16-month cutoff. Panels A and B

provide some evidence of potential manipulation of the running variable. The density of the

running variable and the average UI replacement rate (benefit/wage) increase at the cutoff,

highlighting the possibility of selection at the cutoff. Panel C suggests that workers were

partially aware of the eligibility rule. The share of workers applying for UI benefits jumps

at the cutoff. Panel D shows that the eligibility rule was enforced. The share of workers

drawing some UI benefits is close to zero to the left of the cutoff, but takeup jumps to 73%

at the cutoff. Eligible workers drew on average 3.1 months of UI benefits (panel E); UI

takers thus drew on average 3.1/.73 =4.25 months of UI benefits. Finally, Panel F shows that

the non-formal-employment duration (censored at two years), the time it takes a displaced

formal worker to find a new formal job, jumps from about 220 days to 280 days at the cutoff.

The average non-formal-employment duration is high on both sides of the cutoff because the

distribution of this variable has a long upper tail: about 15% of workers remain without a

formal job two years after layoff (see the full distribution in the Appendix).

6.3. Estimates. The discontinuity in non-formal-employment duration in Figure 6.2 could

be due to a treatment effect, but also to a selection bias. Workers on each side of the cutoff

may have different potential outcomes in the presence of manipulation. Our methods allow

us to bound treatment effects, despite the possibility of selection effects.

Table 2 displays results for non-formal-employment duration censored at 6 and 24 months

after layoff, respectively. The 6-month duration proxies for the covered UI duration (up to 5

20We drop workers previously laid off after the 28th of a month. Otherwise, there is bunching in the layoff
density at the 16-month cutoff even in the absence of manipulation (because February has only 28 days).

21They were previously eligible for five months of UI, so they accumulated 24 months of formal employment
within a 36-month window. They were laid off again within 16 months and had at least six months of
continuous tenure at layoff, so they found a job relatively quickly after their previous layoff (50% of workers
eligible for five months of UI benefits remain without a formal job one year after layoff).
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Figure 6.2: Graphical evidence for our empirical application

The figure displays the mean of different variables on each side of the cutoff by day between the layoff and
eligibility dates, as well as local linear regressions on each side of the cutoff using an edge kernel and a
bandwidth of 30 days. The figure is based on a RD sample of 169,575 displaced formal workers.
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months after a 30-day waiting period); Gerard and Gonzaga (2016) show that the increase in

the covered duration caused by changes in benefits is the main source of efficiency cost for UI

programs. Considering both the 6-month and 24-month durations also allows us to illustrate

how our bounds for average treatment effects are affected by long tails in the distribution of

the outcome variable. Relatedly, it allows us to illustrate the usefulness of looking at quantile

treatment effects, as these are rather insensitive to long tails. We present results for an edge

kernel (Cheng, Fan, and Marron, 1997) and a bandwidth of 30 days around the cutoff.22 For

bounds in the Fuzzy RD case that involve numerical optimization, we use a grid search to

look for the infimum and supremum using 51 values for t ∈ [0, 1] and λ ∈ [0, 1]. Confidence

intervals are based on 500 bootstrap samples.23

Panel A reports estimates of key inputs for our bounds. The density is estimated to

increase by 6.5% at the cutoff (τ), implying that always-assigned units account for 6.5%

of observations just to the right of the cutoff, and UI takeup is estimated to increase by

71%-points at the cutoff. Note that the value of τ appears well-separated from zero, so that

the safeguards that ensure uniform validity of the confidence intervals for our bounds in case

of small and imprecisely estimated values of τ are not of any practical importance here.

Panels B and C then report results from two types of exercises. First, we consider a Sharp

RD design (SRD), in which UI eligibility is defined as the treatment (panel B). The causal

effect on the outcome can be interpreted as an intention-to-treat (ITT) parameter in this case.

Second, we consider the Fuzzy RD design (FRD) with UI takeup as the treatment (panel C).

Naive RD estimates that assume no manipulation yield an average increase in non-formal-

employment duration from UI eligibility (SRD) of 29.4 and 61.9 days for censoring points of

6 and 24 months, respectively. The corresponding figures are 41.6 and 87.7 days for the effect

of UI takeup (FRD). Naive treatment effects at the median are larger, at 86 days (SRD) and

99 days (FRD; outcome censored at 24 months). The median worker is always reemployed

within a year, and is thus more likely to respond to UI given the short potential duration.

The above estimates may confound treatment effects and selection bias. Table 2 therefore

provides estimates of our bounds for the treatment effects. A few points are useful to

highlight for the behavior of our bounds in this application. First, the bounds for the average

treatment effects among potentially-assigned units (Γ−) are relatively tight for the non-formal-

employment duration censored at 6 months after layoff. The lower bounds, in particular,

are close to the naive RD estimates, with point estimates of 26.4 days (SRD) and 35.4 days

(FRD). Second, the bounds for the average treatment effects become wider on both sides of

22We do not have theoretical results on the optimal bandwidth for the estimation of our bounds. Our
estimates are similar if we use bandwidths of 10 or 50 days around the cutoff (available upon request).

23Due to the censoring of the outcome variable, we use identification results for non-continuously distributed
outcomes described in the appendix.
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the naive estimates when we consider higher censoring points. This difference comes from the

fact that the distribution of the outcome becomes more dispersed and has less probability

mass at the censoring point when we increase the censoring threshold. Third, bounds for

quantile treatment effects, which are less sensitive to tails of the outcome distribution, can be

tighter than bounds on average treatment effects in these cases. When we censor the outcome

at 24 months, we obtain bounds for the average treatment effect between 42.9 and 110 days,

but between 67 and 120 days for the treatment effect at the median (FRD). Bounds are even

tighter at other percentiles of the distribution (see Appendix); for instance they are between

87 and 114 days at the 30th percentile. Fourth, estimates that use behavioral assumptions to

tighten our Fuzzy RD bounds are often similar to estimates for the standard bounds in our

application. Yet, assuming that all always-assigned units take up the treatment (refinement

from Corollary 2) closes half of the gap between our lower bound and the naive RD estimate

when we censor the outcome at 6 months after layoff. Fifth, estimates that use covariates

(here, a dummy for a replacement rate above/below the median) to tighten our Fuzzy RD

bounds have no meaningful identifying power.24 Sixth, and lastly, bounds for the average

treatment effect among units just to the right of the cutoff (Γ+) are very similar to bounds

for the potentially-assigned units. This is partly because the distributions of our outcome

variables have a lot of probability mass at the extreme values of their support.

Finally, we present the results of two additional exercises. First, we illustrate the

alternative strategy for inference that we recommend when researchers have strong beliefs

that manipulation is unlikely in their setting. After all, it is not obvious from Figure 6.2 that

there is manipulation in our data. Figure 6.3 displays point estimates and confidence intervals

for our bounds in the Fuzzy RD case for various fixed levels of the extent of manipulation

(hypothetical values of τ). Panel A shows that inference on the average treatment effect can

be quite sensitive to the extent of manipulation. The width of the confidence intervals doubles

when we assume a small degree of manipulation (τ = .025) rather than no manipulation. This

illustrates the importance of taking into account the possibility of manipulation even when

the McCrary (2008) test fails to reject the null hypothesis of no manipulation. The width of

the confidence intervals grows quickly with larger degrees of manipulation. Panel B shows

that inference on quantile treatment effects is less sensitive to the extent of manipulation;

inference may remain meaningful in this case, even for large degrees of manipulation. This

illustrates again the usefulness of looking at quantile treatment effects.

24Bounds that use covariates are sometimes even wider than standard bounds. Despite our identification
results, nothing guarantees that the bounds will actually be tighter in finite samples. In particular, we split
the sample in two when estimating effects for the two categories, leading to less precise estimates.
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Figure 6.3: Fixed-manipulation inference for our empirical application

The figure displays point estimates and confidence intervals for our bounds for fixed levels of the degree of
manipulation. We consider LATE/FRD estimates (standard bounds) for the average treatment effect and the
quantile treatment effect at the 50th percentile for the outcome censored at 24 months. The solid vertical
line (resp. dashed vertical lines) corresponds to our point estimate (resp. confidence interval) for the extent
of manipulation (see Table 2).

Second, we estimate the characteristics of potentially-assigned and always-assigned workers,

which could be useful for policies aimed at mitigating manipulation in the timing of layoff.

Results are in the Appendix. We find significant evidence of selection at the cutoff in terms

of wage and thus replacement rate, and sector of activity. Always-assigned workers earned on

average .24 log point less, and were 30%-points less likely to come from the service sector

than potentially-assigned workers. The large difference in wages and thus replacement rates

is the reason why we used replacement rate as a covariate to refine our bounds in Table 2.

In sum, we find significant evidence of manipulation and selection at the cutoff, and our

bounds imply that the magnitude of naive RD estimates may be heavily affected by selection.

Nevertheless, we can still draw useful conclusions from this empirical exercise. For instance,

we estimate a lower bound for the effect of UI takeup on the duration covered by UI (i.e. the

outcome censored at 6 months) to be around 35.4 days. This corresponds to an increase of

at least 35.4/(5 · 30) = .236 month per month of potential UI duration (given a maximum

potential UI duration of 5 months). In comparison, Gerard and Gonzaga (2016) find an

increase of only .126 month in the covered UI duration per additional month of potential UI

duration among UI takers. Behavioral responses to UI benefits are thus relatively large in

our setting, which is consistent with the composition of our sample (high attachment to the

formal labor force, high turnover rate, and high ability to find a new formal job rapidly).
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7. Conclusions

In this paper, we propose a partial identification approach to deal with the issue of potentially

manipulated running variables in RD designs. We show that while the data are unable to

uniquely pin down treatment effects if a running variable is subject to manipulation, they

are generally still informative in the sense that they imply bounds on the value of causal

parameters in both sharp and fuzzy RD designs. Our main contribution is to derive and

explicitly characterize these bounds. We also propose methods to estimate our bounds in

practice, and discuss how to construct confidence intervals. The approach is illustrated with

an application to the Brazilian unemployment insurance (UI) system. We recommend the

use of our approach in applications irrespective of the outcome of McCrary’s (2008) test for

manipulation.

A. Proofs

A.1. Proof of Lemma 1. Since the density of the running variable is continuous around

the cutoff among potentially-assigned units by Assumption 2, we have that fX|M=0 (c−) =

fX|M=0 (c+), and therefore fX (c+) = (1 − P (M = 1)) fX|M=0 (c−) + P (M = 1) fX|M=1 (c+) .

Since there are no always-assigned units below the cutoff by Assumption 3, we have

fX|M=1(x) = 0 for x < c, and thus fX (c−) = (1 − P (M = 1)) fX|M=0 (c−). Hence (fX (c+) −
fX (c−))/fX (c+) = fX|M=1(c

+)P(M = 1)/fX(c+) = τ , where the last equality follows from

Bayes’ Theorem.

A.2. Proof of Theorem 1. The result is a minor variation of results in Horowitz and Manski

(1995) and Lee (2009).

A.3. Proof of Theorem 2. It follows from the arguments presented in the main body of

the paper that the bounds on Γ− given knowledge (τ1, τ0), formally stated in equation (3.8),

are valid and sharp. That is, any value of Γ− outside of these bounds is clearly incompatible

with the distribution of (Y, D, X); and every value within the bounds is feasible, because the

main body of the paper explicitly describes distributions of potential outcomes for the six

types of units listed in Table 1 (again, given knowledge (τ1, τ0)). Moreover, it is clear that

any value of (τ1, τ0) /∈ T is incompatible with the distribution of observable quantities. It

thus remains to be shown that any point (τ1, τ0) ∈ T is compatible with our model and the

observed joint distribution of (Y, D, X).

Note that it suffices to consider the latter distribution for X ∈ (c − ǫ, c + ǫ) for some small

ǫ > 0, as our model has no implications for the distribution of observables outside of that

range. Let (Ỹ (1), Ỹ (0), D̃+, D̃−, M̃ , X̃) be a random vector taking values on the support of

(Y (1), Y (0), D+, D−, M, X), and define D̃ and Ỹ analogous to D and Y in our Section 2.1.
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For x ∈ (c − ǫ, c + ǫ), let

fX̃(x) = fX(x) and P(M̃ = 1|X̃ = x) =





1 − fX(c−)/fX(x) if x ≥ c

0 if x < c.

Moreover, let

P(D̃− = 0, D̃+ = 1|X̃ = x, M̃ = 0) =





P(D = 1|X = x) · 1−τ1

1−τ
− P(D = 1|X = c−)

if x ≥ c,

P(D = 1|X = c+) · 1−τ1

1−τ
− P(D = 1|X = x)

if x < c,

P(D̃− = 1, D̃+ = 1|X̃ = x, M̃ = 0) =





P(D = 1|X = c−) if x ≥ c,

P(D = 1|X = x) if x < c,

P(D̃− = 0, D̃+ = 0|X̃ = x, M̃ = 0) = 1 − P(D̃− = 0, D̃+ = 1|X̃ = x, M̃ = 0)

− P(D̃− = 1, D̃+ = 1|X̃ = x, M̃ = 0),

P(D̃− = 1, D̃+ = 0|X̃ = x, M̃ = 0) = 0,

and

P(D̃− = 0, D̃+ = 1|X̃ = x, M̃ = 1) =





P(D = 1|X = x) · τ1

τ
− h(x) if x ≥ c,

P(D = 1|X = c+) · τ1

τ
− h(c+) if x < c,

P(D̃− = 1, D̃+ = 1|X̃ = x, M̃ = 1) =





h(x) if x ≥ c,

h(c+) if x < c,

P(D̃− = 0, D̃+ = 0|X̃ = x, M̃ = 1) = 1 − P(D̃− = 0, D̃+ = 1|X̃ = x, M̃ = 1),

− P(D̃− = 1, D̃+ = 1|X̃ = x, M̃ = 1),

P(D̃− = 1, D̃+ = 0|X̃ = x, M̃ = 1) = 0,

where h(·) is an arbitrary continuous function satisfying that 0 ≤ h(x) ≤ P(D = 1|X =

x) · τ1/τ . With these choices, the implied distribution of (D̃, X̃)|X̃ ∈ (c − ǫ, c + ǫ) is the same

as that of (D, X)|X ∈ (c − ǫ, c + ǫ) for every (τ1, τ0) ∈ T . It thus remains to be shown that

one can construct a distribution of (Ỹ (1), Ỹ (0)) given (D̃+, D̃−, X̃, M̃) that is compatible

with our assumptions, and such that the distribution of Ỹ given (D̃, X̃) for X̃ ∈ (c − ǫ, c + ǫ)

is the same as the distribution of Y given (D, X) for X ∈ (c − ǫ, c + ǫ) for every (τ1, τ0) ∈ T .

But this is possible by setting (Ỹ (1), Ỹ (0)) as independent given (D̃+, D̃−, X̃, M̃), and then

assigning one of the respective extreme distributions derived in the main body of the text to
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the respective marginals. This completes our proof.

B. Bounds for Non-Continuously Distributed Outcomes

Theorem 1 and 2 are stated for the case in which the outcome variable is continuously

distributed. This is for notational convenience only, and our results immediately generalize

to the case of a discrete outcome variable, which occurs frequently in empirical applications.

Suppose that supp(Y ) is a finite set. Then in the case of a Sharp RD design our sharp upper

and lower bounds on FY (1)|X=c,C0
are

F U
1,SRD(y) = (1 − θU)FY |X=c+,Y >Q

Y |X=c+ (τ)(y) + θU
I

{
y ≥ QY |X=c+(τ)

}
and

F L
1,SRD(y) = (1 − θL)FY |X=c+,Y <Q

Y |X=c+ (1−τ)(y) + θL
I

{
y ≥ QY |X=c+(1 − τ)

}
,

where

θL =
P(Y ≥ QY |X=c+(1 − τ)|X = c+) − τ

1 − τ
and θU =

P(Y ≤ QY |X=c+(τ)|X = c+) − τ

1 − τ
.

The following Corollary uses these bounds to obtain explicit sharp bounds on the local average

treatment effect Γ−.

Corollary 8. Suppose that the assumptions of Theorem 1 hold, and that supp(Y ) is a finite

set. Then sharp lower and upper bounds on Γ− are given by

ΓL
−,SRD = (1 − θL)E(Y |X = c+, Y < QY |X(1 − τ |c+)) + θLQY |X(1 − τ |c+)

− E(Y |X = c−) and

ΓU
−,SRD = (1 − θU)E(Y |X = c+, Y > QY |X(τ |c+)) + θUQY |X(τ |c+)

− E(Y |X = c−),

respectively.

In a Fuzzy RD design, we modify the expressions for the sharp upper and lower bounds

on FY (1)|X=c,C0
and FY (0)|X=c,N0

for known values of τ1 and τ0 as follows:

F U
1,F RD(y, τ1, τ0) = (1 − θU

1
)G

Y |Y >QG

(
τ1

1−κ1

)(y) + θU
1
I

{
y ≥ QG

(
τ1

1 − κ1

)}
and

F L
1,F RD(y, τ1, τ0) = (1 − θL

1
)G

Y |Y <QG

(
1−

τ1
1−κ1

)(y) + θL
1
I

{
y ≥ QG

(
1 − τ1

1 − κ1

)}
,
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where

θU
1

=
PG

(
Y ≤ QG

(
τ1

1−κ1

))
− τ1

1−κ1

1 − τ1

1−κ1

θL
1

=
PG

(
Y ≥ QG

(
1 − τ1

1−κ1

))
− τ1

1−κ1

1 − τ1

1−κ1

.

The modified expressions for bounds on FY (0)|X=c,N0
are given by

F U
Y (0)|X=c,N0

(y) =
∫ y

−∞
s(t, τ0)I {t ≤ qU(τ0)} dt + θU

0
I {y > qU(τ0)} and

F L
Y (0)|X=c,N0

(y) =
∫ y

−∞
s(t, τ0)I {t ≥ qL(τ0)} dt + θL

0
I {y > qL(τ0)} ,

where

θU
0

= 1 −
∫ qU (τ0)

−∞
s(t, τ0)I {t ≤ qU(τ0)} dt,

θL
0

= 1 −
∫ ∞

qL(τ0)

s(t, τ0)I {t ≥ qL(τ0)} dt,

qL(τ0) = inf{y ∈ supp(Y ) :
∫ ∞

y
s(t, τ0)dt ≤ 1}, and

qU(τ0) = sup{y ∈ supp(Y ) :
∫ y

−∞
s(t, τ0)dt ≤ 1}.

We then obtain the following expressions for sharp bounds on the local average treatment

effect Γ− given knowledge of τ1 and τ0:

ΓU
−,F RD(τ1, τ0) ≡

∫
ydF U

1,F RD(y, τ1, τ0) −
∫

ydF L
0,F RD(y, τ1, τ0),

ΓU
−,F RD(τ1, τ0) ≡

∫
ydF L

1,F RD(y, τ1, τ0) −
∫

ydF U
0,F RD(y, τ1, τ0).

The following Corollary finally states the sharp bounds on Γ− given that the values of τ1 and

τ0 are only partially identified.

Corollary 9. Suppose that the assumptions of Theorem 2 hold, and that supp(Y ) is a finite

set. Then sharp lower and upper bounds on Γ− are given by

ΓL
−,F RD = inf

(t1,t0)∈T
ΓL

−,F RD(t1, t0) and ΓU
−,F RD = sup

(t1,t0)∈T
ΓU

−,F RD(t1, t0),

respectively.

C. Additional Tables and Graphs

We present here some supporting graphs. Figure C.4 displays the distribution of our outcome

variable (duration without a formal job, censored at two years after layoff) on the left and on

the right of the cutoff (30-day window around the cutoff). Figure C.5 displays the distribution
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of our outcome variable on the right of the cutoff for workers with wages at layoff above/below

the median (and thus replacement rates below/above the median). Figure C.6 displays the

full schedule of the UI benefit level, which is a function of a beneficiary’s average monthly

wage in the three years prior to her layoff. Figure C.7 displays the mean of different covariates

on each side of the cutoff by day between the layoff and eligibility dates.

0
5

1
0

1
5

2
0

2
5

3
0

P
e
rc

e
n
t 
o
f 
o
b
s
e
rv

a
ti
o
n
s

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
Non-formal-employment duration (censored at 24 months)

Left of the eligibility cutoff

0
5

1
0

1
5

2
0

2
5

3
0

P
e
rc

e
n
t 
o
f 
o
b
s
e
rv

a
ti
o
n
s

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
Non-formal-employment duration (censored at 24 months)

Right of the eligibility cutoff

Figure C.4: Distribution of our outcome variable on each side of the cutoff

The figure displays the distribution of our outcome variable (duration without a formal job, censored at two
years after layoff) on the left and on the right of the cutoff (30-day window on each side of the cutoff). The
figure is based on a sample of 102,791 displaced formal workers.
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Figure C.5: Distribution of our outcome variable on the right side of the cutoff by wage at layoff

The figure displays the distribution of our outcome variable (duration without a formal job, censored at two
years after layoff) on the right of the cutoff (30-day window on each side of the cutoff) for workers with wages
at layoff above/below the median (and thus replacement rates below/above the median). The figure is based
on a sample of 102,791 displaced formal workers.
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Figure C.6: Monthly UI benefit amount

The figure displays the relationship between a UI beneficiary’s average monthly wage in the three months
prior to her layoff and her monthly UI benefit level. All monetary values are indexed to the federal minimum
wage, which changes every year. The replacement rate is 100% at the bottom of the wage distribution as the
minimum benefit level is equal to one minimum wage. The graph displays a slope of 0% until 125% of the
minimum wage, then of 80% until 165% of the minimum wage, and finally of 50% until 275% of the minimum
wage. The maximum benefit level is equal to 187% of the minimum wage.
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Table 4: Characteristics of always- and potentially-assigned workers

Difference at Potentially- Always-
the cutoff assigned assigned

Share male -0.0031 0.714 0.665
[-0.0168;0.0105] [0.704;0.724] [0.439;0.892]

Average age -0.0729 32.475 31.345
[-0.3091;0.1633] [32.304;32.645] [27.627;35.063]

Average years of education 0.0011 9.104 9.121
[-0.0803;0.0825] [9.049;9.160] [7.836;10.406]

Average tenure 0.0103 8.802 8.961
[-0.0418;0.0623] [8.771;8.833] [8.100;9.821]

Average log wage -0.016 6.704 6.456
[-0.0308;-0.0012] [6.693;6.716] [6.208;6.704]

Average replacement rate 0.0051 0.720 0.800
[0.0005;0.0098] [0.717;0.724] [0.722;0.878]

Share from commercial sector 0.0071 0.355 0.465
[-0.0059;0.02] [0.346;0.365] [0.264;0.665]

Share from construction sector 0.0073 0.106 0.218
[-0.0015;0.0161] [0.099;0.112] [0.079;0.358]

Share from industrial sector 0.0061 0.225 0.319
[-0.006;0.0182] [0.216;0.234] [0.131;0.507]

Share from service sector -0.0204 0.314 -0.002
[-0.0332;-0.0077] [0.305;0.324] [-0.201;0.197]

Share from small firm 0.0083 0.367 0.496
(<10 employees) [-0.0057;0.0224] [0.357;0.377] [0.268;0.730]

Notes: Total number of observations within our bandwidth of 30 days around the cutoff: 102,791
displaced formal workers. Numbers in square brackets are 95% confidence intervals calculated by
adding ±1.96×standard error to the respective point estimate,where standard errors are calculated
via the bootstrap with 500 replications.

47



.6
8

.7
.7

2
.7

4
S

h
a

re
 m

a
le

-50 0 50
Difference in days between layoff and eligibility dates

Share male

3
2

3
2

.2
3

2
.4

3
2

.6
3

2
.8

A
g

e
 (

in
 y

e
a

rs
)

-50 0 50
Difference in days between layoff and eligibility dates

Age

8
.9

9
9

.1
9

.2
9

.3
Y

e
a

rs
 o

f 
e

d
u

c
a

ti
o

n

-50 0 50
Difference in days between layoff and eligibility dates

Years of education

8
8

.5
9

9
.5

1
0

T
e

n
u

re
 i
n

 t
h

e
 l
o

s
t 
jo

b
 (

in
 m

o
n

th
s
)

-50 0 50
Difference in days between layoff and eligibility dates

Tenure in the lost job

6
.6

6
6

.6
8

6
.7

6
.7

2
6

.7
4

L
o

g
 w

a
g

e
 i
n

 t
h

e
 l
o

s
t 

jo
b

 (
R

$
)

-50 0 50
Difference in days between layoff and eligibility dates

Log wage in the lost job

.7
1

.7
2

.7
3

.7
4

R
e

p
la

c
e

m
e

n
t 

ra
te

-50 0 50
Difference in days between layoff and eligibility dates

B. Replacement rate

.0
9

.1
.1

1
.1

2
.1

3
S

h
a

re
 f

ro
m

 c
o

n
s
tr

u
c
ti
o

n
 s

e
c
to

r

-50 0 50
Difference in days between layoff and eligibility dates

Share from construction sector

.2
1

.2
2

.2
3

.2
4

.2
5

.2
6

S
h

a
re

 f
ro

m
 i
n

d
u

s
tr

ia
l 
s
e

c
to

r

-50 0 50
Difference in days between layoff and eligibility dates

Share from industrial sector

.2
7

.2
8

.2
9

.3
.3

1
.3

2
S

h
a

re
 f

ro
m

 s
e

rv
ic

e
 s

e
c
to

r

-50 0 50
Difference in days between layoff and eligibility dates

Share from service sector

.1
8

.2
.2

2
.2

4
.2

6
S

h
a

re
 f

ro
m

 l
a

rg
e

 fi
rm

s

-50 0 50
Difference in days between layoff and eligibility dates

Share from large firms

.3
8

.4
.4

2
.4

4
.4

6
S

h
a

re
 f

ro
m

 m
e

d
iu

m
-s

iz
e

 fi
rm

s

-50 0 50
Difference in days between layoff and eligibility dates

Share from medium-size firms

.3
2

.3
4

.3
6

.3
8

.4
.4

2
S

h
a

re
 f

ro
m

 s
m

a
ll 

fi
rm

s

-50 0 50
Difference in days between layoff and eligibility dates

Share from small firms

Figure C.7: Graphical evidence for the characteristics of always-assigned units in our empirical
application

The figure displays the mean of different covariates on each side of the cutoff by day between the layoff
and eligibility dates, as well as local linear regressions on each side of the cutoff using an edge kernel and a
bandwidth of 30 days. The figure is based on a RD sample of 169,575 displaced formal workers.

48



References

Anderson, G., O. Linton, and Y.-J. Whang (2012): “Nonparametric estimation and inference
about the overlap of two distributions,” Journal of Econometrics, 171(1), 1–23.

Anderson, M., and J. Magruder (2012): “Learning from the Crowd: Regression Discontinuity
Estimates of the Effects of an Online Review Database,” Economic Journal, 122(563), 957–989.

Andrews, D. (2000): “Inconsistency of the bootstrap when a parameter is on the boundary of the
parameter space,” Econometrica, 68(2), 399–405.

Andrews, D., and P. Barwick (2012): “Inference for parameters defined by moment inequalities:
A recommended moment selection procedure,” Econometrica, 80(6), 2805–2826.

Andrews, D., and G. Soares (2010): “Inference for parameters defined by moment inequalities
using generalized moment selection,” Econometrica, 78(1), 119–157.

Berger, R. (1982): “Multiparameter hypothesis testing and acceptance sampling,” Technometrics,
24(4), 295–300.

Bertanha, M., and G. W. Imbens (2016): “External Validity in Fuzzy Regression Discontinuity
Designs,” Working Paper.

Camacho, A., and E. Conover (2011): “Manipulation of Social Program Eligibility,” American

Economic Journal: Economic Policy, 3(2), 41–65.

Card, D., R. Chetty, and A. Weber (2007): “Cash-on-Hand and Competing Models of
Intertemporal Behavior: New Evidence from the Labor Market,” Quarterly Journal of Economics,
122(4), 1511–1560.

Card, D., C. Dobkin, and N. Maestas (2009): “Does Medicare Save Lives?,” The Quarterly

Journal of Economics, 124(2), 597–636.

Card, D., and L. Giuliano (2014): “Does Gifted Education Work? For Which Students?,”
Working Paper.

Carvalho, C., C. Corbi, and R. Narita (2017): “Unintended consequences of unemployment
insurance: Evidence from stricter eligibility criteria in Brazil,” Economic Letters.

Cattaneo, M. D., M. Jansson, and X. Ma (2017): “Simple Local Polynomial Density Estima-
tors,” Working Paper.

Cheng, M.-Y. (1997): “A bandwidth selector for local linear density estimators,” Annals of

Statistics, 25(3), 1001–1013.

Cheng, M.-Y., J. Fan, and J. Marron (1997): “On Automatic Boundary Corrections,” Annals

of Statistics, 25, 1691–1708.

Chernozhukov, V., S. Lee, and A. Rosen (2013): “Intersection Bounds: estimation and
inference,” Econometrica, 81(2), 667–737.

Dee, T. S., W. Dobbie, B. A. Jacob, and J. Rockoff (2016): “The causes and consequences
of test score manipulation: Evidence from the new york regents examinations,” NBER Working

Paper.

49



Dong, Y. (2017): “Alternative Assumptions to Identify LATE in Fuzzy Regression Discontinuity
Designs,” Working Paper.

Fan, J., and I. Gijbels (1996): Local Polynomial Modelling and Its Applications. Chapman &
Hall, London.

Fan, J., Q. Yao, and H. Tong (1996): “Estimation of conditional densities and sensitivity
measures in nonlinear dynamical systems,” Biometrika, 83(1), 189–206.

Feldstein, M. (1976): “Temporary Layoffs in the Theory of Unemployment,” Journal of Political

Economy, 84, 937–958.

Frandsen, B. R., M. Frölich, and B. Melly (2012): “Quantile treatment effects in the
regression discontinuity design,” Journal of Econometrics, 168(2), 382–395.

Gerard, F., and G. Gonzaga (2016): “Informal Labor and the Efficiency Cost of Social Programs:
Evidence from the Brazilian Unemployment Insurance Program,” NBER Working Paper, 22608.

Hahn, J., P. Todd, and W. Van der Klaauw (2001): “Identification and Estimation of
Treatment Effects with a Regression-Discontinuity Design,” Econometrica, 69(1), 201–209.

Hall, P., R. C. Wolff, and Q. Yao (1999): “Methods for estimating a conditional distribution
function,” Journal of the American Statistical Association, 94(445), 154–163.

Hopenhayn, H., and J. P. Nicolini (2009): “Optimal Unemployment Insurance and Employment
History,” Review of Economic Studies, 76, 1049–1070.

Horowitz, J. L., and C. F. Manski (1995): “Identification and robustness with contaminated
and corrupted data,” Econometrica, 63(2), 281–302.

Imbens, G., and C. Manski (2004): “Confidence Intervals for Partially Identified Parameters,”
Econometrica, 72(6), 1845–1857.

Jones, M. C. (1993): “Simple boundary correction for kernel density estimation,” Statistics and

Computing, 3(3), 135–146.

Lee, D. (2009): “Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treatment
Effects,” Review of Economic Studies, 76(3), 1071–1102.

Lee, D. S. (2008): “Randomized experiments from non-random selection in US House elections,”
Journal of Econometrics, 142(2), 675–697.

Lejeune, M., and P. Sarda (1992): “Smooth estimators of distribution and density functions,”
Computational Statistics & Data Analysis, 14(4), 457–471.

Manski, C. (1990): “Nonparametric bounds on treatment effects,” American Economic Review,
80(2), 319–323.

Masten, M. A., and A. Poirier (2017): “Inference on Breakdown Frontiers,” Working Paper.

McCrary, J. (2008): “Manipulation of the Running Variable in the Regression Discontinuity
Design: A Density Test,” Journal of Econometrics, 142(2), 698–714.

50



Rubin, D. (1974): “Estimating Causal Effects of Treatments in Randomized and Nonrandomized
Studies,” Journal of Educational Psychology, 66(5), 688–701.

Sallee, J. (2011): “The Surprising Incidence of Tax Credits for the Toyota Prius,” American

Economic Journal: Economic Policy, 3, 189–219.

Schmieder, J., T. von Wachter, and S. Bender (2012): “The Effects of Extended Unemploy-
ment Insurance Over the Business Cycle: Evidence from Regression Discontinuity Estimates over
Twenty Years,” Quarterly Journal of Economics, 127(2), 701–752.

Scott-Clayton, J. (2011): “On Money and Motivation: A Quasi-Experimental Analysis of
Financial Incentives for College Achievement,” Journal of Human Resources, 46(3), 614–646.

Solis, A. (2017): “Credit Access and College Enrollment,” Journal of Political Economy, 125(2),
562–622.

Stoye, J. (2009): “More on confidence intervals for partially identified parameters,” Econometrica,
77(4), 1299–1315.

(2010): “Partial identification of spread parameters,” Quantitative Economics, 1(2),
323–357.

Urquiola, M., and E. Verhoogen (2009): “Class-Size Caps, Sorting, and the Regression
Discontinuity Design,” American Economic Review, 99(1), 179–215.

51




