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1 Introduction

Nearly all economic surveys suffer from item non-response. Most statistical agencies

impute for the missing values before making data available for analyses and it is well

known that the manner of imputation may impact these analyses (Little and Rubin

(2002)). We investigate the extent of imputation in the U.S. Census Bureau’s Census

of Manufactures (CM) and document its impact on the measured dispersion in total

factor productivity, which is already thought to be large (see Syverson (2011)). Our

results may have implications for the many highly cited studies that use plant-level

U.S. Census manufacturing data, including research on why firms export (Bernard and

Jensen (2004)), the effects of environmental regulation on manufacturing plants (Becker

and Henderson (2001) and Greenestone (2002)), product switching (Bernard, Redding,

and Schott (2010)), industry agglomeration (Ellison, Glaeser, and Kerr (2010)), and

firm structure and plant exit (Bernard and Jensen (2007)).

Item non-response has been an important issue for the U.S. Census of Manufactur-

ers. In 2002 imputation rates ranged from between 20 and 40 percent for important

production variables and 2007 is similar.1 The Census Bureau primarily imputes miss-

ing data using industry average ratios or univariate regressions. Both methods impute

towards the mean of the data in the sense that all plants that are missing a value for

variable Y (like total value of shipments) have the same imputed value Y imp if they are

of the same “type,” where type is determined by the value of another single variable

X (like total employment). For every variable entering TFP in 2002 and 2007 we find

the dispersion is significantly smaller in the Census mean-imputed versus the Census

non-imputed data.

As an alternative to mean imputation we show how to use classification and re-

1In calculating these imputation rates, we exclude the administrative records as
researchers typically do.

2



gression trees (CART) from Burgette and Reiter (2010) to allow for multiple possible

impute values Y imp for any “type,” and to allow for multiple possible explanatory vari-

ables when determining plant type.2 Manufacturing plants of the same “type” live on

the same “leaf” of the classification tree and the distribution of possible impute values

is taken from all of the plants on that leaf. Impute values are drawn using sampling

with replacement and when all missing values have been filled in the data set is said

to be “CART-completed”. Repeating this process M times yields M CART-completed

data sets. For any statistic of interest like TFP dispersion calculating its value across

the M CART-completed data sets serves as a measure of the uncertainty introduced

by imputing missing values.

Ex ante it is not obvious how the significant reduction in dispersion we observe

from mean-imputation affects total factor productivity (TFP) because TFP is a ratio

of output over an input index. We examine dispersion in TFPR, where output is

defined as deflated revenue, and TFPQ, where output is quantity produced, and in

unit prices across three variants of the Census data: only non-imputed data, (mean

imputed) Census-completed data currently used by researchers, and CART-completed

data. For 90% of the 473 industries in 2002 and 84% of the 471 industries in 2007 the

75-25 percentile ratio increases as we move from Census-completed to non-imputed to

CART-completed data. In the CART-completed data 66% (2002) and 51% (2007) of

industries have 75-25 TFPR ratios that are at least 10 log points higher than in the

Census-completed data, suggesting TFPR has more dispersion than has been currently

thought. For the small collection of industries where we observe quantities we find on

average TFPQ dispersion is 27% higher and price dispersion is 58% higher in the CART-

completed data relative to the mean-imputed Census data, and the non-imputed data

2See Little and Rubin (2002) for discussion of the potential benefits of multiple
imputation over mean imputation.
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lie approximately halfway between the dispersion estimates from the mean-imputed

Census data and the CART-completed data.

We also revisit Foster, Haltiwanger, and Syverson (2008), who report negative and

significant relationships between plant exit and TFPR, TFPQ, prices, and idiosyncratic

demand shocks. These findings are important in part because they are very much in the

spirit of an important theoretical literature on firm dynamics analyzing the connection

between producers’ productivity, demand, product quality, and survival (e.g. Jovanovic

(1982), Ericson and Pakes (1995), Melitz (2003)). We show FHS’s results are very

robust to CART-imputation.

Our results have implications for the many highly cited studies that use plant-

level U.S. Census manufacturing data. For questions related to average effects - like

regression coefficients - the reduction in dispersion caused by mean imputation may

not be problematic, although there is no way to tell without also trying an alternative.

There can also be an issue with bias in the estimated standard errors (Little and Rubin

(2002)). For questions related to dispersion in total factor productivity - like the result

from Hsieh and Klenow (2009) that both India and China would experience an increase

of over 30% in growth if they could move to U.S. sized ”gaps” - researchers may be

better served by using a method like CART instead of mean-imputation.

The next section examines the extent of imputation in the U.S. Census of Man-

ufactures. Section 3 discusses the CART method and Section 4 contains the results.

Section 5 concludes.
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2 Imputed Data in the U.S. Census of Manufac-

tures

The Census of Manufactures is taken every five years and includes data on over 200,000

manufacturing plants in the United States.3 Historically item non-response has been

an issue for Census data.4 For the 2002 and 2007 censuses Table 1 presents the means

and standard deviations of the within-industry imputation rates for several variables

in all 6-digit NAICS industries, the most detailed level of industry classification in

the Census data. In 2002 imputation rates for these variables range from a low of

19% for production worker hours to a high of 42% for the cost of materials. In 2007

imputation rates range from a low of 27% for the value of shipments to a high of 42%

for the cost of materials. If output is measured using the total value of shipments

adjusted for inventory changes and inputs in production include capital, labor, energy

and materials, then a researcher wanting to only use non-imputed data would lose 79%

and 73% of plant-year observations in 2002 and 2007 respectively.5

The Census Bureau primarily uses industry average ratios and univariate regressions

to impute missing data.6 Both methods impute towards the mean of the data in the

3There are over 300,000 plants in the survey but the smallest 100,000 plants have
data that is almost entirely imputed and so are routinely excluded from Census data
analysis. These plants are known as the ”administrative records” plants

4Prior to the 2002 census researchers did not have access to the item-level imputation
flags. Researchers interested in figuring out which data were imputed developed several
approaches (see Roberts and Supina (1996), Roberts and Supina (2000), or Foster,
Haltiwanger, and Syverson (2008)). White (2014) uses these recently recovered item-
level impute flags to show the complete extent of imputation in the Census data.

5Foster, Grim, Haltiwanger, and Wolf (2015) redid this calculation excluding in-
ventories and the book value of assets and report 68.8% (2002) and 69.2% (2007) of
observations would have to be omitted.

6In 2007 these two methods were used to impute for the total value of shipments,
cost of materials, cost of fuels, cost of electricity, production worker hours, production
worker wages, beginning of year inventories, and end of year inventories, respectively
58%, 67%, 87%, 87%, 80%, 78%, 62%, and 78% of imputations. See tables A1-A5
in White, Reiter, and Petrin (2015) for a complete discussion of Census imputation
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sense that all plants that are missing a value for variable Y have the same imputed

value Y imp if they are of the same “type,” where type is determined by the value of

another single variable X. Letting i index plants the industry average ratio for the nj

plants in industry j for which both Yi and Xi are observed is given as 1
nj

∑
i
Yi

Xi
. If

observation Yl is missing for plant l in industry j the industry average ratio method

used by Census imputes Y imp
l by multiplying that plant’s Xl by the industry average

ratio:

Y imp
l = Xl ∗

1

nj

∑
i

Yi
Xi

. (1)

Their univariate regression imputation uses a no-intercept regression of Yi on Xi for

the plants i in industry j for which both Yi and Xi are observed to predict Y imp
l for

plants with missing values of Y by using the estimated no-intercept regression model

and the value of Xl.

We investigate the extent to which the Census imputation leads to a reduction in

the variance of the imputed variables. For each industry j and for any input X we

separate the plant-year observations into those XI
i that are imputed and those that are

not XN
i . To control for size differences we divide each input by the plant’s total value

of shipments Yi. We then compare the distributions of (I)mputed
XI

i

Yi
to (N)on-imputed

XN
i

Yi
by calculating the interquartile range of each distribution and then taking the ratio

RX
j =

IQR(
XI

i

Yi
)

IQR(
XN

i

Yi
)
. (2)

A ratio of RX
j well below one suggests the imputed data has significantly less variation

than the non-imputed data for variable X in industry j.

Table 2 summarizes the distribution of RX
j across the j = 1, . . . , J industries. In

2002 the median value of RX
j for hours worked is 0.29, for electricity is 0.11, for cost of

methods.
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fuels is 0.17 and for cost of materials is 0.20. Moving up to the 75th percentile of the

distribution of RX
j the ratio for hours worked is 0.52, for electricity is 0.21, for cost of

fuels is 0.35 and for cost of materials is 0.45. The results are similar for 2007 and they

suggest the mean-imputation approach leads to a significant reduction in measured

dispersion relative to the non-imputed data.

3 Multiple Imputation using Classification And Re-

gression Trees

In this section we discuss how to use classification and regression trees (CART) to

allow for multiple possible impute values Y imp
l for any “type”. We follow Burgette

and Reiter (2010) and use the CART algorithm to classify plants into different types

using multiple explanatory variables.7 They describe the specifics of the classification

method as:

(CART) partitions the predictor space so that subsets of units formed by

the partitions have relatively homogeneous outcomes. The partitions are

found by recursive binary splits of the predictors. The series of splits can

be effectively represented by a tree structure with leaves corresponding

to the subsets of units. The values in each leaf represent the conditional

distribution of the outcome for units in the data with predictors that satisfy

the partitioning criteria that define the leaf.

Once the tree is constructed plants of the same “type” live on the same “leaf” of the

tree and sampling with replacement from that leaf is used to fill in missing values.

7See also Breiman, Friedman, Olshen, and Stone (1984), Hastie, Tibshirani, and
Friedman (2009), and Ripley (2009)). The “mice” software package in R includes
routines for CART imputation. The CART method has also been shown to perform
well in the related problem of generating synthetic data (Reiter (2005), Drechler and
Reiter (2011), and Wang and Reiter (2012)).
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When all missing values have been filled the data set is said to be “CART-completed”.

Repeating this process M times yields M CART-completed data sets. For any statistic

of interest (like RX
j ) calculating its value across the M CART-completed data sets

serves as a measure of the uncertainty introduced by missing values.

Figure 1 illustrates the use of CART in constructing an imputation model for total

value of shipments (Y) conditional on the single covariate total employment (TE). The

algorithm begins by searching for the level of total employment such that splitting

plants into those below and above it minimizes the total variance of TVS across the

two split branches. Figure 1 shows this split occurs at TE equal to 250. The process

continues recursively on each branch of the tree until either the branch contains some

minimum number of plant-year observations or the variance in the branch meets some

minimum variance criterion for homogeneity. The branch with TE less than 250 satis-

fies one of these criteria but the other branch does not. CART splits the other branch

one more time at total employment equal to 500. These last two branches now also

satisfy the stopping criteria and the classification tree is done. Each branch is now

synonymous with a leaf. The multivariate CART is similar in that at each stage of the

tree-building process the algorithm searches for splits over multiple observed predictor

variables within a given branch.

3.1 CART Implementation

In this subsection we describe the details of implementing CART and in the next we

discuss posterior predictive checks that check for model misspecification. Readers not

interested in these details can skip directly to the results in Section 4.

We start by setting to missing all Census values that were imputed using either

industry average ratios or univariate regression. We collect all variables in the data

matrix Y = (YP , YC), where YP are the p1 are the columns of variables that are not fully
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observed and YC includes the variables that are completely observed. YP is arranged

from left to right in order of greatest to least number of missing values. Let the

conditional distributions p(Yl|Y−l) denote the CART-based prediction model for Yl,

the lth column of YP , conditional on Y−l, columns of Y with Yl removed.

The first step to CART-completing the data provides the initial guess at a completed

Y . Let the matrix Z = YC and start with Y1, the first column of Y . We use CART

to fit the tree of Y1 on all other variables Z using observations for which Y1 and Z are

observed. We fit the tree by finding the successive ”splits” in the covariates Z that

minimize the variance of Y1 in the leaves. We cease splitting any particular leaf when

the variance in that leaf is less than 10e-5 times the variance in the marginal distribution

of Y1 or when we cannot ensure at least 5 manufacturing-plant year observations are

in the leaf. We impute all missing values for Y1 and append Y1 to Z sampling from

the CART tree using the Bayesian Bootstrap (BB) of Rubin (1981), who shows ”the

Bootstrap and the BB ...operationally they are very similar.” We repeat this process

for Y2 through Yp1 appending each column after all missing values have been imputed.

After this initial step Y no longer has any missing values.

The second step iterates over the columns of Y many times. For l = 1, . . . , p1

impute missing values for original missing values in Yl conditional on Y−l. This process

yields another new Y matrix. We repeat this process ten times. The resulting Y is

one CART-completed data set. We repeat both steps one and two M times to yield M

CART-completed data sets on which we perform our analysis.

3.2 Posterior Predictive Checks

After the M CART-completed data sets have been created we can carry out posterior

predictive checks to check for model misspecification. We do so by seeing whether

results from the CART-completed data are similar to results from data sets where all
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observed and missing values of YP are imputed. We call these data sets predicted.8

We generate M completed data sets and then we generate M fully predicted data

sets by setting all values of variables included in YP to missing and filling in all the

values using the estimated CART conditional prediction model and YC . We compare

the statistic θ across pairs of CART-completed and CART-predicted data sets by com-

puting a two-sided posterior predictive P-value:

P − V alue =
2

M
min{

M∑
i=1

I(θ̂imp,i − θ̂pred,i),
M∑
i=1

I(θ̂pred,i − θ̂imp,i)} (3)

where I(x) equals one if x > 0 and equals zero otherwise, θ̂imp,i is the estimate of

parameter θ from the ith completed dataset, and θ̂pred,i is the estimate from the ith

predicted dataset. A P -value close to zero indicates that the θ̂pred,i consistently differs

from θ̂imp,i in one direction suggesting possible model misspecification. A P -value close

to one suggests the differences in the statistic are not systematically too high or too

low across the pairs of data sets.

4 Productivity Dispersion Across Imputation Meth-

ods

We allow production function parameters to vary by 6-digit NAICS industry code and

we use industry cost shares to estimate these parameters.9 We define TFPR as

TFPRi = ln(
Ri

Pj

)− βklnKi − βllnLi − βelnEi − βmlnMi (4)

8See e.g. He, Zaslavsky, Harrington, Catalano, and Landrum (2010)).
9While cost shares do not address the simultaneity issue raised in Marschak and

Andrews (1944), we use them because that is what most research with Census data has
used. In an earlier version of the paper we showed that our findings do not change if we
address the simultaneity issue using the control function approaches of Olley and Pakes
(1996), Levinsohn and Petrin (2003), or Wooldridge (2009), although the production
function estimates do appear more sensitive across imputation methods relative to cost
shares.
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where Ri is the nominal total value of shipments adjusted for changes in inventories, Pj

is industry j’s output price deflator, Ki is the capital stock, Li is labor, Ei is energy, Mi

is materials, and the βs are the respective output elasticities for each input.10 Similarly

we define TFPQ as

TFPQi = lnQi − βklnKi − βllnLi − βelnEi − βmlnMi (5)

where Qi is the quantity of physical output. We calculate unit prices for the plants with

measured output by dividing their value of total shipments by their physical quantity

of product shipped.

For the CART imputation model we want good predictors of the variable to be

imputed especially if the predictors have low imputation rates. For this reason when

we carry out the CART-completion for TFPR we include all of the variables used in

estimation as predictors. We also add changes in inventories, the plant-year’s ratio

of cost of energy over the total cost of materials and energy, salaries and wages, em-

ployment, and the plant-year’s ratio of production worker wages to (total) salaries and

wages. When carrying out CART-completion for the industries with quantity data we

also include as predictors the physical quantity of shipments, the ratio of product-level

value of shipments (for the main product) to plant-level total value of shipments, and

an indicator for plant exit before the next Census.11 In both the TFPR dispersion

exercise and the TFPQ exercises we allow for a different imputation model for each

variable and each industry. We start with the TFPR results.

10We deflate the 2007 dollars to 2002 dollars.
11In the concrete industry we include a measure of demand density as it was impor-

tant in predicting productivity in Syverson (2004).
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4.1 TFPR Dispersion

For each of 473 industries in 2002 and the 471 industries in 2007 we compare within-

industry TFPR dispersion across the Census-completed data, the Census non-imputed

data, and the CART-completed data using the 75-25 TFPR ratio. We replace industry

average ratio and univariate regression imputations with CART imputations to create

100 CART-completed data sets. For the CART-completed dataset we take the aver-

age 75-25 TFPR ratio across the M=100 data sets for each industry-year. For each

industry-year we calculate (i) the log of the 75-25 TFPR ratio in the non-imputed

minus the log of the 75-25 TFPR ratio in the Census-completed data, and (ii) the log

of the 75-25 TFPR ratio in the CART-completed data minus the log of the 75-25 ratio

in the Census-completed data.

Table 3 presents the results for each year. Dispersion increases as we move from

Census-completed data to Census non-imputed data to CART-completed data by any

measure. For example, for the average industry, the dispersion measure is 11.3 and

7.3 log points higher in non-imputed data in 2002 and 2007 respectively. Moving from

Census-completed to CART increases TFPR dispersion by 16.2 log points in 2002

and 12.3 log points in 2007. The increase in dispersion is apparent throughout the

manufacturing sector. In 2002 and 2007, respectively 47% and 33% of industries have

a 75-25 TFPR ratio that is at least 10 log points higher in the non-imputed data

than in the Census-completed data. For the CART-completed vs. Census-completed

comparison, the analogous percentages are 66% of industries in 2002 and 51% in 2007.

Our results suggest mean imputation in the Census data leads to a compression of the

TFPR distribution meaning there is more TFPR dispersion than has been currently

thought (see Syverson (2011)).
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4.2 TFPR, TFPQ, and Price Dispersion

We focus on a subset of the manufacturing industries studied in Foster, Haltiwanger,

and Syverson (2008) for which we have at least 100 observations in an industry-year:

ready-mix concrete, boxes, and ice. Table 4 presents within-industry TFPR for concrete

and TFPR, TFPQ, and price dispersion statistics for boxes and ice.12 Columns 1, 3,

and 5 report the statistics calculated from the Census mean-imputed data and columns

2, 4, and 6 use the CART-completed data. We compute each statistic separately

from each of our 500 CART-completed datasets and report the mean across the 500

estimates.

The 75-25 ratios for TFPR, TFPQ, and unit prices across the columns show uni-

formly more dispersion as one moves from Census mean-imputed to non-imputed to

CART-completed with both TFPQ and unit price dispersion exceeding TFPR disper-

sion. For specific industry cases like prices for ice in 2007 (2.37 vs. 1.11) the differences

can be very large. FHS reported that dispersion in TFPQ exceeds TFPR, and this

result is further magnified when CART-completion is used to impute missing values.

Table 4 reports two-sided posterior predictive P-values for each measure of produc-

tivity and price dispersion in table 4 to check for model misspecification. For each

dispersion measure, we also calculate the mean of the differences between the CART-

predicted estimate and the CART-completed estimate for the 500 pairs of datasets.

These means are presented in columns 1, 3, and 5 of table 5. Means corresponding to a

P value less than 0.05 – cases where there is possible evidence of model misspecification

– are indicated by an asterisk. To put these differences in perspective, in columns 2,

4, and 6 we show the ratio of the mean difference over the CART-completed mean

for each measure, and most of them are small. For example, the TFPR dispersion for

the concrete industry in 2002 has P-value of 0 (the CART-predicted estimate is al-

12The Census Bureau last collected physical quantity data for concrete in 1992.
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ways higher than the CART-completed estimate) but on average the CART-predicted

estimate is only 0.13 (about 7%) higher than the CART-completed estimate.

4.3 Correlates of Plant Survival

Foster, Haltiwanger, and Syverson (2008) (FHS) relate plant exit to TFPR, TFPQ,

prices, and idiosyncratic demand shocks. In their Table 6 they report negative and

significant relationships between plant exit and all four of these measures. This finding

is broadly consistent with the predictions from many models of dynamic competition

between plants. While FHS were able to identify and drop much of the imputed data,

the subsequent release of the item-level impute flags showed some of their remaining

data was imputed.13 In this section we test whether their results are robust to CART-

completion.

We replace the imputed data in FHS’s estimation sample with multiply-imputed

data from CART keeping exactly the same sample of plants as in FHS. We then rerun

their probit exit regressions. Table 6 shows the results of the exit probits run on 500

CART-completed datasets. We estimate each probit separately on each of the CART-

completed datasets and report the means of the estimated marginal effects. For each

probit, the standard errors are clustered by plants.14 FHS’s results are very robust to

imputation as traditional TFP, TFPR, TFPQ, prices, and demand shocks all continue

to be significantly and negatively associated with exit on CART-completed data.

13They used reverse-engineering methods and were able to identify some of the im-
puted data and remove those plants from their sample (see Foster, Haltiwanger, and
Syverson (2008) and the robustness analysis associated with it). We thank Lucia Fos-
ter, John Haltiwanger and Chad Syverson for sharing their computer codes and (with
approval from the Census Bureau) access to their datasets.

14We also combine the 500 sets of standard errors using Rubin’s (1987) combining
formula.
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5 Conclusion

Much of the literature on plant-level productivity uses the U.S. Census Bureau’s Census

of Manufactures. We show that the recent availability of imputation flags for the 2002

and 2007 U.S. Census data implies that over 70% of observations in both years have

imputed data for at least one variable used to compute total factor productivity.

The Bureau imputes for missing values using mean-imputation methods which are

known to reduce the true underlying variance of the imputed variables. For every

variable entering TFP in 2002 and 2007 we show the dispersion is significantly smaller

in the Census mean-imputed versus the Census non-imputed data. Ex ante it is not

obvious how the significant reduction in dispersion we observe from mean-imputation

affects total factor productivity (TFP) because TFP is a ratio of output over an input

index.

Using classification and regression trees (CART), for 473 industries in 2002 and

471 industries in 2007 we provide a new set of multiple imputations that seek to better

preserve dispersion and the joint distribution of key variables. We find TFP dispersion

increases as we move from Census mean-imputed data to Census non-imputed data

to CART-imputed data, suggesting TFP has more dispersion than previously believed

and making the amount of within-industry TFP dispersion in plant-level data even

more puzzling. For the small collection of industries where we observe quantities we

find even starker increases in dispersion for TFPQ and unit prices as we move across the

three data sets. In contrast, when we revisit FHS, who report negative and significant

relationships between plant exit and TFPR, TFPQ, prices, and idiosyncratic demand

shocks, we show FHS’s results are very robust to CART-imputation
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Table 1: Imputation Rates for Variables At 6-digit NAICS Industry Level, 2002 and

2007 Censuses of Manufactures

Total Production Cost of

Value of Worker Purchased Cost of Cost of

Statistic Shipments Hours Electricity Fuels Materials

2002

Mean 27% 19% 38% 37% 42%

s.d. 9% 7% 14% 14% 10%

2007

Mean 27% 31% 37% 35% 42%

s.d. 9% 13% 13% 12% 10%

The table shows the means and standard deviations of 6-digit NAICS industry-level

imputation rates. The imputation rate is the percentage of tabulated non-Administrative

Records cases that are imputed by the Census Bureau.
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Table 2: Distribution Across Industries of Ratios of Within-Industry Interquartile

Ranges: Imputed vs. Non-Imputed Data

Production Cost of

Worker Purchased Cost of Cost of

percentile Hours Electricity Fuels Materials

2002

25th 0.159 0.062 0.088 0.036

50th 0.293 0.112 0.174 0.208

75th 0.522 0.219 0.356 0.456

2007

25th 0.353 0.088 0.152 0.089

50th 0.486 0.179 0.370 0.262

75th 0.704 0.326 0.782 0.478

The table shows the 25th, 50th and 75th percentiles of the within-industry

interquartile range (IQR) of the ratio Ximp/TV SimpX divided by the IQR

of Xobs/TV Sobs, where Ximp represents imputed cases for the variable X,

TV SimpX are the total value of shipments for the same plants, and

Xobs/TV Sobs is the ratio when both are observed A value well-below one

signifies there is much more variance in the variable in the

non-imputed data vs. the imputed data.
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Table 3: Changes in Within-industry Productivity Dispersion Across Imputation Meth-

ods

25th 75th

median mean percentile percentile

2002

Non-imputed vs. Bureau-completed 0.096 0.113 0.045 0.159

CART-completed vs. Bureau-completed 0.130 0.162 0.082 0.212

2007

Non-imputed vs. Bureau-completed 0.059 0.076 0.020 0.121

CART-completed vs. Bureau-completed 0.103 0.123 0.055 0.160

The table shows how different imputation methods change measures of within-industry

dispersion in revenue-based TFP in the 2002 and 2007 mail samples of the Censuses of

Manufactures (CMF). The first and third rows show moments of the distribution of

log(TFPR7525j,NI/log(TFPR7525j,CB), where TFPR7525j,CB is the ratio

of revenue-based TFP (TFPR) at the 75th percentile in industry j over TFPR at the

25th percentile in the same industry in the Census Bureau-completed data, in

which missing or faulty data was imputed by the Census Bureau using a variety of

methods; TFPR7525j,NI is the 75-25 TFPR ratio for industry j in a “non-imputed”

sample, which excludes plants for which any variable needed to calculate TFPR

was imputed using the industry average ratio method or univariate regression on

current-year data. Rows 2 and 4 show moments of the distribution of

log(TFPR7525j,CART/TFPR7525j,CB), where TFPR7525j,CART is the mean

of the 75-25 TFPR ratios for industry j from 100 implicates of CART-completed data,

in which variables in the Bureau-completed that were imputed by industry average

ratio or univariate regression are replaced by CART imputations.
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Table 4: TFPR, TFPQ, and Unit Price Dispersion: Census vs. Cart Imputation

75-25 TFPR Ratios 75-25 TFPQ Ratios 75-25 Price Ratios

(1) (2) (3) (4) (5) (6)

Sample Census Census Census

industry Size Bureau CART Bureau CART Bureau CART

2002

concrete 3294 1.33 1.79 n/a n/a n/a n/a

boxes 626 1.17 1.18 1.90 2.13 1.86 2.04

ice 169 1.48 1.61 1.67 2.11 1.15 1.73

2007

concrete 4961 1.30 1.72 n/a n/a n/a n/a

ice 237 1.68 1.78 1.93 2.75 1.11 2.37

The table shows ratios of the 75th percentile to the 25th percentile of within-industry-year

distributions of total factor productivity (TFP) and prices. TFPR is a revenue-based

TFP measure. TFPQ is based on the physical quantity of output. Columns 1, 3, & 5

show estimates from the Census Bureau-completed data. Columns 2, 4, & 6 show the

means of estimates from 500 CART-completed datasets.
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Table 5: Posterior Predictive Checks of the CART Imputation Models for TFPR,

TFPQ, and Unit Price Dispersion

75-25 TFPR Ratios 75-25 TFPQ Ratios 75-25 Price Ratios

(1) (2) (3) (4) (5) (6)

Mean Mean Diff/ Mean Mean Diff/ Mean Mean Diff/

Difference CART mean Difference CART mean Difference CART mean

2002

concrete 3294 0.13* 0.07 n/a n/a n/a n/a

boxes 626 0.05* 0.04 0.16 0.08 0.10 0.05

ice 169 0.27* 0.17 0.63 0.30 0.65 0.38

2007

concrete 4961 0.14* 0.08 n/a n/a n/a n/a

ice 237 0.10 0.06 0.2 0.07 0.17 0.07

Columns 1, 3, and 5 show the means of the differences between 500 pairs of CART-predicted

estimates and CART-completed estimates for the dispersion measures in table 4. Columns

2, 4, and 6 show the ratio of the mean difference over the CART-completed mean for each

industry-year. * indicates a P probability less than 0.05 (see equation 5 in the text) for

the associated statistics in table 4. A probability close to zero is evidence that the CART

imputation model distorts the joint distribution of the data for that industry-year such

that the given dispersion estimate may be biased.
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Table 6: FHS Exit Probits Using CART-completed Data
Specification (1) (2) (3) (4) (5) (6) (7)
Traditional TFP -0.036

(0.015)
Revenue TFP -0.042

(0.014)
Physical TFP -0.025 -0.047 -0.024

(0.012) (0.015) (0.012)
Prices -0.005 -0.036

(0.013) (0.016)
Demand shock -0.054 -0.054

(0.003) (0.003)
Controlling for plant capital stock

Traditional TFP -0.035
(0.015)

Revenue TFP -0.033
(0.013)

Physical TFP -0.024 -0.040 -0.024
(0.011) (0.014) (0.011)

Prices 0.001 -0.025
(0.012) (0.015)

Demand shock -0.041 -0.041
(0.005) (0.005)

Capital Stock -0.046 -0.045 -0.046 -0.046 -0.014 -0.045 -0.014
(0.003) (0.003) (0.003) (0.003) (0.005) (0.003) (0.005)

The table shows marginal effects evaluated at the median for probits of plant exit
by the next census (presented by column) on plant-level productivity, price,
demand, and capital stocks measures. All regressions include product-year fixed
effects. The regressions are run separately on each of 500 datasets, where the
imputed data in the FHS sample used in table A7 are replaced by multiple
imputations using the sequential CART method described in the text. The
marginal effects shown are the means of the 500 estimates. Standard errors
(clustered by plant) from each regression are combined using Rubin’s (1987)
combining formulas.
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Table A1: Selection on Productivity or Profitibility, 1977-1992 Industries

Specification (1) (2) (3) (4) (5) (6) (7)
Traditional TFP -0.073

(0.015)
Revenue TFP -0.063

(0.014)
Physical TFP -0.040 -0.062 -0.034

(0.012) (0.014) (0.012)
Prices -0.021 -0.069

(0.018) (0.021)
Demand shock -0.047 -0.047

(0.003) (0.003)
Controlling for plant capital stock

Traditional TFP -0.069
(0.015)

Revenue TFP -0.061
(0.013)

Physical TFP -0.035 -0.059 -0.034
(0.012) (0.014) (0.012)

Prices -0.030 -0.076
(0.018) (0.021)

Demand shock -0.030 -0.029
(0.004) (0.004)

Capital Stock -0.046 -0.046 -0.046 -0.046 -0.023 -0.046 -0.023
(0.003) (0.003) (0.003) (0.003) (0.004) (0.003) (0.004)

This table replicates table 6 in Foster, Haltiwanger, and Syverson (2008).
The table shows marginal effects evaluated at the median for probits of plant exit
by the next census (presented by column) on plant-level productivity,
price, demand, and capital stocks measures. All regressions include
product-year fixed effects. Standard errors (clustered by plant) are in parentheses.
The sample is FHS’s pooled sample of 17,314 plant-year observations.
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Figure 1: A Simple Classification and Regression Tree
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