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ABSTRACT

Risk adjustment of payments to health plans is fundamental to regulated competition among 
private insurers, which serves as the basis of national health policy in many countries.  To date, 
estimation and evaluation of a risk adjustment model has been a two-step process.  In a first step, 
the risk-adjustment payment weights are estimated using statistical techniques, generally 
ordinary-least squares, to maximize some statistical objective such as the R-squared; then, in a 
second step, the risk adjustment model is evaluated, usually with simulation methods, but without 
an explicit framework describing the objective of the model.  This paper first develops such a 
framework and then uses it to replace the two-step “estimate-then-evaluate” approach with a one-
step “estimate-to-maximize-the-objective” approach.  We assume that the objective of risk 
adjustment is to minimize the loss from service-level distortions due to adverse selection 
incentives, and we derive expressions for the service-level distortions as a linear function of the 
risk adjustment payment weights.  We show that when the number of risk adjustor variables 
exceeds the number of decisions plans make about service allocations, incentives for service-level 
distortion can always be eliminated. Under these circumstances the welfare maximizing payment 
weights can be found with a constrained least-squares regression where the constraints are the 
conditions under which plan actions achieve efficiency.  We illustrate this method with the data 
used to estimate risk adjustment payment weights in the Netherlands (N=16.5 million).  When the 
number of “services” exceeds the number of available risk adjustors, however, it is not possible to 
eliminate incentives for service-level distortion.  In this case, a regression on transformed data 
produces the (second-best) payment weights that minimize welfare loss.
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1. Introduction   

Health insurance markets are vulnerable to market failures related to adverse selection (Einav, Finkelstein, 

and Cullen 2010; Glazer and McGuire 2000). Risk adjustment (aka “risk equalization”) of payments to health 

plans is a widely used policy intended to counter adverse selection problems and is a fundamental component 

of the regulated private health insurance markets that serve as the basis of national health policy in Germany, 

Israel, the Netherlands, Switzerland, and other countries, as well as of key sectors in the U.S., including the 

Medicare Advantage program for Medicare beneficiaries and the state-level Marketplaces created by the 

Affordable Care Act (2010).  Each of these individual health insurance markets includes a payment system, 

which, depending on the country, adjusts plan payments to age, gender, geographic area, past or current 

medical diagnoses, past spending, and other characteristics of enrollees. 

To date, the payment weights attached to the different individual characteristics included in a risk 

adjustment model used in a given health plan payment system have been generated using regression 

techniques, typically via an individual-level ordinary least squares (OLS) regression of total annual health care 

spending on the variables included in the model (risk adjustors).  The payment to the insurer for a given 

enrollee is then effectively set equal to the predicted value the regression model generates for that enrollee. 

Such a method chooses payment weights that maximize the statistical “fit” (i.e., the R-squared) of plan 

revenues to costs at the individual level. However, as has been pointed out in previous work, it is unclear 

whether a statistical measure such as the R-squared is the “correct” objective function to maximize given the 

goals of either the regulator or the social planner (Glazer and McGuire 2002).  

Indeed, empirical studies evaluating different risk adjustment models imply that maximizing the R-

squared is not the regulator’s objective.  Such studies tend to emphasize group-level fit of plan revenues to 

costs rather than individual-level fit. For example, Kautter et al. (2014) first estimated the federal model 

proposed for the U.S. Marketplaces using OLS, and then evaluated it by creating subgroups of individuals 

with particular characteristics and simulating average fit for each of these groups.  McGuire et al. (2014) 

performed a similar evaluation of the Marketplace model. With data from the Netherlands, Van Kleef et al. 

(2015a) first estimated a risk adjustment model, and then merged survey information with health claims to 

check fit for various groups of people, including those with low physical self-rated health status and those 

reporting chronic conditions. As far as we know, however, no explicit underlying framework describes insurer 

behavior and market efficiency underlying the evaluation methods and measures used in these papers and by 

researchers and policymakers generally.  In other words, there has been no explicit objective function for risk 

adjustment design.  
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In this paper we attempt to improve upon the current methodology and advance the current 

literature in a number of important ways. We start with Glazer and McGuire (2002) which uses a model of 

the behavior of a profit-maximizing insurer to (1) study incentives faced by insurers to inefficiently ration 

certain services and (2) develop a method for estimating risk adjustment weights that neutralize these 

incentives when the number of services is smaller than the number of variables in the risk adjustment model. 

Our key innovations are to (1) move beyond incentives and solve for the equilibrium service-level allocations 

insurers will offer in a symmetric competitive equilibrium under a given plan payment system and (2) extend 

the model to relate these (distorted) allocations (as well as the payment system that generated them) to 

consumer utility and social welfare. These innovations allow us to make a number of novel and important 

advances. First, we are able to show the set of (implausible) conditions under which the R-squared is the 

correct objective function to be maximized by the regulator. Second, we generate a welfare-founded measure 

of payment system performance. Third, we are able to develop simple, general, and easy-to-implement 

methods for deriving optimal risk adjustment payment weights that maximize social welfare, even in the 

entirely plausible, but previously unexplored, case where the number of services exceeds the number of risk 

adjusters. 

These methods can effectively replace the conventional two-step “estimate-then-evaluate” approach, 

where policymakers and researchers first estimate payment weights for a given risk adjustment model using a 

statistical objective function and then second evaluate the weights using a different set of criteria, with a 

relatively simple one-step “estimate-to-maximize-the-objective” approach, where the regulator’s true objective 

function is used to estimate the payment weights. For any risk adjustment model for which the number of 

risk adjustor variables exceeds the number of decisions plans make about service allocations, a simple 

constrained regression of healthcare spending on the risk adjustors in the model produces the payment 

weights that maximize the objective function. In other cases, where the risk adjustment model includes fewer 

risk adjustors than plan decisions, there is typically no set of payment weights that fully eliminate incentives 

for service-level distortion. Under these circumstances the optimal (second-best) payment weights can be 

found via a standard OLS regression on a transformation of the data and the risk adjustors. Thus, the 

methods we propose improve on both the status quo and the more sophisticated methods developed in the 

academic literature (i.e., Glazer and McGuire 2002) while maintaining the simplicity and minimal 

computational burden of those methods.   

Following our modeling exercise in Section 3, we use data from the Netherlands to both present our  

welfare-founded measure of payment system performance and to demonstrate the implementation of our 

new optimal payment weight estimation methods. The data for our empirical demonstration, described in 

Section 4, are the actual data used to estimate risk adjustment payment weights in the Netherlands, and 

include multiple years of information on medical care use and individual demographic and risk characteristics, 
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on the full 16.5 million Dutch population.  We replicate the payment weights used in the 138-variable risk 

adjustment model in place for 2015, and compare these weights, and the welfare implications of the weights, 

to the weights produced by our efficiency loss-minimizing approach.  The Dutch data are excellent for the 

purpose of this paper since the risk adjustment model has been refined based on many years of research and 

includes a large set of risk adjustor variables.  For estimation, we take the set of risk adjustor variables as 

given, using the actual risk adjustors employed in the Dutch model.1  In Section 4 we also describe how we 

operationalize assumptions about the level at which plans make allocation decisions, how (expected) 

individual spending relates to total spending on a service and how we interpret the data in terms of efficiency 

of the current system.  Finally, Section 4 describes the measures we use to characterize the efficiency of a risk 

adjustment model and its associated payment weights and the assumptions we invoke to allow us to 

implement our methods. 

Empirical methods to estimate risk adjustment payment weights and results are described in Section 

5 (and an associated appendix).  We describe model fit, plan incentives and overall welfare loss associated 

with the weights generated by the current methods and the weights generated by the welfare-maximizing 

methods.  An innovation of this paper is that because we employ an explicit model of plan behavior as a 

function of the risk adjustment payment weights, we can derive the service-level allocations insurers will offer 

in a competitive equilibrium under a given set of weights.  Comparing equilibrium service-level allocations 

under different sets of payment weights allows us to characterize the spending implications by service of the 

alternative sets of weights.  Comparing these equilibrium service-level allocations to the optimal service-level 

allocations presents an additional way to depict the improved efficiency properties of our proposed estimator. 

These equilibrium allocations are also an important component of the measure of welfare loss we present for 

each alternative set of weights we estimate for the Dutch model. 

Section 6 contains what we believe to be a promising extension suggested by our model of insurer 

behavior and market efficiency.  An estimation approach based on efficiency calls for an explicit statement of 

what is meant by efficiency and how this is manifest in the data.  In Sections 4 and 5 we assume that the 

levels of spending observed in the data are efficient (following the implicit assumption in the existing risk 

adjustment literature).  In Section 6 we show that our procedure for deriving payment weights can be 

modified to allow the regulator or researcher to specify the efficient levels of spending for each service for 

each individual.  The idea is very simple and operational.  Suppose a public authority believes that plans 

                                                      
1 A risk adjustment model involves choice of risk-adjustor variables as well as the weights to be assigned to these 
variables.  Economic criteria, primarily “gameability” and clinical criteria, primarily “meaningfulness,” are typically 
considered together with incremental contributions to statistical fit when selecting the risk adjustor variables.  See 
Kautter (2014) for discussion of this in the case of Marketplace risk adjustment, and Kronick and Welch (2014) and 
Geruso and Layton (2015) for empirical studies of “upcoding” in the case of Medicare Advantage plans.  The loss 
functions we propose here could substitute for the use of “fit” in the decision about variables to include. 
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currently (and in the data) spend too much on inpatient care for certain disease groups and too little on 

office-based care for the same conditions.  Our analysis shows that the public authority can use the risk 

adjustment component of a health plan payment system to achieve its desired goals for spending targets.  

First, the regulator should modify individual-level spending in the data to be equal to the desired level.  Then, 

the regulator should use modified spending, rather than actual spending, to estimate the payment weights.  In 

simple terms, we propose that regulators risk adjust for the system they want, not the system they’ve got.  

Section 7 comments on some additional directions for research and policy. 

 

2.  Objectives for Health Plan Payment   

Although risk-adjustment researchers acknowledge that risk adjustment is intended to reduce incentives for 

risk selection, in practice, statistical, not economic, criteria are used in estimation of payment weights used in 

risk adjustment models.  In the two-step “estimate-then-evaluate” method of risk adjustment design referred 

to above, when done for policy, the first, “estimate” step is universally an OLS regression of individual-level 

spending on a set of risk-adjustor variables, with the estimated coefficients becoming the payment weights 

used in the risk adjustment component of the health plan payment system.2  Researchers have studied 

alternatives to maximizing R-squared with an OLS regression, with the most commonly proposed alternative 

being minimizing the Mean Absolute Prediction Error (MAPE) which applies a linear rather than a quadratic 

loss function to the actual-prediction gaps.3  Arguments for the less-common alternatives to R-squared, 

however, are generally made on statistical rather than economic grounds, and none, so far as we know, have 

been put into practice.4   

Research papers concerned with the economics of health insurance markets and the inefficiencies 

due to adverse selection tend not to draw explicit implications for risk adjustment payment weights.5  In one 

strand of this literature, building on earlier work by Cutler and Reber (1998), Einav and Finkelstein and 

colleagues study one form of adverse selection inefficiency which results from sicker individuals tending to 

                                                      
2 There are some minor qualifications to this statement:  coefficients in some of the Dutch risk adjustment models are 
constrained to avoid negative predicted spending.  In the U.S., the Hierarchical Cost Categories (HCC)-based estimates, 
some coefficients are changed, post-estimation, so that clinical “hierarchies” are maintained. 
3 For example, see Van Barneveld et al. (2001) and Ettner et al., (2001).  Van Veen et al. (2015) document that the 
MAPE is the second-most commonly used fit criterion in the research literature on risk adjustment. Note, however, that 
while the MAPE is often used in the “evaluate” step, it is not used for payment weight estimation, again implying that 
estimation methods maximize an objective function that differs from true policy objectives. 
4 Van Veen et al. (2015) summarize fit measures used in this literature, and document that the vast majority of papers use 
an R-squared statistic (or closely related) measure of fit of the risk adjustment model and/or predictive ratios with 
predicted values from the risk adjustment model in the numerator.  
5 A more extensive review of the literature on the inefficiency in health insurance due to adverse selection is contained in 
Layton, Ellis and McGuire (2015).  That paper also proposes efficiency metrics for comparing health plan payment 
systems.  It does not, however, use these metrics to derive estimators for risk adjustment payment weights. 
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join more generous plans.6 This type of adverse selection forces the more generous plans to increase 

premiums in order to cover costs of the sicker enrollees, not just to cover costs due to more generous 

benefits.  Consequently, the premium for the generous plan is “too high” and too few consumers choose it.   

One option to deal with this form of adverse selection is risk rating of the premiums faced by 

enrollees, for example, charging sick people their full incremental costs (Bundorf, Levin, Mahoney, 2012).  

From a social point of view, however, this is often regarded as undesirable due to objectives related to 

affordability of health plans for the sick, equity in health plan pricing, and a desire to provide insurance 

against the “reclassification risk” of deteriorating health status (Handel, Hendel, and Whinston 2015).  It is 

common in regulated competition policy settings to strictly limit allowed premium groups, sometimes even 

requiring each plan to charge only a single premium, as is true in the Dutch national health insurance system, 

and the Medicare Advantage program.7    

Another option is risk adjustment.  By transferring funds to the more generous plan when sicker 

individuals enroll, risk adjustment dampens the component of plan premium differences due to selection.  

The optimal policy transfers a set amount of funding to the more generous plan so as to offset the selection 

effect on the incremental premium.  Given that the number of risk adjustor variables exceeds the number of 

plans and given that the risk composition of health plans is known when the risk adjustment model is 

estimated, there are innumerable combinations of risk adjustment payment weights that would succeed in 

effecting this transfer.  A well-chosen simple subsidy set in advance for the generous plan would solve the 

problem – risk adjustment is not required to solve the Einav-Finkelstein sorting inefficiency.8   

The second strand of the literature on adverse selection, and the one relevant here, is concerned with 

plans distorting their products to attract/deter individuals who are financial winners/losers, an activity 

referred to as “skimping,” “service-level selection,” or “indirect selection.”  Even when nominal coverage is 

regulated, plans, through network structure, provider payment, managed care algorithms and other measures, 

can favor or disfavor certain population groups or service areas.  Theoretical papers in health economics have 

“solved” this problem in simple cases by finding payment weights to correct for selection incentives.9  We 

make two advances in relation to previous research.  First, we specify an explicit loss function that can guide 

choice of payment weights when selection incentives cannot be fully eliminated.  Second, our solution can be 

implemented empirically in a real-world risk adjustment payment context.    
                                                      
6 Einav and Finkelstein (2011); Einav, Finkelstein and Levin (2010); Einav, Finkelstein and Cullen (2010). 
7 In the Netherlands premiums must be the same for all consumers opting for the same health plan. There are some 
options for rebates (see Section 4), but these are community-rated as well.  Explicit risk-rating is not allowed. 
8 The risk adjustment fix must only be partial (second-best) because no single premium is capable of capturing the 
efficient set of incremental premiums necessary for fully efficient sorting among plan types. Risk adjustment (or 
subsidies) cannot overcome inefficiencies in plan choice due to limited premium categories. Bundorf, Levin and 
Mahoney (2012) and Geruso (2016) treat this issue in detail.  See also Layton, Ellis and McGuire (2015).  
9 See Glazer and McGuire (2000, 2002).   
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In this paper we follow the second strand of the literature on adverse selection – the strand where 

risk adjustment is necessary to improve efficiency – and assume the goal of risk adjustment is to incentivize 

plans towards first-best service-level allocations. A crucial difference with the existing literature is that the 

one-step method proposed in this paper supplies the efficiency loss function to be minimized to find the 

second-best risk adjustment payment weights when the first best is infeasible.   

 

3.  Risk Adjustment Payment Weights to Minimize the Welfare Loss from 

Health Plan Payments 

In the presence of premium regulation incentives related to selection may lead health plans to distort their 

contracts away from the efficient allocation of health care services, undermining welfare.  Our framework for 

measuring welfare loss due to inefficient allocations of health care spending is based on costs and benefits of 

health care.  Welfare loss is driven by the gap between the efficient allocation to an individual and the 

allocation the individual would receive in equilibrium under a given health plan payment system.  The 

measure thus applies to inefficiencies related to the services offered by health plans, and not to inefficiencies 

related to advertising or other plan actions distinct from the distortion of the health insurance contract itself 

and the benefits and costs of health care under that contract.10  Throughout this paper, we maintain the 

assumption that health plans compete in a market.11   

After presenting the welfare metric, we start with a (very) special case of plan behavior where a plan 

can decide how much of a homogenous service, “health care,” to provide to each enrollee.  While this case is 

clearly overly simplistic – health care is more than one product – and unrealistic – plans cannot set spending 

person-by-person – it provides intuition for how we approach the problem.  Furthermore, this case 

establishes the assumptions under which a conventional OLS regression provides the efficient risk adjustment 

payment weights.  We then consider the more general (and realistic) case where a plan can make spending 

decisions at the service level.  

 

 

                                                      
10 Lorenz (2015) considers how profit/loss incentives to plans affect wasteful marketing activities, and how these 
incentives can be ameliorated by risk adjustment. 
11 We acknowledge that the markets in which risk adjustment is used are unlikely to exhibit perfect competition in 
practice. We therefore justify our assumption of perfect competition by pointing out that the bulk of the previous 
economic literature on adverse selection and health plan payment also makes this assumption (see Glazer and McGuire 
(2000); Einav, Finkelstein, and Cullen (2010); and Bundorf, Levin, and Mahoney (2012).  We extend that literature while 
maintaining its basic framework.  
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3.1 Welfare Loss   

We envision a setting in which plan premiums and demand-side cost sharing are regulated, and do 

not vary with the alternative risk adjustment payment weights we consider.  This setting exactly matches many 

state Medicaid Managed Care markets in the U.S., and it comes close to fitting the Dutch national health 

insurance system, U.S. Marketplaces and other health insurance markets in which premiums and demand-side 

cost sharing are also highly regulated.12  The efficiency issue we focus on is the allocation of resources across 

various services provided to plan enrollees as a function of the risk adjustment payments. 

In our model, each plan offers a contract consisting of N vectors of individual-level allocations of 

health care services measured in dollars.  Individuals are indexed by i, with i = 1, …, N, and services by s, 

with s =1, …, S.   A contract or allocation specifies the spending each person receives for each service: 

𝐗 = �
x11 ⋯ x1S
⋮ ⋱ ⋮

xN1 ⋯ xNS
� 

Let xi = ∑ xiss  be the sum of spending across all services for person i.  Individuals value service s according 

to vis(xis), with vis′ (xis) > 0 and vis′′(xis) < 0.  Let xis∗  be the first-best level of xis such that vis′ (xis∗ ) = 1.  

Also let xise  be the level of xis the insurer provides individual i in equilibrium, partly in response to the risk-

adjusted plan payment.  Thus, xie = ∑ xises  and 

𝐗𝐞 = �
x11e ⋯ x1Se
⋮ ⋱ ⋮

xN1e ⋯ xNSe
� 

Net welfare for individual i under equilibrium contract 𝐗𝐞 is then Wi(𝐗𝐞) = ∑ vis(xise )s − xie.  Define 

ΔWi(𝐗𝐞) = [∑ vis(xise )𝑠 − xie]− [∑ vis(xis∗ )s − xi∗] as the welfare loss for individual i in equilibrium relative to 

the first-best.  To make ∆W operational, we take a (second-order) Taylor-series expansion of ΔWi(𝐗𝐞) around 

xis∗  to yield 

ΔWi(𝐗𝐞) ≈
1
2
� vis′′

s

(xis∗ )(xise − xis∗ )2                                                                                                                               (1) 

We can then sum the welfare loss described by (1) across the entire population as follows: 

ΔW(𝐗𝐞) ≈
1
2
�� vis′′(xis∗ )

s

(xise − xis∗ )2
i

                                                                                                                        (2) 

                                                      
12 Risk adjustment can affect the differences in premiums across plans by mitigating any adverse selection contribution 
to plan premium differences. In a symmetric equilibrium in the health plan market, as we will assume below, this effect 
will not be present in equilibrium. 
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Approximation (2) describes the total welfare loss given the equilibrium contract 𝐗𝐞.  Welfare loss is 

proportional to the weighted sum of squared differences between the equilibrium and the first-best 

allocations where the weight is the second-derivative of the individual’s valuation function of service s at the 

optimal level of service s for person i.   

Equilibrium spending, as described by 𝐗𝐞, results from plan profit maximization in the market. These 

choices are a function of the payments received by the plan.  The payment system generates payment ri for 

person i, determined by the payment weights, βk, on the k risk adjustors, zk, included in the risk adjustment 

model taken as given.  Thus, ri =  ∑ βkzikk , where zik is the value of risk adjustor k for individual i.  In this 

section we explain how we solve for each component of 𝐗𝐞, xise , (noting the necessary assumptions) given the 

risk adjustment model and its associated payment weights, using conditions of profit maximization and 

market equilibrium.  In Section 4 below we explain how we use observed patterns of spending to define the 

optimal spending targets.   

3.2   One Homogenous Service, Perfect Foresight and Individual-level Discrimination: an OLS 

Regression Selects Optimal Payment Weights  

The risk-adjustment payment weights βk that minimize (2) depend on what actions plans take; 

specifically, on the level at which health plans can set spending allocations.  We begin with the unrealistic but 

instructive case in which there is one homogeneous service, consumers have perfect foresight (i.e. know 

exactly which line of the contract applies to them) and plans can discriminate at the individual level (e.g. shift 

a dollar of spending from individual 1 to individual 2).  Specifically, assume a health plan can set the level of 

“health care spending” for each individual, xi.  In this case, competition forces each insurer to profit 

maximize at the zero-profit contract person-by-person, so in equilibrium, xie = ri.  Applying the welfare 

metric (2),  

ΔW(𝐗𝐞) =
1
2
�vi′′(xi∗)(ri − xi∗)2
i

                                                                                                                                    (3) 

If we substitute ri =  ∑ βkzikk  we get 

ΔW(𝐗𝐞) =
1
2
�vi′′(xi∗)��βkzik

k

− xi∗�
2

i

                                                                                                                    (4) 

It is straightforward to see that the coefficient estimates from a weighted least squares regression of xi∗ on zik, 

β�k, where the individual-level regression weights are given by vi′′(xi∗), minimize (4) and, thus, minimize the 

welfare loss. Furthermore, if we make the assumption that vi′′(xi∗) is the same for all individuals, (4) further 



9 
 

reduces so that the risk adjustment payment weights estimated from an (unweighted) ordinary least squares 

regression minimize the welfare loss.13  This implies that with one service, individual-level discrimination, and 

constant vi′′(xi∗) across individuals the coefficients that minimize the sum of squared errors minimize welfare 

loss.  These coefficients can be found with an OLS regression in which xi∗ is the dependent variable. This also 

implies that under these assumptions the R-squared statistic is an appropriate metric for assessing the 

performance of a risk adjustment model and its associated payment weights. We proceed by relaxing the “one 

homogeneous service” and “individual-level” discrimination assumptions, as well as the assumption that 

consumers have perfect foresight, and deriving a more general loss function and methods for minimizing that 

function.  

3.3 Risk Adjustment and Equilibrium Service-Level Plan Allocations 

This section relaxes some assumptions from Section 3.2.  Specifically, we make the more realistic 

assumption that plans discriminate over a variety services rather than at the individual level and that 

consumers no longer have perfect foresight (i.e., they no longer know with certainty which line of the 

contract applies to them). Discrimination at the service level is general in that plans might have a large or a 

small number of service decisions to make.  It is also general in the sense that a “service” could be defined 

not only on the basis of the type of health care (e.g., office-based care) but also on the basis of diagnosis 

within that type, or even on the basis of groups of patients, such as those living in a certain city, or on the 

basis of providers, such as mental health specialists or a particular specialty cancer hospital.  Thus, a “service” 

could in principle be office-based care by nephrologists in Rotterdam.  The right definition of “service” in a 

particular application depends on what level of discrimination is open to plans, where discrimination may be 

limited by both regulation and information constraints.  For example, if a plan can increase/decrease funding 

to primary care, but is unable to differentiate between pediatric and adult primary care in its contracts, then in 

spite of the fact that pediatric and adult care are distinct services in a clinical sense, they can be aggregated 

and funding considered as one “decision” in terms of efficiency and the effect of risk adjustment on 

equilibrium spending. 

While service-level discrimination obviously affects individuals, the discrimination works through the 

plan setting budgets or management rules at the service level.  As with the special case described in Section 

3.2, here we want to again describe the individual-by-service allocations, xise , an insurer will offer in a 

competitive equilibrium as a function of the risk adjustment payments. Finding the equilibrium allocations as 

a function of the risk adjustment payments requires characterization of a plan’s profit maximizing decision 

                                                      
13 The constant vi′′(xi∗) means, in effect, that the welfare loss of the squared deviation from efficiency is weighted 
equally across individuals.  With one service, a constant second derivative assumes that the slope of the demand curve 
around the optimal spending is the same for each person. 
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with respect to spending on particular services.  Profit maximization takes into account the costs of spending 

on a particular service as well as the net revenue of members that are expected to enroll in a plan as a 

function of service-level spending (i.e., selection). Some services attract members whose revenue exceeds 

their cost, incentivizing the plan to fund these services more generously. Other services attract members 

whose cost exceeds their revenue, incentivizing the plan to tighten rationing for these services.  We maintain 

the assumption that competition enforces zero profits among plans. 

Given the spending decisions of all other plans, the probability that a particular consumer enrolls in 

plan j is a function of the individual’s valuation of the services the consumer expects to be provided by plan j. 

We assume that an individual’s valuation of a plan depends additively on the sum of the valuations of the s 

services, vi�𝐗�� = ∑ vis(x�is)s , where the “hat” indicates this is spending they expect to receive.  Then, the 

probability of membership in plan j is Pri
j �vi�𝐗���.  In the empirical applications below, consumers’ 

predictions about what they receive will be service-specific.  We assume equilibrium in the health plan market 

is symmetric so that in equilibrium all plans make the same decision about service-level spending and each 

plan has the same probability of enrolling each individual.14  Symmetry allows us to suppress plan j 

superscripts.15 

In terms of the effect of a plan’s decision about spending on service s, we distinguish between what a 

consumer actually gets, which determines plan costs, profitability of individuals, and welfare, and what a 

consumer expects to get, which determines the consumer’s enrollment decisions.  We introduce a parameter σis 

(∑ σiss = 1), that defines the share of total spending on service s allocated to individual i such that xis = σisxs 

where xs is the total spending on service s across all consumers, xs = ∑ xisi . However, enrollment decisions 

do not depend on what consumers actually get (xis) but on what they expect to get (x�is). To deal with this we 

introduce a second parameter,  σ�is (∑ σ�iss = 1), that defines the share of total spending on service s that 

individual i expects to be allocated to her such that x�is = σ�isxs. To maintain tractability, we make the 

assumption that σis and σ�is are fixed given all relevant insurer choices about total service-level allocations, xs. 

Given these assumptions, profits for a representative plan are  

π = �Pri �vi�𝐗��� (ri − xi)
i

                                                                                                                                           (5) 

                                                      
14 The service-level selection case raises the possibility of a competitive equilibrium with separating contracts of the type 
proposed by Rothschild and Stiglitz (1976).  When the equilibrium is separating, risk adjustment moves the contracts 
closer together, toward the pooling equilibrium, and “optimal” risk adjustment in the presence of service-level selection 
leads to pooling (Glazer and McGuire, 2000).  
15 While this assumption may seem restrictive, it is common in the economics literature on service-level selection and 
provides tractability to our model that allows us to derive empirically implementable methods of estimating the optimal 
risk adjustment payment weights. See Frank, Glazer, and McGuire (2000); Glazer and McGuire (2002); Ellis and 
McGuire (2007); Carey (2015); Layton, Ellis and McGuire (2015). 
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Plans choose xs to maximize profits leading to S first-order conditions of the form 

�Pri′ �vi�𝐗���vis′ σ�is(ri − xi)
i

−�Pri �vi�𝐗���σis
i

= 0                                                                                        (6) 

Denote αis = Pri′�vi(𝐗�)� vis
′ σ� is, so that the S equations become 

�αis(ri − xi)
i

=  
1
J

                                                                                                                                                             (7) 

where J is the number of plans competing in the market.16  Equation (7) implies that under profit 

maximization, the following S-1 equations will hold.  With service s′ as a numeraire, for s ≠ s′: 

�αis(ri − xi)
i

= �αis′(ri − xi)
i

                                                                                                                                    (8) 

In addition, competition implies that plans make zero profit in equilibrium:  

� ri
i

= � xi
i

                                                                                                                                                                         (9) 

The S equations in (8) and (9) describe equilibrium as a function of the risk adjusted plan payment.   

  Substituting in for the risk adjusted payment, the S-1 service equations can be re-written as follows: 

β1� zi1(αi1 − αis)
i

+ β2� zi2(αi1 − αis)
i

+ ⋯+ βK� ziK(αi1 − αis)
i

= x1e�σi1(αi1 − αis)
i

+ x2e�σi2(αi1 − αis)
i

+ ⋯+ xSe�σiS(αi1 − αis)
i

                        (8′) 

And the budget constraint can be written as: 

��βkzik
ki

= � xse
s

                                                                                                                                                         (9′) 

 

 

 

 

                                                      
16 We get the 1

J
 because of the symmetric equilibrium. 
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These S equations can, in turn, be re-written as matrices as follows: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡� zi1(αi1 − αi2)
i

� zi2(αi1 − αi2)
i

⋯ � ziK(αi1 − αi2)
i

� zi1(αi1 − αi3)
i

� zi2(αi1 − αi3)
i

⋯ � ziK(αi1 − αi3)
ig

⋮ ⋮ ⋱ ⋮
� zi1(αi1 − αiS)
i

� zi2(αi1 − αiS)
i

⋯ � ziK(αi1 − αiS)
i

� zi1
i

� zi2
i

⋯ � ziK
i ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  �

β1
β2
⋮
βK

� =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡�σi1(αi1 − αi2)

i

�𝜎i2(αi1 − αi2)
i

⋯ �𝜎iS(αi1 − αi2)
i

�σi1(αi1 − αi3)
i

�σi2(αi1 − αi3)
ig

⋯ �σiS(αi1 − αi3)
i

⋮ ⋮ ⋱ ⋮
�σi1(αi1 − αiS)
i

�σi2(αi1 − αiS)
i

⋯ �σiS(αi1 − αiS)
i

1 1 ⋯ 1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  �

x1e
x2e
⋮

xSe
� 

 

Or, in matrix notation,  

𝛀𝛃 = 𝚪𝐱𝐞 

Note that given knowledge of the α terms, all elements of 𝛀 and 𝚪 are either known or found in the data. For 

now, we will leave the α terms general. In the empirical section of the paper, we will make a set of 

assumptions that allows us to determine the αs from the data. Multiplying both sides by 𝚪−𝟏, the equilibrium 

values of the group-by-service-level allocations can be expressed as a linear function of 𝛃 and data: 

𝚪−𝟏𝛀𝛃 = 𝐱𝐞   (10)   

The left hand side of this equality will be an S × 1 vector where each element of the vector consists of the 

summation of the product of each risk adjustment payment weight times the element determined by the 

multiplication of 𝚪−𝟏 and 𝛀. This summation can be written as: 

xse = �βkz�sk
k

 

where z�sk is the transformed value of zk determined by the matrix product.  This implies that the individual-

level equilibrium allocation of service s for individual i can be written as 

xise = σisxse = σis�βkz�sk
k

 

This can be plugged into Equation (2) above to produce an expression for the welfare loss as a function of 

the risk adjustment payment weights, βk: 

ΔW(𝐱𝐢𝐞) =
1
2
�� vis′′ �σis�βkz�sk

k

− xis∗ �
2

si

                                                                                                           (11) 
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 The task is to find the risk adjustment coefficients βk that minimize (11).  As noted earlier, the 

solution can take one of two forms depending on whether the number of services on which a plan makes 

decisions, S, is greater or less than the number of risk adjustors, K.  We proceed by describing each case. 

3.4 More Risk Adjustors than Services:  Constrained Least-Squares Hits First Best 

In this case, the regulator’s goal for risk adjustment is to induce insurers to offer the levels of service-

level spending that result in optimal individual allocations.  Thus, the regulator desires to set the payment 

weights, βk, so that in equilibrium plans provide service level allocations xs∗ that satisfy xi∗ = ∑ xis∗s =

∑ σisxs∗s . 

Equilibrium conditions (8’) and (9’) can be regarded as a system of S unknowns, xs, with K variables, 

βk.  When S < K, the βk’s that lead plans to set service allocations efficiently in equilibrium can be 

characterized by substituting xi∗ = ∑ xis∗s = ∑ σisxs∗s  and ri =  ∑ βkzikk  into (8’) and (9’) yielding the following 

S equations: 

�σ�is ��βkzik
k

−�σisxs∗
s

�
i

= �σ�is′ ��βkzik
k

−�σisxs∗
s

�
i

                                                                                  

��βkzik
ki

= � xi∗

i

                                                                                                                                               (12) 

The S equations in (12) are linear in the payment weights, βk.  Payment weights that satisfy (12) 

ensure that when plans can only discriminate on the basis of services the first-best allocations will be offered 

in equilibrium.  If there are more risk adjustors than there are services (i.e., K>S), there will be an infinite 

number of combinations of payment weights that satisfy (12). 

One practical method for choosing payment weights to satisfy the S equations is a constrained least-

squares regression, fitting a linear regression of xi∗ on zik, with the S equations in (12) as constraints.  This is 

first-best because the constraints are satisfied.  The solution also has the property of maximizing fit at the 

person level subject to the first-best allocation.  Finally, least-squares guarantees the zero-profit constraint is 

satisfied.  We apply this method in Section 5. Note that in this case, only knowledge of σis and σ�is is 

necessary to find the optimal set of payment weights, rather than the full set of α terms. Again, we leave σis 

and σ�is general for now, and we will introduce the assumptions we use to produce values for σis and σ�is 

when we apply this method in Section 5.  
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3.5 More Services than Risk Adjustors:  OLS with Transformed Data Minimizes Welfare Loss 

 When there are more services than risk adjustors, the regulator’s objective is unchanged: to induce 

insurers to offer the service-level allocations that minimize welfare loss. When K < S, however, the regulator 

has too few “instruments” to achieve first-best allocations, implying that typically only a “second-best” set of 

allocations can be achieved and some welfare loss will remain. This presents a more difficult problem in that 

the regulator needs to choose the risk adjustment payment weights that efficiently trade off the welfare losses 

across services.   

 Equation (11) shows the way forward. It is straightforward to see that a weighted least squares 

regression at the individual-by-service (is) level of xis∗  on σisz�sk where the coefficients, βk, are restricted to be 

constant across services and the individual-by-service regression weights are equal to vis′′  will generate the set 

of risk adjustment payment weights that minimize ΔW(𝐗𝐞).  Making the simplifying assumption that 

vis′′(xis∗ ) = v′′ for all is so that (11) can be rewritten as ΔW(𝐗𝐞) = 1
2

v′′ ∑ ∑ (σis ∑ βkz�skk − xis∗ )2si , the 

welfare-minimizing risk adjustment payment weights can be estimated by unweighted rather than weighted 

least squares. Thus, for the S>K case, with a straightforward transformation of the data, researchers or 

regulators can estimate the efficiency-maximizing risk adjustment payment weights using either weighted or 

unweighted least squares.   

Policymakers can often “choose” the number of risk adjustor variables so as to exceed the number of 

service dimensions (in order to make first-best payment weights feasible).  We consider the S<K to be the 

more relevant case, at least in a setting like the Netherlands with an extensive set of risk-adjustor variables.  

The S<K case is the one we implement for purposes of illustration with data from the Netherlands.  

 

4.  Demonstration of Methods Using Data from the Netherlands   

National health insurance in the Netherlands has been operating in roughly its current form since 2006.  

Health insurance is mandatory for all residents and based on principles of regulated competition.  In 2015 

about 60 plans were offered by about 25 insurers who compete on price and quality within a regulatory 

framework intended to promote individual affordability of health plans both for the healthy and the 

chronically ill.  The regulatory framework includes a standard benefit package, premium rating restrictions, 

and risk adjustment.  Open enrollment provisions ensure that plans accept every applicant. 

Risk adjustment is used in the Dutch system in an attempt to weaken insurer selection incentives.  

The risk adjustment model provides a prediction of total annual spending for each individual; the risk 
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adjustment payment from the health insurance fund to a health plan for an enrollee then equals that enrollee’s 

predicted spending minus a fixed amount (set by the government) that must be covered by the enrollee’s 

premium together with the loading fee.  

In our empirical application we first replicate the Dutch risk adjustment model and its associated 

payment weights for 2015 and characterize the incentives for service-level distortion.  Because we employ an 

explicit model of plan behavior as a function of the risk adjustment payment weights, we can derive the gaps 

between first-best and equilibrium spending that would occur under profit maximization and perfect 

competition.  We next apply a constrained least-squares regression to find the payment weights that eliminate 

these gaps (and the welfare loss). In the remainder of this section, we briefly describe the Dutch risk 

adjustment model of 2015, the data available for this study, the way we operationalize “services,” how we 

interpret the data in relation to the first-best allocations (xis∗ ), how individuals’ (expected) spending on a 

service relates to the total spending on that service (σis and σ�is) and the measures we use to evaluate 

alternative risk adjustment models. 

4.1 Risk Adjustment Model 2015 

The basic Dutch risk adjustment model of 2015 includes risk adjustors based on age, gender, region, 

source of income, socioeconomic status, and health indicators.  The latter include disease groups based on 

prior utilization of specific pharmaceuticals (PCGs), diagnostic groups based on prior utilization of inpatient 

and outpatient hospital care (DCGs), groups based on prior utilization of durable medical equipment 

(DMECGs) and groups based on high health care spending in multiple prior years (MYHCGs). In total, the 

2015 model contains 138 indicator variables, i.e., 40 classes for an interaction between age and gender, 10 

regions, 19 classes for an interaction between age and source of income, 12 classes for an interaction between 

age and socioeconomic status, 25 PCGs, 16 DCGs, five DMECGs, seven MYHCGs, and four classes for an 

interaction between age and a dummy indicating whether PCG+DCG+DMECG+MYHCG>=1. The model 

is “prospective” in that the data for the health indicators (i.e. PCG, DCG, DMECG, and MYHCG) comes 

from years prior to the payment year.  In practice, the payment weights for these 138 indicators are estimated 

by a least-squares regression of medical spending on the 138 dummy variables.17  Predicted spending for an 

enrollee equals the sum of the product of the dummy-values and the regression coefficients for the 138 

indicators. We note that in spite of years of research and model refinement, Van Kleef et al. (2015b) have 

shown that the current risk adjustment model undercompensates insurers for particular groups of unhealthy 

consumers and overcompensates them for some healthy groups, leaving incentives for risk selection.   

                                                      
17 The basic risk adjustment model of 2015 applies to about 83 percent of the total medical spending under the national 
health insurance. For the remaining 17 percent, including spending on mental health care and home care, supplemental 
risk adjustment models are applied.  The empirical application here is for the basic model only.  For technical details on 
the Dutch risk adjustment model, see Eijkenaar et al. (2014). 



16 
 

Table 1: Population frequency and medical spending (in Euros, 2012) at aggregated levels of risk 

characteristics (N=16.5 million) 

  Population 
frequency 

Mean 
spending  

Male, <65  42% 1,207 
Male, >=65  8% 4,612 
Female, <65  41% 1,487 
Female, >=65  9% 4,123 

Region, clusters 1-5  50% 1,979 
Region, clusters 6-10  50% 1,719 

Source of income if 18≤age<65: disability benefits  5% 3,817 
Source of income if 18≤age<65: social security benefits   2% 2,321 
Source of income if 18≤age<35: student  3% 588 
Source of income if 18≤age<65: self-employment   4% 1,012 
Source of income if 18≤age<65: other (e.g. employment)  48% 1,282 

Socioeconomic status, street address with >15 residents  1% 4,507 
Socioeconomic status, income deciles 1-3   30% 1,842 
Socioeconomic status, income deciles 4-7  40% 1,869 
Socioeconomic status, income deciles 8-10  30% 1,721 

Pharmacy-based Cost Group (PCG) No 82% 1,212 
 Yes 18% 4,751 

Diagnoses-based Cost Group (DCG) No 91% 1,353 
 Yes 9% 6,855 

Durable Medical Equipment Cost Group (DMECG) No 99% 1,772 
 Yes 1% 10,933 

Multiple-year High Cost Group (MYHCG) No 94% 1,378 
 Yes 6% 9,536 

PCG, DCG, DMECG and/or MYHCG No 77% 984 
 Yes 23% 4,784 

Total population  100% 1,848 
Note: the risk adjustor variable “Source of income” only applies to people in the age of 18 to 65. 
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4.2  Data 

 Our data include individual-level health care spending in 2012 and risk indicators for the Dutch 

population of approximately 16.5 million. The indicators for age/gender, region, source of income and 

socioeconomic status are based on information from 2012, whereas the PCGs, DCGs, DMECGs and 

MYHCGs are based on information from 2009-2011. Table 1 provides the population frequency of some risk 

indicators and the distribution of medical spending.  Overall average medical spending equals 1,848 Euro per 

person per year.  Not surprisingly, average spending is relatively high for people age 65 or older, those 

receiving a disability benefit, people living at an address with more than 15 residents (a proxy for being in an 

institution for long-term care) and those in a PCG, DCG, DMECG and/or MYHCG.  Nearly 23 percent of 

the population is classified by at least one PCG, DCG, DMECG or MYHCG. 

4.3 Defining Services 

 In the Dutch data used for risk adjustment medical spending is categorized according to ten types of 

medical services, with information on spending per person shown in Table 2.18  Hospital care (which includes 

both facility and professional in-hospital costs) is by far the largest category at 61 percent, followed by 

pharmaceuticals (14 percent) and primary care (8 percent).  Not surprisingly, for each service the distribution 

of spending is skewed.  While these ten services are plausible levels of discrimination available to plans 

through their provider contracting decisions, ultimately, implementation of our methods may require a more 

refined categorization when health plans are believed to discriminate within some of these categories.  For 

example, the large category of hospital care might be disaggregated into particular services, such as care for 

patients with cancer or kidney failure, and other services. However, in the data available to us, we are unable 

to disaggregate services beyond the ten shown in Table 2. 

4.4 Defining First-Best Spending 
 
The empirical methods for deriving the optimal risk adjustment payment weights described in Section 3 call 

for specification of the efficient spending levels, denoted xis∗ .  The data available, however, are the actual 

spending patterns by person and service under the risk adjustment model and corresponding weights 

applicable at the time, which may or may not be regarded as optimal.  Before we discuss our approach to this 

issue, it is worth noting that the statistics and simulations applied in existing approaches to risk adjustment 

implicitly treat the existing patterns in the data as the target for desired spending.19   

                                                      
18 This categorization is given in the data available to estimate risk adjustment payment weights.  Data used by the 
Ministry of Health for this purpose is a compilation of data feeds from health plans via an intermediary institution that is 
required to submit data in a certain format.   
19 The commonly used R-squared measures “fit” of a payment model in relation to the data on spending used to 
estimate the model.  A “predictive ratio” computed to check revenues in relation to costs for groups of interest uses 
observed spending as the standard against which to assess payments for a particular group.  See, for example, Kautter et 



18 
 

Table 2 Average spending per service category (in Euros, 2012) 

 Mean Std Dev 75th Pctl 95th Pctl Share of 
total 

spending 
Hospital care 1132 5612 608 4779 61% 
Pharmaceuticals 267 1309 186 1163 14% 
Primary care 139 148 160 315 8% 
Durable medical equipment 91 581 2 368 5% 
Geriatric physical therapy 46 1145 0 0 3% 
Dental care (18-) 44 238 2 197 2% 
Paramedical care 42 242 0 127 2% 
Sick transport 35 331 0 8 2% 
Obstetrics and maternity care 29 283 0 0 2% 
Other a 23 503 0 27 1% 

Total  1848 6595 1392 7342 100% 
a Including very small categories of spending such as ‘ambulatory care for people with auditive or visual impairments’.   

 

Highlighting the implicit assumption about the optimality of current spending patterns exposes a 

logical problem with risk adjustment methodology.  If the current spending pattern is optimal, and it is also 

an equilibrium response to the current payment system, why change the payment system?  This status-quo 

logic would lead to the obviously incorrect conclusion that the payment system should never be changed.  In 

order to justify a change in the payment system, the existing pattern of expenditure must be either not an 

equilibrium or not optimal (or both).20  We first drop one and then both assumptions.  First, we drop the 

equilibrium assumption; we assume the existing pattern is the desired pattern but not an equilibrium.  We 

then calculate equilibrium spending by deriving the implications of profit maximization as described above.    

                                                                                                                                                                           
al. 2014) for evaluation of the U.S. federal risk adjustment model or Van Kleef et al. (2015a) for evaluation of the Dutch 
model according to fit against the existing data and over and undercompensation by group against costs observed in the 
data.   
20 Sometimes, risk adjustment models are estimated using data on spending patterns from a different setting than the 
market where the risk adjustment policy will be estimated. This is true in the U.S. for Medicare and Medicaid, where risk 
adjustment models are estimated using data from the fee-for-service programs but risk adjusted payments are used only 
in the Medicare Advantage or Medicaid Managed care programs, and in the state and federal Health Insurance 
Marketplaces, where models are estimated using data from employer-sponsored insurance (ESI) plans but risk adjusted 
payments are used to pay Marketplace plans. In these settings, it could be the case that the observed spending patterns 
are both optimal and in equilibrium in the context where the data come from (FFS or ESI), but they represent optimal 
but not equilibrium spending in the context where risk adjustment is being used. In these particular settings, optimal 
spending may be similar while equilibrium spending is different due to the fact that selection incentives affect 
equilibrium allocations in the Marketplaces, Medicare Advantage, and Medicaid Managed Care but not in FFS or ESI.  
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Second, we drop both assumptions and study the case in which the patterns in the data are neither 

efficient nor an equilibrium.  Equilibrium we can calculate by applying conditions for profit maximization.  

The need to specify optimal patterns of spending led us to an insight.  If we believe the optimal service-level 

allocations, xs∗, differ from the observed service-level allocations, before estimating or evaluating a risk 

adjustment model we should first alter the observed allocations so that they reflect the desired rather than the 

observed distribution of spending across services.  Suppose, for example, that there were a consensus that the 

health care system should spend more on primary care for persons with a set of chronic illnesses, possibly 

with the idea of offsetting some institutional care.  In terms of plan payment and risk adjustment, we then 

want to derive the payment weights that “support the spending we want.”  The implication for risk 

adjustment would then be:  transform the data in the ways that reflect what we want to happen; then estimate 

the payment weights that lead to this as an equilibrium.   

For the basic empirical analyses in Section 5 we follow conventional practice of risk adjustment and 

estimate the payment weights based on the data “as is,” thereby invoking the implicit assumption that the 

observed patterns of spending are, in fact, optimal.  In Section 6 below, we illustrate how this assumption can 

be relaxed by estimating payment weights “for the system we want rather than the system we have” by 

transforming the data before estimation of the payment weights.  

4.5 Assumptions Regarding 𝛔𝐢𝐬 𝐚𝐧𝐝 𝛔�𝐢𝐬 

In order to apply the methods described in Section 3 to derive the optimal set of risk adjustment 

payment weights in the case where S<K, we need to know the values of σis and σ�is.  As discussed above, we 

assume that σis is fixed across all relevant service-level allocations and use the observed share in the data to 

determine what an individual actually gets in terms of a share of the total service-level allocation:  σis = xis
xs

,

∑ σisi = 1.  For example, if we observe that an individual receives $100 of diabetes-related care in the claims 

data and that the total allocation of diabetes-related care across all individuals is $10,000, then σis = 100
10,000

=

0.01. We then assume that if the plan chooses to increase spending on diabetes-related care overall by $5,000 

to $15,000, the individual’s allocation of diabetes care will increase in proportion such that her new allocation 

of diabetes-related care will be xis = σisxs = (0.01)(15,000) = $150.  Thus, given σis we can determine what 

an individual gets as a function of the plan’s decision about the total service-level allocation, xs.  

In addition to the actual allocation of spending across individuals, our method also requires each 

consumer’s expected allocation, x�is. In the empirical section, we determine x�is in two steps. First, we estimate 

a prediction equation for each service, under the assumption that individuals can use information about past 
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spending to predict future spending on a service.21  In these prediction equations we require the sum of 

predicted spending to be equal to the sum of observed spending, i.e. ∑ x�isi = xs.  The empirical model for x�is 

then determines the fixed allocation rule that distributes plan-level spending on service s, xs, to individuals.  

Specifically, define σ�is = x�is
xs

  at the observed spending levels.  In a second step, with σ�is fixed, we can state 

how x�isvaries with different levels of xs. 22  For example, if the individual from the previous example expects 

$500 spending on diabetes-related care then σ�is = 500
10,000

= 0.05. If the plan chooses to increase spending on 

diabetes-related care overall by $5,000 to $15,000, the individual’s expected allocation of diabetes care will 

increase in proportion such that x�is = σ�isxs = (0.05)(15,000) = $750.  Thus, given a σ�is we can determine 

what an individual expects to get as a function of the plan’s decision about the total service-level allocation, xs.  

4.6 Measures 

 We use several measures to compare conventional risk adjustment and the constrained regression 

method outlined in Section 3.4. Some of these measures are (with minor modifications) taken from the 

previous literature on selection and risk adjustment.  Others follow from our model of plan profit 

maximization.  All of these measures are model-driven and motivated by efficiency.  We also report the 

conventional R-squared. 

4.6.1 Equilibrium vs. Optimal Spending Allocations 

Our model of consumer and plan behavior allows us to go beyond the incentives to the implications 

for equilibrium spending, and to compare this to the spending patterns specified as optimal, but this requires 

an additional assumption.  Recall that (10) provides the equilibrium service-level allocations as a linear 

function of the risk adjustment payment weights, βk: 

𝚪−𝟏𝛀𝛃 = 𝐱𝐞      

As discussed in Section 3, this expression shows that given knowledge of αis equilibrium service-level 

allocations can be calculated from the data. Recall that αis = Pri′�vi(𝐗�)� vis
′ σ� is. In order to illustrate the 

implementation of the methods we describe above, we make the assumption that Pri′ �vi�𝐗��� vis′ = αis = α 

                                                      
21 We explain how we model x�is in more detail in Section 5.  
22 Under this conceptualization of expected spending, we assume that each consumer observes the full set of ex post 
spending allocations assigned to each individual and service. Thus, they observe the true allocation rules, σis. The 
uncertainty enters because each individual does not know ex ante which line of the contract 𝐗 from Section 3.1, and thus 
which allocation rule, applies to them (i.e., they don’t know which i they are). Under the specification of σ�is outlined 
above, we effectively group individuals into “types” based on demographics and prior spending, and we assume that an 
individual’s expectation of the allocation they will receive under contract σ�is is the rational expectation, or the average of 
the allocations assigned to individuals of the same type. 
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for all individuals and services.23 It is straightforward to show that given this assumption, α drops out of the 

formula for 𝐱𝐞 allowing us to avoid specifying a value. Given our assumption that σ�is = x�is
xs

, where x�is and xs 

are the expected individual-by-service- and actual service-level allocations, the elements of 𝚪−𝟏 and 𝛀 are all 

observable in the data except for x�is. In order to determine x�is we estimated an individual level least-squares 

regression with actual spending for service s as the dependent variable and the following two independent 

variables: prior-year spending on service s (continuously) and the sum of prior-year spending on all services 

other than s (also continuously).24,25  Finally, for a given payment system the full vector of risk adjustment 

weights, 𝛃, is also known. This implies that for any payment system, we can calculate the full vector of 

service-level equilibrium allocations, 𝐱𝐞.  

 In Section 5, we form the matrices, 𝚪−𝟏, 𝛀, and 𝛃, and apply them to solve for 𝐱𝐞. We compare those 

allocations for different sets of payment weights to illustrate how patterns of equilibrium service-level 

spending compare across different risk adjustment models. 

4.6.2 Welfare Loss Metric 

 The expression for welfare loss in (11) provides a natural metric to use to compare risk adjustment 

models: 

ΔW(𝐱𝐢𝐞) =
1
2
�� vis′′ �σis�βkz�sk

k

− xis∗ �
2

si

                                                                                                           (11) 

If we assume that vis′′ = v′′ for all i and s (the same assumption necessary for interpretation of an R-squared 

as a welfare measure in the context of individual-level discrimination) this can be re-written as 

ΔW(𝐱𝐢𝐞) =
1
2

v′′���σis�βkz�sk
k

− xis∗ �
2

si

                                                                                                                      

                                                      
23 This assumption follows from two underlying assumptions: (1) that an individual’s utility from enrolling in plan j is 
vis
j = ∑ vis�xis

j �s + ϵi
j and ϵi

j follows a uniform distribution, so that Pri′�vis(𝐱𝐢)� is equal to a constant and (2) that 
vis′ = 1 across individuals and services.  The idea is that for each service consumers respond about equally in plan choice 
to changes in allocations of spending. Given data on ∂Pri

∂xis
 (which we do not have), this assumption can be relaxed and 

the actual value of the derivative can be used instead. 
24 One exception was “obstetrics and maternity care” for which we estimated a model with just age and gender as 
independent variables since (not surprisingly) prior-year spending had hardly any explanatory power. 
25 We found the following R-squared values for the ten regression models: 0.11 for hospital care, 0.71 for 
pharmaceuticals, 0.19 for primary care, 0.47 for durable medical equipment, 0.02 for geriatric physical therapy, 0.03 for 
dental care (18-), 0.38 for paramedical care, 0.16 for sick transport, 0.09 for obstetrics and maternity care and 0.01 for 
other care. Additional explanatory variables (such as the morbidity classes in the Dutch risk adjustment model) did not 
result in substantial improvement of explanatory power.  
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Note that this measure relies on the solution for equilibrium spending by service derived in the previous 

section.  Expression (11) for welfare loss is non-negative with an upper bound that depends on the covered 

population, the number of services, as well as the properties of the risk adjustment system in terms of risk 

adjustor variables and their coefficients.  In order to compare alternative risk adjustment payment weights, 

and to put our measure in a form analogous to the familiar R-squared statistic, we measure the efficiency 

properties of a given set of payment weights in terms of the improvement gained over a payment system with 

no risk adjustment, that is, when a plan is paid the simple population average for each member. In this case 

𝛀 = 𝛀𝐧𝐨𝐫𝐚

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ �(σ�i1 − σ�i2)

i

�(σ�i1 − σ�i3)
i

⋮
� zi1(σ�i1 − σ�iS)
i

� zi1
i ⎦

⎥
⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎤

                        𝛃 = 𝛃𝐧𝐨𝐫𝐚 = [𝟏] 

Thus, the equilibrium service-level allocations, 𝐱𝐞,𝐧𝐨𝐫𝐚, can be expressed as 

𝚪−𝟏𝛀𝐧𝐨𝐫𝐚 = 𝐱𝐞,𝐧𝐨𝐫𝐚 

Now, define z�snora such that xs
e,nora = z�s. Then, we can write the welfare loss for the “no risk adjustment” 

case as  

ΔW(𝐱𝐢𝐞) =
1
2
v′′��(σisz�snora − xis∗ )2

si

 

We thus define our loss measure as: 

ϕ = 1 −
1
2 v′′ ∑ ∑ �σis ∑ βkz�skk − xis

∗ �2
si

1
2 v′′ ∑ ∑ (σisz�s

nora − xis
∗ )2

si

= 1 −
∑ ∑ �σis ∑ βkz�skk − xis

∗ �2
si

∑ ∑ (σisz�s
nora − xis

∗ )2
si

 

Note that ϕ mimics an R-squared statistic.  ϕ will equal zero in the extreme case of no risk adjustment and it 

will equal one when the welfare loss is fully eliminated. 

4.6.3 Components of Selection Incentives: Predictability and Predictiveness 

A profit-maximizing health plan has incentives to skimp on services that are predictable by enrollees 

and predictive of financial losses.  As shown by Ellis and McGuire (2007), profit maximization implies that 
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the combination of measures of predictability and predictiveness is a summary index for service-level 

selection incentives.  Our model produces a similar result.  Equation (12) shows that an insurer’s incentive to 

ration a service is described by the following expression: 

�σ�is ��βkzik
k

−�σisxs∗
s

�
i

 

This expression can be written as: 

��
σ�is
σis
� �σis ��βkzik

k

−�σisxs∗
s

��
i

 

This expression can be divided into two components, one representing “predictability” and the other 

representing “predictiveness.” We operationalize these two components as follows. The first component, σ�is
σis

, 

captures the “predictability” of the service. Predictability measures how well consumers can anticipate what 

spending, x�is, they will receive, given the plan’s decision about total spending on a service, xs.  We follow 

Ellis and McGuire (2007) and use the correlation between σis and σ�is as a measure of predictability:  

Predictabilitys = Corr(σis,σ�is) 

Recall that σis represents the portion of the total spending allocated to service s that is actually allocated to 

individual i. σ�is, on the other hand, represents the portion of the total spending allocated to service s that 

individual i expects to be allocated to her.  Given these definitions of σis and σ�is, this correlation is the 

correlation between an individual’s actual spending on a service and her expected spending on that service. If 

the service is strongly (weakly) predictable, the correlation between actual and expected spending will be high 

(low).  Predictability does not vary across payment systems since the expected portion of spending (σ�is) as 

well as the actual portion of spending (σis) spending are independent of payment weights (see Section 3). 

The second component, σis(∑ βkzikk − ∑ σisxs∗s ), represents the “predictiveness” of the service. 

Predictiveness is related to the correlation between an individual’s share of spending on a service and her 

overall profitability to the plan.  We find it more intuitive to depict predictiveness in terms of the correlation 

of service-level spending with losses rather than profits.  We again follow Ellis and McGuire (2007) and use 

this correlation as our measure of predictiveness:  

Predictivenesss = Corr�σis,�σisxs∗
s

−�βkzik
k

� 
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In contrast to predictability, predictiveness will vary as risk adjustment payment weights vary. We report our 

measures of predictability and predictiveness in Section 5 in order to show that our new method for 

estimating risk adjustment payment weights improves performance not only on the metrics derived from our 

model but also on metrics derived in the previous literature on service-level selection.  

 

5. Empirical Methods and Results 

This section presents our illustrative demonstration of the potential practical implementation of the methods 

and measures derived in Sections 3 and 4. We estimate two sets of payment weights using data on the entire 

Dutch population (N=16.5 million). For each set of weights, we use the same set of 138 risk adjustor 

variables but different estimation methods.  The first payment weight estimates replicate the conventional 

estimation method used to derive payment weights in the Dutch risk adjustment model for 2015: a least-

squares regression (OLS) of total spending on the 138 risk indicators plus an intercept.26  The coefficient 

estimates for this model can be found in the Appendix. 

The second set of weights is estimated using the methods we developed in Section 3. Recall that 

when plans discriminate at the service level, a set of equilibrium equations describes plan allocation decisions 

as a function of the risk adjustment payment weights.  Substituting the efficient level of spending in these 

equations transforms them into a system of S equations and K unknowns.  Because S < K, there exist an 

infinite number of solutions to this system of equations, all maximizing the social welfare function. We use a 

constrained OLS regression to find the solution that maximizes the conventional R-squared conditional on 

achieving the optimal service-level allocations.27 Coefficient estimates for this model can also be found in the 

Appendix. 

The two sets of payment weights differ in important and interesting ways. Compared to the base set 

of weights, the constrained regression method leads to an increase of mean predicted spending for people 65 

or older and those in a PCG, DCG, DMECG and/or MYHCG (i.e., those with a chronic condition) and a 

                                                      
26 The only difference between the model we estimate here and the Dutch risk adjustment model is that the actual model 
has no intercept and includes a set of constraints to make sure that for age/gender categories the product of payment 
weights and prevalence equals the average per person spending in the population and that for each of the other seven 
sets of risk adjuster variables (regional categories, SES categories, categories based on source of income, PCGs, DCGs, 
DMECGs and MYHCGs) this product also equals zero.  
27 Though this solution requires an additional data step to construct the constraints, the constrained regression itself can 
be easily implemented in SAS, using the RESTRICT option in PROC REG. In order to use equation (8) as a constraint 
on the estimated betas (8) can be split into the following components: 
∑ βk ∑ σ�isi zikk −  ∑ σ�isi ∑ σisxs∗s = ∑ βk ∑ σ�is′i zik −  ∑ σ�is′i ∑ σisxs∗sk . All components (except for the betas) can be 
found by making initial passes through the data. See Van Kleef et al. (2015) for more explanation of the construction of 
the constraints. In fact, this constraint equalizes the selection index (Figure 3) across services. 
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decrease of mean predicted spending for the complementary groups. This can be seen in Figure 1.28 The 

figure shows the payments for 5 stratifications of the population. For each stratification, the average payment 

for the healthier of the two groups is shown on the left while the average payment for the sicker group is 

shown on the right. The figure shows average payments under the conventional Dutch risk adjustment model 

(orange bars) and the constrained model (blue bars). Generally, the constrained model tends to encourage 

more spending on sick people.  This is consistent with Glazer and McGuire’s (2000) analytic result that an 

optimal risk adjustment model will “overpay” (i.e. pay more than average spending) for individuals with a 

“sick signal” and underpay for individuals with a “healthy” signal.  Nonetheless, the correlation in individual-

level predicted spending between the base model and the constrained model is high at 0.94. This suggests that 

at least in this illustrative application, shifting payments to sicker people in the way suggested by the 

constrained regression would not be a highly disruptive change with respect to the flow of funds across 

insurers.  

Table 3 compares the two models in terms of R-squared and our welfare loss measure ϕ.  Compared 

to the base model, the constrained model led to a drop in R-squared, which of course must be true since the 

constraints will bind.  However, as we showed in Section 3, the R-squared is the appropriate measure of 

payment system performance only in a very special case. In terms of our alternative welfare loss measure, the 

constrained model completely eliminates the welfare loss remaining from the base model.  This also must be 

true, given that the estimation method used for the constrained model can fully solve the resource allocation 

problem with only ten service-level spending targets and 138 risk adjustor variables. From these results we  
                                                      
28 For all empirical measures presented in this paper, we calculated confidence intervals using bootstrapping. Since the 
confidence intervals turned out to be extremely tight we decided not to present them. 
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Table 3. R-squared and welfare loss measure for two models in relation to no risk adjustment 

Measure No risk 
adjustment Base model Constrained model 

R-squared 0,000 0,226 0,129 
Welfare loss measure (𝜙) 0,000 0,828 1,000 

 

can conclude that if the ten services we use here to illustrate these methods and measures were the relevant 

dimensions on which plans could discriminate, the constrained model clearly outperforms the base model.  

5.1  Equilibrium Service-level Allocations Implied by Plan Profit Maximization 

In addition to a measure of overall payment system performance, our model from Section 3 allows us 

to derive equilibrium service-level allocations implied by the different payment models.  We interpret our 

predictions about service-level allocations under the alternative set of risk adjustment payment weights as  

indicating the general pattern of mismatches between equilibrium spending and optimal spending as well as 

the direction in which profit maximization is pushing health plans to distort service-level spending.  The gaps 

between the “optimal” and “equilibrium” allocations we present below should be interpreted as rough 

measures of the force of the distortionary incentive.   

Figure 2 presents the equilibrium service-level allocations under the two payment models, the 

conventional Dutch model (blue bars) and the constrained model (orange bars) along with the optimal level 

of service-level spending (purple bars), which, as we explained above, we assume in this section to be equal to 

the spending observed in the data. All allocations are presented as a percent of total spending, which is 

constrained to be constant across payment models.  The purple bars show that the optimal (and observed) 

level of spending on primary care is less than 10%.  Our model, however, implies that under the conventional 

Dutch risk adjustment model, plans have incentives to drive the level of spending on primary care above 

30%. This suggests that plans are incentivized to distort substantial resources toward primary care and away 

from other services as they compete for low-cost (and profitable) enrollees.29  This distortion is largely due to 

                                                      
29 One might note that this finding is does not seem to hold in real health insurance markets. Typically, policymakers and 
researchers argue that primary care is underprovided relative to other services. We make two comments regarding this 
seeming discrepancy. First, our model obviously paints an incomplete picture of an insurer’s choice of service-level 
allocations. While our model captures insurer incentives related to adverse selection appropriately, it does not account 
for incentives related to other factors such as the short-term nature of many insurance contracts. Second, much of the 
discussion of the underprovision of primary care comes from the United States, where the vast majority of individuals 
get health insurance either through their employer or through the FFS Medicare program. In both of these settings, 
insurers face no or very weak selection incentives, implying that the implications of our model should not be compared 
to empirical facts in those settings. Instead, our model should have implications for insurer behavior in markets where 
selection is more prevalent such as the Medicare Advantage program, the state and federal Health Insurance 
Marketplaces, and state Medicaid Managed Care programs. 
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the fact that an individual’s use of primary care does not predict unprofitability as strongly as their use of 

hospital care hospital care (as shown in Figure 3 below).  On the other hand, our model implies that the 

conventional Dutch risk adjustment model pushes plans to allocate “too few” resources to hospital care.30  

Finally, Figure 2 confirms that equilibrium service-level allocations are moved to match the optimal 

allocations by the constrained risk adjustment model.  As expected, the orange and purple bars are equal, 

indicating that the constrained model completely solves the service-level distortion problem by inducing plans 

to offer the optimal allocations of spending across services.  

5.2  Incentives for Service-level Distortions:  Predictability and Predictiveness  

We now show that the constrained regression method we develop here improves payment system 

performance not only according to measures of incentives for service-level selection derived from our model 

but also according to measures of selection incentives developed in the previous literature. Figure 3 shows 

our measures of predictability (left panel) and predictiveness (right panel) for each of the ten services.  As 

described in Section 4.6.1, predictability is calculated as the correlation between individuals’ expected 

spending on service s and their actual spending on that service.  The figure reveals substantial heterogeneity in  

                                                      
30 Despite the fact that the conventional Dutch model leaves plans with incentives to distort service-level spending away 
from optimal levels, in results not presented here, we find that the Dutch model significantly improves insurer incentives 
when compared to the case of no risk adjustment. In that extreme case, distortionary insurer incentives are very strong 
relative to under the conventional Dutch model.  
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predictability across services with pharmaceutical spending being the most predictable and “other” and 

geriatric physical therapy spending being the least predictable. Since actual spending (as reflected in σis) and 

expected spending (as reflected in σ�is) are independent of payment weights, the predictability of services is 

independent of the payment model.  

The right panel of Figure 3 shows our predictiveness measure for each of our ten services under two 

payment models: the conventional Dutch risk adjustment model and the new constrained model.  The bars 

show the correlation between an individual’s spending on service s and their overall unprofitability to the 

plan.  Bigger bars signify a higher correlation. Risk adjustment, by transferring funds to more costly enrollees 

should cause some convergence among these service-specific correlations such that spending on service s has 

a similar relationship with total profitability as spending on service s’.31 It is clear from the figure that the 

constrained model improves on the conventional Dutch model, driving down the correlation between 

spending on a service and unprofitability to the plan for all services.  

 Note that predictiveness only matters for selection incentives if the service is also predictable.  Unless 

a potential enrollee anticipates their level of utilization of a given service, her demand for a given insurance 

contract is unlikely to respond to changes in the level of rationing of that service. In other words, if a service 

is not predictable, tight or loose rationing of that service should have no effect on enrollment and 

profitability.  This implies that the results in the right and left panels of Figure 3 combine to form the overall 

                                                      
31 A complete convergence will not occur, nor is it desirable, because it is plan incentives that should be consistent 
across services and those incentives depend on both predictability and predictiveness. 
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selection incentives faced by insurers, with services that score high on both predictability and predictiveness 

being the most vulnerable to service-level distortions.  

 

6. Redefining Efficient Spending for Purposes of Risk Adjustment: An 

Illustration 

 As discussed in Section 4.4, to implement our methods and measures we assume that the patterns of 

spending observed in the data represent the optimal levels of spending. This assumption, implicit in much of 

the risk adjustment literature, is problematic for a variety of reasons described above. We now illustrate how 

this assumption can be (and sometimes is) relaxed, leaving a full treatment of this insight for future work.32 

In the Netherlands, regulators already effectively partially relax this assumption. Prior to estimating 

the payment weights for the Dutch risk adjustment model, data for risk adjustment are modified in order to 

more accurately capture trends in costs.  Risk adjustment payment weights in the Netherlands for year t are 

estimated prospectively using medical spending from year t-3 as the dependent variable. Anticipated changes 

in spending levels between year t-3 and year t (e.g. due to changes in demography), are taken into account by 

a linear correction of the original service-level spending from t-3.  This linear correction may vary across 

services at the discretion of the analyst. In addition, the data are corrected for changes in the benefit package 

between year t-3 and year t, which could mean, for instance, that if a certain drug was introduced in year t-1, 

spending on that drug is added to the risk adjustment data.  These modifications are an example of regulators 

re-defining first-best optimal spending, xis∗ , to account for differences between observed spending patterns 

and the spending patterns regulators believe to be optimal. 

In addition to altering the data because of changes in the benefit package or in anticipation of 

exogenous trends in service use and cost, the data might also be modified prior to estimation to improve the 

performance of the health care system.  Suppose that for reasons unrelated to adverse selection the regulator 

believes that overall levels of primary care are inefficiently low relative to overall levels of hospital care.33 In 

this setting, the regulator would want to move money from the overall hospital care allocation to the overall 

primary care allocation, allowing the individual-specific allocation rules to determine how this shift in funds 

affects each individual. Our insight is that the regulator can encourage this reallocation of funds via the risk 
                                                      
32 In addition to the discussion here about ways to make ad hoc adjustments to the data, there is an alternative way to 
modify this assumption. In this paper, we follow the previous literature by assuming observed spending is optimal and 
using a model to derive equilibrium spending. Alternatively, it may be possible (and perhaps more reasonable) to assume 
that observed spending is equilibrium spending and use a model to derive optimal spending. Exploring this possibility is 
beyond the scope of this paper but may represent a promising area for future research. 
33 For example, primary care may be underprovided if health insurance contracts tend to be short-term and consumers 
switch contracts often. 
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adjustment model when using the constrained regression model. Instead of estimating the risk adjustment 

payment weights using observed spending levels as the outcome variable, the regulator can alter the overall 

levels of spending for each service, use the allocation rules (the sigma’s) to map from the overall service-level 

allocations to individual spending, and then use the modified individual spending variable in a constrained 

regression to estimate the payment weights. Such an adjustment would result in higher payments for groups 

of individuals more likely to use primary care at the cost of payments for groups more likely to use hospital 

care. 

As a demonstration we implement this method by shifting 900 million Euros (3% of total spending) 

from hospital care to primary care and then re-estimating the constrained regression model. Figure 4 shows 

how this affects payments for various groups of individuals. The figure presents the same five stratifications 

of the population from Figure 1. The bars represent the change in payments for each group with the red bars 

showing changes in payments for the sicker group and the green bars showing changes in payments for the 

healthier group for each stratification. Note that in all cases, when the data are adjusted to shift resources 

from hospital care to primary care, payments for the sick go down while payments for the healthy go up. This 

type of shift in payments implies a shift in incentives, where plans will provide more primary care and less 

hospital care in order to attract more of the healthy groups who are now more profitable than before. 
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Under estimation methods that take into account health plans’ decisions on health care spending, 

transforming the data prior to deriving risk adjustment payment weights would likely improve incentives for 

resource allocation. When paired with a constrained regression, transformation of data can ensure that the 

payment model provides incentives to supply exactly the desired pattern of care in equilibrium.   

 

7. Discussion 

In this paper, we have developed new estimation methods and performance measures for risk 

adjustment models that generate optimal payment weights according to an explicit economic model of insurer 

behavior and social welfare as alternatives to the conventional estimation methods and measures that generate 

payments based on statistical criteria. We assumed the objective is efficiency of resource allocation across 

medical services.  We showed that in this context the only case in which the R-squared is the “right” welfare 

measure is when 1) health care is regarded as one homogeneous service and 2) health plans can discriminate 

at the individual level.  Since these assumptions are unrealistic, we have proposed a more general welfare 

measure and alternative estimation methods. Specifically, we have proposed to replace the two-step 

“estimate-then-evaluate” approach in risk adjustment for health plan payment with a one-step “estimate-to-

maximize-the-objective” approach.  Since this one-step approach forces regulators to make their objective 

regarding health plan payment explicit, we believe it is less vulnerable to subjective judgments about the 

“performance” of a risk adjustment model than the conventional two-step approach.  

Our methodology is an application of the principal-agent or mechanism design approach using 

concepts of economic equilibrium and efficiency.  In order to evaluate the performance of a policy tool like 

health plan payment, it is necessary to anticipate how it will affect market behavior.  This calls for a model 

relating the risk adjusted payments to economic equilibrium.  We have adapted approaches from the literature 

on health plan and consumer behavior to construct a workable model relating the payment weights to 

equilibrium service allocations decided by plans.  Our paper proposes what we argue is a plausible and 

practical metric for welfare loss.  Our methods for deriving payment weights minimize welfare loss subject to 

equilibrium behavior by plans in an empirically operational fashion.  In each of the two major cases, when the 

number of available risk adjustors exceed or fall short of the number of potential plan actions, we show that 

the solution to this problem can be found using relatively straightforward variants on the conventional least-

squares regression: the addition of constraints to the regression model in the case of few plan actions and a 

straightforward transformation of the data in the case of many plan actions. 

We have empirically illustrated the case where the number of adjustors exceeds the number of plan 

actions (few plan actions), using data from the Netherlands.  Our empirical results are consistent with earlier 
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papers, indicating that under our economic model the Dutch risk adjustment model (of 2015) and its 

corresponding weights leave substantial incentives for service-level distortion.  For example, our predictability 

and predictiveness measures indicate that by spending an extra euro on pharmaceutical care health plans will 

attract enrollees who are much less profitable than those who will be attracted by spending an extra euro on 

primary care. This provides competing health plans with incentives to allocate more money to primary care 

and less to pharmaceutical care.  We show that by adding a set of linear constraints when estimating the 

payment weights of the Dutch risk adjustment model, incentives for service-level distortion can be eliminated 

so that the risk adjustment payments push plans toward first-best service allocations.  

The solution illustrated in our empirical illustration applies to any setting where the number of 

adjustors exceeds the number of plan actions. This may be the case for the Dutch risk adjustment model, the 

German risk adjustment model and the U.S. federal risk adjustment models used in Medicare Advantage and 

the Marketplaces, which all include over 100 risk adjustor variables.  When the number of relevant services 

exceeds the number of risk adjustor variables this first-best allocation cannot be achieved.  In that case the 

risk adjustment payment weights that minimize, but do not necessarily eliminate, the welfare loss can be 

found by a linear regression of first-best allocations, xis∗ , on the K-by-S transformed z variables (risk 

adjustors), ∑ σisz�gsks , derived in our analytical framework. Switzerland, with its simple risk adjustment model 

is a potential candidate for implementing this method empirically.  

In a setting where regulators are concerned with service-level distortions the concepts of 

“equilibrium” and “efficiency” applied in this paper are powerful tools not only for estimating risk adjustment 

payment weights, but also for guiding the choice of risk-adjustor variables to include in the payment model.  

Presently, risk adjustor variables are included or excluded based on considerations of clinical meaningfulness, 

game-ability and contribution to fit (Kautter et al., 2014).  There are several reasons to reconsider the 

specification of a risk-adjustment model.  Recent research and policy experience implies that, in the US at 

least, “upcoding” clinically related variables is a serious and costly issue (Geruso and Layton, 2015).  

Furthermore, application of alternative estimation techniques based on machine learning indicates that 

statistical fit as measured by R-squared may be achieved with many fewer variables than presently in use 

(Rose, 2016).  Our analyses add an additional reason to reconsider the specification.  With a measure of 

efficiency in hand, the contribution of an additional set of risk adjustors can be evaluated in relation to its 

ability to improve economic efficiency.  A simple and direct way to do this would be to supplement the R-

squared fit criteria with the welfare loss criteria in evaluating the contribution of a set of variables. The 

contribution of a new set of variables will depend on the present set of adjustors and how well they do in 

directing incentives for each of the services plans can discriminate on.  Our framework implies that – in the 

case of service-level distortion – risk adjustors should not be evaluated only by the extent to which they 

reduce “under/overcompensations”, but also by their potential to reduce variation in predictability and 
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predictiveness across services. The stronger a risk adjustor variable correlates with spending on a particular 

service, the larger will be its potential to mitigate the welfare loss from allocative inefficiency. 

When it comes to a practical implementation of our approach it will be important for regulators to 

carefully reconsider the assumptions made in this paper. More specifically, the beliefs on how health plans 

and consumers act in a particular setting may differ from those adopted here. For example, this paper 

assumes plans set service spending in response to incentives, whereas there might be other limits on service-

level spending, such as when regulators require a minimum level of access to health care. Additionally, our 

economic model is based on assumptions of perfect competition, profit-maximization, a fixed premium and 

symmetric equilibrium.  For several reasons these assumptions may deviate from how the market operates in 

a particular setting.  Furthermore, the regulator’s objective may differ from the one adopted here. In the 

Netherlands, for instance, the regulator is not only concerned with service-level distortions but also with 

other types of selection actions such as specific marketing strategies of health plans.  Finally, regulators are 

concerned with objectives other than economic efficiency, including “fairness” (i.e. premium differences 

between plans should not reflect differences in health risk), and “quality of care” (e.g. the risk adjustment 

payments should encourage plans to invest in the quality of care for particular treatments), among others.  A 

formal incorporation of these objectives within a single social welfare function is probably unrealistic.  

Despite all of the additional objectives, however, regulators still use the R-squared as the primary metric for 

payment model performance, a measure which also ignores these other objectives and, as we’ve shown here, 

has the additional disadvantage that it does not accurately assess the objective it is intended to capture: 

incentives for service-level selection. Thus, a metric for economic efficiency with respect to service-level 

allocations of health care spending, such as one constructed here, can still be useful as a way to help 

policymakers assess the performance of different payment models.         
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Appendix: Estimated Coefficients for Two Models   
 
 

Risk adjustor variables Population 
frequency 

Base 
model 

Constrained 
model 

Intercept 100.00% 203 -790 
Male. 0 0.55% 3716 5898 
Male. 1-4 2.27% 425 -85 
Male. 5-9 2.96% 289 -72 
Male. 10-14 3.11% 172 410 
Male. 15-17 1.81% 192 629 
Male. 18-24 4.29% -15 -38 
Male. 25-29 2.94% -42 -58 
Male. 30-34 2.95% -39 -34 
Male. 35-39 3.08% 0 0 
Male. 40-44 3.83% 75 114 
Male. 45-49 3.89% 187 263 
Male. 50-54 3.67% 333 499 
Male. 55-59 3.33% 584 936 
Male. 60-64 3.19% 813 1364 
Male. 65-69 2.73% 1278 1643 
Male. 70-74 1.90% 1661 2041 
Male. 75-79 1.37% 2104 2401 
Male. 80-84 0.89% 2248 2351 
Male. 85-89 0.43% 2364 2105 
Male. 90+ 0.15% 2542 1433 
Female. 0 0.52% 3069 5207 
Female. 1-4 2.17% 199 -154 
Female. 5-9 2.82% 153 158 
Female. 10-14 2.97% 142 514 
Female. 15-17 1.72% 324 416 
Female. 18-24 4.18% 305 145 
Female. 25-29 2.96% 774 985 
Female. 30-34 2.99% 935 1549 
Female. 35-39 3.14% 546 977 
Female. 40-44 3.83% 309 439 
Female. 45-49 3.86% 352 387 
Female. 50-54 3.68% 463 578 
Female. 55-59 3.34% 573 773 
Female. 60-64 3.18% 733 1110 
Female. 65-69 2.78% 1043 1162 
Female. 70-74 2.07% 1362 1534 
Female. 75-79 1.71% 1703 2019 
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Risk adjustor variables Population 
frequency 

Base 
model 

Constrained 
model 

Female. 80-84 1.37% 1955 2296 
Female. 85-89 0.89% 2165 2341 
Female. 90+ 0.48% 2125 1181 
No PCG a 82.03% 201 637 
Glaucoma 0.85% 279 346 
Thyroid disorders 1.64% 83 -181 
Mental disorders 0.53% 95 1243 
Depressive disorder 2.67% 184 -636 
Peripheral neuropathy 0.38% 1159 157 
Hypercholesterolemia 5.30% 178 -620 
Diabetes II without hypertension 0.63% 531 -1868 
COPD / severe asthma  1.16% 1565 1165 
Asthma 2.16% 573 643 
Diabetes II with hypertension 1.40% 845 -1511 
Epilepsy 0.48% 834 -245 
Crohn's disease / Colitis ulcerosa 0.20% 818 2881 
Heart diseases 2.21% 1500 1242 
Rheumatoid arthritis (TNF-α) 0.19% 14164 14623 
Rheumatoid arthritis (other) 0.32% 1478 2813 
Parkinson's disease 0.14% 2176 3527 
Diabetes type I 1.29% 1361 649 
Transplantations 0.15% 89 6361 
Cystic fibrosis / Pancreatic disease 0.04% 3021 15999 
Disorders of brain/ spinal cord 0.07% 1511 4128 
Cancer 0.09% 3697 9279 
Hormone-sensitive tumors 0.35% -712 -2226 
HIV/AIDS 0.08% 2826 29936 
Kidney disorders 0.07% 7201 15969 
No DCG b 91.00% 0 0 
DCG1 0.67% 391 400 
DCG2 1.49% 560 750 
DCG3 1.11% 635 659 
DCG4 1.80% 1011 3436 
DCG5 1.16% 1618 2657 
DCG6 1.26% 2002 3813 
DCG7 0.55% 3225 9061 
DCG8 0.12% 3989 9721 
DCG9 0.30% 3847 6950 
DCG10 0.33% 7307 14332 
DCG11 0.04% 8722 14286 
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Risk adjustor variables Population 
frequency 

Base 
model 

Constrained 
model 

DCG12 0.07% 8608 20788 
DCG13 0.04% 15876 32097 
DCG14 0.04% 65152 63374 
DCG15 0.01% 51005 140811 
ZIP-code cluster 1 9.91% 169 479 
ZIP-code cluster 2 9.88% 124 351 
ZIP-code cluster 3 9.97% 101 254 
ZIP-code cluster 4 9.86% 84 215 
ZIP-code cluster 5 10.01% 68 203 
ZIP-code cluster 6 9.91% 64 171 
ZIP-code cluster 7 9.98% 50 129 
ZIP-code cluster 8 9.98% 38 78 
ZIP-code cluster 9 10.17% 24 44 
ZIP-code cluster 10 10.32% 0 0 
Age = 0-17 or 65+ 37.67% 0 0 
Disability beneficiaries. 15-34 0.91% 647 -969 
Disability beneficiaries. 34-44 0.77% 803 -50 
Disability beneficiaries. 45-54 1.30% 720 88 
Disability beneficiaries. 55-64 2.02% 596 362 
General beneficiaries. 15-34 0.57% 267 -260 
General beneficiaries. 34-44 0.55% 353 -214 
General beneficiaries. 45-54 0.60% 412 43 
General beneficiaries. 55-64 0.48% 368 327 
Students. 18-34 3.20% -238 -233 
Self-employed. 15-34 0.78% -116 -155 
Self-employed. 34-44 1.27% -111 -112 
Self-employed. 45-54 1.32% -146 -156 
Self-employed. 55-64 0.79% -152 -148 
Other. 15-34 14.84% 0 0 
Other. 34-44 11.29% 0 0 
Other. 45-54 11.88% 0 0 
Other. 55-64 9.75% 0 0 
No MYHCG c 94.24% 0 0 
2x costs in top-10% 1.01% 2661 6082 
3x costs in top-15% 2.30% 2318 3155 
3x costs in top-10% 1.05% 3680 4370 
3x costs in top-7% 0.78% 5692 6085 
3x costs in top-4% 0.46% 9661 9066 
3x costs in top-1.5% 0.15% 25836 37142 
No DMECG d 99.17% 0 0 
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Risk adjustor variables Population 
frequency 

Base 
model 

Constrained 
model 

Insulin pumps 0.12% 422 -3319 
Catheters 0.39% 1308 -1212 
Stoma 0.31% 1801 -929 
Trachea-stoma 0.02% 6546 2464 
Address >15 residents. 0-17 0.06% 244 -1059 
Address >15 residents. 18-64 0.38% 169 480 
Address >15 residents. 65+ 0.72% 321 5820 
Income deciles 1-3. 0-17 6.25% 27 -110 
Income deciles 1-3. 18-64 18.57% 53 12 
Income deciles 1-3. 65+ 4.81% 200 -269 
Income deciles 4-7. 0-17 8.34% -5 -115 
Income deciles 4-7. 18-64 24.79% 48 23 
Income deciles 4-7. 65+ 6.41% 44 -166 
Income deciles. 8-10. 0-17 6.25% 0 0 
Income deciles. 8-10. 18-64 18.59% 0 0 
Income deciles. 8-10. 65+ 4.81% 0 0 
65-. no morbidity e 70.38% 0 0 
65-. morbidity  12.86% 618 1541 
65+. no morbidity  6.89% 0 0 
65+. morbidity  9.88% 642 2272 

 
a PCG = Pharmacy-based Cost Group 
b DCG = Diagnostic-based Cost Group 
c MYHCG = Multiple-Year High Cost Group 
d DMECG = Durable Medical Equipment Cost Group 
e Morbidity is operationalized as having at least one PCG, DCG, MYHCG or DMECG. 

 

 

 




