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1 Introduction

Public polices create benefits (both positive and negative) which accrue to various individuals

in the economy. A thorough accounting of how these benefits are distributed by income and

race provides an important context to evaluate the efficacy of public policies, and indeed

such an accounting is explicitly required for federal environmental programs (Banzhaf 2011).

In this paper, we examine the distributional effects of the change in local air pollution that

results from electric vehicle adoption.

Our analysis of this issue is timely and important for three reasons. First, there is a vast

array of public policies that encourage the development of the market for electric vehicles. For

example, the Federal government offers significant subsidies for purchasing electric vehicles1

and tax credits for electric vehicle infrastructure.2 Policies at the state and local level3

offer additional purchase subsidies and tax credits for infrastructure, as well as sales tax

exemptions, discounted electricity for charging electric vehicles, HOV lane access, and smog

check exemptions.4 Second, electric vehicles have different effects on air pollution across

locations. As of June 2014, there were approximately 130,000 electric vehicles registered in

the contiguous United States. These registrations provide evidence on the spatial distribution

of the propensity for electric vehicle adoption. Third, although there is a growing literature

relating air pollution and electric vehicles, little is known about the characteristics of those

who are most affected by the fleet of electric vehicles.

When an electric vehicle is adopted, there is a change in air pollution relative to what

would have been emitted by the forgone gasoline vehicle. Gasoline vehicles have tailpipe

1Internal Revenue Code Section 30D (Notice 2009-89) provides a tax credit of up to $7500.
2 See Public Law 114-94 - FAST Act.
3A complete list of state and local incentives is described at http://www.afdc.energy.gov/laws/.
4There are many other examples. The Department of Energy EV Everywhere Challenge, which is a multi-

faceted program with the goal of making electric vehicles “as affordable and convenient” as gasoline vehicles
within the next decade (energy.gov/eere/vehicles/ev-everywhere-grand-challenge-does-10-year-vision-plug-
electric-vehicles). The California Zero Emission Vehicle Program requires a fraction of vehicles sold in
the state to have zero tailpipe emissions (http://www.arb.ca.gov/msprog/zevprog/zevprog.htm). CAFE
standards assign electric vehicles a generous mpg equivalent and sometimes give electric vehicles sales extra
weight in the calculation of the standard (Jenn et al., 2016). Even seemingly unrelated policies, such as
the settlement with Volkswagen for excess emissions of NOx from diesel vehicles, provide a boost for electric
vehicles (https://www.vwdieselinfo.com/updates/statement-by-volkswagen-group-of-america-7/ states that
Volkswagen will “invest $2.0 billion over 10 years in zero emissions vehicle (ZEV) infrastructure, access and
awareness initiatives”).
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emissions and non-exhaust emissions such as from tire and road wear. Electric vehicles

cause non-exhaust emissions and smokestack emissions from the electric power plants that

charge them.5 The emerging consensus from the literature that quantifies and compares the

emissions from electric and gasoline vehicles6 is that, on average, electric vehicles tend to

reduce CO2 emissions but increase local pollution such as SO2 and PM2.5. However, there is

considerable variation around these averages, such that in some places electric vehicles have

significant positive effects and in other places significant negative effects.

This finding suggests it is critical to account for local factors when determining distribu-

tional effects due to electric vehicle adoption. Correspondingly, our analysis has three main

components. First, we use vehicle registration data to identify the locations in which the

electric vehicles are driven. These data represent a combined private and policy revealed

preference for electric vehicle adoption. Second, we determine the environmental benefits

from driving electric vehicles, which are defined as the difference in air pollution damages

between driving an electric vehicle and driving the forgone gasoline vehicle. Air pollution

damages from the forgone gasoline vehicle depend on its location. Air pollution damages

from the electric vehicle depend on the locations of the vehicle and the generating plants

powering it. We follow the methodology in Holland et al., (2016) to determine these dam-

ages. Importantly, we analyze the geographic pattern of the environmental benefits at the

county level. That is, we track the dispersion of pollutants produced by both gasoline and

electric vehicles, which differs because of the height of emissions, wind patterns, and the

distributed nature of the electricity grid. This leads to a matrix which specifies the envi-

ronmental benefits that accrue to county j from driving the electric vehicle rather than the

forgone gasoline vehicle in county i. The third major component is data on demographics of

the affected populations at the census block group level.

This paper examines an important distinction between environmental benefits created

and environmental benefits received. Created environmental benefits account for the fact

that driving in a given county creates air pollution in other counties. Received environmental

5In addition, there are life-cycle emissions from manufacturing the vehicles and developing the fuel sources.
In this paper we focus on emissions from driving and charging the vehicles as these emissions vary significantly
depending on where the vehicle is driven.

6See for example Babaee et al (2014), Graff Zivin et al (2014), Michalek et al (2011), Tessum et al (2014),
Grissom (2013), Archsmith et al., (2015), Holland et al., (2016), Yuksel et al., (2016).
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benefits reflect the fact that the air pollution damage received in a given county is affected by

driving in many counties. Loosely speaking, this difference amounts to vertical rather than

horizontal summation of the matrix of environmental benefits. Our distributional analysis

focuses primarily on the received environmental benefits but created environmental benefits

indicate the source of any benefits.

Created environmental benefits have been well studied in the general literature on spatial

effects of air pollution (Mendelsohn, 1980; Banzhaf et al., 2004; Fann et al., 2009; Muller

and Mendelsohn, 2009) as well as in the specific comparison of gasoline and electric vehicles

(Michalek et al., 2011; Holland et al., 2016). This emphasis is natural for both policy

design and cost-benefit analysis. Consider the decision to adopt an electric vehicle in a

particular county. From the perspective of benefit-cost analysis, what matters are all of

the impacts associated with that choice—whether they manifest in the same location as the

consumer that bought the electric vehicle or not. From the perspective of policy design (and

incidence on the taxed or regulated), created environmental benefits are appropriate for the

calibration of Pigouvian taxes, for example. Consumers of transportation services then face

the full (geographically aggregated) cost of driving. Intuitively, the pattern of incidence of

the Pigouvian tax (the relative magnitudes of the tax rates across jurisdictions) reflects the

marginal damage of driving, by location of the vehicle.

In this paper, we highlight the importance of using received environmental benefits to de-

scribe distributional effects. We explore policy-relevant questions in three areas: traditional

measures of inequality applied to environmental benefits, environmental benefits decomposed

by income groups, and environmental benefits categorized by racial and ethnic groups. Using

the metric of received benefits, we find that both gasoline and electric vehicles yield damages

that are less equally distributed than median household income across census block groups.

And damages from gasoline vehicles are more concentrated than those from electric vehicles.

Given that emissions from gasoline vehicles are released at ground level in the proximity of

exposed populations whereas discharges from power stations (often located in rural areas)

are used to fuel electric vehicles, this finding is quite intuitive.

We next relate received benefits to income of the exposed populations. While electric ve-

hicle damages are quite uniformly distributed across income groups, adverse effects from our
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forgone gasoline vehicles are greater among higher income populations. As a consequence,

the benefits from electric vehicle adoption are increasing in income. Census block groups

with median income greater than about $65,000 receive positive environmental benefits from

electric vehicle adoption whereas block groups with income less than this threshold receive

negative environmental benefits. This regressivity, we note, is defined in terms of environ-

mental benefits which is distinct from the distribution of federal subsidies for electric vehicles

(see Borenstein and Davis (2015)).

Our final distributional analysis applies the received benefits approach to characteriza-

tions of communities by race and ethnicity. This dimension of the analysis reveals that

while Black and White populations incur negative benefits on average from electric vehicle

adoption, Hispanic and Asian communities enjoy positive benefits on average. This pattern

of incidence is consistent with the facts that Hispanic and Asian population densities are

highest in the West and that electric vehicles tend to be beneficial when used in the West.

There are several caveats to our work. First, any attempt to estimate the damages from

air pollution is rife with uncertainty. This manifests throughout the underlying integrated

assessment model, from the connection between emissions and air pollution concentrations, to

the implications of concentrations on human health, and to the monetary value attributed to

non-market entities such as mortality risk. These uncertainties are not unique to the present

work. Nonetheless, they are important to note. Second, we make several assumptions about

vehicle use that depart from consumers’ actual behavior. For example, we assume a fixed

amount of total miles driven per year across all locations and vehicles are driven exclusively

in the county of registration. Although we vary this last assumption in a sensitivity analysis,

we do not account for long distance travel. Importantly, we apply these assumptions to

both electric vehicles and gasoline vehicles. Third, because of the large number of policies

affecting electric vehicle adoption and their interconnected nature, we consider the suite of

policies which affect consumers’ decisions regarding vehicle adoption en masse. Rather than

trying to disentangle the effects of the various policies, we simply take as given that the

collection of policies as a whole does indeed increase electric vehicle adoption and thus is at

least partially responsible for the distributional effects that we identify.

That said, the federal and state purchase subsidies for electric vehicles are large and
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highly visible, and are therefore deserving of study in their own right. Indeed, Li et al., (2015)

estimate that fifty percent of electric vehicle adoptions can be attributed to these subsidies.

Borenstein and Davis (2015) use federal tax return data to show that the vast majority of

the pecuniary benefits of the federal subsidy accrue to wealthy individuals. We add to this

literature on purchase subsidies by analyzing the relationship between environmental benefits

and purchase subsidies. For this analysis, created environmental benefits are the appropriate

measure. Conditional on a state offering purchase subsidies, an increase in subsidy size is

associated with a decrease in created environmental benefits.

In Section 2 we describe our procedure for determining the air pollution damages from

electric vehicles and the foregone gasoline vehicles. In Section 3 we describe the distribution

effects of electric vehicle adoption. In Section 4 we analyze the relation between purchase

subsides and environmental benefits. Section 5 concludes.

2 Air Pollution Damages from Electric Vehicle Driving

2.1 Electric Vehicle Registrations

The market for electric vehicles reemerged in 2010 with the introduction of the Nissan Leaf.7

The market is rapidly expanding with over a dozen models currently for sale. In recent years,

sales of electric vehicles have exceeded 50,000 units per year, corresponding to approximately

0.3 percent of U.S. light duty vehicle sales.

Our data on electric vehicles registered in the contiguous US as of June 2014 include

nine electric vehicle models and approximately 130,000 vehicles.8 These registrations are

summarized in Table 1. Panel A lists each electric vehicle model. Panel A also reports the

distribution of electric vehicles by census region. Over half of the vehicles are registered

in the West, and approximately 25 percent are in the South. Of the nine electric vehicle

models, two models (the Nissan Leaf and Tesla S) account for over 80% of the vehicles.

7In this paper, we use the term electric vehicles to denote pure electric vehicles that are powered only
by electricity. This is in contrast to plug-in-hybrid vehicles like the Chevrolet Volt that uses both electricity
and gasoline. Approximately equal numbers of pure electric vehicles and plug-in-hybrid vehicles have been
sold in recent years.

8We obtained proprietary data on electric vehicle registration data from IHS Automotive.

5



These two models are distributed throughout the country, but other models (sometimes

called “compliance cars”) are located primarily in the West especially in California. Panel B

shows that most vehicles are registered in urban counties, and Panel C lists the Metropolitan

Statistical Areas (MSAs) with the most electric vehicle registrations. More electric vehicles

are registered in the Atlanta MSA than in any other city. One reason for this may be

that Georgia had a large purchase subsidy in place until recently. Seven of the ten highest

registration MSAs are in California, which reflects the relatively high penetration of electric

vehicles in California and the West.

Because we want to calculate the environmental benefit from driving electric vehicles,

our data would ideally identify the number of miles driven and the exact location of these

miles for both the electric vehicles and the forgone gasoline vehicles. In lieu of these data,

for our baseline calculations we assume that each vehicle is driven 15,000 miles per year and

that each vehicle is driven exclusively in the county where it is registered. We consider the

effects of changing the latter assumption in the sensitivity analysis.

2.2 Calculating Damages from Air Pollution

To determine the environmental benefits of driving an electric vehicle, we calculate the

air pollution damages from driving the electric vehicle and the air pollution damages from

driving the forgone gasoline vehicle. The environmental benefit of the electric vehicle is equal

to the damages from driving the forgone gasoline vehicle minus the damages from driving

the electric vehicle. If this number is positive, then it indicates that moving from the forgone

gasoline vehicle to the electric vehicle decreases air pollution damages. The methodology we

use is described in detail in Holland et al., (2016). Here we sketch an overview. Because

we are interested in distributional issues, we focus on local pollutants and ignore global

pollutants such as CO2.9

For each electric vehicle, we created a “composite” forgone gasoline vehicle that reflects

consumer preferences. We obtained survey data from the market research firm MaritzCX

9Holland et al (2016) show the distribution of environmental benefits from global pollutants and local
pollutants across counties. The average for global pollutants is small and positive while the average for local
pollutants is large and negative. In addition, the variance is greater for local pollutants.
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Table 1: Locations of Registered Electric Vehicles

Panel A: Vehicle counts by Census Region & Model

Electric
Vehicle Midwest Northeast South West Total
Chevy Spark 44 3 24 1,828 1,899
Fiat 500 28 2 76 8,449 8,555
Ford Focus 342 345 650 3,099 4,436
Honda Fit 0 143 59 853 1,055
Mitsubishi i-Miev 484 274 436 527 1,721
Nissan Leaf 4,003 3,287 23,680 38,890 69,860
Smart EV 89 633 379 2,976 4,077
Tesla S 3,260 4,548 8,303 22,124 38,235
Toyota Rav4 19 17 26 2,394 2,456

Total 8,269 9,252 33,633 81,140 132,294

Panel B : Vehicle Counts by Urban and Rural

Nissan: Leaf Tesla: Model S Other Total
Urban 68,292 37,596 23,828 129,716
Rural 1,568 639 371 2,578
Total 69,860 38,235 24,199 132,294

Panel C : Vehicle Counts for Top 10 Metropolitan Statistical Areas (MSAs)

City (MSA) Number of Vehicles
Atlanta, GA 14,496
Los Angeles, CA 13,854
San Jose, CA 11,170
Oakland, CA 8,131
San Francisco, CA 6,437
Seattle, WA 6,352
Santa Ana, CA 5,734
San Diego, CA 5,722
Portland, OR 3,105
Sacramento, CA 2,838
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in which consumers that had just purchased a given electric vehicle were asked to state

the vehicle “model most seriously considered” as an alternative. The emissions for the

composite gasoline vehicle are defined as the weighted average of the emissions from the 10

most frequently identified gasoline alternatives.10

To calculate the local air pollution damages of a given composite forgone gasoline vehicle

driven in county i, we use emissions factors per mile to calculate the exhaust emissions of

NOx, PM2.5, SO2, and VOCs and non-exhaust emissions of PM2.5 (from tire wear, brake

wear, and road wear). We first use the AP2 integrated assessment air pollution model to

estimate the dispersion of these pollutants across counties and the formation of secondary

PM2.5 and ozone.11 We then use AP2 to calculate the damages from these pollutants due

to effects on human health, crop and timber yields, buildings and material, and visibility

and recreation that occur in various counties. Aggregating across pollutants yields a single

damage value for each county that is affected by driving in county i. More formally, let

model m denote a particular electric vehicle as well as the corresponding forgone gasoline

vehicle. Let gmij be the damages per year to county j caused by driving a gasoline vehicle

m for 15,000 miles in county i. The collection of the gmij into the matrix Gm is a useful way

to summarize the potential for gasoline model m to generate air pollution damages. We use

the word potential because we have not yet accounted for the fact that a given county i may

or may not have any model m electric vehicles registered in it.

To calculate the local air pollution damages of an electric vehicle driven in county i,

we assume that the vehicle is charged in county i and that this increases the electricity

load in the electricity region in which the county is located.12 The amount by which load

increases per mile depends on both the efficiency of the electric vehicle and the ambient

temperature (which affects battery performance). An increase in electricity load in a given

region leads to responses by various power plants which in turn changes the emissions from

10For example, Nissan Leaf purchasers identified the following vehicles (number of responses in parenthe-
sis): Toyota Prius (2166), Kia Soul (344), Ford Fusion (301), Honda Accord (263), Nissan Juke (249), Lexus
CT200h (231), Toyota Prius V (227), Audi A5 (201), Nissan Altima (189), Honda CR-V (182). We use
the number of responses as weights in the emissions calculations. We did not have any data for the electric
Honda Fit and the electric Fiat 500 so we used the gasoline-powered Fit and gasoline-powered Fiat 500 as
the forgone gasoline vehicles. For more details, see Section E in the online appendix to Holland et al (2016).

11See Muller and Mendelsohn (2009) and Muller (2011) for a description of AP2.
12See the Appendix for a map of the nine electricity regions.
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these plants. We estimate these effects econometrically. In particular, we determine the

relationship for each hour of the day between emissions of NOx, SO2, and PM2.5 at each

power plant and electricity load in a given electricity region, controlling for load in other

regions and month-of-sample fixed effects. The resulting marginal emissions factors show

how emissions change at each power plant from charging an electric vehicle in county i. The

damages from these emissions are then assessed using the AP2 model just as is done for

gasoline vehicles. Aggregating across power plants and pollutants yields the local pollution

damages to each county j of charging an electric vehicle in county i.

In addition to power plant emissions, driving an electric vehicle also causes non-exhaust

emissions of PM2.5 due to tire and road wear.13 We combine damages from charging and

non-exhaust damages from driving to obtain the damages for the electric vehicle. Let emij be

the damages per year to county j caused by driving an electric vehicle of model m for 15,000

miles in county i. The collection of the emij into the matrix Em is a useful way to summarize

the potential for electric vehicle model m to generate air pollution damages.

We combine the potential damages described by the matrices Em and Gm with the data

on registration numbers and location to determine the actual environmental benefits due

to the fleet of electric vehicles. We distinguish between received environmental benefits

and created environmental benefits. Intuitively, the rows of the matrix of environmental

benefits (Gm −Em) are associated with created environmental benefits (driving in county i

creates benefits in various counties j) whereas the the columns are associated with received

environmental benefits (driving in the various counties i leads to county j receiving benefits.)

First consider created environmental benefits. Let nm
i denote the number of vehicles

of model m registered in county i. The created environmental benefits in county i from

driving this vehicle model are given by the difference between damages created by the forgone

gasoline vehicles and damages created by the electric vehicles:

nm
i ∑

j

gmij − nm
i ∑

j

emij = nm
i ∑

j

(gmij − emij ).

13We assume brake wear is zero for electric vehicles because they use regenerative braking. Heavier vehicles
generate more non-exhaust emissions and electric vehicles tend to be heavier than gasoline vehicles due to the
weight of the batteries. For both gasoline and electric vehicles, we determine weight-adjusted non-exhaust
emissions factors based on data in Table 1 of Timmers and Achten, (2016). Holland et al., (2016) did not
account for non-exhaust emissions from electric vehicles.
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The expression on the right-hand-side is a multiple of the i’th row sum of the matrix

(Gm − Em). Aggregating over all models m gives the environmental benefits created by

county i from driving the entire fleet of vehicles 15,000 miles a year. Next consider received

environmental benefits. For a given vehicle model, the environmental benefits received by

county j from the driving the fleet of vehicles in their county of registration is the difference

between received damages from the gasoline vehicles and received damages from the electric

vehicles:

∑
i

nm
i g

m
ij −∑

i

nm
i e

m
ij =∑

i

nm
i (gmij − emij ).

Because the number of vehicles in each county is not the same, the environmental benefits

received is not simply a multiple of the j’th column sum of the matrix (Gm−Em) but rather is

a weighted column sum.14 Aggregating over all models, m, gives the environmental benefits

received in county j from driving the entire fleet of electric vehicles 15,000 miles in a year.

In our baseline specification, we assume (as in AP2) that damages are evenly distributed

across all census block groups in a given county. There is evidence, however, that near-

roadway air pollution leads to negative health outcomes (Ghosh et al., 2016, Health Effects

Institute 2010, Anderson 2016). There is also evidence that people with low income and non-

whites are disproportionately exposed to traffic density (Rowangould 2013). So one might

be concerned that these considerations would influence the distributional effects we want

to study in this paper. In the sensitivity analysis, we make a road correction that adjusts

for distance that the census block groups are from major highways. We do not include the

road correction in our baseline because, among other things, not all pollutants have higher

concentrations near roads (Ghosh et al., 2016, Karner et al., 2010, and Anderson 2016).

2.3 Environmental Benefits Created and Received

We first analyze created environmental benefits to illustrate the sources of environmental

benefits from electric vehicles. Table 2 summarizes the results. Air pollution damages from

driving the entire fleet of electric vehicles totals $25.2 million per year which slightly exceeds

14If the number of vehicles in each county were the same, then we could pull nm
i out of the sum on the

right-hand-side, and the environmental benefits received would be a multiple of the j’th column sum of the
matrix (Gm

−Em).
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the total damages from a fleet of forgone gasoline vehicles. Thus the total environmental

benefit of the fleet of electric vehicles is -$0.04 million. Panel A shows the results by vehicle

model. The sign of the environmental benefit is largely determined by where the vehicles are

driven. For the five models with positive environmental benefits, over 90% of the vehicles are

located in the west. The other vehicles are more uniformly distributed across the country.

Panel B disaggregates the environmental benefit by region. The negative environmental

benefits are spread throughout three of the four regions, with the largest losses occurring

in the South where damages from the electric vehicle fleet were $5.2 million more than the

damages would have been from driving gasoline vehicles. In the West, the environmental

benefits are positive and substantial: $10.3 million. This is further illustrated in Panel C

which shows the environmental benefits for the top 10 MSAs by vehicle counts. Only one

of these MSAs has substantial negative environmental benefits and that MSA, Atlanta, is

located in the South. Eight of the nine MSAs in the West have positive environmental

benefits with substantial environmental benefits of $4.6 million in Los Angeles alone.

The created environmental benefits are disaggregated to the county level and mapped

in Figure 1. About half the counties have no created environmental benefits because they

have no electric vehicles. The counties where environmental benefits are positive are almost

exclusively in the West and primarily in coastal California. Other counties where electric

vehicles are creating positive environmental benefits are in major cities in the West: Seattle,

Denver, Salt Lake City, and Phoenix. Electric vehicles in much of the rural West create

negative environmental benefits as do electric vehicles throughout the East. Note especially

the negative created environmental benefits in large cities such as Atlanta and Chicago.

The created environmental benefits show where electric vehicles are producing positive

and negative environmental benefits. However to analyze who is affected by these electric

vehicles, we must analyze the received environmental benefits, because wind and the elec-

tricity grid disperse pollution far beyond the location of the electric vehicle. Figure 2 maps

the received environmental benefits for each county.

There are several interesting differences between the maps in Figure 2 and Figure 1. First,

the positive environmental benefits received are spread much more widely across the West.

For example, inland counties in California and Nevada had few or no electric vehicles and
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Table 2: Gasoline Damages, Electric Damages and Environmental Benefits Created ($
1000’s)

Panel A: By vehicle

Gasoline Electric Enviro
Type Vehicle Vehicle Benefit
Chevy Spark 425 160 266
Fiat 500 2,165 689 1,477
Ford Focus 741 767 -27
Honda Fit 255 142 113
Mitsubishi i-Miev 214 454 -240
Nissan Leaf 10,903 12,935 -2,032
Smart EV 794 563 231
Tesla S 9,007 9,170 -163
Toyota Rav4 625 293 332
Total 25,129 25,173 -44

Panel B : By Region

Gasoline Electric Enviro
Type Vehicle Vehicle Benefit
Midwest 1,338 4,047 -2,709
Northeast 1,538 3,975 -2,437
South 4,778 9,952 -5,174
West 17,475 7,198 10,276
Total 25,129 25,173 -44

Panel C : Top 10 MSAs by Electric Vehicle Counts

Gasoline Electric Enviro
Type Vehicle Vehicle Benefit
Atlanta, GA 2,894 4,926 -2,032
Los Angeles, CA 6,182 1,567 4,615
San Jose, CA 3,042 1,395 1,647
Oakland, CA 2,219 978 1,241
San Francisco, CA 1,469 672 797
Seattle, WA 541 444 97
Santa Ana, CA 1,269 359 910
San Diego, CA 1,157 493 664
Portland, OR 134 168 -34
Sacramento, CA 234 122 112
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Figure 1: Environmental Benefits Created by County ($1,000)

Figure 2: Environmental Benefits Received by County ($1,000)
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thus created negligible environmental benefits. However, these counties still suffered harm

from gasoline vehicles driven in coastal California and thus receive environmental benefits

from the fleet of electric vehicles, many of which were located in coastal California.

Second, many urban counties in the East receive positive environmental benefits from

the fleet of electric vehicles, despite the fact that electric vehicles throughout the East create

negative environmental benefits. For example, the electric vehicles in Fulton County, Georgia

in Atlanta create negative environmental benefits. However Fulton County receives positive

environmental benefits from the electric vehicle fleet, many of which are located in Atlanta.

In effect, the electric vehicles in Atlanta export pollution to other counties making Atlanta

better off despite creating negative environmental benefits overall. Finally, many counties

in the Pacific Northwest receive positive environmental benefits despite creating negligible

or negative environmental benefits. This is because of the export of negative environmental

benefits from these coastal counties to the rural areas inland.

Table 3 aggregates the received environmental benefits to different levels. The contrast

between benefits created and received is, generally, a decreasing function of modeling ag-

gregation. Within the entire national accounting domain the two measures of benefits must

equate. Similarly, the aggregation by census region in Panel A of Table 3 for received envi-

ronmental benefits is quite similar to that in in Panel B of Table 2 for created environmental

benefits. Different levels of aggregation show sharper contrast. Panel B of Table 3 shows

the distribution across urban and rural counties. Rural counties receive a much higher pro-

portion of damages from electric vehicles than from the forgone gasoline vehicles and thus

receive most of the negative environmental benefit from electric vehicles. The distribution

across MSAs (Panel C) also has some notable differences between received and created envi-

ronmental benefits. First, the Atlanta MSA received positive environmental benefits despite

creating negative environmental benefits. This is because the negative created environmental

benefits are exported to counties not in the Atlanta MSA. Second, the environmental bene-

fits received by the California cities are generally smaller than the benefits created. In this

case the positive created environmental benefits are exported to counties outside the MSA

so the received environmental benefits are smaller than the created benefits. The maps in

Figures 1 and 2 provide the least aggregated comparison, and hence show the most contrast.
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Table 3: Gasoline Damages, Electric Damages and Environmental Benefits Received ($
1000’s)

Panel A: By Region

Gasoline Electric Enviro
Type Vehicle Vehicle Benefit
Midwest 1,378 3,707 -2,329
Northeast 1,616 5,699 -4,083
South 4,731 8,909 -4,178
West 17,404 6,858 10,545
Total 25,129 25,173 -44

Panel B : By urban

Gasoline Electric Enviro
Type Vehicle Vehicle Benefit
Urban 24,704 21,770 2,934
Rural 425 3,403 -2,978
Total 25,129 25,173 -44

Panel C : By MSAs

Gasoline Electric Enviro
Type Vehicle Vehicle Benefit
Atlanta, GA 2,649 1,412 1,237
Los Angeles, CA 5,332 1,950 3,382
San Jose, CA 1,536 595 941
Oakland, CA 2,769 1,196 1,573
San Francisco, CA 1,763 752 1,012
Seattle, WA 492 155 336
Santa Ana, CA 1,817 430 1,387
San Diego, CA 1,139 462 677
Portland, OR 123 41 82
Sacramento, CA 260 122 138
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This distinction between benefits created and received can lead to stark policy differences.

For example, created benefits from electric vehicle use in Atlanta, Georgia are estimated to

be -$2.0 million. Benefits received are $1.2 million. Thus, the sign changes depending on

whether one considers Atlanta as a source of emissions or as a receptor of emissions. There

are important policy implications revealed by this result. If policymakers in Atlanta ask

whether or not to subsidize electric vehicles, the answer depends on jurisdiction and both

the distribution of created and received benefits. That is, Atlanta regulators may favor a

policy that encourages electric vehicle adoption in locations upwind from, and including,

Atlanta. Benefits received are positive. Conversely, federal policymakers may frown upon

subsidizing electric vehicle use in Atlanta itself because benefits created are negative. Thus

the connection between analyzing created versus received benefits and policy design.

The difference between created and received environmental benefits is also related to

native damages as defined by Holland et al., (2016)15 Both concepts quantify the flow of pol-

lution across jurisdictional boundaries due to wind patterns and the electricity grid. However,

native damages are based on driving a vehicle at a specific location and received damages

are based on driving by the entire fleet of electric vehicles. The basic lesson remains the

same: the environmental benefits of electric vehicles can seem larger if only nearby damages

are considered.

3 Equity: Whose Air Quality Is Affected by Driving

Electric Vehicles?

We now analyze the distribution of the received environmental benefits across demographic

groups. We first illustrate the distribution of received environmental benefits with summary

statistics and graphical analyses. We then present econometric analysis of the demographic

correlates of the received environmental benefits.

Our calculated environmental benefits are at the county level. However, county level

data mask significant variation in demographics. Thus, we collect demographic data at the

15Native damages are the damages from driving an electric vehicle in a county (or state) which affect
people in that county (or state).
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census block group level and use that to create per capita damages received from gasoline

and electric vehicles and per capita environmental benefits received. Table 4 shows summary

statistics of the per capita damages, environmental benefits, and demographic variables.16

The average person received $0.08 per year in air pollution damages from the fleet of electric

vehicles and would have received similar damages from the forgone gasoline vehicle fleet,

yielding essentially zero environmental benefit. However, this average masks significant

heterogeneity: received environmental benefits range from -$0.30 to $0.81 per capita.

Table 4: Received Benefits per Capita and Demographic Variables

Variable Mean Std. Dev. Min Max
Gas vehicle damages p.c. 0.081 0.19 0.001 1.335
Elec vehicle damages p.c. 0.081 0.075 -0.002 0.546
EV net benefits p.c. 0 0.139 -0.297 0.813
Income (10k) 6 3.143 0.25 25
Share Black 0.126 0.217 0 1
Share Hispanic 0.161 0.229 0 1
Share Asian 0.046 0.093 0 1
Share White 0.643 0.311 0 1
Urban Indicator 0.836 0.37 0 1
Share Poverty 0.136 0.129 0 1

Notes: Block groups are weighted by population. There are 215,328 block groups with a total population of

305 million. “p.c.” is per capita. Damages and environmental benefits are received environmental benefits.

We next analyze inequality in the distribution of these per capita benefits using the

familiar concepts of Lorenz curves and Gini coefficients. These measures are most commonly

used to described inequality in the distribution of income, but can be used to describe

inequality in the distribution of any single variable. The Lorenz curve gives a visual measure

of inequality and the Gini coefficient gives a numerical measure of inequality. A higher Gini

coefficient, which ranges from zero to one and is calculated from the Lorenz curve, indicates

more inequality. Figure 3 illustrates the distribution of per capita received damages using

Lorenz curves and compares them to the Lorenz curve for income. To graph the Lorenz

curve for income in Figure 3, we first rank individuals by their income.17 We then graph

the cumulative fraction of the population on the horizontal axis and the cumulative fraction

of the income received by these individuals on the vertical axis. For example, the Lorenz

16Income is measured by median household income at the block group level. Average income is $60,000
(the overall median income in the U.S. is $53,000).

17Technically, we rank block groups and then weight by population.
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curve shows that the poorest 60% of people receive 40% of the total income. Also drawn is

the 45-degree line. The further the Lorenz curve is from the 45-degree line, the greater the

inequality of the distribution of income, and the higher is the Gini coefficient.

We follow a similar procedure to graph the Lorenz curve for received electric vehicle

damages per capita in Figure 3. We first rank individuals by their received electric vehicle

damages per capita. We then graph the cumulative fraction (by electric vehicle damages)

of the population on the horizontal axis and the cumulative fraction of the electric vehicle

damages received by these individuals on the vertical axis. The Lorenz curve shows, for

example, that the 60% of people who receive the least electric vehicle damages, receive

approximately 30% of the total electric vehicles damages. Similarly, we can graph the Lorenz

curve for forgone gasoline vehicle damages. This graph shows that the 60% of people who

receive the least gasoline vehicle damages, receive only about 10% of the total gasoline vehicle

damages.

Comparing the three Lorenz curves in Figure 3 with the 45-degree line allows us to

assess the relative concentration of income and damages from electric and forgone gasoline

vehicles. Compared to the distribution of income, which is itself relatively concentrated (Gini

= 0.275),18 damages from both gasoline and electric vehicles are more concentrated, i.e., the

bulk of the damages are concentrated among a relatively small set of individuals. Comparing

the gasoline damages (Gini = 0.768) and electric vehicle damages (Gini = 0.429) shows that

the damages from gasoline vehicles are much more concentrated. Moving from the fleet

of these forgone gasoline vehicles to the corresponding fleet of electric vehicles significantly

lowers the concentration of damages. In this sense, electric vehicles are more egalitarian

than gasoline vehicles.

Lorenz curves are useful for analyzing the distribution of a single variable but do not shed

much light on the relationship between variables. For example, the Lorenz curve cannot tell

us whether or not the individuals receiving a large share of the damages from electric vehicles

are also receiving a large share of damages from forgone gasoline vehicles. In addition, we

would like to know whether those individuals receiving environmental benefits from electric

18For the year 2013, The World Bank reports a Gini coefficient for the U.S. of approximately 0.4. Our
calculated Gini coefficient is lower because it is based on median block-group income rather than more
disaggregated household data.
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Figure 3: Lorenz Curves: Income and Air Pollution Damages from Driving

Notes: The horizontal axis is the cumulative fraction of individuals ranked by income, electric vehicle
damages or gasoline vehicle damages. The vertical axis is the cumulative fraction of the relevant variable

(income, electric vehicle damages, gasoline vehicle damages).

vehicles are relatively rich or poor.

To answer these questions, we turn to multivariate analyses. We begin by exploring

the relationship between income and damages. Figure 4 shows graphs of smoothed values

with 95% confidence bands from kernel-weighted local polynomial regressions of damages

per capita on houshold income. Received damages per capita from forgone gasoline vehicles

are higher on average for households with higher income. In contrast, damages received

from electric vehicles are relatively constant in income.19 The difference between damages

from forgone gasoline vehicles and electric vehicles is the environmental benefit of electric

vehicles. The environmental benefits are positive for block groups with household income

greater than about $65,000, but negative below this level. Thus individuals with income

above this level receive a positive environmental benefit from electric vehicles on average,

but individuals with income below this receive a negative environmental benefit on average.

Because the overall environmental benefit is slightly negative, the gains to the rich individuals

19This result, in conjunction with the Lorenz curves for damages, suggests that the abbreviation EV for
electric vehicles may well also stand for “egalitarian vehicles”.
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are outweighed by the losses to the poor individuals.20

Figure 4: Air Pollution Damages Received and Income
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Notes: For gasoline and electric vehicles, the figure shows a kernel-weighted local-mean smoothing regression

of per capita damages of driving on a block group’s median household income using an Epanechnikov kernel

function with a half-width of $5,000.

Figure 4 shows a strong correlation between income and environmental benefit. Table 5

breaks out the environmental benefit by both income and racial groups. We first identify the

income decile of each block group. The column labeled “All” reports population-weighted

averages of the environmental benefits per capita across the block groups for each income

decile.21 The columns show that the environmental benefit per capita is increasing across

the income deciles. In particular, the environmental benefit is negative for the six poorest

deciles and is only positive for the richest four deciles.22

The bottom row of Table 5 breaks out the environmental benefit by race. This row re-

20Cumulative distributions as a function of income are given in the Appendix.
21More specifically, for each block group in decile x we multiply the environmental benefit per capita by

the population in the block group. We then sum this product over all block groups in decile x and divide
by the population in all block groups in decile x.

22This is consistent with the evidence in Figure 4. In Figure 4, benefits go from negative to positive at
$65,000 which is the 65th percentile of income.
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ports popultation-weighted averages of the environmental benefits per capita for each racial

category.23 The results show differential effects across racial groups: White and Black pop-

ulations are harmed on average by electric vehicles, but Asian and Hispanic populations

benefit on average.

The remainder of the table breaks out environmental benefit by income and race. Each

cell reports the population-weighted average of the environmental benefits per capita across

the block groups for each income decile.24 There is remarkable consistency across both

dimensions. For each income decile, Hispanic and Asian populations receive higher envi-

ronmental benefit per capita than White and Black populations. Similarly for each racial

group, individuals in higher income decile block groups receive higher environmental ben-

efits than individuals in lower income decile block groups. The crossover points at which

environmental benefits become positive are also noteworthy. White populations have an en-

vironmental benefit per capita which is lower than average and the crossover point is higher

(in the eighth decile). Black populations have an environmental benefit which is higher than

average and has a crossover point which is lower (in the sixth decile). Both Hispanic and

Asian populations benefit across all the income deciles.

We next turn to descriptive regressions showing correlations between environmental ben-

efits per capita and our demographic variables in Tables 6, 7, and 8. The results in Table 5

suggest certain relationships, but regressions allow us to assess the statistical significance of

these correlations.

We begin in Table 6 with univariate regressions showing the simple correlations. Indi-

viduals with higher incomes have slightly higher environmental benefits: an extra $10,000

in income is associated with an $0.007 increase in benefits. Our urban measures (popula-

tion density and an urban indicator) are each positively correlated with benefits. Our racial

variables are strongly correlated with environmental benefits consistent with the results in

Table 5: The share of Black and White residents are negatively correlated with benefits but

23For example for the variable labelled Black, for each block group we multiply the environmental benefit
per capita by the black population in the block group. We then sum this product over all block groups and
divide by the total black population.

24More specifically, for each block group in decile x we multiply the environmental benefit per capita by
the population of that racial group in the block group. We then sum this product over all block groups in
decile x and divide by the population of that racial group in all block groups in decile x.
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Table 5: Environmental Benefits per Capita of Electric Vehicles by Race and Income

Demographic Group
Income Decile Black Hispanic Asian White All

1 -0.032 0.019 0.064 -0.047 -0.023
2 -0.021 0.043 0.069 -0.045 -0.016
3 -0.020 0.051 0.071 -0.044 -0.018
4 -0.009 0.057 0.081 -0.040 -0.014
5 -0.007 0.063 0.091 -0.035 -0.011
6 -0.001 0.068 0.101 -0.031 -0.007
7 0.007 0.076 0.107 -0.022 0.001
8 0.011 0.084 0.133 -0.011 0.012
9 0.011 0.094 0.138 0.003 0.025
10 0.016 0.097 0.164 0.032 0.050

Total -0.013 0.058 0.116 -0.021 -0.000

Notes: Environmental benefits of all electric vehicles driving 15,000 in a year by race and income deciles.

Table 6: Correlates of Environmental Benefits Received per Capita

(1) (2) (3) (4) (5) (6) (7) (8)
Income (10k) 0.007***

(0.002)

Share Poverty -0.035
(0.024)

Urban Indicator 0.071***
(0.016)

Population Density 0.002*
(0.001)

Share Black -0.034
(0.021)

Share Hispanic 0.179***
(0.051)

Share Asian 0.616***
(0.118)

Share White -0.140***
(0.038)

*** p<0.01, ** p<0.05, * p<0.10

Notes: Dependent variable is environmental benefit per capita. WLS regressions weight by total population
and cluster standard errors by county.
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Table 7: Descriptive Regressions of Environmental Benefits Received per Capita

(1) (2) (3) (4) (5) (6) (7) (8)
Income (10k) 0.007*** 0.005*** 0.010*** 0.009*** 0.003** 0.002 0.011*** 0.011***

(0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.003) (0.003)

Urban Indicator 0.064*** 0.034*** 0.041*** 0.019***
(0.016) (0.007) (0.011) (0.005)

Share Black -0.009 -0.025
(0.019) (0.021)

Share Hispanic 0.206*** 0.194***
(0.055) (0.053)

Share Asian 0.595*** 0.572***
(0.116) (0.115)

Share White -0.171*** -0.164***
(0.042) (0.042)

*** p<0.01, ** p<0.05, * p<0.10

Notes: Dependent variable is environmental benefit per capita. WLS regressions weight by total population
and cluster standard errors by county.

Table 8: Descriptive Regressions of Environmental Benefits Received per Capita
(1) (2) (3) (4) (5) (6)

Income (10k) 0.006*** 0.004*** 0.009*** 0.006*** 0.006*** 0.004***
(0.002) (0.001) (0.002) (0.001) (0.002) (0.001)

Share Poverty -0.017 -0.013* -0.064*** -0.022***
(0.013) (0.007) (0.020) (0.008)

Urban Indicator 0.014*** 0.013*** 0.016*** 0.014*** 0.014*** 0.017***
(0.004) (0.003) (0.005) (0.003) (0.004) (0.003)

Population Density -0.000 0.001*** 0.001 0.001***
(0.001) (0.000) (0.001) (0.000)

Share Black 0.028 0.042*** 0.023 0.050***
(0.017) (0.009) (0.017) (0.009)

Share Hispanic 0.191*** 0.017 0.186*** 0.034**
(0.048) (0.015) (0.050) (0.015)

Share Asian 0.559*** 0.241*** 0.551*** 0.271***
(0.103) (0.055) (0.111) (0.057)

Share White -0.163*** -0.048***
(0.038) (0.008)

State FE No Yes No Yes No Yes

*** p<0.01, ** p<0.05, * p<0.10

Notes: Dependent variable is environmental benefit per capita. WLS regressions weight by total population
and cluster standard errors by county.
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the share of Asian and Hispanic residents are positively correlated with benefits.

Table 7 conditions the racial variables on income and the urban indicator. The racial

variables are quite robust to these controls. The share of Hispanic and Asian residents still

predict positive environmental benefits and share of White residents still predicts negative

environmental benefits. Share of Black residents still predicts negative environmental bene-

fits but is not statistically significant. Table 7 can alternatively be interpreted as conditioning

the income and urban variables on the racial controls. Both correlations are quite robust to

these controls: both signs and significance are the same across the regressions.25

Table 8 tests for correlations conditioning on the entire set of variables. Model (1) includes

the entire set of covariates (excluding Share White, which is collinear with the other shares)

and model (2) includes state fixed effects. Models (3) and (4) test robustness to the more

parsimonious racial categorization, and models (5) and (6) use more parsimonious income

and urban variables. In general, the income, urban, and race category predictors are quite

robust to the various specifications. Income is quite a robust predictor even in specifications

including state fixed effects, and share poverty has additional predictive power in some

specifications. In general, our results show that richer people receive greater environmental

benefits from electric cars. The urban indicator and population density are highly correlated

(correlation coefficient = 0.4) and do not have significant independent predictive power in

our regressions. However, the combined urban effect is robust even when including state

fixed effects. Share of Asian residents has the largest and most robust predictive power of

the racial variables. Share of Hispanic residents also predicts higher environmental benefits,

and share of White residents predicts lower environmental benefits, although neither of these

results are robust to state fixed effects. Share of Black residents is negatively correlated with

environmental benefits but is not a significant predictor.

In summary, our evidence shows a strong, robust positive correlation between environ-

mental benefits and our income and urban measures. In addition, Hispanic and Asian shares

are positively correlated with environmental benefits, but White share is negatively corre-

lated. Black share is not robustly correlated with environmental benefits of electric vehicles.

25In addition, the results are robust to splitting the sample into two regions. See the Appendix.
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3.1 Sensitivity: MSA driving, Non-exhaust emissions, Road Cor-

rection, and Forgone Vehicles

We now conduct a sensitivity analysis for some of the assumptions made in the baseline

analysis. As discussed above, there is evidence that the effects of air pollution may be con-

centrated around roads. But, according to Gosh et al., (2016), “the specific pollutants in

near-roadway air pollution responsible for health effects are not entirely clear.” With this

caveat in mind, we conduct a near-roadway sensitivity analysis for the local pollutants in

our study. We identify a set of census block groups in a given county such that, for each

block group in the set, the centroid of the block group is within 570 meters of a major road-

way.26 We apportion own county exhaust and non-exhaust emissions from forgone gasoline

vehicles and own county non-exhaust emissions from electric vehicles across these census

block groups in the set according to the inverse distance from the roadway.27 The results are

shown in the column labeled “Road” in Table 9. The total at the bottom of the column is

the same as in baseline because we are simply re-apportioning benefits across block groups.

Overall, the distribution of environmental benefits becomes more equal across incomes. The

biggest changes are an improvement in the lowest income decile (smaller negative environ-

mental benefit) and degradation in the highest income decile (smaller positive environmental

benefits). In addition the environmental benefit is no longer increasing in income across the

bottom three income deciles.

We also conduct a sensitivity analysis of our assumption that all vehicles are driven

exclusively in the county of registration. Here we assume a vehicle that is registered in a

county within an MSA is driven in each county in the MSA based on the fraction of the

MSA’s Vehicle Miles Travelled (VMT) which occurs in each county. For rural vehicles (those

registered in a county not in an MSA), we assume that they are driven in each rural county

in the state based on the VMT share of the rural county. County-level VMT is from the EPA

as estimated for their Motor Vehicle Emission Simulator (MOVES). The results are shown

in the column labelled “MSA” in Table 9. Here the total becomes more negative relative to

26Kaner et al., (2010) show that most pollutants are at background level after the threshold of 570 meters
from a highway.

27We round up all distances less than 50 meters to be equal to 50 meters.
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baseline and environmental benefits decrease for each income decile.

The next sensitivity analysis concerns an additional type of non-exhaust emissions that

was not previously considered in our analysis. There is evidence that vehicles driving on

roadways re-suspend PM2.5 particles and this effect is stronger for heavier vehicles (Timmers

and Achten 2016, Amato et al., 2012). Electric vehicles tend to be heavier on average than

gasoline vehicles due to the weight of the batteries. We use data in Table 6 in Timmers

and Achten 2016 to determine re-suspended PM2.5 emissions for a forgone gasoline vehicle of

average weight, and then determine weight-adjusted emissions for each gasoline and electric

vehicle assuming a linear relationship between weight and re-suspension of PM2.5. The results

are shown in the column labelled “PM2.5” in Table 9. Again the total is more negative and

environmental benefits decrease for each income decile, to a greater degree than for the MSA

analysis.

The final sensitivity analyses consider alternative methods for selecting the forgone gaso-

line vehicle. First, rather than using a composite vehicle based on consumer preferences as

in the baseline analysis, we select one forgone gasoline vehicle for a given electric vehicle.

Our choice represents an “engineering” substitute, in the sense that wherever possible, we

selected the equivalent gasoline version of the electric vehicle. For example, the forgone

gasoline vehicle for the Ford Focus electric vehicle is simply the gasoline powered Ford Fo-

cus.28 The results are shown in the column labelled “Subst” in Table 9. The effects are quite

similar to the non-exhaust emissions case. Next we use one forgone gasoline vehicle for all

electric vehicles. This forgone vehicle is either the cleanest (the Toyota Prius) or one of the

dirtiest (the Mercedes S550) from the entire list of forgone gasoline alternatives identified by

the consumer survey data. The results are shown in the columns labelled “Prius” and “Mer-

cedes”. Although using the Mercedes as the forgone vehicle implies that the total benefits

from electric vehicle adoption are positive, there is still a small negative effect on the lowest

income deciles. Similarly, the Prius still leads to positive benefits for the highest income

deciles. Therefore our finding that electric vehicles generate negative benefits to low incomes

28The forgone gasoline vehicle for the Spark, Fiat 500, Ford Focus, Toyota RAV 4, and Smart fortwo are
the gasoline version of these vehicles. The forgone vehicle for the Mitsubishi i-Miev is the gasoline Spark,
the forgone vehicle for the Nissan Leaf is the Toyota Prius, and the forgone vehicle for the Tesla Model is
the BMW 750i.
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and positive benefits for high incomes continues to hold, even under extreme assumptions

about forgone vehicles.

Table 9: Sensitivity Analysis: Environmental Benefits Per Capita By Income

Forgone Vehicle
Income Decile Baseline MSA PM2.5 Road Subst Prius Mercedes

1 -0.023 -0.023 -0.024 -0.006 -0.024 -0.032 -0.009
2 -0.016 -0.017 -0.018 -0.006 -0.018 -0.027 -0.000
3 -0.018 -0.018 -0.020 -0.016 -0.020 -0.028 -0.002
4 -0.014 -0.015 -0.016 -0.008 -0.016 -0.026 0.002
5 -0.011 -0.012 -0.013 -0.007 -0.013 -0.023 0.007
6 -0.007 -0.008 -0.010 -0.004 -0.010 -0.021 0.012
7 0.001 0.000 -0.002 0.000 -0.002 -0.014 0.023
8 0.012 0.010 0.008 0.011 0.008 -0.006 0.038
9 0.025 0.023 0.020 0.016 0.021 0.003 0.056
10 0.050 0.047 0.045 0.018 0.045 0.021 0.093

Total -0.000 -0.001 -0.003 -0.000 -0.003 -0.015 0.022

Notes: “MSA” assumes vehicles in urban areas are driven throughout MSA. “PM2.5” includes damages

from re-suspended particles. “Road” apportions own-county emissions to census block groups that are near

major roads. “Subst” uses alternative forgone gasoline vehicles that are close engineering substitutes for each

electric vehicle. “Prius” uses the Toyota Prius as the forgone substitute for all electric vehicles. “Mercedes”

uses the Mercedes S550 as the forgone substitute for all electric vehicles.

4 Efficiency: Electric Vehicle Purchase Subsidies and

Location

While received environmental benefits are appropriate for studying distributional effects of

electric vehicle adoption, created environmental benefits are appropriate for analyzing the

efficiency of government policy. In particular, we focus on electric vehicle purchase subsidies.

All of the electric vehicles in our study qualify for a $7500 federal purchase subsidy. In

addition, many states provide additional purchase subsides. These state subsidies change

frequently. We consider subsidies in place on July 28, 2014 and assume that all vehicle

owners claim the federal subsidy as well as any applicable state subsidy.29 The combined

state and federal subsidy per capita is determined by the sum of federal and state subsidies

29The list of subsidies by state used in our analysis comes from the online appendix to Holland et al., (2016).
An up to date listing of state subsidies is given in http://www.afdc.energy.gov/laws/state.
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multiplied by the number of purchases in a county and then divided by county population

(Figure 5). Subsidy per capita is quite large in a few counties around Atlanta, GA (Forsyth

county leads the way with a remarkable per capita subsidy of $119) and San Francisco, CA.

Figure 5: Subsidy (state and federal) per capita by county

Figure 6 describes the relationship between the average lifetime environmental benefits

created per vehicle registered in a given county and the per vehicle average of the aggregate

subsidies across federal and state.30 The scatter plot shows this relationship, where the size

of the dot reflects the total volume of registered cars. For ease of viewing, we only report

those counties that have over 100 registered electric vehicles. We see that Los Angeles and

Santa Clara counties in California have many electric vehicles with positive environmental

benefits but moderate subsidies per vehicle. In contrast, Fulton county in Georgia and

McLean county in Illinois have larger subsidies but negative environmental benefits.

We also report the predictions based on a regression. Using data from all counties with

electric vehicles, we regress the average lifetime environmental benefits created per vehicle

registered in a given county on an indicator of whether there are state subsidies (in addition

to the federal one) as well as a continuous variable of the level of the total subsidy.31 We

30We assume vehicles last for 10 years and thus have a 150,000 mile lifetime.
31We use frequency weights in the regression where we weight using a county’s volume of registered vehicles
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Figure 6: Purchase Subsidies and Created Environmental Benefits

Notes: Environmental benefits are for all electric vehicles driving 15,000 miles per year for ten years. The

scatter plot shows a county’s environmental benefits per vehicle and the state and federal subsidies per

vehicle, where the size is the volume of registered electric vehicles. Predictions from a linear model show the

approximate relationship between benefits and subsidies.
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find that the model explains about half of the variation (R2 = 0.50) with a coefficient on the

indicator of state subsidization of 5,404 (and a standard error of 806) and a coefficient on the

level of the subsidy of -0.937 (0.163). Figure 6 reports the model’s prediction and the 95%

confidence interval. This regression is not meant to be interpreted as causal. Rather it is

describing different relationships between environmental benefits of electric cars and subsidy

choices. Counties with larger environmental benefits are more likely to be in states that offer

local subsidies. However, the counties with the largest environmental benefits tend to be in

states that offer smaller subsidies, and counties in states with the largest subsidies tend to

have negative environmental benefits.

5 Conclusion

This paper explores the consequences of electric vehicle adoption for air quality and subse-

quent distributional effects. This entails a comparison between registered electric vehicles

and forgone gasoline vehicles used in the same location. The outcomes of each vehicle are

tracked using an integrated assessment model akin to the approach developed in Holland et

al., (2016). An emphasis of the present work is, in contrast to much prior work in this area,

the decomposition of impacts across space, across income groups, and across communities

defined by racial and ethnic characteristics. We argue that this more nuanced tack is war-

ranted for three reasons: (1) the large number of electric vehicles currently in use, (2) the

heterogeneity in patterns of adoption rates across states, (3) the lack of knowledge about

the characteristics of those who benefit from electric vehicle adoption. There appears that

much is to be gained from an analysis that retains and exploits geographic detail relative to

more aggregative work.

Our results show that the damages from air pollution due to driving our forgone gasoline

vehicles generally increases with income, while the damages from air pollution due to driving

electric vehicles is relatively constant with respect to income. Taking the difference reveals

that census block groups with median income greater than about $67,000 receive positive

environmental benefits from electric vehicle adoption. There is strong evidence that census

and cluster the standard errors by county.
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block groups with larger shares of Asian and Hispanic residents tend to receive greater

environmental benefits. There is weaker evidence that block groups with a larger share

Black residents tend to receive smaller environmental benefits.

Importantly, the patterns that we report may help to guide the design of electric vehicle

policy in the future. For example, both the present work and prior research show that

electric vehicles tend to be beneficial where the power grid is not predominantly fueled by

coal. Thus, policy may improve welfare by encouraging electric vehicle adoption in areas

of the country where the grid is fueled by natural gas and other, low-emission dispatchable

resources. However, one implication of such a strategy appears to be concentrating benefits

among Hispanic and Asian populations that congregate in the West where the grid is cleaner.

In addition, earlier work highlights that damages from gasoline cars are highest in dense

urban environments (Holland et al., 2016). On the surface, it would make sense to encourage

electric vehicles use in such locales. However, our paper demonstrates that this tack primarily

yields benefits to families with incomes well above the median income level.

How policymakers, academic researchers, and the general public weigh and rank these

criteria in terms of their importance to policy design is clearly beyond the scope of the

present paper. However, by focusing on received benefits, this analysis will infuse policy

debates with a greater sense of the consequences of electric vehicle adoption. And, since

electrification of the vehicle fleet may play an important role in future attempts to manage

the environmental consequences of transportation, the present work is likely to have enduring

value.
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Appendix

Electricity Regions

For electric vehicles, we divide the country into nine electricity load regions. A vehicle

charged in any county within in a given region leads to the same response from the grid.

This response may include emissions from electricity plants that are in other regions as

the electricity supply and demand are balanced within and across regions. Figure A-1

maps our nine electricity load regions: California (CA); Electric Reliability Council of Texas

(ERCOT); Florida Reliability Coordinating Council (FRCC); Midwest Independent System

Operator and Midwest Reliability Organization (MISO & MRO); Northeast Power Coordi-

nating Council (NPCC); ReliabilityFirst Corporation (RFC); SERC Reliability Corporation

(SERC); Southwest Power Pool, RE (SPP); Western Electricity Coordinating Council except

California (WECC).

Figure A-1: Map of Electricity Load Regions

Notes : Codes are 1-SERC; 2-California; 3-RFC; 4-WECC w/o CA or NPCC; 5-ERCOT;
6-MISO & MRO; 7-FRCC; and 8-SPP.
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Cumulative Distribution Functions For Air Pollution Damages From

Driving

Figure 3 shows the Lorenz curves for electric vehicle and gasoline vehicle damages. The

Lorenz curve is useful for calculating the Gini coefficient, which is a univariate measure of

concentration. However, this measure is problematic here for two reasons. First, we are

interested in the environmental benefits to different demographic groups. As a univariate

measure, the Lorenz curves cannot illustrate relationships between variables. Second, the

Lorenz curves in Figure 3 are somewhat misleading since the cumulative fraction of income,

gasoline vehicle damages, or electric vehicle damages is calculated relative to the cumulative

fraction of the population sorted by each variable, i.e., the x-axis is resorted for each Lorenz

curve. Thus a person who receives high gasoline vehicle damages (and be close to one on

the x-axis for that Lorenz curve) may receive low electric vehicle damages (and be close to

zero on the x-axis for that Lorenz curve).

A generalized Lorenz curve addresses both of these concerns by allowing for a common

sorting along the x-axis based on any variable. Figure A-2 shows the generalized Lorenz

curves for environmental damages due to driving gasoline and electric vehicles relative to

income. Here the x-axis is sorted by income and the curves measure the cumulative share

of environmental damages that accrue to people at or below that percentile of the income

distribution. For examplle, the figure shows that the people with incomes below the median

(the poorest 50% of the population) receive more than $10 million in damages from the

electric vehicle fleet, but would have received less than $10 million from the avoided gasoline

vehicle fleet. Thus, the poorest 50% of the population are harmed in aggregate by electric

vehicles.

Figure A-2 shows that although in aggregate the environmental benefits of electric ve-

hicles are basically zero (i.e., the curves are the same at one), the burden is not equally

distributed across the income distribution. However, Figure A-2 cannot show whether the

environmental benefit is increasing in income (the slope of these curves) or the income at

which the environmental benefit switches from negative to positive. Figure 4 illustrates the

kernal density (essentially the slopes of the curves in Figure A-2) to show that the environ-
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mental benefit is indeed increasing in income and to illustrate the cross-over point where

environmental benefit switches from negative to positive.

Figure A-2: Cumulative Distributions: Air Pollution Damages from Driving

Notes: Horizontal axis is cumulative fraction of census block groups ranked by income. Vertical axis is
cumulative fraction of the relevant variable (electric vehicle damages, gasoline vehicle damages). Damages

are for all cars in the fleet driving 15k miles per year.

Regional Variation in the Distributional Effects of Electric Vehicles

There is substantial regional variation in the environmental benefit of electric vehicles. Sim-

ilarly, their may be regional variation in the distributional effects of electric vehicles. To

assess regional variation, we split our sample into the West census region and “Non-West”

made up of the Northeast, Midwest, and South census regions. We then redo our analysis

for the two subsamples. Table A-1 shows the results from Model (8) in Table 7 for both

the full sample and for the split sample. The column in Table A-1 labeled “All” replicates

the earlier results, and the other columns show results for the split sample. The results are

quite robust to splitting the sample. Somewhat surprisingly, the results are stronger in the

West (where electricity production is cleaner) than in the Non-West. Thus cleaner electricity

production may not alleviate concerns over distributional effects of electric vehicles.
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Table A-1: Descriptive Regressions of Environmental Benefits Received per Capita by Region

All West Non-West

Income (10k) 0.011*** 0.024*** 0.003***
(0.003) (0.004) (0.001)

Urban Indicator 0.019*** 0.056*** 0.015***
(0.005) (0.021) (0.003)

Share White -0.164*** -0.301*** -0.056***
(0.042) (0.050) (0.010)

Notes: Dependent variable is environmental benefit per capita. WLS regressions weight by total population

and cluster standard errors by county. “West” is the West census region. “Non-West” is the Midwest,

Northeast, and South census regions.
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