
NBER WORKING PAPER SERIES

MACRO RISKS AND THE TERM STRUCTURE OF INTEREST RATES

Geert Bekaert
Eric Engstrom

Andrey Ermolov

Working Paper 22839
http://www.nber.org/papers/w22839

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
November 2016

Authors thank seminar participants at Baruch College, Bilkent University, University of British 
Columbia, Bundesbank, City University of London, Duke, Fordham, University of Illinois at 
Urbana-Champaign, Imperial College, Oxford, Riksbank, Sabanci Business School, Tulane, and 
University of North Carolina at Chapel-Hill and conference participants at 2015 Federal Reserve 
Bank of San Francisco and Bank of Canada Conference on Fixed Income Markets, 2016 NBER 
Summer Institute, and 2016 Society of Financial Econometrics Meeting for useful comments. All 
errors are the sole responsibility of the authors. The views expressed herein are those of the 
authors and do not necessarily reflect the views of the Federal Reserve System, its Board of 
Governors, or staff, nor those of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2016 by Geert Bekaert, Eric Engstrom, and Andrey Ermolov. All rights reserved. Short 
sections of text, not to exceed two paragraphs, may be quoted without explicit permission 
provided that full credit, including © notice, is given to the source.



Macro Risks and the Term Structure of Interest Rates
Geert Bekaert, Eric Engstrom, and Andrey Ermolov
NBER Working Paper No. 22839
November 2016
JEL No. E31,E32,E43,E44,G12,G13

ABSTRACT

We extract aggregate supply and aggregate demand shocks for the US economy from 
macroeconomic data on inflation, real GDP growth, core inflation and the unemployment gap. 
We first use unconditional non-Gaussian features in the data to achieve identification of these 
structural shocks while imposing minimal economic assumptions. We find that recessions in the 
1970s and 1980s are better characterized as driven by supply shocks while later recessions were 
driven primarily by demand shocks. The Great Recession exhibited large negative shocks to both 
demand and supply. We then use conditional (time-varying) non-Gaussian features of the 
structural shocks to estimate "macro risk factors" for supply and demand shocks that drive 
"bad" (negatively skewed) and "good" (positively skewed) variation for supply and demand 
shocks. The Great Moderation, a general decline in the volatility of many macroeconomic time 
series since the 1980s, is mostly accounted for by a reduction in the good demand variance risk 
factor. In contrast, the risk factors driving bad variance for both supply and demand shocks, 
which account for most recessions, show no secular decline. Finally, we find that macro risks 
significantly contribute to the variation in yields, bond risk premiums and the term premium. 
While overall bond risk premiums are counter-cyclical, an increase in bad demand variance is 
associated with lower risk premiums on bonds.

Geert Bekaert
Graduate School of Business
Columbia University
3022 Broadway, 411 Uris Hall
New York, NY 10027
and NBER
gb241@columbia.edu

Eric Engstrom
Board of Governors of the Federal Reserve System
Washington DC 20551
eric.engstrom@frb.gov

Andrey Ermolov
Fordham University
45 Columbus Avenue (Martino Hall) room 623A
New York, NY 10023
aermolov1@fordham.edu



1 Introduction

Distinguishing supply shocks from demands shocks has long been an empirical goal of

macroeconomics (e.g., Shapiro and Watson, 1988, Blanchard and Quah, 1989, or Gali, 1992),

in part because the appropriate monetary and fiscal policy responses may be quite different

for adverse demand versus supply shocks. In the field of asset pricing, supply shocks may

prompt quite different responses in nominal bond prices than do demand shocks. It follows

that variation in the magnitude of supply versus demand shocks may have important effects

on the risk profile of nominal bonds and other asset prices.

We extract aggregate supply and demand shocks for the US economy from data on inflation,

real GDP growth, core inflation and the unemployment gap. We begin by defining aggregate

supply shocks as shocks that move inflation and real activity in the opposite direction.

Similarly, demand shocks are defined as innovations that move inflation and real activity in

the same direction. This identification scheme is motivated by Blanchard (1989), who finds

empirically that the joint behavior of output, unemployment, prices, wages and nominal

money in the U.S. is consistent with this structure.

Defining supply and demand shocks as above presents an identification problem. We resolve

this issue without further economic assumptions, but instead using a novel approach exploit-

ing unconditional higher-order moments in the data, which we show to be highly statistically

significant. Despite this economically agnostic approach, we show that the structural shocks

that we identify exhibit some intuitive properties. For example, in a classic paper, Blanchard

and Quah (1989) use a vector-autoregressive dynamic structure to identify “demand-like”

shocks as shocks that affect output temporarily, whereas supply disturbances have a per-

manent effect on output, with neither having a long-run effect on the unemployment rate.

The shocks that we estimate also exhibit these dynamic properties even though we do not

impose them.

Next, we define macro risks as the state variables that govern the time-varying variance,

skewness and higher-order moments of supply and demand shocks. To model the time vari-

ation in these risk factors, we use the Bad Environment-Good Environment model (Bekaert

and Engstrom, 2016), which we motivate by showing that it fits the data well relative

to extant models, and because it offers a straightforward economic interpretation. In the

model, the macro risk factors drive “good-type” (positively skewed) and “bad-type” (neg-
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atively skewed) variance of the structural demand and supply shocks. As the good-type

variance increases, the distribution for the shock becomes more positively skewed. Increases

in bad-type variance may pull skewness into negative territory.

The time variation in the macro risk factors allows for the covariance between inflation and

real activity to potentially change through time. Theoretically, the sign and magnitude of

this covariance are important determinants of the risk premium for nominal bonds (see Fama,

1981; Piazzesi and Swanson, 2008; Campbell, Sunderam and Viceira, 2016). When supply

(demand) shocks dominate, real activity and inflation are negatively (positively) correlated,

and bonds are a poor (good) hedge against macroeconomic fluctuations, presumably leading

to relatively higher (lower) nominal term and risk premiums.

Our key results for macroeconomic data are as follows. First, we find that the prevalence

of supply shocks was high during the 1970s and again during the Great Recession. In

contrast macroeconomic variation in the 1980s and 1990s, particularly during recessions,

was more strongly dominated by demand shocks. Second, our analysis suggests that the

Great Moderation - a reduction in the volatility of many macroeconomic variables since the

mid-1980s - is attributed largely to a decrease in good-type demand variance. Meanwhile,

the bad-type variance risk factors for both supply and demand shocks have not experienced

any secular decline. As a result the frequency and severity of recessions, which are associated

with elevated bad-type volatility, have not changed much over our sample. These results offer

a refinement to the work of Jurado, Ludvigson and Ng (2015), who find a strong counter-

cyclical component to aggregate volatility.1 Third, we offer a characterization of the Great

Recession of 2008-2009. Some researchers suggest that the Great Recession of 2008-2009 was

accompanied by a rather large negative aggregate demand shock (see, e.g., Bils, Klenow,

and Malin, 2012, or Mian and Sufi, 2014), but there is little consensus on this issue (see,

e.g., Ireland, 2011, or Mulligan, 2012, arguing for the importance of supply shocks). We find

that negative demand and supply shocks contributed approximately equally to the Great

Recession.

We also make contributions to the empirical asset pricing literature. Although many asset

pricing paradigms (e.g., habit of Buraschi and Jiltsov, 2007, long-run risk of Bansal and

Schaliastovich, 2013, or rare disasters of Gabaix, 2012) predict that the bond risk premium

1In particular, our macro uncertainty measures have a structural “demand” versus “supply” interpreta-

tion and generate different higher order (> 2) moments depending on being primarily “good” or “bad”.
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should be a function of expected second and higher order moments of macroeconomic funda-

mentals, the vast majority of the empirical literature has surprisingly focused on explaining

expected bond returns with the expectations of the level of macroeconomic variables or,

even more simply, actual realized macroeconomic data (see, e.g., Ludvigson and Ng, 2009).

Notable exceptions are Wright (2011) and Bansal and Shaliastovich (2013). Wright (2011)

links term premiums to inflation uncertainty, whereas Bansal and Shaliastovich (2013) link

bond risk premiums to consumption and inflation volatility. Compared to these papers,

our contribution is twofold. First, we show the importance of decomposing macroeconomic

variation into components due to the variance of supply and demand shocks, and into the

good and bad types of variance. We find that the time-variation in the macro risk factors for

supply and demand implies that the covariance between inflation and real activity changes

through time and switches sign. Our analysis links this time-variation to bond risk premi-

ums by showing that demand (supply) variance negatively (positively) predicts bond excess

returns. In particular, we show that while overall the expected excess bond returns are

counter-cyclical, an increase in demand (supply) variance is associated with lower (higher)

expected returns. Second, we quantify the relative importance of first and higher order

macroeconomic moments for key term structure variables.

The remainder of the paper is organized as follows. In section 2, we describe how we

theoretically identify aggregate supply and aggregate demand shocks and how we model

macro risk factors. Section 3 describes the econometric methodology that we use to extract

the structural shocks and the macro risk factors. In Section 4, we provide empirical estimates

for the US economy from 1959 to 2015 and a structural interpretation of the macro data

using our identification scheme. In Section 5, we link the macro risk factors to term structure

data. We also assess whether they have predictive power for excess bond returns and explain

term premium behavior. A final section summarizes our key results and sets out an agenda

for future research.
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2 Modeling Macro-Risks

2.1 Aggregate supply and demand shocks in a simplified model

Consider a bivariate system in real GDP Growth (gt) and inflation (πt):

gt = Et−1[gt] + ugt ,

πt = Et−1[πt] + uπt ,
(1)

where Et−1 denotes the conditional expectation operator. In a first departure from standard

macroeconomic modeling, the shocks to output growth and inflation are a function of two

structural shocks, ust and udt :

uπt = −σπsust + σπdu
d
t ,

ugt = σgsu
s
t + σgdu

d
t ,

σπs > 0, σπd > 0, σgs > 0, σgd > 0,

Cov(udt , u
s
t) = 0, V ar(udt ) = V ar(ust) = 1.

(2)

The first fundamental economic shock, ust , is an aggregate supply shock, defined so that it

moves GDP growth and inflation in opposite directions, as happens, for instance, in episodes

of stagflation. The second fundamental shock, udt , is an aggregate demand shock, defined

so that it moves GDP growth and inflation in the same direction as would be the case

in a typical economic boom or recession. Supply and demand shocks are assumed to be

uncorrelated.

Note that the sample covariance matrix of the shocks from the bivariate system in (1) only

yields three unique moments, but we need to identify four coefficients in equation (2) to

extract the supply and demand shocks. Hence, absent additional assumptions, a system

with Gaussian shocks would be underidentified. Fortunately, it has been well established

that macroeconomic data exhibit substantial non-Gaussian features (see, e.g., Evans and

Wachtel (1993) for inflation, and Hamilton (1989) for GDP growth). Our second departure

from standard macroeconomic modeling is to assume that the demand and supply shocks are

potentially non-Gaussian in that they may have non-zero unconditional skewness and excess

kurtosis. For example, there are four available unconditional skewness and co-skewness

moments for GDP growth and inflation. These four moments, in conjunction with the three
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available second moments, could in principle be used to identify the four σπ/g,s/d parameters

(and two requisite unconditional skewness coefficients for the supply and demand shocks).

If the variance of demand and supply shocks is time-varying, the model also implies that

the conditional variance between inflation and GDP growth shocks is time-varying and can

switch signs:

Covt−1[ugt , u
π
t ] = −σπsσgsV art−1u

s
t + σπdσgdV art−1u

d
t , (3)

where the subscripts on the Cov and V ar operators denote that they may vary over time.

Thus, when demand shocks dominate the covariance is positive but when supply shocks

dominate it is negative.

The main advantage of the supply and demand shocks definition above is that it carries min-

imal theoretical restrictions (only a sign restriction)2. However, these supply and demand

shocks definitions do not necessarily correspond to demand and supply shocks in, say, a New

Keynesian framework (see e.g. Woodford, 2003) or identified VARs in the Sims tradition

(Sims, 1980).3 The classic Blanchard and Quah (1989) paper famously identifies “demand

like” shocks as those that affect output only temporarily whereas supply disturbances have

a permanent effect on output, with neither having a long run effect on unemployment rate.

However, Blanchard (1989) notes that these short- and long-run effects of supply and de-

mand shocks are consistent with responses to shocks in the context of standard Keynesian

models. For instance, supply shocks include productivity shocks which tend to have a longer

run effect on output. We reverse the identification strategy here, by first exploiting the sign

restrictions to identify the shocks, and then verifying their long-run impact on inflation and

real activity in subsequent analysis. Furthermore, in this paper we abstract from further eco-

nomic interpretation of demand and supply shocks and their sources. Such analysis would

be of great economic interest, but would require an advanced general equilibrium model

which tends to be highly stylized and can not accommodate meaningful time variation in

higher order moments (see, e.g., van Binsbergen et.al., 2012).

2The idea to impose a minimal set of sign restrictions to achieve identification is reminiscent of Uhlig’s

(2005) identification scheme for monetary policy shocks.
3Furthermore, in some models the “supply” shocks might move real activity and inflation in the same

direction: see, for instance, news shocks in Cochrane (1994).

5



2.2 Modeling Macro Risks

We define macro risk factors as determinants of the second and higher-order moments

of supply and demand shocks. We parameterize the distribution of supply and demand

shocks using a model that accommodates conditionally non-Gaussian distributions, the Bad

Environment-Good Environment (BEGE) model (Bekaert and Engstrom, 2016).

2.2.1 Bad Environment - Good Environment Model

Following a BEGE structure, demand and supply shocks are component models of two

independent distributions:

ust = σspω
s
p,t − σsnωsn,t,

udt = σdpω
d
p,t − σdnωdn,t,

(4)

where t is a time index, and σsp, σ
s
n, σdp , and σdn are positive constants. We use the notation:

ωdp,t ∼ Γ̃(pdt , 1),

ωdn,t ∼ Γ̃(ndt , 1),

ωsp,t ∼ Γ̃(pst , 1),

ωsn,t ∼ Γ̃(nst , 1),

(5)

to denote that ωdp,t follows a centered gamma distribution with shape parameter pdt and a

unit scale parameter. The corresponding probability density function, φ(ωdp,t), is given by:

φ(ωdp,t+1) =
1

Γ(pdt )
(ωdp,t+1 + pdt )

pdt−1exp(−ωdp,t+1 − pdt ),

for ωdp,t+1 > −pdt ; with Γ(·) representing the gamma function. Similar definitions apply to

ωdn,t+1, ωsp,t+1, and ωsn,t+1. Unlike the standard gamma distribution, the centered gamma

distribution has mean zero. For such distribution, the shape parameter represents the

volatility of the random variable.

The top panel of Figure 1 illustrates that the probability density function of σdpω
d
p,t (the

“good” component of the demand shock) is bounded from the left and has a right tail.

Similarly, the middle panel of Figure 1 shows that the probability density function of −σdnωdn,t
(the “bad” component) is bounded from the right and has a left tail. Finally, the bottom

panel of Figure 1 plots the component model of these two components which has both tails.
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The components of ust have the same distributional properties. Hence, we define a “good”

(“bad”) shape parameter as one associated with a ωp (ωn)-shock.

The good (pdt , p
s
t) and bad (ndt , n

s
t) shape parameters of our macro shocks are assumed to

vary through time in an autoregressive fashion as in Gourieroux and Jasiak (2006):

pdt = p̄d(1− φdp) + φdpp
d
t−1 + σdpω

d
p,t,

pst = p̄d(1− φsp) + φspp
s
t−1 + σspω

s
p,t,

ndt = n̄d(1− φdn) + φdnn
d
t−1 + σdnω

d
n,t,

nst = s̄d(1− φsn) + φsnp
s
t−1 + σsnω

s
n,t.

(6)

Note that positive ωdp,t shocks drive up GDP growth, as do the ωsp,t shocks, and those shocks

are associated with an increase in both pdt and pst . We call this “good volatility” because

it induces more positive skewness in GDP growth. Conversely, positive realizations of ωdn,t

and ωsn,t shocks drive down GDP growth and they are associated with an increase in “bad”

volatility and more negative skewness. This explains the “BEGE” moniker.

Using the demand shock as an example, Figure 2 illustrates possible conditional distributions

of demand shocks which could arise as a result of the time variation in shape parameters

in equation (6). In particular, the probability density function in the top panel of Figure

2 characterizes the situation where good volatility is relatively large and the component

distribution has a pronounced right tail, while the probability density function in the bottom

panel of Figure 2 corresponds to the case where bad volatility is relatively large and the

component distribution exhibits a pronounced left tail.

2.2.2 Conditional Moments under the Bad Environment-Good Environment

Model

At this point, we have set out an economy with 4 shocks (ωdp,t, ω
d
n,t, ω

s
p,t, and ωsn,t) and 4

state variables, which we collect in Xmr
t = [pst , n

s
t , p

d
t , n

d
t ]
′. These 4 state variables summarize

the macroeconomic risks in the economy. Using the properties of the centered gamma
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distribution, we have, for example:

Et−1[ust ] = 0,

Et−1[(ust)
2] = (σsp)

2pst + (σsn)2nst ,

Et−1[(ust)
3] = 2(σsp)

3pst − 2(σsn)3nst ,

Et−1[(ust)
4]− 3(Et−1[(ust)

2])2 = 6(σsp)
4pst + 6(σsn)4nst .

(7)

And analogously for udt .

Thus, the BEGE structure implies that the conditional variance of inflation and output

varies through time, with the time-variation potentially coming from either demand or

supply shocks, and either bad or good volatility. In addition, the distribution of inflation

and output shocks is conditionally non-Gaussian, with time variation in the higher order

moments driven by variation in Xmr
t .

2.3 The Full Model

A model with only two macroeconomic variables such as the one presented above would be

too narrow for our purposes and our estimates of supply and demand shocks are based on a

more extensive model of the macroeconomy. First, we consider a four variable macro model,

rather than a two variable system, adding core inflation and the unemployment gap. Core

inflation, which strips out components of overall inflation that are particularly volatile such

as energy and food prices, is, of course, a variable that is closely followed by monetary policy

makers. Core inflation has been shown to be useful in forecasting future inflation. Ajello,

Benzoni and Chyhruk (2012) in fact claim that adding core inflation to a macro system

results in inflation forecasts that are as accurate as forecasts based on survey data (see

Ang, Bekaert and Wei, 2007, for more on the accuracy of survey based inflation forecasts).

This is relevant, because we use quarterly data starting in 1959 and thus cannot easily

use survey forecasts (for instance, the quarterly Survey of Professional Forecasters started

in 1969). Analogously, for many practitioners, the unemployment rate gap is preferred to

GDP growth as an indicator of economic activity. Moreover, as Bauer and Rudebusch (2016)

demonstrate, this variable is in fact little correlated with GDP growth and contains useful

alternative information about real economic activity.

We collect the 4 macro variables in the vector Xt. Because we want to identify shocks to
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these four variables, it is important that we specify their conditional means carefully. Bond

yields have well-established predictive power for economic variables (see Harvey, 1988, and

many others, for the predictive ability of the term spread for GDP growth, for example)

prompting us to add yields to the information set. Therefore, we collect the one-quarter

and 10-year Treasury yield data in the vector Zt.

We use a VARMA model to extract AS/AD shocks from Xt:

Φ(L)Xt = BZt−1 + θ(L)ut, (8)

Where Φ(L) and θ(L) are vector polynomials in the lag operator. Furthermore:

ut = Σumt + Ωet (9)

where umt = [ust , u
d
t ], the structural shocks, and Σ is a 4x2 matrix containing the exposures

of macroeconomic shocks to AS/AD shocks. The vector et represents shocks uncorrelated

with ut, with mean zero, unit variance and zero skewness and excess kurtosis and Ω is a

diagonal matrix. It is necessary to add these uncorrelated innovations to the macro series

to avoid having a singularity in their covariance matrix. We assume that these orthogonal

shocks have zero skewness and excess kurtosis mostly for convenience, but this assumption

also aids in the identification of the supply and demand shocks; we assume all the excess

skewness and kurtosis among the macro variables arises solely from the structural shocks.

Note that these shocks may represent important shocks, not modelled in our framework,

such as monetary policy shocks, stressed, e.g., in Campbell, Pflueger and Viceira (2015).

3 Identifying Macro Risks in the US economy

While there are multiple ways to estimate the system in equations (2), (4), (6), (8), and (9),

the presence of the gamma distributed shocks makes the exercise nontrivial. We therefore

split the problem into three manageable steps. First, we use standard techniques to estimate

the VARMA(p,q) model and determine its order. Second, we filter the demand and supply

shocks from the system in equation (9) by estimating a GMM system that includes higher-

order unconditional moments of the macroeconomic variables. The use of higher-order

moments is essential to achieve identification in our framework. Third, once the demand

and supply shocks are filtered, we can estimate univariate BEGE systems on supply and
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demand shocks (exploiting the identifying assumption that they are independent) using

approximate maximum likelihood as in Bates (2006).4 We begin by describing the data we

use.

3.1 Data

The data are quarterly from 1959:Q2 to 2015:Q2 (225 quarters). Potentially, we could

have included data back to 1947:Q1 (the starting date for GDP data). The later start

date is chosen to exclude a period when there was higher measurement error in the GDP

data (Bureau of Economic Analysis, 1993). Moreover, US long-term rates were pegged by

the Federal Reserve prior to the Treasury Accord of 1951. For inflation (core inflation)

we use 100 times log changes in the headline CPI index (CPI excluding food and energy)

measured for the last month of each quarter, from the Bureau of Labor Statistics (BLS).

Real GDP growth is 100 times the log difference in real GDP (in chained 2009 dollars) from

the Bureau of Economic Analysis. The unemployment rate gap is the difference between the

unemployment rate (in percent) from the last month of each quarter from the BLS, and the

estimated level of the natural rate of unemployment published by the Congressional Budget

Office.

Interest rate data consists of yields, prices and returns for nominal U.S. Treasury securities.

For maturities of length 1 quarter and 1, 2, 3, 4 and 5 years, estimated yields for zero-coupon

securities are taken from the Fama-Bliss (1987) data set (part of the CRSP). For yields of

maturity 10 years, data from 1959:Q2 through 1971:Q1 are from the McCullough-Kwon

(1993) data set. From 1971:Q1-2015:Q2, data for 10-year yields are from Gürkaynak, Sack,

and Wright (2010). Yields at maturities other than those discussed above are estimated

by linear interpolation. We use continuously compounded yields, expressed as annualized

percentages.

4A disadvantage of using a multi-step estimation process is that statistical inference is complicated by

the fact that all steps after the first one use pre-estimated coefficients or filtered variables that are subject to

sampling error. To account for these errors, we also execute the entire multi-step estimation process using

bootstrapped data. The bootstrap procedure is described in Appendix A.
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3.2 Estimating the VARMA (p, q) model

To estimate the time series model for Xt, including inflation, real GDP growth, core inflation,

and the unemployment rate gap, we first de-mean the variables. We choose among a variety

of time series models, in particular VAR(1), VAR(2), VARMA(1,1), VARMA(1,2), and

VARMA(2,1), using standard information criteria. All models were estimated two ways,

excluding and including the instruments Zt−1 (including 1-quarter and 10-year nominal

Treasury yields). Models were estimated by quasi-ML (using a Gaussian likelihood function).

Because some of these models are heavily parameterized (the highest-order ones have over

50 parameters), we employ a two-step procedure to help ensure that we identify a global

maximum of the likelihood functions. In a first step, we obtain starting values using a

recursive-OLS procedure. Following Hannan and Rissanen (1982), we first estimate by OLS

a vector-autoregression with a large number of lags. We use 6 lags, but that choice does

not appear material for the results. We then recover the estimated residuals from this step,

ût. These residuals serve as a “plug-in” estimator of lagged shocks for the VARMA model,

and then we estimate the VARMA by OLS. This step is repeated until all of the estimated

parameters of the VARMA and all of the estimated residuals converge, which we define as

changing by less than 1e-6. In a second step, we use the parameter estimates from Step 1

as starting values for estimation by QML.

Model selection criteria are reported in Table 1. We use the standard Bayesian information

criterion (BIC), but the Akaike information criterion (AIC) is modified to correct for small

sample biases (Sugiura, 1978; Burnham and Anderson, 2004). The AIC model identifies

the VARMA (1,1) model, including the yield instruments as optimal. The BIC criterion

identifies the VARMA (1,1) model without instruments as optimal, but the VARMA (1,1)

model with instruments is identified by the BIC as having the second best score and we use

this model.

3.3 Identifying supply and demand shocks

The VARMA model delivers time series observations on ut. Theoretically, it is possible

to estimate the system defined by equations (2), (4), (6), (8), and (9) in one step, but

computationally this is a very tall order. There are 4 unobserved state variables (the Xmr
t
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vector) which have non-Gaussian innovations. However, note that if we can identify the

coefficients in Σ in equation (9), we can filter the supply and demand shocks from the

original macro shocks ut. With these structural shocks in hand, we can estimate univariate

BEGE systems on each of demand and supply shocks separately.

We use information in 2nd, 3rd and 4th order unconditional moments of the shocks to the

macroeconomic variables to identify loadings on supply and demand shocks. Specifically, we

calculate 48 statistics starting from the four macroeconomic shocks. These are the uncon-

ditional standard deviations (4), correlations (6), univariate (scaled) skewness and excess

kurtosis (8), selected co-skewness (12), and selected co-excess kurtosis measures (18). To

calculate the covariance matrix of the sampling error for these statistics, we use a block

bootstrapping routine. Specifically, we sample, with replacement, blocks of length 20 quar-

ters of the 4 variable - vector of macroeconomic shocks, to build up a synthetic sample of

length equal to that of our data. We calculate the same set of 2nd, 3rd, and 4th order statis-

tics for each of 10,000 synthetic samples. We then calculate the covariance matrix of these

statistics across bootstrap samples. Inspecting this sample covariance matrix, we found that

the sampling errors for some statistics are highly correlated, leading to ill-conditioning of

the covariance matrix. To estimate a better-conditioned covariance matrix, we calculated a

“shrinkage estimator” (Ledoit and Wolff, 2003), using a linear combination of the full covari-

ance matrix (weight 0.95) and a diagonal version which zeros out the off-diagonal elements

(weight 0.05). Our results are not sensitive to perturbations in this weighting scheme. We

acknowledge that this covariance matrix estimator does not reflect sampling error associated

with the VARMA parameters that were used to identify the macroeconomic shocks, which

may lead to inefficiency of our estimates. We then estimate the loadings of the macroeco-

nomic shocks onto the supply and demand shocks using Classical Minimum Distance (CMD

henceforth) optimization (see, e.g., Wooldridge, 2002, pp. 445-446). The CMD estimation

uses the inverse of the bootstrapped covariance matrix described above as the weighting

matrix.

Table 2 reports the higher-order moments we use in the estimation. Not surprisingly, all

volatility statistics are statistically significantly different from zero, but so are the coefficients

of excess kurtosis. However, among the skewness coefficients, only the positive skewness of

shocks to the unemployment gap is statistically significant and only one of 12 co-skewness

coefficients is significant. The symmetric co-kurtosis measures (those involving terms such as
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x2
1x

2
2) are all significantly different from zero and 6 out of 12 “asymmetric” (those involving

terms such as x3
1x2) co-kurtosis measures are statistically significant as well. The p-value

for the joint significance of all the 3rd and 4th order moments is < 0.0001.

We next use the information in these higher order moments to identify the loadings on our

supply and demand shocks. We estimate a total of 13 parameters using our 48 estimated

statistics. These can be grouped into three sets:

• The loadings of four macro shocks onto supply and demand shocks (8 parameters) in

the matrix Σ in (9), imposing the sign restrictions described above.

• The share of variation of the macro shocks that comes from idiosyncratic variation or

measurement error, that is the matrix Ω in (9)). We assume this share is constant

across the four variables (1 parameter). We do this to impose a prior that all 4 series

contribute (jointly) to demand and supply shocks. If we do not impose this restriction,

the system tends to drive the variance of idiosyncratic factors to zero for the less noisy

macro series, in which case the noisier macro series (such as real GDP growth) do not

contribute much to the identification of supply and demand shocks.

• The skewness and kurtosis of the supply and demand shocks (4 parameters). Note

that we do not assume a parametric model for the distribution of supply and demand

shocks at this stage: we simply estimate their skewness/kurtosis coefficients as free

parameters.

Table 2 shows that our CMD estimation does not miss any individual moment by more than

2 standard errors. The test of the overidentifying restrictions does reject at the 5 percent

level (p-value of 4.81%), showing that higher order moments indeed have statistical “bite”.

In Table 3, Panel A, we report the supply and demand loadings for the various macro

variables. These are generally quite precisely estimated. Our estimates suggest that supply

and demand contribute roughly equally to the variance of inflation. GDP growth and the

unemployment gap load a little more heavily onto demand shocks than on supply shocks,

with is also true for core inflation. We estimate the share of idiosyncratic variation for the

four series to be relatively high at 47 percent. These sources of variation may represent

measurement error in the macroeconomic data (see, e.g., Wilcox, 1992), but they may also

represent unmodeled structural variation.
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Based on these loadings, we invert the supply and demand shocks from the macro shocks

using a Kalman filter assuming that the shocks et in equation (9) are i.i.d. Gaussian. Even

when shocks are not Gaussian, the Kalman filter is still best in terms of root-mean-square

error among all linear filters. The Kalman gain formula is:

K = Σ′(ΣΣ′ + ΩΩ′)−1, (10)

where Σ is the 4x2 loading of the macro shocks onto the supply and demand factors, and Ω

is a diagonal 4x4 matrix of loadings onto the idiosyncratic shocks as in equation (9). Table

3, Panel B, reports Kalman gain coefficients, which are all of the intuitive sign.

In Panel C of Table 3, we show a variance decomposition illustrating how much of the

demand/supply shock variance is accounted for by the 4 macro variables. That is, we

compute, for example,
Cov(udt ,Kd,ππt)

V ar(udt )
, where Kd,π is the Kalman gain coefficient on inflation

for the demand shock. By construction, these variables add up to one. The results show that

the 4 different series contribute about equally to the structural shocks, with the real activity

variables contributing slightly more to demand shocks, and inflation shocks contributing a

bit more to the identification of supply shocks.

Finally, in Panel D of Table 3, we report the skewness and kurtosis of the filtered supply

and demand shocks. Both shocks are leptokurtic but the demand shock is negatively skewed

whereas the supply shock has slight positive skewness. The departure from the Gaussian

distribution of the demand shocks is clearly more pronounced than that of the supply shock.

Yet, a standard Jarque-Bera test rejects the null of normality at the 1 percent level for both

shocks.

3.4 Estimating Macro Risk Factors

Note that the identification scheme for structural shocks described above is completely

model-free, making our methodology applicable with any statistical model which can ac-

commodate non-Gaussian features of the data. Given the structural shocks, we are left to

identify the BEGE model parameters. We use an estimation and filtering apparatus due

to Bates (2006). The methodology is similar in spirit to that of the Kalman filter, but the

Bates routine is able to accommodate non-Gaussian shocks. The details of the estimation

are in Appendix C.
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3.4.1 Parameter Estimates

Using standard information criteria, we found that our full model with two latent variables

driving the time variation in second and higher order moments was too rich for our time

series of filtered shocks. For the supply shock, the good volatility process does not show

substantial time variation and the good environment shock is essentially Gaussian featuring

a high shape parameter of the corresponding gamma distribution. We therefore imposed

the good environment process for supply to be Gaussian with a constant unit variance.

Note that the unconditional variances of the demand and supply shocks are restricted to be

1, which reduces the number of parameters to estimate by 1 and the supply shock BEGE

process therefore requires only 4 free parameters: σsn, φsn, σsnn, and the share of the good

variance p̄s.

For the demand shock, we find evidence for time variation in both good and bad variance,

but the unconditional mean of the good volatility process becomes very high, indicating

that the good volatility shocks were often nearly Gaussian.5 However, it is not always

high, sometimes becoming low enough to indicate a nontrivial degree of conditional non-

Gaussianity. Moreover, a Gaussian stochastic volatility model for the pdt process is rejected

by the data. Nevertheless, this situation resulted in an identification problem for the BEGE

model, as the unconditional mean of pdt , was poorly identified.6 We therefore restricted it

to be 100, a restriction which is not rejected by the data.

The parameter estimates for the BEGE model are reported in Table 4. The table reports the

various parameter estimates including the unconditional values of the pt and nt variables,

which determine the extent of non-Gaussianity in the shock distributions. For the demand

shocks, unconditionally, the good demand variable is nearly Gaussian by construction, but

the bad environment variable is very non-Gaussian. In particular, its unconditional skewness

is 2√
n̄d

, or 3.21 and its kurtosis is 6
n̄d

or 15.45. The bad environment shape parameter is also

far less persistent than the good environment variable, therefore capturing rather short-lived

5Recall that the macro risk factors also have an interpretation as the time-varying shape parameters of

a model with gamma-distributed shocks. As shape parameters grow large, gamma distributions approach a

Gaussian distribution.
6This identification problem likely arises because when its shape parameter becomes over 10, the gamma

distribution becomes very close to Gaussian. Further increases in the shape parameter do not substantially

change the shape of the distribution.
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recessionary bursts (0.79 versus 0.96 autocorrelation). For the supply shock, we imposed the

distribution of the good environment shock to be Gaussian. The supply bad-environment

distribution is relatively more Gaussian compared to the demand shock with the uncondi-

tional mean of the shape parameter equal to 1.07. This implies unconditional skewness of

1.94 and kurtosis of 5.63. The shock has similar persistence to the bad environment demand

shock, suggesting that supply driven recessions may have similar duration to demand driven

recessions.7

3.4.2 Model Comparision

We tested the performance of the BEGE model to examine whether it fits the estimated

supply and demand shocks as well as more well-known models that also feature time-varying

second- and higher-order moments. Specifically, we looked at the performance of the BEGE

model relative to regime-switching models of the Hamilton (1989)-type, and a model of

Gaussian stochastic volatility. To evaluate the relative performance of the models, we used

standard BIC and AIC (with the usual small sample correction) criteria.8 These results are

presented in Table 5. As shown in the top panel, for the supply shock, the BEGE model

performs better than the stochastic volatility model but worse than the regime switching

models using either criterion. For demand shocks, as reported in the middle panel, the BEGE

model outperforms both other models on both criteria. When examining the performance

jointly across supply and demand shocks, the BEGE model outperforms the other two

models. We conclude that the BEGE model generally performs well in this competition.

4 Macro Risks in the US Economy

Having estimated macroeconomic dynamics, we can now use our model as a lense to inter-

pret the history of key U.S. macroeconomic data over the 1959-2015 period. We begin by

7The astute reader will notice that five parameters are reported for the supply process, but there are

only four independent parameters required for the estimation. However, the parameters p̄s and n̄s can be

expressed as functions of the four model parameters. Their standard errors are calculated using the delta

method. A similar method was used for the demand BEGE model.
8Because the BEGE and the Gaussian stochastic volatility models are estimated using approximate

maximum likelihood as in Bates (2006), the comparison of these models to the regime switching models,

which is estimated using exact maximum likelihood, is only informal.
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characterizing the long-run effects of supply and demand shocks; we subsequently analyze

the nature of recessions within our framework, followed by examining the time series and

cyclical behavior of the macro risk factors themselves.

4.1 Impulse responses to aggregate supply and demand shocks

Our identification of supply and demand shocks utilizes a set of minimal linear sign restric-

tions and information in higher order moments. These sign restrictions are present in other

classic papers as well, such as Gali (1992) and Shapiro and Watson (1988) but are typically

accompanied by a set of additional economic restrictions (e.g., that demand shocks have

no long run effect on the level of GDP as in the classic Blanchard and Quah (1989) paper)

which we do not need. In this section, we characterize the long run effects of the structural

shocks using standard impulse response analysis.

For the purposes of calculating impulse response functions for the macro data, we must model

the joint evolution of the yield instruments with the macro series (because we allow yields to

forecast the macro variables, having found strong evidence for such dynamics). For our main

estimation, we therefore estimate a VARMA (1,1) using all six variables (the four macro

variables plus the 1-quarter and 10-year yields), which represents a slight generalization of

our main model of the macroeconomic time series because it allows lagged shocks for yields

to additionally affect the conditional mean of the macroeconomic series. To compute the

response of the four macroeconomic series at various horizons to the supply and demand

shocks, we need the contemporaneous response of all the variables to supply and demand

shocks. For the four macroeconomic series, these responses are the elements of the Σ matrix

in equation (9). For the two yield variables, we extract the time series for reduced-form

shocks from the VARMA (1,1)-estimation and simply regress these shocks onto the filtered

supply and demand shocks. We stack these loadings together with the Σ matrix into a 6x2

matrix, Σ2. Then the responses of the six endogenous variables to the two structural shocks,

supply and demand, of unit size at horizon h, are given by the expression:

IR(h) = Ah−1(A+B)Σ2, (11)

where A and B are the AR and MA matrices from the VARMA-model, respectively. Note

that the standard error for the impulse response coefficients must account not only for the

estimation of the VARMA(1,1) parameters but also for the error incurred in identifying
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supply and demand shocks, which involves the higher order moments of VARMA residuals.

To this end, we use a bootstrap procedure, which is described in detail in Appendix A. As a

robustness check, in Appendix B we also calculate “model-free” impulse responses following

Jorda (2005).

Table 6 contains the results, with the effects of demand (supply) shocks on the left (right)

(recall that these shocks have unit variance by construction). The effects are consistent

with the standard Keynesian interpretation. Demand shocks have large short run effects

on real GDP growth (with the initial shock being 0.40 percent) but their cumulative effect

on output is small (0.17 percent) and insignificantly different from zero. Supply shocks

generate smaller short run GDP growth effects but their cumulative effect is 0.65 percent

which is significantly different from zero. Demand and supply shocks have similar but

opposite effects on the price level, with the cumulative effects close to +1 percent (-0.80

percent) in the case of demand (supply) shocks, but these effects are imprecisely measured.

In sum, our identification scheme yields shocks whose long-run effects are consistent with a

well-established macroeconomic literature.

4.2 Characterizing recessions using aggregate supply and demand

shocks

Our identification of supply and demand shocks allows us to characterize recessions as either

supply or demand driven (or a combination of both). Figure 3 graphs the filtered demand

and supply shocks with NBER recessions shaded: it is apparent that many recessions are

accompanied by a negative supply shock, but this appears more prevalent in the seventies.

A large negative demand shock is very apparent for the Great Recession, but the recessions

in the early eighties were also accompanied by large negative demand shocks.

Table 7 quantifies the visual impression by simply adding up the (net) demand and supply

shocks over the recession period (that is, positive and negative shocks can cancel each other

out). The 1969-70 and 1973-75 recessions did not feature strongly negative demand shocks

but the other recessions did, with the 1981-82 and Great Recession featuring the largest

negative demand shocks. All recessions featured negative supply shocks, with the largest

negative shocks occurring in the 1974-1975 recession and the Great Recession. For the 1981-

82 recession, the cumulative supply effect is effectively zero however. On a relative basis, the
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first four recessions were predominantly supply driven whereas three of last four were more

demand driven (the exception being the 1990-91 recession). For the first five recessions, these

results are broadly consistent with Gali’s (1992) results, who also characterizes the 1973-75

recession as mostly supply driven and the 1981-82 recession as mostly demand driven. Our

results for the Great Recession assign a perhaps surprisingly large role to supply shocks, but

this is not inconsistent with the results in Ireland (2011) or Mulligan (2012), for example.

At the same time, recent work by Bils, Klenow and Malin (2012) and Mian and Sufi (2014)

using micro data stresses lower aggregate demand as the main cause of the steep drop in

employment during the Great Recession.

The Great Recession of 2008-2009 stimulated much research on the effects of macroeconomic

uncertainty on the economy (see, e.g., Ludvigson, Ma, and Ng, 2016; Carriero, Clark and

Marcellino, 2016). The BEGE structure implies that shocks to supply and demand are

correlated with changes in the macroeconomic risk factors. For example, the bad volatility

demand shock is perfectly conditionally correlated with the bad demand shock (see equations

(4) and (6)), so that uncertainty shocks affect the levels of macroeconomic variables by

assumption. We therefore also investigate the behavior of the macroeconomic risk factors

during recessions. Our model implies that the total conditional variance of demand and

supply shocks are the sum of the good and bad components. These are plotted in Figure 4.

The good demand variance (see Panel A) was relatively high in the 70s and the early 80s,

and then decreased to low levels consistent with the Great Moderation (a further discussion

of the Great Moderation is below). The bad demand variance shows much less pronounced

low frequency variation but peaks in the recessions of 1960, the early eighties, 2001 and the

recent Great Recession. It also shows short-lived peaks in the late sixties and twice in the

decade between 2000 and the beginning of the Great Recession.

Panel B of Figure 4 performs the same exercise for supply variances. The level of good

variance is time-invariant at a relatively low level. The bad supply variance appears higher

in the stagflationary episodes of the 1970s, but closer inspection reveals that it peaks in

all recessions with the exception of the 2001 recession. Its increase in the Great Recession

is extreme, starting towards the end of the period and exceeding its unconditional average

level of 0.52 until 2012Q1.9

9Campbell, Pflueger, and Viceira (2015) suggest that supply shock volatility decreases after 1980 but its

decrease may have been masked by changes in monetary policy, at least until 2000.
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Panel C of Figure 4 plots together the conditional variances of demand and supply shocks.

Given that both supply and demand shocks have unit variance, the graph immediately gives

a sense of which variance dominates. Supply variance tends to spike higher in recessions

than demand variance does. The only secular decline that one might associate with the

Great Moderation appears to come from the demand side.

One novel feature of our model is that it accommodates and provides estimates of the

non-Gaussian features of the shocks. In particular, in environments dominated by elevated

levels of bad supply variance, we would expect high-inflation scares and positive inflation

skewness, whereas in aggregate demand environments, we may witness negative inflation

skewness (deflation scares). For the real activity variables, recessions, being riskier macro

environments, should be naturally accompanied by negative skewness for real GDP growth

and positive skewness for the unemployment gap. Figure 5 graphs the (scaled) conditional

skewness for our 4 macro variables. For real GDP growth and the unemployment gap, it is

indeed the case that in recessions, there generally is a local trough in the skewness of GDP

growth and a local peak in the skewness of the unemployment rate gap. The movements are

largest in the recent Great Recession. For the inflation variables, we see positive spikes in

conditional skewness in the first 4 recessions and the 1990 recession. However, in the reces-

sions of 1980 and 2001, we witnessed negative skewness and in the Great Recession, there

are large movements in skewness from positive to negative and back to positive, consistent

with this period witnessing both large supply and demand shocks.

4.3 Time variation in conditional macro variances and the Great

Moderation

Because our model generates time variation in the conditional variance of the macro vari-

ables, it can potentially inform the debate on the Great Moderation. The literature has

mostly focused on output volatility and puts a “break point” for output volatility in the

first quarter of 1984 (see McConnell and Perez-Quiros, 2000; Stock, Watson, Gali and Hall,

2002). For inflation, Baele et. al. (2015) suggest a later date, the first quarter of 1990.

Whereas most of the discussion in the literature has tried to attribute the decreased volatil-

ity to either good luck or improvements in monetary policy (see e.g. Cogley and Sargent,

2005; Benati and Surico, 2009; Sims and Zha, 2006, and Baele et. al., 2015, and the refer-
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ences therein), our model offers an alternative perspective. First, there is no visual evidence

of a break in supply variances at all. However, supply variances peak in recessions and so

the recession-intensive 70s and 80s naturally feature higher supply variances than the period

thereafter. While it is possible that monetary policy lowered the incidence of recessions, it

is not obvious how monetary policy would stave off the volatility associated with supply

shocks, and indeed does not appear to have done so in the 1990 and recent Great Recession.

Second, for the demand variance, it is obvious that the more benign “good” variance process

shows a distinct break in the mid-eighties, but the more pernicious “bad” variance contin-

ues to peak in recessions as it did before. This result is reminiscent of a recent finding in

Gadea, Gomez Loscos and Prez-Quiros (2014), who, after examining a very long historical

period, also conclude that declines in output volatility are associated with expansionary not

recessionary periods.

We next test more formally whether inflation and real GDP growth have seen declines in

volatility such as that suggested by the Great Moderation, and if so, whether changes in

good demand variance, bad demand variance, or bad supply variance explain the shift.

Table 8 reports simple dummy regressions for inflation (Panel A) and GDP growth (Panel

B). The first three columns report the constant and slope of a regression of the conditional

variance of either inflation or GDP growth on a constant and a dummy. We use conservative

standard errors correcting for heteroscedasticity and serial correlation using 40 Newey-West

lags, but we do not account for sampling error in the filtered macro risk factors.

The rest of the table then splits up the conditional variance in their demand and supply

components, and the demand variance into its good and bad demand components. To

facilitate comparisons with the literature, we focus mainly on changes in volatility from and

initial period spanning 1959 to 1990 compared to the later period spanning from 1990 to

2000. For inflation, there is strong evidence of a decrease in variance after 1990, with the

variance decreasing by about 1/5 of its magnitude before the break and the break being

statistically significant at the 5 percent level. The additional tests reveal that the break is

entirely due to a decrease in good demand variance. In other words, the Great Moderation

may not imply smaller inflation volatility in future recessions. In Panel B of Table 7, the

same analysis is performed for real GDP growth volatility. Similarly, the break point indeed

is associated with the GDP variance decreasing by about 20 percent of its pre-break value,

but the change is only significant at the 10 percent level. Here the decomposition analysis
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produces less clear results. We find a significant contribution from a reduction in bad

supply variance, likely associated with the reduced incidence of recessions since 1980, but

the (insignificant) reduction in demand variance is economically larger. While both good

and bad demand variances contributed to the decrease, only the decrease in the volatility of

good demand is economically meaningful, and the variance reductions are not statistically

significant.

Lengthening our sample period to the present could increase the power of our tests, and also

enables us to address a more recent question: “Is the Great Moderation over?” Baele et. al.

(2015) use a macro-regime switching model suggesting that the Great Moderation for both

inflation and output has ended, even before (for inflation) or just with the onset (for output)

of the Great Recession. However, Gadea, Gomez Loscos and Prez-Quiros (2015) argue, based

on a pure statistical analysis of GDP growth volatility, that the Great Moderation is alive

and well, despite the Great Recession experience. To test these claims using our estimates

of the conditional variance of inflation and output, we examine ending the sample in the

fourth quarter of 2006 (just before the Great Recession) or the final quarter in 2015 (using

the full sample).

For inflation, when the data from the Great Recession are ignored, the Great Moderation

result and its decomposition we documented before is maintained and becomes statistically

stronger. However, when we extend the sample to the end of 2015, the decline in the inflation

variance weakens and becomes statistically insignificant. It is still the case though that the

(good) demand variances become significantly lower post 1990. This suggests that if more

non-recession data accumulate, we may well find that the Great Moderation for inflation

holds up.

For real GDP growth, extending the sample to 2006 strengthens the Great Moderation

evidence statistically somewhat, with now the demand variance also decreasing significantly

at the 10% level. Yet, the evidence against constant overall and demand variances remains

rather weak. The significant supply variance decline result is robust however. When we

extend the sample to the end of 2015, the GDP variance overall decreases but the result is

weaker economically than in McConnell and Perez-Quiros (2000) and Stock, Watson, Gali

and Hall (2002), and not statistically significant. We no longer find evidence that the supply

variance has changed, but still find the (good) demand variance to be lower than before.
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We conclude that there is some evidence that the “good” demand variance has decreased

over time, but there is no strong evidence that either “bad” demand variances or supply

variances have declined. Our analysis of the structural sources of recessions suggest that

we therefore should not expect them to be less variable in the future than they were in the

past.

4.4 Conditional Covariances between Macroeconomic Time Se-

ries

From the perspective of theoretical asset pricing, an important implication of our structural

framework regards the covariance between inflation and real activity. From Equation 3, it is

evident that in an environment where demand (supply) variances dominate, the conditional

covariance between inflation and real activity is positive (negative). To the extent that

variances are persistent, changes in this covariance may have important ramifications for

term and bond return premiums, which we examine in Section V. Surprisingly, to our

knowledge, sign-switching correlations have so far only been documented for consumption

growth and aggregate inflation (Hasseltoft and Burkhardt, 2012, Song, 2014, and Ermolov,

2015).

Figure 6 graphs the conditional covariance between, respectively, inflation and real GDP

growth and also between core inflation and the unemployment gap (where the aforemen-

tioned signs are reversed). Overall, the covariance is mostly positive (roughly 70 percent

of the time), which is driven by the important contribution of (good) demand variances

to all macro variables. Yet, there are frequent sign changes, mostly associated with large

supply shocks during recessions, especially in the early part of the sample period. Early in

the Great Recession, demand shocks generate a local peak in the covariance but subsequent

large supply shocks then bring the covariance down. A covariance of near zero can in fact

hide some strong structural sources of comovement. To see this more clearly, we also show

the (bad) supply and (good and bad) demand covariance components of the total covariance.

For example, the near-zero correlation between real GDP and inflation from 2000 up to the

onset of the Great Recession is the sum of a sizable positive covariance driven by good and

bad demand shocks and a sizable negative covariance riven by bad supply shocks. In the

Great Recession, the conditional bad variance of both kinds of shocks shoots up, with the
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bad demand shock first ratcheting the covariance upwards, and bad supply variance later

bringing it in negative territory.

5 Macro Risks and the Term Structure

In this section, we explore the interaction of macro factors with the term structure of interest

rates. In the preceding sections, we have identified three novel macro-risk factors (pdt , ndt , and

nst). These variables can be interpreted as “good” or “bad” conditional volatilities of demand

and supply shocks, but their time variation also changes the entire conditional distribution

of these shocks. For comparison with the existing literature on explaining bond yields and

returns using macro data, we also examine the performance of “level” macro factors, which

include expected inflation, expected core inflation and expected real GDP growth (We use

the previously described VARMA(1,1) system to compute these expectations). We also use

the unemployment gap as a macro level factor. Thus there are a total of 7 macro-factors we

consider.

We address three questions. First, we ask whether macroeconomic factors help explain

the yield curve. Second, we investigate the predictive power of our new macro risk factors

for bond excess returns. Finally, we also explore how the macro risk factors affect term

premiums.

5.1 Macro Risks and the Yield Curve

We start by computing the classic yield curve financial factors. The “level” factor is the

equally weighted average of all yields (from the one year to the 10 year maturity); the

“slope” factor is the difference between the 10 year yield and one quarter yield; and finally,

the “curvature” factor subtracts twice the two-year rate from the sum of the one quarter rate

and the 10 year yield. Taken together, these three factors span the overwhelming majority of

variation in yields at all maturities. Thus, to operationalize our test of whether macro factors

explain yields, we test whether the macro factors explain variation in these three factors.

To assess whether macro factors are important determinants of these three financial factors,

Table 9 reports R2 statistics from regressions of the financial factors onto macro factors.

Panel A reports results regarding the macro level factors and the macro risk factors. First,
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the explanatory power of the macro level factors alone for the financial factors is substantial,

with the adjusted R2’s exceeding 70, 55, and 30 percent respectively for the level, slope, and

curvature factors. Second, the macro risks contribute in a statistically significant fashion to

the level and curvature factors10, boosting the R2’s by about 6 percentage points in both

cases. As a robustness check, in Panel B we check whether the boost in explanatory power

due to the macro risk factors survives the inclusion of a second set of level macro factors in

the regression, those constructed by Ang and Piazzesi (2003). The increase in R2’s due to

the macro risk factors is essentially unaffected.

5.2 Macro Risks and Bond Return Predictability

The literature on bond return predictability is voluminous, but mostly focuses on using

information extracted from the yield curve to predict future holding period returns (e.g.

Cochrane and Piazzesi, 2005). Ludvigson and Ng (2009) find that “real” and “inflation”

factors, extracted from a large number of macroeconomic time series, have significant fore-

casting power for future excess returns on nominal bonds. Moreover, this forecastability is

above and beyond the predictive power contained in forward rates and yield spreads. Also,

the bond risk premia implied by these regressions have a marked countercyclical component.

Bansal and Shaliastovich (2013) show that consumption growth and inflation volatility pre-

dict excess bond returns. Cieslak and Pavola (2015) uncover short-lived predictability in

bond returns by controlling for a persistent component in inflation expectations. Baril-

las (2011) shows that the predictability due to macro factors for excess bond returns is

economically significant.

In Table 10, we explore the link between future bond returns and our macro factors. We focus

on excess one-quarter holding period returns relative to the one quarter yield. This avoids

the use of overlapping data which can spuriously increase R2’s in predictability regressions

(see, e.g., Fama and French, 1988). Nonetheless, all standard errors are computed using

40 Newey-West (1987) lags. R2’s produced by the financial factors alone are significantly

boosted by including both macro level factors and macro risk factors. For maturities from 1

to 10 years, the R2’s from regressions including only financial factors are around 7 percent.

The R2’s increase to between 16 and 22 percent when macro level factors are included, and

10We use the bootstrap test of Bauer and Hamilton (2016) to determine statistical significance.

25



increase by an additional 2 to 4 percentage points when macro risk factors are included.

These increases in explanatory power are statistically significant.

To delve into the economic mechanism by which macro risks forecast future bond returns,

Table 11 presents the coefficients from forecasting regressions that include both level macro

and macro risk factors.11 Individually, there are few significant coefficients. Of the macro

level factors, expected core inflation enters with a negative sign and is highly statistically sig-

nificant for all maturities, while expected aggregate inflation enters with a positive significant

coefficient of similar magnitude. The significance of expected inflation in such regressions is

consistent with the results of Cieslak and Pavola (2015) (but their regression also includes

yields). Of the macro risk factors, the bad demand variance has a negative significant co-

efficient and the bad supply variance a positive (albeit insignificant) coefficient. Therefore,

consistent with intuition, being in a risky (that is volatile) demand environment, where

bonds are good hedges against general macroeconomic risks, reduces the risk premium on

bonds, and the reverse is true in the case of a supply environment. The effect of bad demand

variance is economically large: for example, for the 5 year maturity a one standard deviation

increase in the bad demand factor decreases the expected annualized excess bond return by

3.03 percentage points. The corresponding coefficients increase with bond maturity. The

coefficient on the “good” demand risk factor is positive but insignificantly different from

zero.12

Given that previous studies have considered macroeconomic “level” and “risk” factors in

isolation and that factors measuring macroeconomic risk have received scant attention in

such investigations, the relative predictive power of risk factors is of interest. Table 11

indicates that the adjusted R2 from macro level factors alone in excess return regressions

drops from 18 percent at the two year horizon to 15 percent for the 10 year bond. However,

the contribution of macro risks to the R2 increases with bond maturity, both statistically

and economically, such that the total adjusted R2 stays around 20 percent for all maturities.

11Including financial factors (level, slope, and curvature) in the regressions does not materially change

any of the results.
12To further elaborate on the risk premium intuition, we also added the contemporaneous demand and

supply shocks (udt+1 and ust+1) to the bond return regressions. In unreported results, we find that the supply

shocks carry positive but non-significant coefficients and the demand shocks carry negative coefficients that

are significant at the 1% level and become larger in magnitude with maturity. That is, realized bond excess

returns are high if a negative demand shock occurred during the holding period.
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Ludvigson and Ng (2009) found the bond risk premiums implied by their predictive regres-

sions, which included both yield variables and macro-factors, to be counter-cyclical. It is

not difficult to obtain counter-cyclical real bond risk premiums in economic models, e.g., in

habit models with counter-cyclical prices of risk (see, e.g., Wachter, 2006). Our framework

suggests that not all recessions are equal in this respect. Our predictive regressions indicate

that risk premiums are, everything else equal, lower when the macro-environment is primar-

ily demand driven. To check on the cyclicality of bond risk premiums that are implied by

our regressions, we use the fitted values of the predictive regressions13 as an estimate of the

risk premium and regress it on a NBER dummy, the ratio of the aggregate demand variance,

including the good and bad variances, to the corresponding aggregate supply variance, and

the interaction of the two. We rescale the demand/supply ratio variable to have a standard

deviation of one. Table 12 reports the results. First, coefficients on the NBER dummy are

positive and increase with maturity. Economically, the effect is rather large: an NBER re-

cession increases the annualized expected excess return on a 10-year bond on average by 5.64

percentage points. However, the coefficients are not statistically significantly different from

zero, so we find only weak statistical evidence of counter-cyclical risk premiums. Second,

the demand/supply ratio is indeed negatively associated with risk premiums, and especially

so in recessions for the 5 and 10 year bonds. Again, these effects are economically large for

the longer maturities, but not statistically significant. For example, for the 10 year bond, if

the demand/supply ratio were to increase by 1 standard deviation, the annualized bond risk

premium would not increase by 5.64 percentage points, but only by 2.82 (5.64-0.73-2.09)

percentage points. Of course, it is important to recall that supply variances spike up as well

in most recessions.

5.3 Macro Risks and Term Premiums

As we indicated before, most of the literature examining the link between the macroeconomy

and bond risk premiums has focused on macro level factors.14 One important exception is

13Including financial factors (level, slope, and curvature) to construct the expected excess bond returns

does not materially change any of the results.
14 An exception is Wachter (2006), where the risk premium depends on the surplus ratio, essentially a

weighted average of past consumption shocks. However, the more recent theoretical literature (e.g., Buraschi

and Jiltsov, 2007; Gabaix 2012; Bansal and Shaliastovich, 2013) suggests that focusing on second and higher

order moments is more logical.

27



Wright (2011), who does not examine excess holding period returns, but an important and

closely related component of bond yields, the term premium. Wright shows that term

premiums are countercyclical and strongly affected by inflation uncertainty in a panel of

countries.15 We compute term premiums for the 5 year and 10 year maturity as the yield

for each maturity minus the average of expected future short-term rates over the life of the

bond. To measure the expected average short yield, we employ survey forecasts from the

Blue Chip survey. Due to the limited availability of survey data, the sample we use for

this exercise spans only 1983Q4-2015Q2 for the 5 year bond and 1986Q2-2015Q2 for the 10

year bond. We then regress the computed term premium on contemporaneous level macro

factors and macro risk factors.

Results from this exercise are reported in Table 13. They are similar to the results in Table

11 on excess holding period returns. Expected core inflation, expected inflation and expected

GDP growth significantly affect term premiums with the same signs as in the excess holding

period return regressions. Moreover, the bad demand variance risk factor negatively and

significantly affects the term premium, consistent with the idea that in such an environment

bonds act as a good hedge. The adjusted R2 is 69 percent for the 5 year and 67 percent for

the 10 year bond. However, only for the 10-year term premium do the macro risk factors

add significantly to the explanatory power of the macro level variables.

In Table 14, we examine the cyclicality of the term premiums. In line with Wright (2011) and

Bauer, Rudebusch, and Wu (2014), we find that the term premium significantly increases

in recessions, by 1.13 percent (0.77 percent) for the 5-year (10-year) bond. These numbers

are economically significant and statistically significant at the 1 percent level. Surprisingly,

we also find that the term premium is higher in demand environments, for the 5 year bond

by about 0.5 percentage point (and significantly so), but the effect is not significant and

smaller for the 10 year bond. However, the interaction effect with the NBER dummy has the

expected negative sign and is significantly different from zero at the 1 percent significance

level. The demand environment effects are large; a one standard deviation increase in the

demand/supply variance ratio decreases the term premium by about 1 percentage point for

the 5 year bond in a recession and about 2
3

percentage point for the 10-year bond. Therefore,

“demand effects” of this magnitude render the usual counter-cyclical term premium increase

15Bauer, Rudebusch, and Wu (2014) re-examine Wright’s empirical evidence correcting for small sample

bias in the VAR he runs to compute the term premium, but his main empirical conclusions remain robust.
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in recessions economically (and statistically) insignificant.

6 Conclusion

In this article, we provide three main contributions. First, we develop a new identifica-

tion methodology to decompose macroeconomic shocks into “demand” shocks which move

inflation and GDP growth in the same direction and “supply shocks” which move infla-

tion and GDP growth in opposite directions. The identification relies on non-Gaussianities

in the macro data. We find aggregate demand shocks to be distinctly negatively skewed

and leptokurtic, whereas supply shocks unconditionally show little skewness but are also

leptokurtic. Despite this alternative identification, the long-run effects of the aggregate de-

mand and supply shocks conform to standard intuition as in the seminal work of Blanchard

and Quah (1989). Investigating the various recessions in our sample, we find the four reces-

sions in the 1960s and 1970s to be predominantly supply driven, whereas of the last four,

three were more demand driven (the exception being the 1990-91 recession). The Great

Recession featured both large negative demand and supply shocks.

Second, we develop a new dynamic model for real economic activity and inflation, where the

shocks are drawn from a Bad Environment - Good Environment model, which accommodates

time-varying non-Gaussian features with “good” and “bad” volatility. We extract three

macro-risk factors, bad and good volatilities for the aggregate demand shocks, and bad

supply volatility (the good supply volatility is found to be time-invariant). Until about the

mid-seventies conditional supply variances appear to dominate macroeconomic volatility,

while afterwards demand variances are mostly relatively more important. However, supply

shocks variances invariably peak in recessions. The “good” demand variance has decreased

over time, but there is no strong evidence that either “bad” demand variances or supply

variances have declined. Importantly, recessions continue to be accompanied by temporarily

high bad demand and supply variances. We also provide new insights about the Great

Moderation in that it appears to reflect primarily a decline in good demand variance. Finally,

we find that the conditional correlation between inflation and real activity varies through

time and regularly switches sign, as the relative importance of demand and supply risk

factors varies over time.

Third, we link the macro factors extracted from the dynamic macro model, expected GDP
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growth, the unemployment gap, and expected (core) inflation and the macro risk variables

represented by the conditional variances (shape parameters) of the demand and supply

shocks, to the term structure. The macro variables explain 78 percent of the variation in

the levels of yields. While the contribution of the macro risk factors to this R2 is modest,

it is nonetheless statistically significant. When we run predictive regressions of excess bond

returns onto the macro variables, the R2 is around 20 percent. Again, the contribution of

the macro risk factors is statistically significant and increases with maturity. We find that

increases in the bad aggregate demand variance significantly reduce bond risk premiums

and also term premiums.

It would be useful to be elucidate how variation in risk premiums is accounted for by the

various macro risk factors and decompose risk premiums into real and inflation components.

To accomplish this, a term structure model is necessary. In future work, we plan to build a

term structure model in which the macro variables (level and risk factors) feature as state

variables. Despite the non-Gaussianities in their dynamics, the BEGE structure has the

advantage that bond prices nonetheless remain affine in the state variables.
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Appendix A - Bootstrapping standard errors for the

impulse responses

The VARMA parameters and the resulting reduced-form shocks are estimated with error,

and so are the higher-order moments of the reduced-form shocks (and their covariance

matrix). These sources of error affect the distribution of the sampling error of the loadings

of the endogenous variables onto supply and demand shocks, the time series estimates of

the supply and demand shocks, and the impulse response functions. To account for all of

these sources of error, we use a bootstrapping routine.

We begin by sampling, with replacement, the reduced-form shocks from the estimated

VARMA model. We assemble synthetic samples using 22 randomly chosen blocks of length

20 quarters. This results in synthetic samples of approximately the same length as our data

(220 for bootstraps, 225 for the data). We use these shocks and the estimated VARMA

parameters to build up synthetic samples of the endogenous variables. Note that we do

not need any estimates of the covariance matrix of shocks to do this. Beginning from these

synthetic samples, we follow the same procedures for each bootstrap sample that we do for

the actual sample to calculate all the statistics of interest:

• Estimate VARMA(1,1) parameters on the synthetic sample. Here we deviate from the

procedure used on the actual data by only estimating the VARMA by recursive-OLS

and skipping the “second stage” quasi-maximum likelihood estimation, because the

quasi-maximum likelihood estimation step is very time consuming.

• Estimate higher-order moments of the reduced form shocks and their covariance matrix

• Estimate loadings of the macro variables onto supply and demand using the GMM

procedure on the higher order moments

• Invert supply and demand shocks suing the Kalman filter procedure

• Estimate the loadings of the yield variables onto the supply and demand shocks by

OLS

• Estimate the impulse responses
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Appendix B - Model-free Impulse Responses to Aggre-

gate Demand and Supply Shocks

Following Jorda (2005), we calculate the model-free impulse responses using OLS regressions

of the form:

Yt+h = β0 + β1Yt−1 + β2û
reduced
t−1 + β3û

supply
t−1 + β4û

demand
t−1 + εt+h,

where ûreduced are the residuals from the VARMA, and ûsupply and ûdemand are the inverted

supply and demand shocks. Standard errors are computed as described in Appendix A.

The results are as follows:

Cumulative (20 Quarters) Responses

Demand shock Supply shock

Real GDP level 0.56% 0.75%

(0.35%) (0.40%)

Price level 1.44% -0.67%

(0.53%) (0.52%)
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Appendix C - Maximum likelihood estimation of de-

mand and supply shock dynamics

We restrict attention to the demand shock estimation, as the supply shock estimation is

identical. The system to estimate is:

udt+1 = σdpω
d
p,t+1 − σdnωdn,t+1,

ωdp,t+1 ∼ Γ(pdt , 1)− pdt ,

ωdn,t+1 ∼ Γ(ndt , 1)− ndt ,

pdt+1 = p̄d + ρdp(p
d
t − p̄d) + σdppω

d
p,t+1,

ndt+1 = n̄d + ρdn(ndt − n̄d) + σdnnω
d
n,t+1,

(12)

where only the time series of demand shock realizations, {udt }Tt=1 is observed.

The following notation is defined:

Ud
t ≡ {ud1, ..., udt } is the sequence of observations up to time t.

F (iφ, iψ1, iψ2|Ud
t ) ≡ E(eiφu

d
t+1+iψ1pdt+1+iψ2ndt+1|Ud

t ) is the next period’s joint conditional char-

acteristic function of the observation and the state variables.

Gt|s(iψ
1, iψ2) ≡ E(eiψ

1pdt+iψ2ndt |Ud
s ) is the characteristic function of the time t state variables

conditioned on observing data up to time s.

The estimation procedure is an application of Bates (2006)’s algorithm for the component

model of two gamma distributed variables and consists of the time 0 initialization and 3 steps

repeated for each observation in {udt }Tt=1. At time 0, the characteristic function of the state

variables G0|0(iψ1, iψ2) is initialized. The distribution of pd0 and nd0 is approximated with

gamma distributions. Note that the unconditional mean and variance of pdt are E(pdt ) =

p̄d and V ar(pdt ) =
σ2
pp

1−ρd2p
p̄d, respectively. The approximation by the gamma distribution

with the shape parameter k0 and the scale parameter σp0 is done by matching the first

two unconditional moments. Using the properties of the gamma distribution, kp0 =
E2pdt

V ar(pdt )

and θp0 =
V ar(pdt )

E(pdt )
. Thus, pd0 is assumed to follow Γ(kp0, θ

p
0) and nd0 is assumed to follow

Γ(kn0 , θ
n
0 ), where kn0 and θn0 are computed in the same way. Using the properties of the

expectations of the gamma variables, G0|0(iψ1, iψ2) = e−k
p
0 ln(1−θp0 iψ1)−kn0 ln(1−θn0 iψ2) . Given

G0|0(iψ1, iψ2), computing the likelihood of Ud
T is performed by repeating the steps 1-3 below

for all subsequent values of t.
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Step 1. Computing the next period’s joint conditional characteristic function of the obser-

vation and the state variables:

F (iΦ, iψ1, iψ2|Udt ) = E(E(eiΦ(σdpω
d
p,t+1−σ

d
nω

d
n,t+1)+iψ1(p̄d+ρdpp

d
t+σdppω

d
p,t+1)+iψ2(n̄d(1−ρdn)+ρdnn

d
t+σdnnω

d
n,t+1)|Udt )

= E(eiψ
1p̄d(1−ρdp)+iψ2n̄d(1−ρdn)+(iψ1ρdp−ln(1−iΦσdp−iψ

1σdpp)−iΦσdp−iψ
1σdpp)pdt+(iψ2ρdn−ln(1+iΦσdn−iψ

2σdnn)+iΦσdn−iψ
2σdnn)ndt |Udt )

= eiψ
1p̄d(1−ρdp)+iψ2n̄d(1−ρdn)Gt|t(iψ

1ρdp − ln(1− iΦσdp − iψ1σdpp)− iΦσdp − iψ1σdpp, iψ
2ρdn − ln(1 + iΦσdn − iψ2σdnn) + iΦσdn − iψ2σdnn).

Step 2. Evaluating the conditional likelihood of the time t+ 1 observation:

p(udt+1|Ud
t ) =

1

2π

∫ ∞
−∞

F (iΦ, 0, 0|Ud
t )e−iΦu

d
t+1)dΦ,

where the function F is defined in step 1 and the integral is evaluated numerically.

Step 3. Computing the conditional characteristic function for the next period, Gt+1|t+1(iψ1, iψ2):

Gt+1|t+1(iψ1, iψ2) =
1

2π

∫∞
−∞ F (iΦ, iψ1, iψ2|Ud

t )e−iΦu
d
t+1dΦ

p(udt+1|Ud
t )

.

As above, the function Gt+1|t+1(iψ1, iψ2) is also approximated with the gamma distribution

via matching the first two moments of the distribution. The moments are obtained by taking

the first and second partial derivatives of the joint characteristic function:

Et+1p
d
t+1 =

1

2πp(udt+1|Ud
t )

∫ ∞
−∞

Fψ1(iΦ, 0, 0|Ud
t )e−iΦu

d
t+1dΦ,

V art+1p
d
t+1 =

1

2πp(udt+1|Ud
t )

∫ ∞
−∞

Fψ1ψ1(iΦ, 0, 0|Ud
t )e−iΦu

d
t+1dΦ− E2

t+1p
d
t+1,

Et+1n
d
t+1 =

1

2πp(udt+1|Ud
t )

∫ ∞
−∞

Fψ2(iΦ, 0, 0|Ud
t )e−iΦu

d
t+1dΦ,

V art+1n
d
t+1 =

1

2πp(udt+1|Ud
t )

∫ ∞
−∞

Fψ2ψ2(iΦ, 0, 0|Ud
t )e−iΦu

d
t+1dΦ− E2

t+1n
d
t+1,

where Fψi denotes the derivative of F with respect to ψi. The expressions inside the integral

are obtained in closed form by derivating the function F (iΦ, iψ1, iψ2|Ud
t ) in step 1, and

integrals are evaluated numerically. Using the properties of the gamma distribution, the

values of the shape and the scale parameters are kpt+1 =
E2
t+1p

d
t+1

V art+1pdt+1
and θpt+1 =

V art+1pdt+1

Et+1pdt+1
,

respectively. The expressions for knt+1 and θnt+1 are similar.

The total likelihood of the time series is the sum of individual likelihoods from step 2:

L(YT ) = ln p(ud1|k
p
0, θ

p
0) +

∑T
t=2 ln p(udt+1|Ud

t ).
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Appendix D - Additional Results on Explanatory Power

of Macro Risks

Explanatory Power (Adjusted R2) of Macro Risk Factors for Yield Curve Factors over Realizations of Macroeconomic Time

Series. The sample is quarterly from 1959Q2 to 2015Q2. Macro level factors are real GDP growth, aggregate and core inflation,

and unemployment gap. Financial factors are level, slope, and curvature factors. Level factor is the average over 1-10 year

yields. Slope factor is 10 year yield minus 1 quarter yields. The curvature factor is 10 year yield plus 1 quarter yield minus

2 times 2 year yield. The increase in adjusted R2 significance, which is always tested over the specification in the previous

row, is Bauer-Hamilton (2016) adjusted significance using 5000 bootstrap runs. The asterisks, *, **, and *** correspond to

statistical significance at the 10, 5, and 1 percent levels, respectively.

Realizations of Macroeconomic Level Factors and Macro Risks

Level Slope Curvature

Realizations of macroeconomic level factors 0.4849 0.5148 0.2009

Realizations of macroeconomic time series+macro risks 0.6140*** 0.5334* 0.2667**

Explanatory Power (Adjusted R2) of Macro Risk Factors for Quarterly Excess Bond Returns over Other Macroeconomic Level

and Financial Factors. The sample is quarterly from 1959Q2 to 2015Q2. Ang-Piazzesi factors are lag 1 Ang and Piazzesi

(2003) real and nominal factors. Macro level factors are expected real GDP growth, expected aggregate and core inflation,

and unemployment gap. Financial factors are level, slope, and curvature factors. Level factor is the average over 1-10 year

yields. Slope factor is 10 year yield minus 1 quarter yields. The curvature factor is 10 year yield plus 1 quarter yield minus

2 times 2 year yield. The increase in adjusted R2 significance, which is tested over the specification in the previous row, is

Bauer-Hamilton (2016) adjusted significance using 5000 bootstrap runs. The asterisks, *, **, and *** correspond to statistical

significance at the 10, 5, and 1 percent levels, respectively.

Panel A: Ang-Piazzesi (2003) factors

Predictors 1 year bond 2 year bond 5 year bond 10 year bond

Ang-Piazzesi factors 0.0320 0.0339 0.0166 0.0068

Ang-Piazzesi factors + macro level factors 0.1559*** 0.1800*** 0.1576*** 0.1515***

Ang-Piazzesi factors + macro level factors + macro risks 0.1848** 0.2157** 0.1932** 0.1928**

Panel B: Ang-Piazzesi (2003) and yield curve factors

1 year bond 2 year bond 5 year bond 10 year bond

3 financial factors 0.0715 0.0681 0.0716 0.075

3 financial factors + Ang-Piazzesi 0.1066** 0.0995** 0.0754 0.0689

3 financial factors + Ang-Piazzesi+ macro level factors 0.2053*** 0.2133*** 0.1738*** 0.1594***

3 financial factors+Ang-Piazzesi+macro level factors + macro risks 0.2355** 0.2482** 0.2037** 0.1916**
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Figure 1 – Components of Bad Environment - Good Environment Distribution.
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Figure 2 – Time-varying Shape Parameters of Bad Environment - Good Environment Dis-

tribution.
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Figure 3 – Filtered Quarterly Demand and Supply Shocks. Shading corresponds to NBER

Recessions.
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Figure 4 – Filtered Quarterly Demand and Supply Variances. Shading corresponds to NBER

Recessions.

44



Figure 5 – Quarterly Conditional Skewness of Macroeconomic Variables. Shading corre-

sponds to NBER Recessions.
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Figure 6 – Quarterly Conditional Covariance between Macroeconomic Variables. Shading

corresponds to NBER Recessions.
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Table 1 – Model Selection for Expectations of Macro Variables. The sample is quarterly

1959Q2 to 2015Q2. Macro variables are real GDP growth, aggregate and core inflations,

and unemployment gap. VAR and VARMA always include these 4 variables. Yields are 1

quarter and 10 year US Treasury yields. AIC and BIC are Akaike and Bayesian information

criteria, respectively. The models are sorted by AIC.

Model number of parameters loglikelihood AIC BIC

VARMA(1,1)+yields 50 -433.7 979.5 1207.1

VARMA(1,2)+yields 66 -420.9 995.2 1290.1

VARMA(1,2) 58 -434.1 1000.6 1262.2

VARMA(2,1)+yields 66 -423.8 1001.1 1296.0

VARMA(1,1) 42 -457.2 1007.0 1199.8

VARMA(2,1) 58 -437.5 1007.4 1269.0

VAR(2)+yields 50 -458.2 1028.6 1256.1

VAR(2) 42 -473.6 1039.7 1232.5

VAR(1)+yields 34 -503.3 1080.2 1237.6

VAR(1) 26 -521.3 1097.8 1219.2
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Table 2 – Higher Order Moments of Macroeconomic Shocks Used for Classical Minimum Distance Esti-

mation. ugt , u
π
t , uπcoret , and uut are the shocks to real GDP growth, aggregate inflation, core inflation and

unemployment gap, respectively. The data is quarterly from 1959Q2 to 2015Q2. The covariance matrix for

moments is calculated via a block-bootstrap with a block length of 20 quarters using a shrinkage technique

that places 95 percent weight on the full bootstrapped covariance matrix, and a 5 percent weight on a matrix

composed of only the diagonal elements of the covariance matrix. Asterisks, *, **, and **** correspond to

statistical significance of individual moments at the 10, 5, and 1 percent levels, respectively.

Volatility

uπt u
g
t uπ

core

t uut

data 0.5430*** 0.7503*** 0.3103*** 0.2560***

standard error (0.0834) (0.0709) (0.0457) (0.0185)

fitted 0.5008 0.7267 0.3395 0.2614

Skewness

uπt u
g
t uπ

core

t uut

data -1.2632 0.1275 0.1866 0.6860***

standard error (0.9124) (0.3064) (0.4598) (0.2372)

fitted -0.2328 -0.3188 -0.2804 0.3576

Excess Kurtosis

uπt u
g
t uπ

core

t uut

data 10.3646** 1.6505** 2.3854** 1.9179***

standard error (5.1438) (0.7314) (1.1802) (0.6808)

fitted 0.4552 0.8090 0.6070 0.9314

Correlations

uπt u
g
t uπt u

πcore

t uπt u
u
t u

g
t u
πcore

t u
g
t u
u
t uπ

core

t uut

data 0.0505 0.4879*** -0.0602 -0.0116 -0.5763*** -0.0097

standard error (0.0983) (0.0658) (0.0584) (0.1206) (0.0478) (0.1060)

fitted 0.0766 0.5487 -0.1040 0.1175 -0.5496 -0.1446

Co-skewness

(uπt )2u
g
t (uπt )2uπ

core

t (uπt )2uut (u
g
t )2uπt (u

g
t )2uπ

core

t (u
g
t )2uut

data -0.7728 -0.2339 0.7322* -0.2404 -0.1860 0.1877

standard error (0.4328) (0.3097) (0.4016) (0.1780) (0.1912) (0.3358)

fitted -0.2316 -0.2474 0.2416 -0.2982 -0.3185 0.3314

(uπ
core

t )2uπt (uπ
core

t )2u
g
t (uπ

core

t )2uut (uut )2uπt (uut )2u
g
t (uut )2uπ

core

t

data 0.0814 -0.1920 0.0847 -0.1989 -0.4535 -0.0265

standard error (0.3184) (0.1459) (0.2143) (0.1384) (0.3097) (0.2290)

fitted -0.2632 -0.2721 0.2833 -0.3172 -0.3443 -0.3392

Excess Co-kurtosis

(uπt )2(u
g
t )2 (uπt )2(uπ

core

t )2 (uπt )2(uut )2 (u
g
t )2uπ

core

t )2 (u
g
t )2(uut )2 (uπ

core

t )2(uut )2

data 1.7346* 0.6331* 1.2858* 0.7458** 1.1438** 0.7440**

standard error (1.0385) (0.3624) (0.7526) (0.3166) (0.5808) (0.2958)

fitted 0.5978 0.5879 0.6107 0.5973 0.6246 0.6100

(uπt )3u
g
t (uπt )3uπ

core

t (uπt )3uut (u
g
t )3uπt (u

g
t )3uπ

core

t (u
g
t )3uπ

core

t

data 4.1478 1.6103 -3.6442* 0.6476* 0.2348 -1.0978**

standard error (2.6028) (1.0459) (2.0561) (0.3878) (0.4592) (0.5212)

fitted 0.2481 0.5882 -0.2705 0.2811 0.2803 -0.6164

(uπ
core

t )3uπt (uπ
core

t )3u
g
t (uπ

core

t )3uut (uut )3uπt (uut )3u
g
t (uut )3uπ

core

t

data 1.1992* -0.1287 -0.6296* 0.1202 -1.3911** 0.1151

standard error (0.6307) (0.4176) (0.3684) (0.2634) (0.6803) (0.5523)

fitted 0.5877 0.2458 -0.2681 -0.3491 -0.6336 -0.3483

J-stat 49.99**

pval (0.0482)
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Table 3 – Loadings of Macroeconomic Shocks on Demand and Supply Shocks. The coeffi-

cients are from Classical Minimum Distance estimation matching unconditional higher order

moments of 4 macroeconomic shocks time series: real GDP growth (ugt ), aggregate (uπt ) and

core inflation (uπcoret ) and unemployment gap (uut ). Standard errors in parentheses account

for sampling error in the higher-order moments and the VARMA(1,1) parameters.

Panel A: Loadings of Macro Shocks Onto Supply and Demand

Shock Supply loading Demand Loading

uπt -0.2319 0.2618

(0.0625) (0.0625)

ugt 0.3352 0.4015

(0.0975) (0.1585)

uπcoret -0.1587 0.1787

(0.0434) (0.0529)

uut -0.1125 -0.1464

(0.0216) (0.0464)

idiosyncratic variance share 0.4702

(0.0752)

Panel B: Kalman Gain of Macro Shocks for Supply and Demand

Shock uπt ugt uπcoret uut

Supply -0.7389 0.4837 -1.083 -1.3036

(0.1934) (0.1054) (0.2070) (0.2489)

Demand 0.6597 0.4578 0.9642 -1.3393

(0.2143) (0.1021) (0.2991) (0.2170)

Panel C: Variance Decomposition of Demand and Supply Shocks

Shock uπt ugt uπcoret uut

Supply 26.28% 24.87% 26.36% 22.49%

Demand 23.83% 25.36% 23.77% 27.05%

Panel D: Unconditional moments of supply and demand

Skewness Excess kurtosis

Supply 0.4210 3.2861

(0.6769) (1.7520)

Demand -1.5941 4.6540

(0.7807) (2.2930)
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Table 4 – Model Comparision for Aggregate Demand and Aggregate Supply Shocks. AIC

refers to Akaike information criterion and BIC refers to Bayesian information criterion. The

models are sorted by AIC. Regime-switching model refers to the 2 state regime-switching

model. For both supply and demand shocks, it is the best regime-switching model in terms

of AIC and BIC among 1 state, 2 state, 3 state, and 4 state models. BEGE is the n-tail

only BEGE for supply and full BEGE with n- and p-tails for demand. These are the best

BEGE models in terms of AIC and BIC.

Panel A: Supply Shock

Model Log-likelihood Number of parameters AIC BIC

Regime-switching -296.70 5 603.36 620.35

BEGE -300.37 4 608.74 622.33

Gaussian stochastic volatility -303.87 3 613.74 623.93

Panel B: Demand Shock

Model Log-likelihood Number of parameters AIC BIC

BEGE -282.19 6 572.38 585.97

Regime-switching -286.58 5 583.16 600.15

Gaussian stochastic volatility -306.70 3 619.40 629.59

Panel C: Supply and Demand Shocks

Log-likelihood Number of parameters AIC BIC

BEGE -582.56 10 1185.12 1226.03

Regime-switching -583.28 10 1186.56 1227.47

Gaussian stochastic volatility -610.57 6 1233.14 1257.69
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Table 5 – Bad Environment - Good Environment Parameter Estimates for Demand and

Supply Processes. Parameter estimates are obtained using Bates (2006) approximate max-

imum likelihood methodology. Standard errors in parentheses are approximate maximum

likelihood asymptotic standard errors. As demand and supply shocks are assumed to have

variances exactly equal to 1, parameters p̄s and n̄s can be solved as functions of other model

parameters, and their standard errors are calculated using the delta method.

Supply shock Demand shock

p̄ 0.5289 100

(0.1127) –

n̄ 1.0663 0.3883

(1.4523) (0.2085)

σp – 0.0803

– (0.0051)

σn 0.6647 0.9565

(0.4081) (0.2593)

ρp – 0.9636

(0.0193)

ρn 0.7895 0.7880

(0.0830) (0.2608)

σpp – 2.0129

(0.6282)

σnn 1.0296 0.1889

(0.5154) (0.2593)
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Table 6 – VARMA(1,1) Impulse Responses of Real GDP and Aggregate Price Level to One

Standard Deviation Demand and Supply Shocks. The cumulative impulse responses include

the quarter 0 (where the shocks happened) responses. Standard errors in parentheses are

bootstrap standard errors.

Panel A: Contemporaneous (Quarter 0) Responses

Demand shock Supply shock

Real GDP level 0.40% 0.34%

(0.16%) (0.10%)

Price level 0.26% -0.23%

(0.06%) (0.06%)

Panel B: Cumulative (20 Quarters) Responses

Demand shock Supply shock

Real GDP level 0.17% 0.65%

(0.28%) (0.25%)

Price level 0.97% -0.80%

(0.53%) (0.43%)
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Table 7 – Decomposition of Real GDP Growth during NBER Recessions into Demand and

Supply Components. Aggregate demand component of the GDP growth is computed as

σgd multiplied by the sum of aggregate demand shocks over the period of the recession.

Aggregate supply component of the GDP growth is computed as σgs multiplied by the sum

of aggregate supply shocks over the period of the recession.

NBER Recession GDP growth: Demand component GDP growth: Supply Component

1960Q2-1961Q1 -1.04% -1.20%

1969Q4-1970Q4 -0.06% -1.16%

1973Q4-1975Q1 1.55% -2.54%

1980Q1-1980Q2 -0.64% -1.14%

1981Q3-1982Q4 -3.41% -0.09%

1990Q3-1991Q1 -0.55% -1.07%

2001Q1-2001Q4 -1.26% -0.86%

2008Q1-2009Q2 -2.77% -2.69%
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Table 8 – Decomposing Great Moderation into Changes in Demand and Supply Volatility. Coefficients

in Panel A are OLS regression coefficients from regressing the dependent variable on a constant equal to

1 and a dummy variable which is 0 before 1990Q4 and 1 between 1991Q1 and 2000Q4 for the sample

of 1959Q2-2000Q4 (specification Dummy-2000), 0 before 1990Q4 and 1 between 1991Q1 and 2006Q4 for

the sample of 1959Q2-2006Q4 (specification Dummy-2006) , and 0 before 1990Q4 and 1 between 1991Q1

and 2015Q2 for the sample of 1959Q2-2015Q2 (specification Dummy-2015). Coefficients in Panel B are

OLS regression coefficients from regressing the dependent variable on a constant equal to 1 and a dummy

variable which is 0 before 1983Q4 and 1 between 1984Q1 and 2000Q4 for the sample of 1959Q2-2000Q4

(specification Dummy-2000), 0 before 1983Q4 and 1 between 1984Q1 and 2006Q4 for the sample of 1959Q2-

2006Q4 (specification Dummy-2006), and 0 before 1983Q4 and 1 between 1984Q1 and 2015Q2 for the

sample of 1959Q2-2015Q2 (specification Dummy-2015). Standard errors in parentheses are Newey-West

(1987) standard errors computed with 40 lags. The standard errors for the constant are from the regression

using only data up to 2000Q4. The standard errors for the constant for samples spanning until 2006Q4

and 2015Q2 are slightly different, but these differences are economically and statistically negligible. The

asterisks, *, **, and *** correspond to statistical significance at the 10, 5, and 1 percent levels, respectively.

Panel A: Aggregate Inflation

Dependent variable Constant Dummy-2000 Dummy-2006 Dummy-2015

Aggregate Volatility 0.2460*** -0.0514** -0.0510*** -0.0345

(0.0183) (0.0206) (0.0193) (0.0223)

Supply volatility 0.0551*** -0.0111 -0.0109* 0.0023

(0.0056) (0.0074) (0.0065) (0.0114)

Demand volatility 0.0823*** -0.0403** -0.0401*** -0.0368**

(0.0150) (0.0157) (0.0153) (0.0153)

Good demand volatility 0.0587*** -0.0374*** -0.0410*** -0.0401***

(0.0140) (0.0149) (0.0149) (0.0144)

Bad demand volatility 0.0237*** -0.0028 0.0008 0.0033

(0.0019) (0.0020) (0.0031) (0.0035)

Panel B: Real GDP Growth

Dependent variable Constant Dummy-2000 Dummy-2006 Dummy-2015

Aggregate volatility 0.5585*** -0.0932* -0.1009* -0.0786

(0.0512) (0.0536) (0.0516) (0.0542)

Supply volatility 0.1221*** -0.0320** -0.0312** -0.0085

(0.0126) (0.0134) (0.0130) (0.0219)

Demand volatility 0.1936*** -0.0612 -0.0698* -0.0700*

(0.0413) (0.0424) (0.0407) (0.0395)

Good demand volatility 0.1371*** -0.0549 -0.0695* -0.0749*

(0.0388) (0.0418) (0.0410) (0.0390)

Bad demand volatility 0.0565*** -0.0063 -0.0003 0.0049

(0.0059) (0.0056) (0.0082) (0.0094)
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Table 9 – Explanatory Power (Adjusted R2) of Macro Risk Factors for Yield Curve Factors.

The sample is quarterly from 1959Q2 to 2015Q2. Ang-Piazzesi factors are lag 1 Ang and

Piazzesi (2003) real and nominal factors. Macro level factors are expected real GDP growth,

expected aggregate and core inflation, and unemployment gap. Financial factors are level,

slope, and curvature factors. Level factor is the average over 1-10 year yields. Slope factor is

10 year yield minus 1 quarter yields. The curvature factor is 10 year yield plus 1 quarter yield

minus 2 times 2 year yield. The increase in adjusted R2 significance, which is always tested

over the specification in the previous row, is Bauer-Hamilton (2016) adjusted significance

using 5000 bootstrap runs. The asterisks, *, **, and *** correspond to statistical significance

at the 10, 5, and 1 percent levels, respectively.

Panel A: Macro Level Factors and Macro Risks

Level Slope Curvature

Macro level factors 0.7155 0.5818 0.2795

Macro level factors + macro risks 0.7755*** 0.5892 0.3343**

Panel B: Ang-Piazzesi Factors, Macro Level Factors, and Macro Risks

Level Slope Curvature

Ang-Piazzesi (2003) factors 0.1784 0.2432 0.0928

Ang-Piazzesi (2003) factors + macro level factors 0.7296*** 0.5843*** 0.3085***

Ang-Piazzesi (2003) factors + macro level factors + macro risks 0.7775*** 0.6027 0.3429**
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Table 10 – Explanatory Power (Adjusted R2) of Macro Risk Factors for Quarterly Excess

Bond Returns over Macro Level and Financial Factors. The sample is quarterly from 1959Q2

to 2015Q2. Ang-Piazzesi factors are lag 1 Ang and Piazzesi (2003) real and nominal factors.

Macro level factors are expected real GDP growth, expected aggregate and core inflation,

and unemployment gap. Financial factors are level, slope, and curvature factors. Level

factor is the average over 1-10 year yields. Slope factor is 10 year yield minus 1 quarter

yields. The curvature factor is 10 year yield plus 1 quarter yield minus 2 times 2 year

yield. The increase in adjusted R2 significance, which is tested over the specification in

the previous row, is Bauer-Hamilton (2016) adjusted significance using 5000 bootstrap runs.

The asterisks, *, **, and *** correspond to statistical significance at the 10, 5, and 1 percent

levels, respectively.

1 year bond 2 year bond 5 year bond 10 year bond

3 financial factors 0.0715 0.0681 0.0716 0.0750

3 financial factors + macro level factors 0.2109*** 0.2178*** 0.1788*** 0.1591***

3 financial factors + macro level factors + macro risks 0.2301* 0.2424** 0.2085** 0.1988**
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Table 11 – Explanatory Power (Adjusted R2) of Macro Factors for Quarterly Excess Bond

Returns. The sample is quarterly from 1959Q2 to 2015Q2. The excess returns are annualized

1 quarter holding period returns on zero coupon US Treasuries. Macro risks (pdt , n
d
t , and nst)

are scaled to have unit variance. Standard errors in parentheses are Newey-West standard

errors with 40 lags. The increase in adjusted R2 significance is Bauer-Hamilton (2016)

adjusted significance using 5000 bootstrap runs. The asterisks, * , **, and *** correspond

to statistical significance at the 10, 5, and 1 percent levels, respectively.

1 year bond 2 year bond 5 year bond 10 year bond

constant 0.9624*** 2.6468*** 6.7833** 14.2700**

(0.2943) (0.8466) (3.0182) (6.0308)

Etπ
core
t+1 6.8551*** 15.4054*** 30.2019*** 49.9707***

(1.5998) (2.7506) (3.7516) (6.2916)

Etπt+1 -7.8497*** -17.2407*** -34.9451*** -57.7668***

(1.5207) (2.6357) (4.0636) (7.6564)

Etgt+1 0.4143 0.9182 1.9110 3.8141

(0.8104) (1.4089) (2.0339) (2.8579)

ugapt 0.0392 0.2961 0.7349 1.5665

(0.0751) (0.1795) (0.6481) (1.3377)

pdt 0.2943 0.5264 1.0352 1.1977

(0.1946) (0.4577) (1.3542) (2.7203)

ndt -0.5017*** -1.1972*** -3.0267*** -6.1206***

(0.1363) (0.2394) (0.6591) (1.2606)

nst 0.1002 0.1912 0.4010 0.7555

(0.2041) (0.4058) (0.7319) (1.0865)

Adjusted R2 without macro risks 0.1577 0.1814 0.1604 0.1479

Adjusted R2 with macro risks 0.1793* 0.2097** 0.1990** 0.2001***
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Table 12 – Cyclicality of Expected Excess Bond Returns. The sample is quarterly 1959Q2-

2015Q2. The dependent variable is the expected annualized quarterly excess return com-

puted from the OLS regressions of realized annualized quarterly excess returns on 4 macro

level factors (expected aggregate and core inflations, expected real GDP growth, and un-

employment gap) and 3 macro risks (good and bad demand variance and bad supply vari-

ance). NBER recession is a dummy equal to 1 if there is a recession in that quarter.

Demand/supply-ratio is the ratio of aggregate demand variance (good+bad) to aggregate

supply variance (good+bad). Demand/supply-ratio is scaled to have the standard deviation

of 1. Standard errors are Newey-West standard errors computed with 40 lags.

1 year bond 5 year bond 10 year bond

constant 0.1914 1.5795 3.3505

(0.4076) (1.9782) (3.3727)

NBER-dummy 0.8691 3.6316 5.6361

(0.6250) (2.8888) (4.9554)

demand/supply-ratio -0.0172 -0.2478 -0.7336

(0.2463) (1.1384) (1.9008)

NBER-dummy×demand/supply-ratio -0.1979 -1.0040 -2.0924

(0.3114) (1.4453) (2.4745)

Adjusted R2 0.0297 0.0239 0.0236
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Table 13 – Explanatory Power (Adjusted R2) of Macro Factors for Term Premiums. The

dependent variable is annualized term premium computed as the observed US Treasury

long yield minus the expected 1 quarter US Treasury yield over the life of the long yield.

Expected average short yield is from Blue Chip survey and are available semi-annually.

The sample is 1983Q4-2015Q2 for 5 year bond and 1986Q2-2015Q2 for 10 year bond. The

standard deviation of each macro risk factor (pdt , n
d
t , and nst) is scaled to 1. Standard errors

in parentheses are Newey-West standard errors with 40 lags. The increase in adjusted R2

significance is Bauer-Hamilton (2016) significance using 5000 bootstrap runs. The asterisks,

* , **, and *** correspond to statistical significance at the 10, 5, and 1 percent levels,

respectively.

5 year bond 10 year bond

constant 0.9548*** 1.5578***

(0.2741) (0.2195)

Etπ
core
t+1 7.2809*** 8.6933***

(0.8006) (0.8701)

Etπt+1 -5.3035*** -6.3997***

(0.8144) (0.8616)

Etgt+1 2.2232*** 2.7737***

(0.2239) (0.2196)

ugapt -0.0079 0.1799

(0.0863) (0.1502)

pdt -0.1211 0.0115

(0.1041) (0.1353)

ndt -0.1847*** -0.2247***

(0.0641) (0.0502)

nst 0.0657 0.0237

(0.0769) (0.1343)

Adjusted R2 without macro risks 0.6823 0.6437

Adjusted R2 with macro risks 0.6933 0.6717**
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Table 14 – Cyclicality of Term Premium. The dependent variable is annualized term pre-

mium computed as the observed US Treasury long yield minus the expected 1 quarter US

Treasury yield over the life of the long yield. Expected average short yield is from Blue

Chip survey and are available semi-annually. The sample is 1983Q4-2015Q2 for 5 year bond

and 1986Q2-2015Q2 for 10 year bond. NBER recession is a dummy equal to 1 if there is a

recession in that quarter. Demand/supply-ratio is the ratio of aggregate demand variance

(good+bad) to aggregate supply variance (good+bad). Demand/supply- ratio is scaled to

have the standard deviation of 1. Standard errors are Newey-West standard errors computed

with 40 lags. The asterisks, *, **, and *** correspond to statistical significance at the 10,

5, and 1 percent levels, respectively.

5 year bond 10 year bond

const -0.5706 0.4615**

(0.3579) (0.2020)

NBER-dummy 1.1325*** 0.7727***

(0.2943) (0.1533)

demand/supply-ratio 0.5209*** 0.1744

(0.0674) (0.1936)

NBER-dummy*demand/supply-ratio -0.9655*** -0.6470***

(0.0916) (0.1934)

Adjusted R2 0.2269 0.0272
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