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1 Introduction

In many economic settings, agents must collectively decide the goal or scope of a joint project.

A greater scope reflects a more ambitious project, which requires more cumulative e↵ort from

the agents but yields a larger reward upon completion. Such collective decisions are common

among countries who collaborate on a project. For example, the International Space Station

(ISS) was a collaboration among the United States, Russia, the European Union, Japan,

and Canada that cost approximately $150 billon. The Asian Highway Network, running

about eighty-seven thousand miles and costing over $25 billion, is a collaboration among

thirty-two Asian countries, the United Nations, and other entities to facilitate greater trade

throughout the region. In both examples, the projects took several decades to implement,

and an agreement that determined the project scope was signed by all stakeholders.1

If the agents’ preferences over the project scope are aligned, it is natural for the agents

to agree on the ideal scope, and there will be little debate. Yet, it is common to find

disagreement about when and at what stage to complete a project. For example, the process

of identifying roads to be included in the Asian Highway Network began in the late 1950s,

and it was not until the 1990s that the majority of the work began, owing to the endorsement

of the United Nations (see Yamamoto et al. 2003). The World Trade Organization’s (WTO’s)

Doha Round began in 2001 and has (infamously) yet to be concluded fifteen years later.

The delay is due, in part, to di↵erences between member countries over which industries

the agreement should cover and to what extent (see Bhagwati & Sutherland 2011). Central

to many of these conflicts is the asymmetry between participants—often large contributors

versus small contributors. In this paper, we investigate how the agents’ cost of e↵ort and

their stake in the project a↵ect their incentives to contribute and their preferences over the

project scope, and, ultimately, how these parameters impact their influence on the project

scope under di↵erent decision protocols.

We focus on projects with three key features. First, progress on the project is gradual,

and hence the problem is dynamic in nature. Second, the project generates a payo↵ only

upon completion, and each agent receives a fixed fraction of that payo↵. Third, the scope of

the project is endogenous, and the project’s payo↵ increases with its scope. Thus, the scope

of the project is a crucial determinant of not only the magnitude of the payo↵s and e↵ort,

but also their timing.

Several other examples fit our framework. For instance, many new business ventures

require costly e↵ort before payo↵s can be realized. Academics working on a joint research

project exert e↵ort over time, and the reward is largely realized after submission and

publication of the findings. In both cases, agents must agree at some point in time on the

1Other notable multi-country collaborations include the International Thermonuclear Experimental
Reactor (ITER) under construction in France, and the Joint European Torus (JET) in the United Kingdom.

2



scope of the project. Does the venture seek a blockbuster product or something that may

have a quicker (if smaller) payo↵? Do the coauthors target highly regarded general interest

journals or work towards a more specific field journal? Indeed, there is often dissent on

when a joint project is ready to be monetized through the launch of the product, sale of the

company, or submission of the article.

A key ingredient of our framework is the agents’ ability to decide on the project scope.

The decision is collective and can be made at any time, with or without the ability to

commit. As an example, it is common for the scope of a public infrastructure project to

change throughout its development, a phenomenon often referred to as “scope creep.” In

such cases, the parties cannot commit to not renegotiate. In other cases, such as with an

entrepreneurial venture, legally binding contracts can be enforced. An agreement can then

be made at any time during the project, and parties can commit to it, preventing subsequent

renegotiation. The ability to commit is considered a part of the economic environment and is

not a choice of the agents. The actual choice of the project scope is determined by a protocol

we refer to as collective choice institution. In the examples of the ISS and the Asian Highway

Network, each country must sign a formal agreement for the project to enter into force (see

Yakovenko 1999, Yamamoto et al. 2003). In these examples, the scope of the project cannot

be decided without the consent of all parties: the collective choice institution is unanimity.

An agreement may also designate a single party with the right to complete the project, such

as when one party has a controlling share of an entrepreneurial joint venture. In this paper,

we focus on these two common instances of collective choice institution: dictatorship and

unanimity.

Our modeling approach is based on the dynamic public good provision framework of

Marx & Matthews (2000). It is well established in this setting that free-riding occurs when

agents make voluntary contributions to a public good, and basic comparative statics (e.g., the

e↵ect of changes in e↵ort costs, discount rates, scope, etc.) are well understood when agents

are symmetric. However, little is known about this problem when agents are heterogeneous.

We begin by studying a simple two-agent model. The agent with the lower e↵ort cost per

unit of benefit is referred to as the e�cient agent, and the agent with the higher e↵ort

cost per unit of benefit is referred to as the ine�cient agent. The solution concept we use

is Markov perfect equilibrium (hereafter MPE), as is standard in this literature. When

multiple equilibria exist, we refine the set of equilibria to the Pareto-dominant ones.

To lay the foundations for the collective choice analysis, in Section 3, we consider the

setting in which the project scope is exogenously fixed. We show that the e�cient agent

exerts more e↵ort than the ine�cient agent at every stage of the project and, moreover,

obtains a lower discounted payo↵ (normalized by his project stake). It is known in this

setting that the agents’ e↵orts increase as the project nears completion (see Cvitanić &
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Georgiadis (2016)), and we further show that the e�cient agent’s e↵ort level increases at

a faster rate than that of the ine�cient agent. We use these results to derive the agents’

preferences over the project scope. A lower normalized payo↵ for the e�cient agent means

that at every stage of the project, he prefers a smaller project scope than does the ine�cient

agent. Furthermore, we show that the scope of the project that the e�cient agent prefers

decreases as the project progresses, while the opposite is true for the ine�cient agent. This

is because the e�cient agent’s share of the remaining project cost is not only higher than

the ine�cient agent’s, but also increases as the project progresses. The agents’ preferences

over the project scope are thus time-inconsistent and divergent.

In Section 4, we endogenize the project scope and analyze the equilibrium outcomes

under dictatorship and unanimity, with and without commitment.2 With commitment,

we show that the project scope is decided at the start of the project in equilibrium under

any institution. When either agent is dictator, he chooses his ex-ante ideal project scope,

whereas under unanimity, the project scope lies between the agents’ ex-ante ideal scopes.

Without commitment, if the e�cient agent is the dictator, then he completes the project at

his ideal scope. However, if the ine�cient agent is dictator, then there exists a continuum of

equilibria on the Pareto frontier, which lie between the agents’ ideal scopes. That is because

the project scope that is implemented in equilibrium depends on when ine�cient agent

expects the other agent to stop working (at which moment the former optimally completes

the project immediately). Lastly, because the ine�cient agent always prefers a larger project

scope than the e�cient agent, without commitment, the set of equilibria under unanimity

are the same as when the ine�cient agent is dictator.

While institutions can enforce authority of an agent, the scope that is implemented

remains an equilibrium outcome. That is, even if an agent has dictatorship rights, he has to

account for the other agent’s actions when deciding the project scope. Akin to Aghion &

Tirole (1997), we say that an agent has real authority if his preferences are implemented in

equilibrium. With commitment, whichever agent has formal authority (i.e., the dictator),

also has real authority. However, this is not the case without commitment. In particular, if

the e�cient agent is dictator, then he also has real authority. In contrast, if the ine�cient

agent is dictator, then he has real authority while the project is in progress, but it eventually

“runs out”, and at the completion state, it is the e�cient agent who has real authority.

Therefore, real authority changes hands as the project progresses.

From a social welfare perspective, with or without commitment, when the e�cient agent

is the dictator, the equilibrium project scope is too small relative to the social planner’s.

The reason is that he retains full control of the scope and his ideal project scope does not

2The former refers to the case in which the agents can commit to a decision about the project scope at
any time. The latter refers to the case in which the agents cannot commit to an ex-ante decision. Therefore,
at every moment, they can either decide to complete the project immediately, or continue working.
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internalize the ine�cient agent’s higher dynamic payo↵. Therefore, it may be desirable to

confer some formal authority to the ine�cient agent (via dictatorship or unanimity) as a

means to counter the real authority that the e�cient agent obtains in equilibrium.3

To test the robustness of our results, we consider two extensions of the model in Section

5. If transfers are allowed, then the social planner’s project scope can be implemented in

equilibrium under all institutions. When the agents can choose the stakes (or shares) of

the project ex-ante, simulations show that the e�cient agent is always allocated a higher

share than the ine�cient agent. With the e�cient agent as dictator, the share awarded

to him is naturally the largest. We also consider the case in which the project progresses

stochastically, and using simulations, we illustrate that the main results continue hold.4

Finally, we discuss the case in which the group comprises of more than two agents in Section

6.

Related Literature

Our model draws from the literature on the dynamic provision of public goods, including

classic contributions by Levhari & Mirman (1980) and Fershtman & Nitzan (1991). Similarly

to our approach, Admati & Perry (1991), Marx & Matthews (2000), Compte & Jehiel

(2004), Yildirim (2006), and Georgiadis (2016) consider the case of public good provision

when the benefit is received predominantly upon completion. Bonatti & Rantakari (2015)

consider collective choice in a public good game, where each agent exerts e↵ort on an

independent project, and the collective choice is made to adopt one of the projects at

completion. Battaglini et al. (2014) study a public good provision game without a terminal

date, in which each agent receives a flow benefit that depends on the stock of the public good,

in contrast to our setting. We contribute to this literature by endogenizing the provision

point of the public good, and studying how di↵erent collective choice institutions influence

the project scope that is implemented in equilibrium.

This paper joins a large political economy literature studying collective decision-making

when the agents’ preferences are heterogeneous, including the seminal work of Romer &

Rosenthal (1979). More recently, this literature has turned its attention to the dynamics of

collective decision making, including papers by Baron (1996), Dixit et al. (2000), Battaglini

& Coate (2008), Strulovici (2010), Diermeier & Fong (2011), Besley & Persson (2011) and

Bowen et al. (2014). Other papers, for example, Lizzeri & Persico (2001), have looked at

alternative collective choice institutions. To the best of our knowledge, this is the first paper

3This resonates with Galbraith (1952), who argues that when one party is strong and the other weak, it is
preferable to give formal authority to the latter.

4The models with uncertainty and endogenous choice of project shares in the voluntary contribution game
with heterogeneous agents that we study is analytically intractable, so we examine them numerically. All
other results are obtained analytically.
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to study collective decision-making in the context of a group of agents collaborating to

complete a project.

The application to public projects without the ability to commit relates to a large

number of articles studying international agreements. Several of these study environmental

agreements (for example, Nordhaus 2015, Battaglini & Harstad forthcoming) and trade

agreements (see Maggi 2014).5 To our knowledge, this literature has not examined the

dynamic selection of project scope (or goals) in these agreements with asymmetric agents

or identified the source of authority. Our theory sheds light on the dominance of large

countries in many trade and environmental agreements in spite of unanimity being the

formal institution.

Finally, our interest in real and formal authority relates to a literature studying the

source of authority and power, including the influential work of Aghion & Tirole (1997)

and more recent contributions by Callander (2008), Levy (2014), Callander & Harstad

(2015), Hirsch & Shotts (2015), and Akerlof (2015). Unlike this paper, these authors focus

on the role of information in determining real authority. Bester & Krähmer (2008) and

Georgiadis et al. (2014) consider a principal-agent setting in which the principal has formal

authority to choose which project to implement, but that choice is restricted by the agent’s

e↵ort incentives; or she can delegate the project choice decision to the agent. Acemoglu &

Robinson (2008) consider the distinction of de jure and de facto political power, which are

the analogs of formal and real authority, but the source of the latter is attributed to various

forces outside the model. In contrast, we are able to endogenously attribute the source of

real authority under di↵erent collective choice institutions to the agents’ e↵ort costs and

stake in our simpler setting of a public project.

2 Model

We present a stylized model of two heterogeneous agents i 2 {1, 2} deciding the scope of a

public project Q � 0.6 Time is continuous and indexed by t 2 [0,1). A project of scope Q

requires voluntary e↵ort from the agents over time to be completed. Let ait � 0 be agent i’s

instantaneous e↵ort level at time t, which induces flow cost ci(ait) = �ia
2
it/2 for some �i > 0.

Agents are risk-neutral and discount time at common rate r > 0.

We denote the cumulative e↵ort (or progress on the project) up to time t by qt, which we

call the project state. The project starts at initial state q0 = 0 and progresses according to

dqt = (a1t + a2t) dt .

5Bagwell & Staiger (2002) discuss the economics of trade agreements in depth. Others look at various
aspects of specific trade agreements, such as flexibility or forbearance in a non-binding agreement, (see, for
example, Beshkar & Bond 2010, Bowen 2013).

6We discuss the case of n � 3 agents in Section 6.
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It is completed at the moment that the state reaches the chosen scope Q.7 The project

yields no payo↵ while it is in progress, but upon completion, it yields a payo↵ ↵iQ to agent

i, where ↵i 2 R+ is agent i’s stake in the project.8 Agent i’s project stake therefore captures

all of the expected benefit from the project.9All information is common knowledge.

Therefore, given an arbitrary set of e↵ort paths {a1s, a2s}s�t and project scope Q, agent

i’s discounted payo↵ at time t satisfies

Jit = e�r(⌧�t)↵iQ�
Z ⌧

t
e�r(s�t) �i

2
a2isds ,

where ⌧ denotes the equilibrium completion time of the project (and ⌧ = 1 if the project is

never completed).

By convention, we assume that the agents are ordered such that �1
↵1

 �2
↵2
. Intuitively,

this means that agent 1 is relatively more e�cient than agent 2, in that his marginal cost of

e↵ort relative to his stake in the project is smaller than that of agent 2. In sequel, we say

that agent 1 is e�cient and agent 2 is ine�cient.

The project scope Q is decided by collective choice at any time t � 0, i.e., at the start of

the project, or after some progress has been made. The set of decisions available to each

agent depends on the collective choice institution, which is either dictatorship or unanimity.

To lay the foundations for the collective choice analysis, we shall assume that the project

scope Q is fixed in the next section. When we consider the collective choice problem in

Section 4, we will enrich the model by introducing additional notation as necessary.

3 Analysis with fixed project scope Q

In this section, we lay the foundations for the collective choice analysis. We begin by

considering the case in which the project scope Q is specified exogenously at the outset of

the game and characterize the (essentially unique) stationary Markov Perfect equilibrium

(MPE) of this game.10 We then derive each agent’s preferences over the project scope Q

given the MPE payo↵s induced by a choice of Q. Finally, we characterize the social planner’s

benchmark. In Section 4, we consider the case in which the agents decide the project scope

via collective choice.
7We make the simplifying assumption that the project state progresses deterministically. See Section 5.2

for an extension in which the state progresses stochastically.
8Without loss of generality, one can assume that upon completion, the project yields a stochastic payo↵

to agent i that has expected value ↵iQ.
9The sum ↵1 + ↵2 reflects the publicness of the project, and if ↵1 + ↵2 = 1, then the project stake can

be interpreted as the project share. We assume that these stakes are exogenously fixed. In Section 5.1, we
extend our model to allow the agents to use transfers to re-allocate shares.

10As is standard in this literature, we focus on MPE. These equilibria require minimal coordination between
the agents, and in this sense they are simple. The simplicity of MPE make them naturally focal in the
collective choice setting.
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3.1 Markov perfect equilibrium with exogenous project scope

In a MPE, at every moment, each agent chooses his e↵ort level as a function of the current

project state q to maximize his discounted payo↵ while anticipating the other agents’ e↵ort

choices. Let us denote each agent i’s discounted continuation payo↵ and e↵ort level when the

project state is q by Ji (q) and ai (q), respectively. Using standard arguments (for example,

Kamien & Schwartz 2012) and assuming that {J1(·), J2(·)} are continuously di↵erentiable,

it follows that they satisfy the Hamilton-Jacobi-Bellman (hereafter HJB) equation

rJi (q) = max
bai�0

n

��i
2
ba2i + (bai + aj(q)) J

0

i (q)
o

, (1)

subject to the boundary condition

Ji (Q) = ↵iQ , (2)

where aj(·) is agent i’s conjecture for the e↵ort chosen by agent j 6= i. We refer to such

MPEs as well-behaved.

The right side of (1) is maximized when bai = max {0, J 0

i (q) /�i}. Intuitively, at every

moment, each agent either does not put in any e↵ort, or he chooses his e↵ort level such

that the marginal cost of e↵ort is equal to the marginal benefit associated with bringing

the project closer to completion. In any equilibrium we have J 0

i (q) � 0 for all i and q, that

is, each agent is better o↵ the closer the project is to completion.11 By substituting each

agent’s first-order condition into (1), it follows that each agent i’s discounted payo↵ function

satisfies

rJi (q) =
[J 0

i (q)]
2

2�i
+

1

�j
J 0

i (q) J
0

j (q) , (3)

subject to the boundary condition (2), where j denotes the agent other than i. By noting

that each agent’s problem is concave, and thus the first-order condition is necessary and

su�cient for a maximum, it follows that every well-defined MPE is characterized by the

system of ordinary di↵erential equations (ODEs) defined by (3) subject to (2).12 The

following Proposition, which builds upon Cvitanić & Georgiadis (2016) characterizes the

MPE.

Proposition 1. For any project scope Q, there exists a unique well-behaved MPE. Moreover

for any project scope Q, exactly one of two cases can occur.

1. The MPE is project-completing: both agents exert e↵ort at all states and the project is

completed. Then, Ji (q) > 0, J 0

i (q) > 0, and a0i (q) > 0 for all i and q � 0.

11See the proof of Proposition 1.
12This system of ODEs can be normalized by letting eJi (q) =

Ji(q)
�i

. This becomes strategically equivalent
to a game in which �1 = �2 = 1, and agent i receives ↵i

�i
Q upon completion of the project.
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2. The MPE is not project-completing: agents do not ever exert any e↵ort, and the project

is not completed.

If Q is su�ciently small, then case (1) applies, while otherwise, case (2) applies.

All proofs are provided in Appendix A.

Proposition 1 characterizes the unique MPE for any given project scope Q. In any

project-completing MPE, payo↵s and e↵orts are strictly positive, and each agent increases

his e↵ort as the project progresses towards completion, i.e., a0i (q) > 0 for all i and q. Because

the agents discount time and they are rewarded only upon completion, their incentives are

stronger the closer the project is to completion.

If the agents are symmetric (i.e., if �1
↵1

= �2
↵2
), then in the unique project-completing

MPE, each agent i’s discounted payo↵ and e↵ort function can be characterized analytically

as follows:

Ji (q) =
r�i (q � C)2

6
and ai (q) =

r (q � C)

3
, (4)

where C = Q�
q

6↵iQ
r�i

(see Georgiadis et al. (2014)). A project-completing MPE exists if

C < 0. While the solution to the system of ODEs given by (3) subject to (2) can be found

with relative ease in the case of symmetric agents, no closed-form solution can be obtained

for the case of asymmetric agents. Nonetheless, we are able to derive important properties

of the solution, which will be useful for understanding the intuition behind the results in

Section 3.2. The following proposition compares the equilibrium e↵ort levels and payo↵s of

the two agents.

Proposition 2. Suppose that �1
↵1

< �2
↵2
. In any project-completing MPE:

1. Agent 1 exerts higher e↵ort than agent 2 in every state, and agent 1’s e↵ort increases

at a greater rate than agent 2’s. That is, a1 (q) � a2 (q) and a01(q) � a02(q) for all

q � 0.

2. Agent 1 obtains a lower discounted payo↵ normalized by project stake than agent 2.

That is, J1(q)
↵1

 J2(q)
↵2

for all q � 0.

Suppose instead that �1
↵1

= �2
↵2
. In any project-completing MPE, a1 (q) = a2 (q) and

J1(q)
↵1

=
J2(q)
↵2

for all q � 0.

It is intuitive that the more e�cient agent always exerts higher e↵ort than the less

e�cient agent, as well as that the more e�cient agent raises his e↵ort at a faster rate than

the less e�cient agent. Notice that each agent i’s e↵ort incentives are proportional to his

normalized gross payo↵ e�r(⌧�t) ↵i
�i
Q. Therefore, as the project progresses (i.e., as ⌧ � t

9



decreases), the incentives of the e�cient agent grow at a faster rate than the incentives of

the ine�cient agent.

What is perhaps surprising is that the more e�cient agent obtains a lower discounted

payo↵ (normalized by his stake) than the other agent. This is because the more e�cient agent

not only works harder than the other agent, but he also incurs a higher total discounted cost

of e↵ort (normalized by his stake). To examine the robustness of this result, in Appendix

B.1, we consider a larger class of e↵ort cost functions, and we show that this result holds as

long as each agent’s e↵ort cost is weakly log-concave in the e↵ort level; i.e., {c1(·), c2(·)} are

not “super-convex”.

3.2 Preferences over project scope

In this section, we characterize each agent’s optimal project scope without institutional

restrictions. That is, we determine the Q that maximizes each agent’s discounted payo↵

given the current state q and assuming that both agents follow the MPE characterized in

Proposition 1 for the project scope Q. Notice that the agents will choose a project scope

such that the project is completed in equilibrium.

Agents working jointly

To make the dependence on the project scope explicit, we let Ji(q;Q) denote agent i’s payo↵

at project state q when the project scope is Q. Let Qi(q) denote agent i’s ideal project scope

when the state of the project is q. That is,

Qi (q) = argmax
Q�q

{Ji (q;Q)} .

For each agent i there exists a unique state q, denoted by Qi such that he is indi↵erent

between terminating the project immediately or an instant later, and Q2 � Q1.
13 Throughout

the remainder of this paper, we shall assume that the parameters of the problem are such that

Q 7! Ji(q;Q) is strictly concave on [q,Q2].
14 Observe that the strict concavity assumption

implies that Ji(0, Q) > 0 for all i and Q 2 (0, Q2), so the corresponding MPE is project-

completing.

The following proposition establishes properties of each agent’s ideal project scope.

Proposition 3. Consider agent i’s optimal project scope Q when both agents choose their

e↵ort strategies based on Q.

13The value of Qi is provided in Lemma 7 in the proof of Proposition 3.
14This condition is satisfied in the symmetric case �1

↵1
= �2

↵2
(see Georgiadis et al. (2014) for details) and,

by a continuity argument, it is also satisfied for neighboring, asymmetric parameter values. While we do not
make a formal claim regarding the set of parameters values for which the condition is satisfied, numerical
simulations suggest that this condition holds generically.
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1. If the agents are symmetric (i.e., �1
↵1

= �2
↵2
), then for all states q, their ideal project

scopes are equal and given by Q1(q) = Q2(q) =
3↵i
2�ir

.

2. If the agents are asymmetric (i.e., �1
↵1

< �2
↵2
), then:

(a) The e�cient agent prefers a strictly smaller project scope than the ine�cient

agent at all states up to Q2, i.e., Q1(q) < Q2(q) for all Q2.

(b) The e�cient agent’s ideal scope is strictly decreasing in the project state up to Q1,

while the ine�cient agent’s scope is strictly increasing for all q, i.e., Q0

1(q) < 0

for all q < Q1 and Q0

2(q) > 0 for all q.

(c) Agent i’s ideal is to complete the project immediately at all states greater than

Qi, i.e., Qi(q) = q for all q � Qi.

Part 1 asserts that when the agents are symmetric, they have identical preferences over

project scope, and these preferences are time-consistent.

Part 2 characterizes each agent’s ideal project scope when the agents are asymmetric,

and is illustrated in Figure 1. Part 2 (a) asserts that the more e�cient agent always prefers

a strictly smaller project scope than the less e�cient agent for q < Q2.
15 Note that each

agent trades o↵ the bigger gross payo↵ from a project with a larger scope and the cost

associated with having to exert more e↵ort and wait longer until the project is completed.

Moreover, agent 1 not only always works harder than agent 2, but at every moment, his

discounted total cost remaining to complete the project normalized by his stake (along the

equilibrium path) is larger than that of agent 2.16 Therefore, it is intuitive that agent 1

prefers a smaller project scope than agent 2.

Part 2 (b) shows that both agents are time-inconsistent with respect to their preferred

project scope: as the project progresses, agent 1’s optimal project scope becomes smaller,

whereas agent 2 would like to choose an ever larger project scope. To see the intuition

behind this result, recall that a01 (q) � a02 (q) > 0 for all q; that is, both agents increase their

e↵ort with progress, but the rate of increase is greater for agent 1 than it is for agent 2. This

implies that for a given project scope, the closer the project is to completion, the larger is

the share of the remaining e↵ort carried out by agent 1. Therefore, agent 1’s optimal project

scope decreases. The converse holds for agent 2, and as a result, his preferred project scope

becomes larger as the project progresses.

Recall that Qi is the project scope such that agent i is indi↵erent between stopping

immediately (when q = Qi) and continuing one instant longer. This is the value of the state

15The agents’ ideal project scopes are equal for q � Q2 by Proposition 3.2 part (c).
16Formally and as implied by Proposition 2.2, for every t 2 [0, ⌧), we have �1

↵1

R ⌧

t
e�rt a2

1(qt;Q)
2 dt >

�2
↵2

R ⌧

t
e�rt a2

2(qt;Q)
2 dt along the equilibrium path of the project.
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at which Qi (q) hits the 45� line. Part 2 (c) shows that at every state q � Qi, agent i prefers

to stop immediately.

Agents working independently

This section characterizes each agent’s optimal project scope when he works alone on the

project. We use this to characterize the equilibrium with endogenous project scope in Section

4. Let bJi(q,Q) denote agent i’s discounted payo↵ function when he works alone on the

project, the project scope is Q, and he receives ↵iQ upon completion.17 We define agent i’s

optimal project scope as

bQi (q) = argmax
Q�q

n

bJi (q;Q)
o

.

The following lemma characterizes bQi(q).

Lemma 1. Suppose that agent i works alone and he receives ↵iQ upon completion of a

project with scope Q. Then his optimal project scope satisfies

bQi(q) =
↵i

2r �i
,

for all q  ↵i
2r �i

, and otherwise, bQi(q) = q. Moreover, for all q,

bQ2(q)  bQ1(q)  Q1 (q)  Q2 (q) .

Lemma 1 asserts that if an agent works solo, then his preferences over the scope are

time-consistent (as long as he does not want to stop immediately). As such, we will abuse

notation and write bQi =
↵i

2r �i
.

Intuitively, when the agent works alone, he bears the entire cost to complete the project,

in contrast to the case in which the two agents work jointly. The second part of this lemma

rank-orders the agents’ ideal project scopes. If an agent works in isolation, then he cannot

rely on the other to carry out any part of the project, and therefore the less e�cient agent

prefers a smaller project scope than the more e�cient one. Last, it is intuitive that the more

e�cient agent’s ideal project scope is larger when he works with the other agent relative to

when he works alone.

3.3 Social Optimum

To conclude this section, we consider a social planner choosing the project scope that

maximizes the sum of the agents’ discounted payo↵s, conditional on the agents choosing

e↵ort strategically. For this analysis, we assume that the social planner cannot coerce the

17The value of bJi(q;Q) is given in the proof of Lemma 1 in the Appendix.
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agents to exert e↵ort, but she can dictate the state at which the project is completed.18 Let

Q⇤ (q) = argmax
Q�q

{J1 (q;Q) + J2 (q;Q)}

denote the project scope that maximizes the agents’ total discounted payo↵.

Lemma 2. The project scope that maximizes the agents’ total discounted payo↵ satisfies

Q⇤ (q) 2 (Q1 (q) , Q2 (q)).

Lemma 2 shows that the social planner’s optimal project scope Q⇤ (q) lies between the

agents’ optimal project scopes for every state of the project. This is intuitive, since she

maximizes the sum of the agents’ payo↵s. Note that in general, Q⇤ (q) is dependent on

q; i.e., the social planner’s optimal project scope is also time-inconsistent. We illustrate

Proposition 3, and Lemmas 1 and 2 in Figure 1 below.
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Figure 1: Agents’ and social planner’s ideal project scope

4 Endogenous Project Scope

We now allow agents to choose the project scope via a collective choice institution. The

project scope in this section is thus endogenous, in contrast to the analysis in Section 3. In

18This implies that the social planner is unable to completely overcome the free-rider problem. We consider
the benchmark in which the social planner chooses both the agents’ e↵ort levels, and the project scope in
Appendix B.2. However, as it is unlikely that a social planner can coerce agents to exert a specific amount of
e↵ort, we use the result in the following lemma as the appropriate benchmark.
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Section 4.1 and 4.2, we characterize the MPE under dictatorship and unanimity, respectively,

while in Section 4.3 we discuss the implications for real authority and welfare. Whenever

multiple equilibria exist, we shall focus on the Pareto-e�cient ones (i.e., equilibrium outcomes

such that in no other equilibrium outcome can a party get a strictly larger ex-ante payo↵

without a reduction of the other party’s payo↵).

4.1 Dictatorship

In this section, one of the two agents, denoted agent i, has dictatorship rights. The other

agent, agent j, can contribute to the project, but has no formal authority to end it. We

consider that the dictator can either commit to the project scope or not.

We enrich the baseline model of Section 2 by defining a strategy for agent i (the dictator)

to be a pair of maps {ai(q,Q), ✓i(q)}, where q 2 R+, Q 2 R+ [ {�1}, and Q = �1 denotes

the case in which the project scope has not yet been decided yet.19 The function ai(q,Q)

gives the dictator’s e↵ort level in state q when project scope Q has been decided, where

Q = �1 represents the case in which a decision about the project scope is yet to be made.

The value ✓i(q) gives the dictator’s choice of project scope in state q, which applies under

the assumption that no project scope has been committed to before state q. We set by

convention ✓i(q) = �1 if the dictator does not yet wish to commit to a project scope at state

q, and ✓i(q) � q otherwise. Similarly, a strategy for agent j 6= i is a map aj(q,Q) associated

with his e↵ort level in state q and the project scope decided by the dictator Q (or Q = �1 if

a decision has not yet been made). Notice that each agent’s strategy conditions only on

the payo↵-relevant variables q and Q, and hence they are Markov in the sense of Maskin &

Tirole (2001).

Dictatorship with Commitment

We first consider dictatorship with commitment. In this institution, the dictator can at any

time announce a particular project scope, and, following this announcement, the project

scope is set once and for all. Therefore, at every state q before some project scope Q has

been committed to, the dictator chooses ✓i (q) 2 {�1} [ [q,1). After a project scope has

been set, it is definitive, so ✓i(·) becomes obsolete.

After a project scope Q has been committed to, it is completed and each agent obtains

his reward as soon as the cumulative contributions reach Q. If the agents do not make

su�cient contributions, then the project is never completed: both agents incur the cost

of their e↵ort, but neither gets any reward. The project cannot be completed before the

dictator announces a project scope.

19Before the project scope has been decided, in equilibrium, the agents correctly anticipate the project
scope that will be implemented, and choose their e↵ort levels optimally.
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The following proposition characterizes the equilibrium. Under commitment, each agent

finds it optimal to impose his ideal project scope. The time inconsistency of the dictator’s

preferences implies that the scope is always chosen at the beginning of the project.

Proposition 4. Under dictatorship with commitment, there exists a unique MPE in which

agent i commits to his ex-ante ideal project scope Qi(0), and the project is completed.

Dictatorship without Commitment

We now consider dictatorship without commitment. In this case, the dictator does not have

the ability to credibly commit to a particular project scope, so at every instant, he must

decide whether to complete the project immediately or continue one more instant. Formally,

at every state q while the project is in progress, the dictator chooses ✓i (q) 2 {�1, q}.20 Note

that in contrast to the commitment case, the strategies no longer condition on any agreed

upon project scope Q, as no agreement on the project scope is reached before the project

is completed. As soon as the project is completed, both agents collect their payo↵s.The

following Proposition characterizes the MPE.

Proposition 5. Under dictatorship without commitment, if agent 1 (i.e., the e�cient agent)

is the dictator, then there exists a unique MPE, and scope Q = Q1 is implemented. If agent

2 is the dictator, then any Q 2 [Q1(0), Q2(0)] can be part of an MPE.

We provide a heuristic proof, which is useful for understanding the intuition for this

result. First, recall from Lemma 1 that bQ2 < bQ1 < Q1 < Q2. Assume that agent i is

dictator, fix some Q 2 ( bQi, Qi), and conjecture the following strategies. Agent i stops the

project immediately when q � Q; i.e., he chooses ✓i (q) = q for all q � Q, and ✓i (q) = �1

otherwise. For all q < Q, both agents exert e↵ort according to the MPE with fixed project

scope Q characterized in Proposition 1, and exert no e↵ort thereafter. We shall argue that

neither agent has an incentive to deviate, and hence these strategies constitute an MPE.

Notice that the agents’ e↵orts constitute an MPE for a fixed project scope Q, so they have

no incentive to exert more or less e↵ort at any q < Q. Because Q  Qi, agent i has no

incentive to stop the project at any q < Q. Moreover, anticipating that he will contribute

alone to the project at any q � Q, and noting that Q � Q̂i, agent i cannot benefit by

completing the project at any state greater than Q.

Finally, observe that both agents’ (ex-ante) payo↵s increase (decrease) in the project

scope for all Q < Q1(0) (Q > Q2(0)). Therefore, if agent 1 is the dictator, then there

20Any announcement of project scope other than the current state cannot be committed to. Thus any
announcement by agent i other than the current state is ignored by agent j in equilibrium. Thus, agent i’s
strategy collapses to an announcement to complete the project immediately, or keep working.
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exists a unique Pareto-e�cient MPE in which Q = Q1. If agent 2 is the dictator, then any

Q 2 [Q1(0), Q2(0)] can be part of a Pareto-e�cient MPE.

Notice that because the agents have conflicting preferences on [Q1, Q2] (i.e., agent 1

prefers to complete the project, whereas agent 2 prefers to continue), the Pareto-e�cient

MPE are also renegotiation-proof.

4.2 Unanimity

In this section, we consider the case in which both agents must agree on the project scope.

One of the agents, whom we denote by i, is (exogenously) chosen to be the agenda setter,

and he has the right to make proposals for the project scope. The other agent (agent j) must

respond to the agenda setter’s proposals by either accepting or rejecting each proposal.21 If

a proposal is rejected, then no decision is made about the project scope at that time. The

project cannot be completed until a project scope has been agreed to.

A strategy for agent i (the agenda setter) is a pair of maps {ai(q,Q), ✓i(q)} defined for

q 2 R+ and Q 2 R+ [ {�1}. Here, ai(q,Q) denotes the e↵ort level of the agenda setter

when the project state is q and the project scope agreed upon is Q; by convention, ai(q,�1)

denotes his e↵ort level when no agreement has been reached yet. The value of ✓i(q) is the

project scope proposed by the agenda setter in project state q; by convention, ✓i(q) = �1

if the agent does not make a proposal at state q. Similarly, the map aj(q,Q) denotes the

e↵ort level in state q when project scope Q has been agreed upon; by convention, Q = �1 if

no agreement has been reached yet. The map Yj(q,Q) is the acceptance strategy of agent j

if agent i proposes project scope Q at state q, where Yj(q,Q) = 1 if agent j accepts, and

Yj(q,Q) = 0 if he rejects.

Unanimity with Commitment

We first consider the case in which the agents can commit to a decision about the project

scope. At any instant, the agenda setter can propose a project scope. Upon proposal, the

other agent must decide to either accept or reject the o↵er. If he accepts, then the project

scope agreed upon is set once and for all, and cannot be changed. From that instant onwards,

the agenda setter stops making proposals, so {✓i(·), Yj(·)} become obsolete. The agents may

continue to work on the project, and the project is completed and the agents collect their

payo↵s if and only if the state reaches the agreed upon project scope. If agent j rejects the

proposal, then no project scope is decided upon, and the agenda setter may continue to

make further proposals.

21The set of equilibrium project scopes is independent of who is the agenda-setter.
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The following Proposition characterizes the set of MPE for the game in which both

agents must agree to a particular project scope, and they can commit ex-ante.

Proposition 6. Under unanimity with commitment, the project scope is agreed to at the

beginning of the project, and any Q 2 [Q1(0), Q2(0)] can be part of an MPE.

In other words, the project scope is decided at the outset, and it lies between the agents’

ideal project scopes.

Unanimity without Commitment

Now suppose that the agenda setter cannot commit to a future project scope. Given the

current state q, the agenda setter either proposes to complete the project immediately, or

he does not make any proposal; i.e., ✓i(q) 2 {�1, q}. The following Proposition shows that

without commitment, unanimity generates the same set of equilibria as the game when the

ine�cient agent is the dictator.

Proposition 7. Without commitment, under unanimity, the set of MPE outcomes are

the same as when agent 2 (i.e., the ine�cient agent) is the dictator. That is, any Q 2
[Q1(0), Q2(0)] can be part of an MPE.

Recall from Proposition 3 that agent 2 always prefers a larger project scope than agent

1 (i.e., Q2(q) � Q1(q) for all q). Therefore, at any state q such that agent 2 would like to

complete the project immediately, agent 1 wants to do so as well, but the opposite is not

true. Because both agents must agree to complete the project, e↵ectively, it is agent 2 who

has the decision rights over the project scope.

Note that there is another institution wherein at every moment, the agents must both

agree to continue the project. By a symmetric argument, the set of MPE outcomes are the

same as when agent 1 is the dictator; i.e., there exists a unique MPE in which Q = Q1 is

implemented. However, to remain consistent with the previous cases analyzed, we focus on

the institution in which both agents must agree to stop the project.

4.3 Implications

In this section, we elaborate on two implications of our results. First, we seek to understand

how closely the equilibrium project scope is aligned with each agent’s preferences, or

equivalently, which agent has “real authority” over the scope of the project. Second, we

examine the welfare implications associated with each collective choice institution.
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Real Authority

Naturally, institutions can enforce an agent’s authority. However, the scope that is eventually

implemented remains an equilibrium outcome, and thus the agent with formal decision power

(e.g., the dictator) also has to account for his anticipation of the other agent’s actions. In

that sense, the scope implemented in equilibrium may be better aligned with the preferences

of the agent who does not exercise formal decision power.

We model formal authority as the ability to determine the state at which the project

ends and rewards are collected. We consider formal authority to be enforceable by courts:

an agent has formal authority if he has the right to “sign the documents” or “pull the plug.”

It is determined by the collective choice institution. In the dictatorship setting, formal

authority goes to the agent chosen as the dictator. By convention, in the unanimity setting,

we say that the agents share formal authority. In contrast, the agent who has e↵ective

control over the project scope (i.e., he whose preferences are implemented in equilibrium), is

said to have real authority. We define real authority as follows.

Definition 1. Suppose the state is q, and a project scope has not been decided at any q̃ < q.

Agent i has real authority if either:

1. The project scope Q is decided at q and Q = Qi(q); or,

2. The project scope Q is not decided at q and Qi(q) > q.

Note that this definition applies only until a project scope is committed to. After the

project scope has been decided, the game becomes one of dynamic contributions with a

fixed, exogenous scope, and the concept of real authority is no longer relevant.

Our notions of real and formal authority are much like those described in Aghion & Tirole

(1997). As pointed out in Aghion & Tirole (1997), the agent endowed with formal authority

is not necessarily able to control the project. For example, consider a developed country

assisting a developing country to construct a large infrastructure project. The project,

being carried out on the developing country’s soil, is subject to its laws and jurisdiction.

The developing country thus has formal authority over the project and can specify the

termination state, but it is not clear that the developing country does so at a state that is

its ideal scope, due to the incentives of the donor developed country.

With commitment, the project scope is decided at the beginning of the project, and

whichever agent has formal authority (i.e., dictatorship rights), also has real authority. Under

unanimity, recall that any Q 2 [Q1(0), Q2(0)] can be part of an equilibrium, so depending

on which scope is implemented, either agent can have real authority, or neither.

Without commitment, because the agents’ preferences over project scope are time-

inconsistent, real authority has a temporal component, and therefore richer implications.
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The following remark elaborates.

Remark 1. Consider the case without commitment. For all q < Q1, the agents share real

authority. For q � Q1:

1. If agent 1 is dictator, then he has real authority at the completion state q = Q1.

2. If agent 2 is dictator (or under unanimity) and Q 2 [Q1(0), Q2(0)] is implemented,

then he has real authority for all q 2
⇥

Q1, Q
�

. However, agent 1 has real authority at

the completion state Q.

First note that for all q < Q1, both agents prefer to continue the project. Thus, the

domain in which the agents have conflicting preferences is
⇥

Q1, Q2

⇤

. The main takeaway

from this remark is that if the e�cient agent is dictator, then he completes the project at

his ideal project scope, so he has real authority at the completion state Q1. In contrast,

when the ine�cient agent is the dictator (or under unanimity), the ine�cient agent has real

authority while the project is ongoing (since he prefers to continue, whereas the e�cient

agent would like to complete the project immediately), but his real authority eventually

“runs out”, and upon completion, it is the e�cient agent who has real authority.

This may also help explain why it is often the case that agreements formally governed

by unanimity still appear to be heavily influenced by large contributors. These large donors

are the more e�cient agents, who contribute more to the public project and hence have the

incentive to stop the project before the ine�cient agent.

Welfare

Finally, we discuss the welfare implications associated with each collective choice institution.

In particular, we are interested in the question — which institutions can maximize total

welfare. The following remark summarizes.

Remark 2. With commitment, the social planner’s ex-ante ideal project scope can be

implemented only with unanimity. Without commitment, the social planner’s project scope

can be implemented if the ine�cient agent is dictator or with unanimity.

First, notice that these are possibility results. Because in some cases, multiple MPE exist,

this is the best one can hope for. The main takeaway is that from a welfare perspective,

it may be desirable to give the weaker party (i.e., the ine�cient agent) formal authority,

because the stronger party obtains real authority in equilibrium. If instead the e�cient agent

is conferred formal authority, then because he does not internalize the positive externality

associated with a larger project scope, total welfare will be lower.
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5 Extensions

In this section, we extend our model in two directions. First, we allow the agents to use

monetary transfers in exchange for (a) implementing a particular project scope, or (b) re-

allocating the shares {↵1,↵2}. Second, we consider the case in which the project progresses

stochastically.

5.1 Transfers

So far we have assumed that each agent’s project stake ↵i is exogenous, and transfers

are not permitted. These are reasonable assumptions if agents are liquidity constrained.

However, if transfers are available, then there are various ways to mitigate the ine�ciencies

associated with the collective choice problem. Our objective in this section is to shed light

on how transfers can be useful for improving the e�ciency properties of the collective choice

institutions. We consider that agents choose e↵ort levels strategically, so free-riding still

occurs. We look at two types of transfers. First, we discuss the possibility that the agents

can make lump-sum transfers at the beginning of the game to directly influence the project

scope that is implemented. Second, we consider the case in which the agents can bargain

over the allocation of shares in the project in exchange for transfers. In both cases, we

assume that the agents commit to the project scope, transfers, and reallocation of shares at

the outset of the game.

Transfers contingent on project scope

Let us consider the case in which one of the agents is dictator, and he can commit to a

particular project scope.22 Assume that agent 1 is dictator and makes a take-it-or-leave-it

o↵er to agent 2, which specifies a transfer in exchange for committing to some project scope

Q. Then agent 1 solves the following problem:

max
Q�0, T2R

J1 (0; Q)� T

s.t. J2 (0; Q) + T � J2 (0; Q1 (0)) .

Put in words, agent 1 chooses the project scope and the corresponding transfer to maximize

his ex-ante discounted payo↵, subject to agent 2 obtaining a payo↵ that is at least as great

as his payo↵ if he were to reject agent 1’s o↵er, in which case agent 1 would commit to

the status quo project scope Q1 (0), and no transfer would be made. Because transfers are

unlimited, the constraint binds in the optimal solution, and the problem reduces to

max
Q�0

{J1 (0; Q) + J2 (0; Q)� J2 (0; Q1 (0))} .

22The analysis for the other cases is similar, and yields the same insights.
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Note that the optimal choice of Q maximizes total surplus. This is intuitive: because the

agents have complete and symmetric information, bargaining is e�cient. Moreover, it is

straightforward to verify that the same result holds under any one-shot bargaining protocol

irrespective of which agent has dictatorship rights, and for any initial status quo.23

Transfers contingent on reallocation of shares

We now consider ↵1 + ↵2 = 1, so the project stakes can be interpreted as project shares.

We consider an extension of the model in which, at the outset, the agents start with an

exogenous allocation of shares and then engage in a bargaining game in which shares can be

reallocated in exchange for a transfer. After the re-allocation of shares, the collective choice

institution determines the choice of scope as given in Section 4. Note that the allocation

of shares influences the agents’ incentives and consequently the equilibrium project scope.

Because this is a game with complete information, the agents reallocate the shares so as to

maximize the ex-ante total discounted surplus, taking the collective choice institution as

given. For the cases in which the Pareto-e�cient MPE is not unique, we further refine the

MPE to the one in which total surplus is maximal.24

Based on the analysis of Section 4, there are three cases to consider:

1. Agent i is dictator, for i 2 {1, 2}, and he has the ability to commit. As such, he

commits to Q = Qi (0) at the outset, by Proposition 4.

2. Agent 1 is dictator, but he is unable to commit. In this case, the project is completed

at state Q1, by Proposition 5.

3. Agent 2 is dictator, but he is unable to commit, or decisions must be made unanimously,

with or without commitment. In these cases, the equilibrium project scope is Q⇤(0)

by Propositions 5, 6, and 7, and the refinement to the total surplus-maximizing MPE.

We focus the analysis on the case in which agent 1 is dictator and can commit to a particular

project scope at the outset; the other cases lead to similar insights. To begin, let Q1 (0;↵)

denote the (unique) equilibrium project scope when agent 1 is dictator and has the ability

to commit, conditional on the shares {↵1, 1� ↵1}. Assume that agent 1 makes a take-it-or-

leave-it o↵er to agent 2, which specifies a transfer in exchange for reallocating the parties’

shares from the status quo shares {↵1, 1� ↵1} to {↵1, 1� ↵1}. Let Ji(q;Q,↵) denote the

23One might also consider the case in which commitment is not possible. Because Q1 (q)  Q2 (q) for all q,
to influence the project scope at some state, agent 1 might o↵er a lump-sum transfer to agent 2 in exchange
for completing the project immediately, whereas agent 2 might o↵er flow transfers to agent 1 to extend the
scope of the project. This model is intractable, so we do not pursue it in the current paper.

24This is the case under dictatorship without commitment, and unanimity with or without commitment.
Simulations indicate that the findings are robust to the equilibrium selection rule.
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continuation value for agent i when the state is q, the chosen project scope is Q and the

chosen share to agent 1 is ↵. Then agent 1 solves the following problem:

max
↵12[0,1], T2R

J1 (0; Q1 (0;↵1) ,↵1)� T

s.t. J2 (0; Q1 (0;↵1) ,↵1) + T � J2 (0; Q1 (0;↵1) ,↵1) .

Because transfers are unlimited and each agent’s discounted payo↵ increases in his share,

the incentive compatibility constraint binds in the optimal solution, and so the problem

reduces to

max
↵12[0,1]

{J1 (0; Q1 (0;↵1) ,↵1) + J2 (0; Q1 (0;↵1) ,↵1)� J2 (0; Q1 (0;↵1) ,↵1)} .

The optimal choice of ↵1 maximizes total surplus, conditional on the scope subsequently

selected by the collective choice institution. In all other cases, and under any one-shot

bargaining protocol, the agents will agree to re-allocate their shares to maximize total

surplus.

The problem of optimally reallocating shares is analytically intractable, therefore we

find the solution numerically. Figure 2 below illustrates the share allocated to agent 1, as

a function of his e↵ort cost. Note that without commitment, both the case of unanimity

and the case in which agent 2 is dictator deliver the same result, and hence the result for

unanimity is omitted.
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Figure 2: Agent 1’s optimal project share

In all cases, it is optimal for agent 1, who is more productive (i.e., �1 < �2), to possess

the majority of the shares. Moreover, his optimal allocation decreases as his e↵ort costs

increase, i.e., as he becomes less productive. In other words, if one agent is substantially

more productive than the other, then the former should possess the vast majority of the

shares. Indeed, it is e�cient to provide the stronger incentives to the more productive agent,

and the smaller the disparity in productivity between the agents, the smaller should be the
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di↵erence in the shares that they possess.

5.2 Collective Choice under Uncertainty

To examine the robustness of our results, in this section, we consider the case in which the

project progresses stochastically according to

dqt = (a1t + a2t) dt+ �dZt,

where Zt is a standard Brownian motion, and � > 0 captures the degree of uncertainty

associated with the evolution of the project. We discuss the results for collective choice

under this form of uncertainty.

As in the deterministic case studied in Section 3, we begin by establishing the existence

of an MPE with an exogenous project scope Q. In an MPE, each agent’s discounted payo↵

function satisfies

rJi (q) =
[J 0

i (q)]
2

2�i
+

1

�j
J 0

i (q) J
0

j (q) +
�2

2
J 00

i (q)

subject to the boundary conditions limq!�1

Ji (q) = 0 and Ji (Q) = ↵iQ for each i. It

follows from Georgiadis (2015) that for any project scope Q, an MPE exists and satisfies

Ji (q) > 0, J 0

i (q) > 0, ai(q) > 0 and a0i (q) > 0 for all i and q. This is the analog of

Proposition 1 in the case of uncertainty.

We next establish the key properties of the MPE with exogenous project scope for

asymmetric agents.

Proposition 8. Consider the model with uncertainty, and suppose that �1
↵1

< �2
↵2
.

1. Agent 1 exerts higher e↵ort than agent 2 in every state, and agent 1’s e↵ort increases

at a greater rate than agent 2’s. That is, a1 (q) � a2 (q) and a0i(q) � a02(q) for all q.

2. Agent 1 obtains a lower discounted payo↵ normalized by project stake than agent 2.

That is, J1(q)
↵1

 J2(q)
↵2

for all q.

If instead �1
↵1

= �2
↵2
, then a1 (q) = a2 (q) and

J1(q)
↵1

= J2(q)
↵2

for all q.

Proposition 8 is the analog of Proposition 2 in the case of uncertainty. It asserts that,

under uncertainty, if agents are asymmetric, then the e�cient agent exerts higher e↵ort at

every state of the project, and the e�cient agent’s e↵ort increases at a higher rate than that

of the ine�cient agent. Furthermore, the e�cient agent achieves a lower discounted payo↵

(normalized by the stake ↵i) at every state of the project.

As for the agents’ preferences over project scopes, while we are unable to prove the

counterpart of the results in Section 3.2, numerical computations suggest that they continue

to hold. This is not surprising given the result in Proposition 8 and because the intuition for
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the ordering and divergence of preferences is identical to that for the case without uncertainty.

An example is illustrated in Figure 3.
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Figure 3: Agent i’s ideal project scope Qi(q) with uncertainty

As Figure 3 illustrates, the ine�cient agent prefers a larger scope than the e�cient agent

at every state, and furthermore, his ideal project scope increases over the course of the

project, whereas the e�cient agent’s ideal project scope decreases. Moreover, for each agent,

there exists a threshold such that he prefers to complete the project immediately at every

state larger than that threshold.

Notice that the results of Section 4 rely on the key properties of the preferences illustrated

in Figure 3. Conditional on these preferences, all results of Propositions 4–7 will hold.

6 Discussion

We study a dynamic game in which two heterogeneous agents make costly contributions

towards the completion of a public project. The scope (i.e., the size) of the project is

endogenous, and it can be decided by a predetermined collective choice institution at any

time.

Three main takeaways arise from our analysis. First, due to free-riding incentives, the

agents’ preferences with respect to their ideal project scope are time-inconsistent, and the

more e�cient agent prefers to implement a smaller project relative to the less e�cient agent.

Second, absent the ability to commit to a decision about the project scope, if the e�cient

agent has dictatorship rights, then he also has real authority of the project scope that is

implemented. In contrast, if the ine�cient agent is the dictator or under unanimity, then
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real authority has a temporal component: for a duration of time, the dictator has real

authority, but it eventually runs out, and upon completion of the project, it is the e�cient

agent who has real authority. Third, from a welfare perspective, it may be desirable to give

some formal authority to the ine�cient agent (via dictatorship rights or unanimity).

Finally, we suggest several directions for future research. A natural next step is to extend

some of our results to a model with an arbitrary number of players, and understand, first,

how incentives for e↵ort interact, and second, how di↵erent collective choice institutions

influence the project scope that is implemented in equilibrium. Notice that with even three

players, other collective choice institutions can be considered, such as majority voting. As

an example, Figure 4 illustrates each agent’s ideal project scope, as well as the socially

optimal project scope for a group of 4 agents. Similar to the 2-player case, the agents’

Figure 4: Agents’ and social planner’s ideal project scopes with 4 agents.

preferences over project scope are time-inconsistent, and rank-ordered from most to least

e�cient. Second, a richer contracting space may be considered, where each agent’s payo↵ is

conditioned both the project scope, and the completion time. Lastly, our model assumes

complete information. This aids tractability, but likely misses important e↵ects related to

learning about the project’s benefit and the agents’ e↵ort costs over time. For example, if an

agent’s cost of e↵ort is private information, then the e�cient agent may have an incentive

to mimic the ine�cient agent, thus contributing a smaller amount of e↵ort. This may lead

to a greater ideal project scope for the e�cient agent, which will be welfare enhancing if the

e�cient agent is the dictator, but the welfare implications are not immediate because the

distribution of work will likely be further away from that of the social planner.
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A Proofs

A.1 Proof of Proposition 1

We first establish two Lemmas that will be used throughout the proof of this Proposition,

as well as in the proof of Proposition 3. We consider the benchmark game of Section 3 with

exogenous project scope Q.

Lemma 3. Let (J1, J2) be a pair of well-behaved value functions associated with an MPE.

Then Ji (q) 2 [0, ↵iQ] and J 0

i(q) � 0 for all i and q.

Proof of Lemma 3. Because each agent i can guarantee himself a payo↵ of zero by not

exerting any e↵ort, in any equilibrium, it must be the case that Ji (q) � 0 for all q. Moreover,

because he receives reward ↵iQ upon completion of the project, he discounts time, and the

cost of e↵ort is nonnegative, his payo↵ satisfies Ji (q)  ↵iQ for all q. Next, suppose that

J 0

i (q
⇤) < 0 for some i and q⇤. Then agent i exerts zero e↵ort at q⇤, and it must be the

case that agent j 6= i also exerts zero e↵ort, because otherwise it implies Ji (q⇤) < 0, which

cannot occur in equilibrium. Since both agents exert zero e↵ort at q⇤, the project is never

completed, and so J1 (q⇤) = J2 (q⇤) = 0. Therefore, for su�ciently small ✏ > 0, we have

Ji (q⇤ + ✏) < 0, which is a contradiction, implying J 0

i (q) � 0 for all i and q.

Observe that dividing both sides of equation (3) by �i the system of ODEs defined by (3)

subject to (2) can be rewritten as

r eJi (q) =
1

2

h

eJ 0

i (q)
i2

+ eJ 0

i (q) eJ
0

j (q) (5)

subject to eJi (Q) = ↵i
�i
Q for all i 2 {1, 2} and j 6= i. The following lemma derives an explicit

system of ODEs that is equivalent to the implicit form given in (5) of Section 3.

Lemma 4. Let (J1, J2) be a pair of well-behaved value functions associated with an MPE,

and let eJi (q) =
Ji(q)
�i

. Then if, at state q, the project is completing, the following explicit

ODEs are satisfied on the range (q,Q):25

eJ 0

1 =

r

r

6

r

2
q

eJ2
1 + eJ2

2 � eJ1 eJ2 + eJ1 + eJ2 +

r

r

2

r

2
q

eJ2
1 + eJ2

2 � eJ1 eJ2 � eJ1 + eJ2,

eJ 0

2 =

r

r

6

r

2
q

eJ2
1 + eJ2

2 � eJ1 eJ2 + eJ1 + eJ2 �
r

r

2

r

2
q

eJ2
1 + eJ2

2 � eJ1 eJ2 � eJ1 + eJ2.

Proof of Lemma 4. In an MPE in which the project is completing at state q, eJ 0

1 + eJ 0

2 > 0 on

[q,Q) as otherwise both agents put zero e↵ort at some intermediary state and the project is

not completed.

25We say that the project is completing at state q to indicate that if the state is q, then the project will
be completed. In contrast, we say that the project is completed at state Q to indicate that state Q is the
termination state.
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Using (5), subtracting eJ2 from eJ1 and adding eJ2 to eJ1 yields

r( eJ1 � eJ2)�
1

2
( eJ 0

1 + eJ 0

2)( eJ
0

1 � eJ 0

2) = 0 , and

r( eJ1 + eJ2)�
1

2
( eJ 0

1 + eJ 0

2)
2 = eJ 0

1
eJ 0

2,

respectively, where for notational simplicity we drop the argument q. Letting G = eJ1 + eJ2

and F = eJ1 � eJ2, these equations can be rewritten as

rF � 1

2
F 0G0 = 0

rG� 1

2
(G0)2 =

1

4
(G0)2 � 1

4
(F 0)2.

From the first equation we have F 0 = 2rF
G0

(and recall that we have assumed G0 > 0),

while the second equation, after plugging in the value of F 0, becomes

rG� 1

2
(G0)2 =

1

4
(G0)2 � r2

F 2

(G0)2
,

This equation is quadratic in (G0)2, and noting by Lemma 3 that in any project-completing

MPE we have G0 > 0 on [0, Q], the unique strictly positive root is

(G0)2 =
2r

3

⇣

p

G2 + 3F 2 +G
⌘

=) G0 =

r

2r

3

q

p

G2 + 3F 2 +G .

Since G0 > 0 on the interval of interest, we have

F 0 =
2rF

G0

=

p
6rF

pp
G2 + 3F 2 +G

=) F 0 =
p
2r

q

p

G2 + 3F 2 �G .

By using that eJ1 =
1
2 (G+ F ) and eJ2 =

1
2 (G� F ), we obtain the desired expressions.

Existence. Fix some Q > 0, and let eJi(q) = Ji(q)
�i

. As in Lemma 4, we note that the

system of ODEs of Section 3 defined by (3) subject to (2) can be rewritten as

r eJi (q) =
1

2

h

eJ 0

i (q)
i2

+ eJ 0

i (q) eJ
0

j (q) (6)

subject to eJi (Q) = ↵i
�i
Q for all i 2 {1, 2} and j 6= i. If a solution to this system of ODEs

exists and eJ 0

i (q) � 0 for all i and q, then it constitutes an MPE, and each agent i’s e↵ort

level satisfies ai (q) = eJ 0

i (q).

Lemma 5. For every ✏ 2
⇣

0,mini
n

↵i
�i
Q
o⌘

, there exists some q✏ < Q such that there exists

a unique solution
⇣

eJ1, eJ2

⌘

to the system of ODEs on [q✏, Q] that satisfies eJi � ✏ on that

interval for all i.

Proof of Lemma 5. This proof follows the proof of Lemma 4 in Cvitanić & Georgiadis (2016)
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closely. It follows from Lemma 4 above that we can write (3) as

eJ 0

i (q) = Hi

⇣

eJ1 (q) , eJ2 (q)
⌘

, (7)

with

H1(x, y) =

r

r

6

q

2
p

x2 + y2 � xy + x+ y +

r

r

2

q

2
p

x2 + y2 � xy � x+ y,

H2(x, y) =

r

r

6

q

2
p

x2 + y2 � xy + x+ y �
r

r

2

q

2
p

x2 + y2 � xy � x+ y.

For given ✏ > 0, let

MH = max
i

max
✏xi

↵i
�i

Q
Hi (x1, x2) .

Let us choose q✏ < Q su�ciently large such that, for all i,

↵i

�i
Q� (Q� q✏)MH � ✏.

Then, define �q = Q�q✏
N and functions eJN

i by Euler iterations (see, for example, Atkinson

et al. (2011)). Going backwards from Q,

eJN
i (Q) =

↵i

�i
Q

eJN
i (Q��q) =

↵i

�i
Q��qHi

✓

↵1

�1
Q,

↵2

�2
Q

◆

eJN
i (Q� 2�q) = JN

i (Q��q)��qHi

�

JN
1 (Q��q) , . . . , JN

n (Q��q)
�

=
↵i

�i
Q��qHi

✓

↵1

�1
Q,

↵2

�2
Q

◆

��qHi

�

JN
1 (Q��q) , . . . , JN

n (Q��q)
�

,

and so on, until eJN
i (Q�N�q) = eJi (q✏). We then complete the definition of function

eJN
i by making it piecewise linear between the points Q � k�q, k = 1, . . . , N . Note

from the assumption on Q � q✏ that eJN
i (Q� k�q) � ✏, for all k = 1, . . . , N . Since the

Hi’s are continuously di↵erentiable, they are Lipschitz continuous on the 2�dimensional

bounded domain
h

✏, ↵1
�1
Q
i

⇥
h

✏, ↵2
�2
Q
i

. Therefore, following standard arguments, the sequence
n

eJn
i

oN

n=1
converges to a unique solution eJi of the system of ODEs, and we have eJi (q) > ✏

for all q 2 [q✏, Q].

Let

q = inf
✏>0

q✏. (8)

Lemma 5 shows that the system of ODEs has a unique solution on [q✏, Q] for every ✏ > 0.

Thus, there exists a unique solution on
�

q,Q
⇤

. Then, by standard optimal control arguments,

it follows that eJi (q) is the value function of agent i for every initial project value q > q.
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To establish convexity, we di↵erentiate (5) with respect to q to obtain

r eJ 0

i (q) =
h

eJ 0

1 (q) + eJ 0

2 (q)
i

eJ 00

i (q) + eJ 0

i (q) eJ
00

j (q) ,

or equivalently, in matrix form,

r

"

eJ 0

1

eJ 0

2

#

=

"

eJ 0

1 + eJ 0

2
eJ 0

1

eJ 0

2
eJ 0

1 + eJ 0

2

#"

eJ 00

1

eJ 00

2

#

=)
"

eJ 00

1

eJ 00

2

#

=
r

⇣

eJ 0

1

⌘2
+
⇣

eJ 0

2

⌘2
+ eJ 0

1
eJ 0

2

2

4

⇣

eJ 0

1

⌘2

⇣

eJ 0

2

⌘2

3

5 . (9)

Note that a0i (q) =
eJ 00

i (q) > 0 if and only if eJ 0

i (q) > 0 for all i, or equivalently, if and only if

q > q.

So far, we have shown that for any given Q, there exists some q < Q (which depends

on the choice of Q) such that the system of ODEs defined by (3) subject to (2) has a

project-completing solution on
�

q,Q
⇤

. In this solution, Ji (q) > 0, J 0

i (q) > 0, and a0i (q) > 0

for all i and q > q. On the other hand, Lemma 6 implies that Ji (q) = J 0

i (q) = 0 for all

q  q. Therefore, the game starting at q0 = 0 has a project-completing MPE if and only if

q < 0.

As shown in Lemma 1 regarding the single agent case, for small enough Q, each agent

would be exerting e↵ort and completing the project by himself even if the other agent were

to exert no e↵ort. A fortiori, the project will complete in an equilibrium where both agents

can exert e↵ort. Hence, for Q small enough, the MPE is project-completing.

As is shown in Section 3.2 regarding the socially optimal e↵ort levels, for large enough

Q, agents are better o↵ not starting the project. A fortiori, for such project scopes, the

project will not complete in an equilibrium where both agents can exert e↵ort. Hence, for Q

large enough, the MPE is not project-completing. Instead, neither agent puts any e↵ort on

the project and the project is never started.

Uniqueness. We show that if (Ja
1 , J

a
2 ) and (Jb

1 , J
b
2) are two well-behaved solutions to (3)

subject to the boundary constraint (2) and subject to the constraint that each of the four

functions is nondecreasing, then (Ja
1 , J

a
2 ) = (Jb

1 , J
b
2) on the entire range [0, Q]. If the value

functions associated with some MPE are well-behaved, then they must satisfy (3) subject

to (2), and by Lemma 3 they must be nondecreasing. As the value functions uniquely pin

down the equilibrium actions, it implies that for any project scope Q there exists a unique

MPE with well-behaved solutions to the HJB equations.

The following Lemma shows that at every state q, J1(q) > 0 if and only if J2(q) > 0.

Lemma 6. Let (J1, J2) be a pair of well-behaved value functions associated with an MPE.

Then for every state q, J1(q) > 0 if and only if J2(q) > 0. Furthermore, if the project is

completing at state q, then both J 0

1 and J 0

2 are strictly positive on (q,Q).
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Proof of Lemma 6. Fix agent i and let j denote the other agent. If Ji(q) > 0, then the

project is completing at state q. By Lemma 4, eJ 0

1 is bounded strictly above 0 on (q,Q), thus

J 0

1 is also bounded strictly above zero on that range, and as an agent’s action is proportional

to the slope of the value function, agent 1’s e↵ort is also bounded strictly above 0 on the

range (q,Q). This implies that, if agent 2 chooses to exert no e↵ort on (q,Q), potentially

deviating from his equilibrium strategy, the project is still completed by agent 1—and thus

agent 2 makes a strictly positive discounted payo↵ at state q without exerting any e↵ort

from state q onwards. Agent 2’s equilibrium strategy provides at least as much payo↵ as

in the case of agent 2 exerting no e↵ort past state q, thus agent 2’s equilibrium discounted

payo↵ at state q, J2(q) should be strictly positive. To summarize, J1(q) > 0 and J2(q) > 0.

Thus, if the project is completing at state q, then J1(q) and J2(q) are both strictly positive.

By Lemma 3, J 0

1(q) � 0 and J 0

2(q) � 0 and therefore J1 and J2 are strictly positive on (q,Q).

Equation (5) then implies that J 0

1 and J 0

2 are strictly positive on (q,Q). Hence, if in some

MPE the project is completing at state q, both agents exert strictly positive e↵ort at all

states beyond q (and up to completion of the project).

First, consider the case Ja
1 (0) > 0. Then Ja

2 (0) > 0 by Lemma 6. As Ja
1 and Ja

2 are

nondecreasing, it follows from Lemma 5 that (Ja
1 , J

a
2 ) = (Jb

1 , J
b
2) on the entire range [0, Q].

If instead Jb
1(0) > 0, the symmetric argument applies.

Next consider the case Ja
1 (0) = Jb

1(0) = 0, and let qa = sup{q � 0 | Ja
1 (q) = 0}. As

Ja
1 (0) = 0 we have qa � 0. The boundary condition (2) and the continuity of J1 implies

that qa < Q. Moreover, on the non-empty interval (qa, Q] we have Ja
1 > 0, and thus by

Lemma 6, Jb
1 > 0 on that same interval. Lemma 5 then implies that (Ja

1 , J
a
2 ) = (Jb

1 , J
b
2) on

every [qa + ✏, Q] for ✏ > 0, and thus that (Ja
1 , J

a
2 ) = (Jb

1 , J
b
2) on (qa, Q]. Now let us consider

the range [0, qa]. By continuity of Ja
1 we have Ja

1 (q
a) = 0. As Ja

1 is nondecreasing and

nonnegative, then Ja
1 (q

a) = 0 implies that Ja
1 = 0 on the interval [0, qa]. As Ja

1 (q) = 0 if and

only if Ja
2 (q) = 0, we get that Ja

2 = 0 on the interval [0, q0]. Thus, (Ja
1 , J

a
2 ) = 0 on [0, qa].

Similarly let qb = sup{q | Jb
1(q) = 0}. We have qb 2 [0, Q), and by a symmetric argument

(Jb
1 , J

b
2) = 0 on [0, qb]. If qb < qa, then we get by Lemma 5 that (Ja

1 , J
a
2 ) = (Jb

1 , J
b
2) > 0

on (qb, Q], which contradicts (Ja
1 , J

a
2 ) = 0 on [0, qa]. If instead qb > qa, then we get that

(Ja
1 , J

a
2 ) = (Jb

1 , J
b
2) > 0 on (qa, Q], which contradicts that (Jb

1 , J
b
2) = 0 on [0, qb]. Hence

qa = qb.

Altogether this implies that on the interval [0, qa], (Ja
1 , J

a
2 ) = (Jb

1 , J
b
2) = 0, and on the

interval (qa, Q], (Ja
1 , J

a
2 ) = (Jb

1 , J
b
2) > 0. Hence the HJB equations define a unique value

function and thus a unique MPE. ⌅
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A.2 Proof of Proposition 2

First, we fix some Q > 0, and we use the normalization eJi (q) =
Ji(q)
�i

as in the proof of

Proposition 1.

To prove part 1, assume that �1
↵1

< �2
↵2
, let eD (q) = eJ1 (q) � eJ2 (q), and note that eD (·)

is smooth, eD (q) = 0 for q  q and eD (Q) =
⇣

↵1
�1

� ↵2
�2

⌘

Q > 0, where q is given by (8), in

the proof of Proposition 1. Observe that either eD0 (q) > 0 for all q � 0, or there exists

some q 2 [0, Q] such that eD0 (q) = 0. Suppose that the latter is the case. Then it follows

from (5) that eD (q) = 0, which implies that eD (q) � 0 for all q, and eD0 (q) > (=) 0 if and

only if eD (q) > (=) 0. Therefore, eD0 (q) � 0, which implies that a1 (q) � a2 (q) for all q � 0.

Observe from equation (9) in the proof of Proposition 1, that J 00

i (q) = � · (J 0

i(q))
2, where

� = r/[( eJ 0

1)
2 + ( eJ 0

2)
2 + eJ 0

1
eJ 0

2], and note that ai(q) = eJ 0

i(q). Moreover, we know from part

1 of Proposition 2 that a1(q) � a2(q), which implies that J 00

1 (q) � J 00

2 (q), or equivalently,

a01(q) � a02(q) for all q � 0.

To prove part 2, note first the result for actions follows from the previous paragraph with

all weak inequalities replaced with strict inequalities. Let D (q) = J1(q)
↵1

� J2(q)
↵2

, and note

that D (·) is smooth, D (q) = 0 for q su�ciently small, and D (Q) = 0. Therefore, either

D (q) = 0 for all q, or D (·) has an interior extreme point. Suppose that the former is true.

Then for all q, we have D (q) = D0 (q) = 0, which using (3) implies that

rD (q) =
[J 0

1 (q)]
2

2↵2
1

✓

↵2

�2
� ↵1

�1

◆

= 0 =) J 0

1 (q) = 0 .

However, this is a contradiction, and so the latter must be true. Then there exists some q

such that D0 (q) = 0. Using (3) and the fact that J 0

i (q) � 0 for all q and J 0

i (q) > 0 for some

q, this implies that D (q)  0. Therefore, D (q)  0 for all q, which completes the proof.

Finally, if ↵1
�1

= ↵2
�2
, then it follows from the analysis above that eD0 (q) = 0 and D (q) = 0,

which implies that a1 (q) = a2 (q) and
J1(q)
↵1

= J2(q)
↵2

for all q � 0. ⌅

A.3 Proof of Proposition 3

To prove part 1, first suppose that �1
↵1

= �2
↵2
. In this case, we know from equation (4) that

each agent’s discounted payo↵ function satisfies

Ji (q;Q) =
r �i
6

"

q �Q+

s

6↵iQ

r�i

#

,

and by maximizing Ji (q;Q) with respect to Q, we obtain that Q1 (q) = Q2 (q) =
3↵i
2r�i

for all

q.

To prove part 2, consider the case in which �1
↵1

< �2
↵2

. This part of the proof comprises 3

steps. To begin, in the following lemma, we characterize the values Qi for i = 1, 2 that are
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defined to be the project state that makes each agent i indi↵erent between terminating the

project at this state, and continuing the project one more instant.

Lemma 7. Assume the agents are asymmetric, i.e., �1
↵1

< �2
↵2

. The values of Q1 and Q2 are

unique and given by
q

Q1 =

p

2/3
p
µ↵1/�1

p
r↵1/�1 +

p

r
12

⇥p
µ+

p
3⌫
⇤2

and
q

Q2 =

p

2/3
p
µ↵2/�2

p
r↵2/�2 +

p

r
12

⇥p
µ�

p
3⌫
⇤2

where

µ = 2

s

✓

↵1

�1

◆2

+

✓

↵2

�2

◆2

� ↵1

�1

↵2

�2
+

↵1

�1
+

↵2

�2

and

⌫ = 2

s

✓

↵1

�1

◆2

+

✓

↵2

�2

◆2

� ↵1

�1

↵2

�2
� ↵1

�1
+

↵2

�2
.

Furthermore, Q1 < Q2.

Proof of Lemma 7. Throughout this proof, we consider a project of a given scope Q. Let

ai(Q) denote the equilibrium e↵ort agent i exerts at the very end of the project, when the

terminal state is Q. Recall that, in equilibrium, the action of agent i at state q is given by

ai(q) = J 0

i(q)/�i,

and thus ai(Q) = J 0

i(Q)/�i = eJ 0

i(Q). From Lemma 4 and noting that eJi(Q) = (↵i/�i)Q, we

get

a1 (Q) =

r

rQ

6

⇣p
µ+

p
3⌫
⌘

(10)

a2 (Q) =

r

rQ

6

⇣p
µ�

p
3⌫
⌘

, (11)

with µ and ⌫ defined as in the statement of the current lemma.

For a project of scope Q, agent i gets value ↵iQ at the completion of the project, when

q = Q. If the project is instead of scope Q+�Q (for small enough �Q), and if the current

state is q = Q, there is a delay ✏ before the project is completed. To the first order in ✏, the

relationship �Q = (a1(Q) + a2(Q))✏ holds. Thus, to the first order in ✏, the net discounted

value of the project to agent i at state q = Q is

↵i [Q+ (a1(Q) + a2(Q))✏] e�r✏ � �i
2
(ai(Q))2✏.

At project scope Q = Qi, the agent is indi↵erent between stopping the project now

(corresponding to a project scope Qi) and waiting an instant later (corresponding to a
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project scope Qi +�Q for an infinitesimal �Q). So to the first order,

↵iQi = ↵i(Qi + (a1(Qi) + a2(Qi))✏)e
�r✏ � �i

2
(ai(Qi))

2✏.

So:

↵i(a1(Qi) + a2(Qi))� r↵iQi �
�i
2
(ai(Qi))

2 = 0.

Solving this equation for i = 1, 2 yields
q

Q1 =

p

2/3
p
µ↵1/�1

p
r↵1/�1 +

p

r
12

⇥p
µ+

p
3⌫
⇤2 and

q

Q2 =

p

2/3
p
µ↵2/�2

p
r↵2/�2 +

p

r
12

⇥p
µ�

p
3⌫
⇤2 .

Note that
q

Q1
q

Q2

=
12 +

⇣

↵2
�2

⌘

�1
⇥p

µ�
p
3⌫
⇤2

12 +
⇣

↵1
�1

⌘

�1
⇥p

µ+
p
3⌫
⇤2
.

In particular, Q1 < Q2 if and only if the inequality
✓

↵2

�2

◆

�1/2
hp

µ+
p
3⌫
i

�
✓

↵1

�1

◆1/2✓↵2

�2

◆

�1/2✓↵2

�2

◆

�1/2
hp

µ�
p
3⌫
i

> 0 (12)

holds. Let

f(x) =

q

1 + x+ 2
p

1 + x2 � x and g(x) =

q

1� x+ 2
p

1 + x2 � x.

Note that
✓

↵2

�2

◆

�1/2
hp

µ+
p
3⌫
i

= f

 

✓

↵1

�1

◆✓

↵2

�2

◆

�1
!

+
p
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✓

↵1

�1

◆✓

↵2

�2

◆

�1
!

and
✓

↵2

�2

◆

�1/2
hp

µ�
p
3⌫
i

= f

 

✓

↵1

�1
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↵2

�2

◆

�1
!

�
p
3g

 

✓

↵1

�1

◆✓

↵2

�2

◆

�1
!

.

Since, by assumption, ↵1/�1 < ↵2/�2, (12) is satisfied if [f(x)+
p
3g(x)]�x[f(x)�

p
3g(x)] >

0 for every x 2 (0, 1). Note that, as f, g > 0 on (0, 1), so

[f(x) +
p
3g(x)]� x[f(x)�

p
3g(x)] � x[f(x) +

p
3g(x)]� x[f(x)�

p
3g(x)]

� x[f(x) + g(x)]� x[f(x)� g(x)]

= 2xg(x) > 0.

This establishes the inequality (12), and thus Q1 < Q2.

Equations (10) and (11) show that the agent’s action at time of termination is strictly

increasing with the project scope.

Lemma 8. The value J 0

i (Q;Q) is strictly increasing in Q. Furthermore Qi is the unique

solution to the equation in Q, J 0

i (Qi (Q) ;Qi (Q)) = ↵i.
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Proof of Lemma 8. Consider agent i’s optimization problem given state q. We seek to find

the unique q such that q = argmaxQ�q {Ji (q;Q)}. For such q, we have @
@QJi (q;Q)

�

�

�

q=Q
= 0.

Note that Ji (Q;Q) = ↵iQ, and totally di↵erentiating this with respect to Q yields

dJi(Q;Q)

dQ
= J 0

i(Q;Q) +
@Ji (q;Q)

@Q

�

�

�

�

q=Q

thus

J 0

i (Q;Q) = ↵i . (13)

By our assumption that Ji (q;Q) is strictly concave in Q for all q  Q  Q2, it follows that

(13) is necessary and su�cient for a maximum.

Noting that the explicit form of the HJB equations of Lemma 4 implies that J 0

i(Q;Q) =

J 0

i(1; 1)
p
Q, it follows that J 0

i(Q;Q) is strictly increasing in Q. Therefore, the solution to

(13) is unique.

Step 1: We show that Q0

2 (q) � 0 for all q � Q1.

To begin, we di↵erentiate eJi (q;Q) in (5) with respect to Q to obtain

r@Q eJ1 (q;Q) = @Qa1 (q;Q) [a1 (q;Q) + a2 (q;Q)] + a1 (q;Q) @Qa2 (q;Q)

r@Q eJ2 (q;Q) = @Qa2 (q;Q) [a1 (q;Q) + a2 (q;Q)] + a2 (q;Q) @Qa1 (q;Q)

where we note @Q eJi (q;Q) = @
@Q

eJi (q;Q), and where @Qai (q;Q) = @Q eJ 0

i (q;Q) = @2

@Q @q
eJi (q;Q),

and ai (q;Q) = eJ 0

i (q;Q) = @
@q
eJi (q;Q).26 Rearranging terms yields

(a1 + a2)
2 � a1a2
r

(@Qa1) = (a1 + a2)
⇣

@Q eJ1

⌘

� a1

⇣

@Q eJ2

⌘

(14)

(a1 � a2)
2 + a1a2
r

(@Qa2) = (a1 + a2)
⇣

@Q eJ2

⌘

� a2

⇣

@Q eJ1

⌘

, (15)

where we drop the arguments q and Q for notational simplicity. Because ai, aj > 0, note

that (a1 + a2)
2 � a1a2 > 0 and (a1 � a2)

2 + a1a2 > 0. Recall Qi (q) is agent i’s ideal project

scope given the current state q. Then for all q < Qi (q) and for the smallest q such that

q = Qi (q), we have @
@Q

eJi (q;Qi (q)) = 0. Di↵erentiating this with respect to q yields

@2

@Q @q
eJi (q;Qi (q)) +

@2

@Q2
eJi (q;Qi (q))Q

0

i (q) = 0 =) Q0

i (q) = �@Qai (q;Qi (q))

@2
Q
eJi (q;Qi (q))

.

Since @2
Q
eJi (q;Q) < 0 (by our strict concavity assumption), it follows that Q0

i (q)  0 if and

only if @Qai (q;Q) � 0.

Next, fix some bq 2
�

Q1, Q2

�

. By the strict concavity of eJi (q;Q) in Q, it follows that

@Q eJ1 (bq,Q2 (bq)) < 0 and @Q eJ2 (bq,Q2 (bq)) = 0; i.e., agent 1 would prefer to have completed

26Note ai(q;Q) is distinct from agent strategies in the case of commitment ai(q,Q). Here ai(q;Q) denotes
agents’ actions in the MPE with exogenous project scope Q.
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the project at a smaller project scope than Q2 (bq), whereas agent 2 finds it optimal to

complete the project at Q2 (bq) (the latter statement being true by definition of Q2 (bq)).

Using (15) it follows that @Qa2 (bq,Q2 (bq)) > 0, which implies that Q0

2 (bq) > 0. Therefore,

Q0

2 (q) > 0 for all q 2
�

Q1, Q2

�

and Q2
�

Q1

�

> Q1, where the last inequality follows from the

facts that by assumption eJ2 (q;Q) is strictly concave in Q for q  Q  Q2 and so it admits

a unique maximum, and that eJ 0

2

�

Q1;Q1

�

< ↵2
�2
, which implies that he prefers to continue

work on the project rather than complete it at Q1.

Step 2: We show that Q0

1 (q)  0  Q0

2 (q) for all q  Q1. Moreover, Q0

1(q) < 0 < Q0

2(q)

for all q such that Q1(q) < Q2(q).

Because Q2
�

Q1

�

> Q1 and Qi (·) is smooth, there exists some q � 0 such that Q2 (q) >

Q1 (q) for all q 2
�

q,Q1

�

. Pick some q in this interval, and note that @Q eJ1 (q,Q2 (q)) < 0 and

@Q eJ2 (q,Q2 (q)) = 0, which together with (15) implies that @Qa2 (q,Q2 (q)) > 0. Similarly,

we have @Q eJ1 (q,Q1 (q)) = 0 and @Q eJ2 (q,Q1 (q)) > 0, which together with (14) implies that

@Qa1 (q,Q1 (q)) < 0. Therefore, Q0

1 (q) < 0 < Q0

2 (q) for all q 2
�

q,Q1

�

.

Next, by way of contradiction, assume that there exists some q such that Q1 (q) > Q2 (q)

for some q < q. Because Qi (q) is smooth, by the intermediate value theorem, there exists

some eq such that Q1 (eq) > Q2 (eq) and at least one of the following statements is true:

Q0

1 (eq) < 0 or Q0

2 (eq) > 0. This implies that for such eq, we must have @Q eJ1 (eq,Q2 (eq)) > 0,

@Q eJ2 (eq,Q2 (eq)) = 0, @Q eJ1 (eq,Q1 (eq)) = 0 and @Q eJ2 (eq,Q1 (eq)) < 0. Then it follows from

(14) and (15) that @Qa1 (eq,Q2 (eq)) > 0 and @Qa2 (eq,Q1 (eq)) < 0. This in turn implies

that Q0

1 (eq) > 0 > Q0

2 (eq), which is a contradiction. Therefore, it must be the case that

Q2 (q) � Q1 (q) for all q, and therefore Q0

1 (q)  0 for all q  Q1 and Q0

2 (q) � 0 for all

q  Q2.

Step 3: We show that there does not exist any q such that Q1 (q) = Q2 (q).

First, we show that if there exists some q such that Q1 (q) = Q2 (q), then it must be

the case that Q1 (q) = Q2 (q) for all q  q. Suppose that the converse is true. Then by

the intermediate value theorem, there exists some eq such that Q1 (eq) < Q2 (eq) and at least

one of the following statements is true: either Q0

1 (eq) > 0 or Q0

2 (eq) < 0. This implies that

for such eq, we must have @Q eJ1 (eq,Q2 (eq)) < 0, @Q eJ2 (eq,Q2 (eq)) = 0, @Q eJ1 (eq,Q1 (eq)) = 0

and @Q eJ2 (eq,Q1 (eq)) > 0. Then it follows from (14) and (15) that @Qa1 (eq,Q2 (eq)) < 0 and

@Qa2 (eq,Q1 (eq)) > 0. This in turn implies that Q0

1 (eq) < 0 < Q0

2 (eq), which is a contradiction.

Therefore, if there exists some q such that Q1 (q) = Q2 (q), then Q1 (q) = Q2 (q) and

@Qa1 (q;Q) = @Qa2 (q;Q) = 0 for all q  q and Q = Q1 (q).

Next, note that each agent’s normalized discounted payo↵ function can be written in
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integral form as

eJi (qt;Q) = e�r[⌧(Q)�t]↵i

�i
Q�

Z ⌧(Q)

t
e�r(s�t) (ai (qs;Q))2

2
ds .

Di↵erentiating this with respect to Q yields the first-order condition

e�r[⌧(Q)�t]↵i

�i

⇥

1� rQ⌧ 0 (Q)
⇤

�e�r[⌧(Q)�t]⌧ 0 (Q)
(ai (Q;Q))2

2
�
Z ⌧(Q)

t
e�r(s�t)ai (qs;Q) @Qai (qs;Q) ds = 0.

(16)

Now, by way of contradiction, suppose there exists some q such that Q1 (q) = Q2 (q) = Q⇤.

Then we have Q1 (q) = Q2 (q) and @Qa1 (q;Q⇤) = @Qa2 (q;Q⇤) = 0 for all q  q. Therefore,

fixing some q  q and Q⇤ = Q1 (q), it follows from (16) that

2
⇥

1� rQ⇤⌧ 0 (Q⇤)
⇤

= ⌧ 0 (Q⇤)
�1
↵1

(a1 (Q
⇤;Q⇤))2 = ⌧ 0 (Q⇤)

�2
↵2

(a2 (Q
⇤;Q⇤))2.

Observe that @Qa1 (q;Q⇤) = @Qa2 (q;Q⇤) = 0, which implies that @Q [a1 (q;Q⇤) + a2 (q;Q⇤)] =

0, and hence ⌧ 0 (Q⇤) > 0. By assumption, �1
↵1

< �2
↵2
, and we shall now show that

�1
↵1
(a1 (Q⇤;Q⇤))2 > �2

↵2
(a2 (Q⇤;Q⇤))2. Let D (q;Q⇤) =

q

�1
↵1

eJ1 (q;Q⇤) �
q

�2
↵2

eJ2 (q;Q⇤), and

note that D (q;Q⇤) = 0 for q su�ciently small, D (Q⇤;Q⇤) =
⇣

q

↵1
�1

�
q

↵2
�2

⌘

Q⇤ > 0, and

D (·;Q⇤) is smooth. Therefore, either D0 (q;Q⇤) > 0 for all q, or there exists some extreme

point z such that D0 (z;Q⇤) = 0. If the former is true, then D0 (Q⇤;Q⇤) > 0, and we obtain

the desired result. Now suppose that the latter is true. It follows from (5) that

rD (z;Q⇤) =

h

eJ 0

1 (z;Q
⇤)
i2

2

✓

r

�1
↵1

↵2

�2
� 1

◆

< 0 ,

which implies that any extreme point z must satisfy D (z;Q⇤) < 0 < D (Q⇤;Q⇤), and hence

D0 (Q⇤;Q⇤) > 0. Therefore, �1
↵1
(a1 (Q⇤;Q⇤))2 > �2

↵2
(a2 (Q⇤;Q⇤))2, which contradicts the

assumption that there exists some q such that Q1 (q) = Q2 (q).

We complete the proof of Proposition 3. From Lemma 7, we know that Q1 < Q2. Steps

1 and 2 show that Q0

1 (q)  0 for all q  Q1 and Q0

2 (q) � 0 for all q  Q2, respectively,

while step 3 shows that there exists no q < Q2 such that Q1 (q) = Q2 (q). This proves part

2(a). To see part 2(b), Step 3 shows that Q2(q) > Q1(q) for all q (i.e. q = 0), which together

with Step 2, implies that Q0

2(q) > 0 > Q0

1(q) for all q > 0. Finally, it follows from the strict

concavity of Ji (q;Q) in Q that Qi (q) = q for all q � Qi, which completes the proof of part

2(c). ⌅

A.4 Proof of Lemma 1

First, we characterize each agent i’s e↵ort and payo↵ function when he works alone on the

project (and receives ↵iQ upon completion).

Let bJi(q;Q) be agent i’s discounted payo↵ at state q for a project of scope Q. By standard
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arguments, under regularity conditions, the function bJi(·;Q) satisfies the HJB equation

r bJi(q;Q) = max
ǎi

n

��

2
ǎ2i + ǎi bJ

0

i(q;Q)
o

(17)

subject to the boundary condition

bJi(Q;Q) = ↵iQ. (18)

The game defined by (17) subject to the boundary condition (18) has a unique solution

on
�

q,Q
⇤

in which the project is completed, where q = Q�
q

2↵iQ
r �i

. Then agent i’s e↵ort

strategy and discounted payo↵ satisfies

bai (q;Q) = r

 

q �Q+

s

2↵iQ

r �i

!

and bJi (q;Q) =
r �i
2

 

q �Q+

s

2↵iQ

r �i

!2

,

respectively. Define
bQi (q) = argmax

Q�q

n

bJi (q;Q)
o

.

It is straightforward to verify that bQi (q) =
↵i
2r�i

. The inequality bQ2 (q) < bQ1 (q) follows

from the fact that by assumption �1
↵1

< �2
↵2
.

Next, we show that bQ1 (q) < Q1. Define b� (q) = J1
�

q;Q1

�

� bJ1
�

q;Q1

�

. Note that

J 0

1

�

Q1;Q1

�

= ↵1, b�
�

Q1

�

= 0, b� (q) = 0 for su�ciently small q, and b� (·) is smooth.

Therefore, either b� (q) = 0 for all q, or it has an interior local extreme point. In either case,

there exists some z such that b�0 (z) = 0. Using (3) and the fact that, from the single agent

HJB equation, r bJ1(q;Q) =
h

bJ 0

1(q;Q)
i2

/(2�1), it follows that

r b� (z) =
J 0

1

�

z;Q1

�

J 0

2

�

z;Q1

�

�2
.

Because J 0

1

�

q;Q1

�

J 0

2

�

q;Q1

�

> 0 for at least some q, it follows that it cannot be the case

that b� (q) = 0 for all q. Because J 0

1

�

q;Q1

�

J 0

2

�

q;Q1

�

� 0, it follows that any extreme point

z must satisfy b� (z) � 0, which together with the boundary conditions implies that b� (q) � 0

for all q. Therefore, b�0

�

Q1

�

< 0, which in turn implies that bJ 0

1

�

Q1;Q1

�

> J 0

1

�

Q1;Q1

�

= ↵1.

By noting that bJ 0

1

⇣

bQ1 (q) ; bQ1 (q)
⌘

= ↵1 and bJ 0

1 (Q;Q) is strictly increasing in Q, it follows

that bQ1 (q) < Q1.

Since Q0

1 (q) < 0 for all q, it follows that bQ1 (q) < Q1 (q) for all q, and we know from

Proposition 3 that Q1 (q) < Q2 (q) for all q. ⌅
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A.5 Proof of Lemma 2

Let S (q;Q) = J1 (q;Q) + J2 (q;Q). Because, by assumption, Ji (q;Q) is strictly concave

in Q for all i and q  Q  Q2, it follows that S (q;Q) is also strictly concave in Q for all

q  Q  Q2. Therefore, Q⇤ (q) will satisfy @
@QS (q;Q) = 0 at Q = Q⇤ (q) and @

@QS (q;Q)

is strictly decreasing in Q for all q. We know from Proposition 3 that Q1 (q) < Q2 (q)

for all q  Q2. Moreover, we know that (i) @
@QJ1 (q;Q) � 0 and @

@QJ2 (q;Q) > 0 and so
@
@QS (q;Q) > 0 for all q  Q1 (q), and (ii) @

@QJ1 (q;Q) < 0 and @
@QJ2 (q;Q)  0 and so

@
@QS (q;Q) < 0 for all q � Q2 (q). Because

@
@QS (q;Q) is strictly decreasing in Q, it follows

that @
@QS (q;Q) = 0 for some Q 2 (Q1 (q) , Q2 (q)). ⌅

A.6 Proof of Proposition 4

We first construct a project-completing MPE with project scope Qi(0), and then argue the

uniqueness of the equilibrium project scope.

Consider the following strategy profile.

• E↵ort levels: let both agents exert no e↵ort at all states before the project scope

has been decided. Once a project scope Q has been decided, let both agents choose

their respective e↵ort level as in the benchmark setting of Section 3 for a project of

exogenous scope Q at all states q  Q, and let them exert no e↵ort for all states q > Q.

• Dictator’s decision: at any state q where no scope has yet been decided, let the dictator

set the project scope Qi(q).

We verify that such strategy profile is an MPE.

First, let us fix the strategy of the dictator. Then at any state q, if the dictator’s decision

is yet to be made, agent j anticipates the scope to be set immediately, and exerting no e↵ort

is a best response. At any state q, if a decision of scope Q has been made by the dictator,

agent j’s e↵ort levels are, by definition, a best response to the dictator’s e↵ort strategy.

Second, let us fix the e↵ort strategy of agent j. If, at state q, the project scope has not

been decided, the dictator never profits by delaying the decision to commit because agent

j exerts no e↵ort before the project scope is decided. Therefore, it is a best response to

commit at state q. Furthermore, if he commits to project scope Q 6= Qi(q), the dictator’s

discounted payo↵ is Ji(q;Q)  Ji(q;Qi(q)). Hence committing at state q to project scope

Qi(q) is a best response. The e↵ort levels of the dictator are, by definition, a best response

to agent j’s strategy.

Finally, we note that in any MPE, the dictator commits at the beginning of the project.

Suppose he were to commit after the project started, say when the project reaches state

q̌ > 0. Since Ji(q̌;Q) has a unique maximum in Q, he commits to Qi(q̌) and obtains payo↵
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Ji(·;Qi(q̌)). Then at state q = 0 there is a profitable deviation to commit immediately to

Qi(0) and obtain payo↵ Ji(0;Qi(0)) > Ji(0;Qi(q̌)). Hence there is no MPE in which the

dictator delays the announcement of the project scope. ⌅

A.7 Proof of Proposition 5

We begin by showing that if a project-completing equilibrium exists with scope Q, and if

agent i is dictator, then Q  Qi. This helps identify the set of Pareto-e�cient equilibrium

outcomes.

In an equilibrium of project scope Q, both agents anticipate that the project will be

completed at state Q. Therefore, they will both work as they would in the benchmark game

of fixed project scope Q described in Section 3. In particular, at any state q 2 [0, Q], each

agent k 2 {1, 2} gets continuation payo↵ Jk(q;Q).

If Q > Qi, then at any state q 2 (Qi, Q), Proposition 3 implies that Ji(q; q) > Ji(q;Q),

i.e., the dictator is strictly better o↵ stopping the project when at state q, instead of stopping

at state Q. Thus, Q  Qi in equilibrium.

Next, we show that, if agent 1 is the dictator, then Q = Q1 can be sustained in an MPE,

whereas if agent 2 is the dictator, then any Q 2 [Q1(0), Q2(0)] can be sustained in an MPE.

Observe that these project scopes are the Pareto-e�cient ones, subject to the constraint

that Q  Qi when agent i is dictator.

Let Q† = Q1 if agent 1 is the dictator and let Q† 2 [Q1(0), Q2(0)] if agent 2 is the

dictator. Recall that, as explained in Section 3, for any fixed, exogenous scope Q 2 [0, Q2),

the resulting MPE is completing, owing to the assumed strict concavity of Q 7! J2(0, Q)

over that range. We verify that there exists an MPE with project scope Q†.

Consider the following strategy profile:

• E↵ort levels: for any state q  Q†, let both agents choose their e↵ort optimally in a

game of fixed project scope Q†, and for all q > Q† let them exert no e↵ort. Note that,

because the unique MPE of a project of fixed scope Q† is completing, both agents put

positive e↵ort at every state up to Q†.

• Dictator’s decision: let the dictator stop the project immediately whenever q � Q†.

To show such strategy profile is an MPE, we must show that agents play a best response to

each other at every state.

First, fix the dictator’s strategy. Then agent j anticipates to be working on a project

of scope Q†, and it follows directly from agent j’s e↵ort strategy that agent j plays a best

response at every state q  Q†. At any state q > Q†, agent j anticipates that the dictator

completes the project immediately, and so putting no e↵ort is a weakly best response.
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Now, let us fix agent j’s strategy. If the dictator completes the project at state Q†, then

his e↵ort level is optimal given j’s e↵ort level, by definition of agent i’s e↵ort strategy.

Let us check that terminating the project at every state q � Q† is optimal for the dictator.

Consider state q � Q†. As agent j exerts no e↵ort for all states greater that Q†, and as

Q† � Q1 > bQi, the dictator has no incentive to continue the project by himself: he is always

better o↵ stopping the project immediately.

Now consider state q < Q†.

• If agent 1 is the dictator, then as q < Q1 < Q1(q), by our assumption that Q 7! J1(q;Q)

is strictly concave on [q,Q2) and is maximized forQ = Q1(q), it is also strictly increasing

[q,Q1(q)]. This implies that J1(q;Q1(q)) > J1(q;Q1) > J1(q; q), and so the agent has

no incentive to collect the termination payo↵ before reaching state Q1.

• If agent 2 is the dictator, then by Lemma 8 (see the proof of Proposition 3), Q 7!
J 0

2(Q;Q) increases on [Q1, Q2], and J 0

2(Q2;Q2) = J 0

2(Q2(Q2);Q2(Q2)) = ↵2. Besides,

J2(Q;Q) = ↵2Q and Proposition 1 shows that J2(q;Q) is strictly convex in q for

q  Q  Q2. Hence J 0

2(q;Q) < ↵2 for q < Q < Q2, which in turn implies that

J2(q;Q) > ↵2q for all q < Q with Q < Q2. So, if q < Q†, then J2(q; q) = ↵2q <

J2(q;Q†), and hence agent 2 has no incentive to complete the project before reaching

state Q†.

In conclusion, the strategies defined above form a project-completing MPE with project

scope Q†. ⌅

A.8 Proof of Proposition 6

Fix some Q† 2 [Q1(0), Q2(0)]. We construct a project-completing MPE with project scope

Q†. Observe that any project scope Q0 /2 [Q1(0), Q2(0)] is Pareto-dominated; that is ,

there exists some Q⇤ 2 [Q1(0), Q2(0)] such that Ji(0;Q⇤) � Ji(0;Q0) for all i. Consider the

following strategy profile.

• E↵ort levels: Before a project scope has been committed to, each agent i exerts e↵ort

ai(q;�1) = ai(q;Q†)I
{q<Q†

}

. After a project scope Q has been committed to, each

agent exerts e↵ort ai(q;Q)I
{q<Q}

, where ai(q;Q) is characterized in the benchmark

setting of Section 3 for a project of exogenous scope Q.

• Agenda setter proposals: Let the agenda setter propose project scope Q† at every state

q  Q†, and propose to stop the project immediately at every state q > Q†.

• Agent j’s decisions: In a project state q > Q†, agent j accepts the agenda setter’s

proposal to stop at Q for all Q with Jj(q;Q) � Jj(q; q), and rejects the proposal
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otherwise. In a state q  Q†, let agent j accept the agenda setter’s proposal to stop at

Q whenever Jj(q;Q) � Jj(q;Q†) and reject the proposal otherwise.

We now show that such strategy profile is an MPE. First, fix the agenda setter’s strategy.

It follows directly from agent j’s strategy that agent j plays a best response at every

state—both in terms of e↵ort and response to proposals of the agenda setter.

Now take the strategy of agent j as given. If at state q a project scope Q has already

been agreed upon, the agenda setter, who can no longer change the project scope, plays a

best response (in terms of e↵ort level) to the strategy of agent j. It remains to show that

the agenda setter plays a best response at every q when no project state has been agreed on

yet. If he anticipates the project scope to be Q†, then his e↵ort levels are optimal in every

state. Let us check that the proposal strategy is indeed optimal, and yield project scope Q†.

• If q � Q†, and agent 1 is the agenda setter, then agent 1 is better o↵ if the project

stops immediately: since Q1(q) = q as Q† � Q1, J1(q; q) > J1(q;Q) for every Q > q.

If agent 1 proposes to stop the project at state q, then agent 2 accepts, by definition

of agent 2’s strategy. Hence it is optimal for agent 1 to propose to stop the project at

state q, and the conjectured equilibrium strategy of agent 1 is a best response to agent

2’s strategy.

• If q � Q†, and agent 2 is the agenda setter, then agent 2 would prefer in some cases

to pursue the project with agent 1, but never wants to pursue the project by himself,

because Q† > bQ2. As agent 1 only accepts proposals to stop right away, and as he

exerts no e↵ort past state Q† until a scope proposed is accepted, agent 2 is better o↵

proposing to stop the project at the current state q—proposition accepted by agent 1.

Hence the conjectured equilibrium strategy of agent 2 is a best response to agent 1’s

strategy.

• If q < Q†, and agent 1 is the agenda setter, then the agenda setter can guarantee

himself a continuation payo↵ Ji(q;Q†) by following the strategy defined in the above

conjectured equilibrium profile. Assume by contradiction that there is an alternative

strategy for the agenda setter that yields a strictly higher payo↵. Such strategy must

generate a di↵erent project scope, Q. In addition, that project scope must be less

than Q† for agent 1 to be better o↵, and so an agreement must be reached before state

Q†. But then J2(q;Q) < J2(q;Q†), and by definition of agent 2’s strategy, agent 2

would not accept agent 1’s proposal to set scope Q at any state q < Q†. Hence the

conjectured equilibrium strategy of agent 1 is a best response to agent 2’s strategy.

• If q < Q†, and agent 2 is the agenda setter, then as before the agenda setter can

guarantee himself a continuation payo↵ J2(q;Q†) by following the strategy defined
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in the above conjectured equilibrium profile. Assume by contradiction that there is

an alternative strategy for the agenda setter that yields strictly higher payo↵ with

a di↵erent project scope Q. Then, as agent 2 is strictly better o↵, it must be that

Q > Q†, as J2(q;Q) is strictly increasing in Q when Q < Q†. However, agent 1 would

not accept such a proposal of project Q before reaching state Q†. He may accept

such a proposal in state q = Q, however, between state Q† and Q exerts no e↵ort. As

Q† > bQ2, agent 2 is never better o↵ pursuing and completing the project by himself

past state Q†, and thus a project scope Q = Q† is optimal. Hence the conjectured

equilibrium strategy of agent 2 is a best response to agent 1’s strategy.

Therefore the conjectured strategy profile constitutes a project-completing MPE with project

scope Q†. ⌅

A.9 Proof of Proposition 7

Fix some Q† 2 [Q1(0), Q2(0)]. As in the proof of Proposition 6, we show that Q† can be

sustained in some MPE. Let us consider the following strategy profile.

1. E↵ort levels: let both agents choose an e↵ort level optimal for a project of fixed scope

Q†, and put zero e↵ort for any state q > Q†.

2. Agenda setter proposals: let the agenda setter propose to stop the project for any state

q � Q†, and continue to project for all q < Q†.

3. Agent j’s decisions: let agent j accept the agenda setter’s proposal to stop for all

states q � Q†, and otherwise accept to stop whenever J(q; q) � J(q;Q†).

Let us show that such strategy profile is an MPE.

Let us fix the strategy of the agenda setter and check that agent j’s strategy is a best

response at every state.

• First, suppose agent 1 is the agenda setter. If he proposes to stop the project at a state

q � Q†, agent 2 should accept: agent 1 puts no e↵ort past state Q†, and agent 2 would

rather not work alone on the project as bQ2 < Q†. If agent 1 proposes to stop at a state

q < Q†, then agent 2 should accept only if the payo↵ he makes from immediate project

termination, J2(q; q) is no less than the payo↵ he makes by rejecting—which then

pushes back the next anticipated proposal at state Q†, J2(q;Q†). Given the agenda

setter’s strategy, agent 2 expects to complete the project in state Q†, and by definition

of agent 2’s e↵ort strategy, the e↵ort levels of agent 2 are optimal at all states.

• Second, suppose agent 2 is the agenda setter. If agent 1 is o↵ered to stop the project

at q � Q†, then agent 1 finds it optimal to accept because Q1(q) = q for all q � Q1. If
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agent 1 is o↵ered to stop the project at q < Q†, then he should accept only if the payo↵

from immediate project termination J1(q; q) is no less than the payo↵ he expects to

make from rejecting, which as before is J1(q;Q†). Given the agenda setter’s strategy,

agent 1 expects to complete the project in state Q†, and by definition of agent 1’s

e↵ort strategy, the e↵ort levels of agent 1 are optimal at all states.

Next let us fix the strategy of agent j and check that the agenda setter’s strategy is a best

response at every state.

• First, suppose agent 1 is the agenda setter. Then agent 1 expects to make payo↵

J1(q;Q†) by following the conjectured equilibrium strategy. To make a better payo↵, he

would have to complete the project at a state Q < Q†. However such a proposal to stop

the project early would not be accepted by agent 2, who is better o↵ working towards

a project of scope Q†, because J2(q;Q) is increasing in Q for all Q  Q†  Q2(q) .

Hence not proposing to stop before state Q† is a (weak) best response. As agent 2

accepts to stop at all states q � Q†, agent 1 is better o↵ proposing to stop at all states

q � Q†, because Q1(q) = q for all q � Q† � Q1. Therefore, agent 1 anticipates the

project scope to be Q† and his e↵ort levels are optimal for such a project scope.

• Second, suppose agent 2 is the agenda setter. Then agent 2 expects to make payo↵

J2(q;Q†) by following the conjectured equilibrium strategy, and to make a larger payo↵

would require completing the project at a state Q > Q†. Therefore it is never optimal

for agent 2 to stop at any Q < Q†. However it is always optimal to stop at every

Q � Q†, as agent 1 plans to put in no e↵ort after Q, and agent 2 prefers not to work

alone on the project since bQ2 < Q†.

Hence the conjectured strategy profile constitutes a project-completing MPE with project

scope Q†. ⌅

A.10 Proof of Proposition 8

Fix some Q > 0. We use the normalization eJi (q) =
Ji(q)
�i

as in the proof of Proposition 1.

To prove part 1, assume that �1
↵1

< �2
↵2
, let eD (q) = eJ1 (q) � eJ2 (q), and note that eD (·)

is smooth, limq!�1

eD (q) = 0 and eD (Q) =
⇣

↵1
�1

� ↵2
�2

⌘

Q > 0. Suppose that eD (·) has an
interior global extreme point, and denote such extreme point by q. Because eD (·) is smooth,

it must be the case that eD0 (q) = 0. Then it follows from (5) that r eD (q) = �2

2
eD00 (q). If q is a

maximum, then eD00 (q)  0, so eD (q)  0, which contradicts the fact that limq!�1

eD (q) = 0

and the assumption that q is a maximum. On the other hand, if q is a minimum, then
eD00 (q) � 0, so eD (q) � 0, which contradicts the fact that limq!�1

eD (q) = 0 and the
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assumption that q is a minimum. Therefore, eD0 (q) > 0 for all q, which implies that

a1 (q) > a2 (q) for all q.

To prove part 2, let D (q) = J1(q)
↵1

� J2(q)
↵2

, and note that D (·) is smooth, limq!�1

D (q) =

0, and D (Q) = 0. Therefore, either D (q) = 0 for all q, or D (·) has an interior global extreme

point. Suppose that the former is true. Then for all q, we have D (q) = D0 (q) = D00 (q) = 0,

which using (3) implies that

rD (q) =
[J 0

1 (q)]
2

2↵2
1

✓

↵2

�2
� ↵1

�1

◆

= 0 =) J 0

1 (q) = 0 .

By Proposition 1, we have J 0

i > 0 in any project-completing MPE so this is a contradiction.

Thus the latter must be true. Then there exists some q such that D0 (q) = 0. Using (3), this

implies that

rD (q) =
[J 0

1 (q)]
2

2↵2
1

✓

↵2

�2
� ↵1

�1

◆

+
�2

2
D00 (q) ,

and note that J 0

1 (q) > 0. Suppose that q is a maximum. Then D00 (q)  0, which together

with the fact that ↵2
�2

< ↵1
�1

implies that D (q) < 0. Therefore, D (q)  0 for all q, which

completes the proof of part 2.

Finally, if ↵1
�1

= ↵2
�2
, then it follows from the analysis above that eD (q) = eD0 (q) = 0 and

D (q) = 0, which implies that a1 (q) = a2 (q) and
J1(q)
↵1

= J2(q)
↵2

for all q � 0. ⌅

B Additional Results

B.1 Propositions 1 and 2 hold under broader assumptions

In this Appendix, we show that Propositions 1 and 2 hold under a broader class of e↵ort cost

functions. In particular, suppose that e↵ort level a induces flow cost equal to ci (a) = �ic (a)

to agent i, where �i > 0, and c(·) is some arbitrary function that satisfies c0, c00 > 0, c000 � 0,

c(0) = 0, and lima!1

c(a) = 1. Using similar arguments as in Section 3, it follows that for

any fixed Q > 0, each agent i’s payo↵ function satisfies the HJB equation

rJi(q) = max
âi

�

��ic(âi) + (âi + aj(q)) J
0

i(q)
 

subject to the boundary condition Ji (Q) = ↵iQ. By using the normalization J̃i (q) =
Ji(q)
�i

,

it follows that in a well-behaved MPE, each agent’s discounted payo↵ satisfies the following

system of ODE:

rJ̃i (q) = �c
⇣

f
⇣

J̃ 0

i (q)
⌘⌘

+
h

f
⇣

J̃ 0

i (q)
⌘

+ f
⇣

J̃ 0

j (q)
⌘i

J̃ 0

i (q) (19)

subject to J̃i (Q) = ↵i
�i
Q, where f(·) = c0�1(·), and each agent’s e↵ort level is given by

ai (q) = f
⇣

J̃ 0

i (q)
⌘

. Cvitanić & Georgiadis (2016) show that if a project-completing MPE

44



exists, then Proposition 1, part 1 holds; i.e., Ji(q) > 0, J 0

i(q) > 0, and a0i(q) > 0 for all i and

q � 0.

The following result establishes conditions such that Proposition 2 holds under a broader

class of e↵ort cost functions.

Proposition 9. Suppose that �1
↵1

< �2
↵2
. In any project-completing MPE:

1. Agent 1 exerts higher e↵ort than agent 2 in every state; i.e., a1 (q) � a2 (q) for all

q � 0.

2. Agent 1’s e↵ort increases at a greater rate than agent 2 (i.e., a01 (q) � a02 (q) for all

q � 0) if c0(·) is weakly log-concave; i.e., log c0(a) is weakly concave in a.

3. Agent 1 obtains a lower discounted payo↵ normalized by project state than agent 2

(i.e., J1(q)
↵1

 J2(q)
↵2

for all q � 0) if c(·) is weakly log-concave.

Proof of Proposition 9.

Statement 1. Define D̃ (·) = J̃1 (·) � J̃2 (·), and note that D̃ (·) is smooth, D̃ (q) = 0

for q su�ciently small (possibly q < 0), and D̃ (Q) =
⇣

↵1
�1

� ↵2
�2

⌘

Q > 0. Therefore, either

D̃0 (q) � 0 for all q, or D̃ (·) has at least one interior extreme point. Suppose that the latter

is true. Then there exists some z such that D̃0 (z) = 0 and substituting into (19) yields

rD̃ (z) = 0

Because any interior extreme point z must satisfy D̃ (z) = 0 and D̃ (·) is continuous, it must

be the case that D̃ (q) � 0 and D̃0 (q) � 0 for all q. Therefore, J̃ 0

1 (q) � J̃ 0

2 (q) for all q, and

because f (·) is monotone, it follows that a1 (q) � a2 (q) for all q.

Statement 2. To prove the second part, we di↵erentiate (19) with respect to q, which

yields in matrix form

r

"

J̃ 0

1

J̃ 0

2

#

=

2

4

f
⇣

J̃ 0

1

⌘

+ f
⇣

J̃ 0

2

⌘

J̃ 0

1f
0

⇣

J̃ 0

2

⌘

J̃ 0

2f
0

⇣

J̃ 0

1

⌘

f
⇣

J̃ 0

1

⌘

+ f
⇣

J̃ 0

2

⌘

3

5

"

J̃ 00

1

J̃ 00

2

#

,

where we used that c0 (f (x)) = x, and we omitted the dependence of
n

J̃1, J̃2

o

on q for

notational convenience. If the determinant of the above matrix is positive; i.e., if

det :=
h

f
⇣

J̃ 0

1

⌘

+ f
⇣

J̃ 0

2

⌘i2
� J̃ 0

1J̃
0

2f
0

⇣

J̃ 0

1

⌘

f 0

⇣

J̃ 0

2

⌘

> 0 ,
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then it is invertible. A su�cient condition for this to be true is that c000 � 0.27 Then we

have that
"

J̃ 00

1

J̃ 00

2

#

=
r

det

2

4

f
⇣

J̃ 0

1

⌘

+ f
⇣

J̃ 0

2

⌘

�J̃ 0

1f
0

⇣

J̃ 0

2

⌘

�J̃ 0

2f
0

⇣

J̃ 0

1

⌘

f
⇣

J̃ 0

1

⌘

+ f
⇣

J̃ 0

2

⌘

3

5

"

J̃ 0

1

J̃ 0

2

#

.

Note that a01 (q) � a02 (q) if and only if J̃ 00

1 (q) � J̃ 00

2 (q), which is true if and only if
h

f
⇣

J̃ 0

1

⌘

+ f
⇣

J̃ 0

2

⌘i

J̃ 0

1 � J̃ 0

1J̃
0

2f
0

⇣

J̃ 0

2

⌘

� �J̃ 0

1J̃
0

2f
0

⇣

J̃ 0

1

⌘

+
h

f
⇣

J̃ 0

1

⌘

+ f
⇣

J̃ 0

2

⌘i

J̃ 0

2

,
h

f
⇣

J̃ 0

1

⌘

+ f
⇣

J̃ 0

2

⌘i⇣

J̃ 0

1 � J̃ 0

2

⌘

+ J̃ 0

1J̃
0

2

h

f 0

⇣

J̃ 0

1

⌘

� f 0

⇣

J̃ 0

2

⌘i

� 0 (20)

Recall that
h

f
⇣

J̃ 0

1

⌘

+ f
⇣

J̃ 0

2

⌘i2
> J̃ 0

1J̃
0

2f
0

⇣

J̃ 0

1

⌘

f 0

⇣

J̃ 0

2

⌘

and J̃ 0

1 � J̃ 0

2. Therefore, (20) is

satisfied if

J̃ 0

2f
0

⇣

J̃ 0

2

⌘⇣

J̃ 0

1 � J̃ 0

2

⌘

+ J̃ 0

1J̃
0

2

h

f 0

⇣

J̃ 0

1

⌘

� f 0

⇣

J̃ 0

2

⌘i

� 0

, J̃ 0

2

h

J̃ 0

1f
0

⇣

J̃ 0

1

⌘

� J̃ 0

2f
0

⇣

J̃ 0

2

⌘i

� 0

Noting that f
⇣

J̃ 0

i

⌘

= ai, J̃ 0

i = c0 (ai), f = c0�1, and f 0

⇣

J̃ 0

i

⌘

= 1
c00(ai)

> 0, it follows that the

above inequality holds if and only if c0(a)
c00(a) is increasing in a. This is true if and only if

⇥

c00 (a)
⇤2 � c0 (a) c000 (a) for all a ,

or equivalently if c0 (a) is weakly log-concave.

Statement 3. Recall that in any well-defined MPE, each agent’s payo↵ satisfies the system

of ODE

rJi (q) = ��ic

✓

f

✓

J 0

i (q)

�i

◆◆

+



f

✓

J 0

i (q)

�i

◆

+ f

✓

J 0

j (q)

�j

◆�

J 0

i (q) s.t. Ji (Q) = ↵iQ . (21)

Define D (·) = J1(·)
↵1

� J2(·)
↵2

, and note that D (·) is smooth, D (q) = 0 for q su�ciently

small, and D (Q) = 0. Therefore, there must exist an interior point z such that D0 (z) = 0,

and substituting into (21) yields

rD (z) = � �1
↵1

c

✓

f

✓

J 0

1 (z)

�1

◆◆

+
�2
↵2

c

✓

f

✓

J 0

2 (z)

�2

◆◆

) r↵1D (z) = ��1c

✓

f

✓

J 0

1 (z)

�1

◆◆

+
↵1�2
↵2

| {z }

>�1

c

✓

f

✓

↵2

↵1

J 0

1 (z)

�2

◆◆

Notice that if D (z)  0, then this will imply that D (q)  0 for all q, which will complete

the proof. To establish D (z)  0, notice that it su�ces to show that c(f(�x))
� is increasing in

� for all x > 0 and � > 0. That is because letting x = J 0

1 (z), �1 = 1
�1

and �2 = ↵2
↵1�2

, where

27For details, see footnote 20 on on p. 29 in Cvitanic and Georgiadis.
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�1 > �2 we will have � c(f(�1x))
�1

+ c(f(�2x))
�2

 0.

Fix x, and let g (�) = c(f(�x))
� . Then

g0 (�) =
x

�
c0 (f (�x)) f 0 (�x)� c (f (�x))

�2

= x2
1

c00 (f (�x))
� c (f (�x))

�2
� 0

, (�x)2 � c (f (�x)) c00 (f (�x))

Letting a = f (�x) = c0�1 (�x), observe that �x = c0 (a), and substituting this into the above

inequality yields
⇥

c0 (a)
⇤2 � c (a) c00 (a) ,

which holds for all a if and only if c (·) is weakly log-concave.

B.2 Social planner’s project scope and e↵ort level

A classic benchmark of the literature is the cooperative environment in which agents follow

the social planner’s recommendations for e↵ort. Here, we present, for completeness, the

solution when the social planner chooses both the agents’ level of e↵ort and the project

scope.

For a fixed project scope Q, the social planner’s relevant HJB equation is

rS (q) = max
a1,a2

�

��1
2 a

2
1 �

�2
2 a

2
2 + (a1 + a2)S

0 (q)
 

,

subject to S (Q) = Q. Each agent’s first-order condition is ai = S0(q)
�i

, and substitut-

ing this into the HJB equation, we obtain the ordinary di↵erential equation rS (q) =
�1+�2
2�1�2

[S0 (q)]2. This admits the closed form solution for the social planner’s value function

S (q) = r�1�2
2(�1+�2)

(q � C)2, where C = Q�
q

2Q(�1+�2)(↵1+↵2)
r�1�2

. Agent i’s e↵ort level is thus

ai (q) =
r�

�i

�1+�2
(q � C). Note that a1 (q) > a2 (q) for all q if and only if �1 < �2. That is, the

social planner would have the e�cient agent do the majority of the work, and incur the

majority of the e↵ort cost. It is straightforward to show that the social planner’s discounted

payo↵ function is maximized at

Q⇤⇤ =
(�1 + �2)(↵1 + ↵2)

2r�1�2

at every state of the project, and thus, the planner’s preferences are time-consistent. This

is intuitive, as the time-inconsistency problem is due to the agents not internalizing the

externality of their actions and choices.
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