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1. Introduction 

Developing new and improved clean-energy technologies is an important part of any 

strategy to combat global climate change. For example, generation of electricity and heat is the 

largest source of carbon emissions, accounting for 42 percent of carbon emissions worldwide in 

2012 (IEA 2014). Meeting the climate policy goals currently under consideration, such as 

European Union discussions to reduce emissions by 40 percent below 1990 levels by 2030 or the 

U.S. Clean Power Plan goal of reducing emissions from the electricity sector by 32 percent by 

2030, will not be possible without replacing much of the current fossil fuels-based electric 

generating capacity with alternative, carbon-free energy sources. 

Because clean energy technologies are usually not competitive with fossil fuels without 

policy support (Greenstone and Loney, 2012), a large academic literature has emerged evaluating 

the role of environmental policy for fostering clean energy innovation.  Much of this research 

focuses on the private sector, showing that both higher energy prices and targeted support for 

renewable energy, such as feed-in tariffs or renewable portfolio standards, lead to increases in 

clean energy patents.1   

Even when environmental regulations encourage private sector innovation, firms will 

focus research efforts on technologies that are closest to market (Johnstone et al. 2010). Yet, one 

challenge facing many climate-friendly innovations is the long time-frame from the initial 

invention to successful market deployment. Consider, for instance, the case of solar energy.  

Despite research efforts that began during the energy crises of the 1970s, solar is still only cost 

competitive without policy support in niche markets, such as remote off-grid locations.  This 

leaves a role for government-sponsored R&D to fill in the gaps, particularly in the case of 

                                                 
1 Examples include Johnstone et al (2010), Verdolini and Gaelotti (2011), Peters et al. (2012), Veugelers (2012), 
Dechezleprêtre and Glachant (2014), Nesta et al. (2014).  Dechezleprêtre and Popp (2014) and Popp (2011) provide 
recent reviews. 
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climate change, where a diversified energy portfolio will be necessary to meet currently 

proposed emission reduction targets.  Recognizing this need, during the December 2015 Paris 

climate meetings, a coalition of governments pledged to double their renewable energy R&D 

budgets to $20 billion over the next five years (Davenport and Wingfield, 2015). 

While many studies have looked at private sector energy R&D, fewer papers address the 

effectiveness of public sector clean energy R&D.  Those that do typically find a positive effect of 

public R&D on patenting (e.g. Johnstone et al 2010, Verdolini and Gaelotti 2011, Dechezleprêtre 

and Glachant 2014, Nesta et al. 2014). However, these studies typically include just a single 

lagged value of energy R&D, raising questions about what is truly identified.2   

To better ascertain the effectiveness of public energy research, Popp (2016) links data on 

scientific publications to public energy R&D funding.  For evaluating public research funding 

efforts, publication data provide a more appropriate outcome measure than patents.  By looking 

at the effect of public R&D funding on scientific articles, Popp (2016) isolates the effect of 

public R&D to shed light on the process through which public R&D helps develop scientific 

knowledge.  As the ultimate goal of government energy R&D funding is not an article, but rather 

a new technology, Popp uses citations to link these articles to new energy patents.  While public 

funding does lead to new articles, lags in both the creation of a new publication and the transfer 

of this knowledge to applied work mean that public R&D spending takes several years to go 

from new article to new patent. 

While Popp (2016) focuses on the time it takes for the results of public R&D to be cited 

by a new patent, this paper extends that work by providing more detail on the knowledge flows 

between published and patented clean energy research.  Given recent calls for more public 

                                                 
2 A partial exception is Peters et al. (2012), who state that they test multiple lags and stocks of public R&D in 
unreported results. 
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energy R&D efforts, such as the aforementioned pledges at the December 2015 Paris climate 

meetings, identifying the investments most valuable to further advancing energy research can 

help decision makers target R&D funds towards both the technologies and institutions where 

they are most likely to be successful.  This paper uses citation data from both scientific articles 

and patents to answer two questions: 

1) What information is most useful to the development of new technology?  Does high 

quality science lead to commercial success?  That is, are scientific articles cited frequently by 

other articles also more likely to be cited by patents, or are the types of articles cited by patents 

different from those cited by articles?  Popp (2016) argues that there is room to expand public 

R&D budgets, as there is little change in either the quantity of published research or the quality, 

as measured by citations, after large increases in public energy R&D.  But, are citations within 

the published literature an appropriate measure of the relevance of this published research for 

applied work?  In Section 3, I show that highly cited journal articles do receive more citations by 

patents, suggesting that counts of journal-to-journal citations are a good indicator of the ultimate 

value of an article for technology development.   

2) Which institutions produce the most valuable research?  Are there differences across 

technologies?  Using patent and article citations as a measure of knowledge flows, in section 4 I 

ask which institutions provide the most useful building blocks for future researchers.  Do 

collaborations between public and private research organizations increase flows of knowledge 

among groups?  As governments prepare to expand renewable energy R&D, such evidence can 

inform where public research funds can best be targeted.  While government research efforts are 

often criticized as wasteful, I find that government patents are cited more frequently by 

researchers than other patents, and that government research articles are more likely to be cited 
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by future patents.  Thus, government research does appear to play an important translational role 

linking basic and applied research.  Universities play a less important role in wind research than 

for solar and biofuels, suggesting that wind energy research is at a more applied stage where 

commercialization and final product development is more important than basic research. 

 

2. Data 

In this paper, I use scientific articles to represent trends in more basic upstream research 

and I use patents to represent trends in more applied downstream research and product 

development.  The article data come from the Thomson Reuters Web of Science Core Collection 

database.  Using a series of keyword searches of article titles, abstracts, and keywords, provided 

in Appendix Table A1, I identified journal publications for each of three technologies: biofuels, 

solar energy, and wind energy.3  I focus on publications in scientific journals by dropping 

articles such as reviews, editorials, or news items.  I do include proceedings papers that are 

included in the Web of Science Core Collection database.  The article data run from 1991-2011, 

as complete records of titles, abstracts, and keywords are first available in 1991.  Having 

identified appropriate keywords, Thomson Reuters provided a custom database containing all 

articles from 1991-2011 for each technology.  The database includes descriptive information on 

each paper, including the date of publication and addresses for each author, which I use to assign 

articles to each country.  For each technology, articles are aggregated by year of publication and 

country.  In the case of articles with multiple authors from multiple countries, I use weighted 

counts, assigning articles proportionately by the number of countries represented.  For example, 

an article with 2 US authors and 1 Japanese author counts as 0.67 for the US and 0.33 for Japan.  

                                                 
3 The choice of technologies follows from Popp (2016).  There, a key factor limiting relevant technologies was the 
availability of a sufficient time series of public R&D spending on each technology.  In addition, given concerns 
about climate change, the research focuses on alternative energy technologies rather than fossil fuels. 
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In addition, the database also includes descriptive data on each article citing these energy 

articles. 

When developing keyword searches, there is a tradeoff between using broad searches that 

identify as many relevant articles as possible but also include some irrelevant articles or using 

narrower searches that filter out irrelevant articles but may miss some relevant ones.  I devised 

searches that would be narrow, so as to avoid irrelevant articles. As such, my database does not 

necessarily include, for example, every article related to wind energy published since 1991.  

However, as long as there is no change in the share of relevant articles identified over time, my 

results will still be an unbiased indicator of the effect of trends in alternative energy research.  

This simply requires assuming that the searches consistently identify a fixed percentage of wind 

articles published in any given year.  In contrast, using broader search terms that identified more 

wind articles but also included irrelevant articles would require assuming that the irrelevant 

articles responded in the same way as actual wind publications included in the sample. 

As the ultimate goal of clean energy research is a new technology, I link my publication 

data to patent data, which reflect the output of applied research efforts.  Patents contain citations 

to scientific articles, allowing direct linkages to be made.  Moreover, recent work by Roach and 

Cohen (2013) shows that references to non-patent literature (NPL) such as journal articles are 

better measures of knowledge flows from public research to patents than are citations to other 

patents.  Sorenson and Fleming (2004) compare forward patent citations received by patents that 

cite or do not cite published materials.  Those patents citing previously published non-patent 

literature receive more citations and are cited more quickly than other patents. Thus, focusing on 

the flow of knowledge between articles and patents highlights research contributing to the most 

influential patents.   
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The major challenge for this analysis is linking the article data to patents.  Due to data 

constraints, the patent citation analysis focuses on citations made by U.S. patents.  Using the 

International Patent Classification (IPC) system to identify patents pertaining to specific 

technologies, I identify patents related to biofuels, solar energy, and wind.  Appendix Table A2 

presents the list of IPC technologies used.  Data on relevant patents come from the on-line 

database provided by Delphion (http://www.delphion.com/).  I obtained both patent and NPL 

references for these patents, identifying those patents referencing journal articles.  As there is no 

standard form for citing articles in a patent, matching articles and patents was done manually.  

To be consistent with the article data, I track patenting trends over time using the grant year of 

the patents.  

[FIGURE 1 ABOUT HERE] 

[FIGURE 2 ABOUT HERE] 

Figures 1 and 2 show the overall trends in patents and scientific articles, respectively.  

Both have increased over time, due in part to increased public energy R&D funding (Popp 2016) 

and new renewable energy policy mandates (Johnstone et al., 2010).  For biofuels, counts of 

articles have grown faster than patents, while the opposite is true for wind.  Appendix Figures 

A1-A6 present trends for the top five countries in each technology.  The increase in solar energy 

patents during the early 2000s is due to an increase in solar energy patents in Japan, which is 

second to only the US for total solar energy patents.  Table 1 shows the ten countries with the 

most patents and articles for each technology.  For patents, the top ten is dominated by high 

income countries, with just a few exceptions (India for biofuels, albeit with just 7.25 patents, and 

Taiwan for solar and wind).  In contrast, emerging countries appear more frequently on the list of 

top scientific article sources.  China is second to only the US in both biofuels and solar energy 

http://www.delphion.com/
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articles, and sixth for wind.  India is third for biofuels and sixth for solar.  Brazil is fourth for 

biofuels.  Thus, these emerging economies are performing research on renewable energy, but this 

research appears less likely to translate into patentable end use technologies, at least for 

innovations of sufficient value to be patented in the United States. 

[TABLE 1 ABOUT HERE] 

[TABLE 2 ABOUT HERE] 

Table 2 provides basic summary statistics for the number of citations received by each 

patent or article.  The top section provides data on article-to-article citations, the middle section 

on patent-to-patent citations, and the bottom on patent-to-article citations.  Note that there are 

many more articles than patents for each of the technologies.  Thus, not surprisingly, the average 

number of article-to-article citations is also largest.  Interestingly, while there are twice as many 

solar energy articles as biofuels articles in my sample, the average number of citations received 

is similar.  Note as well that citations are highly skewed.  For both article and patent citations, 

the mean citations is larger than the median, and is comparable for biofuels and solar to the 75th 

percentile.  Many patents receive no citations, with the median being 0 for biofuels, and just one 

for solar and wind.  

Articles receiving citations from renewable energy patents occurs much less frequently.  

Thus, in the bottom section, I provide descriptive statistics for both all articles and for the subset 

of articles that do receive at least one patent citation.  Just 0.66% of all biofuels articles, 1.31% 

of solar articles, and 1.14% of wind articles receive even one patent citation.  Moreover, 



8 
 

conditional on receiving a citation, the median article receives just one patent citation.  The 

average number of citations received is two or less.4   

 

3.  Do highly cited articles generate applied technology?  

Does high quality science lead to commercial success?  While researchers commonly 

used citations as a proxy for article quality, are scientific articles cited frequently by other 

articles also more likely to be cited by patents? Or, are the articles that inventors of new 

technology find useful different from those that other academic researchers find useful?  For 

example, might there be “intermediary” publications that link the results of basic science to 

applied technologies but are not highly cited by other journal articles?  To address these 

questions, in this section I ask whether highly cited scientific articles (e.g. those more likely to be 

cited by other articles) are also more likely to be cited by future patents. 

As many articles have had only a few years to be cited, truncation of the data is a 

concern.  Because of these truncation issues, and because most articles are only cited by a patent 

once, I use a hazard model to focus on the probability of an article ever receiving a patent 

citation.  To allow time for articles to be cited, I only consider articles published in 2009 or 

earlier.  The patent data extends through 2011.  The main variable of interest is the total number 

of citations each potentially cited article received through 2011 from other journal articles.  This 

variable tests whether the same articles are cited by both journals and patents.  To control for 

other factors affecting the probability of citation, the model also includes the citation lag 

(calculated using the publication year of both the cited article and citing patent), a set of country 

by cited year fixed effects (denoted YCi,t in the equation below), which control for the different 

                                                 
4 Low citation rates occur partially because many articles appear at the end of the sample, so there is less time for 
them to be cited.  However, even for articles published earlier in the sample period, citation rates are less than ten 
percent (Popp 2016). 
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opportunities for future citations available to articles from different countries and from different 

times, and a dummy variable to control for articles with authors from multiple countries.  As I 

explicitly model the effect of time using the citation lag, I use an exponential baseline hazard to 

model the probability of article i receiving a citation in year t: 

(1) ℎ(𝑖, 𝑡) = exp(𝛼0 + 𝛼1𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑙𝑎𝑔 + 𝛼2𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑙𝑎𝑔2  +𝛼3𝑡𝑜𝑡𝑎𝑙𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠 +

 𝛼4𝑚𝑢𝑙𝑡𝑖𝑐𝑜𝑢𝑛𝑡𝑟𝑦 + 𝛄𝐘𝐂𝐢,𝐭) 

In each regression, standard errors are clustered by article.   

While the intent of the country-by-year dummies is to control for changing citation 

opportunities, a possible concern is that the total citations received is nonetheless endogenous.  

For example, both alternative energy articles and patents are likely to appear shortly after major 

policy changes that promote alternative energy.  As a result, opportunities for receiving citations 

both from other articles and from patents will increase.  To address this possibility, I also 

consider a two-step procedure.  First, I use a negative binomial regression to predict the total 

citations received by each article.  Second, I replace totalcitations in equation (1) with a quality 

index derived from this regression, as described below. 

To predict the total citations received by each article, I use a negative binomial regression 

that includes publication year fixed effects, a dummy variable for articles with authors from 

multiple countries, and the cumulative number of publications in the country of article i’s origin 

between the article’s publication year and 2011.  Since citations are more likely between articles 

from the same country, this value proxies for the citation opportunities available for article i.5  

For each article i from country j published in year t, I model total citations as:.6 

(2) 𝑡𝑜𝑡𝑐𝑖𝑡𝑒𝑠𝑖,𝑗,𝑡 = 𝑓(#𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑗,𝑡,𝑚𝑢𝑙𝑡𝑖𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝐘𝐄𝐀𝐑 𝐅𝐈𝐗𝐄𝐃 𝐄𝐅𝐅𝐄𝐂𝐓𝐒) 
                                                 
5 Note that the year fixed effects account for remaining citing opportunities from foreign publications.  
6 Note that I do not also include a cumulative count for publications from other countries, as these are controlled for 
by the year fixed effects. 
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where #domesticpublicationsj,t represents the cumulative number of publications in the country 

of origin between the publication year t and 2011. There is a separate observation for each author 

country represented on an article.  I use weighted regression to weight each observation by the 

share of authors from that country, so that articles with multiple authors do not receive more 

weight than other articles. 

Using equation (2), for each article I then calculate the probability that the predicted 

citations are less than or equal to the actual citations received, which I multiply by 100 to create 

a quality index for each article.7  This quality index can be interpreted similarly to an error term 

from a linear regression, with the advantage that it is bounded by 0 and 100.  In the second step 

of my two-step procedure, I replace the actual count of total citations in equation (1) with this 

quality index. 

Table 3 provides descriptive statistics on both the actual journal article citations receive 

and the quality index, which helps illustrate the intuition of the quality index.  An article with 

more citations than expected given its characteristics (publication year and future citation 

opportunities from articles in the same country) will have a quality index close to 100, whereas 

an article receiving fewer citations than expected will receive a quality index close to 0.  For 

each technology, the mean quality index is near 50.  Actual citations are skewed, with a median 

value about half of the mean for each technology.  Similarly, the median quality index is also 

lower than the mean, but by a much smaller amount.  The table also shows actual citations and 

the quality index for various percentiles.  At each percentile, the quality index is generally 

similar in value to that percentile (e.g. the median quality index is close to 50).  Consistent with 

the skewed nature of the data, the 25th percentile of the quality index is slightly larger than 25, 

and the 75th percentile of the quality index is slightly lower than 75.   
                                                 
7 Done using the command predict VARNAME, pr(0,total_ctes) in Stata. 
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[TABLE 3 ABOUT HERE] 

Finally, to allow for possible non-linear effects of article quality on NPL citations, I also 

run regressions replacing the actual number of citations received (or the quality index) with a set 

of dummy variables for whether the actual citations (or quality index) are in the (1) 50th-75th 

percentile, (2) 75th-90th percentile, (3) 90th-95th percentile, or (4) 95th-100th percentile.   

Table 4 presents results for the regressions using actual values, and Table 5 the results 

from regressions using percentile dummy variables.  For the exponential hazard model, exp(β)-1 

gives the marginal effect of either one additional citation (columns 1-3) or a one-unit increase in 

the quality index (columns 4-6).  Table 4 shows that articles receiving more citations from other 

journal publications are also more likely to be cited by subsequent patents.  An additional journal 

citation raises the probability of receiving a patent citation by 0.2% (solar) to 1.7% (wind).  The 

larger magnitude for wind is primarily due to wind articles receiving fewer article citations on 

average than biofuels or solar.  Similarly, a 10 percent increase in the quality index of an article 

(a bit less than one-half of a standard deviation of each index) increases the probability of 

receiving a patent citation by 22% (wind) to 33% (solar).  

[TABLE 4 ABOUT HERE] 

[TABLE 5 ABOUT HERE] 

Table 5 shows that the effects of article quality on receiving a patent citation are non-

linear.  Compared to articles with citations or a quality index below the median, those in the 50th-

75th percentile are generally 60-80% more likely to receive a patent citation, but results are 

statistically significant at a 5 percent level only for solar energy articles.  Beyond the 75th 

percentile, results are statistically significant at the five percent level for all technologies, with 

the exception of the quality index for wind articles.  There, it is not until the 90th percentile 
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quality index that I observe a statistically significant impact on the probability of receiving a 

patent citation.  Most importantly, in the highest percentiles, the increased probability of citation 

is large.  Articles in the 90th-95th percentile for either actual publications or the quality index are 

292-569 percent more likely to be cited by a patent.  In the 95th-100th percentile, articles are 480-

799% more likely to be cited by a patent.  

These results suggest that the same articles that are perceived as important by other 

authors of journal publications (as indicated by larger citation counts from other articles) are also 

perceived important by inventors, who cite these articles more frequently on related patents. 

Given that many articles are never cited by patents, the skewed nature of the results in Table 5 

are of particular interest, as it is indeed the highest quality articles (as perceived by other authors) 

that are also cited by patents.  Since the ultimate goal of research on alternative energy sources is 

to develop new technologies, these results indicate that counts of journal-to-journal citations are 

a good indicator of the ultimate quality of an article.8 

 

4. Knowledge flows across institutions 

Having validated the use of citation data as a measure of article quality, I now use these 

citation data to examine both the quality of articles and patents across different research 

organizations and the flow of knowledge across these institutions.  The key assumption is that 

institutions producing more widely cited research output are generating research of greater value 

                                                 
8 A possible concern is that being cited by a patent changes the probability of being cited by other articles (Murray 
and Stern, 2007).  To check for this possibility, I also ran regressions using the cumulative citations received through 
year t-1, rather than total citations received.  The results for citations and the quality index were similar to those 
presented above, suggesting that changing citation behavior is not a problem in my sample.  However, unlike the 
results presented here, the citation lag coefficients change when using predicted, rather than actual citations.  Since 
cumulative citations are growing over time, this result suggests that using cumulative citations also picks up a time 
effect.  
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to future researchers.9  I consider five types of research organizations: universities, governments 

(e.g. government laboratories), research institutes, private companies, and other organizations 

(including individual inventors).10  To assess whether collaborations between different types of 

institutions encourage additional technology transfer, I classify collaborations between two or 

more institution types as a separate category.  To further focus on technology transfer from the 

public to private sector, I distinguish between collaborations that include a private firm as one of 

the institutions from collaborations between two or more non-private institutions (e.g., academic 

and government). As organizations are identified based on author affiliations and patent 

assignees, the focus is on organizations performing research, not funding research. For example, 

government research only includes publications with government organization affiliates, such as 

U.S. Department of Energy laboratories.  Research funded by governments and performed at 

universities are considered university research.  The data provide evidence as to where public 

R&D funds can be targeted to best encourage the transfer of knowledge from more basic science 

to applied technology work.   

4.1. Descriptive data on research institutions 

Before evaluating citations between research institutions, it is important to know where 

both patented and published energy research comes from.  Figures 3 and 4 show the breakdown 

of scientific articles and patents by organization.  Appendix Figures A7-A12 provide separate 

breakdowns for US and foreign publications.  Not surprisingly, universities account for most 

                                                 
9 Jaffe, Fogarty, and Banks (1998) investigate the validity of this assumption, using evidence from patent-to-patent 
citations made to NASA patents. They conclude that, although there is noise in the citation process, aggregate 
citation patterns represent knowledge spillovers, although the spillover may be indirect.  Jaffe and de Rassenfosse 
(2016) provide a recent review of the literature using patent citations as a proxy for the economics value of patented 
research. 
10 Organizations for articles are based on the affiliations of each author listed on the paper.  Articles with multiple 
authors are weighted in the same way as described earlier for country affiliation.  For patents, the organization is the 
patent assignee.  Organization coding used a combination of text-based logic (e.g. “University of…”) and Internet 
searches to identify organization types not clear from the organization name.   
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scientific articles, providing between 60 and 66% of articles for each technology.  Universities 

patent renewable energy technologies less frequently.  However, university patents are relatively 

more prevalent for biofuels, perhaps indicating the importance of genetic research to new 

patentable biofuel technologies.  12.4% of biofuel patents are assigned to universities, compared 

to just 2.5% for solar and 1.5% for wind.  As shown in Appendix Figure A8, this is almost 

entirely due to U.S. university patenting activity.  17.3% of biofuel patents assigned to US 

inventors come from universities, whereas just 3.6% of patents assigned to foreign inventors 

come from universities.  Similarly, for both biofuels and wind (Table A11), while the share of 

US patents assigned to universities is somewhat lower than the share of foreign patents, the share 

of collaborative patents is higher. Technology transfer between research institutions appears 

more successful in the U.S. than elsewhere.  This is consistent with earlier research on energy 

patents in the U.S. suggesting technology transfer improved after policy efforts such as the Bayh-

Dole Act (encouraging university patenting) and the Federal Technology Transfer Act of 1980 

(Popp 2006, Jaffe and Lerner 2001). 

[FIGURE 3 ABOUT HERE] 

[FIGURE 4 ABOUT HERE] 

Private companies are the primary source for patents, although with a much larger range 

(55% for wind, compared to 72% for solar).  In contrast, companies author just two to three 

percent of all scientific articles.  However, collaboration is more common for scientific articles, 

as another six to nine percent of articles are collaborative efforts that include a private company 

author.  Collaborations never make up more than 1.5% of patents for any technology.   

The importance of government authors and inventors varies by technology.  For scientific 

articles, government authors provide 3.8% (wind) to 6.4% (biofuels) of all articles.  For patents, 



15 
 

the range is much larger, with just 1.5% of wind patents assigned to the government, compared 

to 5.1% for solar and 11.6% for biofuels. Finally, for wind, just over 40% of patents are not 

assigned to any organization type.  Most of these are patents assigned to an individual inventor.   

Table 6 breaks down the share of articles receiving a patent citation by organization type.  

The left columns consider all citations, whereas the right columns exclude self-citations.  

Articles written by corporate authors are most likely to be cited by both solar and wind patents, 

even after removing self-citations.  Government articles are next most likely to be cited by a 

patent, and are most likely to be cited by biofuel patents.  Interestingly, despite being the most 

common source of articles, the share of university articles cited by a patent is always below the 

average for all articles, even after removing self-citations.  

[TABLE 6 ABOUT HERE] 

Finally, Tables 7 and 8 provide descriptive data on the number of article-article and 

patent-patent citations by organization type.  For biofuels and wind, government articles receive 

the most citations per article.  For solar, it is collaborations including a private sector author that 

receive the most.  Interestingly, company articles receive the second most citations per article in 

solar energy, whereas company articles receive less citations than average in biofuels and wind.  

Not surprisingly, given the large number of university articles, citations per article for 

universities are near the overall mean for each technology.  I observe similar trends for patents, 

with government patents receiving the most citations per patent for biofuels and wind, while 

company patents receive the most citations in solar energy.   

[TABLE 7 ABOUT HERE] 

[TABLE 8 ABOUT HERE] 
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4.2. Regression Analysis 

While these descriptive data provide an initial indication of both the level of research 

activity and the importance of research emerging from different institutions, they do not control 

for other factors that may influence citations. For example, Appendix Figures A13-A18 show 

how the distribution of organizations has changed over time.  For all three technologies, the 

share of university articles increases in the second half of the sample. As this is also the time of 

greatest publication activity, many university articles have thus had fewer opportunities to be 

cited than other articles.  Thus, to study flows of knowledge across institutions, it is important to 

control for the opportunities a publication has to be cited.11  

Following Jaffe and his co-authors (Caballero and Jaffe 1993, Jaffe and Trajtenberg 

1996, 1999), I create groups of publications based on the year of publication, the organization(s) 

represented on the publication, and the country of origin.  This allows me to study flows of 

knowledge across pairs of cited/citing publication categories.  Using the subscripts CTD and 

CTG to represent the cited and citing cohorts, respectively, the probability of citation, p, for 

publications within each citing/cited cohort pair is: 

(3)    pCTD,CTG = 
))((

,

CTGCTD

CTGCTD

nn
c

. 

Here, n represents the number of publications in a cohort and c the total number of citations 

between publications in each cohort pair. 

To estimate the likelihood of citation for various groups of publications, I use the model 

developed by Jaffe and his co-authors to control for factors affecting the likelihood of citation.  

The probability that a publication in potentially cited cohort CTD receives a citation from a 

                                                 
11 For ease of exposition, I use “publication” to refer to either the publication of a US patent or of a scientific article, 
as the citation model is used to analyze both article and patent citations. 
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publication in potentially citing cohort CTG is a function of the characteristics of the citing and 

cited publication groups, α(CTD,CTG), and the time that has passed since the initial publication.  

Using β1 to represent the rate of decay of knowledge as it becomes obsolete, and β2 for the rate at 

which newly produced knowledge diffuses, the probability of citation is written as: 

(4) p(CTG,CTD) = α(CTD,CTG)exp[-β1(tCTG-tCTD)][1-exp(-β2(tCTG-tCTD+1))]+ε.  

α(CTD,CTG) represents the effect of various publication cohort characteristics on the 

citation probability.  Adding one to the lag between citing and cited patents for the rate of 

diffusion ensures that patents can possibly be cited in the first year.  I control for the following: 

• the technology category (biofuels, solar, or wind) 

• the organization of both the cited and citing publication 

• the country of origin of the cited and citing publication12 

• the year of publication of the citing cohort13 

For example, one possible citing-cited cohort includes citations made by US solar energy 

patents assigned to corporations and granted in 2010 to US solar energy patents assigned to 

universities and granted in 2005.  Another such cohort would include citations made by US solar 

energy patents assigned to the government and granted in 2008 to Japanese solar energy patents 

assigned to corporations and granted in 2000. 

In this paper, the effect of the citing and cited organization is of primary interest.  Note 

that α enters the model multiplicatively, so that the null hypothesis of no effect corresponds with 

                                                 
12 The countries considered vary by publication type to focus on those countries most prevalent in the data.  For 
patents, country categories include Canada, Japan, the U.S., Denmark, Germany, Great Britain, Spain, other 
European Patent Office members, and all other countries.  For articles, country categories are Canada, China, Japan, 
the US, Denmark, Germany, Spain, Turkey, other European Patent Office members, and all other countries.  For 
patents citing articles, I only distinguish between US and foreign articles and patents.  Due to the smaller number of 
article/patent citations, most cohort pairs include zero citations if finer distinctions of the data are used. 
13 As the model also includes the lag between citing and cited documents, I do not separately include the publication 
year of the cited document, since that is a function of the lag and the citing year. 
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a value of 1, not 0.  For purposes of identification, one α parameter of each type is normalized to 

1.  Thus, for any cohort characteristic, an estimate of α(CTD,CTG) greater than one means a 

citation is more likely (compared to the normalized base category) when a publication with 

characteristic j is part of the citing/cited cohort.  Similarly, an estimate of α(CTD,CTG) less than 

one means a citation is less likely.  I estimate equation (4) using non-linear least squares.  

Because the data are grouped, I weight each observation by ( )( )CTGCTD Nn  to avoid problems 

with heteroskedasticity.   

[TABLE 9 ABOUT HERE] 

I estimate separate models for article-to-article, patent-to-patent, and patent-to-article 

citations.  Table 9 shows the result of my main specification.  Columns 1-3 provide results 

excluding self-citations, and columns 4-6 include self-citations.  Column 1 shows results for 

article-to-article citations, column 2 for patent-to-patent citations, and column 3 for patent-to-

article citations.  The pattern repeats for columns 4-6.  In all cases, university articles or patents 

are the base category. Recall that, since the model is multiplicative, the base category is 

normalized to one.  For example, looking at cited institutions, the coefficient of 0.858 for 

government articles in column 1 means that government articles are 14.2 percent less likely to be 

cited than university articles.  Similarly, in column 2, government patents are 13.6 percent more 

likely to be cited than university patents.  In general, the results with and without self-citations 

are similar.  The main exception is for patents citing scientific articles (columns 3 and 6).  Except 

for collaborations, the coefficients for cited organizations fall between 25 and 50 percent when 

including self-citations.  Since this is relative to the base category of university articles, this 

suggests that university patent-to-publication citations are more likely to be self-citations.  Since 
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my main interest is knowledge flows, I focus on the results excluding self-citations below except 

when exceptions arise. 

Looking first at articles (columns 1 & 4), university articles are both more likely to be 

cited and are more likely to cite other research, as the coefficients for all other organizations are 

less than one.  This is consistent with the notion that most basic research comes from a university 

setting.14  The one exception is that company collaborations are 3 percent more likely to be cited, 

but only when self-citations are included.  Similarly, when including self-citations, non-company 

collaborations are 2.1 percent more likely to cite other work. As these results only hold for self-

citations, they suggest collaborations help expose the research partners to each other’s articles.   

The relative importance of institutions changes when looking at patent-to-patent citations 

(columns 2 & 5).  I find two important results here.  First, research performed by government 

institutions is highly valuable.  Government patents are 13.6 percent more likely to be cited than 

university patents.  Second, collaborative research enhances the flow of knowledge across 

institutions.  Non-company collaborations are 30 percent more likely to be cited than university 

patents, although the result is only significant at the ten percent level.  Note that this excludes 

self-citations between any of the participating organizations. Thus, rather than it simply being the 

case that collaborations enhance technology transfer within the group, this result suggests that 

the patents resulting from collaborations make novel contributions that are more valuable to 

future researchers.  Indeed, note that these collaborations are not more likely to be citing other 

patents, further emphasizing that it is not simply an increased propensity for cross-citation 

                                                 
14 Note that this differs from the raw descriptive data, where university articles received fewer citations on average 
than government articles.  As government articles were more prevalent early in the sample, they have had more 
opportunities for citation, thus illustrating the need to control for citation opportunities to properly assess citation 
counts across organization types. 



20 
 

generating this result.  Moreover, note that patents from other institutions are no less likely to be 

cited than university patents.   

The primacy of research performed in government laboratories continues when looking at 

patent-to-article citations (columns 3 & 6).  Government articles are 14 percent more likely to be 

cited by a patent than other research.  Thus, government research does appear to play an 

important translational role linking basic and applied research.  However, university articles are 

still important, as they are cited more frequently than non-government articles.  Finally, when 

excluding self-citations, non-company collaborations are 60 percent more likely than university 

patents to cite other articles, providing further evidence that these collaborations expose research 

partners to a wider range of knowledge than they would obtain on their own.   

Separating the results by technology yields a few interesting differences.  As the results 

are similar with and without self-citations, I present only the results excluding self-citations in 

Table 10.15  For article-to-article citations in biofuels and solar energy, university articles 

generally remain the most valuable.  However, company collaboration articles are 10 percent 

more likely to be cited than university articles.  For wind energy, things are quite different.  

Here, company and government articles are more important.  Company articles are 62 percent 

more likely to be cited, and government articles are 80 percent more likely to be cited.  Similarly, 

both company and non-company collaborations are 115 percent and 74 percent more likely to be 

cited, respectively.  Wind is a more mature technology and is approaching cost competitiveness 

with fossil fuels in ideal locations.  As such, these results suggest that wind research is moving 

towards a more applied stage where university research becomes less significant.   

[TABLE 10 ABOUT HERE] 

                                                 
15 Because of the smaller number of patent-to-article citations, that model does not converge for individual 
technologies. 
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As before, for patent-to-patent citations, government biofuel and wind patents are more 

likely be cited.  However, government solar energy patents are 10 percent less likely to be cited 

than university patents.  Emphasizing the role of the private sector, company patents in biofuels 

and solar energy are 9 and 22 percent more likely to be cited than university patents.  Company 

patents in these two technologies are also 70-75 percent more likely to cite other patents.16 

Finally, Figure 5 illustrates the impact of decay and diffusion.  It shows how the 

probability of citation varies over time for articles, patents, and patent-to-article citations.  The 

probability of article-to-article citations peaks first, just 3 years after publication.17  In contrast, 

patent-to-patent citations are more durable.  While the probabilities for article and patent 

citations start at similar levels, the probability of patent citations continues to increase for up to 9 

years after the patent was granted.18  Note that the probability of citation does not fall as quickly 

for patents as it does for articles.  Finally, knowledge flows between articles and patents are both 

less frequent and take longer to occur.  For patents citing articles, the probability peaks 15 years 

after the article was published.19 

[FIGURE 5 ABOUT HERE] 

                                                 
16 The regressions also include controls for the citing and cited countries.  While they are important controls, they 
provide less interesting information.  Both US articles and patents are the most commonly cited.  The next most 
commonly cited countries are other English-speaking nations: the UK and Canada.  Articles and patents from most 
other countries are cited about 30-40 percent less frequently than US articles.  Within scientific articles, Chinese 
publications are 13 percent more likely to have citations, and Turkish articles are 27 percent more likely to have 
citations, suggesting work from those countries may be more derivative of earlier research.  Finally, since the patent 
data includes only patents granted in the US, not surprisingly US scientific articles are cited about three times as 
often on these patents as are foreign articles.  Appendix Table A3 provides complete regression results for the 
pooled model excluding self-citations, including country coefficients. 
17 One comparable study looking at citations across publications in other fields is Adams and Clemmons (2013). 
They find slightly longer mean citation lags of about 6 years.  However, they find the fastest lags within physics, a 
field very relevant for energy research. There, the mean lag is a similar 3.5 years.   
18 Popp et al. (2013) finds similar duration for energy patents in a study looking at differences across energy 
technologies.  Patent citations to energy patents appear more durable than for other technologies, as most previous 
studies find citation probabilities peaking 3-4 years after grant (e.g. Jaffe and Trajtenberg, 2002) 
19 For comparison, in a broader study of NPL citations, Branstatter and Ogura (2005) find that patent citations to 
scientific publications begin shortly after article publication, and that the probability of citation peaks about eight 
years after article publication. 
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4.3. Discussion 

The regression results have several possible implications for energy R&D policy.  While 

a full discussion of the ideal role for government energy R&D is beyond the scope of this paper, 

here I outline some general guidelines based on the existing literature and discuss how my results 

inform future energy R&D decisions.  First, earlier studies do find instances where government 

energy R&D crowds out private R&D efforts, particularly when government funding targets 

applied research topics (Popp 2002).  If one of the objectives of government policy is to avoid 

duplicating and potentially crowding out private research efforts, government R&D will be most 

effective if it focuses on breakthrough technologies that are not yet close to market.  

With this in mind, the results for wind energy suggest that additional public R&D support 

for wind is of less value than for solar or biofuels.  For wind energy, the most valuable scientific 

articles are coming further downstream in the research process.  Government and company 

articles are more frequently cited than university research, as are multi-institution collaborations.  

While my data do not allow me to identify public R&D support that these private sector research 

projects may have received, the results demonstrate that wind energy R&D has reached a more 

mature phase, where the focus should be on product development, rather than basic scientific 

advances.  Much of this work will be carried out in the private sector.  Recall from Figure 1 that 

the greatest growth in patenting among the technologies in this paper was in wind, and that wind 

patents increased at a faster rate than wind articles.  To create demand for wind energy 

innovation, other policy mechanisms will need to be in place, such as carbon pricing or 

renewable energy mandates (e.g. Popp, 2010).  However, if governments wish to avoid 

duplicating private R&D efforts, public energy R&D investments would be better spent on 
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technologies that complement private sector wind energy investment, such as enhancing energy 

storage, than on duplicating what the private sector will do on its own. 

Government research can also help new technologies overcome roadblocks to 

commercialization (Mowrey et al. 2010, Weyant 2011).  Nonetheless, government R&D is often 

portrayed as wasteful and inefficient in public policy debates.  Cohen and Noll’s (1991) 

Technology Pork Barrel provides the classic academic treatise on this viewpoint, arguing that 

political realities influence funding decisions in ways that may prolong unsuccessful projects. 

However, I show here that research on renewable energy sources produced by government 

institutions has been particularly helpful moving alternative energy research to an applied stage.  

Patents assigned to government research institutions more likely to be cited than those from other 

institutions.  More importantly, scientific articles from government institutions are more likely 

than other articles to be cited by patents.  Although government articles are not more likely to be 

cited by other scientific articles, these government articles appear to be important links between 

basic and applied research.  Further research to uncover the value of the patents inspired by 

government research would be a useful next step. 

Finally, the long lags between patent-article citations pose a political challenge.  

Policymakers face political constraints making it difficult to support policies with little short 

term payoff.  While ideally government funded R&D funding should focus on riskier projects 

less likely to be performed in the private sector, the long lags between an initial publication and 

the ultimate technology development from such projects may make it difficult to sustain political 

support for research on these long-term projects.  Thus, a second-best solution may be for 

governments to develop a diverse portfolio of projects that includes some low-risk projects likely 

to have relatively quick returns.  While these may result in some crowding out of private R&D, 
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such success stories will help build public support for a continuous, steady stream of public 

energy R&D funding.  Funding agencies will need to weigh the cost of such crowding out 

against the potential gains of political support for a portfolio of research that also includes the 

necessary risker, but less politically popular, R&D projects. 

 

5. Conclusions 

Expansion of government energy R&D budgets is likely to continue to be a key 

component of climate policy.  Using an original data set of both scientific articles and patents 

pertaining to alternative energy technologies, this paper provides new evidence on the flows of 

knowledge between university, private, and government research.  The paper makes three key 

contributions to both the study of energy research and to energy R&D policy.  

First, using scientific articles to represent more basic, upstream research and patents to 

represent more applied downstream research, the paper provides new descriptive data on the 

flows of basic and applied research across institutions.  There are notable differences in the 

importance of different institutions across technologies.  For example, university patents are 

relatively more prevalent for biofuels, perhaps indicating the importance of genetic research to 

new patentable biofuel technologies.  Similarly, wind research has moved to a more applied 

stage, where the most valuable inventions come from downstream institutions such as the private 

sector, rather than from universities. 

Second, using non-patent literature references to link articles and patents, I show that 

highly cited academic literature is also valuable to the creation of applied technology (e.g. 

patents).  The results are highly skewed. Few articles are ever cited by patents, and those that are 

cited by patents are amongst the most highly cited articles by other research articles.  This result 
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indicates that not only are journal article citations a good indicator of the usefulness of the 

research to other academic researchers, but also provide information on the value of published 

research for potential technology development. 

Finally, analysis of citation flows across institutions highlights the high value of research 

performed at government institutions.  Patents assigned to governments are more likely to be 

cited than other patents.  Moreover, government articles are more likely to be cited by patents 

than any other institution, including universities.  Thus, research performed at government 

institutions appears to play an important translational role linking basic and applied research.  

Funding agencies may wish to expand the role of government research facilities as they increase 

public energy R&D budgets. 
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Figure 1: Total patents  

 
Figure shows total patents for clean energy technologies granted by the USPTO in each year.  
 

Figure 2: Total scientific articles 

 
Figure shows the number of scientific articles for clean energy technologies published by year.   
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Figure 3: Article author organizations 

 

Figure 4: Patent inventor organizations  
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Figure 5 – Probability of citation over time  

 
Figure shows the baseline probability of citation for different publication combinations over 
time, based on the estimated rates of decay and diffusion excluding self-citations in Table 9.  The 
x-axis plots the years between the publication dates of the citing and cited documents. 
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Table 1 – Top energy article and patent countries   

Top 10 article sources, weighted publication counts 
   Biofuels   

 
Solar Energy   

 
Wind   

United States 4428.62 
 

United States 6323.95 
 

United States 916.47 
Peoples R China 1817.09 

 
Peoples R China 5044.19 

 
United Kingdom 571.13 

India 1279.08 
 

Japan 4314.37 
 

Denmark 337.15 
Brazil 949.75 

 
Germany 3525.28 

 
Germany 290.77 

Turkey 793.54 
 

South Korea 2415.65 
 

Spain 268.43 
Japan 761.61 

 
India 2123.81 

 
Peoples R China 255.60 

United Kingdom 749.06 
 

Taiwan 1506.67 
 

Canada 251.87 
Canada 735.17 

 
United Kingdom 1409.72 

 
Japan 222.81 

Germany 735.05 
 

France 1219.91 
 

Greece 200.63 
Spain 714.40 

 
Spain 1187.10 

 
Turkey 197.62 

        Top 10 patent sources, weighted patent counts 
    Biofuels   

 
Solar Energy   

 
Wind   

United States 227.71 
 

United States 1643.49 
 

United States 892.05 
Denmark 16.81 

 
Japan 1196.33 

 
Germany 340.43 

Canada 15.17 
 

Germany 310.10 
 

Japan 135.50 
Netherlands 13.81 

 
Australia 71.40 

 
Denmark 129.67 

Japan 13.57 
 

Taiwan 53.67 
 

Canada 79.52 
Germany 9.83 

 
France 49.57 

 
Taiwan 53.33 

Great Britain 9.00 
 

Canada 46.58 
 

Great Britain 47.28 
Finland 8.46 

 
Switzerland 44.19 

 
Spain 31.92 

India 7.25 
 

Israel 40.47 
 

Netherlands 31.88 
France 5.00 

 
South Korea 39.00 

 
France 27.50 
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Table 2 –Citation summary statistics  
  N mean sd min p25 p50 p75 p90 p95  max 
Total article/article citations 

      
 

      Biofuels 20649 10.16 26.41 0 0 3 10 26 42  1561 
     Solar 41276 12.86 58.04 0 1 4 11 28 48  7135 
     Wind 5615 5.56 11.06 0.000 0.000 2.000 7.000 15.000 23.000  273 
Total patent/patent citations 

       
 

      Biofuels 354 1.56 3.26 0 0 0 2 5 8  23 
     Solar 3700 2.71 4.94 0 0 1 3 8 13  51 
     Wind 1968 3.71 6.81 0 0 1 5 10 16  95 
Total article/patent citations 

       
 

      Biofuels 20649 0.01 0.15 0 0 0 0 0 0  6 
     Solar 41276 0.03 0.39 0 0 0 0 0 0  39 
     Wind 5615 0.02 0.31 0 0 0 0 0 0  11 
Total article/patent citations: positive citations only 

    
 

      Biofuels 136 1.51 0.98 1 1 1 2 3 3  6 
     Solar 540 2.13 2.67 1 1 1 2 4 7  39 
     Wind 64 1.97 2.12 1 1 1 2 3 5  11 
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Table 3 – Article citations and quality index  

  N mean sd min p25 p50 p75 p90 p95 max 
Total citations 

               Biofuels 13721 17.399 34.223 0 3 9 20 40 60 1561 
     Solar 33465 18.924 68.507 0 3 7 18 40 68 7135 
     Wind 4403 8.312 12.996 0 1 4 11 21 30 273 
Quality index 

               Biofuels 13721 47.710 24.852 2.845 26.935 44.921 66.964 84.097 91.611 100 
     Solar 33465 48.641 23.210 7.675 29.619 45.755 64.954 83.542 91.901 100 
     Wind 4403 51.665 23.659 6.870 32.889 50.267 70.258 85.602 91.787 100 
 

Table includes descriptive statistics for scientific article citations used in the regression for equation (2), as well as the resulting 
quality index. 
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Table 4 – Are highly cited journal articles also cited by patents? 
  (1) (2) (3)   (4) (5) (6) 

 
Total Citations Predicted citations probability 

  Biofuels Solar Wind 
 

Biofuels Solar Wind 
citation lag 0.655*** 0.336*** 0.470*** 

 
0.654*** 0.329*** 0.470*** 

 
(0.135) (0.0534) (0.157) 

 
(0.136) (0.0523) (0.156) 

(citation lag)^2 -0.0241*** -0.0166*** -0.0145* 
 

-0.0242*** -0.0164*** -0.0144* 

 
(0.00735) (0.00365) (0.00751) 

 
(0.00743) (0.00359) (0.00740) 

Total citations 0.00582*** 0.00244*** 0.0165*** 
    

 
(0.00172) (0.000313) (0.00580) 

    Predicted citations probability 
    

0.0237*** 0.0320*** 0.0216*** 

     
(0.00501) (0.00215) (0.00615) 

Multiple country dummy 0.111 -0.0485 -0.998 
 

0.208 0.0220 -1.128* 
  (0.344) (0.133) (0.630) 

 
(0.332) (0.134) (0.664) 

N 80316 239265 29498 
 

80316 239265 29498 
log likelihood -294.7 -1915.3 -149.7   -291.8 -1840.1 -146.3 
* p<0.10, ** p<0.05, *** p<0.01 
Standard errors in parentheses.  All standard errors clustered by article.  Weighted regression using country weights for multicountry 
articles. 
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Table 5 – Are highly cited journal articles also cited by patents? Regressions with percentile dummies  
  (1) (2) (3)   (4) (5) (6) 

 
Total Citations Predicted citations probability 

  Biofuels Solar Wind 
 

Biofuels Solar Wind 
citation lag 0.654*** 0.330*** 0.473*** 

 
0.655*** 0.330*** 0.469*** 

 
(0.136) (0.0523) (0.156) 

 
(0.136) (0.0523) (0.158) 

(citation lag)^2 -0.0242*** -0.0164*** -0.0144* 
 

-0.0242*** -0.0164*** -0.0142* 

 
(0.00745) (0.00359) (0.00741) 

 
(0.00744) (0.00359) (0.00745) 

50th-75th percentile 0.478 0.679*** 0.903* 
 

0.585* 0.573*** 0.340 

 
(0.413) (0.146) (0.480) 

 
(0.315) (0.148) (0.473) 

75th-90th percentile 0.904** 1.088*** 1.367*** 
 

0.780** 1.233*** 0.599 

 
(0.374) (0.152) (0.446) 

 
(0.350) (0.146) (0.465) 

90th-95th percentile 1.536*** 1.737*** 1.900*** 
 

1.628*** 1.769*** 1.365** 

 
(0.416) (0.174) (0.593) 

 
(0.423) (0.169) (0.680) 

95th-100th percentile 1.826*** 2.166*** 1.906*** 
 

1.942*** 2.196*** 1.758*** 

 
(0.387) (0.153) (0.519) 

 
(0.354) (0.150) (0.455) 

Multiple country dummy 0.100 -0.133 -1.326* 
 

0.220 0.0244 -1.164* 
  (0.335) (0.133) (0.685) 

 
(0.336) (0.134) (0.664) 

N 80316 239265 29498 
 

80316 239265 29498 
log likelihood -290.0 -1855.0 -143.5   -289.5 -1845.7 -145.9 
* p<0.10, ** p<0.05, *** p<0.01 
Standard errors in parentheses.  All standard errors clustered by article.  Weighted regression using country weights for multicountry 
articles. 
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Table 6 – Percentage of articles cited by patents, by organization and country  
 
A. Biofuels 

         All citations   No self-citations 

 
Foreign USA Total 

 
Foreign USA Total 

Collaboration 0.33% 1.29% 0.60% 
 

0.33% 0.97% 0.51% 
Company 0.00% 0.00% 0.00% 

 
0.00% 0.00% 0.00% 

Company Collab 0.99% 2.65% 1.43% 
 

0.99% 2.65% 1.43% 
Government 0.25% 4.13% 1.82% 

 
0.25% 3.94% 1.74% 

Institute 0.26% 4.81% 0.49% 
 

0.00% 4.81% 0.25% 
Other 0.00% 0.00% 0.00% 

 
0.00% 0.00% 0.00% 

University 0.37% 1.23% 0.53% 
 

0.36% 1.00% 0.48% 
Total 0.38% 1.70% 0.66%   0.36% 1.48% 0.60% 
B. Solar energy 

         All citations   No self-citations 

 
Foreign USA Total 

 
Foreign USA Total 

Collaboration 0.74% 2.06% 0.90% 
 

0.68% 2.06% 0.85% 
Company 3.34% 6.64% 4.18% 

 
2.29% 5.02% 2.99% 

Company Collab 1.45% 2.30% 1.63% 
 

1.07% 2.08% 1.28% 
Government 1.05% 3.70% 1.90% 

 
1.05% 3.70% 1.90% 

Institute 1.85% 0.00% 1.81% 
 

1.60% 0.00% 1.56% 
Other 0.81% 1.69% 0.98% 

 
0.81% 1.69% 0.98% 

University 1.09% 1.62% 1.17% 
 

1.02% 1.48% 1.09% 
Total 1.15% 2.18% 1.31%   1.03% 2.00% 1.18% 
C. Wind energy 

         All citations   No self-citations 

 
Foreign USA Total 

 
Foreign USA Total 

Collaboration 0.76% 2.58% 1.17% 
 

0.57% 2.58% 1.03% 
Company 3.96% 3.93% 3.95% 

 
3.96% 3.93% 3.95% 

Company Collab 0.25% 3.17% 0.81% 
 

0.25% 2.11% 0.60% 
Government 1.38% 7.10% 3.26% 

 
1.38% 7.10% 3.26% 

Institute 0.55% 0.00% 0.51% 
 

0.55% 0.00% 0.51% 
Other 0.77% 0.00% 0.67% 

 
0.77% 0.00% 0.67% 

University 0.91% 1.36% 0.97% 
 

0.91% 1.36% 0.97% 
Total 0.92% 2.29% 1.14%   0.89% 2.18% 1.10% 
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Table 7 – Article citations by technology and organization type 
Biofuels N mean sd min p25 p50 p75 p90 p95 max 
Collaboration 3349 10.54 26.16 0 0 3 11 26 43 625 
Company 409 8.46 17.48 0 0 2 8 27 40 169 
Company Collab 1332 10.49 22.52 0 0 3 11 26 43 349 
Government 1320 13.28 25.16 0 1 5 15 34.5 52.5 288 
Institute 811 8.39 16.14 0 0 2 9 22 40 146 
Other 324 6.79 14.28 0 0 1 7 20 31 140 
University 13104 9.97 27.87 0 0 3 10 25 41 1561 
Total 20649 10.16 26.41 0 0 3 10 26 42 1561 
Solar Energy N mean sd min p25 p50 p75 p90 p95 max 
Collaboration 7663 12.04 35.04 0 1 4 11 28 47 1727 
Company 1172 14.11 30.25 0 2 5 15 32 55 484 
Company Collab 3130 15.59 48.90 0 1 5 13 31 57 1347 
Government 1898 13.88 35.52 0 1 5 13 29 52 510 
Institute 2432 10.25 25.30 0 1 3 10 25 43 631 
Other 307 5.15 10.48 0 0 2 6 13 21 64 
University 24674 12.98 68.88 0 1 3 11 27 48 7135 
Total 41276 12.86 58.04 0 1 4 11 28 48 7135 
Wind Energy N mean sd min p25 p50 p75 p90 p95 max 
Collaboration 682 5.56 9.37 0 0 2 7 16 23 126 
Company 177 4.80 11.36 0 0 1 5 15 22 124 
Company Collab 497 4.82 9.19 0 0 1 6 13 22 89 
Government 215 7.76 15.35 0 0 3 8 21 33 156 
Institute 195 5.13 8.87 0 0 2 6 14 20 56 
Other 150 4.18 7.19 0 0 1 5 13 19 40 
University 3699 5.65 11.48 0 0 2 7 16 24 273 
Total 5615 5.56 11.06 0 0 2 7 15 23 273 
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Table 8 – Patent citations by technology and organization type 
Biofuels N mean sd min p25 p50 p75 p90 p95 max 
Company 220 1.30 2.70 0 0 0 2 4 7 19 
Company Collab 5 0.00 0.00 0 0 0 0 0 0 0 
Govt/Inst 41 3.34 5.38 0 0 1 4 11 15 23 
Other 42 1.19 3.10 0 0 0 1 4 7 16 
Other Collab 2 0.00 0.00 0 0 0 0 0 0 0 
University 44 1.80 3.12 0 0 0 2 8 9 11 
Total 354 1.56 3.26 0 0 0 2 5 8 23 
Solar Energy N mean sd min p25 p50 p75 p90 p95 max 
Company 2662 2.86 5.19 0 0 1 3 9 13 51 
Company Collab 14 0.21 0.58 0 0 0 0 1 2 2 
Govt/Inst 188 1.79 2.92 0 0 1 3 5 9 17 
Other 738 2.57 4.49 0 0 1 3 8 12 42 
Other Collab 5 1.00 1.73 0 0 0 1 4 4 4 
University 93 2.16 4.52 0 0 0 2 6 13 27 
Total 3700 2.71 4.94 0 0 1 3 8 13 51 
Wind Energy N mean sd min p25 p50 p75 p90 p95 max 
Company 1087 3.19 6.92 0 0 1 4 9 14 95 
Company Collab 9 3.56 3.36 0 0 3 6 9 9 9 
Govt/Inst 29 5.93 11.46 0 0 1 8 22 24 55 
Other 814 4.31 6.34 0 0 2 6 12 17 44 
University 29 4.07 8.46 0 0 1 4 10 10 45 
Total 1968 3.71 6.81 0 0 1 5 10 16 95 
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Table 9 – Knowledge flows across organizations 
 
  No self-citations   Including self-citations 

 
art-art pat-pat pat-art 

 
art-art pat-pat pat-art 

Cited parameters 
       Company 0.728*** 1.041 0.532*** 

 
0.702*** 1.094*** 0.354*** 

 
(0.009) (0.027) (0.081) 

 
(0.010) (0.028) (0.071) 

Company Collab. 1.005 0.832 0.648*** 
 

1.031*** 0.865 0.489*** 

 
(0.006) (0.109) (0.068) 

 
(0.007) (0.107) (0.060) 

Government 0.858*** 1.136*** 1.142** 
 

0.896*** 1.141*** 0.699*** 

 
(0.007) (0.037) (0.063) 

 
(0.007) (0.038) (0.049) 

Institutions 0.773*** 1.068 
  

0.808*** 1.074* 
 

 
(0.009) (0.042) 

  
(0.009) (0.042) 

 Other 0.408*** 1.053* 0.118*** 
 

0.366*** 1.019 0.058*** 

 
(0.015) (0.028) (0.182) 

 
(0.016) (0.027) (0.162) 

Collaborations 0.875 1.306* 0.895* 
 

0.930 1.243 0.925 

 
(0.005) (0.180) (0.062) 

 
(0.005) (0.175) (0.056) 

Citing parameters 
       Company 0.683*** 1.149*** 0.222*** 

 
0.650*** 1.189*** 0.157*** 

 
(0.014) (0.037) (0.011) 

 
(0.014) (0.038) (0.009) 

Company Collab. 0.907*** 0.988 0.104*** 
 

0.968*** 0.962 0.057*** 

 
(0.007) (0.087) (0.108) 

 
(0.008) (0.085) (0.094) 

Government 0.898*** 1.110** 0.261*** 
 

0.968*** 1.128** 0.194*** 

 
(0.009) (0.055) (0.042) 

 
(0.009) (0.054) (0.036) 

Institutions 0.947*** 0.804*** 
  

0.925*** 0.877*** 
 

 
(0.009) (0.050) 

  
(0.009) (0.049) 

 Other 0.557*** 1.703*** 0.037*** 
 

0.465*** 1.593*** 0.027*** 

 
(0.019) (0.055) (0.013) 

 
(0.020) (0.051) (0.012) 

Collaborations 0.981*** 0.909 1.579*** 
 

1.021*** 0.917 0.781*** 

 
(0.005) (0.148) (0.115) 

 
(0.005) (0.143) (0.078) 

        Decay  0.187*** 0.088*** 0.058*** 
 

0.209*** 0.094*** 0.054*** 

 
(0.001) (0.001) (0.005) 

 
(0.001) (0.001) (0.005) 

Diffusion 0.0002*** 0.0003*** 2.89E-05* 
 

0.0004*** 0.0003*** 1.04E-04*** 
  (4.94E-06) (1.24E-05) (0.00002) 

 
(7.30E-06) (1.41E-05) (0.00003) 

Num. of obs. 1,666,298 469,168 61,573   1,666,298 469,168 61,573 
* p<0.10, ** p<0.05, *** p<0.01 
Standard errors in parentheses.  Governments and institutions combined for patent-article 
citations due to smaller sample size.  Regressions also include controls for the publication year of 
the citing document and the citing and cited country. 
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Table 10 – Knowledge flows across organizations, by technology 
 
  Biofuels   Solar   Wind 

 
art-art pat-pat 

 
art-art pat-pat 

 
art-art pat-pat 

Cited parameters 
        Company 0.604*** 1.223** 

 
0.811*** 1.088*** 

 
1.621*** 1.049 

 
(0.019) (0.089) 

 
(0.009) (0.030) 

 
(0.080) (0.065) 

Company Collab. 0.777*** 0.323 
 

1.102*** 0.465*** 
 

2.150*** 1.353 

 
(0.012) (0.426) 

 
(0.006) (0.130) 

 
(0.044) (0.221) 

Government 0.828*** 1.492*** 
 

0.828*** 0.906*** 
 

1.797*** 1.149* 

 
(0.011) (0.131) 

 
(0.007) (0.033) 

 
(0.047) (0.090) 

Institutions 0.594*** 1.556*** 
 

0.859*** 0.899** 
 

1.026 1.043 

 
(0.016) (0.141) 

 
(0.009) (0.043) 

 
(0.051) (0.101) 

Other 0.468*** 1.057 
 

0.297*** 1.033 
 

0.690*** 1.081 

 
(0.025) (0.092) 

 
(0.018) (0.028) 

 
(0.046) (0.066) 

Collaborations 0.741*** 1.033 
 

0.942*** 1.507*** 
 

1.742*** N/A 

 
(0.008) (0.717) 

 
(0.005) (0.138) 

 
(0.032) 

 Citing parameters 
        Company 0.815*** 1.754*** 

 
0.772*** 1.703*** 

 
0.315*** 0.478*** 

 
(0.025) (0.203) 

 
(0.015) (0.076) 

 
(0.041) (0.022) 

Company Collab. 0.873*** 1.566* 
 

0.941*** 1.217 
 

0.525*** 0.373*** 

 
(0.013) (0.337) 

 
(0.007) (0.172) 

 
(0.031) (0.077) 

Government 0.775*** 0.933 
 

0.999 1.362 
 

0.508*** 0.688*** 

 
(0.015) (0.183) 

 
(0.010) (0.078) 

 
(0.066) (0.059) 

Institutions 0.764*** 0.608*** 
 

1.046*** 1.456*** 
 

1.125** 0.462*** 

 
(0.017) (0.148) 

 
(0.008) (0.086) 

 
(0.055) (0.055) 

Other 0.582*** 5.022*** 
 

0.489*** 2.277*** 
 

0.643*** 0.735*** 

 
(0.030) (0.575) 

 
(0.024) (0.102) 

 
(0.047) (0.033) 

Collaborations 0.798*** 1.981 
 

1.095*** 2.329*** 
 

0.951* N/A 

 
(0.009) (1.149) 

 
(0.005) (0.249) 

 
(0.025) 

 
         Decay  0.147*** 0.062*** 

 
0.219*** 0.111*** 

 
0.131*** 0.079*** 

 
(0.001) (0.003) 

 
(0.001) (0.001) 

 
(0.002) (0.001) 

Diffusion 0.0003*** 0.0005*** 
 

0.0003*** 0.0003*** 
 

2.6E-05*** 0.0020*** 
  (1.33E-05) (1.15E-04) 

 
(5.80E-06) (1.46E-05) 

 
(4.20E-06) (1.73E-04) 

Num. of obs. 604,135 45,104   666,779 291,285   395,384 132,779 
* p<0.10, ** p<0.05, *** p<0.01 
Standard errors in parentheses.  Results excluding self-citations.  Regressions also include 
controls for the publication year of the citing document and the citing and cited country. 
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ON-LINE SUPPLEMENT: APPENDIX TABLES AND FIGURES 
Appendix Table A1 – Keyword Searches for Energy Articles 
Biofuels 
#11 TS = ("biomass" NEAR/5 "electricit*" OR "biomass fuel*" OR "biomass 

heat*" OR "biomass energy" OR "Bio feedstock*" OR "biofeedstock*" OR 
"Hydrotreated vegetable oil*" or "lignocellulosic biomass*" OR "cellulosic 
ethanol*" or "biomass to liquid*" OR "bio synthetic gas*" OR "algae-based 
fuel*" OR "landfill gas*" or "Biohydrogen production*" or "Biological 
hydrogen production*" or "bio energy" or "bioenergy" or "biofuel*" or "bio 
fuel*" or "biodiesel*" or "bio diesel*" or "biogas*" or "bio gas*" OR "Bio 
syngas*" or "bio oil" or "bio ethanol*" or "bioethanol*" OR "fuel ethanol*" 
OR "Biomethanol*" OR "bio methanol*") NOT TS = ("co-combust*" or 
"cocombust*" or "co-fir*" or "cofir*" or "multi-combust*" or 
"multicombust*" or "multi-fir*" or "multifir*" or "fuel cell*" or "biofuel 
cell*")  
Refined by: Web of Science Core Collection Categories=(ENERGY FUELS 
OR SPECTROSCOPY OR BIOTECHNOLOGY APPLIED 
MICROBIOLOGY OR ENTOMOLOGY OR ENGINEERING CHEMICAL 
OR ENVIRONMENTAL SCIENCES OR POLYMER SCIENCE OR 
AGRICULTURAL ENGINEERING OR ENGINEERING 
ENVIRONMENTAL OR GEOSCIENCES MULTIDISCIPLINARY OR 
CHEMISTRY MULTIDISCIPLINARY OR TRANSPORTATION 
SCIENCE TECHNOLOGY OR FOOD SCIENCE TECHNOLOGY OR 
CHEMISTRY PHYSICAL OR CHEMISTRY APPLIED OR GENETICS 
HEREDITY OR BIOCHEMISTRY MOLECULAR BIOLOGY OR 
BIOLOGY OR WATER RESOURCES OR THERMODYNAMICS OR 
CHEMISTRY ORGANIC OR AGRONOMY OR PHYSICS ATOMIC 
MOLECULAR CHEMICAL OR GEOCHEMISTRY GEOPHYSICS OR 
PLANT SCIENCES OR ENGINEERING MECHANICAL OR 
CHEMISTRY ANALYTICAL OR MULTIDISCIPLINARY SCIENCES OR 
METEOROLOGY ATMOSPHERIC SCIENCES OR MATERIALS 
SCIENCE BIOMATERIALS OR AGRICULTURE MULTIDISCIPLINARY 
OR DEVELOPMENTAL BIOLOGY OR MICROBIOLOGY OR 
ECOLOGY OR MECHANICS OR ENGINEERING INDUSTRIAL OR 
FORESTRY OR HORTICULTURE OR BIOCHEMICAL RESEARCH 
METHODS OR NANOSCIENCE NANOTECHNOLOGY OR 
ENGINEERING MULTIDISCIPLINARY OR SOIL SCIENCE OR 
MATERIALS SCIENCE PAPER WOOD OR METALLURGY 
METALLURGICAL ENGINEERING OR MATERIALS SCIENCE 
TEXTILES OR ELECTROCHEMISTRY OR ENGINEERING CIVIL OR 
MATERIALS SCIENCE MULTIDISCIPLINARY )  
Timespan=1991-2010. Databases=SCI-EXPANDED.  
Lemmatization=Off    

Solar Energy 

The solar energy search combines searches for specific types of solar energy (e.g. solar PV) and 
a more general search strategy: 
 
Solar Thermal Power 
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#1 (TS = (solar NEAR/2 thermoelectr*) OR TS = (solar NEAR/2 “power plant”) 
OR TS = (“concentrat* solar” NEAR/2 power) OR TS= (“solar thermal” 
NEAR/2 (power OR electric*)) OR TS=(parabolic* NEAR/2 trough*) OR 
TS=((parabolic NEAR/2 dish*) AND solar) OR TS = (stirling NEAR/2 
dish*) OR TS=((Fresnel NEAR/2 (reflector* OR lens*)) AND solar)) NOT 
(TS = (cell* OR photovoltaic* OR PV) OR TS = (hydrogen NEAR/1 
(generat* or product*)) OR TS = (battery OR batteries) OR TS = (storage OR 
store OR storing))  
Refined by: [excluding] Web of Science Core Collection Categories= 
(ENGINEERING AEROSPACE OR ASTRONOMY ASTROPHYSICS )  
Timespan=1991-2010. Databases=SCI-EXPANDED.  
Lemmatization=Off   

#2 TS=(solar NEAR/2 tower) NOT (TS = (cell* OR photovoltaic* OR PV) OR 
TS = (hydrogen NEAR/1 (generat* or product*)) OR TS = (battery OR 
batteries) OR TS = (storage OR store OR storing))  
Refined by: [excluding] Web of Science Core Collection Categories= 
(ASTRONOMY ASTROPHYSICS OR NUCLEAR SCIENCE 
TECHNOLOGY OR METEOROLOGY ATMOSPHERIC SCIENCES )  
Timespan=1991-2010. Databases=SCI-EXPANDED.  
Lemmatization=Off 

Solar Photovoltaic 
#3 TS = ("photovoltaic energ*" OR "solar cell*" OR "photovoltaic power *" OR 

"photovoltaic cell*" OR  "photovoltaic solar energy*") NOT (TS = (hydrogen 
NEAR/1 (generat* or product*)) OR TS = (battery OR batteries) OR TS = 
(storage OR store OR storing)) 
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Solar General 
#4 TS = (“solar panel*” OR “solar array*” OR “solar resource*” OR “solar 

potential” OR “solar energy” OR “solar collector*”) NOT (#5 OR #8 OR #9 
OR TS = (hydrogen NEAR/1 (generat* or product*)) OR TS = (battery OR 
batteries) OR TS = (storage OR store OR storing))  
Refined by: Web of Science Core Collection Categories= (AUTOMATION 
CONTROL SYSTEMS OR CHEMISTRY ANALYTICAL OR 
CHEMISTRY INORGANIC NUCLEAR OR CHEMISTRY 
MULTIDISCIPLINARY OR CHEMISTRY ORGANIC OR CHEMISTRY 
PHYSICAL OR CONSTRUCTION BUILDING TECHNOLOGY OR 
ELECTROCHEMISTRY OR ENERGY FUELS OR ENGINEERING CIVIL 
OR ENGINEERING ELECTRICAL ELECTRONIC OR ENGINEERING 
MULTIDISCIPLINARY OR ENVIRONMENTAL SCIENCES OR 
IMAGING SCIENCE PHOTOGRAPHIC TECHNOLOGY OR 
MATERIALS SCIENCE CERAMICS OR MATERIALS SCIENCE 
COATINGS FILMS OR MATERIALS SCIENCE MULTIDISCIPLINARY 
OR MECHANICS OR METALLURGY METALLURGICAL 
ENGINEERING OR MINING MINERAL PROCESSING OR 
NANOSCIENCE NANOTECHNOLOGY OR OPTICS OR PHYSICS 
APPLIED OR PHYSICS CONDENSED MATTER OR PHYSICS 
NUCLEAR OR POLYMER SCIENCE OR THERMODYNAMICS OR 
WATER RESOURCES ) AND [excluding] Web of Science Core Collection 
Categories=( METEOROLOGY ATMOSPHERIC SCIENCES OR 
ENGINEERING AEROSPACE OR ASTRONOMY ASTROPHYSICS)  
Timespan=1991-2010. Databases=SCI-EXPANDED.  
Lemmatization=Off   
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Wind Energy 

#1 TS = ("wind power" OR "wind energy" OR "wind turbine*" OR "wind 
farm*" OR "wind park*" OR "wind plant*") NOT TS = (battery OR batteries 
OR storage OR store OR storing OR "hydrogen production*" OR "wind" 
NEAR "hydrogen" OR "grid integration*" OR "load management" OR 
"offshore" NEAR/5 ("connect*" OR "link*" OR "electric*" OR "grid*"))  
Refined by: Web of Science Core Collection Categories=(ENERGY FUELS 
OR MATERIALS SCIENCE COMPOSITES OR ENGINEERING 
ELECTRICAL ELECTRONIC OR ORNITHOLOGY OR ENGINEERING 
MECHANICAL OR ENVIRONMENTAL SCIENCES OR COMPUTER 
SCIENCE ARTIFICIAL INTELLIGENCE OR MECHANICS OR 
MATERIALS SCIENCE CHARACTERIZATION TESTING OR 
ENGINEERING CIVIL OR PHYSICS MULTIDISCIPLINARY OR 
THERMODYNAMICS OR STATISTICS PROBABILITY OR 
MATHEMATICS INTERDISCIPLINARY APPLICATIONS OR 
METEOROLOGY ATMOSPHERIC SCIENCES OR ENGINEERING 
MARINE OR ENGINEERING MULTIDISCIPLINARY OR ECOLOGY OR 
METALLURGY METALLURGICAL ENGINEERING OR AUTOMATION 
CONTROL SYSTEMS OR INSTRUMENTS INSTRUMENTATION OR 
MATERIALS SCIENCE MULTIDISCIPLINARY OR 
MULTIDISCIPLINARY SCIENCES OR BIOLOGY OR PHYSICS 
APPLIED OR COMPUTER SCIENCE THEORY METHODS OR 
ENGINEERING AEROSPACE OR CONSTRUCTION BUILDING 
TECHNOLOGY OR REMOTE SENSING OR ENGINEERING OCEAN OR 
OPERATIONS RESEARCH MANAGEMENT SCIENCE OR ACOUSTICS 
OR COMPUTER SCIENCE INTERDISCIPLINARY APPLICATIONS OR 
MARINE FRESHWATER BIOLOGY OR ENGINEERING INDUSTRIAL 
OR ZOOLOGY OR PHYSICS MATHEMATICAL OR MATHEMATICS 
APPLIED ) AND [excluding] Web of Science Core Collection Categories= 
(ASTRONOMY ASTROPHYSICS OR GEOSCIENCES 
MULTIDISCIPLINARY )  
Databases=SCI-EXPANDED Timespan=1991-2010 
Lemmatization=Off   
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Appendix Table A2 – IPC codes for Energy Patents 
 
Biofuels 
C12P 7/06-14 BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; 

MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC 
ENGINEERING/ FERMENTATION OR ENZYME-USING 
PROCESSES TO SYNTHESISE A DESIRED CHEMICAL 
COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL 
ISOMERS FROM A RACEMIC MIXTURE/ Preparation of oxygen-
containing organic compounds/containing a hydroxy 
group/acyclic/ethanol, i.e. non-beverage 

NOT C12P 7/12 BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; 
MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC 
ENGINEERING/ FERMENTATION OR ENZYME-USING 
PROCESSES TO SYNTHESISE A DESIRED CHEMICAL 
COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL 
ISOMERS FROM A RACEMIC MIXTURE/ Preparation of oxygen-
containing organic compounds/containing a hydroxy group/acyclic/ 
ethanol, i.e. non-beverage/substrate containing sulfite waste liquor or 
citrus waste 

NOT C12C BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; 
MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC 
ENGINEERING/BREWING OF BEER 

NOT C12G 3 BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; 
MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC 
ENGINEERING/ WINE; OTHER ALCOHOLIC BEVERAGES; 
PREPARATION THEREOF/Preparation of other alcoholic beverages 

 
 
Solar energy 
F03G 6 MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR 

WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A 
REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED 
FOR/ SPRING, WEIGHT, INERTIA, OR LIKE MOTORS; 
MECHANICAL-POWER-PRODUCING DEVICES OR MECHANISMS, 
NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES 
NOT OTHERWISE PROVIDED FOR /Devices for producing mechanical 
power from solar energy 

F24J 2 MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; 
BLASTING/HEATING, RANGES, VENTILATING/PRODUCTION OR 
USE OF HEAT NOT OTHERWISE PROVIDED FOR/Use of solar heat, 
e.g. solar heat collectors 

H01L 27/142 ELECTRICITY/BASIC ELECTRIC ELEMENTS/ SEMICONDUCTOR 
DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE 
PROVIDED FOR/ Devices consisting of a plurality of semiconductor or 
other solid-state components formed in or on a common 
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substrate/including semiconductor components specially adapted for 
rectifying, oscillating, amplifying or switching and having at least one 
potential-jump barrier or surface barrier; including integrated passive 
circuit elements with at least one potential-jump barrier or surface 
barrier/energy conversion devices 

H01L 31/04-058 ELECTRICITY/BASIC ELECTRIC ELEMENTS/ SEMICONDUCTOR 
DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE 
PROVIDED FOR/ Semiconductor devices sensitive to infra-red radiation, 
light, electromagnetic radiation of shorter wavelength, or corpuscular 
radiation and specially adapted either for the conversion of the energy of 
such radiation into electrical energy or for the control of electrical energy 
by such radiation; Processes or apparatus specially adapted for the 
manufacture or treatment thereof or of parts thereof; Details 
thereof/Adapted as conversion devices/ including a panel or array of 
photoelectric cells, e.g. solar cells 

H02N 6 ELECTRICITY/ GENERATION, CONVERSION, OR DISTRIBUTION 
OF ELECTRIC POWER/ELECTRIC MACHINES NOT OTHERWISE 
PROVIDED FOR/ Generators in which light radiation is directly 
converted into electrical energy 

 
 
Wind 
F03D MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR 

WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A 
REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED 
FOR/Wind Motors 
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Appendix Table 3 – Complete citation regression results, excluding self-citations 

  article-to-article   patent-to-patent   patent-to-article 

  Coefficient 
Standard 

error 
 

Coefficient 
Standard 

error 
 

Coefficient 
Standard 

error 
Biofuels 1.356 0.006 

 
8.577 0.141 

 
0.987 0.059 

Wind 2.540 0.018 
 

3.417 0.038 
 

0.605 0.108 
Citing year 1991-92 0.549 0.123 

 
1.354 0.038 

 
N/A2 N/A2 

Citing year 1993-94 0.968 0.057 
 

0.796 0.035 
 

3.210 2.569 
Citing year 1995-96 1.037 0.039 

 
1.034 0.039 

 
2.703 1.801 

Citing year 1997-98 0.975 0.031 
 

0.926 0.038 
 

0.582 0.771 
Citing year 2001-02 1.091 0.026 

 
1.202 0.040 

 
1.039 0.678 

Citing year 2003-04 1.296 0.027 
 

1.019 0.036 
 

0.790 0.528 
Citing year 2005-06 1.356 0.027 

 
1.367 0.041 

 
5.708 3.218 

Citing year 2007-08 1.373 0.027 
 

1.334 0.041 
 

5.527 3.113 
Citing year 2009-02 1.204 0.023 

 
1.591 0.045 

 
3.335 1.881 

Citing year 2011-121 0.934 0.018 
 

1.066 0.030 
 

2.809 1.582 
cited country: Canada 0.741 0.009 

 
0.814 0.020 

   cited country: China 0.549 0.005 
      cited country: Denmark 0.769 0.011 
 

0.696 0.029 
   cited country: other EU 0.632 0.004 

 
0.656 0.016 

   cited country: Germany 0.582 0.005 
 

0.545 0.014 
   cited country: Japan 0.586 0.004 

 
0.656 0.015 

   cited country: other 0.522 0.003 
 

0.706 0.015 
   cited country: Spain 0.633 0.007 

 
0.915 0.048 

   cited country: Turkey 0.672 0.008 
      cited country: UK 0.804 0.006 
 

0.780 0.028 
 

    
citing country: Canada 0.999 0.012 

 
0.902 0.020 

   citing country: China 1.130 0.007 
      citing country: Denmark 0.770 0.016 
 

0.434 0.021 
   citing country: other EU 0.861 0.006 

 
0.671 0.016 

   citing country: Germany 0.774 0.008 
 

0.572 0.011 
   citing country: Japan 0.896 0.008 

 
0.395 0.011 

   citing country: other 0.939 0.005 
 

0.620 0.012 
   citing country: Spain 1.033 0.011 

 
0.755 0.036 

   citing country: Turkey 1.269 0.013 
      cited country: UK 1.012 0.010 
 

0.687 0.027 
   cited country: non-US 

      
0.332 0.016 

citing country: non-US     
 

    
 

0.211 0.026 
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cited org: company 0.728 0.009 
 

1.041 0.027 
 

0.532 0.081 
cited org: comp. collaboration 1.005 0.006 

 
0.832 0.109 

 
0.648 0.068 

cited org: government 0.858 0.007 
 

1.136 0.037 
   cited org: research institute 0.773 0.009 

 
1.068 0.042 

   cited org: govt./institute 
      

1.142 0.063 
cited org: other 0.408 0.015 

 
1.053 0.028 

 
0.118 0.182 

cited org: collaboration 0.875 0.005 
 

1.306 0.180 
 

0.895 0.062 
citing org: company 0.683 0.014 

 
1.149 0.037 

 
0.222 0.011 

citing org: comp. collaboration 0.907 0.007 
 

0.988 0.087 
 

0.104 0.108 
citing org: government 0.898 0.009 

 
1.110 0.055 

   citing org: research institute 0.947 0.009 
 

0.804 0.050 
   citing org: govt./institute 

      
0.261 0.042 

citing org: other 0.557 0.019 
 

1.703 0.055 
 

0.037 0.013 
citing org: collaboration 0.981 0.005 

 
0.909 0.148 

 
1.579 0.115 

Decay 0.187 0.001 
 

0.088 0.001 
 

0.058 0.005 
Diffusion 0.00025 4.94E-06 

 
0.00025 0.000012 

 
0.000029 0.000016 

Number of obs 1666298 
  

469168 
  

61573 
 R2 0.9988 

  
0.9907 

  
0.9992 

 Adjusted R2 0.9988     0.9907     0.9992   
1: Citing year 2011 only for publication-publication citations 

    2: There are no patents from 1991-92 citing articles from this database 
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Figure A1: Biofuel patents: top 5 countries (biofuels_patents_color.emf) 

 
 
Figure A2: Biofuel articles: top 5 countries (biofuels_publications_color.emf) 
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Figure A3: Solar patents: top 5 countries (solar_patents_color.emf) 

 
 
Figure A4: Solar articles: top 5 countries (solar_publications_color.emf) 
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Figure A5: Wind patents: top 5 countries (wind_patents_color.emf) 

 
 
Figure A6: Wind articles: top 5 countries (wind_publications_color.emf) 
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Figure A7: Article author organizations: Biofuels 
article_org_piechart_biofuels_COMBINED_country 

 

Figure A8: Patent inventor organizations: Biofuels 
(patent_org_piechart_biofuels_COMBINED_country.emf) 
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Figure A9: Article author organizations: Solar 
(article_org_piechart_solareng_COMBINED_country.emf) 

 

Figure A10: Patent inventor organizations: Solar 
(patent_org_piechart_solareng_COMBINED_country.em) 
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Figure A11: Article author organizations: Wind 
article_org_piechart_wind_COMBINED_country 

 

Figure A12: Patent inventor organizations: Wind 
(patent_org_piechart_wind_COMBINED_country.emf) 
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Figure A13: Article author organizations over time: Biofuels 
(article_org_piechart_biofuels_COMBINED_years.emf) 

 

Figure A14: Patent inventor organizations over time: Biofuels 
(patent_org_piechart_biofuels_COMBINED_years.emf) 
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Figure A15: Article author organizations over time: Solar 
(article_org_piechart_solareng_COMBINED_years.emf) 

 

Figure A16: Patent inventor organizations over time: Solar 
(patent_org_piechart_solareng_COMBINED_years.emf) 
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Figure A17: Article author organizations over time: Wind 
(article_org_piechart_wind_COMBINED_years.emf) 

 

Figure A18: Patent inventor organizations over time: 
(patent_org_piechart_wind_COMBINED_years.emf) 

 

 




