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1 Introduction 

Over the past decade, there has been a proliferation of online marketplaces, 

ranging from eBay and Amazon to Uber and Airbnb. These online markets cannot exist 

without trust. Buyers need to trust that sellers are accurately describing products or 

services and fulfilling transactions as promised. Sellers need to trust that buyers will pay, 

and in the case of services and rentals, will abide by the agreed-upon terms of service. 

Trust between buyers and sellers is enabled by reputation systems and design choices 

made by online marketplaces. 

This paper surveys the design choices and mechanisms that online marketplaces 

use to build trust and facilitate transactions. I focus on two central decisions faced by a 

marketplace. First, online marketplaces design review systems, which allow buyers and 

sellers to review each other and the product or service being transacted. Second, 

marketplaces choose what information buyers and sellers should have about each other 

when deciding whether to transact, and how much flexibility market participants should 

have in choosing who they will transact with. I highlight challenges and tradeoffs faced 

by online marketplaces in these design choices.  

Historically, reviews have formed the backbone of reputation systems in the 

online marketplace. Sellers (and the products and services they are offering) on online 

platforms are rated and reviewed by buyers, and buyers can use this information to 

choose whom to interact with. Likewise, sellers on some platforms can review buyers. 

Reviews allow buyers and sellers to make sure they are transacting with someone deemed 

trustworthy enough to participate in the transaction. Reviews also create incentives for 

quality, as behavior of buyers and sellers is made more public. Despite the benefits of 



	
	

creating online reputation systems, several design challenges have been documented in 

the context of reviews. First, on platforms with reciprocal reviewing (i.e., where buyers 

and sellers review each other), users can have strategic incentives to manipulate reviews 

(Bolton et al. 2013, Fradkin et al. 2015). Second, reviews can suffer from selection bias 

(Hu et al. 2009, Masterov et al. 2015), as the people leaving reviews may differ from 

those who do not. Third, reviews may be distorted by promotional content in which 

businesses attempt to leave reviews for themselves (Mayzlin, Dover, and Chevalier 2014; 

Luca and Zervas 2015). Moreover, even if all reviews represent a user’s true experience, 

some users may be more informative than others (Dai et al. 2015). Section 3 provides an 

overview of these issues, as well as potential design solutions for these challenges. 

      In first-generation platforms such as eBay, reviews – along with pictures and 

descriptions of the product – were the main information sources available to buyers at the 

time of purchase. Buyers and sellers typically did not see each other’s name or picture – 

names were exchanged after the purchase was made. Over time, platforms have become 

considerably less anonymous. For example, Airbnb is an online platform for people to list 

and find short-term lodging; it attempts to build trust by allowing would-be renters to 

present personal profiles and post pictures of themselves. Hosts can then accept or reject 

guests based on their pictures and profiles. This design choice is now the norm on many 

platforms – indeed, it represents a broader trend of platforms’ providing more 

information to market participants – not only about products and services, but about the 

people buying and selling them. This also demonstrates the large degree of flexibility that 

online marketplaces have in their market-design choices (much more than is typically 

found in traditional markets).  



	
	

The design choice of allowing hosts to reject guests on the basis of profile elements 

such as name, picture, and number of Facebook friends is a double-edged sword. On the 

one hand, it has the potential to make market participants feel more comfortable with 

each other, in part by reducing social distance. However, this design choice also 

facilitates discrimination – for example, African-American guests (and hosts) are 

discriminated against on Airbnb (Edelman and Luca 2014; Edelman, Luca, and Svirsky 

2016). This is part of a broader trend of discrimination that has been documented in 

online marketplaces including eBay (Nunley et al., 2011), Craigslist (Doleac and Stein, 

2013), and Prosper (Pope and Sydnor, 2011). In labor market contexts, there is extensive 

evidence of discrimination against minority job applicants (Bertrand and Mullainathan 

2004). Online labor markets such as Upwork are designed in a way that makes it easy for 

discrimination to manifest in online contexts as well. For example, Ghani et al. (2014) 

find that employers of Indian ethnicity are more likely to hire workers from India.  

Overall, these findings highlight the promise and peril of online marketplaces. The 

existence of new online markets creates value for society, enabled by trust and reputation 

mechanisms. However, the same design choices allow for unintended consequences such 

as discrimination. In this paper, I document the evolution of new online markets, focusing 

on the design choices pertaining to trust and reputation. I highlight the key features of 

reputation systems and the problems that can arise. I then survey the evidence on 

discrimination in online markets and consider potential solutions that can be implemented 

by platforms.  

 

 



	
	

2 The Rise of Online Marketplaces 

The founding of Amazon and eBay in 1994 and 1995, respectively, ushered in the 

first generation of online marketplaces. These platforms were remarkable in their ability 

to facilitate transactions between strangers. Someone in upstate New York could order a 

used book from a stranger in southern California and trust that it would arrive in a few 

days. These platforms facilitated transactions that would not otherwise occur, supported 

in part by reputation systems. At the same time, buyers and sellers generally did not 

provide pictures or names until after a purchase was made. Both platforms had review 

systems to facilitate transactions. 

In the 20 years since, a variety of more specialized platforms such as Airbnb, 

Uber, and Upwork have emerged, creating new markets and pushing a growing 

proportion of the economy onto the Internet. To give context for how quickly the industry 

is growing: Airbnb was founded in 2008 and is now valued at $26 billion. It currently has 

more than 2 million listings, which is more than the largest hotel chain. Similarly 

remarkable is the statistic that there are now more Uber drivers –affiliated vehicles than 

traditional taxis in New York City. As of 2015, Uber is valued at roughly $50 billion. 

Relative to first-generation platforms, these marketplaces have less anonymity – pictures 

and names are fast becoming the norm – but still have the reputation systems that were 

staples of earlier platforms. Table 1 provides a sample of marketplaces that are active as 

of 2016. Table 2 provides data on a subsample of those. 

3 Reputation Systems 

In this section, I highlight the main challenges – and potential solutions – to 

building a robust reputation in an online marketplace, focusing on the role of user 



	
	

reviews and drawing on Luca (2015). Broadly speaking, there are two main mechanisms 

that a platform can use to improve the quality of its review system, taking into account 

the types of biases that commonly arise. First, it can improve the incentives to leave high 

quality reviews. Second, taking the reviews as given, it can aggregate the reviews in a 

way to increase their informational content (Dai et al. 2015). I then look beyond reviews 

for other tools to facilitate trust. 

3.1 Reciprocal Reviewing 

The process of reciprocal reviewing (i.e., of buyers and sellers reviewing each 

other) is valuable because it builds trust on both sides of the market. However, this can 

also create incentives for upward-biased reporting if reviewers fear retaliation. For 

example, when Airbnb’s policy allowed renters’ reviews to be posted before hosts’ (as 

was previously the case), guests might have been hesitant to leave bad reviews out of 

concern that hosts would retaliate.  

To circumvent this problem, platforms such as Airbnb have moved to a system 

sometimes referred to as “simultaneous reveal”: they do not display reviews until both 

sides have left a review (or until the time to review has expired). Simultaneous revelation 

of reviews reduces the strategic problems associated with reciprocal reviewing (Bolton et 

al. 2013, Fradkin et al. 2015). However, even in a simultaneous-reveal system, strategic 

incentives persist. For example, buyers may be reluctant to provide negative feedback if 

they suspect that it would discourage other sellers from transacting with them.  

One potential solution to the problems created by reciprocal reviewing would be 

to allow users to leave anonymous ratings (in situations where this is feasible), which 

could allow users to be more honest without fearing direct or indirect retaliation. To 



	
	

increase anonymity, platforms might consider showing only aggregated feedback. While 

this reduces the total amount of information being provided to users, it may increase the 

quality of that information. A second solution would be to have private ratings that are 

provided from a user to the platform, but not shared publicly. This would again reduce 

fear of retaliation on the part of users, while allowing the platform to use the information. 

The platform could use this private feedback in a variety of ways, such as updating its 

sorting algorithms, or using it to address concerns directly with the user being reviewed.  

3.2 Self-Selection 

Because reviews in online marketplaces are voluntary, they can suffer from 

selection bias, in that reviews are left by users who chose both to purchase the product or 

service and to leave a review online. In particular, users may be more likely to leave a 

review after an especially positive or negative experience. Indeed, Hu et al. (2009) find 

that reviews on Amazon tend to exhibit an asymmetric bimodal (J-shaped) distribution, 

with more positive than negative reviews. They argue that experiences for many products 

are more likely to resemble a normal distribution, and hence the J-shape suggests that 

people are more likely to leave reviews after extreme experiences. Masterov et al. (2015) 

find consistent evidence from eBay, where buyers are more likely to leave a review after 

a good experience.  

There are a variety of tools that online marketplaces can use to improve this 

selection problem, ranging from sending repeated email notifications encouraging people 

to report their experiences to paying people who leave reviews. Alternatively, to the 

extent that platforms know who is leaving a review, they can incorporate this information 



	
	

into the reputation score – for example, penalizing sellers who receive low rates of 

feedback. 

3.3 Promotional Content 

Another potential bias in online reviews occurs when people or businesses 

surreptitiously leave reviews about themselves or competitors. Promotional content is 

driven, at least in part, due to changing economic incentives for a business (Mayzlin, 

Dover, and Chevalier 2014, Luca and Zervas 2015). It is more prevalent among 

independent businesses, when there is nearby competition, and when there is a negative 

shock to a business’s reputation. One mechanism for reducing promotional reviews is to 

verify whether a transaction has occurred. While this may help to reduce fake or 

promotional reviews, it may also prevent legitimate reviews by increasing the barriers to 

contributing content. 

Beyond verification of transactions, there are several other potential approaches to 

reducing promotional content: spam can be identified through algorithms that mine 

review text and characteristics (e.g., Ott et al. 2011, Akoglu et al. 2013). Platforms can 

also give more weight to reviewers who are less likely to be contributing promotional or 

fake content – for example, reviewers with longer transaction histories could receive 

more weight.  

3.4 Social Distance 

Social distance has the potential to affect a variety of other behaviors, such as 

generosity (Hoffman et al. et al. 1996) and reciprocity (Charness et al. et al. 2007) – even 

in one-shot games. With pictures and profiles becoming an increasingly common design 

choice, online marketplaces are beginning to shrink the social distance between buyers 



	
	

and sellers. One might expect this to lead to higher ratings. This could be good if it makes 

users more comfortable with each other, but may distort reviews to the extent that higher 

ratings reflect a reluctance to leave negative feedback after a bad experience. The level of 

social distance can be a choice variable for platforms.  

3.5 Beyond Reviews 

Online marketplaces can supplement reviews through other trust-building 

mechanisms. The marketplace itself can do more to screen or authenticate information 

about buyers and sellers. For example, Airbnb could conduct interviews of renters and 

hosts, or they could run background checks. For example, Care.com, a marketplace for 

childcare providers, has incorporated a greater degree of platform-driven screening. 

Platforms can also provide insurance – and clear liability rules – for situations where 

something does go wrong.  

4 Discrimination in Online Marketplaces 

Another area in which online platforms can fall short is in their potential to allow 

discrimination. In the early days of electronic commerce, economists hypothesized that 

online platforms might decrease the amount of discrimination in commercial transactions. 

For example, consider a customer looking to purchase a car. This is a market where 

prices are negotiated separately for each buyer, and the final price paid is opaque – and 

this is also a market where racial discrimination is prevalent (Ayres and Siegelman 1995). 

However, when a purchase is initiated through an online platform, Morton et al. (2003) 

find no difference in outcomes on the basis of race. Similarly, eBay has less scope for 

discrimination because indicators of race and gender are generally not very salient on the 

platform. On other platforms, such as Amazon and Expedia, sellers essentially pre-



	
	

commit to accepting all buyers regardless of race or ethnicity. Marketplaces have the 

potential to facilitate transactions while reducing discrimination. 

Over time, though, the design of online platforms has changed, moving toward 

systems with less anonymity and fuller user profiles, coupled with more flexibility on the 

part of sellers and buyers to do business based on these attributes. For example, Expedia 

effectively prevents a hotel from rejecting a guest based on perceived race, ethnicity, or 

almost any other factor. But if the same hotel lists a room on Airbnb, it could reject a 

guest based on these or other factors. This highlights the fact that, while the Internet has 

the potential to reduce discrimination, this benefit depends on the design choices made by 

platforms.  

In part because online platforms have evolved in this way, the conditions that 

made online markets potential havens free from discrimination are not prevalent on all 

platforms. To see the contrast between the prominent norms of online and offline 

markets, suppose that a senior executive at a hotel chain were to propose the following 

change to its reservation policy: 

Let’s start encouraging guests to upload their pictures, and let’s allow branch 

managers to reject guests if they don’t like the way they look. Potential guests 

would continue to make reservations through the website as before, but they would 

be nudged to upload pictures and links to Facebook pages or LinkedIn accounts. 

Branch managers would then have 24 hours to decide whether the guest looked 

sufficiently trustworthy. If the guest looked trustworthy, he or she would be 

accepted for a reservation. If not, the guest would be rejected. Managers would like 



	
	

the policy because they could accept the guests that they are most comfortable with. 

We’d also save money because the most costly guests would go elsewhere.  

Of course, this idea sounds unrealistic. While it is conceivable that a branch 

manager could distinguish some of the trustworthy guests from the bad on the basis of 

looks or name, the adoption of screening on this basis is fraught with risk. In particular, 

what sorts of pictures and names should a manager screen for? The Civil Rights Act of 

1964 prohibits discrimination on the basis of race, color, religion, or national origin. 

While the manager could certainly look for subtler cues, incorporating appearance in the 

reservations process would likely be too risky to justify any benefit the hotel might 

receive. Yet this design choice is the emerging norm in online marketplaces for short-

term housing – and in many other marketplaces.  

Discrimination has now been documented in a variety of online marketplaces. Table 

3 summarizes the evidence on discrimination across different online marketplaces. This 

section documents the evidence, as well as design features that might facilitate 

discrimination.  

4.1 Housing rental markets 
	

Most searches for accommodations – both short term and long term – now begin 

online. For long-term apartment leases, platforms including Craigslist, Zillow, and many 

of their competitors provide rental information. In these markets, the platform typically 

provides the initial connection between potential landlords and lessees (and often charges 

a fee for advertising), but does not facilitate actual payment or charge fees based on 

transacted leases.  



	
	

In short-term rentals on marketplaces such as Airbnb and HomeAway, the market 

looks very different. Transactions are often agreed upon from afar, and the platform does 

facilitate payment. On Airbnb, prospective hosts and guests provide information not just 

about their listings and preferences, but also about themselves – often posting photos, 

providing their name, etc. All of these factors are provided before a host decides whether 

to accept or reject a guest.  

My collaborators and I find that these design choices matter – African-American 

guests (and hosts) are discriminated against on Airbnb in a way that would be infeasible 

under different design choices (Edelman and Luca 2014, Edelman, Luca, and Svirsky 

2016). Looking at listings in New York City, Edelman and Luca (2014) find that African-

American hosts earn about 12% less than White hosts for similar listings. Edelman, Luca, 

and Svirsky (2016) implement a field experiment across five cities, varying only the race 

of the person requesting to stay with a host. African-American guests are roughly 15% 

less likely to be accepted relative to White guests, holding all else constant. 

4.2 Labor markets 
	

Looking at the online labor market Upwork (which was called oDesk at the time), 

Ghani et al. (2014) find that relative to other employers, employers of Indian descent are 

more likely to hire Indian nationals.[1] Given the design of Upwork, which provides 

pictures of employees during the recruiting process, one might expect other forms of 

discrimination to be prevalent as well. Figure 2 presents results from a search for 

potential employees on Upwork. A variety of more specialized labor markets have arisen 

in the digital age as well, ranging from Topcoder (specializing in programmers) to Uber 

																																																								
[1] There is extensive evidence of discrimination in offline labor markets, which is beyond the scope of this 
chapter. See, for example, Bertrand and Mullainathan (2004) and Lang and Lehman (2011). 



	
	

and Lyft (specializing in drivers). As of 2015, roughly 0.5% of all U.S. workers provided 

contract services through online marketplaces (Katz and Krueger 2016).  

The rapid growth of online labor markets has the potential to increase or decrease 

discrimination. For example, consider the taxi industry, an industry in which men are 

historically overrepresented. As of 2014, there were more females on Uber relative to the 

traditional taxi industry (Hall and Krueger 2015). New data from a survey done by the 

Benenson Strategy Group shows that these numbers are far from static – in fact, there has 

been a 30% increase in female Uber drivers in the past year alone.[2]  

Online labor markets have a unique opportunity to prevent discrimination using 

various tools, some of which we discuss in the next section. 

4.3 Credit markets 
	

Credit and funding markets are rapidly changing as peer-to-peer lending and 

crowdfunding platforms are on the rise. On peer-to-peer lending platforms such as 

Prosper.com, would-be borrowers post profiles and an amount they are looking to 

borrow. Would-be lenders select among borrowers that they would like to fund. Looking 

at Prosper, Pope and Snydor (2011) find that loan listings for Black borrowers are 25-

35% less likely to get funded than loan listings for White borrowers with similar credit 

scores. However, Black borrowers are also more likely to default on a loan through 

Prosper, leading the authors to conclude that this is statistical discrimination. In their 

context, reducing discrimination would also reduce efficiency, unless the platform were 

to supplement listings with further information to predict default rates.  

																																																								
[2] Benenson Strategy Group: “Uber: The Driver Roadmap 2.0.”		



	
	

4.4 Other markets 

Other markets face discrimination challenges as well. For example, Doleac and 

Stein (2013) implement a field experiment on Craigslist in which they sell used iPods. In 

the posted pictures, they vary the hand that is holding the iPod. They find that the demand 

for the iPod is lower when the hand holding it is African-American. Looking at sales of 

baseball cards on eBay using a similar design, Ayres et al. find that cards held by 

African-American sellers earn roughly 20% less. Nunley et al. (2011) also find 

discrimination on eBay, but note that the extent of discrimination also depends on the 

amount of competition. In their design, the name of the seller is varied (as opposed to the 

picture). Relative to platforms such as Airbnb and Upwork, both eBay and Craigslist 

have less of a norm for sellers to post personal pictures of themselves. Hence, while 

discrimination can exist on eBay and Craigslist, these platforms are doing less to 

facilitate it than are platforms that encourage (and in some cases require) users to publicly 

post information that signals their race, gender, or other personal information. 

4.5 Debiasing marketplaces 
	

There are many market design solutions that online platforms could implement in 

order to reduce discrimination. Moreover, there is variation in the choices that platforms 

make in this area that can influence the extent of discrimination. In this section, I lay out 

potential ways to reduce discrimination in an online marketplace. This is not intended to 

be a comprehensive list, but rather to highlight the fact that there are a variety of market 

design solutions that could be implemented by a well-intentioned marketplace. 



	
	

4.5.1 Optimal information provision	

Until recently, most musicians within major symphony orchestras were male. 

Over time, gender equality has increased. Goldin and Rouse (2001) find that roughly 

25% of the change in composition was driven by one simple change – blind auditions. 

Historically, when a musician would audition for the orchestra, he or she would be both 

heard and watched by the evaluating committee. Over time, there has been a shift in 

norms toward blind auditions; now, there is typically a screen between the musician and 

the evaluating committee. This makes factors such as looks, race, and gender less salient, 

allowing the committee to focus on the quality of the music.  

This highlights the fact that while information is necessary to make markets 

function, more information is not always better. Providing information about factors such 

as race and gender can facilitate discrimination; removing this information can moderate 

discrimination effects.  

In offline settings, it is often difficult to blind transactions. For example, it would 

be challenging for an interviewer to put a screen up in front of a candidate that she is 

interviewing. One of the unique features about online marketplaces is that they provide 

an opportunity to decide when and where virtual screens should be placed. In the context 

of Airbnb, it would be a trivial exercise to remove identifying information about guests 

and hosts. For example, they could limit pictures, names, and racial identifiers of hosts 

until after a transaction is completed. Similarly, they could remove elements of guest 

profiles that provided race information until after the host had accepted a reservation 

request. 

In practice, there is considerable variation in the amount and timing of 

information that is provided to buyers and sellers in online marketplaces. For example, 



	
	

Airbnb and HomeAway (a main competitor of Airbnb) take different approaches to 

information provision. Complete guest profiles (many of which have pictures – in our 

sample, we saw roughly 40% had pictures) are more the norm on Airbnb. Figures 1 and 3 

display typical guest profiles on Airbnb, highlighting the differential prevalence of 

pictures and social profiles across the two platforms. Differences also become apparent 

when looking at the search process. When searching on Airbnb, results show the pictures 

of hosts alongside pictures of listings on the main results page. In contrast, HomeAway 

shows only the pictures of listings; users need to click on a listing before seeing host 

information. Figures 4 and 5 provide sample results for each platform.  

An online platform could choose not to provide any identifying characteristics of 

buyers and sellers until after the transaction is completed. For example, both eBay and 

Amazon function successfully with little information to identify personal characteristics 

such as race and gender and rely mostly on user ratings.  

4.5.2 Increasing salience of diversity goals 
	

An alternative (and potentially complementary) approach would be to make the 

objective of increasing diversity more top-of-mind for users. For example, Airbnb could 

require hosts to check an acknowledgment box that says, “Airbnb prohibits 

discriminatory behavior” each time that a host chooses whether to accept or reject a 

guest. Similar to the way that priming ethics can induce ethical behavior (Shu et al. 

2014), this might prime users to think more carefully about the possibility that bias is 

creeping into their decisions.  

4.5.3 Automating the transaction process  
	



	
	

Another approach to reducing discrimination on online platforms is to further 

automate the transaction process. For example, Uber riders do not see the picture or name 

of the driver until after the ride is booked. While in principle, riders could cancel a ride 

and look for a new driver, this design choice can greatly reduce the scope for 

discrimination. Similarly, Airbnb has a feature called “instant book,” in which hosts can 

opt to automatically accept qualified guests. By removing the ability to reject guests on 

the basis of features such as name and picture, this virtually eliminates the potential to 

discriminate. Yet instant booking is currently only used by a small fraction of Airbnb 

hosts. If online platforms were to move toward further automation of booking, this could 

help to reduce discrimination in a variety of online contexts. 

5 Conclusion 

 The evolution of trust on the Internet and development of principles for 

developing reputation systems have allowed online marketplaces to thrive. Early work 

suggested that the arms-length nature of online transactions would reduce the amount of 

discrimination we see. And in some cases, platforms likely are bringing us closer to the 

bias-free ideal. For example, Ayres et al. (2005) find evidence of racial bias in the context 

of tipping taxi drivers. Because it disallows tipping and instead provides market prices, 

Uber’s design choice eliminates inequality among driver wages.  

But the amount of discrimination in an online marketplace is a choice variable, 

determined by the design features that the marketplace selects. Ultimately, the decisions 

made by platforms will depend on ethical considerations, legal considerations, 

operational considerations, competition considerations, and public relations 

considerations. This paper has provided insight into the design principles underlying 



	
	

robust reputation systems, and a toolkit for helping to reducing discrimination in the 

digital age.  
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Figure 1: Sample guests on Airbnb
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Figure 2: Applicants on Upwork
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Figure 3: Sample guests on HomeAway
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Figure 4: Sample search result on Airbnb
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Figure 5: Sample search result on HomeAway



	
	

Tables 

Table 1: Sample Markets with Online Marketplaces 
 

Market Sample Platforms 

Short-term Housing  Airbnb, HomeAway, Couchsurfing 

Labor  TaskRabbit, Upwork, MechanicalTurk 

Pet sitting Dogvacay, rover, fetch! 

Home Services HouseCall, Handy 

Senior and Child Care  Care.com 

Food Delivery  Grubhub, Postmates, Eat24 

Funding Prosper, Lending Club, Kickstarter, 
Indiegogo 

Dating Tinder, OkCupid, CoffeeMeetsBagel, 
Match  

Handmade Goods Etsy, CustomMade 

Fashion  Renttherunway, Rocksbox, LeTote 

Car Rentals Getaround, car2go 

Car Rides Uber, Lyft, PickupPal, BlaBlaCar 

  



	
	

Table 2: Sample Online Marketplaces 
 

Marketplace 
Year 

Founded 

Valuation 
$ Billions 

(as of 2015) 

Revenue  
$ Millions  

(as of 2015) 

User Base 
Millions 

Amazon 1994 250 107,010  304  
(active customer accounts) 

eBay 1995 69 6,103  162  
(active buyers) 

Craigslist 1995 3 381 60  
(monthly users in U.S.) 

Priceline 1997 62 9,220 13  
(unique monthly users) 

Etsy 2005 2 273 24  
(active buyers) 

Airbnb 2008 26 900 60  
(cumulative guests) 

Uber 2009 50 2,000 8  
(cumulative riders) 

 
 

Table 3: Discrimination in Online Marketplaces 
 
Airbnb African-American guests 15% less likely to be accepted. 
eBay Bids 20% lower for identifiably African-American sellers. 
Craigslist Buyers less likely to contact identifiably African-American sellers. 
Upwork Employers of Indian ethnicity more likely to hire workers from 

India.  
Prosper Loan listings for Black borrowers are 25-35% less likely to get 

funded than loan listings for White borrowers with similar credit 
scores. 

 
 




