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“Belief is so important! A hundred

contradictions might be true.”

— Blaise Pascal, Pensées

1 Introduction

To identify causal effects from observational data, an applied researcher must augment the

data with her beliefs. The exclusion restriction in an instrumental variables (IV) regression,

for example, represents the belief that the instrument has no direct effect on the outcome

of interest. Although this belief can never be tested directly, applied researchers know how

to think about it and how to debate it. In practice, however, not all beliefs are treated

equally. In addition to “formal beliefs” such as the IV exclusion restriction – beliefs that

are directly imposed to obtain identification – researchers often state a number of “informal

beliefs.” Although they are not directly imposed on the problem, informal beliefs play an

important role in interpreting results and reconciling conflicting estimates. Papers that

report IV estimates, for example, almost invariably state the authors’ belief about the sign

of the correlation between the endogenous treatment and the error term but do not exploit

this information in estimation.1 Another common informal belief concerns the extent of

measurement error. When researchers observe an ordinary least squares (OLS) estimate

that is substantially smaller than, but has the same sign as its IV counterpart, classical

measurement error, with its attendant “least squares attenuation bias,” often is suggested

as the likely cause.

In this paper we argue that relegating informal beliefs to second-class status is both

wasteful of information and dangerous; beliefs along different dimensions of the problem

are mutually constrained by each other, the model, and the data. By failing to explicitly

incorporate all relevant information, applied researchers both leave money on the table and,

more importantly, risk reasoning to a contradiction by expressing mutually incompatible

beliefs. Although this point is general, we illustrate its implications here in the context of a

simple linear model

y = βT ∗ + x′γ + u (1)

T = T ∗ + w (2)

1Referring to more than 60 papers published in the top three empirical journals between 2002 and 2005,
Moon and Schorfheide (2009) note that “in almost all of the papers the authors explicitly stated their beliefs
about the sign of the correlation between the endogenous regressor and the error term; yet none of the
authors exploited the resulting inequality moment condition in their estimation.”
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where T ∗ is a potentially endogenous treatment, y is an outcome of interest, and x is a vector

of exogenous controls. Our goal is to estimate the causal effect of T ∗ on y, namely β, but

we observe only T , a noisy measure of T ∗ polluted by measurement error w. While we are

fortunate to have an instrument z at our disposal, it may not satisfy the exclusion restriction:

z is potentially correlated with u. This scenario is typical in applied microeconomics: endo-

geneity is the rule rather than the exception, the treatments of greatest interest are often the

hardest to measure, and the validity of a proposed instrument is almost always debatable.

We consider two cases. In the first, T ∗ is continuous and subject to classical measurement

error: T ∗ is independent of w. In the second, z and T ∗ are binary and T ∗ is subject to

non-differential measurement error: the joint distribution of T ∗ and w is unrestricted, but

T is assumed to be conditionally independent of all other variables in the system, given

T ∗.2 In each case we derive the identified set relating treatment endogeneity, measurement

error, and instrument invalidity in terms of empirically meaningful parameters. We then

use this characterization to construct a framework for Bayesian inference that combines the

information contained in the data with researcher beliefs in a coherent and transparent way.

As we demonstrate through a number of empirical examples, this framework not only allows

researchers to incorporate relevant problem-specific beliefs, but, by identifying any incon-

sistencies that may be present, provides a tool for refining and disciplining these beliefs.

Although our method employs Bayesian reasoning, it can be implemented in a number of

different ways that should make it appealing both to frequentists and Bayesians.

While measurement error, treatment endogeneity, and invalid instruments have all gener-

ated voluminous literatures, to the best of our knowledge this is the first paper to carry out

a partial identification exercise in which all three problems can be present simultaneously.

Our main point is simple but has important implications for applied work that have been

largely overlooked; measurement error, treatment endogeneity, and instrument invalidity are

mutually constrained by each other and the data in a manner that can only be made ap-

parent by characterizing the full identified set for the model. Because the dimension of this

set is strictly smaller than the number of variables used to describe it, the constraints of

the model could easily contradict prior researcher beliefs. Given the shape of the identified

set, the belief that z is a valid instrument, for example, could imply an implausible amount

of measurement error in T ∗ or a selection effect with the opposite of the expected sign. In

this way our framework provides a means of reconciling and refining beliefs that would not

be possible based on introspection alone. We are by no means the first to recognize the

importance of requiring that beliefs be compatible. Kahneman and Tversky (1974), for ex-

2These cases require a separate treatment because, as we discuss below, a binary regressor cannot be
subject to classical measurement error.
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ample, make a closely related point in their discussion of heuristic decision-making under

uncertainty. Even if specific probabilistic assessments appear coherent on their own,

an internally consistent set of subjective probabilities can be incompatible with

other beliefs held by the individual . . . For judged probabilities to be considered ade-

quate, or rational, internal consistency is not enough. The judgements must be com-

patible with the entire web of beliefs held by the individual. Unfortunately, there can

be no simple formal procedure for assessing the compatibility of a set of probability

judgements with the judge’s total system of beliefs (Kahneman and Tversky, 1974, p.

1130).

Our purpose here is to take up the challenge laid down by Kahneman and Tversky (1974)

and provide just such a formal procedure for assessing the compatibility of researcher beliefs

over treatment endogeneity, measurement error, and instrument invalidity in linear models.

Although the intuition behind our procedure is straightforward, the details are more involved.

For this reason we provide free and open-source software in R and Stata to make it easy for

applied researchers to implement the methods described in this paper.3

Elicitation is a key ingredient of our framework. Before we can impose researcher beliefs

we must express them in intuitive, empirically meaningful terms. In the continuous treatment

setting, we express instrument invalidity in terms of ρuz ≡ Cor(z, u), treatment endogeneity

in terms of ρT ∗u ≡ Cor(T ∗, u), and measurement error in terms of κ ≡ Var(T ∗)/Var(T ),

essentially a signal-to-noise ratio that is conveniently bounded between zero and one. For

the binary treatment and instrument case, measurement error is parameterized in terms of a

pair of misclassification probabilities (α0, α1), defined in Section 5, and instrument invalidity

and treatment endogeneity are more naturally expressed as differences of conditional means.

Specifically, δz is the average difference in unobservables u between individuals with high

and low value for the instrument while δT ∗ is the average difference in u between treated and

untreated individuals. In this paper we impose only relatively weak prior beliefs in the form

of sign and interval restrictions on the aforementioned parameters.4 As we discuss further

in our empirical examples, these are fairly easy to elicit in practice and can be surprisingly

informative about the causal effect of interest.

The addition of researcher beliefs is not only extremely helpful, but unavoidable. As we

show below, the data alone provide no restriction on β, although they do bound the maximum

possible amount of measurement error. Nevertheless, whenever one imposes information

beyond what is contained in the data, it is crucial to make clear how this affects the ultimate

3See https://github.com/fditraglia/ivdoctr and https://github.com/fditraglia/binivdoctr.
4Researchers who feel comfortable imposing more finely-grained beliefs can easily do so within our frame-

work, but elicitation of fully-informative priors is more challenging in practice.
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result. This motivates our use of a transparent parameterization, which decomposes the

problem into a vector of partially-identified structural parameters θ, and a vector of identified

reduced form parameters ϕ in such a way that inference for the identified set Θ for θ depends

on the data only through ϕ. This decomposition has several advantages. First, since the

reduced form parameters are identified, inference for this part of the problem is completely

standard. Second, a transparent parameterization shows us precisely where any identification

beliefs we may choose to impose enter the problem: the data rule out certain values of ϕ,

while our beliefs place restrictions on the conditional identified set Θ(ϕ) which ultimately

yields inference for the causal effect β.

This paper contributes to a small but growing literature on the Bayesian analysis of

partially-identified models, including Poirier (1998), Gustafson (2005), Richardson et al.

(2011), Moon and Schorfheide (2012), Kitagawa (2012), Hahn et al. (2016), Kline and Tamer

(2016), and Gustafson (2015). Some recent contributions to the literature on structural vec-

tor autoregression models (Amir-Ahmadi and Drautzburg, 2016; Arias et al., 2016; Baumeis-

ter and Hamilton, 2015) also explore related ideas. Our results also relate to a large literature

on estimating the effect of mis-measured binary regressors. An early contribution is Bollinger

(1996) who provides partial identification bounds for an exogenous mis-measured regressor.

van Hasselt and Bollinger (2012) derive additional bounds for the same model and Bollinger

and van Hasselt (2015) propose a Bayesian inference procedure based on these bounds. Be-

cause we consider a situation in which an instrumental variable is available, our setting is

more closely related to that considered by Kane et al. (1999), Black et al. (2000), Frazis and

Lowenstein (2003), Lewbel (2007), Mahajan (2006) and Hu (2008). The key lesson from

these papers is that the two-stage least squares (TSLS) estimator is inconsistent even if the

instrument is valid. When the treatment is exogenous, however, it is possible to construct a

non-linear method of moments estimator that recovers the treatment effect using a discrete

instrumental variable.

Unlike these papers, we consider a setting in which the binary treatment of interest may

be endogenous. As shown in DiTraglia and Garcia-Jimeno (2016) the usual instrumental

variable assumption – conditional mean independence – is insufficient to identify the effect

of an endogenous, mis-measured, binary treatment. Although DiTraglia and Garcia-Jimeno

(2016) provide a point identification result under a stronger assumption on the instrument

– full independence – we do not employ this result here. Instead we allow for an invalid

instrument and derive partial identification results.

Two recent papers that similarly consider partial identification under instrument inva-

lidity are Conley et al. (2012) and Nevo and Rosen (2012). Like us, Conley et al. (2012)

adopt a Bayesian approach that allows for a violation of the IV exclusion restriction, but
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they do not explore the relationship between treatment endogeneity and instrument inva-

lidity. In contrast, Nevo and Rosen (2012) derive bounds for a causal effect in the setting

where an endogenous regressor is “more endogenous” than the variable used to instrument

it is invalid.5 Our framework encompasses the settings considered in these two papers, but

is strictly more general; we allow for measurement error simultaneously with treatment en-

dogeneity and instrument invalidity. More importantly, the central message of our paper is

that it can be misleading to impose beliefs on only one dimension of a partially identified

problem unless one has a way of ensuring their mutual consistency with all other relevant

researcher beliefs. For example, although a single valid instrument solves both the problem

of classical measurement error and treatment endogeneity, we argue that it is insufficient to

carry out a partial identification exercise that merely relaxes the exclusion restriction, as in

Conley et al. (2012). Values for the correlation between z and u that seem plausible when

viewed in isolation could easily imply implausible amounts of measurement error or treat-

ment endogeneity. While our main contribution here is to describe the relationship between

measurement error, treatment endogeneity, and instrument invalidity, we also derive sharp

bounds on the extent of both classical measurement error when the treatment is continuous,

and non-differential measurement error when the treatment is binary. These are, to the best

of our knowledge, new to the literature and could be of interest in their own right.

The remainder of this paper is organized as follows. Section 2 derives the identified

set for a continuous treatment under classical measurement error. Section 3 describes our

approach to inference in this setting and Section 4 presents two empirical examples. Section

5 then derives the identified set for a binary instrument and binary treatment subject to

non-differential measurement error. Section 5.5 explains the differences between inference

for a binary and a continuous treatment, while Section 6 presents two empirical examples in

which the treatment is binary. Section 7 concludes.

2 The Identified Set for a Continuous Treatment

2.1 Model and Assumptions

To simplify the notation, suppose either that there are no exogenous control regressors x

(including a constant), or equivalently, that they have been “projected out.” In Section 2.4

we explain why this assumption is innocuous and how to accommodate control regressors

in practice. With this simplification, Equations 1–2 and the first stage T ∗ = πz + v can be

5In our notation, ρT∗u and ρuz have the same sign but |ρuz| < |ρT∗u|.
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written in matrix form as
y

T

z

T ∗

 = Γ


u

v

z

w

 , Γ =


1 β βπ 0

0 1 π 1

0 0 1 0

0 1 π 0

 (3)

where we assume, without loss of generality, that all random variables in the system are mean

zero or have been de-meaned.6 Our goal is to learn the parameter β, the causal effect of

T ∗. In general, T ∗ is unobserved: we only observe a noisy measure T that has been polluted

by classical measurement error w. We call (u, v, w, z) the “primitives” of the system and

assume that they satisfy the following assumptions.

Assumption 2.1. The covariance matrix Ω of the model primitives (u, v, z, w) is finite and

satisfies

Ω =

[
Ω̃ 0

0′ σ2
w

]
, Ω̃ =

 σ2
u σuv σuz

σuv σ2
v 0

σuz 0 σ2
z

 (4)

where Ω̃ – the covariance matrix of (u, v, z) – is positive definite, and σ2
w – the measurement

error variance – is non-negative.

Because w represents classical measurement error, it is uncorrelated with u, v, and z as

well as T ∗. The parameter σuz controls the invalidity of the instrument z: unless σuz = 0, z is

an invalid instrument. Both σuz and σuv control the endogeneity of T ∗; σuv is the component

of Cov(T ∗, u) that is unrelated to z. The matrix Ω is unobserved. We observe only Σ, the

covariance matrix of (y, T, z):

Σ =

 σ2
T σTy σTz

σTy σ2
y σyz

σTz σyz σ2
z

 . (5)

To ensure that the IV estimand is well-defined and that the elements of Σ are finite, we

impose the following assumption:

Assumption 2.2. The first-stage coefficient π is non-zero and both β and π are finite.

Since π 6= 0, Γ is full rank. Moreover, by Assumption 2.1, Σ is positive definite. The

system we have just finished describing does not identify the treatment effect β. In particular,

6Equivalently, we can treat the constant term in the first-stage and main equation as exogenous regressors
that have been projected out.
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neither the OLS nor IV estimators converge in probability to β, instead they approach

βOLS =
σTy

σ2
T

=

(
σ2
T ∗

σ2
T ∗ + σ2

w

)(
β +

σT ∗u

σ2
T ∗

)
(6)

and

βIV =
σzy
σTz

= β +
σuz
σTz

(7)

where σ2
T ∗ = σ2

T − σ2
w denotes the variance of the unobserved regressor T ∗, and

σT ∗u = σuv + πσuz. (8)

Because both σuv and σuz are sources of endogeneity for the unobserved regressor T ∗, there is

an indirect link between instrument invalidity and the OLS estimand. Moreover, while the IV

probability limit depends neither on the extent of measurement error, σ2
w, nor on σuv, through

the model and assumptions it nevertheless contains information about both quantities. As a

result, the problems of measurement error, regressor endogeneity, and instrument invalidity

are mutually constrained. Our next task is to characterize the relationship between them

by exploiting all of the implications of Equation 5 and Assumptions 2.1 and 2.2. To aid in

this characterization, we first provide a re-parameterization of the problem, expressing it in

terms of quantities that are empirically meaningful and thus practical for eliciting researcher

beliefs.

2.2 A Convenient Parameterization

Because our ultimate goal is to elicit and incorporate researcher’s beliefs, we work in terms

of the following quantities:

ρuz = Cor(u, z) (9)

ρT ∗u = Cor(T ∗, u) (10)

κ =
σ2
T ∗

σ2
T

=
σ2
T ∗

σ2
T ∗ + σ2

w

. (11)

The first quantity, ρuz, is the correlation between the instrument and the main equation

error term u. It measures the endogeneity of the instrument. The exclusion restriction in

IV estimation, for example, corresponds the degenerate belief that ρuz = 0. When critiquing

an instrument, researchers often state a belief about the likely sign of this quantity. The

second quantity, ρT ∗u, is the correlation between the unobserved regressor T ∗ and the main

equation error term. It measures the overall endogeneity of T ∗, taking into account both the
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effect of σuv and σuz. While in practice it would be unusual to be able to articulate a belief

about σuv, researchers almost invariably state their belief about the sign of the quantity ρT ∗u

before undertaking an IV estimation exercise.

The third quantity, κ, may be somewhat less familiar. When there are no covariates and

T ∗ is exogenous, κ measures the degree of attenuation bias present in the OLS estimator: if

ρT ∗u = 0 then the OLS probability limit is κβ. Equivalently, provided that σyT ∗ 6= 0,

κ =

(
σ2
T ∗

σ2
T

)(
σ2
yT

σ2
yT ∗

)
=

(
σ2
yT

σ2
Tσ

2
y

)(
σ2
T ∗σ2

y

σ2
yT ∗

)
=

ρ2yT
ρ2yT ∗

(12)

so another way to interpret κ is as the ratio of the observed R2 of the main equation and the

unobserved R2 that we would obtain if our regressor had not been polluted with measurement

error.7 A third way to think about κ is in terms of signal and noise. If κ = 1/2, for example,

this means that half of the variation in the observed regressor T is “signal,” T ∗, and the

remainder is noise, w. While the other two interpretations are specific to the case of no

covariates, this third interpretation is general. We consider it much easier to elicit beliefs

about κ than about σ2
w because κ has bounded support: it takes a value in (0, 1]. When

κ = 1, σ2
w = 0 so there is no measurement error. The limit as κ approaches zero corresponds

to taking σ2
w to infinity.

Expressed in this way, our parameter space is bounded, all of our parameters are scale-

free, and most importantly, they are meaningful in real-world applications. Moreover, al-

though the model introduced in the preceding section contains six non-identified parameters

– β, σ2
u, σuv, σuz, σ

2
v , and σ2

w – knowledge of any two of the parameters (ρuz, ρT ∗u, κ) is

sufficient to identify the whole system. In the following section we solve for ρuz in terms of

ρT ∗u and κ, and go on to characterize the sharp identified set for (ρT ∗u, ρuz, κ). This fully

describes the information contained in the data and our assumptions.

2.3 Deriving the Identified Set for (ρT ∗u, ρuz, κ)

We begin by deriving the relationship between ρuz, ρT ∗u, and κ. The basic idea is to combine

the OLS and IV probability limits, Equations 6 and 7, with the variance decomposition for

y implied by the linear model. After eliminating β and σ2
u from the resulting equations, and

re-parameterizing as described in the preceding section, we derive a quadratic equation in

ρuz with coefficients that involve κ and ρT ∗u. Solving and simplifying, we show that one of

the two roots is extraneous because it implies a negative value for σu, leading to the following

7This follows because Cov(T, y) = Cov(T ∗, y) under classical measurement error.
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equality.8

Proposition 2.1. Under Equation 5 and Assumptions 2.1 and 2.2,

ρuz =

(
ρT ∗uρTz√

κ

)
− (ρTyρTz − κρzy)

√
1− ρ2T ∗u

κ
(
κ− ρ2Ty

) (13)

Equation 13 allows us to solve for ρuz in terms of observable correlations – ρTy, ρTz, and

ρzy – and the unobserved parameters ρT ∗u and κ. Thus, to fully characterize the relationship

between measurement error, treatment endogeneity, and instrument invalidity, it suffices to

derive the sharp identified set for (ρT ∗u, κ). To this end, we first list a set of simple conditions

that are Equivalent to Assumption 2.1.

Lemma 2.1. The following conditions are equivalent to Assumption 2.1:

(a) σ2
u, σ

2
v , σ

2
z , σ

2
w <∞

(b) σ2
u, σ

2
v , σ

2
z > 0, σ2

w ≥ 0

(c) ρ2uv + ρ2uz < 1

(d) Cov(w, z) = Cov(w, u) = Cov(w, v) = 0.

Parts (a) and (b) of Lemma 2.1 are straightforward: all variances must be finite and

strictly positive with the exception of σ2
w, which equals zero in the absence of measurement

error. Part (c), however, is somewhat less intuitive. Geometrically, it states that (ρuz, ρuv)

must lie within the unit circle: if one of the correlations is very large in absolute value, the

other cannot be. To understand the intuition behind this constraint, recall that since v is

the residual from the projection of T ∗ onto z, it is uncorrelated with z by construction. If

ρuz and ρuv were both sufficiently close to one this would require z and v to be correlated,

leading to a contradiction. Part (d) of the Lemma is simply the classical measurement error

assumption. We now use Lemma 2.1 to derive the sharp identified set for ρT ∗u and κ.

Proposition 2.2 (Sharp Identified Set for ρT ∗u and κ.). Under Assumptions 2.1–2.2 and

Equation 5, (ρT ∗u, κ) ∈ (−1, 1)× (κ, 1] where

κ =
ρ2Ty + ρ2Tz − 2ρTyρTzρzy

1− ρ2zy
(14)

These bounds are sharp.

8The convention that standard deviations are positive ensures that correlations have the same sign as
covariances.
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The proof of Proposition 2.2 proceeds by showing that the two bounds κ < κ ≤ 1 and

|ρT ∗u| < 1 are equivalent to Assumption 2.1 given the model from Equation 5 and Assumption

2.2.9 Thus, the sharp identified set is a rectangular region: for any allowable value of κ, ρT ∗u

can take on any value strictly between -1 and 1.

Because Proposition 2.2 provides a lower bound for κ, it places an upper bound on the

extent of measurement error given the observed covariance matrix Σ. This bound relies on

two simpler, but weaker bounds. The first is κ > ρ2Ty. In a setting without covariates, this

says that the R-squared of a regression of y on T provides an upper bound for the maximum

possible amount of measurement error. Although typically stated somewhat differently, this

bound is well known: it corresponds to the familiar “reverse regression bound” for β.10 In

our setting this bound is implied by σ2
u > 0 since

σ2
u = σ2

y

[
κ− ρ2Ty

κ (1− ρ2T ∗u)

]
(15)

by Lemma A.1(c) from the Appendix. Note that ρ2Ty < κ implies that the solution for

ρuz from Proposition 2.1 is always real-valued. The second of these two weaker bounds is

κ > ρ2Tz, which says that the R-squared of the first-stage regression of T on z also provides

an upper bound for the maximum possible amount of measurement error. This follows since,

by Lemma A.1(a) of the Appendix,

σ2
v = σ2

T (κ− ρ2Tz) (16)

and σ2
v must be strictly positive. We doubt that we are the first to notice this bound given its

simplicity. Nevertheless, to the best of our knowledge, it has not appeared in the literature.

After some algebra, these two weak bounds together with the restriction that ρ2uv + ρ2uz < 1

from Lemma 2.1 and the positive-definiteness of Σ yield the sharp lower bound for κ in

Proposition 2.2. This bound is strictly tighter than κ > max
{
ρ2zT , ρ

2
Ty

}
. Note that the

sharp bound incorporates additional information from the reduced form regression of y on

z.

The existence of an upper bound on measurement error, one that tightens as the OLS

and first-stage R-squared values increase, is important because applied econometricians often

explain a substantial discrepancy between OLS and IV estimators by arguing that their data

9Assumption 2.2 ensures that the coefficient matrix Γ from Equation 5 is full rank. This means that the
positive-definiteness of Σ and of the extended covariance matrix Cov(y, T, z, T ∗) is implied by Assumption
2.1 and thus provides no additional restrictions.

10To see this, suppose that ρT∗u = 0, and without loss of generality that β is positive. Then Equation 6
gives βOLS = κβ < β. Multiplying both sides of κ > ρ2

Ty by β and rearranging gives β < βOLS/ρ
2
Ty, and

hence βOLS < β < βOLS/ρ
2
Ty.

10



is subject to large measurement errors. We are unaware of any cases in which such a belief

has been confronted with these restrictions.11 In addition to bounding the possible amount

of measurement error, our assumptions also bound the instrument invalidity parameter ρuz,

in spite of the fact that they place no restriction on ρT ∗u.

Corollary 2.1 (Sharp Bounds for ρuz). Under the conditions of Proposition 2.2, ρuz has a

non-trivial one-sided bound. If ρTyρTz − κρzy < 0, then ρuz ∈ (−|ρTz|/
√
κ, 1). Otherwise

ρuz ∈ (−1, |ρTz|/
√
κ), where κ is defined in Proposition 2.2. These bounds are sharp.

Because κ > ρ2Tz, Corollary 2.1 always rules out a range of values for ρuz. Notice, however,

that it never rules out ρuz = 0. This is unsurprising given that it is known to be impossible

to test for instrument validity in the model we consider here.

Together, Propositions 2.1 and 2.2 characterize the sharp identified set for ρuz, ρT ∗u, and

κ showing us exactly how the problems of instrument invalidity, treatment endogeneity, and

measurement error are mutually constrained by each other and the data. From the identified

set for (ρuz, ρT ∗u, κ) we can easily derive the identified set for any other parameters of the

model in Equation 3. In particular we can find the identified set for β, the main object

of interest to an applied researcher. Unfortunately, and perhaps unsurprisingly, the model

places no restrictions on the causal effect in spite of the bounds it yields for ρuz and κ.

Corollary 2.2 (No Restriction on β). Under the conditions of Proposition 2.2, the sharp

identified set for β is (−∞,∞).

The only way to learn about β in this model is to impose beliefs. For example, the

standard IV identification assumption (belief) imposes ρuz = 0, which point identifies β. But

this belief could imply an implausible amount of measurement error or selection effect. This

fact highlights the central point of our analysis: our beliefs about ρuz are constrained by any

beliefs we may have about ρT ∗u and κ. This observation has two important consequences.

First, it provides us with the opportunity to incorporate our beliefs about measurement

error and the endogeneity of the treatment to improve our estimates. Failing to use this

information is like leaving money on the table. Second, it disciplines our beliefs to prevent

us from reasoning to a contradiction. Without knowledge of the form of the identified set,

applied researchers could easily state beliefs that are mutually incompatible without realizing

it. Our analysis provides a tool for them to realize this and adjust their beliefs accordingly.

While we have thus far only discussed beliefs about ρuz, ρT ∗u and κ, among other things, one

11A recent contribution pointing out the usefulness of the R2 is Oster (2016). She points out that the use
of information about changes in the R2 is necessary to make inferences about the extent of omitted variable
bias when researchers perform robustness exercises that test for the stability of a coefficient estimate to the
inclusion of additional covariates.

11



could also work backwards from beliefs about β to see how they constrain the identified set.

We explore this possibility in one of our examples below.

2.4 Accommodating Exogenous Controls

At the beginning of Section 2 we assumed either that there were no control regressors or

that they had been projected out. Because the control regressors x are exogenous, this is

innocuous, as we now show. Without loss of generality, suppose that (T ∗, z, y) are mean

zero or have been demeaned. Let (T̃ ∗, T̃ , ỹ, z̃) denote the residuals from a linear projection

of the random variables (T ∗, T, y, z) on x, e.g. T̃ ∗ = T ∗ − ΣT ∗xΣ−1xxx and so on, where Σab

is shorthand for Cov(a, b). Then, provided that (T ∗, T,x, y, z) satisfy the model described

above, it follows that

ỹ = βT̃ ∗ + u (17)

T̃ ∗ = πz̃ + v (18)

T̃ = T̃ ∗ + w (19)

since x is uncorrelated with u and w by assumption and uncorrelated with v by construction.

The parameters of this transformed system, β and π, are identical to those of the original

system, as are the error terms. And because the transformed system contains no covariates,

the analysis presented above applies directly. Projecting out covariates does, however, alter

the definition of the structural parameters. The equations for the identified set presented

above will involve not (ρuz, ρT ∗u, κ) but their analogues for the transformed system, namely

κ̃ = Var(T̃ ∗)/Var(T̃ )

ρ̃T̃ ∗u = Cor(T̃ ∗, u)

ρ̃uz̃ = Cor(z̃, u).

All of the results derived above continue to apply to the transformed system; they simply refer

to (ρ̃uz̃, ρ̃T̃ ∗u, κ̃). This is extremely convenient for both of the correlation parameters. In the

presence of covariates, ρ̃T̃ ∗u is the measure of treatment endogeneity over which researchers

are most likely to be able to state a belief because it is net of covariates. Similarly, ρ̃uz̃ is

the natural measure of instrument invalidity because the usual exclusion restriction is a lack

of correlation between the instrument and the error term after accounting for the effect of

exogeneous controls. For this reason, we elicit researcher beliefs directly over ρ̃uz̃ and ρ̃T̃ ∗u.

The situation is different for the measurement error parameter, κ. This quantity is not

12



defined relative to any causal model – it is simply a function of the signal-to-noise ratio for

the observed treatment T . Thus, irrespective of whether covariates are available, κ rather

than κ̃ is the natural quantity over which to elicit researcher beliefs. Fortunately, there is a

simple mapping between κ and κ̃, namely

κ̃ =
σ2
T ∗ − ΣTxΣ−1xxΣxT

σ2
T − ΣTxΣ−1xxΣxT

=
σ2
T ∗(1− ΣTxΣ−1xxΣxT/σ

2
T ∗)

σ2
T (1− ΣTxΣ−1xxΣxT/σ2

T )
=
κ−R2

T.x

1−R2
T.x

(20)

where R2
T.x denotes the population R-squared from a regression of T on x.12 Equation 20

relates κ ≡ σ2
T ∗/σ2

T for the original system to the analogue κ̃, purely in terms of an identified

quantity: R2
T.x. Thus, if a researcher states beliefs over κ, we can easily transform them to

the implied beliefs about κ̃ simply by using the R-squared that results from the regression

that projects x out of T .

Since we can always reduce a problem with exogenous covariates to one without, and

because we can describe the mapping between the parameters that govern the identified set

of the original problem and those of the transformed system, we can easily accommodate

control variables in the framework derived above. In practice, one simply projects out x

before proceeding, using the R-squared from a regression of T on x to transform between κ

and κ̃.

3 Inference for a Continuous Treatment

Having characterized the identified set for this problem, we now describe how to use it to

carry out statistical inference on quantities of interest. Doing so requires us to tackle two

sources of uncertainty. First, while they must satisfy the restrictions given in Propositions

2.1 and 2.2, the true values of ρuz, ρT ∗u, and κ are unknown. This source of uncertainty is

the lack of identification. Second, the covariance matrix Σ of the observables (T, y, z), which

pins down the relationship between (ρuz, ρT ∗u, κ), must be estimated from data and is thus

subject to sampling uncertainty. We can handle these two sources of uncertainty separately

because our parameterization is transparent.13 In a transparent parameterization there are

two groups of parameters: “reduced form” and “structural.” The reduced form parameters,

denoted by ϕ, are directly identified by the data whereas the structural parameters, denoted

by θ, are not: the identified set Θ for θ depends on the data only through ϕ. Thus we write

θ ∈ Θ(ϕ). In the case of a continuous treatment subject to classical measurement error,

12This expression has appeared elsewhere in the literature, see e.g. Dale and Krueger (2002). It follows
from the fact that ΣT∗x = ΣTx since w is classical measurement error.

13See, e.g., Gustafson (2015).
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ϕ = Σ while θ = (ρuz, ρT ∗u, κ).

The approach we follow here is Bayesian, which makes the use of a transparent parame-

terization particularly convenient for inference. We proceed in two steps. First we generate

posterior draws ϕ(j) for the reduced form parameters. Each of these draws determines a

conditional identified set Θ(ϕ(j)) for the structural parameters θ. Because this identified set

does not restrict β, producing meaningful inferences for the causal effect of interest requires

a second step in which we impose researcher beliefs on Θ(ϕ(j)). The usual large-sample

equivalence between Bayesian posterior credible intervals and frequentist confidence inter-

vals holds for ϕ, because the reduced form parameters are identified (Moon and Schorfheide,

2012; Poirier, 1998). This makes the first step uncontroversial. The second step, in contrast,

imposes researcher beliefs that can never be directly falsified by data. Nevertheless, our use

of a transparent parameterization makes clear precisely where any identification beliefs we

may choose to impose enter the problem: the data rule out certain values of ϕ, while our

beliefs amount to placing restrictions on the conditional identified set Θ(ϕ). Whenever one

imposes information beyond what is contained in the data, it is crucial to make clear how

this affects the ultimate result.

3.1 Inference for the Reduced Form Parameters

For the model described in Section 2, the first step of our inference procedure requires

producing posterior draws for the covariance matrix Σ of (T, y, z).14 Because inference for

this part of the problem is standard, the researcher can effectively “drop in” any procedure

that generates posterior draws for Σ. Here we propose two simple possibilities. The first is

based on a large-sample approximation that works well in sufficiently large samples. This

method conditions on T and z and incorporates sampling uncertainty in σTy and σzy only, by

applying the central limit theorem exactly as one does when deriving the frequentist large-

sample distribution of IV and OLS estimators. Specifically, we draw (σ
(j)
Ty , σ

(j)
zy ) from a normal

distribution centered at the corresponding maximum likelihood estimates (σ̂Ty, σ̂zy) with a

variance matrix estimated from the residuals we obtain by running two auxiliary regressions:

y on T and y on z. Details appear in Appendix A.2.1. An advantage of this approach is that

it is robust to heteroskedasticity without requiring us to model the conditional variance of

the errors. Although it does not involve an explicit prior and likelihood, one can view this

method as an approximation to a non-informative Bayesian analysis.

Unfortunately the large-sample approximation we have just outlined is not guaranteed

to produce positive definite draws for Σ. When the sample size is large this is extremely

14For simplicity we suppress exogenous covariates throughout this section. If they are present we simply
project them out, as described in Section 2.4, and apply the methods described here to the resulting residuals.
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unlikely to occur, but in small samples, such as our example from Section 4.1, this can be

problematic. A solution to this problem is to proceed in a fully Bayesian fashion rather than

using an approximation based on the Central Limit Theorem. There are many possible ways

to accomplish this. One simple method is to posit a joint normal likelihood for (T, y, z) and

place a Jeffrey’s prior on Σ, a benchmark noninformative prior that is often used in practice.

Under this model the marginal posterior for Σ is inverse Wishart.15 Draws Σ(j) produced in

this way are guaranteed to be positive definite. Notice that this approach models the joint

distribution of (T, z, y), which may seem odd given that the typical regression problem,

Bayesian or frequentist, models only the conditional distribution of y given T and z. This

is less of a concern in examples featuring a large number of exogenous control regressors.

These are projected out before proceeding, so we are in effect positing a normal distribution

only for the residuals of the regressions of (T, y, z) on x.

3.2 Inference for the Structural Parameters

Every draw Σ(j) from the first step of our inference procedure determines a conditional

identified set Θ(Σ(j)) for the structural parameters (ρuz, ρT ∗u, κ). We now discuss several

ways to summarize the information contained in Θ(Σ(j)), proceeding from most conservative

to least. Whichever summary one chooses, the resulting inference is obtained by averaging

over the reduced form draws Σ(j).

Recall from our discussion in Section 2 above that Σ restricts neither ρT ∗u nor β. It does

however provide a lower bound for κ via Proposition 2.2. Computing this bound at each draw

Σ(j) provides posterior inference for the maximum amount of measurement error compatible

with our assumptions, given the data. One could proceed similarly for the one-sided bound

for ρuz using Corollary 2.1. Going beyond this, however, requires imposing beliefs.

Sign and interval restrictions on the degree of measurement error, treatment endogeneity,

and instrument invalidity are often straightforward to elicit in practice. By imposing such

restrictions we can add relatively weak prior information to the problem and restrict Θ

accordingly. In the discussion that follows we denote by R ⊂ (−1, 1) × (−1, 1) × (0, 1] a

user-imposed restriction on the domain of (ρuz, ρT ∗u, κ). Incorporating beliefs in this way

has the potential to bound the treatment effect. Calculating the bounds implied by each

Θ(Σ(j)) ∩ R provides posterior inference for the identified set for β under our beliefs over

(ρuz, ρT ∗u, κ). Yet, even when Θ(Σ(j)) ∩ R is not particularly informative about β, it can

15Specifically we suppose that (Ti, yi, zi)
iid∼ N(µ,Σ) and place the prior π(µ,Σ) ∝ |Σ|−2 on the mean

vector and variance matrix. A standard calculation shows that the marginal posterior for Σ is Σ|T,y, z ∼
Inverse-Wishart(n − 1, S) where the scale matrix S equals n − 1 times the sample covariance matrix of
(T, y, z).
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easily rule out a wide range of values for ρuz, ρT ∗u and κ. For example, suppose a researcher

strongly believes that ρT ∗u < 0. At a given draw Θ(Σ(j)) this restriction could very easily rule

out ρuz = 0, as we see from Equation 13. Calculating the proportion of draws Σ(j) that are

compatible with ρuz = 0 gives the posterior probability of a valid instrument under the belief

that ρT ∗u < 0. If one imposes beliefs over two or more of (ρuz, ρT ∗u, κ), Θ(Σ(j)) ∩ R could

even be empty for certain draws Σ(j). Calculating the proportion of such empty identified

sets gives the posterior probability that our beliefs are mutually incompatible, given the

data. This illustrates an important general point of our approach. By making explicit the

relationship between measurement error, treatment endogeneity, and instrument invalidity,

our method allows researchers to learn whether their beliefs over these different dimensions

of the problem cohere.

An important advantage of the inferences we have described thus far is that, while

Bayesian, they can be given a valid frequentist interpretation under mild regularity con-

ditions.16 This is because they do not impose a prior on the conditional identified set; they

merely intersect it with researcher beliefs, stated as interval restrictions. A more thoroughly

Bayesian treatment, on the other hand, will impose a fully-fledged prior on Θ(Σ(j)), putting

the two sources of uncertainty – lack of identification, and sampling uncertainty in the re-

duced form parameters – on equal footing. Although more controversial because it can no

longer be given a frequentist interpretation, this approach has a key advantage: rather than

summarizing only the most extreme points of Θ(Σ(j))∩R, it provides a more complete picture

by averaging over this set. Inferences that rely only on interval restrictions are necessarily

very sensitive to small changes in R and inherently pessimistic. In contrast, because any

reasonable prior will place only a small amount of probability density near the boundaries,

averaging over Θ(Σ(j)) ∩R can produce more robust inferences.

In most cases it will not be feasible to elicit a fully informative prior over the conditional

identified set. Its support, for example, changes with each draw Σ(j). For this reason

we suggest an approach based on a conditionally uniform reference prior that gives equal

weight to regions of the support with equal area.17 Specifically, we draw uniformly over

the intersection of R with the manifold (ρuz, ρT ∗u, κ) that describes the identified set for

instrument invalidity, treatment endogeneity, and measurement error, a two-dimensional

manifold embedded in three-dimensional space.18

While a uniform distribution seems like the natural choice for representing prior igno-

16These conditions concern the first step of the procedure: inference for the reduced form parameters. See
Moon and Schorfheide (2012) and Kline and Tamer (2016).

17Moon and Schorfheide (2012) likewise employ a conditionally uniform reference prior in their example
of a two-player entry game.

18For details see Appendix A.2.2.
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rance some caution is warranted: uniformity in one parameterization could imply a highly

informative prior in some different parameterization. This is unavoidable. We emphasize,

however, that the uniform serves here as a reference prior only. As such, one need not

take it completely literally but could instead consider, for example, what kind of deviation

from uniformity would be necessary to support a particular belief about β. We explore this

possibility in our examples below.

4 Examples with a Continuous Treatment

We now illustrate the methods proposed in Sections 2 and 3 using two examples drawn from

the applied literature. A summary of results appears in Table 1.

4.1 The Colonial Origins of Comparative Development

Acemoglu et al. (2001) study the effect of institutions on GDP per capita using a cross-

section of 64 countries.19 Because institutional quality is endogenous, they use differences in

the mortality rates of early western settlers across colonies as an instrumental variable. We

consider their main specification

log GDP/capita = constant + β (Institutions) + u

Institutions = constant + π (log Settler Mortality) + v

which yields an IV estimate of 0.94 with a standard error of 0.16. This is nearly twice as

large as the corresponding OLS estimate of 0.52 with a standard error of 0.06. The authors

attribute this disparity to measurement error:

This estimate is highly significant . . . and in fact larger than the OLS estimates . . . This

suggests that measurement error in the institutions variables that creates attenuation

bias is likely to be more important that reverse causality and omitted variables biases.

(Acemoglu et al., 2001, p. 1385)

Acemoglu et al. (2001) state a two beliefs that are relevant for our partial identification

exercise. First, their discussion implies there is likely a positive correlation between “true”

institutions and the main equation error term u. This could arise from reverse causality –

wealthier societies can afford better institutions – or omitted variables, such as legal origin

or British culture, which are likely to be positively correlated with present-day institutional

19Because the sample size is so small in this example, we generate posterior draws for Σ using the Jeffreys
Prior approach described in Section 3 to avoid non-positive definite draws.
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quality. We encode this belief using the prior restriction 0 < ρT ∗u < 0.9 below, ruling out

only unreasonably large values of treatment endogeneity. Second, in a footnote that uses

an alternative measure of institutions as an instrument for the first, the authors argue that

measurement error could be substantial.20 Taken at face value, the calculations from this

footnote imply a point estimate of κ = 0.6 which would mean that 40 percent of the variation

in measured institutions is noise.21 Below we consider two alternative ways of encoding this

auxiliary information about κ.

Results for the Colonial Origins example appear in rows 1–3 of Table 1. Estimates

and bounds for β in these rows indicate the percentage increase in GDP per capita that

would result from a one point increase in the quality of institutions, as measured by average

protection against expropriation risk.22 All other values in the table are unitless: they are

either probabilities, correlations, or variance ratios. OLS and IV estimates and standard

errors, along with estimates of the lower bounds for κ and ρuz, appear in the first row of

Panel (I). The first column of Panel (II) gives the fraction of posterior draws for the reduced

form parameters that yield an empty identified set, while the second column gives the fraction

that are compatible with a valid instrument: ρuz = 0. Panel (III), along with the third and

fourth columns of Panel (II), present posterior medians and accompanying 90 percent highest

posterior density intervals. The results in Panel (II) are marked “Frequentist-Friendly”

because they do not involve placing a prior on the conditional identified set: they only

average over reduced form parameter draws under the restriction listed in the corresponding

row label.23 In contrast, those in Panel (III) are “Fully Bayesian”; they place a uniform prior

on the conditional identified set (see Section 3.2).

We first consider a prior under which 0.6 is an upper bound for κ and thus a lower bound

on the extent of measurement error.24 Under this restriction, approximately 27 percent of

the draws for the reduced form parameters Σ yield an empty identified set, as shown in the

first column of Panel (II). Intuitively, this means that there are covariance matrices Σ that

are close to the sample estimate Σ̂ but which rule out the region (κ, ρT ∗u) ∈ (0, 0.6]× [0, 0.9].

The problem is not the restriction on ρT ∗u but on κ: the data place no restrictions on the

20See footnote #19 of Acemoglu et al. (2001).
21Suppose T1 and T2 are two measures of institutions that are subject to classical measurement error:

T1 = T ∗ + w1 and T2 = T ∗ + w2. Both T1 and T1 suffer from precisely the same degree of endogeneity,
because they inherit this problem from T ∗ alone under the assumption of classical measurement error.
Thus, the OLS estimator based on T1 converges to κ(β + σT∗u/σ

2
T∗) while the IV estimator that uses T2 to

instrument for T1 converges to β + σT∗u/σ
2
T∗ . The ratio identifies κ: 0.52/0.87 ≈ 0.6.

22See Acemoglu et al. (2001) for a detailed explanation of this measure of institutions.
23See Section 3 for details.
24This interpretation comes from personal communication with one of the authors of Acemoglu et al.

(2001). Based on footnote 19 of the paper, he expressed the belief that at least 40 percent of the measured
variation in quality of institutions was likely to be noise.
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extent of treatment endogeneity although they do provide an upper bound on the extent of

measurement error, as shown in Proposition 2.2 from above. Indeed, the proposed a priori

upper bound of 0.6 for κ is only slightly larger than our point estimate of 0.54 for κ. After

accounting for uncertainty in Σ, we find that 27 percent of the posterior density for κ lies

above 0.6. As such, our framework strongly suggests that the belief κ < 0.6 is incompatible

with the data, and we cannot proceed further under this prior.

Instead we consider a second candidate prior that takes 0.6 as a lower bound on κ

and thus an upper bound on the extent of measurement error. We continue to impose

ρT ∗u ∈ [0, 0.9]. Results for this prior specification appear in the third row of Table 1. Unlike

the specification considered above, this prior does not yield empty identified sets, as we see

from the first column of Panel (II). It does however, strongly suggest that settler mortality

is an invalid instrument: 73 percent of the posterior draws for the reduced form parameters

Σ exclude ρuz = 0 under the restriction (κ, ρT ∗u) ∈ (0.6, 1] × [0, 0.9]. Figure 1a makes this

point in a slightly different way, by depicting the identified set for (κ, ρT ∗u, ρuz), evaluated

at the maximum likelihood Σ̂ of the reduced form parameters, in the region where ρT ∗u is

positive. The gray region corresponds to κ < κ < 0.6, the largest amount of measurement

error consistent with Σ̂. We see from the figure that the plane ρuz = 0 only intersects the

identified set in the region where measurement error is extremely severe. Moreover, unless

κ = κ, ρuz = 0 implies that ρT ∗u must be close to zero, which would require that institutions

are approximately exogenous.

Moreover, under the prior (κ, ρT ∗u) ∈ (0.6, 1] × [0, 0.9] depicted in shades of red and

blue in Figure 1a, the identified set resides exclusively below the plane ρuz = 0, suggesting

that log settler mortality is negatively correlated with the unobservables in u. The Bayesian

posterior inference for ρuz in column one of Panel (III) shows that, even after accounting

for uncertainty in the reduced form parameters Σ, the sign of ρuz is still almost certainly

negative. The primary question of interest, of course, is not the validity of settler mortality

as an instrumental variable, but the causal effect of institutions on development. The colored

region in Figure 1a shows how κ, ρT ∗u and ρuz map into corresponding values for β. Blue

indicates a positive treatment effect, red a negative treatment effect, and white a zero treat-

ment effect. In both directions, darker colors indicate larger magnitudes. As seen from the

figure, we cannot rule out negative values for β. The posterior inference for the boundaries

of the identified set for β from columns 3–4 of Panel (II) tell the same story, while accounting

for sampling uncertainty in Σ: the highest posterior density interval for β is comfortably to

the left of zero, while that for β̄ is comfortably to the right of zero. Notice from Figure 1a,

however, that at least when evaluated at Σ̂, the identified set only implies negative values

for β when ρT ∗u is extremely large and there is very little measurement error (κ is close
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Figure 1: Results for the Colonial Origins example from Section 4.1. Panel (a) plots the identified
set for (ρuz, ρT ∗u, κ) evaluated at the maximum likelihood estimate for Σ in the region corresponding
to a positive selection effect: ρT ∗u ∈ [0, 0.9]. The region in which 0.6 < κ < κ is shaded in gray while
the colors on the remainder of the surface correspond to the implied value of the treatment effect
β. Panel (b) gives the posterior for β under a uniform prior on the intersection of the restriction
(κ, ρT ∗u) ∈ [0.6, 1] × [0, 0.9] with the conditional identified set (see Section 3.2 for details). The
dashed red line gives the OLS estimate and the blue line the IV estimate.

to one). Because the posterior for β is determined entirely from these extreme points, the

resulting inference is very conservative, a concern that we raised above in Section 3.2. This

observation motivates the idea of averaging not only over reduced form draws Σ but also over

the conditional identified set itself, as we do in Figure 1b and the second column of Panel

(III), under a uniform reference prior. These results indicate that the conditional identified

sets for (κ, ρT ∗u, ρuz) do not contain more than a very small region in which β is negative.25

Indeed, the posterior median for β is 0.49, very close to the OLS estimate from Acemoglu

et al. (2001), while the corresponding 90 percent highest posterior density interval includes

only positive values. In spite of the likely negative correlation between settler mortality and

u under reasonable prior beliefs that accord with the data, the main result of Acemoglu et al.

(2001) continues to hold: it appears that the effect of institutions on income per capita is

almost certainly positive.

25Because the prior is uniform, “small” refers to the relative area of a region on the identified set: in
Figure 1a, for example, the red region is small compared to the blue and white regions.
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4.2 Was Weber Wrong?

Becker and Woessmann (2009) study the long-run effect of the adoption of Protestantism

in sixteenth-century Century Prussia on a number of economic and educational outcomes,

using variation across counties in their distance to Wittenberg – the city where Martin

Luther introduced his ideas and preached – as an instrument for the Protestant share of the

Population in the 1870s. Here we consider their estimates of the effect of Protestantism on

literacy, based on the specification

Literacy rate = constant + β (Protestant share) + x′γ + u

Protestant Share = constant + π (Distance to Wittenberg) + x′δ + v

where x is a vector of demographic and regional controls.26 Because this example includes

exogenous controls, we define treatment endogeneity and instrument invalidity net of these

covariates, as detailed in Section 2.4. To simplify the notation we write ρuz and ρT ∗u rather

than ρ̃uz and ρ̃T ∗u below but both of these should be understood as being net of x. In

contrast, κ is not defined net of covariates, again as detailed in Section, 2.4 so it continues

to refer to the ratio σ2
T ∗/σ2

T below.

Becker and Woessmann (2009) express beliefs about the three key parameters in our

framework. First, their IV strategy relies on the assumption that ρuz = 0, an assumption

that we will relax below. Second, the authors argue that the 1870 Prussian Census is

regarded by historians to be highly accurate. As such, measurement error in the Protestant

share should be fairly small. Finally, Becker and Woessmann (2009) go through a lengthy

discussion of the nature of the endogeneity of the Protestant share, suggesting that it is most

likely that Protestantism is negatively correlated with the unobservables:

wealthy regions may have been less likely to select into Protestantism at the time of

the Reformation because they benefited more from the hierarchical Catholic structure,

because the opportunities provided by indulgences allured to them, and because the

indulgence costs weighted less heavily on them . . . The fact that “Protestantism” was

initially a “protest” movement involving peasant uprisings that reflected social discon-

tent is suggestive of such a negative selection bias. (Becker and Woessmann, 2009, pp.

556-557)

Results for the “Was Weber wrong?” example appear in rows 4–6 of Table 1. Estimates

and bounds for β in these rows indicate the percentage point change in literacy that a county

26In this exercise we include the controls listed in Section III of Becker and Woessmann (2009), specifically:
the fraction of the population younger than age 10, of Jews, of females, of individuals born in the municipality,
of individuals of Prussian origin, the average household size, log population, population growth in the
preceding decade, and the fraction of the population with unreported education information.
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would experience if its share of Protestants were to increase by one percentage point. All

other values in the table are unitless: they are either probabilities, correlations, or variance

ratios. OLS and IV estimates and standard errors, along with the estimates of the lower

bounds for κ and ρuz, appear in row four of Panel (I). The first column of Panel (II) gives the

fraction of posterior draws for the reduced form parameters that yield an empty identified

set, while the second column gives the fraction that are compatible with a valid instrument:

ρuz = 0. Panel (III), along with the third and fourth columns of Panel (II), present posterior

medians and accompanying 90 percent highest posterior density intervals. The results in

Panel (II) are marked “Frequentist-Friendly” because they do not involve placing a prior on

the conditional identified set: they average only over reduced form parameter draws under

the restriction listed in the corresponding row label.27 In contrast, those in Panel (III) are

“Fully Bayesian” in that they place a uniform prior on the conditional identified set.

As we see from Table 1, Becker and Woessmann (2009) obtain an OLS estimate of 0.10

and an IV estimate that is nearly twice as large: 0.19 with a standard error of 0.03. If the

instrument is valid, this corresponds to just under a 0.2 percentage point increase in literacy

from each percentage point increase in the prevalence of Protestantism in a given county. The

estimated lower bound for κ in this example is just under a half, which means that at most 50

percent of the measured variation in the Protestant share can be attributed to measurement

error. Notice that this bound is somewhat weak: it allows for far more measurement error

than one might consider reasonable given the author’s arguments concerning the accuracy

of the Prussian census data.

Figure 2a depicts the identified set for (κ, ρT ∗u, ρuz) evaluated at the maximum likelihood

estimate of Σ. As above, the surface is colored to indicate the corresponding value of β: blue

indicates a positive treatment effect, red a negative effect, and zero no effect. In both

directions, darker colors indicate larger magnitudes. We see immediately from the figure,

that unless ρT ∗u is large and negative, the treatment effect will be positive, irrespective of the

amount of measurement error. The rectangular region surrounded by thick black boundaries

indicates our approximation to the prior beliefs of Becker and Woessmann (2009): positive

selection, and measurement error that is not too severe. This area is well within the blue

region, corresponding to a positive treatment effect. Although it is somewhat harder to see

from the figure, the region enclosed in the black boundary also contains ρuz = 0. The belief

that ρT ∗u < 0 and measurement error is modest indeed appears to be compatible with a

valid instrument in this example.

Although the substance of this example is apparent from Figure 2a, merely examining

the identified set evaluated at the MLE is insufficient, as it fails to account for uncertainty

27See Section 3 for details.
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Figure 2: Results for the “Was Weber Wrong?” example from Section 4.2. Panel (a) plots the
identified set for (ρuz, ρT ∗u, κ) evaluated at the maximum likelihood estimate for Σ. The color of
the surface corresponds to the implied value of the treatment effect β. Panel (b) gives the posterior
for β under a uniform prior on the intersection of the restriction (κ, ρT ∗u) ∈ [0.8, 1] × [−0.9, 0]
with the conditional identified set (see Section 3.2 for details). The dashed red line gives the OLS
estimate and the blue line the IV estimate.

in the reduced form parameters Σ. Row six of Table 1 completes our analysis by providing

Bayesian inference for the Weber example under the prior indicated by the black boundary

in Figure 2a: κ < 0.8 and −0.9 < ρT ∗u < 0. In this example one need not even consult the

fully Bayesian results from Panel (III): the identified set for β comfortably excludes zero, as

we see from columns 3–4 of Panel (II). Indeed, the posterior median for the lower bound for

β equals the OLS estimate which already implies a substantial causal effect of Protestantism

on literacy. This is related to the fact that, as we see from columns 1–2 of the same panel,

100 percent of the reduced form draws for this prior yield an identified set that contains

ρuz = 0. Similarly, the fully Bayesian inference for ρuz in Panel (III) yields a point estimate

of 0.08 and a fairly tight highest posterior density interval to accompany it. If we wish

to report a point a point estimate for β, the posterior median from our uniform reference

prior in the second column of Panel (III) suggests that the IV estimate is approximately

correct, although the highest posterior density interval is skewed somewhat towards even

larger causal effects. Moreover, none of these results is sensitive to the restriction κ < 0.8,

as we see from row five of Table 1 which imposes only −0.9 < ρT ∗u < 0. In this example,

the authors beliefs are mutually consistent and their result is extremely robust.
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5 The Case of a Binary Treatment

5.1 Model and Assumptions

Although the logic of our approach from above is general, our characterization of the iden-

tified set does not apply when the treatment of interest is binary. This is because, as we

mentioned in the introduction, a binary instrument cannot be subject to classical measure-

ment error. Accordingly, our characterization of the identified set for this common setting

will require a different approach. Let T , T ∗, and z be binary variables.28 We continue to

allow for treatment endogeneity and instrument invalidity: both T ∗ and z are potentially

correlated with u. For convenience we will absorb the intercept into the error term u as

follows

y = βT ∗ + u (21)

u = c+ ε (22)

where ε is mean zero but u may not be. For simplicity, we begin by assuming that there are no

covariates. In Section 5.4 we show how to account for the effect of covariates by transforming

the geometry of the problem.29 This is important for elicitation because researcher beliefs

over treatment endogeneity and instrument invalidity are typically conditional on covariates.

5.1.1 Non-differential Measurement Error

Since T and T ∗ are both binary, measurement error is governed by two conditional proba-

bilities:

α0 = P(T = 1|T ∗ = 0) (23)

α1 = P(T = 0|T ∗ = 1) (24)

These mis-classification probabilities replace κ from the case of a continuous treatment. As

mentioned above, it is impossible for a binary regressor to be subject to classical measurement

error: the true value T ∗ must be negatively correlated with the measurement error w. To

see why, first note that since T and T ∗ are both binary, w = T − T ∗ can only take on values

28If a continuous instrument is available, it can always be binarized.
29Observe that this is different from our treatment of the continuous treatment case. There we could

simply project out any exogenous covariates from all other observables.
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in the set {−1, 0, 1}. The conditional distribution of w given T ∗ is as follows:

T ∗ = 0 =⇒

{
T = 0 with prob. 1− α0 ⇐⇒ w = 0

T = 1 with prob. α0 ⇐⇒ w = 1

T ∗ = 1 =⇒

{
T = 0 with prob. α1 ⇐⇒ w = −1

T = 1 with prob. 1− α1 ⇐⇒ w = 0

Hence E[w|T ∗ = 0] = α0, while E[w|T ∗ = 1] = −α1. Since classical measurement er-

ror is impossible, we assume instead that the measurement error is non-differential, the

closest assumption to classical measurement error in the context of a binary treatment.

Non-differential measurement error requires that w be conditionally independent of all other

random variables in the system given knowledge of true treatment status T ∗. Consider,

for example, self-reports of smoking behavior. The non-differential measurement error as-

sumption allows for the possibility that smokers are more likely to mis-represent their true

smoking status than nonsmokers. After controlling for true smoking status, however, it rules

out any relationship between measurement error and the instrument, as well as any other

unobserved characteristics that determine the outcome y. The precise assumption we use

below takes the following form:

Assumption 5.1 (Non-differential Measurement Error).

(i) E [ε|T, T ∗, z] = E [ε|T ∗, z], E [ε2|T, T ∗, z] = E [ε2|T ∗, z]

(ii) P(T = 1|T ∗, z) = P(T = 1|T ∗)

Because we only work with first and second moments of the observables, Assumption 5.1,

rather than full conditional independence, suffices. We also impose an assumption about the

extent of measurement error, which is standard in the literature on mis-classified binary

regressors.

Assumption 5.2 (Extent of Measurement Error). Assume that α0 + α1 < 1.

As shown in Lemma B.3 , Cov(T, T ∗) = (1−α0−α1)Var(T ∗) so Assumption 5.2 amounts

to asserting that T and T ∗ are positively correlated, or equivalently that the misclassifica-

tion is “not so bad . . . that the effective definition of the classification has been reversed”

(Bollinger, 1996, p. 389).

Assumptions 5.1 and 5.2 have two implications that contrast sharply with those of the

classical measurement error case from above. While these have been known in the literature

for some time, they do not appear to be very widely appreciated. First, while the IV estimator
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is unaffected by classical measurement error (Equation 7), it is affected by non-differential

measurement error. In particular,

βIV =
β

1− α0 − α1

+
σzu
σzT

. (25)

as explained in Lemma B.7. Indeed, under a valid instrument βIV is necessarily an overes-

timate of β: the opposite of the familiar OLS attenuation bias logic for the case of classical

measurement error.30 Second, under non-differential measurement error it is no longer true

that Var(T ∗) ≤ Var(T ). Let p = P(T = 1) and p∗ = P(T ∗ = 1). By the law of total

probability,

σ2
T ∗ = Var(T ∗) = p∗(1− p∗) =

(p− α0)(1− p− α1)

(1− α0 − α1)2
(26)

whereas σ2
T = Var(T ) = p(1− p). The probability limit of the OLS estimator in this case is

accordingly more complicated. In particular,

βOLS =
σ2
T ∗

σ2
T

[
β (1− α0 − α1) +

σT ∗u

σ2
T ∗

]
(27)

as explained in Lemma B.9. Again, contrast this with the case of classical measurement

error from Equation 6 from above. Although this is not immediately apparent from the form

of Equation 27, if σT ∗u = 0 then OLS is attenuated towards zero whenever α0 + α1 < 1.31

5.1.2 Notation: Observables and Unobservables

Unlike their counterparts for the continuous case, Equations 25 and 27 do not allow us to

recover β even if both the instrument and regressor are exogenous. This is because they do

not incorporate all information contained in the data for the binary case. Kane et al. (1999),

Black et al. (2000) and Frazis and Lowenstein (2003) show, however, that if the instrument

and regressor are jointly exogenous then β can be consistently estimated via a method of

moments approach that uses strictly more information than is contained in the OLS and IV

estimators.32 Although we do not assume that the treatment and instrument are exogenous,

a full characterization of the identified set relies on the additional information exploited by

these method of moments estimators.

30Without Assumption 5.2, βIV could have the wrong sign even if the instrument is valid.
31To see why note that, by Lemma B.1, p∗ = (p−α0)/(1−α0−α1) and 1−p∗ = (1−p−α1)/(1−α0−α1).

Since both p∗ and 1− p∗ must be positive, α0 +α1 < 1 implies α0 < p and α1 < 1− p. After expanding, the
term that multiples β in Equation 27 equals [p(1− p)− pα1−α0(1− p)]/[p(1− p)− p(1− p)α1−α0p(1− p)].
The result follows since the second term in the numerator is greater than the second term in the denominator
and the same holds for the third terms.

32The required condition is slightly stronger than σT∗u = σzu = 0. It is in fact E[ε|T, z] = 0.
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(a) Observables

z = 0 z = 1

T = 0
ȳ00
σ2
00

p00

ȳ01
σ2
01

p01

T = 1
ȳ10
σ2
10

p10

ȳ11
σ2
11

p11

(b) Unobservables

z = 0 z = 1

T ∗ = 0
m∗00
s∗200

p∗00

m∗01
s∗201

p∗01

T ∗ = 1
m∗10
s∗210

p∗10

m∗11
s∗211

p∗11

Table 2: We observe ptk = P(T = t, z = k), ȳtk = E[y|T = t, z = k], and σ2tk = Var(y|T = t, z = k).
In contrast, p∗tk = P(T ∗ = t, z = k), m∗tk = E[u|T = t, z = k], and s∗2tk = Var(u|T ∗ = t, z = k) are
unobservables.

The simplest way to incorporate this additional information is to work with the joint

probability distribution of (z, T ) and the conditional means ȳtk ≡ E[y|T = t, z = k] for

t, k ∈ {0, 1} as depicted in Table 2a. First, define p∗k = P(T ∗ = 1|z = k) and pk =

P(T = 1|z = k). Although p∗k is unobserved, it is related to the observed probability pk by

p∗k = (pk − α0)/(1 − α0 − α1) as shown in Lemma B.1. This means that p∗k is observed up

to knowledge of α0, α1 so we need not consider it a separate unknown. Now, as shown in

Lemma B.11, the observed conditional means can be related to the unobservable ones by

ỹ0k ≡ (1− pk)ȳ0k = (β +m∗1k)α1p
∗
k + (1− α0)(1− p∗k)m∗0k (28)

ỹ1k ≡ pkȳ1k = (β +m∗1k)(1− α1)p
∗
k + α0(1− p∗k)m∗0k (29)

where m∗tk ≡ E[u|T = t, z = k] for t, k ∈ {0, 1}, as depicted in Table 2b. Because of the

mis-classification, each of the means in Table 2a contains a mixture of treated and untreated

individuals, depending on the values of α0 and α1. The expression for ȳ00, for example,

involves not only m∗00 but also β and m∗10.

In addition to conditional means, ȳtk, we assume that conditional variances of the outcome

σ2
tk = Var(y|T = t, z = k) are likewise observed. This information has not been used in

the existing literature because, under joint exogeneity of the instrument and treatment,

one obtains point identification from conditional means alone. Without this assumption

the model is unidentified, and conditional variance information becomes useful. Let s∗2tk =

Var(u|T ∗ = t, z = k). Equations B.13 and B.15 in the Appendix are the counterparts of

Equations 28 and 29 for second moments: they relate the observable variances σ2
tk, depicted

in Table 2a to the unobservable variances s∗2tk depicted in Table 2b. As we show below, the

restriction s∗2tk > 0 will allow us to tighten our bounds for the mis-classification probabilities.
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5.2 A Convenient Parameterization

While the m∗tk provide a very convenient way of expressing how misclassification pollutes

the conditional means of y, they depend simultaneously on both the extent of treatment

endogeneity and instrument invalidity. The assumption of an exogenous treatment, σT ∗u = 0,

is equivalent to
1

P(T ∗ = t)

∑
k

p∗tkm
∗
tk = c

for t = 0, 1 while that of an exogenous instrument, σzu = 0, is equivalent to

(1− p∗k)m∗0k + p∗km
∗
1k = c

for k = 0, 1 where c is the constant term from Equation 22.33 This shows that the objects

over which researchers often hold and express beliefs – treatment exogeneity and instrument

invalidity – are not the m∗tk themselves, but rather certain functions of them. For this reason,

in the case of a binary treatment and instrument it is more natural to elicit researcher beliefs

in terms of the following quantities

δT ∗ ≡ E[u|T ∗ = 1]− E[u|T ∗ = 0] (30)

δz ≡ E[u|z = 1]− E[u|z = 0] (31)

The first, δT ∗ , measures the average difference in unobservables between the treated and un-

treated; the second, δz, measures the average difference in unobservables between those with

the high value of the instrument and those with the low. Both quantities are linear functions

of m∗tk with coefficients that depend on α0, α1, and observables, as shown in Lemma B.12.

Although δT ∗ and δz are not scale-free, both are empirically meaningful and conveniently

measured in units of y. For example, consider the smoking cessation randomized controlled

trial studied in Courtemanche et al. (2016) where z is the randomized offer to participate in

a smoking cessation program, T ∗ is an indicator of true smoking cessation, T is self-reported

smoking cessation, and y is body-mass index (BMI). Here δT ∗ is the selection effect. For

example, those who succeed in quitting smoking are likely more health-conscious overall.

We would expect them to have a lower BMI on average even if they had not quit smoking,

leading to a negative value of δT ∗ . We would also expect a knowledgeable obesity researcher

to be able to put a lower bound on δT ∗ . But what about δz? Courtemanche et al. (2016)

point out that, in spite of being randomized, the offer to participate in a smoking cessation

33Without covariates, the exogeneity assumption used by Kane et al. (1999), Black et al. (2000), Frazis
and Lowenstein (2003) is equivalent to m∗tk = c, for t, k ∈ {0, 1}.
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program may have a direct effect on BMI, making it an invalid instrument. For example,

those who participate in the smoking cessation program may be led to smoke less even if

they fail to quit entirely. Because nicotine is an appetite suppressant, this would likely lead

to a positive value of δz. We would also expect our researcher to be able to provide at least

a reasonable order of magnitude for δz, although in most applications of our framework,

researchers will likely prefer to compute the value of δz consistent with their other beliefs

rather than the reverse.

In addition to δT ∗ and δz, the identified set will also depend on α0 and α1. Fortunately,

both of these quantities are probabilities so they are already directly intelligible, unitless,

and bounded.

5.3 Deriving the Identified Set for (δT ∗, δz, α0, α1)

We begin by deriving the relationship between δT ∗ , δz, α0 and α1, the objects over which we

can elicit researcher beliefs, by eliminating m∗tk and β. The derivation proceeds in two steps.

We first manipulate Equations 28 and 29 to yield an expression for m∗10−m∗11 that depends

only on observables and α0. Combining this with the definitions of δT ∗ and δz in terms of m∗tk
from Lemma B.12 gives an overdetermined linear system of three equations in (m∗10,m

∗
11)

given (α0, α1, δT ∗ , δz) and observables. Solving to eliminate m∗10 and m∗11 we derive a linear

relationship between δz and δT ∗ given α0, α1 and observables.

Proposition 5.1. Under Assumption 5.1

δz = B(α0, α1) + S(α0, α1)δT ∗ . (32)

where

B(α0, α1) =
g(α1)− (p0 − p1)h (α1)

1− α0 − α1

− (p0 − α0)(p1 − α0)∆(α0)

(p− α0)(1− α0 − α1)

S(α0, α1) =
p1 − p0

1− α0 − α1

,

and g, h, and ∆ are simple functions of α0, α1 and observables defined in the proof.

Note that the slope of the relationship between δz and δT ∗ is directly proportional to the

strength of the instrument: p1 − p0. The mis-classification probabilities, on the other hand,

enter in nonlinear fashion in both the slope and intercept.

Proposition 5.1 allows us to express δz in terms of δT ∗ , α0, α1 and the observable prob-

abilities and conditional means from Table 2a. Thus, to fully characterize the relationship

between instrument invalidity, treatment endogeneity, and measurement error it suffices to
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derive the sharp identified set for δT ∗ , α0 and α1. Just as we were able to construct bounds

for κ in the case of classical measurement error, we can bound the mis-classification error

rates α0 and α1 in the binary regressor case.

Proposition 5.2 (Sharp Identified Set for δT ∗ , α0, and α1). Suppose that s∗2tk > 0 for all

t, k. Then, under Assumptions 5.1 and 5.2, (δT ∗ , α0, α1) ∈ (−∞,∞)× [0, ᾱ0)× [0, ᾱ1) where

ᾱ0 = min
k

{
ᾱk
0

}
, ᾱ1 = min

k

{
f0k(ᾱk

0)
}
,

ᾱk
0 is the smallest solution to f0k(α0) = f1k(α0), and

f0k(α0) =
(pk − α0)σ

2
0k

(pk − α0)σ2
0k + (ȳ1k − ȳ0k)2 p2k(1− α0)

(33)

f1k(α0) =
(1− pk)(pk − α0)σ

2
1k − (ȳ1k − ȳ0k)2 (1− pk)2α0

(pk − α0)σ2
1k − (ȳ1k − ȳ0k)2 (1− pk)2α0

(34)

for k = 0, 1. These bounds are sharp.

The result of Proposition 5.2 is analogous to that of Proposition 2.2 for the continuous

treatment case; in each case we obtain a non-trivial upper bound on the extent of measure-

ment error, but no restriction on the extent of treatment endogeneity. The proof in the

binary case proceeds by showing that α0 < ᾱ0 and α1 < ᾱ1 is equivalent to s∗2tk > 0 for all

t, k = 0, 1. As a result, the variance information places no restrictions on m∗tk. Since the

conditional mean information from Equations 28 and 29 also places no restrictions on m∗tk,

it follows that δT ∗ is unbounded.

Figure 3 illustrates how to construct the bounds for α0 and α1, using data from one of

our empirical examples below. The region in which Assumption 5.2 holds (α0 + α1 < 1) is

shaded in light gray. Under this assumption, the equality p∗k = (pk−α0)/(1−α0−α1) implies

that α0 ≤ mink{pk} and α1 ≤ mink{1−pk}, as shown in Lemma B.14. These bounds, which

do not incorporate the information contained in the conditional variances of y, are depicted

in light blue. The sharp bounds, depicted in dark blue, are determined by the intersection

of f11 with f01 and f10 with f00. Each point of intersection provides a bound for both α0 and

α1. Since all of these bounds must hold simultaneously, however, only the smallest of each

binds. In Figure 3 the intersection of f10 with f00 determines the binding constraint for α1

while the intersection of f11 with f01 determines the binding constraint for α0.

Finally, as in the continuous treatment case, the assumptions of our model place no

restrictions on β.

Corollary 5.1. Under the Assumptions of Proposition 5.2, the sharp identified set for β
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Figure 3: The identified set for (α0, α1) from Proposition 5.2. The region where Assumption
5.2 is satisfied (α0 + α1 < 1) is depicted in light gray and the weak bounds α0 < mink{pk},
α1 < mink{1 − pk} are shown in light blue. The region in dark blue gives the sharp bounds
α0 < mink{ᾱk

0} and α1 < min{ᾱk
1}, where (ᾱk

0 , ᾱ
k
1) is the intersection of f0k with f1k, as defined in

Proposition 5.2. This figure is uses estimates of the observables from the example in Section 6.1.

and δz are both (−∞,∞).

The careful reader may wonder whether an analogue of the condition that Ω is positive

semi-definite, from Assumption 2.1 in the continuous treatment case, provides any additional

restrictions when the treatment is binary. The answer is no. Because T ∗, z, w and the

analogue of v are all discrete, the analogue of Ω in the binary case is guaranteed to be positive

semi-definite provided that all probabilities are between zero and one, and all conditional

variances of y are positive.34

Now that we have the identified set for the case of a binary treatment, we can proceed

in the same way as we did for the continuous treatment case described above in Section

2. In particular, we can intersect researcher beliefs over measurement error, treatment en-

dogeneity and instrument invalidity with the identified set itself to check whether these

beliefs are mutually consistent given the data and, if so, harness them to learn about the

treatment effect. As in the continuous treatment case, each point on the identified set im-

plies a corresponding value for the treatment effect β. A convenient way to compute this

34Let η be a random vector, ξ be a binary random variable, and define Ω = Var(η), Ω0 = Var(η|ξ = 0),
and Ω1 = Var(η|ξ = 1). A straightforward calculation shows that if Ω0 and Ω1 are positive semi-definite, so
is Ω. In our case, we simply apply this fact recursively to condition on both T ∗ and z.
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value is to use the IV probability limit from Equation 25. Since σzu/σzT = δz/(p1 − p0),

β = (1− α0 − α1)[βIV − δz/(p1 − p0)] as explained in Lemma B.10.

5.4 Accommodating Exogenous Covariates

In the presence of covariates we redefine u from Equation 22 as

u = c+ x′γ + ε (35)

and the following replaces Assumption 5.1:

Assumption 5.3 (Non-differential Measurement Error with Exogenous Covariates).

(i) E [x|T, T ∗, z] = E [x|T ∗, z]

(ii) E [ε|T, T ∗, z] = E [ε|T ∗, z], E [ε2|T, T ∗, z] = E [ε2|T ∗, z]

(iii) P(T = 1|T ∗, z) = P(T = 1|T ∗).

Assumption 5.3 allows us to employ the results from above in the presence of exogenous

covariates: the error term u is merely re-defined to make explicit the role of x. In principle we

could continue to express the identified set in terms of δT ∗ and δz with the understanding that

they refer to a u with a slightly different meaning. In practice, however, researchers’ beliefs

about regressor endogeneity and instrument validity are likely to be conditional on covariates.

Because the point is to study the effect of T ∗ net of x, the more natural objects over which

to elicit researcher beliefs regarding treatment endogeneity and instrument invalidity are

δ̃z ≡ E[ε|z = 1]− E[ε|z = 0] (36)

δ̃T ∗ ≡ E[ε|T ∗ = 1]− E[ε|T ∗ = 0]. (37)

Unlike the continuous treatment case, here we cannot simply project x out of the system if

we wish to work with the information contained in the four cells from Table 2a. Instead, we

now show how to re-express the identified set from the preceding section in terms of δ̃T ∗ and

δ̃z rather than δT ∗ and δz.

As shown in Lemma B.22, we can relate δ̃T ∗ to δT ∗ and δ̃z to δz using the following

expressions:

δz = [E (x|z = 1)− E (x|z = 0)]′ γ + δ̃z (38)

δT ∗ =
p(1− p)(1− α0 − α1)

(p− α0)(1− p− α1)
[E (x|T = 1)− E (x|T = 0)]′ γ + δ̃T ∗ (39)
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If γ were known, these expressions would immediately allow us to re-write the identified set

as desired. The problem, of course, is that γ is unknown. By an argument related to that

of Frazis and Lowenstein (2003, p. 158), we show in Lemma B.1 that the probability limits

of the IV estimators for β and γ are[
βIV

γIV

]
=

[
β/(1− α0 − α1)

γ

]
+ δ̃zq(1− q)

[
σzT

σxT

]
(40)

where q = P(z = 1) and σzT and σxT , defined in the statement of Lemma B.1, depend only

on covariances of the observables (z, T,x). Rearranging Equation 40, we can write γ solely

in terms of observable quantities and δ̃z, namely γ = γIV − δ̃zq(1− q)σxT . Using this fact,

we can eliminate γ from Equations 38 and 39. After doing so, both equations involve δ̃z but

the relationship is linear. Accordingly, using Lemma B.12, we obtain a linear relationship

between δ̃z and δ̃T ∗ . As shown in Lemma B.22,

δ̃z = B̃(α0, α1) + S̃(α0, α1)δ̃T ∗ (41)

where B̃ and S̃ are functions of α0, α1 and reduced form parameters defined in the Lemma.

Thus, in the presence of exogenous covariates Equation 41 replaces Equation 32 and we

calculate the same bounds for α0 and α1 as given in Proposition 5.2.35

5.5 Inference for a Binary Treatment

Our inference procedure for a binary treatment closely parallels the continuous treatment

case described in Section 3, so we describe here only the differences. As above, we rely

upon a transparent parameterization. In the binary case, the structural parameters are θ =

(δT ∗ , δz, α0, α1), while the reduced form parameters, ϕ, are the joint probability distribution

of (z, T ) along with the conditional means and variances of y given z and T , as shown in

Table 2a. We again propose a simple method for generating posterior draws for the reduced

from parameters that matches the usual large-sample frequentist treatment of estimation

error in IV and OLS regression. Accordingly, we condition on z and T and incorporate

sampling uncertainty in the conditional means of y only, applying the central limit theorem.

In the presence of covariates, we also require posterior draws for γ̂IV . These must be made

35In the presence of covariates, the bounds for α0 and α1 from Proposition 5.2 are technically no longer
sharp, as one could in principle exploit the additional information contained in x to tighten them. If x is
discrete and sufficient data are available, the sharp bounds can be obtained as follows: simply apply our
bounds separately at every value in the support of the covariates and report the tightest. When one or more
covariates are continuous, as is the case in each of our examples, one would need to model the first-stage
relationship between x and T ∗, which we prefer to avoid here.
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jointly with those for the conditional means of y as they are necessarily correlated. Appendix

B.2 describes in detail how to make draws in this fashion, again appealing to a large-sample

approximation based on the central limit theorem. Using these reduced form draws, we can

conduct the same inference exercises for the structural parameters described in Section 3.

The only difference is that there are now four rather than three elements in θ. As in the case

of a continuous treatment we consider fully Bayesian inference under a uniform prior on the

intersection of the conditional identified set and the any user restrictions R.36 We elaborate

further in our discussion of the empirical examples presented below.

6 Examples with a Binary Treatment

We now illustrate the methods proposed in Section 5 using two empirical examples with a

binary treatment and instrument. A summary of results appears in Table 3.

6.1 Afghan Girls RCT

Burde and Linden (2013) study the effect of village schools on the academic performance of

children in rural northwestern Afghanistan, using data from a randomized controlled trial.

Both test scores and reported enrollment rates increased significantly in villages that were

randomly allocated to receive a school compared to those that were not. The effects were

particularly striking for girls, whose enrollment increased by 52 percentage points and test

scores by 0.65 standard deviations. Both effects are statistically significant at the 1 percent

level and remain essentially unchanged after controlling for a host of demographic covariates.

These results quantify the causal effect of establishing a school in a rural village. But the

data from Burde and Linden (2013) are rich enough for us to pose a more specific question

that the authors do not directly address in their paper: what is the causal effect of attending

a village school on the test scores of Afghan girls? With school enrollment as our treatment

of interest, the 0.65 standard deviation increase in test scores becomes an intent to treat

(ITT) effect, while the 52 percent increase in reported enrollment becomes an IV first stage.

In this example we consider the specification

Test score = constant + β (Enrollment) + x′γ + ε

and instrument enrollment using the experimental randomization: Girls in a village where

36Because the geometry of the problem is slightly more complex in the binary case, however, we employ
a slightly different method of making the uniform draws. Although this makes little difference in practice it
is more convenient computationally. For details, see https://github.com/binivdoctr.
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a school was established have z = 1 and girls in a village where none was have z = 0.

The vector x contains the same covariates used by Burde and Linden (2013).37 Because

this example includes exogenous controls, we define treatment endogeneity and instrument

invalidity net of these covariates, as detailed in Section 5.4. To simplify the notation we

write δz and δT ∗ rather than δ̃z and δ̃T ∗ below but both of these should be understood as

being net of x. In contrast, α0 and α1 are not defined net of covariates, again as detailed

in Section 5.4. As such, they continue to refer to the probabilities P(T = 1|T ∗ = 0) and

P(T = 0|T ∗ = 1) below.

This dataset has three features that make it an ideal candidate for the methods we have

developed above. First, the enrollment variable measures not whether a girl attended the

newly-established village school, but whether she attended a school of any kind. This means

that our treatment of interest, enrollment, is endogenous: the sample contains 248 girls

who did not enroll despite a school being established in their village, and 49 who attended

school despite the lack of one in their village. In this example a prior that imposes positive

selection, δT ∗ > 0, seems uncontroversial: parents who enroll their daughter in school are

likely to have other unobserved characteristics favorable for their academic performance.

Second, although the allocation of village schools was randomized, this does not necessarily

make it a valid instrument. Indeed, the authors argue that establishing a village school may

affect performance through channels other than increased enrollment alone if, for example,

the village-based schools were of lower quality than the traditional public schools,

and some treatment students who would have otherwise attended traditional public

schools attended village-based schools instead, or if children who were not enrolled

in the treatment group experienced positive spillovers from enrolled siblings or other

peers. (Burde and Linden (2013), p. 36.)

Third, school enrollment status is determined from a household survey and, as such, could

be subject to substantial mis-reporting. Note that non-differential measurement error in

enrollment would not affect the ITT estimate but would bias the estimated causal effect

of establishing a school on enrollment, i.e. the first-stage in our IV analysis. Although

Burde and Linden (2013) concede that misreporting is a possibility, they point out that

the observed enrollment rates in their sample are comparable to official Afghan government

estimates for the region. Even if aggregate enrollment is correctly measured, as the authors

suggest, individual mis-reporting can still bias the IV estimate. Nevertheless, the prior belief

that p = p∗ does impose an informative restriction on α0 and α1 which we explore below.

37These are: an indicator for whether the girl is a child of the household head, the girl’s age, the number
of years the household has lived in the village, a Farsi dummy, a Tajik dummy, a farmers dummy, the age of
the household head, years of education of the household head, the number of people in the household, Jeribs
of land, number of sheep, distance to the nearest formal school, and a dummy for Chagcharan province.
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Results for the Afghan Girls RCT example appear in the first four rows of Table 3.

All values other than ᾱ0 and ᾱ1 in columns 3–4 of panel (I) are measured in standard

deviations of test scores. IV and OLS estimates, along with lower and upper bounds ᾱ0

and ᾱ1 for the mis-classification probabilities appear in panel (I). Posterior medians and 90

percent highest posterior density intervals appear in Panels (II) and (III). The results in

Panel (II) are labeled “Frequentist-Friendly” because they do not involve placing a prior on

the conditional identified set: they average only over reduced form parameter draws under

the restriction listed in the corresponding row label.38 In contrast, those in Panel (III) are

“Fully Bayesian” in that they place a uniform prior on the conditional identified set.

The OLS estimate in this example is quite large, 0.86 standard deviations, but the IV esti-

mate is even larger: 1.3 standard deviations. Notice that our bounds on the mis-classification

error rates in this example are very tight: our point estimate of ᾱ0 is 0.10 while that of ᾱ1 is

0.12 as shown in Table 3 and depicted in Figure 3. To implement our framework, we consider

three prior restrictions. The first assumes that z is a valid instrument, δz = 0, but places

no a priori restrictions on the extent of misclassification, α0 and α1, or the sign or extent

of treatment endogeneity, δT ∗ . Results for this prior appear in the second row of Table 3.

Even under this fairly strong prior restriction, the IV estimate could still show substantial

bias because the measurement error is non-differential rather than classical. The first two

columns of Panel (II) present posterior inference for the boundaries of the identified set for

δT ∗ under the assumption that z is a valid instrument while the first column for Panel (III)

presents analogous fully Bayesian inference for the parameter δT ∗ . In this example both tell

a similar story; even allowing for measurement error, the assumption that z is a valid instru-

ment requires us to accept the possibility of substantial negative selection into treatment,

and rules out anything beyond a very modest degree of positive selection. This is precisely

the opposite of what most researchers would consider reasonable in this setting.

Figure 4a illustrates this point in a slightly different way, by plotting selected contours

of the identified set for (δT ∗ , δz, α0, α1) in the region where δT ∗ is positive, by evaluating

Equation 41 at the maximum likelihood estimates for the reduced form parameters. If δT ∗

is assumed to be positive, the only way to sustain a valid instrument is by assuming both

that there is essentially zero selection into treatment, and that mis-classification is extremely

severe. These results suggest that Burde and Linden (2013) were right to be suspicious of

the IV exclusion restriction. Note, moreover, that both the inference for the upper and lower

bounds of the identified set for β in columns 3–4 of Panel (II) and the corresponding fully

Bayesian inference for the parameter β in the second column of Panel (III) point to a large

causal effect of enrollment on test scores. This indicates that, provided one is willing to

38See Sections 3 and 5.5 for details.

38



assume that the instrument is valid, the effect of measurement error on the IV estimate is

modest in this example.
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Figure 4: Results for Afghan Girls RCT example from Section 6.1. Panel (a) illustrates Equation
41 for δT ∗ ∈ [0, 1] at three pairs of values for (α0, α1). Both δT ∗ and δz are expressed in standard
deviations of the test score distribution, and the reduced form parameters are set equal to their
maximum likelihood estimates. Panel (b) gives the posterior distribution for β under a uniform
prior on the intersection between the restrictions δT ∗ ∈ [0, 1], p = p∗ and the conditional identified
set (see Section 5.5). The dashed red line gives the OLS estimate and the blue line the IV estimate.

The third and fourth rows of Table 3 relax the assumption that δz = 0 and instead

impose δT ∗ ∈ [0, 1]. This amounts to assuming that the selection effect is positive and no

greater than one standard deviation of test scores, after controlling for covariates. The third

row imposes no a priori restrictions on α0 and α1 while the fourth assumes that p = p∗ so

that α1 = α0(1 − p)/p.39 The results for these two specifications are practically identical,

indicating that p∗ = p is not a particularly informative restriction given the tight bounds the

data already place on α0 and α1. When δT ∗ ∈ [0, 1], the identified set for δz includes a range

of modestly negative values and a much wider range of comparatively large positive values,

as we see from the second and third columns of Panel (II). The fully Bayesian inference for

δz from the first column on Panel (III) is more conclusive, assigning 90 percent probability

a posteriori to the event that δz is between 0.1 and 0.7 standard deviations. The difference

39This follows from p∗ = (p− α0)/(1− α0 − α1).

39



between “Frequentist-Friendly” and fully Bayesian inferences in this case indicates that,

while all draws for the reduced form parameters are compatible with δz < 0, there is only a

very limited combination of values for δT ∗ , α0, and α1 at which this can occur. This fact is

also apparent from Figure 4a: it is only at extremely small values for δT ∗ and extremely large

values of α0 and α1 that δz can be negative. One need not take our uniform reference prior

from Panel (III) literally: the point is that one would need to place large prior probability

on a very small and implausible region of the identified set in order to obtain a substantial

posterior probability on the proposition that δz < 0. In light of our discussion from Burde

and Linden (2013) from above, this suggests that positive peer effects are more plausible

than negative village-school quality effects.

Inferences for the causal effect of enrollment are less conclusive. Under the restriction

δT ∗ ∈ [0, 1], the identified set for β comfortably contains zero, although it does extend

farther in the positive than the negative direction, as shown in the last two columns of panel

(II) in Table 3. The fully Bayesian inferences from the second column of Panel (III) are

somewhat more suggestive. Although the 90 percent highest posterior density interval for

β does include zero, it is fairly close to the lower limit of the interval. As seen from the

posterior distribution in Figure 4b, the causal effect of enrollment is very likely positive,

although substantially smaller than either the OLS or the IV estimate. Again, the difference

between the inferences for the identified set and the Bayesian posterior for β under a uniform

reference prior indicate that there is only a small region of values for α0 and α1 that are

compatible with a negative value for β, given that δT ∗ ∈ [0, 1]

6.2 Smoking and BMI

We conclude with an example based on data from the Lung Health Study (LHS), a well-

known randomized clinical trial carried out between 1986 and 1994.40 The LHS recruited a

sample of smokers between the ages of 35 and 59, and offered a smoking cessation program

to a random subset. The cessation program consisted of free nicotine gum, an intensive

quit week, and access to support personnel, along with invitations to bring a family member

to the meetings. Some of the individuals offered treatment also were given an inhaled

bronchodilator; the control group received no such offer. The LHS then tracked these subjects

over time, recording information on a variety of clinical outcomes. Our outcome of interest

here is body mass index (BMI), a measure of obesity defined as weight (in kilograms) divided

by squared height (in meters).41 Following Courtemanche et al. (2016), our objective is to

40See Ohara et al. (1993) and https://www.clinicaltrials.gov for more information on the LHS.
41According to the World Health Organization, individuals whose BMI falls below 18.5 are considered

underweight, those whose BMI lies between 18.5 and 25 are fall in the normal range, those whose BMI lies

40

https://www.clinicaltrials.gov


determine the causal effect of quitting on BMI. Our specification is

BMI = constant + β(Quit Smoking) + ε

where we instrument for the self-reported treatment variable “Quit Smoking” with the ran-

domized offer of participation in the smoking cessation program: z = 1 for those in the

treatment arm of the LHS while z = 0 for those in the control arm. The effect of quitting

smoking on BMI is a question of some interest to health researchers, because those who quit

smoking are known to experience increases in anxiety and appetite along with physiological

changes that may lead to weight gain. Indeed, some suggest that the marked decrease in

smoking that has occurred in the U.S. over the past 30 years may be partly to blame for

the contemporaneous increase in obesity.42 Access to the raw data for the LHS is strictly

controlled, so we work here with summary statistics provided to us by the authors of Courte-

manche et al. (2016). Specifically, we observe conditional means and variances of BMI at

the five-year horizon for all combinations of T (Quit Smoking) and z (Offered Smoking Ces-

sation), as well as the empirical joint distribution of T and z. Because our framework for

inference relies only on the moments that these quantities estimate, as illustrated in Table

2a, we can proceed just as if we observed the micro-data.43

Measurement error, treatment endogeneity, and instrument invalidity are all serious con-

cerns in this example. First, our measure of whether an individual quit smoking is self-

reported. It seems quite likely that some people who have failed to quit will nevertheless

claim they have succeeded.44 Fortunately, the mis-classification is almost certainly one-sided

in this example: it is difficult to imagine that someone who successfully quit smoking would

report that she did not. Second, while the offer of smoking cessation is randomized, the

decision to quit smoking is clearly endogenous. Out of the 5446 subjects in the LHS, 451

report quitting smoking despite not being offered the cessation program, while 2018 report

not quitting even though they were offered the program. We might expect subjects who

successfully quit smoking to be more health-conscious overall, and thus, thinner than those

between 25 and 30 are classified as overweight, and those whose BMI exceeds 30 are considered obese. See
http://apps.who.int/bmi/index.jsp?introPage=intro_3.html for further details.

42For evidence in favor of this claim, see Chou et al. (2004) and Chou et al. (2006); for a contrary view,
see Gruber and Frakes (2006).

43One issue with using aggregated moments is the inability to include covariates directly. Nevertheless, if
key covariates have discrete support and the sample size is large enough, the analysis can be performed for
each cell in the distribution of the support of the covariates.

44The LHS data contain three measures of whether an individual has quit smoking, all of which are subject
to measurement error: self-reported quit status, self-reported number of cigarettes smoked per day, and the
results of salivary cotinine tests administered as part of the study. While Courtemanche et al. (2016) consider
all three measures in detail, we focus here on the first for simplicity.
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to do not quit. Courtemanche et al. (2016) also suggest that the offer of a smoking cessation

program may not constitute a valid instrument:

The validity of the [IV] estimator therefore hinges on the assumption that the

randomized intervention only affected the BMIs of people who fully quit smoking.

To the extent that the intervention also affected the BMIs of those who cut back on

smoking but did not quit entirely, the difference in BMI will be scaled by too small a

number. . . (Courtemanche et al. (2016), p. 9.)

As we mentioned in Section 5.2, this logic would imply δz > 0.

Results for the Smoking and BMI example appear in rows 7–9 of Table 3. All values other

than those in columns 3–4 of Panel (I) are measured in units of BMI. IV and OLS estimates,

along with lower and upper bounds ᾱ0 and ᾱ1 for the mis-classification probabilities appear in

Panel (I), while posterior medians and 90 percent highest posterior density intervals appear

in Panels (II) and (III). Recall the results in Panel (II) are labeled “Frequentist-Friendly”

because they do not involve placing a prior on the conditional identified set: they average

only over reduced form parameter draws under the restriction listed in the corresponding

row label.45 In contrast, those in Panel (III) are “Fully Bayesian;” they place a uniform prior

on the conditional identified set.

Both the OLS and IV estimates in this example are large, positive, and precisely es-

timated. While one of the mis-classification error bounds for this example is very tight,

α0 < 0.16, the other is not: α1 < 0.43. Fortunately, α1 denotes the fraction of true quitters

who mis-report and claim they did not quit smoking. As discussed above, the true value of

this probability is almost certainly zero so we fix α1 = 0 throughout the remainder of our

analysis. Because the partial identification bound for α1 is so wide, this prior restriction

adds a considerable amount of identifying information to the problem.

As a benchmark, row 9 of Table 3 explores the implications of assuming that δz = 0, so

that the randomized offer of a smoking cessation program constitutes a valid instrument.

Under these beliefs, the inference for the identified set for β from columns 3 and 4 and

the posterior for the parameter β from the second column of Panel (III) indicate a large,

positive causal effect of smoking on BMI, but an effect that is somewhat smaller than the

IV estimate due to the effect of misclassification error. As discussed above, there are good

reasons to doubt the validity of the instrument in this example. Accordingly, row seven

of Table 3 relaxes the assumption that δz = 0 and imposes instead that δT ∗ ∈ [−1.5, 0].

Figure 5a likewise depicts selected contours of the identified set in this range, evaluated at

the maximum likelihood estimates of the reduced form parameters, while Figure 5b plots

45See Sections 3 and 5.5 for details.
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the posterior distribution for β corresponding to the inferences from column two of Panel

(III) in the table. The sign of δT ∗ under this prior represents the belief that those who quit

successfully are likely to be more health conscious. The lower bound of 1.5 for the magnitude

of the BMI difference corresponds to a third of the distance between the upper end of the

“healthy” weight range and the lower end of the “obese” range. At the average U.S. height,

δT ∗ = −1.5 would say that successful quitters are around 10 pounds lighter on average, a

moderate amount of negative selection.
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Figure 5: Results for Smoking and BMI example from Section 6.2. Panel (a) illustrates Equation
32 for δT ∗ ∈ [−1, 0], α1 = 0 at three of values for α0. Both δT ∗ and δz are given in units of BMI, and
the reduced form parameters are set equal to their maximum likelihood estimates. Panel (b) gives
the posterior distribution for β under a uniform prior on the intersection between the restriction
δT ∗ ∈ [−1, 0], α1 = 0 and the conditional identified set (see Section 5.5 for details). The red dashed
line gives the OLS estimate and the blue line the IV estimate.

Both the results in the table and the figure imply that δz is very likely negative, the

exact opposite of what we would have expected from above. From Figure 5a, we see that

one would require almost no mis-reporting of true smoking status along with hardly any

selection. The corresponding inferences for β point to a very large treatment effect: the

90 percent highest posterior density interval for the lower bound for β, for example, ranges

from about 2.2 to 2.6, while the median of the posterior for β in Figure 5b is 3.5. The

message of this example is somewhat nuanced compared to our previous ones. If one is
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certain that δT ∗ is negative, our framework implies that δz too is almost certainly negative,

and the causal effect of quitting smoking on BMI is very large relative to estimates from the

existing literature. If on the other hand one feels confident that δz should be positive, as the

discussion from Courtemanche et al. (2016) suggests, our framework implies that δT ∗ must

be positive: successful quitters are heavier on average.

7 Conclusion and Extensions

Causal inference relies on researcher beliefs. The main message of this paper is that imposing

them requires a formal framework, both to guard against contradiction and to ensure that

we learn everything that the data have to teach us. While this point is general, we have

focused here on a simple but common setting, that of a linear model with a mis-measured,

endogenous treatment and a potentially invalid instrument, presenting both results for the

case of a continuous treatment subject to classical measurement error and that of a binary

treatment subject to non-differential measurement error. By characterizing the relationship

between measurement error, treatment endogeneity, and instrument invalidity in terms of

intuitive and empirically meaningful parameters, we have developed a Bayesian tool for

eliciting, disciplining, and incorporating credible researcher beliefs in the form of sign and

interval restrictions. As we have demonstrated through a wide range of illustrative empirical

examples, even relatively weak researcher beliefs can be surprisingly informative in practice.

The methods we describe above could be extended in a number of directions. One pos-

sibility is to allow for multiple instrumental variables, expanding the range of examples to

which our framework could be applied. There is no serious theoretical obstacle to this exten-

sion, although it would likely make prior elicitation more challenging. Another possibility is

to consider a wider range of prior specifications on the conditional identified set. One could,

for example, explore more informative priors than a uniform distribution, or undertake a

formal prior robustness exercise, perhaps along the lines of the ε-contaminated class of pri-

ors described by Berger and Berliner (1986) or “posterior lower probability” as in Kitagawa

(2012). A limitation of the results presented here is that they assume the treatment effect

is homogeneous. While it would likely be difficult to accommodate heterogeneous treatment

effects when the treatment is continuous, the binary treatment case shows more promise. Un-

der appropriate modifications it may be possible to extend our framework to the estimation

of a local average treatment effect (LATE), possibly by leveraging the testable implications

of the LATE model under a binary treatment described by Kitagawa (2015) and Huber and

Mellace (2015) among others. We leave this possibility for future research.
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A Appendices for Continuous Treatment Case

A.1 Proofs

Lemma A.1. Under Equation 5 and Assumptions 2.1–2.2,

(a) σ2
v = σ2

T (κ− ρ2
Tz)

(b) σ2
w =

(
1− κ
κ

)(
σ2
v + π2σ2

z

)
(c) σ2

u = σ2
y

[
κ− ρ2

Ty

κ(1− ρ2
T∗u)

]

(d) ρuv =
ρT∗u

√
κ− ρuzρTz√
κ− ρ2

Tz

.

Proof of Lemma A.1(a). First, σ2
T = σ2

w+π2σ2
z+σ2

v and ρ2
Tz = π2σ2

z/σ
2
T . The result follows by combining

these and rearranging, using the definition of κ and the fact that σ2
T∗ = σ2

T − σ2
w.

Proof of Lemma A.1(b). By definition κ = σ2
T∗/σ

2
T . Since σ2

T = σ2
T∗ + σ2

w, we have σ2
w = σ2

T∗(1− κ)/κ.
The result follows since σ2

T∗ = σ2
v + π2σ2

z .

Proof of Lemma A.1(c). The result follows by squaring Equation A.11 in the proof of Proposition 2.1.

Proof of Lemma A.1(d). From Equation 8, ρT∗u = (σvρuv + πσzρuz)/σT∗ . and by Lemma A.1(a) and
the definition of κ, σv/σ

∗
T =

√
1− ρ2

Tz/κ and πσz/σT∗ = ρTz. Thus,

ρT∗u = ρuv

√
1− ρ2

Tz/κ+ ρuzρTz/
√
κ

The result follows by solving for ρuv.

Corollary A.1. Under Equation 5 and Assumptions 2.1–2.2, κ > max{ρ2
Ty, ρ

2
Tz}.

Proof of Corollary A.1. Since σ2
v > 0, κ > ρ2

Tz by Lemma A.1(a). Similarly, since σ2
u > 0, κ > ρ2

Ty by
Lemma A.1(c).

Proof of Proposition 2.1. Rewriting Equation 6

β = (σTy − σT∗u)/κσ2
T (A.1)

and proceeding similarly for Equation 7, we have

β = (σzy − σuz)/σzT (A.2)

Combining these,
(σzy − σuz)/σzT = (σTy − σT∗u)/κσ2

T (A.3)
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Now, using Equation 3 and Assumption 2.1, σ2
y = σ2

u +β
(
2σT∗u + βκσ2

T

)
. Substituting Equation A.2 for β,

Equation A.1 for βκσ2
T , and rearranging,

(
σ2
u − σ2

y

)
+

(
σzy − σuz
σzT

)
(σT∗u + σTy) = 0 (A.4)

The next step is to eliminate σu from our system of equations. First we substitute σT∗u = σu
√
κσT ρT∗u and

σuz = σuσzρuz into Equations A.3 and A.4, yielding

(σzy − σuσzρuz)/σzT = (σTy − σTσuρT∗u)/(κσ2
T ) (A.5)

and (
σ2
u − σ2

y

)
+

(
σzy − σuσzρuz

σzT

)(
σuσT

√
κρT∗u + σTy

)
= 0. (A.6)

Rearranging Equation A.5 and solving for σu, we find that

σu =
σzTσTy − κσ2

Tσzy
σT
√
κσTzρT∗u − σzκσ2

T ρuz
(A.7)

Since we have stated the problem in terms of scale-free structural parameters, namely (ρuz, ρT∗u, κ), we
may assume without loss of generality that σT = σy = σz = 1. Even if the raw data do not satisfy this
assumption, the relationship between the structural parameters ρuz, ρT∗u and κ is unchanged. Imposing this
normalization, Equation A.6 becomes

(
σ̃2
u − 1

)
+

(
ρzy − σ̃uρuz

ρzT

)(
σ̃u
√
κρT∗u + ρTy

)
= 0 (A.8)

where

σ̃u =
ρTzρTy − κρzy√
κρTzρT∗u − κρuz

. (A.9)

We use the notation σ̃u to indicate that normalizing y to have unit variance does change the scale of σu.
Specifically, σ̃u = σu/σy. This does not introduce any complications because we eliminate σ̃u from the system
by substituting Equation A.9 into Equation A.8. After eliminating σ̃u, Equation A.8 becomes a quadratic in
ρuz that depends on the structural parameters (ρT∗u, κ) and the reduced form correlations (ρTy, ρTz, ρzy).
Solving and simplifying the result, we find that

(ρ+
uz, ρ

−
uz) =

(
ρT∗uρTz√

κ

)
± (ρTyρTz − κρzy)

√√√√ 1− ρ2
T∗u

κ
(
κ− ρ2

Ty

) (A.10)

Although the preceding expression yields two solutions, one of these is extraneous as it implies a negative
value for σ̃u and hence σu. To see why, substitute each solution into the reciprocal of Equation A.9 to yield

σ̃−1
u =

√
κρTzρT∗u

ρTyρTz − κρzy
−

[( √
κρTzρT∗u

ρTyρTz − κρzy

)
±

√
κ(1− ρ2

T∗u)

κ− ρ2
Ty

]
= ∓

√
κ(1− ρ2

T∗u)

κ− ρ2
Ty

and hence

σu = ∓σy

√
κ− ρ2

Ty

κ(1− ρ2
T∗u)

. (A.11)

This implies that ρ+
uz is always extraneous.

Proof of Lemma 2.1. Assumption 2.1 requires that all the elements of Ω are finite, which implies that
σ2
w, σ

2
v , σ

2
z , σ

2
u < ∞. The reverse implication follows since Cov(u, v) ≤

√
V ar(u)V ar(v) and Cov(u, z) ≤√

V ar(u)V ar(z) by the Cauchy-Schwarz inequality. This establishes that condition (a) of Lemma 2.1 is
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equivalent to all of the entries of Ω being finite.
Now, Ω̃ is positive definite if and only if each of its three leading principle minors are positive:

σ2
u > 0 (A.12)

σ2
uσ

2
v − σ2

uv > 0 (A.13)

σ2
z(σ2

uσ
2
v − σ2

uv)− σ2
vσ

2
uz > 0. (A.14)

Thus it is sufficient to show that Equations A.12–A.14 are equivalent to σ2
u, σ

2
v , σ

2
z > 0 and ρ2

uv + ρ2
uz < 1.

The equivalence is obvious for A.12. By A.12 we can rearrange A.13 to yield σ2
v > σ2

uv/σ
2
u ≥ 0 implying that

σ2
v is strictly positive. Dividing through by σ2

v , this implies that |ρuv| < 1. Now, since both σ2
u and σ2

v are
strictly positive, we can divide both sides of A.14 through by σ2

vσ
2
u to obtain σ2

z(1−ρ2
uv) > σ2

uz/σ
2
u ≥ 0. Since

ρ2
uv < 1, this implies σ2

z > 0. Thus, dividing Equation A.14 through by σ2
vσ

2
uσ

2
z and rearranging we find that

ρ2
uv + ρ2

uz < 1, establishing the “if” direction of the equivalence. For the “only if” direction, ρ2
uv + ρ2

uz < 1
implies ρ2

uv < 1. Mutiplying both sides by σ2
uσ

2
v gives σ2

uσ
2
vρ

2
uv < σ2

uσ
2
v since σ2

u, σ
2
v > 0. Substituting

ρ2
uv = σ2

uv/(σ
2
uσ

2
v) and rearranging implies A.13. Equation A.14 follows similarly, by multiplying both sides

of ρ2
uv + ρ2

uz < 1 by σ2
uσ

2
vσ

2
z and rearranging.

Proof of Proposition 2.2. We first derive the bounds; at the end of the proof we show that they are
sharp. To show that |ρT∗u| < 1 we combine the assumption that σ2

u <∞ with the expression from Lemma
A.1(c). The fact that κ ≤ 1 follows from σ2

w ≥ 0 and the definition of κ.
The lower bound for κ is more involved. We first restate the inequality from Lemma 2.1(d) so that it no

longer involves ρuv by substituting Lemma A.1(d), yielding(
ρT∗u

√
κ− ρuzρTz√
κ− ρ2

Tz

)2

+ ρ2
uz < 1 (A.15)

Using the fact that κ > ρ2
Tz from Corollary A.1, putting the terms of Equation A.15 over a common

denominator and rearranging,

ρ2
T∗u + ρ2

zu −
2ρT∗uρzuρTz√

κ
<
κ− ρ2

Tz

κ
.

Completing the square, we find(
ρzu −

ρT∗uρTz√
κ

)2

<
(
1− ρ2

T∗u

)(κ− ρ2
Tz

κ

)
Now, using Equation 13 to substitute for (ρzu − ρT∗uρTz/

√
κ), we find that

(ρTyρTz − κρzy)
2

[
1− ρ2

T∗u

κ(κ− ρ2
Ty)

]
<
(
1− ρ2

T∗u

)(κ− ρ2
Tz

κ

)
again using κ > ρ2

Ty and ρ2
T∗u < 1. Cancelling a factor of (1−ρ2

T∗u)/κ from each side and rearranging yields
an expression that does not involve ρT∗u, namely

(ρTyρTz − κρzy)
2 − (κ− ρ2

Ty)(κ− ρ2
Tz) < 0 (A.16)

again using the fact that κ > ρ2
Ty. Expanding and simplifying,

(ρ2
zy − 1)κ2 + (ρ2

Ty + ρ2
Tz − ρTyρTzρzy)κ < 0 (A.17)

Since ρ2
zy < 1 by positive definiteness, the preceding inequality defines an interval of values that κ cannot

take on, an interval bounded by the roots of a quadratic function that opens downwards. Factoring the
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quadratic to solve for these roots gives

κ
[
(ρzy − 1)κ+

(
ρ2
Ty + ρ2

Tz − 2ρTyρTzρzy
)]

= 0

Thus one root is zero and the other is κ, as defined in the statement of the proposition. We have shown that
κ cannot take on a value between the two roots. We do not yet know, however, which is larger. The result
of the proposition follows after we establish two more claims. First κ < 1, and second κ > max{ρ2

Ty, ρ
2
Tz}.

For the first claim, note that the correlation matrix of (y, T, z) must be positive-definite, implying that

1− ρ2
Ty − ρ2

Tz − ρ2
zy + 2ρTyρTzρzy > 0

Rearranging this inequality using the fact that ρ2
zy < 1 establishes that κ < 1. For the second claim

notice that by evaluating the quadratic on the left hand side of A.16 at max{ρ2
Ty, ρ

2
zT }, the second term

vanishes leaving us with a squared term. Since this cannot be less than zero, the inequality is violated at
κ = max{ρ2

Ty, ρ
2
zT } > 0. This combined with the fact that the parabola opens downwards establishes that

κ is greater than both zero and max{ρ2
Ty, ρ

2
zT }. This establishes the lower bound for κ.

Now that we have derived the bounds, we explain why they are sharp. It suffices to show that, for any
values of ρT∗u and κ within our bounds, there exist values for all the parameters of Ω, defined in Assumption
2.1, that satisfy the first three equivalent conditions from Lemma 2.1. First, from A.1(a), ρ2

Tz < κ ≤ 1
implies that σ2

v is strictly positive and finite. The bound ρ2
Tz < κ is implied by κ > κ, as explained in our

derivation above. Second, by A.1(b), the fact that σ2
v is positive and finite, along with 0 < κ < κ < 1,

implies that σ2
w is non-negative and finite. Third, by A.1(c), ρ2

Ty < κ < κ < 1 along with |ρT∗u| 6= 1 implies

that σ2
u is strictly positive and finite. It remains only to verify that ρ2

uv + ρ2
uz < 1, but this is immediate

from our derivation of κ from above, since all of our steps were reversible.

Proof of Corollary 2.1. Let f(ρT∗u, κ) denote the right hand side of Equation 13. We begin by finding
the optima of f as a function of ρT∗u, holding κ fixed. The first derivative of f with respect to ρT∗u is

∂f

∂ρT∗u
=
ρTz√
κ

+
ρT∗u(ρTyρTz − κρzy)√
κ(κ− ρ2

Ty)(1− ρ2
T∗u)

(A.18)

so the first-order condition for ρT∗u is

ρT∗u = − a√
1 + a2

, a =
ρTz
√
κ− ρ2

Ty

(ρTyρTz − κρzy)
(A.19)

The second derivative of f with respect to ρT∗u is

∂2f

∂ρ2
T∗u

=
(ρTyρTz − κρzy)√

κ(κ− ρ2
Ty)

[
ρ2
T∗u

(1− ρ2
T∗u)3/2

+
1√

1− ρ2
T∗u

]
. (A.20)

Note that the sign of Equation A.20 depends only on the sign of (ρTyρTz − κρzy). Define κ̃ = ρTyρTz/ρzy
and suppose first that κ 6= κ̃. If κ < κ̃ then f(ρT∗u, κ) is a strictly convex function of ρT∗u and thus, holding
κ fixed, has a unique global minimum at the solution to A.19. In contrast, the global maximum is a corner
solution: it occurs either at ρT∗u = −1 or 1. Similarly, if κ > κ̃ then f(ρT∗u, κ) is a strictly concave function
of ρT∗u and thus, holding κ fixed, has a unique global maximum at the solution to A.19. In this case the
global minimum is a corner solution: it occurs either at ρT∗u = −1 or 1. In either case, the interior solution
is strictly less than one in absolute value, as we see from Equation A.19 using the fact that κ > ρ2

Ty by

Corollary A.1. If κ = κ̃, then f reduces to ρT∗uρTz/
√
κ̃. In this case both extrema are corner solutions:

they occur at ρT∗u = −1 and 1.
We have now fully characterized the values of ρT∗u that optimize f for any fixed value of κ. It remains

to find the optimal values of κ within the feasible set (κ, 1]. Using Equation A.19 we can concentrate ρT∗u
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out of f to yield a new function g that imposes the first-order condition for ρT∗u, namely

g(κ) = −sign{ρTyρTz − κρzy}

√
(ρTyρTz − κρzy)2 + ρ2

Tz(κ− ρ2
Ty)

κ(κ− ρ2
Ty)

(A.21)

and calculate its derivative as follows

g′(κ) = −
(κ− ρ2

Ty)(1− ρ2
zy)

2g(κ)(κ− ρ2
Ty)2

. (A.22)

Note that g′ is positive whenever κ < κ̃ and negative whenever κ > κ̃. Moreover, recall from the proof of
Proposition 2.2 (see Equation A.17) that κ satisfies (ρTyρTz − κρzy)2 = (κ − ρ2

Ty)(κ − ρ2
Tz). Substituting

this into Equation A.21 we find that

g(κ) = −sign{ρTyρTz − κρzy} (A.23)

Equation A.22 applies at any interior optimum for ρT∗u. At a corner solution, ρT∗u = −1 or 1 and the
objective function reduces to

h(κ) =

{
−ρTz/

√
κ, if ρT∗u = −1

ρTz/
√
κ, if ρT∗u = 1

(A.24)

Hence the extrema of h always occur at κ = κ. We now have all the ingredients needed to find the bounds
for ρzu. The rest of the proof proceeds in cases, depending on the values of (ρTy, ρTz, ρzy).

Case I: κ̃ /∈ (κ, 1]. In this case, the second derivative of f with respect to ρT∗u has the same sign for all
κ ∈ (κ, 1]. There are two sub-cases.

(a) Suppose first that the second derivative of f is positive. Since this occurs when κ < κ̃, it is equivalent to
ρTyρTz−κρzy > 0 for all κ ∈ (κ, 1] given that κ̃ /∈ (κ, 1]. In this case the function g from Equation A.21
describes the global minimum for ρuz and is a strictly increasing function of κ. Thus, the minimum
value for ρuz equals g(κ) = −1. The global maximum thus occurs at either ρT∗u = −1 or 1 and requires
us to make h(κ) positive. Thus, the upper bound for ρuz equals |ρTz|/

√
κ.

(b) Suppose next that the second derivative of f is negative. Since this occurs when κ > κ̃, it is equivalent to
ρTyρTz−κρzy < 0 for all κ ∈ (κ, 1] given that κ̃ /∈ (κ, 1]. In this case the function g from Equation A.21
describes the global maximum for ρuz and is a strictly decreasing function of κ. Thus, the maximum
value for ρuz = g(κ) = 1. The global minimum thus occurs at either ρT∗u = −1 or 1 and requires us to
make h(κ) negative. Thus, the lower bound for ρuz equals −|ρTz|/

√
κ.

Case II: κ̃ ∈ (κ, 1]. This case is more complicated because the sign of the second derivative of f with
respect to ρT∗u now depends on κ. Again there are two sub-cases.

(a) Suppose first that ρTyρTz − κρzy > 0 for κ < κ̃ and ρTyρTz − κρzy < 0 for κ > κ̃. In this case, f is
strictly convex in ρT∗u for κ < κ̃. Accordingly, for a fixed κ < κ̃, g gives the minimum value of ρuz over
all ρT∗u. Moreover, g is strictly increasing for κ < κ̃ thus giving us a candidate minimum at κ. Since
ρTyρTz − κρzu > 0 for κ < κ̃, we see from Equation A.23 that g(κ) = −1 hence ρuz = −1 is indeed
the minimum. Now, when κ > κ̃, f is a strictly concave function of ρT∗u so for any fixed κ > κ̃, g
gives the maximum value of ρuz over all ρT∗u. Moreover, g is strictly decreasing for κ > κ̃. Thus there
cannot be an interior maximum in this region. As mentioned above, when κ = κ̃ the extrema occur
either at ρT∗u = −1 or 1, so applying h we find that the maximum value of ρuz at κ = κ̃ is |ρTz|/κ̃.
Notice that this is equal to the limit of g(κ) as κ approaches κ̃ from the right. We have thus identified a
candidate maximum. It is not the global maximum, however, since h(κ) > h(κ̃). Thus, ρuz is maximized
at |ρTz|/

√
κ.

(b) Suppose next that ρTyρTz − κρzy < 0 for κ < κ̃ and ρTyρTz − κρzy > 0 for κ > κ̃. In this case, f is
strictly concave in ρT∗u for κ < κ̃. Accordingly, for a fixed κ < κ̃, g gives the maximum value of ρuz
over all ρT∗u. Moreover, g is strictly decreasing for κ < κ̃ thus giving us a candidate maximum at κ.
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Since ρTyρTz − κρzu < 0 for κ < κ̃, we see from Equation A.23 that g(κ) = 1 hence ρuz = 1 is indeed
the maximum. Now, when κ > κ̃, f is a strictly convex function of ρT∗u so for any fixed κ > κ̃, g
gives the minimum value of ρuz over all ρT∗u. Moreover, g is strictly increasing for κ > κ̃. Thus there
cannot be an interior minimum in this region. As mentioned above, when κ = κ̃ the extrema occur
either at ρT∗u = −1 or 1, so applying h we find that the minimum value of ρuz at κ = κ̃ is −|ρTz|/κ̃.
Notice that this is equal to the limit of g(κ) as κ approaches κ̃ from the right. We have thus identified a
candidate minimum. It is not the global minimum, however, since h(κ) < h(κ̃). Thus, ρuz is minimized
at −|ρTz|/

√
κ.

From our proof of Proposition 2.2, we know that ρ2
Tz < κ which implies |ρTz|/

√
κ < 1, thus the one-sided

bounds are non-trivial. The result follows since ρTyρTz − κρzy > 0 implies that we are either in case I(a) or
II(a), while ρTyρTz − κρzy > 0 implies that we are either in case I(b) or II(b).

Proof of Corollary 2.2. First, by Equation 7 β = βIV − σuz/σTz = (ρzyσy − ρuzσu)/(ρTzσT ). Now,
combining Proposition 2.1 and Equation 15,

ρuzσu =
σy
κ

[
ρTz

√
κ− ρ2

Ty

(
ρT∗u√

1− ρ2
T∗u

)
− (ρTyρTz − κρzy)

]

The result follows since ρT∗u can take on any value in (−1, 1) and ρT∗u/(1 − ρ2
T∗u)1/2 tends to +∞ when

ρT∗u approaches 1 and −∞ when it approaches −1.

A.2 Inference

A.2.1 Draws for the Reduced Form Parameters

This appendix provides details of our first proposal for drawing the reduced form parameters Σ from Section
3.1 using on a large-sample approximation. Let

εT = (y − E[y])− βT (T − E[T ])

εz = (y − E[y])− βz(z − E[z])

where βT = σTy/σ
2
T , and βz = σzy/σ

2
z . While neither βT nor βz equals the true treatment effect β, the

parameters of both of these regressions are identified. Under the standard regularity conditions for linear
regression, we have  √n(β̂T − βT)√

n
(
β̂z − βz

) →d B

[
MT

Mz

]
(A.25)

where β̂T = σ̂Ty/σ̂
2
T and β̂z = σ̂zy/σ̂

2
z are the OLS estimators of βT and βz, (MT ,Mz)

′ ∼ N(0, V ), and

B =

[
1/σ2

T 0
0 1/σ2

z

]
, V = E

[
T 2ε2

T zTεzεT
zTεzεT z2ε2

z

]
. (A.26)

Note that V depends not on the structural error u but on the reduced form errors εT , εz. By construction εT
is uncorrelated with T and εz is uncorrelated with z but the reduced form errors are necessarily correlated
with each other. Now, using Equations A.25 and A.26 we see that[ √

n (σ̂Ty − σTy)√
n (σ̂zy − σzy)

]
→d B

−1B

[
MT

Mz

]
=

[
MT

Mz

]
(A.27)

and thus, in large samples [
σ̂Ty
σ̂zy

]
≈ N

([
σTy
σzy

]
, V̂ /n

)
(A.28)
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where V̂ is the textbook robust variance matrix estimator, namely

V̂ =
1

n

n∑
i=1

[
T 2
i ε̂

2
Ti ziTiε̂ziε̂Ti

ziTiε̂ziε̂Ti z2
i ε̂

2
zi

]
where ε̂Ti denotes the ith residual from the βT regression and ε̂zi the ith residual from the βz regression.
Since we are working solely with identified parameters, the usual large-sample equivalence between a Bayesian
posterior and frequentist sampling distribution holds. Accordingly, we propose to generate draws for σTy
and σzy according to [

σ
(j)
Ty

σ
(j)
zy

]
∼ N

([
σ̂Ty
σ̂zy

]
, V̂ /n

)
(A.29)

Combining these draws with the fixed values σ̂2
T , σ̂

2
z and σ̂zT , since we are conditioning on z and T , yields

posterior draws for Σ based on a large-sample normal approximation, namely

Σ(j) =

 σ̂2
T σ

(j)
Ty σ̂Tz

σ
(j)
Ty σ̂2

y σ
(j)
zy

σ̂Tz σ
(j)
zy σ̂2

z

 (A.30)

A.2.2 Uniform Draws on the Conditional Identified Set

There are at least two different methods of placing a conditionally uniform prior on Θ. The first, and
simplest, draws ρT∗u and κ uniformly and independently on (−1, 1) × (κ, 1] ∩ R and then solves for ρuz
at each draw using Equation 13. The second method, which we use in this paper, draws uniformly on
intersection of the manifold (ρuz, ρT∗u, κ) – defined by 13 and the identified set for (ρT∗u, κ) described in
Proposition 2.2 – with any user restrictions R. This method begins by making the same draws as described
in the first method, but proceeds to re-weight them based on the local surface area of the identified set at
that point (Melfi and Schoier, 2004). By local surface area we refer to the quantity

M (ρT∗u, κ) =

√
1 +

(
∂ρuz
∂ρT∗u

)2

+

(
∂ρuz
∂κ

)2

(A.31)

which Apostol (1969) calls the “local magnification factor” of a parametric surface. The derivatives required
to evaluate the function M are

∂ρuz
∂ρT∗u

=
ρTz√
κ

+
ρT∗u (ρTyρTz − κρzy)√
κ
(
κ− ρ2

Ty

)
(1− ρ2

T∗u)

∂ρuz
∂κ

= −ρT
∗uρTz

2κ3/2
+

√√√√ 1− ρ2
T∗u

κ
(
κ− ρ2

Ty

) {ρzy +
1

2
(ρTyρTz − κρzy)

[
1

κ
+

1

κ− ρ2
Ty

]}
.

To accomplish the re-weighting, we first evaluate M (`) = M(ρ
(`)
T∗u, κ

(`)) at each draw ` that was accepted in

the first step. We then calculate Mmax = max`=1,...,LM
(`) and resample the draws

(
ρ

(`)
uz , ρ

(`)
T∗u, κ

(`)
)

with

probability p(`) = M (`)/Mmax.
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B Appendices for Binary Treatment Case

B.1 Proofs

Lemma B.1. For k = 0, 1,

p∗ =
p− α0

1− α0 − α1
, p∗k =

pk − α0

1− α0 − α1
, 1− p∗ =

1− p− α1

1− α0 − α1
1− p∗k =

1− pk − α1

1− α0 − α1

Proof. By the Law of Total Probability,

p = (1− α1)p∗ + α0(1− p∗) = (1− α0 − α1)p∗ + α0

The result for p∗ and 1− p∗ follows after rearranging. The argument for p∗k and 1− p∗k is identical.

Lemma B.2.

P(T ∗ = 0|T = 0, zk) = (1− α0)(1− p∗k)/(1− pk)

P(T ∗ = 1|T = 0, zk) = α1p
∗
k/(1− pk)

P(T ∗ = 0|T = 1, zk) = α0(1− p∗k)/pk

P(T ∗ = 1|T = 1, zk) = (1− α1)p∗k/pk.

Proof. The result follows from Bayes’ rule and Assumption 5.1.

Lemma B.3. Cov(T ∗, T ) = Var(T ∗)(1− α0 − α1)

Proof. By the Law of Total Probability p = (1− α1) p∗ + α0 (1− p∗). Hence,

Cov(T, T ∗) = P(T = 1, T ∗ = 1)− pp∗ = (1− α1) p∗ − [(1− α1) p∗ + α0 (1− p∗)] p∗ = Var(T ∗)(1− α0 − α1).

Lemma B.4. Cov(T ∗, w) = Cov(T, T ∗)−Var(T ∗) = −Var(T ∗)(α0 + α1)

Proof. Since w = T − T ∗, by Lemma B.3 Cov(T ∗, w) = Cov(T, T ∗)−Var(T ∗) = −Var(T ∗)(α0 + α1).

Lemma B.5. Cov(z, w) = −(α0 + α1)Cov(z, T ∗)

Proof. By iterated expectations and Assumption 5.1 E(zw|T ∗ = 0) = α0E(z|T ∗ = 0) and similarly
E(zw|T ∗ = 1) = −α1E(z|T ∗ = 1). Hence, E(zw) = α0(1 − p∗)E(z|T ∗ = 0) − α1p

∗E(z|T ∗ = 1). Now,
since E(zT ∗) = p∗E(z|T ∗ = 1), we have E(z)E(T ∗) = p∗E(z|T ∗ = 1) − Cov(z, T ∗) Expanding E(z)E(T )
using iterated expectations,

E(z)E(T ) = [p∗E(z|T ∗ = 1) + (1− p∗)E(z|T ∗ = 0)] [p∗(1− α1) + (1− p∗)α0]

= (1− α1)p∗(1− p∗)E[z|T ∗ = 0] + α0p
∗(1− p∗)E[z|T ∗ = 1]

+ (1− α1)(p∗)2E[z|T ∗ = 1] + α0(1− p∗)2E[z|T ∗ = 0]

Finally, substituting the expressions for E(zw),E(z)E(T ∗) and E(z)E(T ∗) and simplifying,

Cov(z, w) = E(z, w)− E(z)E(w) = E(z, w)− [E(z)E(T )− E(z)E(T ∗)]

= E(z, w)− E(z)E(T ) + [p∗E(z|T ∗ = 1)− Cov(z, T ∗)]

= (1− α0 − α1)p∗(1− p∗) [E(z|T ∗ = 1)− E(z|T ∗ = 0)]− Cov(z, T ∗)

= (1− α0 − α1)Var(T ∗)Cov(z, T ∗)/Var(T ∗)− Cov(z, T ∗)

= −(α0 + α1)Cov(z, T ∗)
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Lemma B.6. (1− α0 − α1)Cov(z, T ∗) = Cov(z, T )

Proof. This follows from Cov(z, T ) = Cov(z, T ∗) + Cov(z, w) by substituting Lemma B.5.

Lemma B.7. In the absence of covariates βIV = β/(1− α0 + α1) + σzu/σzT .

Proof. Using Lemma B.6, the result follows from βIV = [βCov(z, T ∗) + Cov(z, u)]/Cov(z, T ).

Lemma B.8. Cov(w, u) = −(α0 + α1)Cov(T ∗, u)

Proof. By iterated expectations E[wu] = −α1p
∗E[u|T ∗ = 1] + α1(1 − p∗)E[u|T ∗ = 0], using Assumption

5.1. Applying iterated expectations two more times, we find that

Cov(T ∗, u) = E[T ∗u]− E[u]E[T ∗] = p∗E[u|T ∗ = 1]− cp∗

E[u] = c = p∗E[u|T ∗ = 1] + (1− p∗)E[u|T ∗ = 0].

Solving the first of the two preceding equalities for p∗E[u|T ∗ = 1], the second for (1 − p∗)E[u|T ∗ = 0], and
substituting into the expression for E[wu] gives

E[wu] = −α1 [Cov(T ∗, u) + cp∗] + α0 (c− p∗E [u|T ∗ = 1])

= −α1 [Cov(T ∗, u) + cp∗] + α0 {c− [Cov(T ∗, u) + cp∗]}
= −(α0 + α1)Cov(T ∗, u) + α0c− cp∗(α0 + α1)

Now, since E[w|T ∗ = 0] = α0 and E[w|T ∗ = 1] = −α1, we have E[w] = (1− p∗)α0 − p∗α1. Therefore,

Cov(w, u) = E[wu]− E[w]E[u] = −(α0 + α1)Cov(T ∗, u) + α0c− cp∗(α0 + α1)− [(1− p∗)α0 − p∗α1] c

= −(α0 + α1)Cov(T ∗, u).

Lemma B.9. In the absence of covariates,

βOLS =
1

p(1− p)

{[
(p− α0)(1− p− α1)

1− α0 − α1

]
β + (1− α0 − α1)σT∗u

}
.

Proof. The result follows from βOLS = [βCov(T, T ∗) + Cov(T ∗, u) + Cov(w, u)]/Var(T ) by substituting
Lemmas B.3 and B.8.

Lemma B.10. Cov(z, u)/Cov(z, T ) = δz/(p1 − p0)

Proof. By iterated expectations, E(zu) = qE(u|z = 1) and E(u) = qδz + E(u|z = 0). Thus,

Cov(z, u) = qE(u|z = 1)− q [qδz + E(u|z = 0)] = q(1− q)δz.

Similarly, E(zT ) = qp1 and E(T ) = p1q + p0(1− q). Thus,

Cov(z, T ) = qp1 − q [p1q + p0(1− q)] = q(1− q)(p1 − p0).

Lemma B.11 (Equations 28 and 29). Under Assumption 5.1,

ỹ0k = (β +m∗1k)α1p
∗
k + (1− α0)(1− p∗k)m∗0k

ỹ1k = (β +m∗1k)(1− α1)p∗k + α0(1− p∗k)m∗0k.
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Proof. By the iterated expectations and Lemma B.2,

E [u|T = 0, zk] = ET∗|T=0,zk [E [u|T ∗, T = 0, zk]] = ET∗|T=0,zk [E [u|T ∗, zk]]

= P(T ∗ = 1|T = 0, zk)m∗1k + P(T ∗ = 0|T = 0, zk)m∗0k

=
α1p
∗
k

1− pk
m∗1k +

(1− α0)(1− p∗k)

1− pk
m∗0k.

Analogously,

E [u|T = 1, zk] =
(1− α1)p∗k

pk
m∗1k +

α0(1− p∗k)

pk
m∗0k.

The result follows by combining these expressions with ȳtk = βE[T ∗|T = t, zk] + E [u|T = t, zk].

Lemma B.12 (Relating δT∗ and δz to m∗tk.).

δT∗ = (1− q)
[
p0 − α0

p− α0
m∗10 −

1− p0 − α1

1− p− α1
m∗00

]
+ q

[
p1 − α0

p− α0
m∗11 −

1− p1 − α1

1− p− α1
m∗01

]
(B.1)

δz =
1

1− α0 − α1
[(p1 − α0)m∗11 − (p0 − α0)m∗10 + (1− p1 − α1)m∗01 − (1− p0 − α1)m∗00] (B.2)

Proof. By iterated expectations and Bayes’ Rule,

E[u|T ∗ = 1] = Ez|T∗=1 [E [u|T ∗ = 1, z]] = P(z = 0|T ∗ = 1)m∗10 + P(z = 1|T ∗ = 1)m∗11

=
p∗0(1− q)

p∗
m∗10 +

p∗1q

p∗
m∗11 =

1

p− α0
[(p0 − α0)(1− q)m∗10 + (p1 − α0)qm∗11]

where the final equality follows from Lemma B.1. Similarly

E[u|T ∗ = 0] =
1

1− p− α1
[(1− p0 − α1)(1− q)m∗00 + (1− p1 − α1)qm∗01]

The result for δT∗ now follows from δT∗ = E[u|T ∗ = 1]− E[u|T ∗ = 0]. Proceeding in the same way

E[u|z = k] = ET∗|z=k [E (u|z = k, T ∗)] =
1

1− α0 − α1
[(pk − α0)m∗1k + (1− pk − α1)m∗0k]

and the result for δz follows from δz = E[u|z = 1]− E[u|z = 0].

Proof of Proposition 5.1. To begin, define

g(α1) = (ỹ01 − ỹ00)− α1[(ỹ01 − ỹ00) + (ỹ11 − ỹ10)]

h(α1) =
[(1− q)ỹ00 + qỹ01]− α1 {[(1− q)ỹ00 + qỹ01] + [(1− q)ỹ10 + qỹ11]}

1− p− α1

∆(α0) =
(1− α0)ỹ10 − α0ỹ00

p0 − α0
− (1− α0)ỹ11 − α0ỹ01

p1 − α0

The proof proceeds as follows. First substitute for p∗k using Lemma B.1 in the expression for ỹ0k from
Equation 28 and then solve for (β +m1k∗) to yield

β +m∗1k =
(1− α0 − α1)ỹ0k − (1− α0)(1− pk − α1)m∗0k

α1(pk − α0)

Now, substituting the preceding equality into the expression for ỹ1k from Equation 29, again replacing for
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p∗k using Lemma B.1 and rearranging, we find that

m∗0k =
(1− α1)ỹ0k − α1ỹ1k

1− pk − α1
(B.3)

Next, summing Equations 28 and 29, and solving for (β +m∗1k) we obtain

(β +m∗1k) =
(ỹ0k + ỹ1k)− (1− p∗k)m∗0k

p∗k
. (B.4)

Now we subtract the preceding equation evaluated at k = 1 from the same evaluated at k = 0, yielding

m∗10 −m∗11 =

[
ỹ00 + ỹ10

p∗0
− ỹ01 + ỹ11

p∗1

]
+

[
(1− p∗` )m∗01

p∗1
− (1− p∗0)m∗00

p∗0

]
.

Now we eliminate m∗00 and m∗01 from the preceding using Equation B.3 to obtain

m∗10 −m∗11 =
(1− α0)ỹ10 − α0ỹ00

p0 − α0
− (1− α0)ỹ11 − α0ỹ01

p1 − α0
. (B.5)

Next we eliminate m∗0k from Equations B.1 and B.2 again using Equation B.3. We obtain,

δT∗ =

{
m∗10

[
(1− q)(p0 − α0)

p− α0

]
+m∗11

[
q(p1 − α0)

p− α0

]}
− h(α1) (B.6)

and

δz =
(p1 − α0)m∗11 − (p0 − α0)m∗10

1− α0 − α1
+

g(α1)

1− α0 − α1
(B.7)

Equations B.5, B.6 and B.7 constitute an over-determined system of linear equations in (m∗10,m
∗
11), namely

m∗10 −m∗11 = ∆(α0) (B.8)

(1− q)(p0 − α0)m∗10 + q(p1 − α0)m∗11 = (p− α0) [δT∗ + h(α1)] (B.9)

(p0 − α0)m∗10 − (p1 − α0)m∗11 = g(α1)− (1− α0 − α1)δz (B.10)

Substituting Equation B.8 into B.10 to eliminate m∗10 and rearranging yields

(p0 − α0) [m∗11 + ∆(α0)]− (p1 − α0)m∗11 = g(α1)− (1− α0 − α1)δz

and thus

m∗11 =

[
g(α1)− (1− α0 − α1)δz − (p0 − α0)∆(α0)

p0 − p1

]
(B.11)

while making the same substitution into Equation B.9 yields

m∗11 =

[
(p− α0) [δT∗ + h(α1)]− (1− q)(p0 − α0)∆(α0)

(1− q)(p0 − α0) + q(p1 − α0)

]
. (B.12)

Finally, equating the two preceding expressions we see that

δT∗ + h(α1)−
[

(1− q)(p0 − α0)∆(α0)

p− α0

]
=

[
g(α1)− (1− α0 − α1)δz − (p0 − α0)∆(α0)

p0 − p1

]

using the fact that (1− q)p0 + qp1 = p.

57



Lemma B.13. Under Assumption 5.1,

s∗20k =
(1− α1)(1− pk)σ2

0k − α1pkσ
2
1k

1− pk − α1
− α1(1− α1)pk(1− pk)(ȳ1k − ȳ0k)2

(1− pk − α1)2

s∗21k =
(1− α0)pkσ

2
1k − α0(1− pk)σ2

0k

pk − α0
− α0(1− α0)pk(1− pk)(ȳ1k − ȳ0k)2

(pk − α0)2
.

Proof of Lemma B.13. First E(y2|T, z) = ET∗|T,z
[
E(y2|T ∗, z)

]
and E(y|T, z) = ET∗|T,z [E(y|T ∗, z)] by

iterated expectations. Next, by Lemma B.2,

E(y2|T = 0, zk) =
α1p
∗
k

1− pk
E
[
(β + u)2|T ∗ = 1, zk

]
+

(1− α0)(1− p∗k)

1− pk
E
[
u2|T ∗ = 0, zk

]
E(y|T = 0, zk) =

α1p
∗
k

1− pk
E [β + u|T ∗ = 1, zk] +

(1− α0)(1− p∗k)

1− pk
E [u|T ∗ = 0, zk]

using the fact that y = βT ∗ + u. Combining these and simplifying yields,

σ2
0k =

α1p
∗
k

1− pk
s∗21k +

(1− α0)(1− p∗k)

1− pk
s∗20k + V0k(α0, α1)(β +m∗1k −m∗0k)2 (B.13)

where

V0k(α0, α1) =
α1(1− α0)(pk − α0)(1− pk − α1)

(1− pk)2(1− α0 − α1)2
(B.14)

Similarly,

E(y2|T = 1, zk) =
(1− α1)p∗k

pk
E
[
(β + u)2|T ∗ = 1, zk

]
+
α0(1− p∗k)

pk
E
[
u2|T ∗ = 0, zk

]
E(y|T = 1, zk) =

(1− α1)p∗k
pk

E [β + u|T ∗ = 1, zk] +
α0(1− p∗k)

pk
E [u|T ∗ = 0, zk]

and thus

σ2
1k =

(1− α1)p∗k
pk

s∗21k +
α0(1− p∗k)

pk
s∗20k + V1k(α0, α1)(β +m∗1k −m∗0k)2 (B.15)

where

V1k(α0, α1) =
α0(1− α1)(pk − α0)(1− pk − α1)

p2
k(1− α0 − α1)2

(B.16)

Now, combining Equations B.3 and B.4 from the proof of Proposition 5.1,

β +m∗1k −m∗0k = (1− α0 − α1)
(1− pk)ỹ1k − pkỹ0k

(pk − α0)(1− pk − α1)
. (B.17)

Substituting Equations B.14 and B.17 into Equation B.13, and Equations B.16 and B.17 into Equation B.15,

σ2
0k =

α1p
∗
k

1− pk
s∗21k +

(1− α0)(1− p∗k)

1− pk
s∗20k +

α1(1− α0)p2
k (ȳ1k − ȳ0k)

2

(pk − α0)(1− pk − α1)

σ2
1k =

(1− α1)p∗k
pk

s∗21k +
α0(1− p∗k)

pk
s∗20k +

α0(1− α1)(1− pk)2 (ȳ1k − ȳ0k)
2

(pk − α0)(1− pk − α1)

The result follows by solving these equations for s∗20k and s∗21k.

Lemma B.14. Under Assumptions 5.1 and 5.2,

α0 ≤ min
k
{pk} , α1 ≤ min

k
{1− pk} . (B.18)

These inequalities are strict unless p∗k is zero or one.
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Proof of Lemma B.14. Rearranging the result of Lemma B.1,

pk − α0 = (1− α0 − α1)p∗k

(1− pk)− α1 = (1− α0 − α1)(1− p∗k).

Now, since p∗k and (1 − p∗k) are probabilities they are between zero and one which means that the sign of
pk−α0 as well as that of (1− pk)−α1 are both determined by that of 1−α0−α1. Thus, under Assumption
5.2, α0 ≤ pk and α1 ≤ (1− pk) for all k.

Proof of Proposition 5.2. We first derive the bounds for α0 and α1. We then show that these bounds
are sharp and that our assumptions imply no restrictions on δT∗ . By assumption, s∗20k, s

∗2
1k > 0. Thus, by

Lemma B.13,

(pk − α0)
[
(1− α0)pkσ

2
1k − α0(1− pk)σ2

0k

]
> α0(1− α0)pk(1− pk)(ȳ1k − ȳ0k)2 (B.19)

(1− pk − α1)
[
(1− α1)(1− pk)σ2

0k − α1pkσ
2
1k

]
> α1(1− α1)pk(1− pk)(ȳ1k − ȳ0k)2 (B.20)

Thus, for each k we obtain a pair of quadratic inequalities that bound α0 and α1.
Consider first Inequality B.19. Notice that both α0 = 0 and α0 = 1 satisfy the inequality. In contrast

α0 = pk does not: the left hand side becomes zero while the right hand side is strictly positive. This
implies that the quadratic equation defining the boundary of the inequality crosses the α0-axis and thus
has two real roots. Moreover, one of these is strictly less than pk. Rearranging Inequality B.19, we have
Akα

2
0 +B0

kα0 + C0
k > 0 where

Ak = pk(1− pk)(ȳ1k − ȳ0k)2 + (1− pk)σ2
0k + pkσ

2
1k

B0
k = −

[
σ2

1kpk(1 + pk) + pk(1− pk)σ2
0k + pk(1− pk)(ȳ1k − ȳ0k)2

]
C0
k = p2

kσ
2
1k.

Since Ak > 0, the quadratic equation defined by Akα
2
1 + B0

kα1 + C0
k = 0 opens upwards. By Lemma B.14,

α0 < pk so we need only consider the smaller of the two roots. Our bound imposes that α0 be strictly less
than this quantity. Analogous reasoning for Inequality B.20, using 1 − pk rather than pk, shows that the
smaller of the two roots of Akα

2
1 +B1

kα1 + C1
k = 0 bounds α1 from above, where

Ak = pk(1− pk)(ȳ1k − ȳ0k)2 + (1− pk)σ2
0k + pkσ

2
1k

B1
k = −

[
pk(1− pk)σ2

1k + (1− pk)(2− pk)σ2
0k + pk(1− pk)(ȳ1k − ȳ0k)2

]
C1
k = (1− pk)2σ2

0k.

Notice that the coefficient of the squared term, Ak, is common to both quadratics. Because the bounds
for α0 and α1 hold for each k, we can take the tighter of each. Now, equating f1k(α0) and f0k(α0) and
rearranging gives precisely Akα

2
0 +B0

kα0 + C0
k = 0. Equating the inverse functions

f−1
0k (α1) =

pk(1− pk − α1)σ2
0k − p2

k(ȳ1k − ȳ0k)2α1

(1− pk − α1)σ2
0k − p2

k(ȳ1k − ȳ0k)2α1

f−1
1k (α1) =

pk(1− pk − α1)σ2
1k

(1− pk − α1)σ2
1k + (1− pk)2(ȳ1k − ȳ0k)2(1− α1)

and rearranging gives precisely Akα
2
1 +B1

kα1 + C1
k = 0.

We now show that (−∞,∞)× [0, ᾱ0)× [0, ᾱ1) is the sharp identified set for (δT∗ , α0, α1). Because all of
our steps from above are reversible, so long as ȳ1k 6= ȳ0k, any (α0, α1) ∈ [0, ᾱ0)× [0, ᾱ1) implies s∗20k, s

∗2
1k > 0.

Moreover, at any pair (α0, α1) within these bounds, p∗ and p∗k all lie in the interval [0, 1]. It remains only
to show that δT∗ is unrestricted. Notice that the expressions for s∗20k and s∗21k from Lemma B.13 involve only
α0, α1 and observables: they do not involve m∗tk. The m∗tk are only constrained by observables through
Equations 28 and 29. For any fixed values of (α0, α1) these constitute a linear system of four equations in
five unknowns: β, m∗00,m

∗
01,m

∗
10 and m∗11. This means that we can solve for each of the other unobservables
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for any value of the free parameter m∗11 and still satisfy the assumptions of the model. The result follows
since δT∗ can be written as a linear function of m∗11 and observables only, for any fixed values of (α0, α1),
using Equation B.12.

Lemma B.15. Under Assumption 5.3, (i) P(z = 1|T ∗, T ) = P(z = 1|T ∗), and (ii) E [x|T ∗, T ] = E [x|T ∗].

Proof. By Bayes’ Rule and Assumption 5.3 (iii),

P (z = 1|T ∗ = t∗, T = t) =
P(T = t|T ∗ = t∗)P (z = 1|T ∗ = t∗)

P(T = t|T ∗ = t∗)
= P(z = 1|T ∗ = 1)

which proves part (i). Now, by iterated expectations and Assumption 5.3 (i)

E[x|T ∗, T ] = Ez|T∗,T [E (x|T ∗, T, z)] = Ez|T∗,T [E (x|T ∗, z)]

and
E [x|T ∗] = Ez|T∗ [E (x|T ∗, z)]

Part (ii) now follows by part (i), which shows that that the conditional distribution of z given T ∗, T is the
same as the conditional distribution of z given T ∗.

Lemma B.16.

E (x|T ∗ = 1)− E (x|T ∗ = 0) =
p(1− p)(1− α0 − α1)

(p− α0)(1− p− α1)
[E (x|T = 1)− E (x|T = 0)]

Proof. By Lemma B.15 (ii), E[x|T ∗, T ] = E[x|T ∗] and hence

E[x|T = 1] = P(T ∗ = 1|T = 1)E [x|T ∗ = 1] + P(T ∗ = 0|T = 1)E [x|T ∗ = 0]

E[x|T = 0] = P(T ∗ = 1|T = 0)E [x|T ∗ = 1] + P(T ∗ = 0|T = 0)E [x|T ∗ = 0]

by the law of iterated expectations. Now, by Bayes’ rule,

P(T ∗ = 1|T = 1) = (1− α1)p∗/p, P(T ∗ = 0|T = 1) = α0(1− p∗)/p
P(T ∗ = 1|T = 0) = α1p

∗/(1− p), P(T ∗ = 0|T = 0) = (1− α)(1− p∗)/(1− p)

and substituting these four expressions into the preceding two along with Lemma B.1 we find that

pE [x|T = 1] =
(1− α1)(p− α0)

1− α0 − α1
E [x|T ∗ = 1] +

α0(1− p− α1)

1− α0 − α1
E [x|T ∗ = 0]

(1− p)E [x|T = 0] =
α1(p− α0)

1− α0 − α1
E [x|T ∗ = 1] +

(1− α0)(1− p− α1)

1− α0 − α1
E [x|T ∗ = 0]

This is a system of two equations in two unknowns. The result follows by solving and rearranging.

Lemma B.17.

δz = [E (x|z = 1)− E (x|z = 0)]
′
γ + δ̃z (B.21)

δT∗ =
p(1− p)(1− α0 − α1)

(p− α0)(1− p− α1)
[E (x|T = 1)− E (x|T = 0)]

′
γ + δ̃T∗ (B.22)

Proof. Since u = c+ x′γ + ε where c is a constant, δz = [E(x|z = 1)− E(x|z = 0)]
′
γ + δ̃z and similarly

δT∗ = E[u|T ∗ = 1]− E[u|T ∗ = 0] = [E(x|T ∗ = 1)− E(x|T ∗ = 0)]
′
γ + δ̃T∗

=
p(1− p)(1− α0 − α1)

(p− α0)(1− p− α1)
[E (x|T = 1)− E (x|T = 0)]

′
γ + δ̃T∗
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where the final equality follows from Lemma B.16.

Lemma B.18. The probability limit of the IV estimators of β and γ is given by[
βIV
γIV

]
=

[ (
σzTσzT∗ + σzx

′
σxT∗

)
β

γ +
(
σxTσzT∗ + ΣxxσxT∗

)
β

]
+ σzε

[
σzT

σxT

]
where [

σzT σzx
′

σxT Σxx

]
≡
[
σzT σ′zx
σxT Σxx

]−1

Proof. Let ỹ be the de-meaned version of y and so on. Then we have ỹ = βT̃ ∗ + x̃′γ + ε using the fact
that, since ε is mean zero ε = ε̃. Stacking observations in the usual way,[

β̂IV
γ̂IV

]
=

[
z̃′T̃/n z̃′X̃/n

X̃ ′T̃/n X̃ ′X̃/n

]−1{[
z̃′T̃∗/n z̃X̃/n

X̃ ′T̃∗/n X̃X̃/n

] [
β
γ

]
+

[
z̃′ε/n

X̃ ′ε/n

]}

→p

[
σzT σzx

′

σxT Σxx

]{[
σzT∗ σ′zx
σxT∗ Σxx

] [
β
γ

]
+

[
σzε
0

]}
under standard regularity conditions. The result follows since[

σzT σzx
′

σxT Σxx

] [
σ′zx
Σxx

]
=

[
0′

I

]
by the definition of an inverse matrix.

Lemma B.19. σxT∗ = σxT (σzT∗/σzT )

Proof. Since the result is an element-wise equality between two vectors we need only show that

Cov(x, T ∗)/Cov(x, T ) = Cov(z, T ∗)/Cov(z, T )

for an arbitrary element x of x. By the Law of Iterated Expectations,

Cov(z, T ∗) = p∗ [E (z|T ∗ = 1)− E(z)] , Cov(z, T ) = p [E (z|T = 1)− E(z)]

Cov(x, T ∗) = p∗ [E (x|T ∗ = 1)− E(x)] , Cov(x, T ) = p [E (x|T = 1)− E(x)]

and hence we have

Cov(z, T ∗)

Cov(x, T ∗)
=

E(z|T ∗ = 1)− E(z)

E(x|T ∗ = 1)− E(x)
,

Cov(z, T )

Cov(x, T )
=

E(z|T = 1)− E(z)

E(x|T = 1)− E(x)

By iterated expectations and Lemma B.15 (i),

E(z|T = 1) = (1− α1)
p∗

p
E(z|T ∗ = 1) +

α0(1− p∗)
p

E(z|T = 0)
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but by the Law of total probability (1− p∗)E(z|T ∗ = 0) = E(z)− p∗E(z|T ∗ = 1) and hence

E(z|T = 1) =
1

p
[(1− α1)p∗E(z|T ∗ = 1) + α0(1− p∗)E(z|T = 0)]

=
1

p
[(1− α1)p∗E(z|T ∗ = 1) + α0 {E(z)− p∗E(z|T ∗ = 1)}]

=
1

p
[(1− α0 − α1)p∗E(z|T ∗ = 1) + α0E(z)]

=
1

p

[
(1− α0 − α1)

p− α0

1− α0 − α1
E(z|T ∗ = 1) + α0E(z)

]
=

1

p
[(p− α0)E(z|T ∗ = 1) + α0E(z)]

which implies

E(z|T = 1)− E(z) =
1

p
[(p− α0)E(z|T ∗ = 1) + α0E(z)]− p

p
E(z)

=
1

p
[(p− α0)E(z|T ∗ = 1)− (p− α0)E(z)] =

p− α0

p
[E(z|T ∗ = 1)− E(z)]

An identical argument with x in place of z gives

E(x|T = 1)− E(x) =
p− α0

p
[E(z|T ∗ = 1)− E(x)]

Therefore

Cov(z, T )

Cov(x, T )
=

E(z|T = 1)− E(z)

E(x|T = 1)− E(x)
=

(p− α0) [E(z|T ∗ = 1)− E(z)] /p

(p− α0) [E(x|T ∗ = 1)− E(x)] /p

=
E(z|T ∗ = 1)− E(z)

E(x|T ∗ = 1)
=

Cov(z, T ∗)

Cov(x, T ∗)

Lemma B.20.
(
σzTσzT∗ + σzx

′
σxT∗

)
= 1/(1− α0 − α1).

Proof. By the partitioned matrix inverse formula,

σzT = (σzT − σ′zxΣxxσxT )
−1

σzx
′

= −σ−1
zT σ

′
zx

(
Σxx − σxTσ−1

zT σ
′
zx

)−1

Now, by the Woodbury matrix identity (A−BCD)−1 = A−1 +A−1B
(
C−1 −DA−1B

)−1
DA−1 and hence

(
Σxx − σxTσ−1

zT σ
′
zx

)−1
= Σ−1

xx + Σ−1
xxσxT

(
σzT − σ′zxΣ−1

xxσxT
)−1

σ′zxΣ−1
xx = Σ−1

xx

(
I +

σxTσ
′
zxΣ−1

xx

σzT − σ′zxΣ−1
xxσxT

)
Substituting this into our expression for σzx

′
gives

σzTσzT∗ + σzx
′
σxT∗ =

σzT∗

σzT − σ′zxΣxxσxT
− σ−1

zT σ
′
zxΣ−1

xx

(
I +

σxTσ
′
zxΣ−1

xx

σzT − σ′zxΣ−1
xxσxT

)
σxT∗

Expressing the right-hand side over a common denominator and simplifying gives

σzTσzT∗ + σzx
′
σxT∗ =

σzT∗ − σ′zxΣxxσxT∗

σzT − σ′zxΣxxσxT
(B.23)

using the fact that σ−1
zT is a scalar and hence commutes. By Lemma B.6 we have σzT /(1− α0 − α1) = σzT∗

and by Lemma B.19 we have Cov(z, T )/Cov(z, T ∗) = Cov(x, T )/Cov(x, T ∗) for each element x of x which
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implies σxT /(1− α0 − α1) = σxT∗ . The result follows by substituting into Equation B.23.

Lemma B.21. (σxTσzT∗ + ΣxxσxT∗) = 0

Proof. By the partitioned matrix inverse formula

σxTσzT∗ + ΣxxσxT∗ = −Σxx
σxT
σzT

σzT∗ + ΣxxσxT∗ = Σxx
(
σxT∗ −

σxT
σzT

σzT∗

)
The result follows since σxT∗ = σxT (σzT∗/σzT ) by Lemma B.19.

Proposition B.1. The probability limit of the IV estimators of β and γ is given by[
βIV
γIV

]
=

[
β/(1− α0 − α1)

γ

]
+ δ̃zq(1− q)

[
σzT

σxT

]
where σzT = (σzT − σ′zxΣxxσxT )

−1
and σxT = −

(
Σxx − σxTσ−1

zT σ
′
zx

)−1
σxTσ

−1
zT .

Proof. We show that δ̃zq(1 − q) = σzε, after which the result follows by combining Lemmas B.18, B.20
and B.21. By iterated expectations, 0 = E[ε] = qE[ε|z = 1] + (1 − q)E[ε|z = 0]. Thus, it follows that

E [ε|z = 0] = −qE [ε|z = 1] /(1− q) and substituting the definition of δ̃z,

δ̃z = E [ε|z = 1]− E [ε|z = 0] =

(
1

1− q

)
E [ε|z = 1]

Now, since ε is mean zero σzε = E[zε] = E [zE [ε|z]] = qE[ε|z = 1] so that δ̃zq(1−q) = qE[ε|z = 1] = σzε.

Lemma B.22.
δ̃z = B̃(α0, α1) + S̃(α0, α1)δ̃T∗

where

B̃(α0, α1) =
S(α0, α1)F (α0, α1)C3 +B(α0, α1)− C1

S(α0, α1)F (α0, α1)C4 − C2 + 1
, S̃(α0, α1) =

S(α0, α1)

S(α0, α1)F (α0, α1)C4 − C2 + 1
,

C1 =
σ′zxγIV
q(1− q)

, C2 = σ′zxσ
xT , C3 = σ′xTγIV , C4 = q(1− q)σ′xTσxT ,

F (α0, α1) = (1−α0−α1)/[(p−α0)(1− p−α1)], and B(α0, α1), S(α0, α1) are as defined in Proposition 5.1.

Proof. Rearranging the result of Lemma B.1, γ = γ̂IV − δ̃zq(1 − q)σxT . Substituting this into Equation
B.21 from Lemma B.22,

δz = [E (x|z = 1)− E (x|z = 0)]
′
(
γ̂IV − δ̃zq(1− q)σxT

)
+ δ̃z

=
σ′zx

q(1− q)

(
γ̂IV − δ̃zq(1− q)σxT

)
+ δ̃z =

σ′zxγ̂IV
q(1− q)

−
(
σ′zxσ

xT − 1
)
δ̃z

since E(x|z = 1)− E(x|z = 0), the coefficient from a regression of x on z, equals σzx/[q(1− q)]. Thus,

δz = C1 − (C2 − 1)δ̃z. (B.24)
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Similarly, substituting into Equation B.22 from Lemma B.22,

δT∗ = [E (x|T ∗ = 1)− E (x|T ∗ = 0)]
′
(
γ̂IV − δ̃zq(1− q)σxT

)
+ δ̃T∗

=
p(1− p)(1− α0 − α1)

(p− α0)(1− p− α1)
[E (x|T = 1)− E (x|T = 0)]

′
(
γ̂IV − δ̃zq(1− q)σxT

)
+ δ̃T∗

=
p(1− p)(1− α0 − α1)

(p− α0)(1− p− α1)

[
σxT

p(1− p)

]′ (
γ̂IV − δ̃zq(1− q)σxT

)
+ δ̃T∗

=
(1− α0 − α1)σ′xT γ̂IV
(p− α0)(1− p− α1)

−
[
q(1− q)(1− α0 − α1)σ′xTσ

xT

(p− α0)(1− p− α1)

]
δ̃z + δ̃T∗

=

[
(1− α0 − α1)

(p− α0)(1− p− α1)

]
C3 −

[
(1− α0 − α1)

(p− α0)(1− p− α1)

]
C4δ̃z + δ̃T∗

since E(x|T = 1)− E(x|T = 0), the coefficient from a regression of x on T , equals σxT /[p(1− p)]. Thus,

δT∗ = F (α0, α1)C3 − F (α0, α1)C4δ̃z + δ̃T∗ . (B.25)

Now, substituting Equations B.24 and B.25 into Equation 32 and re-arranging,

δ̃z =

[
S(α0, α1)F (α0, α1)C3 +B(α0, α1)− C1

S(α0, α1)F (α0, α1)C4 − C2 + 1

]
+

[
S(α0, α1)

S(α0, α1)F (α0, α1)C4 − C2 + 1

]
δ̃T∗ .

B.2 Inference: Draws for the Reduced Form Parameters

In this appendix we provide details of our algorithm for producing posterior samples for the reduced from
parameters described in Section 5.5. Define W =

[
1 T X

]
, R =

[
1 z X

]
, and b̂ = (R′W )

−1
R′y

where the estimator b̂ converges in probability to the parameter b from the reduced form model y = Wb+ρ
and ρ is a reduced form error. Note that the first element of b is the constant term and the second element
is the reduced-form coefficient for T . The remaining elements are the reduced-form coefficients for x, namely
γIV . Define the residuals ρ̂i = yi −w′ib̂. Using the definition of b̂ and the reduced form errors ρ,

b̂ = (R′W )−1R′y = (R′W )−1R′(Wb + ρ) = b + (R′W )−1R′ρ

and thus
√
n(b − b̂) = (R′W/n)−1(R′ρ/

√
n). Now, the conditional means of y given z and T can be

constructed from the parameters of the following regression model:

yi = ξ0 + ξTTi + ξzzi + ξTzTi × zi + ωi

where ωi is a reduced-form error that is correlated with xi. Defining A =
[
1 T z Tz

]
we can write

this as y = Aξ + ω. We estimate ξ by OLS leading to residuals ω̂i = yi − a′iξ̂. The cell means ȳtk and the

estimated parameters of this regression ξ̂ are related as follows:
ȳ00

ȳ01

ȳ10

ȳ11


︸ ︷︷ ︸

ȳ

=


1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1


︸ ︷︷ ︸

Q


ξ̂0
ξ̂T
ξ̂z
ξ̂Tz


︸ ︷︷ ︸

ξ

in other words ȳ = Qξ̂ and similarly for the population parameters: µy = Qξ. Hence,

√
n
(
ȳ − µy

)
= Q (A′A/n)

−1
(A′ω/

√
n).
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To determine the joint distribution of b̂ and ȳ we need to study the joint limiting behavior of A′ω/
√
n

and R′ρ/
√
n. By the Central Limit Theorem for iid observations[

R′ρ/
√
n

A′ω/
√
n

]
=

1√
n

n∑
i=1

[
riρi
aiωi

]
→d

[
Mρ

Mω

]
∼ N(0,Ξ).

We estimate Ξ as follows

Ξ̂ =
1

n− 1

n∑
i=1

[
rir
′
iρ̂

2
i ria

′
iρ̂iω̂i

air
′
iρ̂iω̂i aia

′
iω̂

2
i

]
=

[
Ξ̂ρρ Ξ̂ρω

(Ξ̂ρω)′ Ξ̂ωω

]

where

Ξ̂ρρ =
R′diag

{
ρ̂2
}
R

n− 1
, Ξ̂ωω =

A′diag
{
ω̂2
}
A

n− 1
, Ξ̂ρω =

R′diag {ρ̂} diag {ω̂}A
n− 1

.

Stacking the two estimators on top of one another,[ √
n
(
b̂− b

)
√
n
(
ȳ − µy

) ] =

[
(R′W/n)−1 0

0 Q(A′A/n)−1

] [
R′ρ/

√
n

A′ω/
√
n

]
d→
[

Σ−1
RW 0
0 QΣ−1

AA

] [
Mρ

Mω

]
so we see that the joint limit distribution is N(0, H) with

H =

[
Σ−1
RW 0
0 QΣ−1

AA

] [
Ξρρ Ξρω
Ξωρ Ξωω

]
︸ ︷︷ ︸

Ξ

[
(Σ−1

RW )′ 0
0 (QΣ−1

AA)′

]
.

We only require the joint sampling distribution for ȳ and γ̂IV , but the first element of b̂ is the constant

term while the second corresponds to β̂IV . We do not need to work explicitly with the constant since in the
equations we use covariances hence in effect de-mean everything. Accordingly, define S to be the submatrix
of H that contains everything except the first and second rows and columns. We have

√
n
(
β̂IV − βIV

)
√
n (γ̂IV − γIV )√
n
(
ȳ − µy

)
→d N(0, S)

Treating this as a Bayesian posterior, we draw according to βIV
γIV
µy

 ∼
 β̂IV
γ̂IV
ȳ

+N(0, Ŝ/n)

Note the block of Ŝ corresponding to ȳ has a very simple structure: since we assume that our data are iid
and the cell means are calculated for non-overlapping groups of individuals, the ȳtk are all independent and

nĤyy = nŜyy = n(QΣ̂−1
AA)Ξ̂ωω(QΣ̂−1

AA)′ = n diag
{
σ̂2

00/n00, σ̂
2
01/n01, σ̂

2
10/n10, σ̂

2
11/n11

}
where σ̂2

tk is the sample variance of those y observations for which T = t and z = k and ntk is the corre-

sponding sample size. Recall that we make our draws not from Ŝ but rather from Ŝ/n. This final division

by n yields the familiar variance of the sampling distribution of the sample mean. The other blocks of Ĥ,
from which we must remove some elements as described above to yield the corresponding blocks for Ŝ, are
as follows:

Ĥbb = Σ̂−1
RW Ξ̂ρρ

(
Σ̂−1
RW

)′
, Ĥby = Σ̂−1

RW Ξ̂ρω
(
QΣ−1

AA

)′
, Ĥyb = Ĥ ′by.
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