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Abstract

This paper shows that endogenous cycles can arise when contracts between firms

and their customers are incomplete and when products are experience goods. Then

firms invest in the quality of their output in order to establish a good reputation.

Cycles arise because investment in reputation causes self-fulfilling changes in the

discount factor. Cycles are more likely to occur when information diffuses slowly

and consumers exhibit high risk aversion. A rise in idiosyncratic uncertainty is of

two kinds that work in opposite ways: Noise in observing effort is contractionary

as it generally is in agency models. But a rise in the variance of the distribution

of abilities is expansionary. A calibrated version produces realistic fluctuations in

terms of peak-to-trough movements in consumption and the spacing of time between

recessions.

Keywords: Endogenous Fluctuations, Reputation, Intangible Capital.

1 Introduction

A seller’s reputation is often the only guarantee of quality of its products or services.

By the same token, reputation building is often the seller’s only incentive to deliver on

∗New-York University, boyan.jovanovic@nyu.edu
†CNRS (CREST), Paris, France; Institute for Economic Analysis (CSIC), BGSE, Barcelona;

julien.prat@ensae.fr. We are grateful to Sai Ma for excellent research assistance and to Jess Benhabib,

Emmanuel Farhi, Jean-Michel Grandmont, and Dimitris Papanikolaou for their insightful suggestions.

We thank participants of the SED 2015, Barcelona GSE summer forum 2015, NASM 2016, and Minnesota

Macro 2016 for their comments.

1



quality. This is why consumers are willing to pay a premium for goods and services from

established brands. Underprovision of quality today will be punished by lower prices in

the future, and a positive surprise will be rewarded. Because of this, the seller’s market

value depends partly on his reputation or “brand value”, an intangible component of his

capital stock.1

Since reputational investment today pays off in the future, a seller’s incentive to main-

tain or improve his reputation depends on his discount factor. And when the seller is risk

averse, his discount factor depends negatively on his consumption growth. We show that

if the seller is unable to smooth his consumption by other means, this force can give rise

to cycles.

For a two-period cycle the intuition is simple. In a recession, current consumption

is low relative to future consumption which means that the discount factor is also low.

This reduces the incentive to create a good reputation and the recession is self fulfilling.

Conversely, current consumption in a boom is higher than future consumption, which

means that the discount factor is also high and so the boom too is self fulfilling. In other

words, the discount factor and reputational concern are pro-cyclical because consumption

growth is counter-cyclical.

We embed this mechanism into a general equilibrium model and study how investment

in reputation affects aggregate outcomes. The model has no direct externalities and no

aggregate shocks, but output oscillates. Cycles are sustainable because investment is

always below its output-maximizing level, a wedge that is driven by the delay with which

reputation reacts to investment. This market failure implies that output and investment

in quality are positively correlated.

Consumption and investment are therefore both pro-cyclical, a basic feature of business

cycles which is difficult to reconcile with canonical models of deterministic cycles based

on multi-sectoral economies, such as Benhabib and Nishimura (1985), or on replacement

echoes, such as Boucekkine, Germain and Licandro (1997). Besides these raw correlations,

our model is also consistent with a series of stylized facts about business cycles. First, it

predicts that output is more volatile than consumption but less than investment. Second,

product quality is pro-cyclical as recently documented by Broda and Weinstein (2010) or

Jaimovich, Rebelo and Wong (2015). Third, our model predicts that an inverted yield

1McGrattan and Prescott (2000) argue that as much as 40 percent of GNP is intangible capital and

firm’s reputation accounts for a large fraction of it.
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curve precedes recessions (Ang, Piazzesi andWei, 2006). Finally we show that asymmetric

cycles with a string of positive growth rates followed by a highly negative growth rate —

i.e., a disaster — can also arise repeatedly.

To go beyond qualitative insights, we use micro-data on firm dynamic to parametrize

the model. We explain how variance parameters can be recovered from estimates about

the evolution of TFP at the plant level. The speed at which consumers update their

beliefs determines the length of the period. Setting it equal to the average frequency of 56

months separating booms and busts, we find that the calibrated parameters fall well within

the region where cycles arise endogenously. Hence our model does not require extreme

parameter values in order to generate deterministic cycles. In particular, cycles with

a frequency of 56 months are sustainable whenever the annual discount factor is below

0977, a number well above the upper-bounds of the competitive equilibrium models

surveyed in Boldrin and Woodford (1990). This finding is in line with recent research

pointing out that market imperfections considerably widen the range of discount factors

compatible with endogenous cycles. For example, Beaudry, Galizia and Portier (2015)

find that adding strategic complementarities to a standard DSGE model allows them

to produce limit cycles that match US business fluctuations in employment and output.

Our analysis shows that pecuniary externalities can lead to a similar conclusion, so that

complementarities do not have to be directly embedded in the structure of the economy.

We find that two kinds of uncertainty affect output in opposite directions. A rise

in the variance of the distribution of productivity strengthens reputational concerns and

is expansionary. By contrast, a rise in the variance of output at the firm level makes

it harder for consumers to infer investment and is therefore contractionary. Since it

also dampens reputation cycles, an increase in the noisiness of the technology yields a

negative correlation between micro and macro volatility that is qualitatively similar to

the one observed during the great moderation.

Although ours is a general equilibrium paper targeting aggregate business cycles, we

begin our analysis by showing that cyclical equilibria also arise in Holmström’s (1999)

partial equilibrium setting if the agent is risk averse and cannot borrow or lend. So, while

significant extensions have been made on the learning process (e.g., Board and Meyer-

ter-Vehn, 2013), our analysis suggests that similarly important insights can be gathered

studying the specification of preferences in reputation models.

Section 2 lays out the model. Section 3 deals with partial equilibrium where the
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mechanism is more transparent while Section 4 deals with general equilibrium. Section

5 explains how the model can be parametrized, and shows that cycles arise for realistic

parameters values. Then we review major hypotheses for endogenous cycles in Section 6

so as to highlight the novelty of reputation cycles.

2 A model of firm reputation

We build on Holmström (1999) where a risk-neutral agent faces a spot market with risk-

neutral buyers. The unique equilibrium then entails a monotonic time path of effort. We

will now show that if one assumes that the agent is risk averse, multiple equilibria arise

and in some of them effort follows a 2-period cycle. In partial equilibrium our mechanism

requires the following assumptions:

A1. Incomplete agency contracts with non-contractible effort and output;

A2. Risk averse agent facing risk-neutral principals;

A3. Agent’s preferences have no wealth effect (CARA utility);

A4. Agent cannot borrow or lend.

In general equilibrium A4 is replaced by the fact that the economy is closed, and

because of insurance possibilities among agents we can drop A3 and work with CRRA

utility.

2.1 Set-up

Each period an agent produces output  by exerting hidden effort :

 =  +  +  (1)

Here  ∼  (0 2) is an i.i.d. shock. The variable  is the agent’s efficiency.  is unknown,

even to the the agent himself, and the common prior is N (0 2).2
Contracts in which the period- payment is contingent on  are not feasible. Instead,

buyers pay the agent up front and the payment reflects the market belief at the beginning

of the period. Thus the agent exerts effort only so as to raise his future income, and so

we refer to  as “investment”. Output has a persistent effect on prices because it affects

the market’s belief about the agent’s efficiency which fluctuates over time as

 = −1 +  with  ∼ N ¡0 2¢  (2)

2We shall let the prior mean differ from zero in Section 5.
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Each period the agent chooses an  from the feasible setA ⊆ R+ and everyone observes
. The agent can also observe  +  but not its components. The market’s participants

observe  only, but since they will infer  from equilibrium, they too will be able to infer

 + .

Within a period, events unfold as follows:

1. There are many identical and risk neutral potential buyers, and they get zero rents;

the up-front payment the agent gets is  [ | ]  where  ≡ {}−1=0 is his public

history.

2. The agent chooses , privately.

3. Output  is realized, and it becomes part of the agent’s history 
+1.

At date , everyone knows the history . Let ∗ denote the agent’s equilibrium action.

We will derive an equilibrium in which ∗ depends on , but not on . A sufficient

statistic for the information revealed about  is the sequence 
 ≡ (0  −1), where

 ≡  − ∗ =  + . The market treats  as the signal, which is normally distributed.

Because  and  are normal, the posterior is also normal:  ∼ N
¡
 

2


¢


Evolution of market beliefs.–The posterior variance evolves deterministically as

2 =
1

−2−1 + −2
+ 2 (3)

and in the long-run it converges to ̄2 , whose value is obtained setting  = −1 in (3)

so that

̄−2 =
1

2

Ãs
1

4
+

4

2
2


− 1

2

!
 (4)

Assume that the agent’s initial  is drawn from N (0 ̄2), so that  = ̄ does not

change over time, and age is not a state.3 By contrast, the posterior mean  of market

belief is a state and it follows the process

+1 =  [+1| ] =  + (1− ) where  ≡ 2
2 + ̄2

 (5)

By deviating from ∗ , the agent can manipulate +1 and drive a wedge between his own

belief and that of the market; ∗ is an equilibrium action if he rejects that option.

3Observe that ̄−2   0 and ̄−2   0 as fluctuations in output and efficiency lower sta-

tionary precision.
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2.2 Incentives

The agent is risk averse and infinitely lived. We focus on deterministic solutions of his

optimization program4

max
{}∞=0



" ∞X
=0

 ()

#
 s.t.  =  + ∗ −  ()  (6)

where  obeys the law of motion (5) and  ∈ A. The utility function (·) is twice
differentiable and concave, while (·) is an increasing, twice differentiable, cost function
measured in terms of goods. Consumption in each period is equal to revenues  [ | ] =
 + ∗ net of the investment cost  (). Hence we have implicitly assumed that:

() The agent cannot smooth consumption by borrowing and lending.

() The action  is hidden.

() Deterministic policies are optimal for the problem in (6), which is true if  () is

in the CARA class and if shocks to the agent’s income are permanent. Income shocks,

which reflect the history  will in turn be permanent because buyers are risk neutral and

because their beliefs have the martingale property.

Taking {∗}∞= as given, Bayes rule and repeated substitution for  yields the following
incentive constraint:5

0 (∗ ) =
1− 



∞X
=+1

()
−



∙
 0 ()
 0 ()

¸
 (7)

The left-hand side is the marginal cost, and the right-hand side is the discounted ben-

efit because a deviation from ∗ to ∗ + 1 would raise the posterior mean at date  by

4We will show that optimal actions on and off the equilibrium path are a function of time only (See

lemmata 9 and 10 in the technical Appendix A.4). Hence (i) given the law of motion of beliefs derived

in the previous subsection, equilibrium strategies maximize the agent’s utility; (ii) given the equilibrium

actions, beliefs are updated via Bayes rule. Bayesian updating is always well defined since all output

levels occur with positive probability. Solutions to problem (6) are therefore optimal.
5Condition (7) rules out one-shot deviations but does not guarantee that multiple deviations are not

profitable. Whenever the agent deviates, he drives a persistent wedge between his belief and that of the

market. Thus a deviation that is not attractive on the equilibrium path might nonetheless be profitable

off path. In other words, the FOC (7) is necessary but not always sufficient. We show in the technical

Appendix A.4 that sufficiency is not a concern for the models studied in this paper because optimal

strategies on and off the equilibrium path are deterministic. A recent paper by Cisternas (2016) provides

bounds guaranteeing sufficiency in more general settings in which optimal actions may depend on .
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 = (1− )−−1, for all   .6 Since  is increasing in  and  is a martingale,

expected consumption depends on the agent’s current reputation. Hence the optimality

condition (7) varies with  and in general so would ∗  contrary to our assumption that

∗ depends on  only. To ensure that  [
0 ()  0 ()] is not affected by , we have to

neutralize the wealth effect.

The wealth effect is easier to eliminate in general equilibrium where we assume that

a representative family insures its members against wealth shocks. There we shall work

with CRRA preferences. In partial equilibrium, however, we deal with one agent who

cannot insure his income, and we shall assume that the agent’s utility function is CARA.

With either assumption, the agent’s discount factor no longer depends on .

3 Cycles in partial equilibrium

Following the discussion above, in this section we assume that utility is CARA:

() = − exp(−) with   0 (8)

Inserting (8) and (5) in (7), the term cancels out from the expression of [
0 ()  0 ()]

because it is the forecastable component of . We obtain an incentive constraint that is

consistent with deterministic actions since (7) becomes equivalent to

0 (∗ ) =
1− 



∞X
=+1

()
−
exp ( [∗ − (∗ )− (∗ − (∗))])  (9)

with

 ≡  exp

µ
2(1− )2(2 + ̄2)

2

¶


Note that    because consumption is stochastic and because  000(·)  0. Consumption
volatility thus raises expected marginal utility in future periods, especially when  is large.

To ensure that expected returns are bounded, we focus on cases where   1.

3.1 Linear costs

Steady-state and 2-period cycles.–Suppose that () = , with  ∈ (0 1) to ensure
that investment raises output. We rule out infinite output levels by imposing an upper-

bound ̄ on the feasible set A = [0 ̄]. With linear costs, optimality can only be restored
6Eq. (7) is the counterpart of Holmström’s (1999), eq. (22), with the essential addition of the term

 [
0 ()  0 ()].
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through changes in the discount factor because both marginal costs and marginal returns

are constant. To see this, assume that both ∗ and ∗+1 belong to the interior of A and

substitute in the FOC for 0
¡
∗+1

¢
on the right-hand side of (7) to obtain7

 0(∗+1(1− ))

 0(∗ (1− ))
=



(1 + (− 1))  (10)

Taking expectations about ∗+1 as given, 
∗
 adjusts until the equality above is satisfied.

The equilibrium path is fully determined by the ratio of marginal costs to discounted

marginal returns on the right-hand side of (10). Since this ratio is constant, all paths

converge towards ̄ when it is lower than one or, conversely, converge to zero when it is

higher than one. To illustrate the dynamics with a phase portrait, we use (8) to rewrite

(10) as

∗+1 = ∗ −
1

(1− )
log

µ


(1 + (− 1))
¶
 (11)

The law of motion is given by a line parallel to the 45 degree line with an intercept equal

to the constant on the right-hand side of (11). As shown in Figure 1, in the knife-edge

case where the intercept is zero, i.e., when  = (1−)(−1−), the dynamic map and 45
degree line coincide so that any action in A is a potential rest point. Besides this singular
case, investment converges to ̄ when the intercept is positive and converges to zero when

it is negative. Hence investment can only be constant at the boundary of the action set.

If marginal costs are low, so that   (1−)(−1−), agents are tempted to raise their
investment above that of the rest point ̂. Hence ̂ is sustainable only if such deviations

are not feasible, that is if ̂ = ̄.8 This solution is also efficient because the cost parameter

  1 while marginal productivity is one.

Conversely, when marginal costs are high (  (1−)(−1−)), reputational concerns
are too weak and ̂ = 0 is the only incentive-compatible steady-state. This market failure

arises even though consumers update their beliefs in each period. It is therefore of a

different nature than the one in Holmström’s (1999) model which was caused by the

absence of learning in the long-run. Another important difference is that risk aversion

7Eq. (10) is a particular case of the recursive incentive constraint (13) where () =  The posterior

 does not affect the ratio on the LHS of (10) because utility is CARA.
8Formally, the incentive constraint (9) does not have to hold as an equality at the bounds of the

feasibility set. When ̂ = ̄ and   (1− )(−1 − ), the RHS exceeds the LHS of (9) and the agent is

constrained by the requirement that  ≤ ̄.
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Figure 1: Phase portraits for two different values of  when () = .

can give rise to deterministic solutions where ∗ varies over time. In particular, welfare

enhancing cycles of period 2 can be sustained.

Proposition 1 Consider cases where costs are linear, so that () =  with  ∈ [0 ̄].
Assume that  ∈ ¡ 1−

−1−  1
¢
and ̄ ≥ log

µ
(1−()2)
(1−) − 

¶
[ (1− )]. Then the steady-

state ̂ = 0 is Pareto dominated by 2-period cycles in which investment oscillates between

0 and ̄.

Cycles arise because the discount factor fluctuates procyclically. High  = ̄ entails

above-normal output and consumption, leading to a low marginal utility  0 (). The

opposite is true next period as +1 = 0 delivers low consumption and relatively high

marginal utility  0 (+1). Thus  [
0 (+1)  0 ()] is large today, and this justifies the

higher investment in reputation building. A similar but opposite mechanism operates in

the next period, making low investment optimal. The oscillations of the discount factor

capture the willingness of the agent to smooth consumption. Since the benefits of his

action only accrue in the following period, he finds it optimal to transfer resources from

good to bad times by overinvesting.
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It is insightful to rewrite the incentive constraint at the upper-bound ̄ as9

 ≤ 1− 



⎛⎝ ∞X
∈{135}

()
  0 (0)
 0 ((1− ) ̄)

+

∞X
∈{246}

()


⎞⎠
=

 (1− )

1− ()2 [exp ( (1− ) ̄) + ]  (12)

Reputational returns are on the right-hand side of (12), and they are increasing in in-

vestment ̄ because it raises the ratio of marginal utilities between bad and good times.

Quite intuitively, smaller oscillations become sustainable when the power of incentives is

strengthened. Take for example an increase in the discount factor . It raises  as patient

agents tend to be more concerned by their reputation. Hence the required wedge between

marginal utilities is decreasing in  which allows the model to generate cycles for lower

values of ̄. A similar mechanism is triggered by changes in the degree of risk aversion

because the effective rate of time preference  is increasing in . This effect is reinforced

by the positive impact that  has on the curvature of the utility function. When agents

are more risk averse, similar oscillations in consumption generate greater swings in the

discount factor, which lowers the value of ̄ that restores incentive compatibility.

Asymmetric cycles.–The model can generate cycles with more than two states. As

an illustration, Fig. 2 describes incentive-compatible cycles of period 3 where investment

grows for two successive periods and then drops back to its initial level. This is the simplest

instance of asymmetric cycles featuring protracted booms and sudden busts. A tendency

for a time series to show large negative growth rates followed by several smaller positive

growth rates is known as “steep asymmetry.” The empirical counterpart of Fig. 2 is Fig. 8

which shows that steep asymmetry appears to be present in the U.S. consumption series.

Moreover, the long-run frequency distribution of  places equal weight on the points 0

071, and 1, and thus has longer left tail. A tendency for a detrended time series to have

negative skew is known as “deep” asymmetry and it too is present in U.S. data.10

The longer period of growth is sustainable because investment costs  are low, i.e., less

than (1−)(−1−).11 As explained before, when this inequality holds, the steady-state
9See proof of Proposition 1 for a derivation of (12).
10See Fig. 4 in Jovanovic (2006) for a graphical distinction between the two types of asymmetry, and

Fig 1 for evidence of deep asymmetry in the GDP and industrial production series.
11By contrast, asymmetric cycles with protracted slumps and sudden booms can be constructed when

the steady-state is inefficient, so that   (1− )(−1 − ).
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Figure 2: Asymmetric cycles with CARA utility and linear costs, () = .

Parameters: =.1, =.2, =.8, =4, =.75, A=[0,1].

is efficient because firms always find it profitable to raise their investment. But now they

are discouraged from doing so by the fact that the marginal utility of consumption will

be lower tomorrow than it is today. We show in the technical Appendix A.5 that this

feature gives rise to asymmetric cycles similar to the one depicted in Fig. 2 whenever:

(i) ̄ is high enough, and (ii)  ∈ ( (1− )(−1 − )) for some   0. The logic of the

proof can be extended to cycles with more than 3 states. Instead of investigating such

variations, we turn our attention to cost functions that are not linear.

3.2 Convex costs

Assume now that () is strictly convex with 0(0) = 0. This ensures that, when A = R+,
the incentive constraint (7) admits an interior solution for ∗. Thus we can substitute in

the expression of 0
¡
∗+1

¢
on the right-hand side of (7) so as to obtain a recursive FOC

0 (∗ ) = 

∙
 0 (+1)
 0 ()

¸ ¡
1− + 0

¡
∗+1

¢¢
 (13)

The recursive incentive constraint highlights that adding a unit of investment to ∗ has

two benefits:

() It raises + 1 earnings by (1− ), and
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() it enables the firm to reduce its investment in period + 1 by  in order to undo

the deviation, thereby restoring the reputation associated to the equilibrium path in +2

and beyond.

Both benefits are converted into today’s utils through multiplication by the stochas-

tic discount factor  [
0 (+1)  0 ()]. When the utility function is CARA, (13) is

equivalent to

0 (∗ ) =  exp
¡

£
∗ − (∗ )−

¡
∗+1 − (∗+1)

¢¤¢ ¡
1− + 0

¡
∗+1

¢¢
 (14)

Setting ∗+1 equal to 
∗
 yields the rest point solution

̂ = 0−1
µ
1− 

−1 − 

¶


Efficient investment would require instead that  = 0−1 (1). Thus, when  is smaller

than one, ̂  0−1 (1) and investment at the steady-state is suboptimal because costs are

paid up-front, whereas reputational benefits accrue slowly over time. This is why the gap

between optimal and actual investment is larger when agents are more impatient.

Stability of the steady-state.–Under risk neutrality, the steady-state is always unstable

and any other action than ̂ generates diverging trajectories.12 In other words, ̂ is the

unique rational expectation solution. By contrast, when the agent is risk averse, the

steady-state can be locally stable. Then, for any initial action 0 in the neighborhood of

̂, the solution path  converges back to ̂ so that the equilibrium is not unique. The

condition under which equilibrium multiplicity arises is laid-out in Proposition 2.

Proposition 2 Assume that () is strictly convex with 0(0) = 0. Then the steady-state

̂ is locally stable, and the model’s equilibrium is indeterminate, if and only ifµ
1− + 20(̂)
1− + 0(̂)

¶
00(̂)
0(̂)

 2(1− 0 (̂)) (15)

When the coefficient of absolute risk aversion  goes to zero, condition (15) is violated

and the steady-state is unstable.13 The impact of , as measured by the term on the

12See Fig. 3 for an illustration of the model’s dynamics under risk neutrality.
13This is not obvious from (15) because  affects ̂ through its impact on . However, since  converges

to  when  goes to zero, lim→0 ̂ () = 0−1
¡
(1− ) 

¡
−1 − 

¢¢
. Hence the LHS of (15) converges to

a positive value, whereas the RHS goes to zero, showing that (15) never holds in the limit.
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right hand side of (15), is proportional to 1− 0 (̂). Thus risk aversion is irrelevant when

1 = 0 (̂), that is when the steady state and the first best coincide. Intuitively, the

curvature of the utility function matters only to the extent that changes in investment

affect consumption. At the first best, benefits and costs are set equal and a marginal

increase in  leaves consumption unchanged. But we have seen that ̂ is suboptimal

whenever agents discount future consumption. Then raising investment is beneficial as it

increases output and reduces the agent’s marginal utility. This makes it more attractive

to invest today in order to raise tomorrow’s consumption, which explains why an increase

in investment is followed by a drop and a return to the steady state when the utility

function has enough curvature.

Deterministic cycles.–Besides the continuum of converging paths in the neighborhood

of the steady-state, the model also features global cycles of period 2.

Proposition 3 When the costs function is quadratic, i.e., () = 22, deterministic

2-period cycles are sustainable whenever the steady-state is locally stable.

The intuition why cycles are sustainable is the same as in the model with linear costs:

Procyclical cycles in the discount factor make it optimal to invest during booms and to

reduce expenses during busts. This mechanism is closely related to the one rendering the

steady-state locally stable. Proposition 3 shows that the two phenomena are indeed driven

by the same forces. Combining Propositions 2 and 3, we see that cycles arise whenever

the agent is sufficiently risk averse.

Looking at the phase portrait generated by the incentive constraint (13) helps one

understand how cycles arise. We highlight the impact of risk aversion by also illustrating

the model’s dynamics when agents are risk neutral. Then, as shown in the left panel of

Fig. 3, the mapping between ∗ and ∗+1 is linear with a slope greater than one. Hence

the rest point ̂ is the only rational expectation solution that does not generate diverging

action paths.

We introduce risk aversion in the right panel of Fig. 3. The dynamic map solves

the recursive equation (14) with a quadratic cost function () = 22, and is therefore

equivalent to

exp (−(∗ − ∗2)) 
∗
 =  exp

¡− ¡∗+1 − ∗+12
¢¢ £
1− + ∗+1

¤
 (16)
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Figure 3: Phase portraits with linear and CARA utility. Parameters:  =

4  = 9  = 4 () = 22

Let us first explain why small values for ∗ can never be incentive compatible. Letting

∗ go to zero, we see that the expression on the left-hand side of (16) also converges to

zero. By contrast, the expression on the right-hand side of (16) has a positive minimum.

By continuity, there always exists an ∗  0 such that (16) cannot hold whenever

∗ ∈ [0 ∗]. In economic terms, there is no expectation about 
∗
+1 that sustains an in-

vestment level smaller than ∗. Intuitively, today’s marginal loss converges to 0 whereas

tomorrow’s marginal returns are bounded below by 1−, which explains why the dynamic
map in Fig. 3 is empty close to the origin.

Besides this empty interval, we see that, instead of the one-to-one mapping prevail-

ing under risk neutrality, the dynamic map is a correspondence that associates a pair of

incentive compatible ∗+1 to any 
∗
 . The incentive constraint is satisfied by two different

∗+1 because tomorrow’s investment shifts the discount factor and marginal costs in oppo-

site directions. Increasing ∗+1 raises tomorrow’s consumption, which lowers the discount

factor and counteracts the increase in marginal costs 0(∗+1). When the elasticity of the

discount factor with respect to ∗+1 is higher than that of the marginal costs, it is possible

to perturb a pair of sustainable actions and restore incentive compatibility by adjusting

14



∗+1 until its effect on the discount factor offsets the change in marginal costs.

For the economy to settle down at the rest point ̂, the expectation-formation mech-

anism has to select the lower branch of the phase portrait. By contrast, 2-period cycles

are regime switching equilibria since expectations oscillate between the upper and lower

branch.

Other equilibria.–We have focused on deterministic cycles of period 2, but our model

has a continuum of equilibria, i.e., a continuum of sequences {} solving (14). Instead
of alternating selection of branches, one could assume other patterns of regime switching

including sunspots.14 We leave a comprehensive investigation of all equilibrium outcomes

to further research and focus instead on the simplest form of regime switching cycles. We

evaluate their ability to match aggregate business cycles in the next section where we

embed our model into a general equilibrium setting.

4 Cycles in general equilibrium

We now move to general equilibrium. We keep the production technology (1) and the

assumptions about ( ) summarized by (2)-(5). We also keep assumptions A1 and A2

but we drop A3 which is not needed in GE, and replace A4 with the requirement that the

economy is closed. Cycles are now in aggregate consumption and since there is no access

to outside finance, agents cannot smooth them.15

4.1 Set-up

Firms’ aggregate distribution.–We continue to assume that firms draw their s from

N (̄ ̄2), with ̄2 being equal to the stationary precision given in (4). Then posterior

precision remains constant over time so that a firm’s individual state is just .16

14There are of course models in which an extrinsic or even intrinsic shock acts so as to shift an economy

from one regime to another (e.g., Hamilton, 1990). See also Christiano and Harrison (1999) for a model

with stochastic regime switching where consumption satisfies the Euler equation. Here we assume that

such switches of regime alternate in a deterministic manner.
15This assumption fails for a small open economy facing an exogenous interest rate.
16Restricting our attention to stationary priors ensures that precision, and thus investment, do not

vary across firms of different vintages.
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To obtain a stationary distribution for , we also assume that firms are randomly hit

by a death shock with probability  per period. As  = ̄ is a constant, (5) implies

that a firm’s state  follows a random walk with constant incremental variance. Since a

firm’s lifetime is a geometrically distributed random variable and an additional period of

life adds (1− )
2
(2 + ̄2) to the variance of , the time-invariant distribution of types

Υ () is a mixture of normal distributions with mean ̄ and stationary variance

Var() = (1− )
2
¡
2 + ̄2

¢ ∞X
=1

 (1− )

= (1− )

2
¡
2 + ̄2

¢ 1− 




Product markets.–The risk-averse household fully diversifies its purchases of goods

over firms so as to eliminate the risk in the random variable −+. Any firm’s product

is marginal to the family, and it pays up front the expected value of output for it. Since

all market participants observe the history of outputs, and the sequence of equilibrium

actions ∗ is common knowledge, firm  has revenue + ∗ and profit

() = + ∗ −  ()  (17)

where  (·) is measured in output units. The firm pays its profits to the manager’s family.

Preferences and assets.–The only store of value are one period bonds in zero net

supply. The price of the bonds then is

1

1 + 
≡ 

 0 (+1)
 0 ()



which is today’s value of a unit of income next period. Today’s value of a unit of income

2 periods from now is 2
 0(+2)
 0()

, and so on. Thus in units of current consumption, the

value of any income stream {}∞=+1 is
P∞

+1 
−  0(+)

 0()
.

The representative family has the option of borrowing and lending at the risk-free

rate, but rejects that option because every family is identical. Then the consumption of

the family is simply the average profit of its members

 =

Z
R
(+ −  () )Υ () (18)

The stationary distribution Υ exists because of the death rate  among the managers.

A manager’s reputation dies with him and he is replaced by a newborn drawn from the

stationary distribution N (̄ ̄2).
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A firm’s decision problem.–A manager maximizes the discounted value of his family’s

consumption. Since the family owns many firms, idiosyncratic variations in efficiency

and reputation wash out. This is why we no longer need CARA preferences to derive

deterministic policies.17

Definition of equilibrium.–An equilibrium consists of functions ( 
∗
   


 ), where

∗ solves (7) and (  ) clear the asset and goods markets. That is,   and ∗ are de-

terministic sequences, whereas  depends on  and . A simpler definition of equilibrium

uses only the firms’ first-order condition and the bond-price equation:

Definition 4 An equilibrium path is a pair of sequences {∗  }∞=0 that solves the Incentive-
Constraint and bond-pricing equations

() : 0 (∗ ) =
1− 



∞X
=+1

()
−  0 ()

 0 ()
 (19)

( ) :
1

1 + 
= 

 0 (+1)
 0 ()

 (20)

where  = ̄+∗ −(∗ ) and  ≡ (1−). The economy always has a rest-point solution
(̂ ̂ ̂) where

̂ = 0−1
µ
1− 

−1 − 

¶
 ̂ = ̄+ ̂−  (̂)  and

1

1 + ̂
=



1− 
̂ (21)

If (·) is linear then (  ) = (̂ ̂ ̂) for all .

The model has a unique equilibrium when consumers are risk neutral. By contrast,

when  00(·)  0, the model has other equilibria, some of which are cyclical.

4.2 Stability and cycles

The structure of incentives is not fundamentally affected by whether the problem is formu-

lated in partial or general equilibrium. Hence the results on stability and cycles presented

in Section 3 continue to hold in our macro setting. If anything, they hold more generally

17The exogeneity of aggregate consumption implies that the manager’s payoff is linear in investment.

Since this is also true in Holmström (1999), both models share important features. In particular, optimal

investment is deterministic and, as shown in the technical Appendix A.4, the necessary condition (19) is

also sufficient.
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because the representative family runs many firms and is insured against firm-level shock-

s. The lack of idiosyncratic risk implies that: (i) utility does not have to be CARA for

optimal investment to be deterministic; (ii) steady-state consumption does not depend on

the degree of risk aversion.

Stability.–Using (i) we can generalize Proposition 2 to arbitrary utility functions.

Replacing the coefficient of absolute risk aversion, , with a potentially consumption-

dependent measure,  () ≡ − 00() 0(), we find that the steady-state ̂ is locally

stable18 if and only ifµ
1− + 20(̂)
1− + 0(̂)

¶
00(̂)
0(̂)

 2(̂− (̂))(1− 0 (̂)) (22)

Condition (22), aside from being more general than its partial equilibrium counterpart

(15), is also more informative because ̂ does not depend anymore on risk aversion. This

is why (22) allows us to derive parametric restrictions under which the steady-state is

stable, as done in Proposition 5 for the most common classes of utility functions.19

Proposition 5 Assume that the utility function is either CARA, i.e., () = − exp(−),
or CRRA, i.e., () = 1−(1 − ). Then there exists a function ̃( ) such that the

steady-state is locally stable whenever   ̃( ).

Cycles.–As in partial equilibrium, the model features global cycles of period 2. Final-

ly, as in partial equilibrium, local stability and global cycles are concomitant phenomena.

Propositions 5 and 6 confirm the intuition that cycles become sustainable when risk aver-

sion is strong enough.

Proposition 6 Assume that: (i) the equilibrium conditions in Definition 4 with ̄ =

0 are satisfied; (ii) the utility function is either CARA or CRRA; (iii) and the cost

function is quadratic, i.e., () = 22. Then deterministic 2-period cycles are sustainable

whenever the steady-state is locally stable.

Cyclical properties of key variables–Among other properties of cycles, the following

have some empirical support.

18See proof of Proposition 2.
19See technical Appendix A.6 for an analysis of the effect of  on equilibrium stability under both

CARA and CRRA preferences.
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1. Output is more volatile than consumption but less than investment: Ag-

gregate output  is by definition equal to the sum of consumption  = ̄+−  ()

and investment  (). Thus it is certainly smoother than investment since the latter

is a convex function of . Consumption being given by the difference between the

two, it has to fluctuate less than output.

2. Product quality is pro-cyclical: Product quality is just  plus the average value

of  and, since the latter is fixed, quality is procyclical as recently documented by

Broda and Weinstein (2010) and Jaimovich, Rebelo and Wong (2015).

3. Interest rates and consumption growth are positively related at low fre-

quencies: The model implies that the rate of interest at  should be positively

correlated with consumption growth between  and +1. Related to this, Brainard,

Nelson, and Shapiro (1991) and Parker and Julliard (2005, Fig. 2) found that

the Consumption-based Asset-Pricing Model performs better at a horizon of 2 or

3 years. Our own calculations and figures, shown in Appendix A.3, provide more

detailed empirical support for correlation at business-cycle frequencies and at the

5-year frequency.

5 Calibration to micro data

5.1 Parametrization

We now show that the model produces realistic cycles when parameters are chosen to fit

micro data. The most important of these is period length, which depends on how fast a

firm’s history becomes public. We discuss this parameter last after all other dimensions

of the model have been parametrized.

Choosing ( ).–These parameters determine the volatility of firms’ sales. Since

the same amount ∗ of input is used by all firms, they actually correspond to production

units and changes in sales are observationally equivalent to changes in revenues based

Total Factor Productivity (TFP).

Estimates of the volatility of TFP are readily available in the empirical literature on

industry dynamics. Castro, Clementi and Lee (2015) use the Annual Survey and Census
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of Manufactures, for the years 1972 through 1997, to estimate the following equation

+1 =  +  + γX +  (23)

where  is the log-TFP for plant  at time  as estimated from a first stage regression

of real sales on capital, labor and materials. X is a vector of observables that are sys-

tematically related to innovations in TFP.20 Equation (23) is the empirical counterpart21

of


+1 = 

 + (1− )   + (1− )

"
X

= +1

 + 

#
 (24)

where   is the vintage of firm .22 Since the survival probability of firms follows a

geometric distribution, the cross-sectional variance of  is given by

2 = (1− )
2

"
2

∞X
=1

 (1− )

+ 2

#
= (1− )

2

∙
2
1− 


+ 2

¸


As  only depends on  and  , one can use the autocorrelation coefficient  and the con-

ditional standard deviation of TFP growth to identify both volatility coefficients. More

precisely, we estimate ( ) by solving two equations involving  and its autocor-

relation as follows:

Cond. Std. ( ) =
−2

−2 + ̄−2

r
2
1− 


+ 2 

Autocorr. ( ) =
̄−2

−2 + ̄−2
=  (25)

where ̄−2 is given in (4). Castro, Clementi and Lee (2011) find that the condition-

al standard deviation of TFP across all manufacturing plants is equal to 2053% while

the autocorrelation coefficients of TFP are centered around 05. Combining these two

moments with the average exit rate of 5% for US firms in the 1990’s (see Bartelsman,

Haltiwanger and Scarpetta, 2004), we find that  = 243 and  = 172.

20Castro, Clementi and Lee (2015) control for the industry in which firms operate as well as their size

and age.
21The dependent variable +1 in Eq. (23) can be interpreted as a log-linear approximation of its

theoretical counterpart 
+1. The approximation being taken around the average value ̄, it will be

accurate when ̄ is close to one, a requirement that is satisfied by our calibration since our preferred

value for ̄ is 1.06.
22Equation (24) follows reinserting  =  +  and  = −1 +  into the law of motions of beliefs

(5).

20



Table 1: Baseline Parameters

Parameter Interpretation† Moment/Source

 = 4 Relative risk aversion Standard

 = 05 Exit rate of firms Bartelsman et al. (04), J&P (85)

 = 97 Annual discount factor Jarrell & Peltzman (1985)

̄ = 106 Average firm efficiency GDP loss from recessions = 8%

 = 243* Volatility of firms’ output Std. dev. plant lnTFP=20%

 = 172* Volatility of firms’ efficiency Autocorr. plant lnTFP=0.5

Notes. †When applicable, parameter values are for yearly frequency. *Inferred jointly as described above.

Choosing ̄.–Having solved for ( ), we relax the normalization to zero of the

average firm efficiency ̄. Adding this extra degree of freedom allows the model to

generate recessions of similar magnitude and frequency to the ones observed in the data.

The NBER measure shows that, from 1854 to 2009, the duration between US recessions

averaged 56 months with a loss in GDP from peak to through of around 8%.23 For a

quadratic cost function, () = 22, these two targets are perfectly matched when the

average efficiency of firms ̄ = 106.24 For this average efficiency, the normality of output

is not a concern anymore because the share of firms with negative valuation is negligible.25

Choosing ( ) –In today’s consumption, the value of a firm with market posterior

 is given recursively by



 = 

∙
 0 (+1)
 0 ()

¡
+1 + ∗+1 − 

¡
∗+1

¢
+ 

+1

+1

¢ | 

¸
 (26)

This would be the stock price of such a firm if it were traded. Jarrell and Peltzman

(1985) estimate the stock-price impact of a product recall, and they estimate the “direct

costs ”of a product recall by assuming that all of the defective units become worthless on

recall. We interpret a recall as a negative surprise amounting to an output drop equal

to the direct cost. The direct cost is then a subtraction from today’s dividend, and eq.

(26) along with the martingale property of  imply that 

 should fall by an amount

23Source material available at http://www.nber.org/cycles.html.
24See discussion of the bifurcation point below.
25In our benchmark calibration, only one out of ten thousand firms has negative value.
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 (1− ) where  =  (1− ). Jarrell and Peltzman, p. 521, estimate this ratio to be

12 which is matched by our values for  and . Our choice of parameters is summarized

in Table 1. Since we refer to  in annual data, the parameters are also reported at

yearly frequencies.

5.2 Period length

The speed of learning determines the length of the period and, hence, time between booms

and recessions. For the set of parameters summarized in Table 1, the bifurcation point ̃

has a value of 0708. Whether or not this is a reasonable discount factor depends on the

frequency at which consumers update their beliefs, i.e., the speed with which information

about a firm’s performance leaks out to the general public.

Let  denote the duration of the model’s period in years, so that  =  +  +P

=1 + and  = −1 +
P

=1 −1+. The standard deviations of output and pro-

ductivity are both linearly increasing in the period’s duration and so is the dispersion of

posteriors ̄, since its expression in (4) is homogeneous of degree 1 in (
2
  

2
). Hence,

raising  leaves the gain parameter  unchanged. In other words, the speed of information

acquisition affects the model’s solution solely through its impact on the discount factor

. It follows that ̃ = (̃) ((1− )) = 427 is the period length above which

endogenous cycles can occur.

Fig. 4 illustrates the effect that the speed of learning — i.e., period length — has on

cycles. Investment in the low and high phases of the cycle, as well as in the steady-

state, is reported in the left side panel. As the period duration rises the amplitude of the

oscillation increases and, as can be seen in the right side panel, generates larger cycles in

consumption.

Using our yearly estimates for both  and  reported in Table 1, one can directly infer

the yearly updating frequency. The time distance between peak and trough is 56 months

or 5612 = 47 years. Since this exceeds the threshold value of ̃ = 427, the model is

capable of generating cycles at this frequency. Then the 47-year discount factor is ̃ =

.975612 = 087, and the 47-year exit rate is ̃ = 1− (1− 005) 5612 = 021 At this updating
frequency, cycles raise average reputational investment by 41%. The output gain nearly

compensates the cost of income volatility as welfare decreases by only 07%, a loss that

is equivalent to a compensating variation of 025% in consumption.

Micro evidence shows reputation-diffusion lags can be on either side of the 4.7 years

22



Period duration in years
3.5 4 4.5 5 5.5 6 6.5 7

In
ve

st
m

en
t

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Slump

Boom

Steady-state

Period duration in years
3.5 4 4.5 5 5.5 6 6.5 7

C
o

n
su

m
p

ti
o

n

1.3

1.35

1.4

1.45

1.5

Slump

Boom

Steady-state

Figure 4: Investment and Consumption as a function of period length Lag.

Parameters reported in Table 1.

threshold, depending on what type of product or service is involved. In other words, the

4.7 diffusion lag that the macro data call for is well within the range of what the micro

data say. We now discuss these pieces of evidence and explain how they can be gathered

from micro data.

5.2.1 Product age at recall as a measure of period length

Using data on automobile and drug recalls, Jarrell and Peltzman (1985) find that a firm’s

stock price plunges when it recalls one of its products, roughly at the same time. Thus

information about the firm’s quality (implied by the recall) spreads no faster and no slower

than the product recall.26

We updated the auto recall data from the Department of Transportation, obtaining

48,000 cases. We measure the difference between the “start of manufacture” of the product

and the product’s recall date to be 4.14 years. This number is within 41447 = 88%

of the peak-to-trough business cycle distance. Details are in Appendix A.2 with Fig. 7

showing the frequency distribution of the ages of the products — there is considerable

26By contrast, the price of a takeover target rises several months ahead of the takeover announcement.
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heterogeneity in the products’ ages at recall, suggesting differences in the speed at which

information spreads.

Cyclical behavior of recalls.–If low quality products are more likely to be produced

when  is low, i.e., in a recession, then product recalls should be higher in the boom,

one period later. That is what our model predicts: Recalls and consumption should be

positively correlated, and they are. We construct a time series of recalls and correlate it

with aggregate consumption — both series logged and detrended. Over the period 1978-

2007 the correlation is 0.30, and the series are shown in Fig. 6 in Appendix A.2.

5.2.2 Diffusion of innovations

Product-adoption lags are estimated in the marketing literature and a popular formulation

is the Bass model which can be summarized by is market-penetration function  , with

 = 1 denoting full penetration




= (+  ) (1−  ) 

Sultan, Farley and Lehmann (1990) look at a broad range of product innovations and

estimate that  = 0.03, and  = 0.38, leading to a solution to the equation  ( ) = 12

of  = 65. Thus for the average product innovation, 50% of potential customers have

adopted it after 6.5 years.

Process-diffusion lags are slightly longer. Consistent with the evidence on technology

adoption (Comin and Hobijn, 2010; Cox and Alm, 1996), Anzoategui et al. (2015) cal-

ibrate the mean technology diffusion lag to 7 years for the U.S. These delays would be

caused by a combination of awareness lags and switching costs. Such estimates overstate

the lags in customer response at the intensive margin — a customer can just buy less

without switching to a new supplier.

5.2.3 Sluggish growth of new plants

Foster, Haltiwanger and Syverson (2016) find that new plants have much lower demand

than incumbents in their industries, in spite of being at least as efficient as incumbents.

They attribute it to sluggishness in new firms’ customer base, and argue that it is unlikely

that capital adjustment costs could explain the bulk of the 15+ years that it takes for
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plants in their sample to close their measured idiosyncratic demand gaps. Entrants (busi-

nesses 0-4 years old) have demand that is about 60% lower than that of “old” incumbents

(i.e., businesses over 15 years old). By the time plants are “medium” aged (10-14 years

old), their demand is only about 30% lower than incumbents. So it appears that it takes

5-10 years for half of the demand gap to be closed.

In our model entrants come in as a representative draw of  from the stationary

distribution. Eq. (24) then gives the law of morion of beliefs conditional on the initial

draw of , but since  is a random walk this too is the expected long-run value of the

firm’s quality. Then our estimate of  = 05 implies that the half-life between starting

belief and long-run belief is just one period, which for us is close to 5 years.27

5.3 Micro and macro uncertainty

It is well documented (e.g., Comin and Philippon, 2005) that macro and micro volatility

moved in opposite directions during the great moderation. According to our model, this

negative correlation can be explained by an increase in the noisiness of the technology.

Although aggregate cycles are driven by the learning process, and thus depend on the

degree of idiosyncratic uncertainty, higher volatility at the micro level does not necessary

translate into greater cycles at the macro level. The sign of the relationship depends on

whether higher firm volatility is due to more innovations in fundamental productivity, as

measured by , or to more noisiness in output, as measured by .

These two sources of idiosyncratic uncertainty have opposite effects on , i.e., on

the inertia of the updating process. More weight is put on recent observations when

 is higher because types are more volatile. Then reputation is more responsive to

investment which strengthens the power of incentives. On the other hand,  lowers the

power of incentives because recent observations are less informative when output quality is

noisier. This explains why the two parameters affect steady-state investment in opposite

directions.

Proposition 7 The steady-state level of investment ̂ is increasing in the volatility of

productivity  but decreasing in the volatility of output .

27In eq. (5) a deviation  raises beliefs next period by the factor 1 − . The value was obtained not

from the peak-trough interval lengths, but from the estimate in eq. (25).
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The proposition is illustrated in Fig. 5. Firms’ reputations become more sluggish as 

increases which lowers their reputational concerns, resulting in less investment, and thus

consumption, at the steady-state. Fig. 5 also shows that a similar conclusion holds for

cycles: their amplitude declines when  goes up. And since  is increasing in , more

noisiness in output quality lowers macro-volatility but increases micro-volatility.

6 Related models

In contrasting to other work, it helps to recall why reputation, an intangible, differs from

other types of capital, human or physical. Our model offers two reasons:

() investment in reputation raises current consumption, and

() investment today does not raise future output or aggregate consumption.

We now discuss related models, with special reference to () and ().

1. Learning by doing.–LBD is the closest-related line of research because it shares

with our model the feature that higher effort today raises an agent’s income in the future.

Here is a version of LBD that compares closely to our model.28 Let  denote the stock

28In-depth discussions of LBD are in Chang, Gomes and Schorfheide (2002), Qureshi (2008), and Gunn
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of firm-specific human capital and  the investment in human capital, again measured in

terms of goods. Assume that

 =  + − () and, (27)

0 = (1− ) +  with  ∈ (0 1) (28)

Property () does not hold because firms set  beyond the point where  is maximized29

and therefore increasing  reduces current consumption instead of raising it. Property ()

does not hold either because in (28), higher investment raises 0, and so increases output

and consumption tomorrow. Thus higher values of  lower the discount factor and LBD

exerts a stabilizing force which prevents the emergence of deterministic cycles.

2. Discount-factor shocks.–Our model generates discount factor movements. One can

also shock the discount factor exogenously as do Werning (2012), or Albertini and Poirier

(2014), and obtain cycles with procyclical incentives to invest. But unless the shocked

model features property (), cycles would be mitigated by a rise in current  0 () that

would arise as  drops.

3. Other pecuniary externalities.–Our model features a strategic complementarity in

 induced by a pecuniary external effect. Cycles in Shleifer (1986) also originate in a

pecuniary external effect, but one that is due to simultaneous product introductions by

monopolists. One needs risk aversion to be low ( ≤ 1) for his model to yield cycles. In
the same vein, Judd (1985) and Matsuyama (1999) feature cycles with alternating periods

of competition and monopoly.

4. Models with direct externalities.–Christiano and Harrison (1999) analyze regime

switching in a model whose geometric structure is related to ours and where, as in Ben-

habib and Farmer (1994), multiplicity of equilibria is driven by direct externalities in

production.

5. Echo effects and intertemporal substitution of consumption.–When the age distri-

bution of capital has spikes and when intertemporal substitution in consumption is high

and Johri (2011). In contrast to our paper, these models feature exogenous aggregate shocks.
29Current output is maximized when  = −1(1). Thus the observation that investment exceeds its

output-maximizing level directly follows from the firm’s FOC

0 () = 1 +
∞X

=+1

−
 0 ()
 0 ()




 1 (29)
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enough, investment can have echo effects that take a long time to die out (See Boucekkine,

Germain and Licandro, 1997; Mitra, Ray and Roy, 1990). Permanent investment cycles

arise only if utility is linear. In a two sector model in which production of the consumption

good is capital intensive compared to that of the capital good, an abundance of capital

today raises current consumption and lowers investment and capital tomorrow, at which

point the process is reversed. Benhabib and Nishimura (1985) show that this mechanism

works if factor intensities differ sufficiently, and if the utility function is not too concave.

These models all entail a counterfactual negative correlation between consumption and

investment over time.

Finally, the literature on reputation concerns has seemingly not addressed cycles. Kon-

do and Papanikolaou (2013) study how the value of future business acts as a (productive)

discipline device — a firm that expropriates the knowledge of a partner acquires a bad rep-

utation and it is precluded from partnering with others in the future. One can imagine

time-dependent punishments that would generate movements in aggregate activity.

7 Conclusion

We have shown that deterministic cycles may arise when contracts are incomplete —

one cannot condition payment on output — and when products are experience goods.

Calibrated to fit some micro facts, the model produces realistic cycles in terms of peak-

to-trough movements in consumption and the spacing of time between recessions. The

frequency of booms and recessions depends on the speed with which reputations spread

— the slower the diffusion, the longer is the inter-arrival time of recessions.

For the mechanism to work the economy must be closed or, at the micro level, borrow-

ing and lending must not be possible. A promising avenue for future research would be

to relax these assumptions. Adding a storable commodity would allow agents to smooth

consumption and thus partially dampen fluctuations. Then risk aversion should have an

ambiguous effect on the sustainability of cycles since the consumption-smoothing motive

is increasing in the curvature of the utility function. Oscillatory behavior will probably

continue to arise for intermediate degree of risk aversion, especially if regime switches are

allowed to be stochastic. Another interesting extension would be to let firms adjust the

size of their observable output. Enriching the technology of production so that both quan-

tity and hidden quality are optimally set would make it possible to embed our mechanism

28



within otherwise standard macro models, thereby providing a new microfoundation for

intangible capital as well as more elaborate tests for the relevance of reputation cycles.
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A Appendix

A.1 Proofs

Proof. Proposition 1: We are interested in 2-period cycles where ∗ = ̄ when  is

even, and ∗ = 0 when  is odd. Using the notation

() ≡ exp ( (1− ) )  (30)

and taking into account the feasibility constraint  ∈ [0 ̄], we see that the Kuhn-Tucker
conditions resulting from the incentive compatibility constraint (7) are

 ≤ 1− 



⎛⎝ ∞X
∈{135}

()

(̄) +

∞X
∈{246}

()


⎞⎠ if  is even so that ∗ = ̄

and

 ≥ 1− 



⎛⎝ ∞X
∈{135}

()

(̄)−1 +

∞X
∈{246}

()


⎞⎠ if  is odd so that ∗ = 0

These two conditions can be re-written as

1

(̄)
≤ (  ) ≤ (̄), where (  ) ≡ 

"
1− ()2
(1− )

#
−  (31)

The following cases have to be distinguished:

1.  ≤ 2−()2
1−()2 : Then (  ) ≤ 0 and, since (̄)  0, the first inequality in (31)

cannot be satisfied. Intuitively, the costs  are so low that it is never optimal to set

∗ = 0.

2.  ∈
³
2−()2
1−()2 

(1−)
1−

i
: Then (  ) ∈ (0 1] and, using the definition of ()

in (30), we find that the first inequality in (31), 1(̄) ≤ (  ), is satisfied

whenever ̄ ≥ − log((  ))[ (1− )]. As for the second inequality, it follows

from 1(̄) ≤ 1 that (̄) ≥ 1 ≥ (  ).

3.  ∈
³
(1−)
1−  1

´
: Then (  )  1 and the second inequality in (31), (  ) ≤

(̄), is satisfied whenever ̄ ≥ log((  ))[ (1− )]. The first inequality im-

mediately follows from (̄) ≥ (  )  1  1(̄).
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Proposition 1 focuses on case 3. It also compares it to the steady-state solution. To

show that ̂ = 0 is the unique steady-state when  ∈ ((1− )(−1 − ) 1), set ∗ = ̂ for

all  ≥  in (9). The resulting incentive constraint reads  =  (1− + ), a requirement

that cannot be satisfied since we are focusing on cases where   (1−)(−1−). Hence
̂  0 cannot be incentive compatible as the agent would like to deviate by investing less

than ̂. However, such deviations are not feasible when ∗ = 0 for all , and so ̂ = 0 is

indeed the only rest point.

Proof. Proposition 2: We want to characterize deterministic dynamics near the steady-

state ̂. Let  () = +1 denote the implicit map so that  () =  ( ()), where

 () ≡ 0 () 0 (−  ()) and  () ≡  0 (−  ()) [1− + 0 ()]. Differentiating the

incentive constraint (13) at the steady-state, we find that

0 (̂) ≡ +1



¯̄̄̄
=̂

=
 (̂)− (̂−  (̂)) [1− 0 ()]

0(̂)
1−+0(̂) (̂)− (̂−  (̂)) [1− 0 ()]

 (32)

where  () = − 00() 0() and  () = 00 () 0 ().

The steady-state ̂ is locally stable if |0 (̂) | ∈ [0 1). Since the numerator in (32) is
always higher than the denominator, the stability condition can be satisfied solely if the

denominator is negative. Let us focus first on cases where the numerator is positive while

the denominator is negative. Then it is easy to verify that 0 (̂) ∈ (−1 0] whenever (15)
is satisfied. The other possibility is that both numerator and denominator are negative,

then

0 (̂) ∈ [0 1)⇔  (̂)  (̂−  (̂))(1− 0 (̂)) (33)

a condition that is actually more stringent than (15).

Proposition 3 can be proved in a similar way to Proposition 1. Thus we first use a

direct approach by changing variable and defining a new fixed point problem.

Lemma 8 Let

 () ≡  (1− )

1− ()2 (+ ) 

2-period cycles are sustainable when the fixed point problem

 = () ≡  0(((1)))
 0((()))

(34)

admits a solution ∗.
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Proof. Lemma 8: We focus on 2-period cycles and denote this period action by , next

period by 0 the period after by , and so on. In other words, we have the discount factors

from today til tomorrow and from tomorrow til the day after, respectively,

 ≡  ( 0) =  0((0)) 0(()) (35)

0 ≡  (0 ) = 1 ( 0)  (36)

Therefore, if we start at  = 0, so that  is the action at  = 0 2 4 6 and 0 the action

for  = 1 3 5 7  then the incentive constraint (7) is satisfied when ( 0) solve the

following two equations

 =
1− 



Ã ∞X
t=1,3,5,7,...

()

 +

∞X
t=2,4,6,8,...

()


!
=
1− 



Ã


1− ()2 +
()

2

1− ()2
!


0 =
1− 



Ã ∞X
t=1,3,5,7,...

()

0 +

∞X
t=2,4,6,8,...

()


!
=
1− 



Ã
0

1− ()2 +
()

2

1− ()2
!


These simplify to

 =
1− 

1− ()2  (+ )  (37)

0 =
1− 

1− ()2  (+ 0)  (38)

Thus there are 4 equations (35), (36), (37), and (38), and 4 unknowns, ( 0  0)  One

solution is (̂ ̂ 1 1) where ̂ = (1 − )(−1 − ), which is a version of Holmström’s

(1999) Proposition 1. Now let’s treat  as a parameter to begin with. Investment as a

function of  = ( 0) is given by

 () =
(1− )

1− ()2 (+ )  and 0 () =
(1− )

1− ()2
¡
+ −1

¢


Thus our problem is equivalent to looking for a fixed point in  of the function  ()

defined in (34).

Proof. Proposition 3: Since () = −exp(−), it follows from the definition in (34)

of  (·) that  (1) = 1 Let ̄ ≡ 21−()2
(1−) −  since  (̄) = 0 and  (1̄) ∈ (0 1), we

have  (̄)  1. By continuity of the mapping  (·), there will be a fixed point  ∈ (1 ̄)
if 0 (1)  1 Differentiating  (·), we obtain

0 () = 

µ
1− () +

1− (1)

2

¶
 (1− )

1− ()2 exp
µ


∙
()− ()2

2
−
µ
(1)− (1)2

2

¶¸¶

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and so

0 (1)  1⇔ 2 [1− (1)]
 (1− )

1− ()2  1

This expression can be simplified as (1) = ̂ = (1− )(−1 − ) so that

 (1− )

1− ()2 =
̂

1 + 
=

(1)

1 + 
 (39)

Reinserting this equality into the previous equation we get

0 (1)  1⇔ 2 [1− (1)] (1)  1 + 

which implies in turn that

1
(1)
−  (1− (1))


(1)
−  (1− (1))

∈ (−1 1) 

This allows us to conclude that the steady-state is stable since equation (32) with quadrat-

ic costs and CARA utility reads

0 ((1)) =
+1



¯̄̄̄
=(1)

=

1
(1)
−  (1− (1))

1
1−

+(1)

−  (1− (1))
=

1
(1)
−  (1− (1))


(1)
−  (1− (1))



where the last equality follows from expression of the rest-point (1) = (1−)(−1−).

Proof. Corollary 5: The corollary immediately follows from the fact that investment

at the steady-state ̂ = (1− )(−1− ) does not depend on the degree of risk aversion.

Since (̂− (̂)) = (̂− (̂)) when the function is CRRA, and () =  when the

function is CARA, it is easily seen that, in both cases, (22) is equivalent to imposing a

lower bound on .

Proof. Proposition 6: When the utility function is CARA, the proof is similar to the one

of Proposition 3 with  replacing . When the utility is CRRA, so that () = 1−(1−),
it follows from the definition (34) of  (·) that  (1) = 1 Let ̄ ≡ 21−()2

(1−) −  since

 (̄) = 0 and  (̄−1)  0 we have  (̄) = 0. By continuity of the mapping  (·), there
will be a fixed point  ∈ (1 ̄) if 0 (1)  1 Differentiating  (·), we obtain

0 () = 

µ
 ()

 (−1)

¶−1
[(1− ())  (−1)−  () (1− (−1)) (−12)]

 (−1)2
0()
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Since 0() =  (1− ) 
£
1− ()2¤, we have

0 (1)  1⇔ 2 [1− (1)]

 (1)

 (1− )

1− ()2  1 

Reinserting (39), we get

0 (1)  1⇔ 2 [1− (1)]

 (1)

1 + 

(1)


which implies in turn that the steady-state is stable since equation (32) with quadratic

costs and CRRA utility reads

0 ((1)) =
+1



¯̄̄̄
=(1)

=

1
(1)
− 

(1)
(1− (1))



(1)
− 

(1)
(1− (1))



Proof. Proposition 7: Since   1, the ratio (1−)(−1−) is decreasing in . Then,
given that 0 (̂) is increasing in ̂, the definition of ̂ = 0−1((1 − )(−1 − )) implies

that the rest-point is decreasing in . To see how this gain parameter varies with the

variance coefficients 2 and 2 , note that

 = 1− −2
̄−2 + −2

= 1− 2−2q
1
4
+ 4

2
2

+ 1

2

= 1− 2q
1 + 4

2
2
+ 1



so that   0 while   0. Hence the variance coefficients have opposite

effect on , and thus ̂.

A.2 Product recall data and calculations

The product recall data are taken from the National Highway Traffic Safety Adminis-

tration of the Department of Transportation (NHTSA). The data contain all NHTSA

safety-related information on defects and compliance from the late 1960s. This includes

report-received date, record-creation date, model of the car, and the date of manufacture.

We construct the quarterly recall data as follows: We

1. removed the observations with missing report-received date, and/or date of the

start of manufacture and/or date of the end of manufacture. We ended up with 48014

product-recall cases in total.
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Recall and Real Consumption with HP Filter with Parameter 100
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Figure 6: Detrended consumption and product-recalls series 1978:1-2007:3

2. sorted the cases by the report-received date, and created quarterly bins from 1966Q4

to 2012Q3.

3. calculated the number of total recalls in each bin.

4. further removed the bins with consecutive zero observations and ended up with the

final sample spanning from 1978Q1 to 2007Q3.

5. took logs and time-detrended the observations in each remaining bin.

The time series plot of resulting recalls is in Fig. 6. The two series are positively

correlated as the 2-period cycle equilibrium implies; faulty products are made in recessions

and recalled the next period, i.e., in the boom.

Fig. 7 shows the frequency distribution of the ages of the products at the time of

recall.

38



0
.0

5
.1

.1
5

.2
.2

5
D

en
si

ty

0 10 20 30
report_minus_manu

Figure 7: Ages of recalled products in years since start of manufacture

A.3 Consumption growth and the real rate

Fig. 8 reports real consumption growth and real interest rates over the 14 peak-trough or

through-peak episodes that our data cover. The correlation between the two series (both

are annualized) is 0.11.30 For example, the two data points for 2001 mean the following:

() Nominal personal consumption expenditure growth 1991-2001 (annualized),

() the annualized nominal 10-year bond rate realized in 1991,

() the annualized inflation rate from 1991-2001 was substracted from both.

The model prediction is given by the formula

1 +  = −

where  is the time interval between the peak and trough or trough and peak as the case

may be, and where  = 097 and  = 4 as in the calibration. Interest rates are smoother

30For real consumption we use the monthly total personal consumption expenditure (PCE), deflated

by the PCE deflator. The sample interest rates consists of 1-year, 3-year, 5-year and 10-year treasury

constant maturity rate. By matching — as closely as possible — the gap between each recession date with

the maturity of the bond, the sample includes nine 1-year rates, one 3-year rate, two 5-year rates and

three 10-year rates. The real interest rate is obtained by deflating the nominal rate by the PCE deflator.

Neither real consumption growth nor real interest rates are annualized. The sample includes 8 NBER

recession dates from 1960:03 to 2009:06.
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Real Interest Rate and Consumption Growth
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Figure 8:  and c over peaks and troughs

than what our model implies, but the correlation is positive.

More generally, and as discussed below, the empirically relevant frequency for aggre-

gate cycles is 4.7 years. Thus we are referring to 4.7-year bond rates predicting 4.7-year

consumption growth. Table 2 reports some supporting evidence that uses the 5-year

frequency for both consumption growth and bond returns.31

Forecasting Regression

We regress 5-year nominal consumption growth +5 on the 5-year bond nominal return

+5 and on five lagged inflation rates −1 −2,..., −5. Regression results are reported

with and without a constant in column (1) and (2) of Table 2 respectively.

Data Sources.– All series are annual. Consumption is Personal Consumption Ex-

penditures in Billions of Dollars (PCE on FRED). The 5-year bond yield is the 5-Year

Treasury Constant Maturity Rate (GS5 on FRED). Past inflation is calculated from the

Consumer Price Index for All Urban Consumers (CPIAUCSL_PCH on FRED).

31Fig. 8 is the empirical counterpart of Fig. 2 in the text.
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(1) (2)

+5 +5

+5 0.0085 (0.83) 0.0518 (5.11)

−1 0.0188 (1.73) 0.0039 (0.27)

−2 -0.0084 (-0.52) 0.0006 (0.03)

−3 0.0067 (0.35) -0.0012 (-0.05)

−4 0.0036 (0.21) 0.0029 (0.12)

−5 -0.0077 (-0.70) -0.0133 (-0.90)

Constant 0.2300 (6.25)

 52 52

Table 2: Note: t statistics in parentheses. Bold numbers indicate statistical significance

at 5 percent level.
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TECHNICAL APPENDIX

A.4 Sufficiency of necessary conditions.

The problem analyzed in Holmström (1999) is extremely tractable because returns are

linear in effort. In order to allow for concave returns, we first recursively derive the agent’s

problem both on and off the equilibrium path. Hence we consider arbitrary strategies and

let  ≡  − ∗ denote the deviation from equilibrium effort at each date. We wish to

relate the agent’s and market’s posteriors about , which we denote and respectively.

Bayes rule implies that


+1 −+1 =

1− 



X
=0

−
¡
 − 

¢
= −1− 



X
=0

−  (40)

Let ∆ denote the following weighted mean of past deviations

∆ = ∆−1 + (1− )−1 with ∆0 = 0  (41)

It follows from (40) that


 =  −∆ 

We can use this relationship to specify the agent’s expectations about the law of motion of

beliefs. First notice that −
 = −

 ++. Since −
 is normally distributed

with mean 0 and variance ̄2 , the innovation process from the agent’s standpoint is a

normally distributed variable,  ∼ N (0 ̄2 +2 ), such that  = 
 ++. Reinserting

this decomposition into the law of motion of market’s beliefs, we find that

+1 =  + (1− ) =  + (1− )[ − ∗ −] =  + (1− )[ − ∗ +
 − + ]

=  + (1− )[ −∆ + ] (42)

The normality of  implies that the distribution of the posterior is

 (+1|∆ ) = Φ

µ
+1 − [ + (1− )( −∆)]

(1− )(̄ + )

¶


where Φ(·) is the standard normal CDF.
Given the per-period utility function ( ∗ ), and the deterministic but potentially

time-varying discount factor , the agent’s value function on and off the equilibrium path
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is given by the fixed point of the following functional equation

 (∆) = max


½
(∗  ) + 

Z
+1 (

0∆0)  (0|∆ )

¾
(43)

 0 = + (1− )[ −∆+ ]

∆0 = ∆+ (1− ) 

Partial equilibrium model.–In Section 3, the discount factor  is constant over time

and the utility function reads (∗ ) = − exp(−[+∗− (∗ + )]). We first show

that the value function is log-linear in .

Lemma 9 The value function of the partial equilibrium model with CARA utility is of

the form

 (∆) = exp(−) (0∆)  (44)

and the agent’s policy function is deterministic.

Proof. To verify the conjecture, we change the variable of integration of the Bellman eq.

(43)

 (∆) = max


⎧⎨⎩− exp(−[+ ∗ −  (∗ + )])

+
R
+1 (+ (1− )[ −∆+ ]∆0) Φ

³


̄+

´
⎫⎬⎭

= exp(−)max


⎧⎨⎩− exp(−[∗ −  (∗ + )])

+
R
+1 ((1− )[ −∆+ ]∆0) Φ

³


̄+

´
⎫⎬⎭

= exp(−) (0∆) 

The second equality follows reinserting our guess (44), while the third equality follows

directly from the Bellman equation (43) defining  . Since the functional equation is a

contraction mapping, the value function is unique and its policy function  identical across

all market’s beliefs .

Hence, the agent chooses a sequence of deterministic actions that only depend on the

cumulative stock of past deviations ∆. In other words, optimal policies are deterministic

on and off the equilibrium path. We can therefore focus, without loss of generality, on

sequences of deterministic solutions, which allows us to directly establish the sufficiency

of the FOC.
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Let  = (0 1 ) denote a sequence of actions from date 0 onwards. Given that

investment in each period belongs to the feasibility set A ⊆ R+, sequences are element
of the infinite Cartesian product A∞ = {()∞=0| ∈ A for all  = 0 1 }. The market’s
posterior can be computed using the Bayesian map, which is linear,

+1( 
|0) = 0 +

1− 



X
=0

−
¡
 − ∗ + 

¢
 (45)

These notations allow us to redefine the agent’s utility as a functional in the space of

action sequences, i.e.,

0(0 0) = max
∈A∞

U() = max
∈A∞



"
−

∞X
=0

 exp(−[() + ∗ −  ()])

#


where () is a shorthand version of ( 
|0) introduced in (45).

It is easily seen that U is a concave functional. For any  ∈ (0 1) and all pair of
sequences 1 2 ∈ A∞ with 1 6= 2, we have

U(1 + (1− )2) = 

"
−
∞X
=0

 exp
¡− £(

1 + (1− )2) + ∗ − 
¡
1 + (1− )2

¢¤¢#

= 

"
−
∞X
=0

 exp
¡− £(

1) +((1− )2) + ∗ − 
¡
1 + (1− )2

¢¤¢#

 

"
−
∞X
=0

 exp
¡− £(

1) + ∗ − 
¡
1

¢¤¢#
+

"
−
∞X
=0

 exp
¡− £((1− )2) + ∗ − 

¡
(1− )2

¢¤¢#
= U(1) + U((1− )2) (46)

The second equality holds true because the Bayesian map (45) is linear in , while the

inequality is a direct consequence of the concavity of the per-period utility function com-

bined with the convexity of the cost function. We can conclude from (46) that U is a
strictly concave functional in the space of action sequences. Thus any local maximum of

U is also a global maximum. A necessary condition for U to have a maximum at ∗ is

that its Gateaux derivative U(∗;) = 0 for all  ∈ A∞. This requirement yields the
necessary FOC (9) which, by strict concavity of the objective, is also sufficient.

General equilibrium model.–In Section 4, the objective of the manager is linear as

(∗ ) = + ∗ − (∗ + ), but the discount factor,  =  0 (+1)  0 (), follows

the changes in aggregate consumption.

Lemma 10 The agent’s value function in the general equilibrium model reads

 (∆) = 0
 +1

+2
∆ (47)
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where 0
 , 

1
 and 2

 are time-varying coefficients whose expressions are given in (49),

(50) and (51), respectively. The deterministic equilibrium path ∗ is incentive compatible

if the necessary condition (19) is satisfied for all  ≥ 0.

Proof. The Bellman equation reads

 (∆) = max


⎧⎨⎩+ ∗ − (∗ + )

+
R
+1 (+ (1− )[ −∆+ ]∆0) Φ

³


̄+

´
⎫⎬⎭

= max


⎧⎨⎩+ ∗ − (∗ + )

+
£
0

+1 +1
+1(+ (1− )( −∆)) +2

+1(∆+ (1− ))
¤
⎫⎬⎭ 

(48)

The second equality follows using our guess (47) for the next period value function and

replacing ∆0 by its law of motion (41). Reinserting (47) on the left-hand side of the

Bellman equation, we find that the conjecture is verified when  = 0 and

0
 = ∗ − (∗ ) +

∞X
=

Ã
Y

=



!
[∗+1 − (∗+1)] =

∞X
=

 0()
 0()

−[∗ − (∗)] (49)

1
 = 1 +

∞X
=

Ã
Y

=



!
=

∞X
=

 0()
 0()

− (50)

2
 = −(1− )

" ∞X
=

Ã
Y

=



!
1

+1
−
#
= −(1− )

" ∞X
=+1

 0()
 0()

−
Ã

X
=+1

−−1
!#



(51)

We still have to check that  = 0 when the necessary condition (19) is satisfied. Differ-

entiating (48) with respect to  yields the following FOC

0(∗ ) = (1− )
£
1

+1 +2
+1

¤
= (1− )

" ∞X
=+1

 0()
 0()

−
Ã
1− (1− )

Ã
X

=+2

−−2
!!#

=
1− 



∞X
=+1

 0()
 0()

()− (52)

which is indeed equivalent to the incentive constraint (19).

When  is constant over time, the discount factor  remains fixed and (52) is equiva-

lent to the incentive constraint (22) in Holmström (1999), where  and  stands for  and
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 in our notation. Lemma 10 shows that adding a discount factor that varies over time

in a deterministic fashion does not modify the structure of the problem. An additional

insight is that agents with private information about their types take the same action

than those that are on the equilibrium path. Hence, multiple deviations are never opti-

mal when returns are linear. By contrast, in the partial equilibrium model with CARA

utility, optimal strategies on and off the equilibrium path did not coincide.

A.5 Asymmetric cycles.

Proposition 11 derives conditions under which cycles of period 3 can be constructed using

the partial equilibrium model with linear costs described in Subsection 3.1. It focuses on

asymmetric cycles with protracted booms and sudden busts. The logic of the proof can be

applied to study reverse cases and to show that cycles with protracted slumps and sudden

booms can be sustained when   (1− )(−1− ). Furthermore, it is cumbersome but

relatively straightforward to extend the proof so as to construct cycles with more than 3

states.

Proposition 11 Consider the partial equilibrium model with CARA utility and linear

costs, i.e., () = . Assume that  satisfies the compatible conditions

1− 

−1 − 
  

(1− )

1− ()3
∙
2(1− + )


+ ()2

¸
 (53)

Then there exists a unique ̄  0 such that deterministic cycles of period three, where

∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
̄ when  = {0 3 6 }
0 when  = {1 4 7 }
̃ ∈ (0 ̄) when  = {2 5 8 }

are sustainable whenever ̄ ≥ ̄.

Proof. Proposition 11: We propose a constructive proof. We study each action in turn

and prove their incentive compatibility

1. ∗ = ̄: Since we are focusing on cases where   (1− )(1− ), we have

 ≤ 1− 



∞X
={12}

()


1− 



X
={12}

()

(̄− ∗+) (54)
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The last inequality follows from the definition of (·) in (30) because ̄ ≥ ∗+ for all

, and so (̄−∗+) ≥ 1, with strict inequality for some . Since the last expression
in (54) measures the discounted returns from investment at date , the feasibility

constraint binds and ∗ = ̄ is indeed incentive compatible.

2. ∗ = 0: At the lower-bound of the feasibility set, costs must exceed returns so that

 ≥ 1− 



∞X
=12

()


¡−∗+¢

=  (−̃) 
⎛⎝1− + 

⎡⎣1− 



X
={23}

()
−1

(̃− ∗+)

⎤⎦⎞⎠
=  (−̃)  (1− + ) 

The last equality follows from the fact that the incentive constraint must hold with

equality in the next period because ∗+1 = ̃ ∈ (0 ̄). The condition is satisfied
whenever

̃ ≥ ̃ ≡
− log

³


(1−+)

´
 (1− )

 0 (55)

3. ∗ = ̃ ∈ (0 ̄): First, we assume that condition (55) holds as an equality and we
show that there exists a unique value of ̄ which renders ̃ incentive compatible.

Since ̃ is interior, the incentive constraint has to hold exactly, i.e.,

 =
1− 



∞X
=12

()


¡
̃− ∗+

¢
(56)

=  (̃− ̄) 

⎛⎝1− + 

⎡⎣1− 



X
={23}

()
−1

(̄− ∗+)

⎤⎦⎞⎠
  (̃− ̄)  (1− + )   (̃− ̄)

The first inequality follows from step 1 above, while the second one holds true

because   (1 − )(1 − ). It shows that  (̃− ̄) has to be inferior to one,

thus requiring that ̄ be strictly larger than ̃. Keeping ̃ constant and differentiating

(56) with respect to ̄, we find that returns are strictly decreasing in ̄. Furthermore,

if

 
1− 



∙
()2 (1− + ) + ()3

1− ()3
¸
 (57)
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there exists a unique value, which we denote ̄, such that ̃ = ̃ and (56) is

satisfied. To verify that (57) is consistent with (1− )(1− )  , notice that

(1− )

1− 

1− 



∙
()2 (1− + ) + ()3

1− ()3
¸
⇔ 1  

∙
 (1− + )


− 1
¸


This inequality is equivalent to   2(1 − ) [1 + − ()2], which yields a
lower-bound that is inferior to the term on the right-hand side of (53) as well as to

(1−)(1−). Hence the two conditions in (53) are compatible since they define
a non-empty interval. As with period-2 cycles, low levels of investment can never

be incentive compatible when costs are too small.

We still have to prove that our cycles are sustainable when ̄  ̄. Differentiating

(56) with respect to both ̄ and ̃, one finds that ̃̄ ∈ (0 1). The derivative being
positive, ̃  ̃ if ̄  ̄, and the condition (55) for incentive compatibility of 

∗
 = 0

is satisfied. Furthermore, the derivative being smaller than one ensures that ̃ remains

within the interior of the feasible set as ̄ increases.

A.6 Effect of discount factor  on stability of the steady-state.

Proposition 12 Assume that: (i) the equilibrium conditions in Definition 4 are satisfied;

(ii) the utility function is CRRA; (iii) costs are quadratic, i.e., () = 2. There exists a

unique bifurcation point ̃( ) ∈ (0 1) such that the steady-state is locally stable if and
only if   ̃( ). The bifurcation point ̃ is increasing in the coefficient of risk aversion

. Moreover, productivity volatility, , and output volatility, , have opposite effects on

̃

Proof. Proposition 12: With quadratic cost and CRRA utility, the incentive constraint

is satisfied if


−
  = 

−
+1

µ
1− 


+ +1

¶


Taking logs on both side and differentiating with respect to  yields

− 


(1− ) +

1


= − 

+1
(1− +1)

+1


+

1
1−

+ +1

+1




Evaluated at the rest point (̂ ̂), this condition reads

+1



¯̄̄̄
̂

=
1
̂
− 

̂
(1− ̂)

1
1−

+̂
− 

̂
(1− ̂)


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Reinserting the rest-point solution ̂ = (1− )  (−1 − )  we find that

+1



¯̄̄̄
̂

=
1
̂
− 

̂
(1− ̂)



̂
− 

̂
(1− ̂)



Hence ̃ solves
+1



¯̄̄̄
̂

= −1⇒ 1 + ̃

̂
=
2 (1− ̂)

̂


Replacing the expression of ̂ into this condition yields



1 + ̃
=
1

4

∙
1 +

1− ̃

1− ̃

¸
 (58)

The left hand side is decreasing in ̃ and goes from  to  (1 + ) as ̃ increases from

0 to 1 By contrast, the right hand side is increasing and goes from 12 to infinity. Thus

there exists a unique ̃ solving (58) whenever   12

The impact of  and  on ̃ follows from the definition of 

 = 1− −2
̄−2 + −2

= 1− 2−2q
1
4
+ 4

2
2

+ 1

2

= 1− 2q
1 + 4

2
2
+ 1



so that   0 while   0. Hence the variance coefficients have opposite effect

on the implicit equation (58) defining ̃ since it only depends on . As for the effect of ,

totally differentiating (58), we find that

̃


=

1
1+̃



(1+̃)2
+ 1

4

h
1−
(1−̃)2

i  0

The model exhibits a flip bifurcation so that a period 2 cycle coexists with the steady

state solution as  gets close enough to the critical value ̃. At the bifurcation point ̃, the

rest point becomes unstable and there are no other stable solutions in its neighborhood.

Fig. 9 separates the ( ) plane into a stable and an unstable region. As stated in

Proposition 5, there exists a value of  above which the steady-state is always stable.

The discount factor  has an opposite impact to  since, as stated in Proposition 12, the

equilibrium is stable when  is smaller than some threshold. This is intuitive because

an increase in  lowers the degree of absolute risk aversion through its positive effect

on output. Patient firms invest more in their reputation, which raises consumption and

generates a wealth effect that renders agents less risk averse. This mechanism is not
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Figure 9: General Equilibrium: Local stability of the steady-state ̂ as a

function of  and  when utility is CRRA. Parameters: =.5 () = 22

operative when preferences are CARA and not CRRA. Then, the absolute degree of risk

aversion remains constant and, as shown in Proposition 13, the relationship between the

discount factor and the stability of the equilibrium becomes ambiguous.

Proposition 13 Assume that: (i) the equilibrium conditions in Definition 4 are satisfied;

(ii) the utility function is CARA; (iii) costs are quadratic, i.e., () = 2. The steady-

state is always unstable when   42. By contrast, when   4(2 − ), there exists

a non empty interval (( ) ( )) such that the steady-state is locally stable if and

only if  ∈ (( ) ( )).

Proof. Proposition 13: When preferences are CARA and costs are quadratic, i.e.,

() = − exp(−) and () = 22, equation (32) reads

0 (̂) =
(̂)

(̂)
=

1
̂
−  (1− ̂)

1
1−

+̂
−  (1− ̂)

=
1
̂
−  (1− ̂)



̂
−  (1− ̂)

 (59)

where the last equality follows from the expression of the rest-point ̂ = (1 − )(1 −
). The steady-state ̂ is locally stable if |0 (̂) | ∈ [0 1). We now study under which
conditions this requirement is satisfied:

(i) If   42, the denominator (̂) in (59) is always positive. Since the numerator

(̂)  (̂), we have 0 (̂) = (̂)(̂)  1, and the steady-state is locally unstable.
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(ii) If  ∈ (42 4), the numerator (̂) is always positive while the denominator (̂)
might be negative. Thus the steady-state is stable when 0 (̂) ∈ (−1 0), i.e., when

() ≡ 2(1− )
(1− )

(1− )2
− (1 + )  0 (60)

As  goes from 0 to 1, the first term of (60) starts at 0 and converges again to 0, while

the second term goes from −1 to −(1 + ). Hence, the number of roots of (·) has to be
even. Differentiating (·) twice, one finds that

 0() = 2(1− )
1− 2+ 

(1− )3
− 

 00() =
4(1− )[(− 2) + 2− 1]

(1− )4


We distinguish two cases:

1.   12: Then  00()  0 for all  ∈ (0 1) and  0(·) can be positive solely if
 0(0) = 2(1−)−  0, i.e., if   [2(1−)]. Since (0) = −1, there is no root
when   12 and   [2(1 − )]. Conversely,  0(·) may have some roots when
  [2(1 − )]. However, the strict concavity of (·), along with the terminal
conditions (0) = −1  (1) = −1−, ensure that (·) has either zero or two roots
in (0 1).

2.   12: Then  00() ≷ 0⇔ (2− 1)(2− 2) ≷ , and so the function (·) has a
unique inflection point in (0 1). This implies in turn that the terminal conditions

(0) = −1  (1) = −1 −  can be satisfied solely if (·) has either zero or two
roots in (0 1).

Having shown that (·) has at most two roots, we now establish a sufficient condition
for their existence. The continuity of (·), and the fact that it is negative at both ends of
the unit interval, imply that it is sufficient to identify a parametric restriction under which

(·) reaches positive values within (0 1). A tractable expression is obtained focusing on
̂ = 12, since



µ
1

2− 

¶
=



2
− 2

2− 
 0⇔   4(2− )
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Figure 10: General Equilibrium: Local stability of the steady-state ̂ as a

function of  and  when utility is CARA. Parameters:  = 39, () = 22

Thus, provided that   4(2−), (·) has two roots (() ()) ∈ (0 1)2. Furthermore,
()  0, and so the steady-state is stable for all  ∈ (() ()).
(iii) If   4, the numerator (̂) and denominator (̂) may become negative.

However, the inequality (̂)  (̂) ensures that 0 (̂) = (̂)(̂) ∈ (0 1) whenever
(̂)  0, which implies in turn that  must belong to (() ()). Since 0 (̂) is

continuous over the interval [̂(()) ̂(())], we know that |0 (̂) | ∈ (0 1), implying
that the steady-state is stable for all  ∈ (() ()).
Fig. 10 shows how the risk aversion coefficient  widens the stable interval described

in Proposition 13. Eventually, stability is always ensured for high enough values of .
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