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1. Introduction

The field of international trade has made great strides in recent years by “mapping the-

ory to data” in the new quantitative trade models (or so-called “gravity models”). This

has led to important insights into the consequences of globalization. But a fundamen-

tal issue has been missing from these models: the role of localized and industry-specific

external economies of scale. These externalities played a large role in the world econ-

omy at the time of Marshall (1890, 1930), and recent anecdotal and empirical evidence

suggests that they play, if anything, an even larger role in the global economy today.1

There is good reason for this oversight. Early models yielded some discomforting re-

sults, including “a bewildering variety of [multiple] equilibria” (Krugman, 1995) so that

trade patterns need not conform to comparative advantage, along with the “paradoxi-

cal implication that trade motivated by the gains from concentrating production need

not benefit the participating countries” (Grossman and Rossi-Hansberg, 2010). At the

heart of these “pathologies” seemed to lay the compatibility assumption of increasing

returns and perfect competition (see Chipman, 1965), namely that firms take produc-

tivity as given even though productivity depends on total industry output. This leads to

a circularity whereby the scale of an industry affects its productivity, while an industry’s

productivity affects its scale through the impact on the pattern of comparative advan-

tage and specialization. In the standard analysis, this leads to multiple equilibria.2

Grossman and Rossi-Hansberg (2010, henceforth GRH) recently proposed a two-

country Ricardian model with national industry-level external economies of scale (or

Marshallian externalities), which attacks this compatibility assumption head-on. In-

stead of perfect competition, GRH assume Bertrand competition so that firms in each

industry understand the implications of their decisions on industry output and pro-

ductivity, ensuring that in equilibrium we have the “right” allocation of industries across

countries in a similar fashion to that of the constant returns to scale framework of Dorn-

busch, Fischer and Samuelson (1977). While the framework successfully eliminates the

“pathologies” in a world free of trade costs, Lyn and Rodrı́guez-Clare (2013a,b) illus-

trate circumstances under which multiple equilibria arise in the presence of trade costs.

Coupled with the fact that the equilibrium has mixed strategies for some levels of trade

1See Krugman (2011) for a nice exposition of recent anecdotal evidence. For empirical evidence see,
for instance, Caballero and Lyons (1989, 1990, 1992), Chan, Chen and Cheung (1995), Segoura (1998), and
Henriksen, Steen and Ulltveit-Moe (2001).

2See early work exploring this by Graham (1923), Ohlin (1933), Matthews (1949), Kemp (1964), Melvin
(1969), Markusen and Melvin (1981), and Ethier (1982a,b).
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costs, the framework quickly becomes intractable, with little hope of extending it to a

multi-country setting with trade frictions.

In this paper we present a Ricardian model with Marshallian externalities that admits

a unique equilibrium under intuitive parameter restrictions. Unlike GRH, we leave the

compatibility assumption intact and approach the problem from a different angle by

relaxing the implicit assumption in the standard framework (and in GRH) that firms

within each industry are producing a homogeneous good. In particular, we allow for

intra-industry heterogeneity as in Eaton and Kortum (2002, henceforth EK) and find

that this adds some “curvature” that helps in establishing uniqueness of equilibrium as

long as the strength of Marshallian externalities is “not too high”. The framework yields

the standard gravity-type equation and so provides a platform to assess quantitatively

the importance of these externalities for the welfare effects of trade.3

The system of equations that characterizes the equilibrium of the Ricardian multi-

industry model with Marshallian externalities turns out to be isomorphic to the equi-

librium system of a more general version of the multi-industry Krugman (1980) model

of product differentiation with internal economies of scale.4 The existence and unique-

ness result that we prove for our Ricardian setting can then be seamlessly applied to the

multi-industry Krugman model. As far as we know, we are the first to establish unique-

ness of equilibrium for this general case. Not surprisingly, the isomorphism extends also

to the multi-industry Melitz (2003) model if the productivity distribution is Pareto as in

Chaney (2008) and the fixed exporting costs are paid in units of labor of the destination

country.5

The common mathematical structure that characterizes the equilibrium in all these

multi-industry gravity models is governed by two elasticities that can vary across indus-

tries: the trade elasticity and the elasticity of productivity with respect to industry size,

which we will refer to as the scale elasticity. The condition for uniqueness is that (in all

industries) the product of these two elasticities is not higher than one. In the Ricardian

3Our analysis restricts to the case of Marshallian externalities, which operate inside each industry.
An alternative case is the one in which some of the externalities operate across industries. Yatsynovich
(2014) has recently shown conditions under which a model with such cross-industry externalities exhibits
a unique equilibrium for the case with frictionless trade.

4Abdel-Rahman and Fujita (1990), Allen et al. (2015) and Redding (2016) explore similar isomorphisms
for spatial equilibrium models in the economic geography literature.

5Somale (2014) introduces sector-specific innovation into a multi-sector Eaton and Kortum (2002)
model (via mechanisms from Eaton and Kortum, 2001) to quantify its implications for welfare. Inter-
estingly, although the model in Somale (2014) is dynamic, the balanced growth path is also characterized
by the same system of equations as all the models that we consider in this paper, and so our results extend
to this case as well.
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model the scale elasticity is given directly by the strength of Marshallian externalities,

so the condition for uniqueness is that the strength of these externalities is not higher

than the inverse of the trade elasticity. In the Krugman or Melitz-Pareto models the

scale elasticity is given by the inverse of the trade elasticity, hence we are always at the

edge of the region of uniqueness. One can easily add flexibility to the Krugman and

Melitz-Pareto models to break the tight link between the two elasticities. For example, if

we allow the elasticity of substitution across varieties from different countries to differ

from the elasticity of substitution across varieties from the same country (with nested

CES preferences) then the product of the scale and trade elasticities can be different

than one.6

When formulating the equilibrium conditions in our model, we explicitly allow for

corner equilibria in which industries shut down in some countries. We show that if the

product of trade and scale elasticities is less than one then every country is active in all

industries, while if the product is one then the equilibrium may exhibit corners. In par-

ticular, as is known in the literature, the multi-industry Krugman model can have coun-

tries completely specialized in some subset of industries as an equilibrium outcome.

Remarkably, however, the existing literature lacks a proof of uniqueness of equilibria in

the multi-industry Krugman model while appropriately dealing with the complemen-

tarly slackness conditions relevant for this case.

The two papers that address the issues of existence and uniqueness in the context

of the usual multi-industry Krugman model (in which the product of trade and scale

elasticities is exactly one) are Hanson and Xiang (2004) and Behrens, Lamorgese, Otta-

viano and Tabuchi (2009). Hanson and Xiang (2004) show existence and uniqueness for

the case of two countries and a continuum of industries under the explicit assumption

that both countries produce in all industries (i.e., no corner allocations). Behrens et al.

(2009) consider the case of many countries and two industries — one industry being

the usual “outside good” industry that pins down wages — and show existence of equi-

librium while allowing the equilibrium to exhibit corner allocations. Their uniqueness

proof, however, relies on the assumption that there are no corner allocations. Note also

that since one industry is modeled as an “outside good”, the framework can essentially

be viewed as one with exogenous wages, multiple countries, and one increasing returns

6Alternatively, one can allow for heterogeneity in worker ability across industries as in Galle,
Rodrı́guez-Clare and Yi (2015). This introduces “inter-industry curvature” into the model and reduces the
scale elasticity in all industries below the inverse of the trade elasticity, thereby helping ensure unique-
ness.
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industry.

In this paper we show existence and uniqueness of equilibrium in a setting with mul-

tiple industries and two countries while allowing for complete specialization and for en-

dogenous wages. Our existence result is valid for more than two countries, while for now

we have only been able to extend the uniqueness results to more than two countries un-

der frictionless trade or with exogeneous wages. While numerical simulations indicate

that the equilibrium is also unique in the context of endogenous wages and multiple

countries, the theoretical difficulty lies in the fact that the labor excess demand system

does not satisfy the gross substitutes property — a sufficient condition for unique wages

which is often satisfied in similar environments. Proving uniqueness in this setting may

require applying more powerful techniques that we are currently studying.7

In the final section we use the unified framework to study the implications of scale

economies for the welfare effects of trade. We first establish that as long as we are in

the region of uniqueness then all countries gain from trade. This is so even if the scale

elasticity differs across industries, for example because of cross-industry variation in

the strength of Marshallian externalities in the Ricardian model. This is noteworthy in

light of previous results with this type of model where countries could lose from trade.

We extend the “sufficient statistics approach” to the quantification of the gains from

trade in Arkolakis et al. (2012) to multi-industry models with scale economies. The

isomorphism across models still applies in this setting in the sense that, for the same

industry-level trade and scale elasticities, the different models we consider deliver the

same gains from trade and the same counterfactual implications given industry-level

data on trade, expenditure and revenue shares.

We next show that, perhaps surprisingly, if the scale elasticity is the same across in-

dustries, the gains from trade are lower with scale economies than without. In contrast,

for a simple case that we can solve analytically, the gains from trade liberalization are

higher with scale economies than without. The opposite consequences of scale effects

on the gains from trade and on the gains from trade liberalization come from the fact

that when we compute gains from trade we take trade shares (from the data) as given,

while when we compute gains from trade liberalization we allow trade shares to endoge-

nously respond to the decline in trade costs.8

7The existence and uniqueness result for a multi-sector gravity model in Corollary 1 of Allen et al.
(2014) does not apply to our setting because the conditions they impose on their multi-sector gravity
model rule out sector-level economies of scale.

8Something similar happens in the standard one-industry gravity model, where a higher trade elastic-
ity leads to lower gains from trade and higher gains from trade liberalization. As explained by Costinot
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We next revisit a classical result due to Venables (1987) that, if wages are pinned down

by an “outside good,” countries lose from unilateral trade liberalization and from a for-

eign technological improvement in a monopolistically competitive sector modeled as in

Krugman (1980). We show that this result generalizes to any source of scale economies

(e.g., Marshallian externalities) as long as the product of the trade and scale elasticities

is above a threshold value that is a function of sector-level import and export shares.

We complement our exploration of the effect of scale economies on the gains from

trade by applying our framework to data on 31 industries from the World Input Output

Database (WIOD, Timmer et al., 2015) in 2008. We start by focusing on the case with

common trade and scale elasticities across industries. As explained above, the presence

of scale economies leads to a decline in the gains from trade, but now we also see that

this decline is more pronounced in countries that have a higher degree of specialization

across industries. Thus, for example, for the country with the highest degree of industry

specialization, Korea, the gains from trade decrease from 6.6% to 4.1%, while they barely

decrease for the country with the lowest degree of industry specialization, Brazil.

We then study how the gains from trade are affected by scale economies when the

scale elasticity varies across industries. We consider two possibilities. The first is that

scale economies are present only in manufacturing industries — a typical case con-

sidered in the literature (see, for instance, Ethier, 1982a,b). Not surprisingly, relative

to the case with no scale economies, gains from trade increase for countries that spe-

cialize in manufacturing and the opposite happens for countries that specialize away

from manufacturing. For example, gains from trade increase from 3 to 3.5% for China,

while they decrease from 5.7 to 3.5% for Greece. The second possibility we consider is

that scale elasticities are inversely proportional to trade elasticities (as in the standard

multi-industry Krugman or Melitz-Pareto models), with trade elasticities varying across

industries and calibrated to those estimated by Caliendo and Parro (2015). We find that

countries that specialize in industries with lower than average scale economies gain less

from trade with scale economies than without, but the opposite may happen for coun-

tries that specialize in industries with higher than average scale economies. Thus, for

example, moving from a model without scale economies to one with scale economies

leads to a decline in the gains from trade in Greece from 14.5% to 5.5% but an increase

and Rodrı́guez-Clare (2014), gains from trade are lower when the trade elasticity is higher since this makes
it easier to substitute foreign for domestic goods when we move to autarky. In contrast, gains from trade
liberalization are higher when the trade elasticity is higher since this allows for a stronger response of
trade shares to the decline in trade costs.
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in the gains from trade in Japan from 2.4% to 6.1%.

We use the model to quantify the welfare implications of unilateral trade liberaliza-

tion and foreign productivity gains in an environment with economies of scale, com-

paring to the results to those in an environment without economies of scale. To link this

exercise to the theoretical analysis inspired by Venables (1987) we assume again that

the manufacturing sector exhibits scale economies while all other sectors do not. We

find that gains from unilateral trade liberalization in manufacturing decrease as we al-

low for scale economies in that sector, but (in the region of uniqueness) the gains are

always positive. We show that this arises because of wage adjustments that are ruled

out in the Venables (1987) type analysis. On the other hand, we find that most countries

experience loses from an improvement in Chinese manufacturing productivity.

Finally, we explore the role of economies of scale in explaining trade flows and industry-

level specialization in the data. We find that if scale economies are as strong as those in

the Krugman model then most of the industry-level specialization that we see in the

data is due to economies of scale rather than pure Ricardian comparative advantage.

Costinot and Rodrı́guez-Clare (2014) compute gains from trade and gains from the

decline in trade costs for economies with and without scale economies. Compared to

that paper, we further establish analytically that all countries gain from trade as long

as the conditions for equilibrium uniqueness are satisfied, we connect a country’s de-

cline in the gains from trade to its degree of industry specialization, and we analyze how

varying scale elasticities across industries interact with a country’s inter-industry trade

pattern to affect its gains from trade. Somale (2014) also analyzes how economies of

scale matter for industry-level specialization. The difference is that whereas he focuses

on the the way in which economies of scale affect the variance of comparative advan-

tage, we compare measures of trade and specialization between the data and those that

would arise in a counterfactual world where everything is the same except that there are

no economies of scale.

2. A Multi-Industry Gravity Model with Scale Economies

We first present the key equilibrium equations of the model and then discuss how these

equations arise in three different settings: (i) our multi-industry Ricardian model with

Marshallian externalities; (ii) the multi-industry Krugman (1980) model with possibly

different elasticities of substitution between varieties from the same and different coun-
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tries; and (iii) the multi-industry Melitz (2003) model with Pareto-distributed productiv-

ity as in Chaney (2008) and also allowing for different elasticities of substitution between

varieties from the same and different countries.

There are N countries indexed by n, i and l, and K industries or sectors indexed

by k. The only factor of production is labor, which is immobile across countries and

perfectly mobile across industries within a country. We use L̄i and wi to denote the

inelastic labor supply and the wage level in country i, respectively. Each country has a

representative consumer with upper-tier Cobb-Douglas preferences with industry-level

expenditure shares βi,k ∈ (0, 1) for all (i, k) with
∑K

k=1 βi,k = 1 for all i. Trade costs are of

the standard iceberg type, so that delivering a unit of any industry-k-good from country

i to country n requires shipping τni,k ≥ 1 units of the good, with τii,k = 1 for all i and all k

and τnl,k ≤ τni,kτil,k for all n, l, i and k.

Let Xn,k denote country-n’s total expenditure on industry k and let λni,k denote the

share of this expenditure devoted to imports from country i. Balanced trade implies

Xn,k = βn,kwnL̄n.

We focus on models that generate industry-level economies of scale and a log-linear

gravity equation for industry-level trade shares. Below we show that our Ricardian model

with industry-level external economies of scale as well as Krugman (1980) and Melitz

(2003) satisfy this criteria. Economies of scale are captured by an industry-level produc-

tivity shifter that can vary with total industry employment according to S̃i,kL
ψk
i,k , where

S̃i,k is a constant, Li,k denotes total employment in industry (i, k), and ψk is the scale

elasticity in industry k, which is assumed to be common across countries. Industry-

level trade shares are given by

λni,k =

(
wiτni,k/S̃i,kL

ψk
i,k

)−εk
∑

l

(
wlτnl,k/S̃l,kL

ψk
l,k

)−εk ,
where εk is the trade elasticity in industry k, defined formally by εk ≡ −∂(λni,k/λnn,k)

∂τni,k
. Let-

ting αk ≡ εkψk and Si,k ≡ S̃εki,k, we rewrite trade shares more conveniently as

λni,k(w,Lk) =
Si,kL

αk
i,k (wiτni,k)

−εk∑
l Sl,kL

αk
l,k (wlτnl,k)

−εk , (1)

where w ≡ (w1, ..., wN) is the vector of wages and Lk ≡ (L1,k, . . . , LN,k) is the vector of

labor allocations to industry k across all countries. In turn, the price index for industry
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k in country n is

Pn,k = µn,k

(∑
l

Sl,kL
αk
l,k (wlτnl,k)

−εk

)−1/εk

, (2)

and the aggregate price index is Pn = β̃n
∏K

k=1 P
βn,k
n,k , where µn,k and β̃n are some con-

stants.9

We now introduce industry and labor market clearing conditions. In contrast to

multi-industry gravity models without scale economies (e.g., Donaldson (2016), Costinot

et al. (2012)), here we can have equilibria with corner allocations (i.e., Li,k = 0 for some

k and for some, but not all, i), so we need to be careful when formulating the market

clearing conditions. With this in mind, we specify the market clearing condition for any

industry (i, k) as a set of complementary slackness conditions,

Li,k ≥ 0, Gi,k (w,Lk) ≥ 0, Li,kGi,k (w,Lk) = 0, (3)

where

Gi,k (w,Lk) ≡ wi −
1

Li,k

∑
n

λni,k(w,Lk)βn,kwnL̄n (4)

is the excess of the wage over revenue per worker in industry (i, k). Note that for positive

labor allocations equation (3) implies Gi,k (w,Lk) = 0, which can be reformulated as

wiLi,k =
∑

n λni,kβn,kwnL̄n, a standard industry clearing condition.10

Finally, the labor-market clearing condition for any country i is simply

∑
k

Li,k = L̄i. (5)

Denote by L ≡ (L1, . . . ,Lk) the vector of labor allocations across industries. The

equilibrium of the economy is a wage vector and labor allocation (w,L) ∈ RN
++×

(
RNK

+ \ ZNK0

)
9The constant µn,k will be specified below for each model, while β̃n is the standard Cobb-Douglas term

β̃n ≡
∏
k β
−βn,k

n,k .
10A subtle issue arises here with the evaluation of Gi,k (w,Lk) and Li,kGi,k (w,Lk) at points with

Li,k = 0. If we think of the codomain of these functions as the set of real numbers then Lk with Li,k = 0
(for at least some, but not all i) is not in their domain. To avoid this, we define the codomain as the
extended real number line R ∪ {−∞,+∞} and we define Gi,k (w,Lk) and Li,kGi,k (w,Lk) for Li,k =

0 by limx→Lk

[
wi −

1

xi

∑
n λni,k(w,x)βn,kwnL̄n

]
and limx→Lk

xi

[
wi −

1

xi

∑
n λni,k(w,x)βn,kwnL̄n

]
, re-

spectively. (Of course, for any point with Li,k > 0 these alternative definitions are perfectly consistent
with the ones in the text.) For each k, we still leave the point Lk with Li,k = 0 for all i outside the domain.
The formal definitions are in Appendix A.
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such that (3) holds for all (i, k) and (5) holds for all i, where

ZNK0 ≡
{

(x1, . . . ,xK) ∈ RNK
+ : xk = 0 for some k

}
is the set of labor allocations with zero total labor (across countries) devoted to some

industries.

2.1. A Ricardian Model with Marshallian Externalities

We now show how the multi-industry Eaton and Kortum (2002, henceforth EK) model

as developed by Costinot, Donaldson and Komunjer (2012, henceforth CDK), but ex-

tended to allow for Marshallian externalities leads to the equilibrium conditions pre-

sented above.

Each industry is composed of a continuum of goods ω ∈ [0, 1]. Preferences are Cobb-

Douglas across industries with weights βi,k, and CES across goods within each industry

k with elasticity of substitution σk.

The production technology exhibits constant or increasing returns to scale due to

national external economies of scale at the industry level (i.e., Marshallian externali-

ties). In particular, labor productivity for good ω in industry (i, k) is zi,k(ω)Lφki,k, where

zi,k(ω) is an exogenous productivity parameter, Li,k is the total labor allocated to indus-

try (i, k), and φk is the industry specific parameter that governs the strength of Mar-

shallian externalities. We model zi,k(ω) as in EK: zi,k(ω) is independently drawn from a

Fréchet distribution with shape parameter θk and scale parameter Ti,k, and we assume

that θk > σk − 1.

There is perfect competition, and the positive effect of industry size on productiv-

ity, Lφki,k, is external to the firm. Thus, firms take as given both prices and unit costs,

which are given by cni,k (ω) =
τni,kwi

zi,k(ω)L
φk
i,k

. This implies that pni,k (ω) = cni,k (ω). Since

consumers can shop for the best deal around the world, prices must satisfy pn,k (ω) =

min1≤i≤N {pni,k (ω)}. Following the same procedure as in EK, trade shares can be shown

to satisfy

λni,k =
Ti,kL

θkφk
i,k (wiτni,k)

−θk∑
l Tl,kL

θkφk
l,k (wlτnl,k)

−θk
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with price indices given by

Pn,k = µRick

(∑
l

Tl,kL
θkφk
l,k (wlτnl,k)

−θk

)−1/θk

,

where µRick ≡ Γ
(

1−σk+θk
θk

) 1
1−σ

, with Γ being the Gamma function which typically arises in

this Ricardian setting. These two equations collapse to the expressions for trade shares

and industry price indexes in equations (1) and (2) by setting with Si,k = Ti,k, εk = θk,

ψk = φk and µn,k = µRick . See the first row of Table 1.

Finally, the equilibrium condition (3) can be seen as capturing the standard com-

plementary slackness condition in the Ricardian model requiring the price to be weakly

lower than the unit cost, with equality if there is positive production in the industry.

Multiplying both the price and the unit cost by labor productivity (adjusted by trade

costs), this is the same as requiring that revenue per worker be weakly lower than the

wage, with equality if there is positive employment in the industry.

Table 1: Mapping to Different Models

Model Trade elasticity, εk Scale elasticity, ψk αk

CDK with ME θk φk θkφk

Multi-Sector Krugman σk − 1 1
σk−1

1

Multi-Sector Melitz-
Pareto Model

θk
1
θk

1

Generalized Multi-Sector
Krugman

ηk − 1 1
σk−1

ηk−1
σk−1

Generalized Multi-Sector
Melitz-Pareto

θk

1+θk

(
1

ηk−1
− 1
σk−1

) 1
θk

1

1+θk

(
1

ηk−1
− 1
σk−1

)

2.2. A Krugman Model with Two-Tier CES preferences

Here we present a multi-industry Krugman model with an added layer of product differ-

entiation so that the elasticity of substitution across varieties from different countries is

allowed to differ from the elasticity of substitution across varieties from the same coun-

try (with nested CES preferences). We again show that this model leads to the equilib-

rium conditions in equations (3) and (5).
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There is a continuum of differentiated varieties within each industry. Preferences

are multi-tiered: Cobb-Douglas across industries with weights βi,k, CES across country

bundles within an industry with elasticity ηk, and CES across varieties within a country

bundle with elasticity of substitution σk > 1.

Let Ai,k be the exogenous productivity in (i, k) which is common across firms in that

industry, let Fi,k denote the fixed cost (in terms of labor) associated with the production

of any variety in (i, k), and let Mi,k the measure of goods produced in (i, k). There is

monopolistic competition and trade shares are λni,k = (Pni,k/Pn,k)
1−ηk , where Pni,k =

M
1/(1−σk)
i,k (σ̄kwiτni/Ai,k) is the price index in country n of country i varieties of industry k,

σ̄k ≡ σk/ (σk − 1) is the mark-up, and Pn,k =
(∑

i P
1−ηk
ni,k

)1/(1−ηk)
.

We now solve for equilibrium variety Mi,k as a function of industry employment Li,k
and then use the result to derive an expression for trade shares for this model. Variable

profits in (i, k) are simply total industry revenues divided by σk. Letting Πi,k be total prof-

its net of fixed costs in industry (i, k), we then have Πi,k =
∑

n λni,kXn,k/σk − wiMi,kFi,k.

If Li,k > 0 then free entry implies zero profits so total revenues must equal total wage

payments in industry (i, k),
∑

n λni,kXn,k = wiLi,k. Combined with Πi,k = 0 we then have

Mi,k = Li,k/σkFi,k. Trade shares are then

λni,k =
Aηk−1
i,k F

− ηk−1

σk−1

i,k L
ηk−1

σk−1

i,k (wiτni,k)
−(ηk−1)

∑
lA

ηk−1
l,k F

− ηk−1

σk−1

l,k L
ηk−1

σk−1

l,k (wlτnl,k)
−(ηk−1)

with price indices given by

Pn,k = µKrugk

(∑
l

Aηk−1
l,k F

− ηk−1

σk−1

l,k L
ηk−1

σk−1

l,k (wlτnl,k)
−(ηk−1)

)−1/(ηk−1)

,

where µKrugk = σ
1

σk−1

k σ̄k. These two equations collapse to the expressions for trade shares

and industry price indexes in equations (1) and (2) by setting Si,k = Aηk−1
i,k F

− ηk−1

σk−1

i,k , ψk =

(σk − 1)−1, εk = (ηk − 1) and µn,k = µKrugk . Note also that if we set σk = ηk for all k

then this is just the standard multi-industry Krugman model, while if σk → ∞, then

(ηk − 1)/(σk − 1) → 0 and we obtain the multi-industry Armington model. See rows 2

and 4 of Table 1.11

11Is straightforward to incorporate Marshallian externalities into the multi-industry Krugman model
presented above. For instance, letting Ai,k ≡ Ãi,kL

φk

i,k yields a setting with scale and trade elasticities

ψk = (σk − 1)
−1

+ φk and εk = ηk − 1, respectively.
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To deal with the possibility of corner labor allocations under monopolistic compe-

tition, we require that profits per firm in industry (i, k) be weakly lower than zero, with

strict equality if Li,k > 0, exactly as captured by the complementary slackness condi-

tions in (3).

2.3. A Melitz-Pareto Model with Two-Tier Preferences

We now briefly present a model à la Melitz (2003) with Pareto distributed productivity

and the same preferences as in the Krugman model above and show that it leads to the

same equilibrium conditions (3) and (5).12

After paying a fixed “entry” cost Fi,k in units of labor in country i, firms are able to

produce a variety in industry (i, k) with labor productivity drawn from a Pareto distri-

bution with shape parameter θk > σk − 1 and location parameter bi,k. Firms from i can

then pay a fixed “marketing” cost fn,k in units of labor of n to serve that market.13,14 In

Appendix B we show that this leads to trade shares

λni,k =
bθkξki,k F−ξki,k Lξki,k (wiτni,k)

−θkξk∑
l b
θkξk
l,k F−ξkl,k Lξkl,k (wlτnl,k)

−θkξk

and price indices

Pn,k = µMel
n,k

(∑
l

bθkξkl,k F−ξkl,k Lξkl,k (wlτnl,k)
−θkξk

)−1/θkξk

where ξk ≡ 1

1+θk

(
1

ηk−1
− 1
σk−1

) , µMel
n,k ≡ µ̄Mel

k

(
fn,k

βn,kLn

)( 1
σk−1

− 1
θk

)
and µ̄Mel

k is some constant

defined in Appendix B. These two equations collapse to the expressions for trade shares

and industry price indexes in equations (1) and (2), respectively, by settingSi,k = bθkξki,k F−ξki,k ,

ψk = 1/θk, εk = θkξk and µn,k = µMel
n,k . Note also that if we set σk = ηk for all k then ξk = 1

12Feenstra et al. (2014) also consider a multi-industry Melitz-Pareto model with possibly different elas-
ticities of substitution across varieties from different countries and across varieties from the same coun-
try.

13To simplify the analysis, we assume that the fixed marketing cost to serve destination n does not vary
across origins i. Allowing these fixed costs to vary across country pairs would imply that instead of a term
Si,k we would have a term Sni,k that varies across country pairs, but this would not change any of our
main conclusions below.

14The assumption that fixed marketing costs are paid in units of labor of the destination country is
critical for the result that this model collapses to the general structure introduced above. This is related
to the discussion in ACR about how their macro-level restriction R3’ obtains in the Melitz-Pareto model if
and only if the fixed cost is paid in units of labor of the destination country.
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and this model is just a multi-industry version of the Melitz-Pareto model in Arkolakis

et al. (2008). See rows 3 and 5 in Table 1.

3. Characterizing Equilibrium

To characterize the equilibrium we proceed in two steps: we first characterize the equi-

librium labor allocations given wages, and then we characterize wages that satisfy labor

market clearing given the corresponding equilibrium labor allocations.

Two-Step Equilibrium Definition. The equilibrium labor allocations for some wage

vector w ∈ RN
++ are given by L ∈ RNK

+ \ ZNK0 that satisfy (3) for all (i, k). Let L(w) be

the set of such equilibrium allocations. A wage vector w ∈ RN
++ is an equilibrium wage

vector if there exists an element L ∈ L(w) such that L also satisfies (5) for all i.

Note that given wages, for each industry k we have a system of N nonlinear comple-

mentary slackness conditions in Li,k for i = 1, ..., N specified by (3). For the first step

we exploit the fact that this system is independent across k. We now introduce some

additional notation and definitions.

Interior, Corner and Complete Specialization Allocations. An allocation Lk is an

interior allocation if Li,k > 0 for all i; an allocation Lk is a corner allocation if Li,k = 0

for at least one i; and an allocation Lk is a complete specialization allocation if there is a

unique i∗(k) such that Li,k = 0 for all i 6= i∗(k).15

Industry-Level Equilibrium Labor Allocations. Given wage w, Lk(w) denotes the

set of equilibrium labor allocations in industry k, i.e., for any Lk ∈ Lk(w) , Lk satisfies

complementary slackness conditions (3) for industry k.

3.1. Step 1: Equilibrium Labor Allocations

Before we proceed, let us introduce an additional assumption on the matrix of trade

costs which we employ to prove our results in the case of αk = 1 for some k:

Assumption 1. Matrix τ
−εk
11,k . . . τ−εk1N,k
...

...
τ−εkN1,k . . . τ−εkNN,k


15Note that there are many complete specialization allocations. For instance, it could be the case that

production in industry 1 is concentrated solely in country 1 (i∗(1) = 1) or in country 2 (i∗(1) = 2), and so
on.
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is non-singular.

We will be explicit about where this assumption is used in the results below. For now,

note that this assumption is violated if trade is free (i.e., τni,k = 1 for all n and i).

Given the previous definitions, we are now ready to state our first Proposition.

Proposition 1. If either (a) 0 ≤ αk < 1, or (b) αk = 1 and Assumption 1 holds, then the set

Lk(w) is a singleton; if αk > 1, then the setLk(w) contains multiple allocations, including

(but not necessarily limited to) one for each complete specialization allocation. Moreover,

the unique allocation in Lk(w) is an interior allocation if 0 ≤ αk < 1, while it may be an

interior or a corner allocation if αk = 1.

This proposition states conditions under which, given any vector of positive wages

and any industry k, the system (3) ofN non-linear complementary slackness conditions

in Li,k for i = 1, ..., N has a unique solution, with Li,k > 0 for all i if 0 ≤ αk < 1. The

case with αk = 0 is trivial: given wages, labor allocations are explicitly obtained from the

conditions Li,kGi,k(w,Lk) = 0. Below we focus on the case with αk > 0.

Before proving the proposition, we simplify notation by suppressing the sub-index

k and by transforming variables with xi ≡ wiLi, x ≡ (x1, ..., xN), ani ≡ Si (wiτni)
−εw−αi ,

and bn ≡ βnwnL̄n. For future purposes, note that Assumption 1 guarantees that matrix

A = (ani) is non-singular. With a slight abuse of notation, we now rewrite the function

Gi,k (w,Lk) as

Gi (x) ≡ 1−
∑
n

anix
α−1
i∑

l anlx
α
l

bn.

We are dividing the original Gi,k function by wi and then suppressing w as a separate

argument — none of this matters here since we are treating wages as given for now.16

The system in (3) can now be written as a non-linear complementarity problem (NCP)

in x:

xi ≥ 0, Gi(x) ≥ 0, xiGi(x) = 0, i = 1, . . . , N. (6)

Note that if x solves (6) then
∑

i xiGi(x) = 0 and hence
∑

i xi =
∑

i bi. This implies that

the solution to (6) satisfies x ∈ Γ ≡
{
x ∈ RN |xi ≥ 0, i = 1, . . . , N ;

∑
i xi =

∑
i bi
}

.

To prove Proposition 1 we follow a popular approach in the economics literature

that consists of characterizing equilibria of general equilibrium models as solutions to

16Analogously to our treatment of the original functions Gi,k(w,Lk) and Li,kGi(wLk) at Li,k = 0 (see
footnote 10), we define values of Gi(x) and xiGi(x) at xi = 0 by their limits.
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optimization problems.17 Doing this is possible if, for example, the function G(x) ≡
(G1(x), . . . , GN(x)) has a Jacobian that is symmetric at all points in its domain, since in

this case the function G is the gradient of some other function F that we can use in the

optimization problem.18 Fortunately, our function G satisfies this symmetry condition.

In fact, it is easy to see that G is the gradient of function F : RN
+ \ {0} → R defined by

F (x) ≡ α
∑
n

xn −
∑
n

bn ln

(∑
i

anix
α
i

)
. (7)

As we establish formally below, this makes it possible to solve the NCP in (6) by way of

solving arg minx∈Γ F (x).19

We now focus on the characterization of the optimization problem arg minx∈Γ F (x)

and then establish formally the connection between this problem and the NCP in (6).

Existence of a solution to arg minx∈Γ F (x) follows immediately from the fact that Γ

is a compact set and F (·) is continuous on Γ. To establish uniqueness, we show in Ap-

pendix C that under the conditions of Proposition 1 function F (·) is strictly convex on

Γ. Thus, since Γ is a convex set, F (·) has at most one global minimum on Γ. This estab-

lishes the following result:

Lemma 1. If either (a) 0 < α < 1, or (b) α = 1 and Assumption 1 holds, then F (·) has a

unique global minimum on Γ.

Let us denote the unique global minimum ofF (·) on Γ by x∗. In Appendix C we prove

the following result:

Lemma 2. If 0 < α < 1 then x∗i > 0 for all i = 1, . . . , N .

Finally, we prove the part of Proposition 1 concerning the case ofα ≤ 1 by combining

the two previous lemmas with the following equivalence result:

Lemma 3. If either (a) 0 < α < 1, or (b) α = 1 and Assumption 1 holds, then x is a global

minimum of F (·) on Γ if and only if x is a solution to (6).

17Negishi (1960) is probably the most well-known example of this approach in which market equilibria
are characterized as solutions to a social planner’s problem. Kehoe, Levine and Romer (1992) describe
a more general framework in which the optimization problem does not necessarily have an economic
interpretation. Our case fits into their general framework.

18A classical result in mathematics states that a vector function is a gradient map if and only if its Jaco-
bian is symmetric in the domain of the function (see, for example, Theorem 4.1.16 on page 95 in Ortega
and Rheinboldt, 2000).

19We thank Anca Ciurte and Ioan Rasa for pointing us in this direction.
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The proof of this result is almost trivial, because the conditions in (6) are just the

first-order conditions for the minimization of F (·) on Γ. The only complication is that

to invoke the first-order conditions, we need to have differentiability of F (·) on Γ which

is understood as differentiability of F (·) on some open set containing Γ. In case of α < 1

any such open set necessarily includes points x with xi ≤ 0, at which F (·) is not differ-

entiable. We deal formally with this complication in Appendix C.

One might wonder if the equilibrium labor allocation is continuous in α as we ap-

proach α = 1 from below. Economically speaking, one would expect this to be the case,

so that if at α = 1 we have a corner allocation with xi = 0 for some country i then

xi(α) > 0 for all α < 1 but limα↑1 xi(α) → 0. Mathematically, however, this result is not

trivial because the function G is not jointly continuous in x and α for α = 1 and points

x with xi = 0 for some i. Still, thanks to the optimization approach followed in the pre-

vious lemmas, we can establish the left continuity of x(α) by invoking the Theorem of

the Maximum (see Theorem 3.6 in Stokey, Lucas and Prescott, 1989) (see Appendix C for

details).

Lemma 4. If Assumption 1 holds, then x(α) is continuous as a function of α for all α ∈
(0, 1]. In particular, limα↑1 x(α) = x(1).

Consider now the case with α > 1. We can easily show that there are many solutions

to (6). To see this, choose some i∗ and set xi∗ =
∑

n bn and xi = 0 for i 6= i∗. It is easy to

check that this satisfies Gi∗(x) = 0 and Gi(x) = 1 ≥ 0 for all i 6= i∗, so that all conditions

in (6) are satisfied. Of course, this is only one example and there are many other pos-

sible equilibrium allocations for this case. However, characterizing the complete set of

equilibria is not the focus of our analysis.

We finish this subsection by commenting on the role of Assumption 1 in Proposi-

tion 1. While this assumption plays no role in the proof of uniqueness when αk < 1,

we cannot rule out multiplicity of equilibria if it is violated when αk = 1. As mentioned

above, Assumption 1 is violated if trade is frictionless. In fact, it is enough that trade be

frictionless between any set of countries for multiplicity to arise in the case with αk = 1.

Suppose, for instance, that there were no trade costs between two countries i and j. The

triangular inequality implies the trade costs between i and j and all other countries are

the same (i.e., τni,k = τnj,k and τin,k = τjn,k for all n 6= i, j). It then follows that the i and

j row in the matrix of Assumption 1 are the same, so the non-singularity requirement is

violated. Notice, however, that the multiplicity that arises in this case is that at most the

overall labor allocation Li,k + Lj,k is determined, but not Li,k or Lj,k. This type of non-
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uniqueness is irrelevant for welfare: real wages are the same across any two equilibria

in this set. Moreover, with any small trade costs between i and j the non-uniqueness

disappears, rendering these cases non-generic.

3.2. Step 2: Equilibrium Wages

In what follows, we restrict the analysis to the case 0 ≤ αk ≤ 1. For this case, Propo-

sition 1 establishes that the solution of the system of complementary slackness condi-

tions (3) determines a function from wages to labor allocations, L(w), for w ∈ RN
++.

Letting

Zi(w) ≡
∑
k

Li,k(w)− L̄i (8)

be the excess labor demand in country i defined for all w ∈ RN
++ and letting Z(w) ≡

(Z1(w), ..., ZN(w)), the labor-market clearing conditions for all countries can be written

simply as

Z(w) = 0. (9)

To establish existence of a solution to this system of equations, we will invoke conti-

nuity of Lk(w). We again exploit the equivalence between the system in (3) and a con-

strained optimization problem and invoke Theorem of the Maximum from Stokey, Lu-

cas and Prescott (1989) to establish that Lk (w) is a continuous function for all w ∈ RN
++

(see Appendix C for details).

Lemma 5. If either (a) 0 ≤ αk < 1, or (b) αk = 1 and Assumption 1 holds, then the

function Lk(w) is continuous for all w ∈ RN
++.

We now state our result for existence of equilibrium.

Proposition 2. Assume that for all k either (a) 0 ≤ αk < 1, or (b) αk = 1 and Assumption 1

holds. Then there exists a vector of wages w ∈ RN
++ that satisfies (9).

Proof. The case with αk = 0 is a simple extension of the existence proof by Alvarez and

Lucas (2007) to the case of multiple industries. Here we focus on the case with 0 <

αk ≤ 1. To establish existence of a solution to (9), it suffices to show that the following

properties as outlined in Proposition 17.B.2 in Mas-Colell, Whinston and Green (1995,

MWG) are satisfied: (i) Z(w) is continuous; (ii) Z(w) is homogeneous of degree zero;

(iii) w · Z(w) = 0 for all w (Walras’ law); (iv) there is an A > 0 such that Zi(w) > −A
for all i and w; (v) if ws → w as s → ∞, where w 6= 0 and wi = 0 for some i, then
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Max {Z1(ws), ..., ZN(ws)} → ∞ as s → ∞. Property (i) follows from Lemma 5, while

properties (ii)-(iv) are immediate. The proof of (v) is in Appendix C.

In what follows, we first provide sufficient conditions for a unique equilibrium in the

case of two countries (N = 2), and in the case of multiple countries with free trade. After

that we discuss additional complexities that arise in the general setting with multiple

countries and costly trade.

Proposition 3. Assume that N = 2 and that for all k either (a) 0 ≤ αk < 1, or (b) αk = 1

and Assumption 1 holds. Then there exists a unique (normalized) vector of wages w ∈
RN

++ that satisfies (9).

Proposition 4. Assume that 0 ≤ αk < 1 for all k and trade is frictionless in all industries,

i.e., that τni,k = 1 for all n, i, and k. Then there exists a unique (normalized) vector of

wages w ∈ RN
++ that satisfies (9).

We prove both Propositions 3 and 4 by showing that the labor excess demand func-

tion Z(w) has the gross substitutes property under the assumptions of these proposi-

tions. Uniqueness of solution then follows from Proposition 17.F.3 from MWG.

The previous results establish that if there are two countries, or if there are many

countries but no trade costs, or if there are many countries and positive trade costs but

wages are pinned down by an outside good, then the equilibrium exists and is unique.20

With positive trade costs and more than two countries, our excess labor demand sys-

tem does not, in general, satisfy the gross-substitutes property, and so this property can

no longer be invoked for establishing a unique vector of wages for N > 2 and costly

trade. With industry-level externalities and trade costs one has to contend with addi-

tional complications that arise when there are more than two countries. In particular,

while these externalities act to reinforce the gross substitutes property when there are

two countries, the same is not necessarily true for three or more countries. For instance,

a rise in the wage in one country, say country 1, may reduce the demand for labor there,

20If we assume that there is a freely traded “outside good” industry in which production exhibits con-
stant returns to scale and assume that all countries produce a positive amount of this good, as is typically
done in the literature, then wages are exogenous and the proof from Proposition 1 — which is valid for
any finite N — implies a unique allocation of labor across industries. Note, however, that we need to
assume that all countries produce the outside good – if some countries do not produce that good then
wages are not pinned down and we don’t have a proof of uniqueness for more than two countries for this
case.
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while at the same time raising the demand for labor in another country, say country 2,

which is so far consistent with the gross substitutes property. The complexities arise

from the fact that the increased labor demand in country 2 can generate productivity

effects that can lead to increased exports to a third country, say country 3, which can,

in turn, result in a fall in the demand for labor there. In other words, a rise in wages in

country 1 can result in a fall in the demand for labor in country 3, thereby, violating the

gross substitutes property.

While we have not yet been able to prove our uniqueness result in Proposition 3 for

the case N > 2, extensive numerical simulations indicate that the determinant of the

negative of the Jacobian of the normalized excess labor demand system (i.e., the Jaco-

bian of−Z(w) after removing the last column and the last row) is always positive, so that

one could invoke the Index Theorem to show uniqueness of equilibrium (Kehoe, 1980).

The challenge here is that the Jacobian of the aggregate labor demand is the sum of the

Jacobians of the labor demand coming from each sector (i.e., DZ(w) =
∑

kDLk(w)),

and establishing conditions on the determinant of a sum of matrices is extremely dif-

ficult. The advantage of the gross-substitutes property is that it implies that the nega-

tive of the Jacobian of the labor demand in each sector has all diagonal terms positive

and all off-diagonal terms negative, and hence a positive determinant. Since the gross-

substitutes property survives under summation, the determinant of the negative of the

Jacobian of the aggregate labor demand is positive as well. Without the gross-substitutes

property, we need an alternative approach.21, 22

3.3. Computation of Equilibrium

The preceding analysis suggests two alternative approaches to numerically compute

the equilibrium. First, one can use an algorithm that properly deals with the comple-

mentary slackness conditions in the system of Equations (3) and (5) for (w,L). This re-

21In Appendix C we explore whether the techniques developed in Allen, Arkolakis and Li (2015) can be
applied to establish uniqueness for our system. Unfortunately, we find that the sufficient condition for
uniqueness in their Theorem 1 does not hold in our economy.

22We have also explored the question of uniqueness numerically. Focusing on the case of N = 3 and
K = 2, we simulated more than a million economies with α = 0.9 and randomly chosen values for all
other parameters and then computed the equilibrium for each economy, starting at 400 initial points.
We never found an instance of multiple equilibria. In contrast, using the same code for α = 2 leads to
multiple equilibria for randomly generated parameters. For the case with α = 0.9 we also computed the
sign of the determinant of the (negative of the) excess labor demand. By the Index Theorem, a negative
value would imply multiplicity, while uniqueness would imply a positive value. We always found this sign
to be positive.
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quires an algorithm for non-linear complementarity problems, such as the PATH solver

(Ferris and Munson, 1999). Second, one can follow the approach used above to prove

existence and uniqueness of equilibrium and break the problem in two steps: first, for

each wage vector w find Lk(w) for each k by solving the optimization problem asso-

ciated with (7), and second, find the wage vector such that the excess labor demand

Z(w) ≡
∑

kLk(w) − L̄ is zero using the tatonnement iterative procedure proposed by

Alvarez and Lucas (2007).

It turns out, however, that a third approach does best. Consider the function w(T )

that one would get simply by solving for wages in the standard multi-sector model with

no scale economies and technology parameters T = {Ti,k}, and let Ldi,k(T ,w) be labor

demand as a function of technology parameters and wages also in that model. Let T (L)

be defined by Ti,k(L) = Si,kL
αk
i,k and let H(L) ≡ Ld(T (L),w(T (L))). By definition of

w(T ) we must have
∑

k L
d
i,k(T (L),w(T (L))) = L̄i for all i, and hence if L∗ is a fixed point

of the mapping H(L) then (w∗,L∗) = (w(T (L∗),L∗) is an equilibrium of our economy

with economies of scale. Note that H(L) is a continuous mapping from the compact set

Λ ≡ {L|
∑

k Li,k = L̄i} to itself, and we know from Proposition 2 that an interior solution

exists if αk < 1 for all k. We can then use the iterative procedure given by Lt+1 = H(Lt)

to compute the equilibrium points. In using this algorithm for the quantitative analysis

in the following section we find that it can easily handle corners and that it is very robust.

4. Scale Economies and the Welfare Effects of Trade

In this section we explore the implications of scale economies for the welfare effects

of trade. We restrict the analysis to the case in which 0 ≤ αk ≤ 1 for all k. We first

study how scale economies affect the gains from trade and the welfare effects from trade

liberalization, and we conclude by quantifying the different effects using counterfactual

analysis when the model is made to be perfectly consistent with the data.

4.1. Gains from Trade

In principle, countries that specialize in industries with weak economies of scale could

even lose from trade — the premise of Frank Graham’s argument for protection. It turns

out, however, that this cannot happen if 0 ≤ αk ≤ 1 for all k. The formal proof is in the

Appendix D.1, but the basic idea can be understood by the following simple argument.
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Setting wi = 1 by choice of numeraire, industry level price indices can be written as

P−εki,k = µ−εkk Si,kL
αk
i,k/λii,k. (10)

Without scale economies, gains from trade are assured by the fact that λii,k < 1 implies

Pi,k < µkS
−1/εk
i,k , where the RHS term is the price index under autarky. Scale economies

imply that Li,k could fall with trade, and so now from Equation (10) we see that Pi,k
could be higher with trade relative to autarky. But note that in equilibrium we must

have Li,k > λii,kβi,kL̄i, since the RHS is just the total labor cost associated with domestic

sales. Combining this with Equation (10) yields P−εki,k > µ−εkk Si,k
(
βi,kL̄i

)αk λαk−1
ii,k . Thus, if

0 ≤ αk ≤ 1 then Pi,k < µkS
−1/εk
i,k

(
βi,kL̄i

)−αk/εk , which is the price under autarky when

there are scale economies. As we can also see, if αk > 1 then one could have higher

prices in some industries with trade than without, leading to the possibility of losses

from trade. This argument establishes the following Proposition.

Proposition 5. If 0 ≤ αk ≤ 1 then all countries gain from trade.

Proof. See Appendix D.1.

This result can be seen as a generalization of Proposition 1 in Venables (1987), which

states that in a Krugman (1980) model with an “outside good” all countries gain from

trade. Formally, the model in Venables (1987) is isomorphic to ours when we consider

two countries and two industries, one having no trade costs, no scale economies, and

an infinite trade elasticity (the “outside good”), and the other having trade costs, scale

economies, and a finite trade elasticity, with αk = 1. Proposition 5 shows that this gen-

eralizes to a case without an “outside good”, with multiple sectors and arbitrary scale

economies as long as αk ≤ 1 for all k.

To further explore the implications of scale economies for the magnitude of the gains

from trade, we assume that the equilibrium is interior so that all trade shares and labor

allocations are strictly positive. This allows us to derive an expression for the gains from

trade as a function of industry-level data and the trade and scale elasticities that extend

the multi-sector expressions in Arkolakis et al. (2012) (henceforth ACR). 23

Real wages in the model with scale economies can be written as

wn/Pn = µn
∏
k

(
Sn,kL

εkψk
n,k λ−1

nn,k

)βn,k/εk
,

23Given Proposition 1, the assumption that labor allocations are strictly positive is not restrictive for the
case with 0 ≤ αk < 1 for all k.
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where µn ≡
∏

k µ
−1
n,k. Using the hat notation x̂ = x′/x, given some foreign shock (i.e., a

shock that does not affect the exogenous variables in country n), the change in welfare

in country n is

ŵn/P̂n =
∏
k

λ̂
−βn,k/εk
nn,k ·

∏
k

L̂
βn,kψk
n,k . (11)

The first term on the RHS of this expression is the standard multi-industry formula for

gains from trade (with upper-tier Cobb-Douglas preferences), while the second term is

an adjustment for scale economies.

Following ACR, we define the gains from trade as the negative of the value of the

percentage change in real income as we move from the observed equilibrium to autarky,

GTn ≡ −
(

1− wAn /P
A
n

wn/Pn

)
.

We computeGTn by applying (11) and noting that for the move back to autarky we have

λ̂nn,k = 1/λnn,k, and L̂n,k = βn,k/rn,k, where rn,k ≡ Ln,k/L̄n denotes the industry revenue

(or employment) shares in the observed equilibrium. Using en,k ≡ Xn,k/Xn for observed

industry expenditure shares, this leads to a formula for the gains from trade that de-

pends only on the country’s observables λnn,k, en,k and rn,k as well as the trade and scale

elasticities, εk and ψk,

GTn = 1−∆n

∏
k

λ
en,k/εk
nn,k , (12)

where

∆n ≡
∏
k

(en,k/rn,k)
en,kψk .

The expression for the gains from trade in the standard perfectly competitive model

with no scale economies obtains from (12) by setting ψk = 0 for all k, thereby implying

∆n = 1. The implication of scale economies for the gains from trade then depends on

whether ∆n ≷ 1.

Consider first the case in which the scale elasticity is the same across industries (ψk =

ψ for all k) and note that

∆1/ψ
n = expDKL(en ‖ rn),

where rn ≡ (rn1, ..., rnK), en ≡ (en1, ..., enK), and

DKL(en ‖ rn) ≡
∑
k

en,k ln(en,k/rn,k) (13)
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is the Kullback-Leibler divergence of rn from en. We can think of DKL(en ‖ rn) as a

measure of industry specialization in country n — in autarky we would have rn = en

and DKL(en ‖ rn) = 0, while if rn 6= en then DKL(en ‖ rn) > 0. This implies that ∆n > 1

(except if rn = en, in which case ∆n = 1) so that, given trade shares, scale economies

actually reduce the gains from trade, with a larger decline for higher values of ψ and for

countries that exhibit higher levels of specialization.24

To gain some intuition about this result, note that we can think about the move to

autarky as taking place in two steps: first, shutting down trade with unchanged indus-

try productivities (i.e., ignoring the changes in Lψi,k), and second, the change in indus-

try productivities caused by labor reallocation in the presence of scale economies. The

first step decreases welfare proportionally by
∏

k λ
en,k/εk
nn,k < 1 (implying gains from trade),

while the second step increases welfare proportionally by ∆n > 1 (implying losses from

trade).25 The positive and negative productivity changes caused by labor reallocation

necessarily have a positive net welfare effect because labor is moving towards industries

in which the labor allocation is small relative to the expenditure share (i.e., rn,k < βn,k),

and with Cobb-Douglas preferences the utility gain from an additional unit of labor al-

located to industry (n, k) is proportional to βn,k/rn,k.26

24The opposite result would hold if instead of economies of scale we had diseconomies of scale. For
example, in a setting with ψ = 0 and worker-level heterogeneity, Galle et al. (2015) show that GTn =

1 −
∏
k λ

en,k/εk
nn,k (en,k/rn,k)

−en,k/κ, where κ is a parameter that determines the degree of heterogeneity.
The argument above now implies that the gains from trade are higher than in the case with no scale
economies, which obtains here in the limit as κ → ∞, and corresponds to the case in which workers are
homogeneous.

25To see this more formally, note that setting wn as numeraire then d lnWn = −
∑
k en,kd lnPn,k. Totally

log-differentiating λnn,k = (L−ψk

n,k )−εkP εkn,k and substituting into the previous equation, we get

d lnWn = −
∑
k

en,k
d lnλnn,k

εk
+
∑
k

en,kψkd lnLn,k.

The first term captures the welfare effect of a foreign shock taking home productivity as given, while
the second term captures the welfare effect of that shock through home productivity changes caused by
changing industry employment levels in the presence of scale effects. Integrating the first term as we
move to autarky yields

∏
k λ

en,k/εk
nn,k , the ACR term in Equation (12), while integrating the second term

yields ∆n.
26At the risk of belaboring this point, note that if there is some industry k for which rn,k < βn,k then

there must be some industry k′ for which rn,k′ > βn,k′ . If we take one unit of labor from industry k′

and move it to industry k, the welfare gain from the productivity increase in industry k is proportional to
βn,k/rn,k while the welfare loss from the productivity decrease in industry k′ is proportional to βn,k′/rn,k′ .
The net effect on welfare is obviously positive. One can see this formally using the displayed equation in
footnote 25. If ψk = ψ for all k, then the sign of the second term is the same as the sign of

∑
k
βn,k

rn,k
dLn,k.

Take any two sectors with βn,k < rn,k and βn,k′ > rn,k′ (they must exist as long as it is not the case that
βn,k = rn,k for all k), then setting dLn,k = −dLn,k′ > 0 and dLn,k = 0 for all other k necessarily makes∑
k
βn,k

rn,k
dLn,k positive.
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In the more general case in which ψk varies across k, ∆n can be rewritten as

∆n = exp ψ̄

[
DKL(en ‖ rn)−

∑
k

ψk − ψ̄
ψ̄

ln

(
rn,k
en,k

)en,k]
, (14)

where ψ̄ ≡ (1/K)
∑

k ψk. Notice that there are now two (possibly competing) forces: the

first measures the degree of specialization (DS) in country n as represented by DKL(en ‖
rn), while the second measures the pattern of specialization (PS), i.e., the tendency

of country n to specialize in industries with either higher or lower than average scale

economies as represented by
∑

k
ψk−ψ̄
ψ̄

ln (rn,k/en,k)
en,k . Since DS always pushes towards

lower gains relative to the case with no scale economies, the overall effect of scale eco-

nomies on gains from trade depends on the direction and extent of PS. Countries that

tend to specialize in industries with lower than average scale economies — so that PS is

negative — gain less from trade with scale economies than without. However, in coun-

tries that tend to specialize in industries with higher than average scale economies — so

that PS is positive — the effect of scale economies on the gains from trade is ambiguous.

If for a country’s PS is strong enough to overcome its DS, then such a country could have

higher gains with than without scale economies (we explore a decomposition of these

effects in the quantitative section below).

4.2. Welfare Effects from Trade Liberalization: Two Cases

In this section we consider two simple cases for which we can derive analytical results

for the welfare gains from a decline in trade costs. The goal is to understand how the

presence of scale economies affects the gains from trade liberalization.

4.2.1. Mirror-Image Countries

Our first example entails two industries and two mirror-image countries. Of course, for

mirror-image countries we know that wages will be the same, so we can just normalize

wages to one (w = 1) in both countries. For ease of exposition we index countries i =

H,F , where H and F represent Home and Foreign, respectively. Let L̄ = 2, βi,k = 1/2 for

all (i, k), and let SH,1 = SF,2 = S and SH,2 = SF,1 = 1, for S > 1. Hence, Home has the

comparative advantage in industry 1, and Foreign in industry 2. We assume that εk = ε

and ψk = ψ for k = 1, 2.

To establish a link with the results in the previous subsection, we first illustrate that
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the gains from trade are decreasing in ψ. We then show that the conclusion is reversed

once we consider a trade liberalization exercise in which trade shares respond endoge-

nously as we lower trade costs. There we find that the gains from trade liberalization are

increasing in ψ.

Home’s gains from trade are simply

GTH = 1−
(

1/2

rH,1
· 1/2

1− rH,1

)ψ/2 (
λ

1
2ε
HH,1 · λ

1
2ε
HH,2

)
. (15)

The term
(

1/2
rH,1
· 1/2

1−rH,1

)ψ/2
corresponds to ∆H in Equation (12) and is higher than one as

long as there is industry-level specialization.27 Thus, given trade shares, gains are lower

with scale effects (ψ > 0) than without (ψ = 0). It is also easy to see that these gains are

decreasing in ψ.
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Figure 1: Industry specialization and economies of scale

Next we study the gains from trade liberalization, allowing for endogenous responses

of trade shares to trade costs.28 We set ε = 5 and ψ = {0, 0.1, 0.2}. The case ψ = 0.2 im-

27The term 1/2
rH,1
· 1/2
1−rH,1

is minimized at rH,1 = 1/2, and specialization according to comparative advan-

tage implies rH,1 > 1/2, hence we must have
(

1/2
rH,1
· 1/2
1−rH,1

)ψ/2
> 1.

28In the terminology of ACR, this corresponds to an “ex-ante analysis” whereas the results for the gains
from trade above correspond to an “ex-post analysis.”
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(b) Scale economies and gravity

Figure 2: Gains from trade liberalization

pliesα = 1, as in the standard multi-industry Krugman or Melitz-Pareto models whereas

the case ψ = 0 corresponds to the standard multi-industry gravity model without scale

economies. Setting ψ = 0.1 allows for an intermediate case with 0 < α < 1. Note that

in all these cases Li,k = 1 for all (i, k) under autarky (i.e., when τ = ∞). As τ falls from

∞, country H specializes in industry 1 and country F specializes in industry 2, but the

extent of specialization will be stronger with ψ = 0.2 than ψ = 0.1, and with ψ = 0.1 than

ψ = 0, as illustrated in Figure 1. Figure 2 shows the implications for the gains from trade

liberalization for each of these three cases. We see that the gains from trade liberaliza-

tion increase with ψ. The intuition is simple: countries gain by specializing according

to comparative advantage, and the concentration of production also allows for a greater

exploitation of scale economies, which, in turn, generates additional efficiency gains.29

4.2.2. Outside Good

The fact that, in the region of uniqueness, countries always gain from trade (relative

to autarky) does not necessarily imply that there are always gains from further trade

29The gains from trade liberalization in Home can be seen as the increase in GTH in (15) as τ falls. The
decline in τ leads to deeper industry-level specialization, as captured by a higher rH,1, and thus increases(

1/2
rH,1
· 1/2
1−rH,1

)ψ/2
and lowers GTH . But there is also a change in trade shares, and this decreases λ

1
2ε

HH,1 ·

λ
1
2ε

HH,2, which more than offsets the previous effect.
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liberalization. In fact, our model nests the model considered by Venables (1987) and so

we know that a decline in inward trade costs may decrease welfare. To see this more

explicitly, consider a case with two countries and two industries, with ε1 = ∞ > ε2,

ψ1 = 0 < ψ2 ≤ 1/ε2 (so thatα2 ≤ 1), and with no trade costs in industry 1, τ12,1 = τ21,1 = 1.

If we start with an interior equilibrium (i.e., Li,k > 0 for i = 1, 2 and k = 1, 2) then wages

are pinned down by (exogenous) productivities in industry 1 (the outside good), and

— suppressing the industry sub-index — the labor allocation in industry 2 is given by

(L1, L2) that solves

wiLi =
∑
n

SiL
α
i (wiτni)

−ε P ε
nβnwnL̄n, (16)

for i = 1, 2, with P−εn =
∑

j SjL
α
j (wjτnj)

−ε. The case considered by Venables (1987) en-

tails α = 1, in which case the previous system can be rewritten as a system in (P1, P2),

wi =
∑
n

Si (wiτni)
−ε P ε

nβnwnL̄n. (17)

It is then easy to see that a decline in τ12 leads to an increase in P1 and a decrease in P2,

exactly as in Venables (1987). Of course, if α = 0 then P−εn =
∑

j S
α
j (wjτnj)

−ε and so P1

would decrease while there would be no change in P2.

We can understand these results by noting that wn/Pn = S
1/ε
n Lψnλ

−1/ε
nn . If ψ = 0 then

a decline in inward trade costs decreases the domestic trade share λnn and increases

the real wage. But with ψ > 0 there is an offsetting productivity effect arising from the

decline in Ln. If α = 1 then the net effect is negative.

More generally, we can use Equation (16) to show that ∂Pn/∂τni < 0, as with α = 1,

if and only if α ∈ (ᾱτn, 1], where ᾱτn ∈ (0, 1) is a function of import and export shares in

industry 2 — see Appendix D.2. A similar result holds for the effect of a foreign produc-

tivity increase in industry 2: this lowers welfare (i.e., ∂Pn/∂Si > 0 for n 6= i) if and only if

α ∈ (ᾱSn , 1], where ᾱSn is different from ᾱτn because of additional effects associated with a

productivity increase. We summarize these arguments in the following Proposition.

Proposition 6. AssumeN = K = 2, ε1 =∞ > ε2, ψ1 = 0 < ψ2 ≤ 1/ε2 and τ12,1 = τ21,1 = 1,

and assume that the initial equilibrium is interior (i.e., Li,k > 0 for i = 1, 2 and k = 1, 2).

There exists a threshold ᾱτn ∈ (0, 1) such that country n loses from a small unilateral trade

liberalization in industry 2 if and only if α ∈ (ᾱτn, 1]. Similarly, there exists a threshold

ᾱSn ∈ (0, 1) such that country n loses from a small foreign productivity improvement in

industry 2 if and only if α ∈ (ᾱSn , 1].
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Proof. See Appendix D.2.

These results generalize the propositions of immiserizing inward trade liberalization

and foreign productivity improvements in (16) in two ways. First, the result holds as long

as scale economies are strong enough, with the threshold for α depending on import

and export shares in the industry with scale economies. Second, and more broadly, the

result is shown to be a manifestation of the more general idea that a shock that pushes

a country to specialize in an industry with weak economies of scale (here the outside

good) may lower the gains from trade.

4.3. Gains from Trade: Numbers Using Data

In this subsection we continue our exploration of the gains from trade using actual data.

Using (12) as our reference point, we follow CR and compute measures of λnn,k, en,k,

and rn,k using data on 31 sectors from the WIOD in 2008.30 We start by assuming a

common trade elasticity of 5 for all industries (i.e., εk = 5 for all k) and consider two

cases for the scale elasticity.31 For the first case we assume a common scale elasticity

across all industries and consider three subcases: (i) no scale economies, ψk = 0 for all

k; (ii) intermediate scale economies, ψk = 0.1 for all k; and (iii) strong scale economies,

ψk = 0.2 for all k. Note that these three subcases correspond to assuming αk = 0 for all

k, αk = 0.5 for all k, and αk = 1 for all k, respectively. For the second case we assume

no scale economies for all non-manufacturing industries and strong scale economies

for all manufacturing industries, i.e., ψk = 0 for all k /∈ M and ψk = 0.2 for all k ∈ M,

where M is the set of manufacturing industries. This case is used below to understand

how specialization in industries with weak or strong scale economies affects the gains

from trade.

Columns 1, 2 and 3 in Table 2 report the gains from trade for the first case with scale

elasticities as in subcases (i), (ii) and (iii), respectively, while column 5 reports the de-

gree of industry specialization as represented by the termDKL(en ‖ rn). Consistent with

Proposition 5, gains from trade decrease as we allow for stronger scale economies, and

this decline is stronger for countries that have a higher degree of industry specializa-

tion. This is illustrated in Figure 3, which plots the gains from trade net of the standard

30Equation (12) ignores trade deficits. As discussed in CR, this implies that our results in this subsection
capture the change in real income rather than the change in real expenditure caused by shutting down
trade and to closing any trade deficit that exists in the data.

31We choose a value of 5 for the trade elasticity as this is a typical value used in the literature — see
Head and Mayer (2014).
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Figure 3: Degree of specialization and gains from trade

ACR gains (i.e., the gains that would arise in the absence of scale economies) for each

subcase.

Turning to the second case, note that here we have

GTn = 1−

(∏
k

(λnn,k)
en,k exp

[∑
k∈M

en,k ln (en,k/rn,k)

])0.2

.

The term
∑

k∈M en,k ln (en,k/rn,k) is no longer the Kullback-Leibler divergence because we

are only adding across k ∈M, so both
∑

k∈M en,k and
∑

k∈M rn,k can be lower than 1. This

implies that this term can be negative (capturing specialization in manufacturing) and

exert a positive effect on the gains from trade. Column 4 in Table 2 reports the gains from

trade associated with this case, while column 6 reports the term
∑

k∈M en,k ln (en,k/rn,k).

As expected, countries that specialize in manufacturing industries have higher gains

from trade than in the case without scale economies. Figure 4 illustrates this by plotting

the pattern of specialization (PS) — measuring in this case the tendency to specialize in

manufacturing — against the the degree of specialization (DS) for selected countries as

defined in (14). For each point we also report the name of the country, the standard ACR

gains and the gains with αk = 1 in all manufacturing industries, respectively.
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Figure 4: Pattern of specialization and gains from trade

Next, we allow for heterogeneous trade elasticities across industries. Trade elastic-

ities for agriculture and manufacturing industries are from Caliendo and Parro (2015),

while for service industries we assume a trade elasticity of 5.32 For each industry we

maintain the assumption that the scale elasticity is inversely proportional to the trade

elasticity and, consistent with our first exercise, separately consider three cases: (i) ψk =

0 for all k, (ii) ψk = 0.5/εk for all k, and (iii) ψk = 1/εk for all k.

The gains corresponding to these three cases are reported in columns 1, 2 and 3 of

Table 3. While cross-country average gains from trade are not very different across the

three cases, we do see that for some countries the gains can be substantially larger with

economies of scale, while for others these gains are much smaller. For example, relative

to the case with no scale economies, Japan’s gains almost double in the intermediate

case, and almost triple in the case with the highest scale elasticity (to be precise, gains

are 2.4%, 4.3% and 6.1%, respectively), whereas for Greece the reverse is true (gains are

14.5%, 10.1% and 5.5%, respectively). Still for other countries these gains do not change

much. For example, in Austria’s case gains are 29.1%, 29.3% and 29.4%.

To better understand these results, Table 3 reports the DS, PS and overall effect on

32Since there is little trade in services the value of that elasticity has negligible effects.
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gains (i.e., the term inside the square parenthesis on the RHS of Equation (14)) in columns

4, 5 and 6, respectively. On closer examination we now see that Japan’s tendency to spe-

cialize in industries with higher than average scale economies (PS is positive) is domi-

nant enough to overpower DS, thereby implying larger gains from trade relative to the

standard framework without scale economies. In contrast, for Greece the tendency to

specialize in industries with lower than average scale economies (PS is negative) rein-

forces DS, implying lower gains from trade. Interestingly, while the results also reveal

China’s tendency to specialize in industries with higher than average scale economies

(PS is higher than zero), the extent of this pattern of specialization is not sufficient to im-

ply larger overall gains from trade. Finally, notice that these results generalize insights

from the previous case in which scale economies are assumed only in manufacturing

industries.

4.4. Gains from Trade Liberalization and Foreign Productivity Gains

We now use the exact hat algebra approach popularized by Dekle, Eaton and Kortum

(2008) to explore the implications of a decline in inward trade costs or productivity gains

abroad. This technique works as long as we start from an equilibrium that does not have

corners, which is the case in our data as there are no (i, k) pairs withLi,k = 0. As we show

in Appendix D.3, the system to compute the hat changes in labor allocations and wages

is

L̂i,k ≥ 0, G′i,k

(
ŵ, L̂k

)
≥ 0, L̂i,kG

′
i,k

(
ŵ, L̂k

)
= 0, for all (i, k),∑

k

L̂i,kYi,k = Yi, for all i,

where Yi ≡ wiL̄i and Yi,k ≡ wiLi,k, and

G′i,k

(
ŵ, L̂k

)
≡ ŵi −

1

L̂i,kYi,k

∑
n

Ŝi,kL̂
αk
i,k (ŵiτ̂ni,k)

−εk λni,k∑
l Ŝl,kL̂

αk
l,k (ŵlτ̂nl,k)

−εk λnl,k
βn,k(ŵnYn +Dn),

whereDn are trade imbalances in the data.33 Note that this still allows the counterfactual

equilibrium to exhibit corner allocations. Therefore, we need to calculate changes in

welfare explicitly by using the formula ŵn/P̂n, where changes in price indices are given

33Note that for each exercise, we first modify the WIOD data such that overall trade is balanced country-
by-country. More specifically, we compute counterfactual changes associated with setting D̂i = 0 for all
i, and use the resulting dataset without trade imbalances to conduct the counterfactual analyses.
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by

P̂n =
∏
k

(∑
l

Ŝl,kL̂
αk
l,k (ŵlτ̂nl,k)

−εk λnl,k

)−βn,k/εk
.

We use the algorithm outlined in Section 3.3 to compute ŵ and L̂ given some ex-

ogenous shock to trade costs or technology levels. A detailed description of the algo-

rithm is in Appendix D.4. Theoretical results from Section 4.2.2 suggest that there might

be losses from unilateral trade liberalization or foreign productivity improvements. To

explore these theoretical results quantitatively, we again divide all sectors into manu-

facturing (M) and non-manufacturing. We assume that non-manufacturing sectors do

not exhibit economies of scale (αk = 0 for these sectors), while for the manufactur-

ing sectors we consider three possible scenarios: “low” α (αM = 0), “intermediate” α

(αM = 1/2), and “high” α (αM = 1).

In the first three columns of Table 4 we present results of the exercise where a coun-

try unilaterally lowers trade costs with all other countries by 10% in manufacturing in-

dustries. Each row in these columns presents welfare implications of this exercise for

a particular country. For example, the row corresponding to the United States presents

welfare changes for that country given with τ̂ni,k = 0.9 for n = US and all k ∈ M and

with all other parameters unchanged. In the last three columns of Table 4 we present

the welfare implications of productivity increase of 1% in all manufacturing sectors in

China, Ŝik = 1.01εk for i = China and all k ∈M.34

The results in Table 4 reveal that the gains from unilateral trade liberalization in the

sectors with scale economies get smaller as we consider a higher scale elasticity. For

example, the gains for the United States decline from 0.37% when αM = 0 to 0.2% for

αM = 1. Still, in contrast to the results of Section 4.2.2, even for αM = 1 the gains

are positive for all countries. One key difference between the theoretical exercise in

Section 4.2.2 and the quantitative exercise in Table 4 is that in the theoretical exercise

we have an outside good that pins down wages, whereas in the quantitative exercise

wages fully adjust in response to the shock. In Table 5 we considered the same change in

trade costs as in the first three columns of Table 4 but holding wages fixed. As we see in

the last column of Table 5, now Japan and Korea experience losses from unilateral trade

34Note that, except for terms of trade effects and holding wages fixed, the hat change in the price index
of country i in sector k given some Ŝik is Ŝ1/εk

i,k . That is why, to think of an x% productivity increase in

China’s sector k, we set Ŝi,k = (1 + x)εk .
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liberalization in manufacturing if αM = 1. To get even closer to the theoretical exercise

in Section 4.2.2, we aggregated all sectors into manufacturing and non-manufacturing

and all countries into the liberalizing country and the rest of the world. Columns 4-6

of Table 5 report the results associated with a shock τ̂ni,M = 0.9, whereas columns 1-3

report those associated with a smaller shock τ̂ni,M = 0.99. Column 6 shows that now

most countries lose from unilateral trade liberalization when αM = 1, while in column

3 we see that all countries lose. The reason that some countries still gain in the case of

the larger shock is that the shock pushes them to a corner equilibrium in which they no

longer allocate any labor to manufacturing.

Turning to the gains from foreign productivity improvements in the industries with

scale economies, the last three columns of Table 4 show that some countries lose when

China’s productivity increases in manufacturing. Negative values in column 4 simply re-

flect terms of trade effects, which worsen for countries that compete more directly with

China. Columns 5 and 6 show additional effects arising from the mechanism outlined

in Section 4.2.2. In particular, China’s productivity increase in manufacturing implies a

contraction in manufacturing employment in other countries, which in turn leads to a

decline in productivity given the presence of scale economies in that sector. Thus, we

see more and more countries losing from China’s productivity increase as the strength

of scale economies increases to αM = 1/2 and then to αM = 1.

We explore these findings further in Table 6, where (as in Table 5) we fix wages to

the baseline equilibrium (i.e., ŵi = 1). With no terms of trade changes, now all coun-

tries gain from China’s productivity increase if there are no scale economies (column 7),

and more and more countries lose as scale economies become stronger. To link these

findings with the theoretical results in Section 4.2.2, the first three columns of Table 6

show analogous results but after aggregating to two sectors (manufacturing and non-

manufacturing) and two countries (the country in each row and the rest of the world).

Columns 1 and 2 show that almost all countries gain from a productivity increase in

manufacturing in the rest of the world if αM ≤ 1/2 but all countries lose when αM = 1, a

reflection of the fact that in most cases the actual threshold ᾱS derived in Section 4.2.2

is high and close to 1. A final set of results is presented in columns 4-6, which show

analogous results to those in columns 1-3 but for a doubling of foreign productivity. In-

terestingly, this now leads to gains in all countries. The reason is that the shock is so

large that manufacturing employment falls to zero in all countries, thus truncating the

mechanism in Section 4.2.2 since a sector cannot keep shrinking after it vanishes.



34 KUCHERYAVYY-LYN-RODRı́GUEZ-CLARE

5. Scale Economies and Trade Flows

In this subsection we quantify the role of scale economies in determining industry-level

specialization and trade flows. In particular, we ask how these variables would change

if we shut down scale economies but leave all other exogenous variables unchanged.

We rely on the fact that if L is an equilibrium of the actual economy with scale eco-

nomies then it is also an equilibrium of the economy with no scale economies given

by

wiLi,k =
N∑
n=1

Ti,k (wiτni,k)
−εk∑N

l=1 Tl,k (wlτnl,k)
−εk βn,k(wnL̄n +Dn)

and
K∑
k=1

Li,k = L̄i,

where Ti,k ≡ Si,kL
αk
i,k and where Dn are trade deficits satisfying

∑
nDn = 0. Thus, if we

want to know the counterfactual allocation for the economy with αk = 0 for all k but

everything else equal, we can use the exact hat algebra approach in the economy with

no scale effects subjected to a shock to productivities Ti,k given by T̂i,k = S ′i,k/
(
Si,kL

αk
i,k

)
=

Ŝi,kL
−αk
i,k .35 To focus on the interaction between specialization and scale economies, we

assume that Ŝi,k is such that if country iwas in autarky then the shock would have no ef-

fect on productivity — since in autarky Li,k = βi,kL̄i this requires Ŝi,k = (βi,kL̄i)
αk . Using

Li,k = ri,kL̄i and measuring βi,k by ei,k, this implies that T̂i,k = (ei,k/ri,k)
αk . Combining

the two previous equations and using Yi ≡ wiL̄i, we get a system in wage changes given

by

ŵiYi =
K∑
k=1

N∑
n=1

(ei,k/ri,k)
αk (ŵi)

−εk λni,k∑N
l=1(el,k/rl,k)αk (ŵl)

−εk λnl,k
en,k (ŵnYn +Dn) .

The solution for ŵi can then be used to get the implied hat change in the labor allocation

from

L̂i,k =
1

ŵiYi,k

N∑
n=1

(ei,k/ri,k)
αk (ŵi)

−εk λni,k∑N
l=1(el,k/rl,k)αk (ŵl)

−εk λnl,k
en,k (ŵnYn +Dn) ,

35We can ignore corner solutions because the data has no zeros at the industry level (i.e., ri,k > 0 for all
i, k) and the shock that we consider moves us away from corners.
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where Yi,k ≡ wiLi,k. Finally, we can get the implied change in trade flows from

X̂ni,k =
1

Xni,k

· (ei,k/ri,k)
αk (ŵi)

−εk λni,k∑N
l=1(el,k/rl,k)αk (ŵl)

−εk λnl,k
en,k (ŵnYn +Dn) .

Table 7 presents the results of this exercise for each of the countries in our sam-

ple. Column 1 reports the degree of specialization (DS) in the data as defined in (13).

Columns 2 and 3 report, respectively, the implied percentage change in DS and in total

exports for each country when αk = 1/2 and εk = 5 for all k. Columns 4 and 5 do the

same but for αk = 1.

As expected, the removal of economies of scale implies a decline in the degree of

specialization and total trade. Column 2 shows that the decline in DS is quite strong

even in the case in which the initial economies of scale are given by αk = 1/2 for all k,

with DS falling by more than 50% in almost all cases. Column 4 shows that this decline

is much sharper in the case of αk = 1 for all k, with DS falling by more than 90% in well

over half of all cases. Columns 3 and 5 show that total exports fall but less dramatically:

the decline in total world exports corresponding to these two columns is 5.4% and 10%.

These results imply that if the data is generated by a gravity model with scale eco-

nomies as strong as in the Krugman model (i.e., αk = 1 for all k), then most of the

industry-level specialization that we observe is due to scale economies rather than Ri-

cardian comparative advantage. In other words, without scale economies amplifying Ri-

cardian productivity differences, industry-level specialization would be more than 90%

less than what we see in the data. In contrast, since most of world trade is intra-industry

trade, scale economies as strong as in the Krugman model would be responsible for only

around 10% of total world trade.

6. Concluding Remarks

For over a century since Alfred Marshall’s initial exposition, economists have been in-

trigued with the implications of industry-level external economies of scale for trading

economies. Despite such interest, however, the discomfort with the plethora of equilib-

ria and counter-intuitive implications in early work relegated Marshallian externalities

to the “back-burner” of the recent trade literature. In this paper we show how one can

add Marshallian externalities to the Eaton and Kortum (2002) framework while retain-

ing the property that the equilibrium is unique. The resulting model has exactly the
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same mathematical structure as generalized versions of the multi-industry Krugman

and Melitz-Pareto models and so our uniqueness result applies to these well-known

models as well. The key condition for uniqueness is simple and intuitive: the scale elas-

ticity must be weakly lower than the inverse of the trade elasticity for all industries.

Remarkably, if parameters are in the region of uniqueness then all countries gain

from trade. Economies of scale tend to make gains from trade lower relative to models

without scale economies, although the opposite may happen for countries that hap-

pen to specialize in industries with stronger than average scale economies. In turn, the

welfare effects of unilateral trade liberalization are more subtle than in gravity models

without scale economies: beyond standard terms of trade effects, the reallocation of

labor caused by changes in trade costs lead to endogenous productivity changes with

additional welfare implications.

Finally, our exploration of the role of economies of scale in explaining trade flows and

industry-level specialization in the data yields very definitive results: if scale economies

are as strong as those in the Krugman model then most of the industry-level special-

ization that we see in the data is due to economies of scale rather than pure Ricardian

comparative advantage.

Many questions remain open for future research. How can we extend our unique-

ness results for endogenous wages beyond the cases of N = 2, or frictionless trade?

How can we robustly estimate the strength of industry-level scale economies? Is the

condition necessary for uniqueness likely to be satisfied? Are scale economies stronger

in some industries than others? If so, which ones? How does the presence of industry-

level scale economies affect country-level and world-level optimal trade policies?
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Table 2: Gains from Trade, Common Elasticities

Gains from Trade
Degree of

specialization

ψk = 0

common
ψk = 0.1

common
ψk = 0.2

common
ψk = 0.2

manuf.
All

industries
Manuf.

only

Country 1 2 3 4 5 6

AUS 3.0% 2.7% 2.3% 2.1% 0.036 0.048
AUT 8.7% 8.6% 8.5% 9.0% 0.015 -0.012
BEL 13.8% 13.2% 12.5% 14.0% 0.072 -0.012
BRA 1.6% 1.6% 1.5% 1.5% 0.004 0.004
CAN 5.2% 5.0% 4.7% 4.5% 0.024 0.037
CHN 3.0% 2.8% 2.7% 3.5% 0.016 -0.025
CZE 8.0% 7.8% 7.7% 8.4% 0.014 -0.022
DEU 6.0% 5.7% 5.4% 6.9% 0.033 -0.046
DNK 9.5% 8.6% 7.8% 9.3% 0.090 0.009
ESP 4.1% 3.8% 3.6% 3.8% 0.023 0.011
FIN 5.5% 5.1% 4.8% 6.3% 0.036 -0.042
FRA 4.0% 3.8% 3.7% 4.2% 0.020 -0.006
GBR 4.6% 4.5% 4.5% 4.2% 0.008 0.022
GRC 5.7% 4.6% 3.6% 3.5% 0.110 0.114
HUN 12.3% 12.0% 11.8% 11.9% 0.027 0.018
IDN 3.5% 3.4% 3.3% 3.2% 0.013 0.018
IND 3.1% 3.0% 2.9% 2.8% 0.013 0.014
IRL 10.1% 9.5% 8.8% 10.6% 0.069 -0.027
ITA 3.7% 3.4% 3.2% 3.9% 0.026 -0.015
JPN 2.4% 2.0% 1.6% 2.9% 0.041 -0.023
KOR 6.6% 5.3% 4.1% 7.3% 0.133 -0.037
MEX 4.5% 4.3% 4.1% 3.8% 0.018 0.038
NLD 9.4% 9.3% 9.1% 9.8% 0.020 -0.018
POL 6.0% 5.9% 5.8% 5.9% 0.009 0.006
PRT 6.3% 6.0% 5.7% 5.7% 0.032 0.032
ROM 6.2% 6.0% 5.8% 5.1% 0.020 0.059
RUS 3.2% 2.5% 1.7% 0.8% 0.076 0.123
SVK 11.5% 11.2% 10.9% 11.7% 0.038 -0.011
SVN 13.3% 12.3% 11.3% 13.4% 0.112 -0.008
SWE 6.7% 6.5% 6.4% 7.2% 0.019 -0.026
TUR 4.0% 3.9% 3.7% 4.1% 0.018 -0.004
TWN 9.6% 8.6% 7.5% 10.2% 0.112 -0.036
USA 2.1% 2.0% 1.9% 1.7% 0.007 0.020
RoW 6.9% 6.4% 6.0% 5.8% 0.050 0.061

Average 6.3% 5.9% 5.6% 6.1% 0.040 0.008
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Table 3: Gains from Trade, Caliendo-Parro elasticities

Gains from Trade
Degree and Pattern

of Specialization

ψk = 0 ψk = 0.5
εk

ψk = 1
εk

DS PS Overall

Country 1 2 3 4 5 6

AUS 7.6% 5.5% 3.5% 0.036 -0.111 0.147
AUT 29.1% 29.3% 29.4% 0.015 0.027 -0.012
BEL 29.8% 29.6% 29.3% 0.072 0.051 0.021
BRA 3.4% 3.6% 3.9% 0.004 0.019 -0.015
CAN 16.7% 15.7% 14.7% 0.024 -0.056 0.081
CHN 4.1% 4.0% 4.0% 0.016 0.013 0.003
CZE 16.6% 18.4% 20.2% 0.014 0.166 -0.151
DEU 12.9% 15.1% 17.2% 0.033 0.204 -0.171
DNK 24.6% 22.4% 20.1% 0.090 -0.104 0.194
ESP 9.4% 9.7% 10.0% 0.023 0.047 -0.025
FIN 10.3% 9.9% 9.5% 0.036 0.007 0.029
FRA 9.8% 10.5% 11.3% 0.020 0.076 -0.056
GBR 11.7% 11.4% 11.1% 0.008 -0.018 0.025
GRC 14.5% 10.1% 5.5% 0.110 -0.230 0.340
HUN 31.1% 31.9% 32.7% 0.027 0.103 -0.076
IDN 6.3% 5.3% 4.3% 0.013 -0.058 0.070
IND 4.6% 4.5% 4.4% 0.013 0.006 0.008
IRL 18.3% 15.4% 12.5% 0.069 -0.163 0.232
ITA 8.3% 8.4% 8.5% 0.026 0.036 -0.010
JPN 2.4% 4.3% 6.1% 0.041 0.173 -0.133
KOR 6.2% 8.7% 11.2% 0.133 0.318 -0.185
MEX 11.5% 12.0% 12.5% 0.018 0.057 -0.039
NLD 22.7% 22.0% 21.2% 0.020 -0.044 0.064
POL 18.0% 18.6% 19.3% 0.009 0.064 -0.055
PRT 19.0% 18.1% 17.1% 0.032 -0.050 0.081
ROM 13.8% 12.4% 11.0% 0.020 -0.089 0.110
RUS 15.9% 9.0% 1.6% 0.076 -0.457 0.534
SVK 30.3% 31.7% 33.1% 0.038 0.176 -0.138
SVN 33.1% 33.2% 33.3% 0.112 0.120 -0.008
SWE 13.7% 14.5% 15.4% 0.019 0.084 -0.065
TUR 11.3% 11.9% 12.5% 0.018 0.064 -0.047
TWN 10.2% 9.8% 9.5% 0.112 0.084 0.028
USA 4.5% 4.4% 4.3% 0.007 0.000 0.007
RoW 14.8% 11.1% 7.2% 0.050 -0.241 0.290

Average 14.6% 14.2% 13.7% 0.040 0.008 0.032
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Table 4: Inward Trade Liberalization and Foreign Productivity Improvement

τ̂ni,k = 0.9 ∀k ∈M ŜCHN,k = 1.01εk ∀k ∈M

αM = 0 αM = 0.5 αM = 1 αM = 0 αM = 0.5 αM = 1

Country (1) (2) (3) (4)* (5)* (6)*

AUS 0.65% 0.51% 0.23% 0.98% 0.38% -0.67%
AUT 1.60% 1.50% 0.98% 0.21% -0.13% -0.24%
BEL 1.89% 1.81% 1.44% 0.16% -0.09% -0.45%
BRA 0.35% 0.26% 0.15% 0.32% 0.11% -0.12%
CAN 1.18% 1.05% 0.68% 0.51% 0.16% -0.22%
CHN 0.63% 0.53% 0.38% 48.77% 51.06% 53.40%
CZE 1.85% 1.75% 1.50% 0.31% 0.21% 0.39%
DEU 1.27% 1.18% 0.81% 0.09% -0.10% -0.24%
DNK 1.31% 1.20% 0.82% 0.34% -0.04% -0.48%
ESP 0.68% 0.59% 0.45% -0.01% -0.19% -0.35%
FIN 0.98% 0.88% 0.74% -0.09% -0.27% -0.22%
FRA 0.81% 0.74% 0.64% 0.07% -0.08% -0.18%
GBR 0.84% 0.74% 0.57% 0.23% 0.03% -0.13%
GRC 0.86% 0.64% 0.17% 0.49% 0.17% -0.22%
HUN 2.47% 2.34% 1.89% 0.33% 0.16% -0.03%
IDN 0.77% 0.63% 0.46% 0.51% 0.10% -0.12%
IND 0.60% 0.49% 0.29% 0.32% 0.13% 0.21%
IRL 1.18% 1.04% 0.71% -0.14% -0.41% -0.54%
ITA 0.68% 0.60% 0.52% -0.05% -0.17% -0.18%
JPN 0.30% 0.25% 0.20% -0.03% -0.17% -0.13%
KOR 0.79% 0.67% 0.52% -0.03% -0.54% -0.87%
MEX 1.11% 0.98% 0.73% 0.35% 0.26% 0.24%
NLD 1.32% 1.22% 0.80% 0.19% -0.17% -0.75%
POL 1.31% 1.21% 0.87% 0.31% 0.17% 0.07%
PRT 1.13% 1.02% 0.59% 0.33% -0.03% -0.40%
ROM 1.24% 1.11% 0.81% 0.05% -0.14% -0.19%
RUS 0.88% 0.64% 0.21% 0.71% 0.34% -0.20%
SVK 2.32% 2.22% 1.72% 0.11% -0.04% -0.15%
SVN 2.10% 2.01% 1.38% 0.05% -0.10% -0.28%
SWE 1.22% 1.09% 0.79% -0.04% -0.42% -0.72%
TUR 0.71% 0.65% 0.26% 0.00% -0.04% -0.06%
TWN 1.68% 1.52% 0.74% -0.27% -0.46% -0.84%
USA 0.37% 0.30% 0.20% 0.23% 0.04% -0.11%
RoW 1.12% 0.93% 0.50% 0.93% 0.21% -0.95%

* The numbers mentioned in the column have been multiplied by 100.
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Table 5: Unilateral Trade Liberalization with Fixed Wages

τ̂ni,k = 0.99 ∀k ∈M τ̂ni,k = 0.9 ∀k ∈M

2× 2 N × S

αM = 0 αM = 0.5 αM = 1 αM = 0 αM = 0.5 αM = 1 αM = 0 αM = 0.5 αM = 1

Country (1) (2) (3) (4) (5) (6) (7) (8) (9)

AUS 0.07% 0.05% -0.00% 0.90% 0.68% -0.00% 0.91% 0.73% 0.23%
AUT 0.17% 0.15% -0.00% 1.91% 1.77% 0.30% 1.95% 1.82% 1.14%
BEL 0.19% 0.18% -0.01% 2.07% 2.03% 1.42% 2.11% 2.05% 1.75%
BRA 0.05% 0.03% -0.00% 0.60% 0.36% -0.00% 0.60% 0.38% 0.03%
CAN 0.13% 0.10% -0.00% 1.51% 1.29% -0.03% 1.53% 1.36% 0.70%
CHN 0.08% 0.05% -0.01% 1.00% 0.65% -0.09% 1.10% 0.85% 1.06%
CZE 0.20% 0.17% -0.00% 2.34% 2.10% -0.02% 2.38% 2.17% 1.11%
DEU 0.14% 0.11% -0.01% 1.62% 1.43% -0.17% 1.76% 1.61% 1.59%
DNK 0.13% 0.12% -0.00% 1.52% 1.44% 0.60% 1.55% 1.46% 0.90%
ESP 0.10% 0.07% -0.00% 1.17% 0.88% -0.01% 1.02% 0.82% 0.15%
FIN 0.11% 0.09% -0.00% 1.33% 1.10% -0.01% 1.36% 1.17% 0.23%
FRA 0.10% 0.08% -0.00% 1.19% 0.99% -0.04% 1.15% 0.99% 0.69%
GBR 0.09% 0.08% -0.00% 1.10% 0.97% -0.03% 1.07% 0.97% 0.67%
GRC 0.13% 0.09% -0.00% 1.54% 1.19% -0.00% 1.19% 0.96% 0.35%
HUN 0.26% 0.24% -0.00% 2.93% 2.78% 1.27% 2.88% 2.72% 2.06%
IDN 0.09% 0.06% -0.00% 1.14% 0.79% -0.00% 1.13% 0.88% 0.52%
IND 0.08% 0.05% -0.00% 1.03% 0.68% -0.01% 0.93% 0.70% 0.45%
IRL 0.12% 0.11% -0.00% 1.42% 1.31% -0.01% 1.50% 1.39% 0.80%
ITA 0.09% 0.06% -0.00% 1.11% 0.82% -0.03% 1.07% 0.84% 0.20%
JPN 0.04% 0.03% -0.00% 0.55% 0.34% -0.02% 0.56% 0.37% -0.01%
KOR 0.11% 0.07% -0.00% 1.34% 0.96% -0.02% 1.35% 0.99% -0.06%
MEX 0.13% 0.10% -0.00% 1.62% 1.27% -0.02% 1.54% 1.29% 0.35%
NLD 0.13% 0.12% -0.00% 1.45% 1.39% 0.63% 1.55% 1.48% 1.16%
POL 0.15% 0.12% -0.00% 1.78% 1.51% -0.02% 1.70% 1.51% 0.78%
PRT 0.14% 0.12% -0.00% 1.70% 1.44% -0.01% 1.50% 1.31% 0.44%
ROM 0.16% 0.12% -0.00% 1.94% 1.56% -0.00% 1.65% 1.43% 0.97%
RUS 0.10% 0.06% -0.00% 1.18% 0.81% -0.00% 1.24% 0.96% 0.74%
SVK 0.24% 0.23% -0.00% 2.74% 2.62% 1.23% 2.73% 2.61% 1.72%
SVN 0.23% 0.21% -0.00% 2.60% 2.47% 1.10% 2.50% 2.36% 1.37%
SWE 0.13% 0.11% -0.00% 1.51% 1.34% -0.02% 1.58% 1.42% 0.93%
TUR 0.09% 0.06% -0.00% 1.18% 0.84% -0.01% 1.00% 0.82% 0.37%
TWN 0.18% 0.15% -0.00% 2.14% 1.89% -0.04% 2.23% 1.93% 1.00%
USA 0.06% 0.04% -0.00% 0.71% 0.49% -0.04% 0.61% 0.49% 0.37%
RoW 0.14% 0.11% -0.02% 1.70% 1.44% -0.21% 1.56% 1.38% 1.06%
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Table 6: Foreign Productivity Improvement with Fixed Wages

ŜRoW,k = 1.01εk ∀k ∈M ŜRoW,k = 2εk ∀k ∈M ŜCHN,k = 1.01εk ∀k ∈M

2× 2 N × S

αM = 0 αM = 0.5 αM = 1 αM = 0 αM = 0.5 αM = 1 αM = 0 αM = 0.5 αM = 1

Country (1)* (2)* (3)* (4) (5) (6) (7)* (8)* (9)*

AUS 7.39% 3.17% -6.83% 10.19% 13.58% 14.01% 1.53% 1.01% -0.65%
AUT 16.51% 9.45% -46.15% 17.26% 19.81% 20.12% 0.74% -0.26% 1.00%
BEL 18.58% 14.62% -78.26% 16.44% 17.60% 17.69% 0.95% 0.23% -2.94%
BRA 4.58% 0.55% -5.15% 11.02% 19.31% 23.14% 0.80% 0.30% 0.25%
CAN 12.72% 6.32% -20.65% 14.79% 17.95% 18.32% 1.60% 1.03% -3.12%
CHN 7.67% -0.52% -15.33% 18.22% 30.68% 37.67% 40.22% 46.41% 70.71%
CZE 19.85% 9.63% -50.07% 22.79% 26.73% 27.68% 2.31% 1.73% 7.61%
DEU 13.54% 5.17% -38.71% 16.91% 20.74% 21.72% 1.45% 0.54% -3.84%
DNK 13.34% 8.80% -41.70% 12.78% 14.26% 14.37% 0.90% 0.20% 1.59%
ESP 9.50% 3.33% -11.38% 13.97% 18.75% 19.87% 0.79% 0.31% 0.31%
FIN 10.88% 2.49% -27.40% 14.88% 19.22% 20.21% 1.20% 0.34% -0.19%
FRA 9.89% 3.72% -18.05% 12.71% 15.91% 16.69% 0.76% 0.21% 0.62%
GBR 9.39% 5.01% -16.00% 10.34% 12.33% 12.52% 0.94% 0.53% 0.34%
GRC 12.93% 7.88% -4.70% 15.79% 19.70% 20.08% 0.67% 0.14% 0.72%
HUN 25.61% 17.27% -76.65% 25.57% 28.40% 28.75% 2.29% 1.52% 17.02%
IDN 9.04% 2.14% -10.91% 15.95% 23.73% 25.69% 2.05% 1.03% -0.31%
IND 8.07% 2.08% -8.00% 15.43% 23.44% 26.39% 1.68% 1.11% 2.75%
IRL 12.09% 5.54% -43.21% 13.28% 15.77% 15.99% 1.26% 0.47% 1.88%
ITA 8.87% 1.82% -14.95% 14.21% 19.47% 21.35% 0.68% -0.09% 0.11%
JPN 4.19% -0.59% -8.07% 10.29% 17.30% 21.92% 1.38% 0.17% -3.24%
KOR 10.55% 0.64% -20.34% 19.44% 28.79% 32.22% 3.18% 0.49% -11.44%
MEX 13.29% 5.19% -16.82% 18.39% 23.76% 25.06% 1.81% 1.34% -1.67%
NLD 12.79% 8.51% -49.62% 12.14% 13.51% 13.61% 1.17% 0.79% -0.52%
POL 14.92% 6.42% -27.14% 18.35% 22.44% 23.33% 1.50% 1.03% 0.61%
PRT 14.34% 7.26% -20.47% 16.76% 20.21% 20.75% 0.35% -0.39% 1.18%
ROM 16.18% 8.00% -16.30% 20.55% 25.67% 26.54% 0.69% -0.05% 2.14%
RUS 9.53% 4.72% -4.01% 14.98% 21.39% 22.27% 1.58% 1.02% 0.01%
SVK 24.01% 16.22% -80.60% 23.66% 26.13% 26.50% 1.71% 0.61% -4.25%
SVN 22.73% 15.15% -70.63% 22.45% 24.82% 25.23% 1.16% 0.19% 12.59%
SWE 12.73% 5.39% -33.25% 14.83% 17.97% 18.38% 0.65% -0.32% 1.06%
TUR 9.38% 2.14% -12.75% 15.76% 21.02% 24.34% 1.02% 0.35% 2.21%
TWN 17.95% 6.95% -48.39% 22.09% 26.58% 27.93% 3.61% 0.79% -21.83%
USA 5.66% 2.13% -4.81% 9.59% 13.96% 15.07% 1.11% 0.60% -0.04%
RoW 14.24% 8.00% -18.33% 17.23% 21.38% 21.76% 2.65% 1.78% -8.04%

* The numbers mentioned in the column have been multiplied by 100.
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Table 7: Scale and Trade Flows

α = 0.5 α = 1

DSi D̂Si ÊX i D̂Si ÊX i

Country (1) (2) (3) (4) (5)

AUS 0.04 -60.19% -9.90% -92.61% -17.53%
AUT 0.02 -63.01% -0.91% -86.23% -1.51%
BEL 0.07 -63.66% -0.99% -97.99% -0.67%
BRA 0.00 -27.80% -4.17% -48.75% -8.13%
CAN 0.02 -63.92% -2.13% -94.05% -3.07%
CHN 0.01 -55.47% -6.79% -81.58% -12.21%
CZE 0.01 -66.51% -2.40% -91.71% -4.39%
DEU 0.03 -62.50% -3.92% -92.66% -7.41%
DNK 0.08 -73.00% -7.69% -97.20% -10.82%
ESP 0.02 -66.99% -2.17% -95.08% -4.11%
FIN 0.03 -59.29% -5.59% -86.76% -10.02%
FRA 0.02 -65.68% -2.63% -94.47% -5.46%
GBR 0.01 -53.52% -2.12% -82.08% -4.06%
GRC 0.11 -89.61% -27.28% -97.24% -30.13%
HUN 0.03 -61.28% -2.54% -84.95% -4.35%
IDN 0.01 -39.29% -3.17% -73.36% -7.18%
IND 0.01 -58.27% -3.25% -80.51% -4.72%
IRL 0.07 -64.63% -4.47% -95.27% -7.16%
ITA 0.03 -66.70% -3.72% -95.10% -7.10%
JPN 0.04 -63.76% -7.88% -92.14% -16.54%
KOR 0.13 -64.65% -7.20% -94.48% -17.23%
MEX 0.02 -48.30% -3.58% -76.78% -6.52%
NLD 0.02 -66.32% -3.18% -93.19% -5.99%
POL 0.01 -65.43% -2.12% -90.23% -3.73%
PRT 0.03 -68.84% -1.74% -94.10% -2.82%
ROM 0.01 -56.74% -1.76% -79.96% -2.48%
RUS 0.07 -51.63% -15.69% -80.82% -28.89%
SVK 0.04 -68.73% -2.64% -95.21% -4.87%
SVN 0.11 -59.57% -1.35% -97.65% -0.76%
SWE 0.02 -59.98% -3.02% -88.66% -5.78%
TUR 0.02 -58.50% -6.79% -85.35% -11.92%
TWN 0.11 -65.18% -8.95% -94.49% -17.84%
USA 0.01 -54.16% -4.39% -81.94% -7.80%
RoW 0.05 -54.59% -7.37% -85.09% -14.04%
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A. Definitions

It is clear that both functions Gi,k (w,Lk) and Li,kGi,k (w,Lk) which appear in the non-

linear complementarity problem (3) are well-defined for all positive wages and positive

labor allocations, i.e., for all w ∈ RN
++ and Lk ∈ RN

++. We are interested in extending

the definitions of Gi,k (w,Lk) and Li,kGi,k (w,Lk) to the set of all non-negative labor al-

locations excluding the point with Li,k = 0 for all i, i.e., to the set RN
+ \ {0}. To this

end, we allow for function Gi,k (w,Lk) to take infinite values. Formally, we consider the

function Gi,k : RN
++ × RN

+ \ {0} → R ∪ {−∞,+∞},36 and for each given vector of wages

w ∈ RN
++ and vector of labor allocations Lk ∈ RN

+ \ {0} we formally define Gi,k (w,Lk)

and Li,kGi,k (w,Lk) by the limits

Gi,k (w,Lk) ≡ lim
xt→Lk

[
wi −

1

xti

∑
n

λni,k(w,x
t)βn,kwnL̄n

]

and

Li,kGi,k (w,Lk) ≡ lim
xt→Lk

xti

[
wi −

1

xti

∑
n

λni,k(w,x
t)βn,kwnL̄n

]
,

where {xt}∞t=1 is any sequence converging to Lk such that xt ∈ RN
++ for t = 1, 2, . . . .

Let us verify that functionsGi,k (w,Lk) andLi,kGi,k (w,Lk) are well-defined. Since for

all Lk ∈ RN
++ functionsGi,k (w,Lk) and Li,kGi,k (w,Lk) are well-defined and continuous,

the above limits coincide with the values of these functions in the corresponding points.

Next, consider any sequence {xt}∞t=1 with xt ∈ RN
++ for t = 1, 2, . . . and converging to

Lk. We have

lim
xt→Lk

1

xti

∑
n

λni,k(w,x
t) = lim

xt→Lk

[
xti
]αk−1

∑
n

Si,k (wiτni,k)
−εk∑

l Sl,k [xtl ]
αk (wlτnl,k)

−εk βn,kwnL̄n.

Then, since, Lk 6= 0,

lim
xt→Lk

∑
l

Sl,k
[
xtl
]αk (wlτnl,k)

−εk =
∑
l

Sl,kL
αk
l,k (wlτnl,k)

−εk > 0 for all n.

36Here the set R ∪ {−∞,+∞} is the extended real number system with symbols−∞ and +∞ following
the standard conventions (see, for example, p. 11-12 in Rudin, 1976). In particular, for any x ∈ R, −∞ <
x < +∞.
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Hence, limxt→Lk

1

xti

∑
n λni,k(w,x

t) =∞ if Li,k = 0 and 0 ≤ αk < 1, and

limxt→Lk

1

xti

∑
n λni,k(w,x

t) is a positive number if Li,k > 0 or if αk ≥ 1. This, in turn,

implies that

Gi,k (w,Lk) = lim
xt→Lk

[
wi −

1

xti

∑
n

λni,k(w,x
t)βn,kwnL̄n

]

=

−∞, if Li,k = 0 and 0 ≤ αk < 1,

finite number, if Li,k > 0 or αk ≥ 1.

So, the limit always exists and is either −∞ or a finite number. Hence, function Gi,k is

well-defined with its codomain given by the extended real line R ∪ {−∞,+∞}.

Similarly, it is easy to verify that limxt→Lk x
t
i

[
wi −

1

xti

∑
n λni,k(w,x

t)βn,kwnL̄n

]
always

exists. Moreover, this limit is always a finite number. Hence, function Li,kGi,k is also

well-defined.

B. Linking Melitz and Marshall

We consider a generalized Melitz-Pareto framework, in which the elasticity of substi-

tution between varieties from different countries, ηk, is different from the elasticity of

substitution between varieties from the same country, σk.

Let us ignore the industry subscript for a moment. Let Ωni denote the set of varieties

that i sells to n. The price index of these goods is Pni ≡
(∫

ω∈Ωni
pni(ω)1−σdω

) 1
1−σ

. Let Mi

denote total entry in country i and ϕ∗ni denote the cutoff productivity such that i exports

to n all goods with productivity higher than ϕ∗ni. We have

P 1−σ
ni = Mi

∫ ∞
ϕ∗ni

[pni(ϕ)]1−σ dGi(ψ)

= θbθiMi

[
σ

σ − 1
wiτni

]1−σ ∫ ∞
ϕ∗ni

ϕσ−θ−2dϕ

= Mi

[
σ

σ − 1
wiτni

]1−σ
bθi (ϕ∗ni)

σ−θ−1

θ − (σ − 1)
.
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The condition that determines the cutoff ϕ∗ni is

1

σ

(
σ

σ − 1
· wiτni
ϕ∗ni

)1−σ
P σ−1
ni

(
Pni
Pn

)1−η
Xn = wnfn.

This implies that

ϕ∗ni =
wiτni
Pni

(
σ

σ̃
· wnfn
Xn

) 1
σ−1
(
Pni
Pn

) 1−η
1−σ

,

where σ̃ ≡
(

σ
σ−1

)1−σ
. Plugging this expression into the expression for the price index

yields

Pni = wiτni

(
wiτni
Pni

(
Xn

wnfn

) 1
1−σ
(
Pni
Pn

) 1−η
1−σ
) θ

σ−1
−1

M
1

1−σ
i κ̄oi,k,

where

κ̄oi,k ≡
σ

σ − 1

bθi
[σ
σ̃

]1− θ
σ−1

θ − (σ − 1)


1

1−σ

.

Bringing back the k subindex and using the well known result that in this model equi-

librium entry in each industry must satisfy Mi,k = σk−1
σkθk

Li,k
Fi,k

, we then have

Pni,k = wiτni,k

(
wiτni,k
Pni,k

(
Xn,k

wnfn

) 1
1−σk

(
Pni,k
Pn,k

) 1−ηk
1−σk

) θk
σk−1

−1

L
1

1−σk
i,k κoi,k.

where κoi,k ≡
(
σk−1
σkθk

F−1
i,k

) 1
1−σk κ̄oi,k. Using Xn,k = βn,kwnL̄n we get

Pni,k = wiτni,k

(
wiτni,k
Pni,k

(
Pni,k
Pn,k

) 1−ηk
1−σk

) θk
σk−1

−1

L
1

1−σk
i,k κdn,kκ

o
i,k,

where

κdn,k ≡
[
βn,kL̄n
fn,k

] 1
1−σk

(
θk

σk−1
−1

)
.

Solving for Pni,k we get

P 1−ηk
ni,k =

[
(wiτni,k)

−θk P
1−ηk
1−σk

(θk−σk+1)

n,k Li,k(κ
d
n,kκ

o
i,k)

1−σk
]ξk

.
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where ξk is as defined in the text. Using P 1−ηk
n,k =

∑
i P

1−ηk
ni,k and λni,k =

(
Pni,k
Pn,k

)1−ηk
wet get

the expression for trade shares in the text. Finally, the expression for the price index in

the text is obtained by combining P 1−ηk
n,k =

∑
i P

1−ηk
ni,k with the result above for Pni,k, with

µ̄Mel
k ≡

(
σk−1
σk

)σk
θk

 1
θk

(
σk
σ̃k

)1− θk
σk−1

θk−(σk−1)

 1
θk

.

C. Existence and Uniqueness

C.1. Proof of Proposition 1

Proof of Lemma 1. Here we prove that function F (·) defined in (7) is strictly convex on

Γ. The uniqueness of solution of the minimization problem minx∈Γ F (x) then follows

from the fact that Γ is a convex set, and a strictly convex function can have at most one

global minimum on a convex set.

If 0 < α < 1, then for any n function
∑

i anix
α
i is a strictly concave function. And

since the logarithm is a strictly concave function, F (·) is strictly convex.

If α = 1, then we need to make sure that for any two vectors x 6= y we cannot

have that
∑

i anixi =
∑

i aniyi for all n. Otherwise, we would have F (γx + (1− γ)y) =

γF (x) + (1 − γ)F (y) for any γ ∈ [0, 1] and strict convexity would be violated. Assump-

tion 1 guarantees that matrix A = (ani) is non-singular. Hence, for any x 6= y we have∑
i anixi 6=

∑
i aniyi for at least one n. Hence, in case of α = 1, F (·) is also strictly convex

under Assumption 1.

Proof of Lemma 2. Suppose, without loss of generality, that x∗1 = 0. Since
∑

n x
∗
n =∑

n bn > 0, we can also suppose without loss of generality that x∗2 6= 0. Consider the

vector x(ε) = (ε, x∗2 − ε, x∗3, . . . , x∗N), where ε ∈ [0, x∗2]. Clearly, x(ε) ∈ Γ. Define

F̃ (ε) ≡ F (x (ε)) = α
∑
n

x∗n −
∑
n

bn ln

(
an1ε

α + an2(x∗2 − ε)α +
N∑
i=2

ani (x
∗
i )
α

)
.

We now show that F̃ (ε) < F̃ (0) for small enough ε > 0. We have

∂ (aj1ε
α + aj2(x∗2 − ε)α)

∂ε
= αaj1ε

α−1 − αaj2(x∗2 − ε)α−1,
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which, given α ∈ (0, 1), is positive for small enough ε. This implies that aj1εα + aj2(x∗2 −
ε)α +

∑N
i=2 aji [x

∗
i ]
α > aj2 [x∗2]α +

∑N
i=2 ai [x

∗
i ]
α for small enough ε. Since ln(·) is a strictly

increasing function, we then get that F̃ (ε) < F̃ (0) for small enough ε, a contradiction.

This implies that x∗ cannot be a global minimum of F (·) on Γ. Hence, in the case of

α ∈ (0, 1) we must have x∗i > 0 for all i.

Proof of Lemma 3. Let us start with the simpler case of α = 1. We can take the set

D ≡
{
x ∈ RN |

∑
i anixi > 0 for all n

}
as the domain of F (·) and use Γ as the constraint

set. Clearly, Γ ⊂ D ∩
{
x ∈ RN |

∑
i xi =

∑
i bi
}

and F (·) is differentiable on D for α = 1.

Consider the minimization problem

min
x∈D

F (x)

s.t.

xi ≥ 0, i = 1, . . . , N ;∑
i

xi =
∑
i

bi.

(18)

Its first-order conditions, after some manipulations, can be written as

xi ≥ 0,
∂F (x)

∂xi
≥ 0, xi

∂F (x)

∂xi
= 0, i = 1, . . . , N,∑

i

xi =
∑
i

bi.

These conditions are also sufficient, because F (·) is strictly convex and the set that sat-

isfies the constraints of the minimization problem is a convex set. Then, since Gi (x) =
∂F (x)

∂xi
, we get that any solution of the minimization problem (18) is also a solution of

the NCP in (6) and vice versa.

Let us now turn to the case with 0 < α < 1. Let x∗ be a minimum of F (·) on Γ.

By Lemma 2, x∗i > 0 for all i. Let δ > 0 be some number such that δ ≤ x∗i for all i =

1, . . . , N . Define the domain of F by D̃ ≡
{
x ∈ RN |xi > δ/2, i = 1, . . . , N

}
. Consider the

minimization problem:
min
x∈D̃

F (x)

s.t.∑
i

xi =
∑
i

bi.

(19)
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Since D̃ ∩
{
x ∈ RN |

∑
i xi =

∑
i bi
}
⊂ Γ, if x∗ minimizes F on Γ, it also solves the min-

imization problem (19). Since x∗i > δ/2 for all i, the first-order conditions for (19) are

given by
∂F (x∗)

∂xi
= 0, i = 1, . . . , N, and

∑
i

x∗i =
∑
i

bi. (20)

Hence, x∗ solves NCP in (6). Conversely, if x∗ solves NCP, then x∗i > 0 for all i because

the condition Gi (x
∗) ≥ 0 cannot be satisfied for x∗i = 0 if 0 < α < 1. Hence, x∗ satisfies

conditions (20), which are the first order conditions for an interior solution of (19) with

an appropriately chosen δ > 0. Since these first-order conditions are also sufficient,

x∗ solves (19). Now, suppose by contradiction that the minimum of F (·) on Γ is some

x∗∗ 6= x∗. Then, by Lemma 2, x∗∗i > 0 for all i. Therefore we can extend the open set on

which F (·) is differentiable to include both x∗ and x∗∗. Then both x∗ and x∗∗ satisfy the

first-order conditions (20), which gives a contradiction given that F (·) is strictly convex

and the constraint set is convex. Hence, x∗ is the minimum of F (·) on Γ.

Proof of Lemma 4. Let us formally bring argument α into the notation of function F

defined in (7), i.e., consider the function F (x;α). Lemma 1 establishes that under As-

sumption 1 the solution to the optimization problem minx∈Γ F (x;α) defines a function

x : (0, 1]→ RN
+ \ {0}. Clearly, F (x;α) is continuous for all x ∈ RN

+ \ {0} and α ∈ (0, 1]. Γ

is a compact set which is the same for all α ∈ (0, 1]. Thus, all conditions for Theorem of

the Maximum (Theorem 3.6) from Stokey, Lucas and Prescott (1989) are statisfied, and

x(α) is continuous for all α ∈ (0, 1].

C.2. Proof of Proposition 2

Proof of Lemma 5. The case with αk = 0 is trivial because labor allocations are ex-

plicitly obtained from the goods market clearing conditions Li,kGi,k (w,Lk) = 0, and the

resulting expression for Li,k(w) are obviously continuous. Below we focus on the case

with αk ∈ (0, 1].

Define a multi-valued correspondence Γk : RN
++ → RN

+ \ {0} by

Γk (w) =

{
Lk ∈ RN |Li,k ≥ 0,

∑
i

wiLi,k =
∑
i

βi,kwiL̄i

}
.
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Define function Fk :
(
RN

+ \ {0}
)
× RN

++ → R by

Fk(Lk;w) = αk
∑
n

wnLn,k −
∑
n

βn,kwnL̄n ln

(∑
i

Si,kL
αk
i,k (wiτni,k)

−εk

)
.

First, Lemma 1 establishes that under conditions (a) or (b) the solution of the optimiza-

tion problem minLk∈Γ(w) Fk(Lk;w) determines a function from wages to labor alloca-

tions, Lk(w), for any w ∈ RN
++.

Next, it is straightforward to show that Γk(w) is both lower hemi-continuous and up-

per hemi-continuous for allw ∈ RN
++ (see the corresponding definitions in Stokey, Lucas

and Prescott, 1989). Hence, Γk(w) is continuous for all w ∈ RN
++. Clearly, Γk (w) is also

compact-valued for all w ∈ RN
++. Finally, Fk (Lk;w) is continuous for all Lk ∈ RN

+ \ {0}
and w ∈ RN

++. Thus, all conditions for Theorem 3.6 (Theorem of the Maximum) from

Stokey, Lucas and Prescott (1989) are statisfied, and Lk (w) is a continuous function for

all w ∈ RN
++.

Proof of Proposition 2, property (v). Consider any wages sequence {ws}∞s=1 such that

ws → w as s → ∞, where w 6= 0 is a finite vector of wages such that wi = 0 for some

i. If there exists some industry (i, k) such that Li,k(ws) → ∞, then Zi(w
s) → ∞ and so

Max
i
{Z1(ws), ..., ZN(ws)} → ∞. Now suppose that there is no such industry and that for

any industry (i, k) the limit lim
s→∞

Li,k(w
s) is a finite (non-negative) number.

Consider index j such that wage wsj converges to 0 weakly “faster” than other wages.

Formally, index j is such that for any j′ 6= j the limit lim
s→∞

wsj
/
wsj′ is finite. Such index

always exists because there is a finite number of indices. We have that, for any s,Lj,k(ws)

satisfies the nonlinear complementary slackness condition (3). In particular, Lj,k(ws)

satisfies the inequality

wsj ≥
∑
n

Sj,kLj,k(w
s)αk−1

[
wsjτnj,k

]−εk∑
l

Sl,kLl,k(w
s)αk [wsl τnl,k]

−εk
βn,kwnL̄n.

This inequality can be equivalently rewritten as

wsj ≥
N∑
n=1

Sj,kτ
−εk
nj,kLj,k(w

s)αk−1

Sj,kLj,k(ws)αkτ−εknj,k +
∑
l 6=j

Sl,kLl,k(w
s)αkτ−εknl,k

[
wsj
/
wsl
]εkwsnL̄n. (21)
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Clearly, the denominator of any term in the above summation (21) converges to a finite

number (which can be either positive or zero). The numerator of any term in the sum-

mation (21) converges to either a finite positive number or to infinity. Also, there exists

at least one index n such that lim
s→∞

wsn > 0. Then, for this index n the corresponding term

in the summation (21) converges to either a finite positive number or to ∞. This, in

turn, implies that the whole sum in (21) converges to either a finite positive number

or to∞. At the same time, the left-hand side of inequality (21) converges to 0. A con-

tradiction. Hence, there is at least one industry (i, k) such that Li,k(ws) → ∞, and so

max {Z1(ws), ..., ZN(ws)} → ∞.

C.3. Proof of Proposition 3

This proof proceeds by showing that Z(w) satisfies the gross substitutes property (GSP).

Uniqueness of wages then follows from Proposition 17.F.3 from MWG.

Consider any particular industry k. Let us separately analyze the two possibilities

0 ≤ αk < 1 and αk = 1.

If 0 ≤ αk < 1, then for any i we have that Li,k(w) > 0 for any wage vector w ∈ RN
++,

and Li,k(w) solves:

wiLi,k(w) =
∑
n

λni,k(w,Lk(w))βn,kwnL̄n.

By differentiating both sides of this expression w.r.t. wages, we can get a linear system of

equations which determines the effect of wages on labor allocations. Let us introduce

additional notation to write in matrix form this effect. Denote xij,k ≡
d lnLi,k(w)

d lnwj
, qi,k ≡

wiLi,k(w), and bi,k ≡ βi,kwiL̄i. Let Bk denote the diagonal matrix with elements bi,k along

the diagonal,Qk the diagonal matrix with elements qi,k along the diagonal, Λk the matrix

of sector level expenditure shares λij,k, andXk the matrix of partials xij,k. Finally, letUk ≡(
(1− αk)Qk + αkΛ

T
kBkΛk

)
and Vk ≡

(
ΛT
kBk + εkΛ

T
kBkΛk − (1 + εk)Qk

)
. In this notation

the effect of wages on labor allocations is obtained from the system:

UkXk = Vk.

It straightforward to check that matrix Uk is a positive definite matrix with all posi-

tive elements, and matrix Vk has negative diagonal and positive off-diagonal elements.

Since Uk is positive definite, the inverse exists and its determinant is positive. Moreover,
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U−1
k = 1

det(Uk)
CT
k , where CT

k is the transpose of the matrix of cofactors Ck of Uk. Since all

the elements of Uk are positive, then for N = 2, Ck is a 2× 2 matrix consisting of positive

diagonal elements and negative off-diagonal elements.37 Therefore, U−1
k has this prop-

erty as well. One can then readily verify that U−1
k Vk is a matrix with the same properties

as Vk — it has negative diagonal and positive off diagonal elements. Thus the Jacobian

matrix of wages effects on labor allocations in industry k with 0 ≤ αk < 1 satisfies the

GSP.

If αk = 1, then Li,k(w) can be equal to 0 for some i, and we cannot establish differen-

tiability of labor allocations in that region. We are going to check directly what happens

to labor allocations as wages change. To that end, assume without loss of generality that

w′ and w′′ are such that w′′1 > w′1 and w′′2 = w′2 = 1. Let us show that L2,k(w
′′) ≥ L2,k(w

′)

for all k and there is some industry k̃ such that L2,k̃(w
′′) > L2,k̃(w

′).

In general, given wage w′ there are three cases: (a) L1,k(w
′) = 0 and L2,k(w

′) =

β1,kw
′
1L̄1+β2,kL̄2; (b)Li,k(w′) > 0 for i = 1, 2; (c)L2,k(w

′) = 0 andL1,k(w
′) =

1

w′1

(
β1,kw

′
1L̄1 + β2,kL̄2

)
.

Let us consider these different cases.

Case (a). In this case we have G1,k(w
′) ≥ 0 and G1,k(w

′) simplifies to:

G1,k(w
′) = w1 −

S1,k [w′1]−εk

S2,kL2,k(w′)τ
−εk
12,k

β1,kw
′
1L̄1 −

S1,k (w′1τ21,k)
−εk

S2,kL2,k(w′)
β2,kL̄2.

After substitutingL2,k(w
′) = β1,kw

′
1L̄1 +β2,kL̄2 into the above expression forG1,k(w

′), and

dividing both sides of this expression by w′1, we get:

G1,k(w
′)

w′1
= 1− S1,k

S2,kτ
−εk
12,k

· [w′1]−εk β1,kL̄1

β1,kw′1L̄1 + β2,kL̄2

−
S1,kτ

−εk
21,k

S2,k

· [w′1]−1−εk β2,kL̄2

β1,kw′1L̄1 + β2,kL̄2

.

Clearly, the right-hand side of this expression is increasing in w′1. Hence, G1,k(w
′′)/w′′1 >

G1,k(w
′)/w′1 ≥ 0, which in turn implies that G1,k(w

′′) > 0. Therefore, L1,k(w
′′) = 0 and

L2,k(w
′′) = β1,kw

′′
1L̄1 + β2,kL̄2 solve the complementary slackness problem (3). In other

words, we still remain in case (a) after we increase the wage of the country 1 from w′1

to w′′1 . Clearly, in this case L2,k(·) is a strictly increasing function of the wage of the first

country, L2,k(w
′′) > L2,k(w

′).

Case (b). We know that, as long as we are in case (b), L1,k(·) is a decreasing function

and L2,k(·) is an increasing function of w1. Therefore, starting in case (b) with w′ and

gradually increasing w1 from w′1 to w′′1 , we either remain in case (b) or switch to case (a)

37This is no longer true with N > 2.
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at some point. The above argument for case (a) implies that, once we switch to case (a),

we will remain in case (a) as we keep increasingw1. Thus, for w′′ we can either be in case

(a) or in case (b), but not in case (c), and since in both cases (a) and (b) L2,k(·) is a strictly

increasing function of w1, we must have L2,k(w
′′) > L2,k(w

′).

Case (c). In this case, we can be in any of the cases (a)-(c) for w′′. If we are in cases

(a) or (b) for w′′, then L2,k(w
′′) > L2,k(w

′) = 0. If we are in case (c) for w′′, then L2,k(w
′′) =

L2,k(w
′) = 0, but there must exist some industry k̃, for which we are in case (a) or (b) for

w′ (regardless of the value of αk̃ in this industry). Applying the arguments above, for any

such industry we have L2,k̃(w
′′) > L2,k̃(w

′).

Since the effect of changes in wages on Z(w) consists of the sum (across industries)

of effects on industry-level labor allocations, we conclude that Z(w) satisfies the GSP.�

C.4. Proof of Proposition 4

In this proof we will use matrices Bk, Qk, Λk, Uk, and Vk defined in the proof of Proposi-

tion 3 in Appendix C.3. In addition to that, let Lk be a diagonal matrix with elements Li,k
along the diagonal;W be a diagonal matrix with elementswi along the diagonal;DZ(w)

be the Jacobian matrix of the excess demand system, Z(w), with elements ∂Zi(w)/∂wj ;

and DLk (w) be the Jacobian matrix of industry-level labor allocations with elements

∂Li,k (w) /∂wj .

We have

DZ(w) =
∑
k

DLk (w) =
∑
k

LkU
−1
k VkW

−1.

Matrix Vk has the following properties: (i) entries in each row add up to 0; (ii) diagonal

entries are negative; (iii) off-diagonal entries are positive. For all industries k with αk = 0

matrix Uk reduces to diagonal matrix Qk with positive diagonal elements. Therefore, we

can immediately conclude that for all such industries DLk (w) has properties (i)-(iii) as

well. The rest of this appendix section is devoted to proving that for all industries k with

0 < αk < 1 matrix DLk (w) also has properties (i)-(iii) under free trade. Since sum-

mation of matrices with properties (i)-(iii) again gives a matrix with these properties,

the whole Jacobian of the excess demand system, DZ(w), has properties (i)-(iii) under

free trade. This means that the excess demand system Z(w) has the gross substitutes

property. Hence, there is at most one normalized vector of wages such that Z(w) = 0.
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Consider any industry k with 0 < αk < 1. For brevity of notation we drop the indus-

try index k in the rest of this proof. According to Proposition 1 all industry-level labor

allocations are interior, and so, Li > 0, λii > 0, qi > 0 for all i. We start with three lemmas

which apply to the general case of costly trade.

Lemma 6. Let µ1, . . . , µN be eigenvalues of matrixQ−1ΛTBΛ. Then µi is real and 0 ≤ µi ≤
1 for each i.

Proof. Consider matrixQ−1/2ΛTBΛQ−1/2, and let µ be any eigenvalue of this matrix with

the corresponding eigenvector v. By definition of an eigenvalue, Q−1/2ΛTBΛQ−1/2υ =

µυ. This is equivalent to Q−1ΛTBΛ
(
Q−1/2υ

)
= µ

(
Q−1/2υ

)
. Hence, µ is an eigenvalue

of Q−1ΛTBΛ with the corresponding eigenvector Q−1/2υ. Therefore, matrices Q−1ΛTBΛ

and Q−1/2ΛTBΛQ−1/2 have the same eigenvalues, and so µ1, . . . , µN are eigenvalues of

Q−1/2ΛTBΛQ−1/2.

Clearly, matrix Q−1/2ΛTBΛQ−1/2 is positive semi-definite. Hence, all its eigenvalues

are real and nonnegative, i.e., µi is real and µi ≥ 0 for each i. Next, matrix Q−1ΛTBΛ is

a positive stochastic matrix (its entries in each row add up to 1). Therefore, the Perron-

Frobenius theorem implies that 1 is its eigenvalue with algebraic multiplicity one and

|µi| < 1 for any |µi| 6= 1. Since µi ≥ 0 for all i, we have the statement of the lemma.

Lemma 7. limt→∞ αt
(
IN −Q−1ΛTBΛ

)t
= 0.

Proof. Eigenvalues of matrix IN − Q−1ΛTBΛ are 1 − µ1, . . . , 1 − µN , where µ1, . . . , µN

are eigenvalues of Q−1ΛTBΛ. Lemma 6 implies that 0 ≤ 1 − µi ≤ 1 for all i. Then,

since eigenvalues of matrix α
(
IN −Q−1ΛTBΛ

)
are α (1− µ1) , . . . , α (1− µ1), we have

that ρ
(
α
[
IN −Q−1ΛTBΛ

])
< 1, where ρ (·) is the spectral radius of a matrix. There-

fore, αt
(
IN −Q−1ΛTBΛ

)t → 0 as t → ∞ (see, for example, Theorem 5.6.12 in Horn and

Johnson, 2013).

Lemma 8. U−1V = εα−1IN −
∑∞

t=0 α
t
(
IN −Q−1ΛTBΛ

)t [
(1 + εα−1) IN −Q−1ΛTB

]
.

Proof. Consider U−1:

U−1 =
[
(1− α)Q+ αΛTBΛ

]−1
=
[
(1− α) IN + αQ−1ΛTBΛ

]−1
Q−1

=
[
IN − α

(
IN −Q−1ΛTBΛ

)]−1
Q−1.

Lemma 7 implies that we can write[
IN − α

(
IN −Q−1ΛTBΛ

)]−1
=
∞∑
t=0

αt
(
IN −Q−1ΛTBΛ

)t
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(see, for example, Corollary 5.6.15 in Horn and Johnson, 2013). Then

U−1V = −
∞∑
t=0

αt
(
IN −Q−1ΛTBΛ

)t [
(1 + ε) IN −Q−1ΛTB − εQ−1ΛTBΛ

]
= −ε

∞∑
t=0

αt
(
IN −Q−1ΛTBΛ

)t+1 −
∞∑
t=0

αt
(
IN −Q−1ΛTBΛ

)t [
IN −Q−1ΛTB

]
= εα−1IN −

∞∑
t=0

αt
(
IN −Q−1ΛTBΛ

)t [(
1 + εα−1

)
IN −Q−1ΛTB

]
.

Let us now consider the case of frictionless trade. In this case the matrix of trade

shares, Λ, has the same entries in each column:

Λ ≡

λ11 . . . λNN
...

...
λ11 . . . λNN

 .

So, it can be represented (with a slight abuse of notation) as OΛ where O is an N × N

matrix of ones (i.e., O = ι · ιT with ιT ≡ (1, . . . , 1)) and

Λ ≡

λ1 0
. . .

0 λN

 .

Then, in this notation

U = (1− α)Q+ αΛOBOΛ and V = ΛOB + εΛOBOΛ− (1 + ε)Q.

Denote b ≡
∑

n bn and observe that OBO = bO. Also, since Li satisfies the goods market

clearing condition, wiLi =
∑

n λibn = λi
∑

n bn = bλi. Then, since in our notation qii =

wiLi, we have that Q = WL = bΛ. These equalities together with Lemma 8 allow us to

write:

U−1V = εα−1IN −
∞∑
t=0

αt
(
IN −Q−1ΛOBOΛ

)t [(
1 + εα−1

)
IN −Q−1ΛOB

]
= εα−1IN −

∞∑
t=0

αt (IN −OΛ)t
[(

1 + εα−1
)
IN − b−1OB

]
.
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Using the fact that
∑

i λi = 1 and, hence, OΛO = O, we get:

(IN −OΛ)
[(

1 + εα−1
k

)
IN − b−1OB

]
=
(
1 + εα−1

)
IN − b−1OB

−
(
1 + εα−1

)
OΛ + b−1OΛOB

=
(
1 + εα−1

)
(IN −OΛ) ,

and

(IN −OΛ) (IN −OΛ) = IN −OΛ−OΛ +OΛOΛ = IN −OΛ.

Therefore,

U−1V = εα−1IN −
[(

1 + εα−1
)
IN − b−1OB

]
−
(
1 + εα−1

) ∞∑
t=1

αt (IN −OΛ)t

= −
(
IN − b−1OB

)
−
(
1 + εα−1

)
(IN −OΛ)

∞∑
t=1

αt

=
(
b−1OB − IN

)
+
α + ε

1− α
(OΛ− IN) .

Observe that both matrices (b−1OB − IN) and (OΛ− IN) have properties (i)-(iii) listed

at the beginning of this appendix section. Hence, matrix U−1V has properties (i)-(iii)

as well. This, in turn, implies that matrix ΛU−1VW−1 also has properties (i)-(iii). This

concludes our proof.

C.5. Applying Uniqueness Results in Allen, Arkolakis and Li (2015)

With a slight change of notation, the equilibrium system in {wi}, {Lik}, {Pik} can be

written as

wiLik =
∑
n

νnikw
−εk
i Lαkik P

εk
nkβnkwnL̄n (22)

P−εknk =
∑
j

νnjkw
−εk
j Lαkjk L̄i =

∑
k

Lik (23)

L̄i =
∑
k

Lik (24)
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Let κ > 1 be some parameter and let α̃k ≡ εk+καk
κ−1

. Changing variables towik = wi
(
Lik/L̄i

)1/κ

and yi = wi the whole system (22)- (24) now becomes

y1+εk
i (wik/yi)

κ L̄i =
∑
n

νnik
(
(wik/yi)

κ L̄i
)− εk

κ
+α̃k(κ−1

κ
)
P εk
nkβnkynL̄n (25)

P−εknk =
∑
j

νnjky
−εk
j

(
(wjk/yj)

κ L̄j
)− εk

κ
+α̃k(κ−1

κ
)
yκi =

∑
k

wκik (26)

yκi =
∑
k

wκik (27)

This is a system in {yi}, {wik}, {Pik}. It is clear that the system (22)-(24) has a unique

solution if and only if the system (25)-(27) with κ > 1 and α̃k = εk+καk
κ−1

has a unique

solution. So we can do the analysis of uniqueness of our equilibrium system with the

transformed system (25)-(27). Also note that this transformed system corresponds to

the equilibrium system of equations for an economy where labor is heterogeneous as in

a Roy-Frechet model as in Galle et al. (2015), with scale elasticity α̃k.

If we assume that α̃k = α̃ and εk = ε, then we can map the transformed system (25)-

(27) into the system in Equation (1) in Allen et al. (2015) (henceforth AAL) and explore if

their Theorem 1 can be invoked to establish uniqueness. Without risk of confusion, we

now use notation α̃ rather than α. Letting x1
is ≡ wis, x2

is ≡ Pis, and x3
is ≡ yi, the system

can be rewritten as

(
x1
is

)1+ε+(1−α̃)(κ−1) (
x3
is

)−(1−α̃)(κ−1)
=
∑
jk

K1
is,jk

(
x2
jk

)ε
x3
jk,

(
x2
is

)−ε
=
∑
jk

K2
is,jk

(
x1
jk

)−ε+α̃(κ−1) (
x3
jk

)−α̃(κ−1)
,

(
x3
is

)κ
=
∑
jk

K3
is,jk

(
x1
jk

)κ
.

This maps into Equation (1) in AAL with each “location” being an (i, s) pair. Following
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AAL’s notation, we have

Γ =

1 + ε+ (1− α̃) (κ− 1) 0 − (1− α̃) (κ− 1)

0 −ε 0

0 0 κ


and

B =

 0 ε 1

−ε+ α̃ (κ− 1) 0 −α̃ (κ− 1)

κ 0 0

 .

Assuming that α̃ is in between 0 and 1 and that κ > 1 + ε/α̃ then

A ≡
∣∣BΓ−1

∣∣ =


0 1

1

κ
α̃ (κ− 1)− ε

(1− α̃) (κ− 1) + ε+ 1
0 κ−1

κ
(1− α̃)

[
α̃

1−α̃ −
α̃ (κ− 1)− ε

(1− α̃) (κ− 1) + ε+ 1

]
κ

(1− α̃) (κ− 1) + ε+ 1
0

(1− α̃) (κ− 1)

(1− α̃) (κ− 1) + ε+ 1


In simulations we see that the spectral radius ρ(A) is always higher than one, which

implies that we cannot invoke AAL’s Theorem 1 to establish uniqueness.

There are parameter restrictions under which we can show that ρ(A) ≤ 1. In partic-

ular, in simulations we always find that if κ ≤ 1 + ε/α̃ then ρ(A) ≤ 1. Unfortunately,

however, the case κ ≤ 1 + ε/α̃ corresponds to one in which α = − ε
κ

+ α̃(κ−1
κ

) ≤ 0, so this

does not correspond to our system with scale economies. Our interpretation of these

results is that the sufficiency condition for uniqueness in AAL is itself sufficient for the

mapping (C.5)-(C.5).

Finally, it is interesting to explore how the AAL approach can be used to establish

uniqueness for labor allocations given wages. That would correspond to the case in

which we take yi as given and ignore equation (27) in the system (25)- (27). Then the

system can be written as

wκik =
∑
n

µnikw
−εk+α̃k(κ−1)
ik (Pnk)

εk

and

(Pnk)
−εk ≡

∑
j

ηnjkw
−εk+α̃k(κ−1)
jk

for some positive parameters µnik and ηnjk. With εk = ε and α̃k = α̃, this maps into
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Equation (1) in AAL as

(
x1
ik

)1+ε+(1−α̃)(κ−1)
=
∑
ns

K1
ik,ns

(
x2
ns

)ε
and (

x2
ik

)−ε
=
∑
ns

K2
ik,ns

(
x1
ns

)−ε+α̃(κ−1)
.

This entails

Γ =

(
1 + ε+ (1− α̃) (κ− 1) 0

0 −ε

)
and

B =

(
0 ε

−ε+ α̃(κ− 1) 0

)
.

For α̃ ∈ [0, 1] and κ > 1 + ε/α̃ we have

A ≡
∣∣BΓ−1

∣∣ =

(
0 1

−ε+α̃(κ−1)
1+ε+(1−α̃)(κ−1)

0

)
.

We have ρ(A) =
(

−ε+α̃(κ−1)
1+ε+(1−α̃)(κ−1)

)1/2

, which is lower than one if 1+2ε+(1− 2α̃) (κ− 1) > 0.

If α̃ ≤ 1/2 then AAL’s Theorem 1 implies uniqueness for all κ > 1 + ε/α̃. If this latter

condition is not satisfied then for α̃ ∈ [0, 1] and κ < 1 + ε/α̃ we have

A =

(
0 1

ε−α̃(κ−1)
1+ε+(1−α̃)(κ−1)

0

)
.

The spectral radius of this is
(

ε−α̃(κ−1)
1+ε+(1−α̃)(κ−1)

)1/2

. This is lower than one if ε − α̃(κ − 1) <

1 + ε + (1− α̃) (κ− 1) which is always true. We conclude that if 0 ≤ α̃ ≤ 1/2 (and κ > 1)

then there is uniqueness. This translates into the condition thatαk = α < 1/2 for all k for

a unique labor allocation given wages in the original model with homogeneous labor.

This condition is more stringent condition than the one we found in Proposition 1.

D. Gains from Trade
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D.1. Proof of Proposition 5

It is sufficient to show that for any industry k the price index is lower with trade. We

need to consider two cases: (a) αk ∈ [0, 1) and (b) αk = 1. Suppressing subindex k, first

note that for case (a) we have

∑
n

λni(L)βnwnL̄n = wiLi,

where

λni(L) ≡ SiL
α
i (wiτni)

−ε∑
l SlL

α
l (wlτnl)−ε

.

The expression for the price index, Pn = µn (
∑

l SlL
α
l (wlτnl)

−ε)−1/ε, implies

∑
n

SiL
α
i (wiτni)

−εµ−εn P ε
nβnwnL̄n = wiLi,

and
wi
Pi

= µ−1
i

(
SiL

α
i

λii

)1/ε

.

Using labor in country i as numeraire (wi = 1), we can rewrite the above two expressions

as

µSiµ
−ε
i P ε

i βiL̄i +
∑
n6=i

Siτ
−ε
ni µ

−ε
n P ε

nβnwnL̄n = L1−α
i ,

and

P−εi = µ−εi
SiL

α
i

λii
.

These two equations further imply

P
ε/α
i = µ

ε/α
i

(1−∆)λ
(1−α)/α
ii

S
1/α
i βiL̄i

,

where ∆ ≡ Lα−1
i

∑
n6=i Siτ

−ε
ni µ

−ε
n P ε

nβnwnL̄n.

Since with trade we have 0 < ∆ < 1 and λii < 1, while with autarky we have ∆ = 0

and λii = 1, it follows Pi (welfare) is lower (higher) under trade than in autarky.

For case (b), the complementary slackness condition implies that (recall for this case
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a corner equilibrium is a possibility)

∑
n

Si(wiτni)
−εµ−εn P ε

nβnwnL̄n ≤ wi.

Setting wi = 1 by choice of numeraire, this implies

P ε
i ≤ µεi

1−∆′

SiβiLi
,

where ∆′ ≡
∑

n6=i Siτ
−ε
ni µ

−ε
n P ε

nβnwnL̄n. With trade we have 0 < ∆′ < 1, whereas in autarky

we have ∆′ = 0. Moreover, in autarky the above inequality turns into an equality. Hence

Pi is lower with trade than in autarky.

D.2. Derivation of Threshold for Outside Good

Letting xi ≡ wiLi, yi ≡ P ε, ani ≡ Siw
−α−ε
i τ−εni , bn ≡ βnwnL̄n and log-differentiating the

system in (16) around an equilibrium point for some change in ani we get

d lnxi =
1

1− α
∑
n

χni (d ln ani + d ln yn) for i = 1, ..., N,

d ln yi = −
∑
j

λij (d ln aij + αd lnxj) for n = 1, ..., N,

where λni ≡ anix
α
i yn are import shares and χij ≡

aijx
α
j yibi∑

n anjx
α
j ynbn

are export shares (i.e. χij

is the share of total country j exports directed to country i).

Let X be the matrix of export shares with elements χni, Λ be the matrix of import

shares with elements λni, letX and Y be column vectors with elements d lnxi and d ln yi,

let A be the matrix with typical element d ln ani, and let matrix 1 be a column vector

whose entries are all ones. We can rewrite the system in matrix form as

X =
1

1− α
([
X T ◦ AT

]
1 + X TY

)
,

Y = − [Λ ◦ A] 1− αΛX,

where the symbol “◦” denotes the Hadamard product. Substituting the first equation

into the second and rearranging we get

(
γI + ΛX T

)
Y = −

(
γ [Λ ◦ A] 1 + Λ

[
X T ◦ AT

]
1
)
, (28)
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where γ =
1− α
α

.

Since
∑

n λnibn = xi implies χij =
λijbi
xj

, we can write X = BΛL−1 and by extension

ΛX T = ΛL−1ΛTB, whereL is a diagonal matrix with elements xi on the diagonal andB is

a diagonal matrix with elements bi on the diagonal. Observe that matrices ΛL−1ΛTB and(
B

1
2 Λ
)
L−1

(
B

1
2 Λ
)T

have the same eigenvalues, and that matrix
(
B

1
2 Λ
)
L−1

(
B

1
2 Λ
)T

is

positive semidefinite. It then follows that all eigenvalues of ΛL−1ΛTB are real and non-

negative, which, in turn, implies that eigenvalues of γI + ΛX T are real and positive for

any γ > 0, and so det
(
γI + ΛX T

)
> 0 for γ > 0. Since we are interested only in the signs

of entries of Y in expression (28), we can then focus on

− det
(
γI + ΛX T

)
Y = adj

(
γI + ΛX T

) (
γ [Λ ◦ A] 1 + Λ

[
X T ◦ AT

]
1
)
, (29)

where adj (·) is the adjugate of a matrix.

Consider now the case N = 2 and without loss of generality consider a unilateral

trade liberalization for country 1. We are then interested in the sign of ∂ ln y1/∂ ln a12,

and so for this case we have d ln a11 = d ln a22 = d ln a21 = 0 and d ln a12 6= 0. Using the

facts adj
(
γI + ΛX T

)
= γI + adj

(
ΛX T

)
(this is true only in the case of 2 × 2 matrices),

adj
(
ΛX T

)
= adj

(
X T
)
adj (Λ) and adj (Λ) Λ = det (Λ), and applying the result in (29)

together with some manipulation we have

−det (γI + ΛX )

λ12d ln a12

Y = γ2

(
1

0

)
+ γ

 λ21χ21 + λ22χ22 + χ12

−λ21χ11 − λ22χ12 +
λ22

λ12

χ12

 +
χ12

λ12

det (Λ)

(
−χ21

χ11

)
.

Using the expression above together with some algebra one can then show that there

exists γ̄τn > 0 such that for any γ ∈ (0,∞) we have that ∂ ln y1/∂ ln a12 is negative if and

only if γ > γ̄τn, with γ̄τn given by

γ̄τn =

√
Dτ − (λ21χ21 + λ22χ22 + χ12)

2
> 0,

where

Dτ ≡ (λ21χ21 + λ22χ22 + χ12)2 + 4 (χ11χ22 − χ12χ21)λ21



62 KUCHERYAVYY-LYN-RODRı́GUEZ-CLARE

is always positive.38 Since γ > γ̄τn ⇔ α < ᾱτn = 1/(1 + γ̄τn) and since

−∂ lnP1/∂ ln τ12 = ∂ lnP ε
1 /∂ ln τ−ε12 = ∂ ln y1/∂ ln a12,

the result in the text immediately follows.

Consider now a productivity increase in country 2. Here we are interested in the sign

of ∂ ln y1/∂ ln a22, and so for this case we have d ln a11 = d ln a21 = 0 and d ln a22 6= 0.

Note also that we have d ln a12 = d ln τ−ε12 + d ln a22 = d ln a22 since d ln τ−ε12 = 0. Analo-

gous to the trade liberalization exercise above one can readily show that ∂ lnP1/∂ lnS2 =

∂ lnP1/∂ ln a22 < 0 if and only if γ̄Sn ⇔ α < ᾱSn = 1/(1 + γ̄Sn ), with γ̄Sn given by

γ̄Sn ≡
√
DS −

(
λ21χ21 + χ12−λ11λ22λ

−1
12 χ21

)
2

> 0

where

DS ≡
(
λ21χ21 + χ12 − λ11λ22λ

−1
12 χ21

)2
+ 4 (χ11χ22 − χ12χ21)λ21

+ 4
(
λ11λ22λ

−1
12 χ21 + λ22χ22

)
χ22.

The result in the text then immediately follows.

D.3. Derivation of Algebra in Section 4.5

To derive the system of equations in Section 4.4, we start by writing down the system of

equations for the counterfactual equilibrium:

L′i,k ≥ 0, G′i,k (w′,L′
k) ≥ 0, L′i,kG

′
i,k (w′,L′

k) = 0,

∑
k

L′i,k = L̄i,

with

G′i,k (w′,L′
k) ≡ w′i −

1

L′i,k

∑
n

λ′ni,k(w
′,L′

k)βn,k
(
w′nL̄n +Dn

)
,

and

λ′ni,k(w
′,L′

k) =
S ′i,k(L

′
i,k)

αk
(
w′iτ

′
ni,k

)−εk∑
l S
′
l,k(L

′
l,k)

αk
(
w′lτ

′
nl,k

)−εk .
38In particular, it is straigforward to verify that τ12τ21 ≥ 1 implies χ11χ22 − χ12χ21 ≥ 0.
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This can be rewritten in hat notation as

L̂i,kLi,k ≥ 0,
G′i,k

(
ŵ, L̂k

)
wi

≥ 0, L̂i,kwiLi,k
G′i,k

(
ŵ, L̂k

)
wi

= 0,

∑
k

L̂i,kwiLi,k = wiL̄i,

with

G′i,k

(
ŵ, L̂k

)
= ŵiwi −

1

L̂i,kLi,k

∑
n

λ′ni,k

(
ŵ, L̂k

)
βn,k

(
ŵnwnL̄n +Dn

)
,

and

λ′ni,k

(
ŵ, L̂k

)
=

Ŝi,kL̂
αk
i,k (ŵiτ̂ni,k)

−εk λni,k∑
l Ŝl,kL̂

αk
l,k (ŵlτ̂nl,k)

−εk λnl,k
.

Substitutions then yield the system in the text.

D.4. Algorithm for Counterfactuals in Subsection 4.5 and Section 5

We now proceed to describe the algorithm used in the quantitative analyses in Subsec-

tion 4.4 and Section 5.39 For some given L̂ =
{
L̂ik

}
, we can use the Tatonnement pro-

cess proposed by Alvarez and Lucas (2007) to find the wages that clear labor markets.

This entails40

w
(t+1)
i = w

(t)
i + ν

∑
kX

(t)
ik − w

(t)
i L̄i

L̄i
,

where v is an arbitrary constant satisfying v ∈ (0, 1], X(t)
ik ≡

∑
n λ

(t)
nikβnkw

(t)
n L̄n and

λ
(t)
nik =

SikL
αk
ik

(
w

(t)
i

)−εk
τ−εknik∑

j SjkL
αk
jk

(
w

(t)
j

)−εk
τ−εknjk

.

By Walras Law we can show that this is a mapping that takes wages satisfying the restric-

tion
∑

iwiL̄i = 1 to this same set. Using hat notation ŵ(t)
i ≡ w

(t)
i /w

(0)
i with the superindex

(0) denoting variables in the baseline equilibrium (corresponding by assumption to the

39Note that for Section 5 we only need to work with the model for αk = 0 for all k (the standard multi-
sector Eaton and Kortum (2002)), and so for this case the algorithm is more straightforward.

40For the exercises with fixed wages we simply set v = 0.
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data), the algorithm can be written as

ŵ
(t+1)
i w

(0)
i = ŵ

(t)
i w

(0)
i + ν

∑
k X̂

(t)
ik X

(0)
ik − ŵ

(t)
i w

(0)
i L̄i

L̄i
,

where now X̂
(t)
ik X

(0)
ik =

∑
n λ̂

(t)
nikλ

(0)
nikβnkŵ

(t)
n w

(0)
n L̄n and

λ̂
(t)
nikλ

(0)
nik =

ŜikL̂
αk
ik

(
ŵ

(t)
i

)−εk
τ̂−εknik λ

(0)
nik∑

j ŜjkL̂
αk
jk

(
ŵ

(t)
j

)−εk
τ̂−εknjk λ

(0)
njk

Finally, using Y (t)
i ≡ w

(t)
i L̄i, this can be rewritten as

ŵ
(t+1)
i = ŵ

(t)
i + ν

∑
k X̂

(t)
ik X

(0)
ik − ŵ

(t)
i Y

(0)
i

Y
(0)
i

,

For given L̂ we can implement this algorithm to find ŵi(L̂).

Now we iterate on L̂ (outer loop) using labor demand (in value) for sector ik. More

explicitly, the algorithm is as follows. Define

λ̂nik

(
ŵ, L̂

)
≡ ŜikL̂

αk
ik ŵ

−εk
i τ̂−εknik∑

j ŜjkL̂
αk
jk ŵ

−εk
j τ̂−εknjk λ

(0)
njk

and

X̂ik

(
ŵ, L̂

)
≡ 1

X
(0)
ik

∑
n

λ̂nik

(
ŵ, L̂

)
λ

(0)
nikβnkŵnY

(0)
n .

First, for a given L̂
(l)

, get ŵ(L̂
(l)

) using the following iterative procedure (inner loop):

ŵ
(t+1)
i = ŵ

(t)
i + ν

∑
k X̂ik

(
ŵ(t), L̂

(l)
)
X

(0)
ik − ŵ

(t)
i Y

(0)
i

Y
(0)
i

.

Then, use the following iterative procedure (outer loop) to get L̂:

L̂
(l+1)
ik =

1

ŵi(L̂
(l)

)Y
(0)
ik

∑
n

λ̂nik

(
ŵ(L̂

(l)
), L̂

(l)
)
λ

(0)
nikβnkŵn

(
L̂

(l)
)
Y (0)
n .
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