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ABSTRACT

This paper analyzes a geographic quasi-experiment embedded in a cluster-randomized 
experiment in Honduras. In the experiment, average treatment effects on school enrollment and 
child labor were large—especially in the poorest blocks—and could be generalized to a policy-
relevant population given the original sample selection criteria. In contrast, the geographic quasi-
experiment yielded point estimates that, for two of three dependent variables, were attenuated. A 
judicious policy analyst without access to the experimental results might have provided 
misleading advice based on the magnitude of point estimates. We assessed two main explanations 
for the difference in point estimates, related to external and internal validity.
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1. Introduction 

In a typical regression-discontinuity design, treatments are assigned on the basis of a single, 

continuous covariate and a cutoff. The identification of treatment effects relies on the assumption 

that the relation between potential outcomes and the assignment variable is continuous at the 

cutoff (Hahn, Todd, and van der Klaauw, 2001; Lee and Lemieux, 2010). The assumption is 

particularly credible if a stochastic component in the assignment variable (e.g., a noisy test score) 

ensures that the agents cannot precisely manipulate their values of the assignment variable. That 

is, agents are subject to “local” random assignment (Lee, 2008; Lee and Lemieux, 2010).1 

Researchers have extended the continuity results to regression-discontinuity designs in which 

assignment is based on a vector of variables (Imbens and Zajonc, 2009; Keele and Titiunik, 

2015). A special case is the geographic discontinuity design (GDD), in which exposure to a 

treatment depends on the latitude and longitude of agents with respect to an administrative or 

territorial boundary. Researchers compare treated and untreated agents residing near boundaries, 

using parametric and/or non-parametric methods (e.g., Black, 1999; Dell, 2011; Keele and 

Titiunik, 2015). In the words of Lee and Lemieux (2010), these are often “nonrandomized” 

discontinuity designs since agents are usually aware of boundaries (and associated treatments) 

and can precisely choose their locations.2 This places a special burden on researchers to rule out 

location-based sorting on observed or unobserved variables as a threat to the internal validity of 

treatment effects (Keele and Titiunik, 2015, 2016; Keele et al., 2016). 

 

                                                      
1 Cattaneo, Frandsen, and Titiunik (2015) push this interpretation further by implementing 

randomization inference in samples near the cutoff. 
2 In rare cases, boundaries might be suddenly (and quasi-randomly) redrawn, leading to a more 

credible “re-randomization” of households before endogenous sorting begins anew (e.g., 

Billings, Deming, & Rockoff, 2014). 
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In addition to internal validity, one might assess the external validity of estimates obtained 

from geographic designs.3 Suppose that a treatment is (non-randomly) assigned to 10 states, and 

that policy-makers are interested in the average treatment effect in this population. Yet, for 

identification purposes, geographic designs must exclude treated individuals that are (1) far from 

a state border or (2) near a state border with no cross-state variation in the treatment (as often 

occurs when treated states are contiguous). If excluded individuals have a different distribution 

of variables that moderate treatment effects—such as income, race, or even distance-to-border—

then the geographic design will not recover the average treatment effect in the policy-relevant 

population. The challenge is well-understood in the context of non-representative convenience 

samples often used in randomized experiments (Hotz, Imbens, and Mortimer, 2005; Cole and 

Stuart, 2010; Muller, 2015). We note that it also applies to geographic designs. 

This paper assesses both validity concerns in a geographic quasi-experiment (GQE) that is 

embedded in a cluster-randomized experiment conducted in Honduras.4 In the original 

experiment, 70 malnourished municipalities were identified, and 40 were randomly awarded 

conditional cash transfers (IFPRI, 2000). Using the 2001 census, Galiani and McEwan (2013) 

found that the treatment increased the probability that children enrolled in school and reduced 

their probabilities of working outside and inside the home. The effects were especially large in 

                                                      
3 External validity exists when causal relationships “[hold] over variations in persons, settings, 

treatment variables, and measurement variables” (Shadish, Cook, and Campbell, 2002, p. 507). 

Some authors assess the importance of variation in treatments (particularly implementer 

characteristics) and measurement variables (Allcott, 2015; Bold et al., 2012; Lucas et al., 2014). 

This paper focuses on the potentially moderating role of independent variables related to persons 

and settings. 
4 We refer to it as a geographic quasi-experiment because assignment is not transparently random 

(even local to borders), and because we must proxy the location of children using the coordinates 

of their caserío (a cluster of dwellings). The latter introduces mass points in the putative 

assignment variables of latitude and longitude in a geographic discontinuity design. For related 

explanations, see Keele et al. (2016) and later sections of this paper.  
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two of five strata (or blocks) with the highest rates of malnutrition. In this subsample, the effects 

on enrollment, work outside the home, and work inside the home were, respectively, 15, -6.8, 

and -6.2 percentage points. Relative to the control group, these represented changes of 25%, -

54%, and -41%. 

We compare these results to those of a geographic quasi-experiment using the same census 

data. Specifically, we identify a sample of treated children that are close to municipal borders 

shared with untreated, non-experimental municipalities. Children on the opposite side of the 

border constitute the quasi-experimental control group. Using the same covariates as Galiani and 

McEwan (2013), we show that treatment-control balance for nearly all covariates improves in 

samples that are increasingly close to the border (our preferred distance buffer is 2 kilometers). 

We can also rule out that households sorted across municipal borders in direct response to the 

treatment, addressing a common internal validity concern in geographic designs. Nevertheless, 

we find that treated children are more likely to self-identify as Lenca—an indigenous group—

even very close to municipal borders. Ultimately, our analysis of the GQE sample finds that 

point estimates for two of the three dependent variables are attenuated relative to the 

experimental benchmarks. 

Is this because of imbalance in unobserved variables (i.e., a threat to internal validity) or 

simply because the GQE sample has a different distribution of observed or unobserved variables 

that moderate treatment effects? We separately assess each explanation using subsamples of the 

randomized experiment. First, we re-estimate experimental effects in the subsample of treatment 

and control children within 2 kilometers of any municipal border (we refer to this as experiment 

1). These estimates are slightly (but consistently) stronger than full-sample results. There are no 
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mean differences in census covariates between the two samples, suggesting that distance-to-

border proxies unobserved moderators of treatment effects. 

Second, we further restrict the sample in experiment 1 to treatment and control children 

residing near the border of an untreated, non-experimental municipality (we refer to this sample 

as experiment 2). Note that it includes exactly the same treated children as the GQE. However, it 

uses experimental rather than the quasi-experimental controls. This permits us to (momentarily) 

abstract from internal validity. The point estimates for school enrollment and work-in-home are 

attenuated relative to experiment 1. Descriptive statistics suggests that the sample in experiment 

2 is better-off than that of experiment 1, given higher rates of electricity use, asset ownership, 

and other income proxies. This plausibly explains the attenuated effects, since the literature on 

conditional cash transfers finds smaller effects in when children are less poor (Fiszbein and 

Schady, 2009; Galiani and McEwan, 2013). 

Third, we assess internal validity by comparing the unbiased estimates from experiment 2 to 

those of the GQE (noting again that both include the same treatment group but different control 

groups). Particularly for school enrollment, the GQE estimates are attenuated relative those of 

experiment 2. It suggests that imbalance in unobserved variables results in downward biases in 

the GQE enrollment estimates. This is perhaps consistent with the higher proportion of 

indigenous children in the GQE treatment group, relative to its quasi-experimental control group. 

In summary, we find that the GQE cannot fully replicate the policy-relevant experimental 

benchmark in Galiani and McEwan (2013) for reasons related to both validity concerns. Based 

on these results, we make two concrete recommendations. First, it is essential that researchers 

using a geographic design carefully assess treatment-control balance on a wide range of observed 

covariates that are plausibly correlated with dependent variables (echoing the recommendations 
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of Keele et al., 2016 in this volume). Our GQE is an especially cautionary tale, since it had very 

good (but not perfect) balance in observed variables, but still could not replicate school 

enrollment estimates using the same treatment group and an experimental control group. 

Second, we recommend that researchers assess the external validity of their geographic 

design by comparing the distributions of observed moderators of treatment effects—such as 

household income—to those of a well-defined, policy-relevant population. Aided by theory or 

prior empirical evidence on the relevance of moderators, this can be used to speculate about the 

generalizability of a GQE. More concretely, Cole and Stuart (2010) describe how one might 

construct inverse-probability weights and re-weight a convenience sample—whether 

experimental or quasi-experimental—to resemble a well-defined population. We conduct and 

report a similar analysis, re-weighting the sample of experiment 2 to resemble that of experiment 

1. The weights are estimated using a wide range of covariates that are plausible moderators of 

treatment effects. Ultimately, however, the weighted estimates in experiment 2 are still 

attenuated relative to experiment 1, suggesting that some relevant moderators are unobserved. 

Our results contribute to a growing literature that compares regression-discontinuity designs 

with a single assignment variable to experimental benchmarks (see Shadish et al., 2011 and the 

citations therein). In this literature, several papers analyze conditional cash transfer experiments 

in which eligibility was determined by a poverty proxy. Oosterbeek, Ponce, and Schady (2008) 

found that experimental enrollment effects in Ecuador were large for the poorest households, but 

that RDD effects were zero for less-poor households in the vicinity of the eligibility cutoff. 

Similarly, Galiani and McEwan (2013) found no RDD effects on enrollment and child labor in 

the vicinity of the cutoff used to determine assignment to the experimental sample, but large 

experimental effects among households residing in municipalities with the lowest levels of the 
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assignment variable. In the absence of an experiment, both papers caution against generalizing 

“away” from cutoffs when the assignment variable is a plausible or well-documented moderator 

of treatment effects.5 A recent strand of methodological literature has considered situations in 

which such generalizations might still be possible.6  

 

2. The PRAF-II Experiment 

A. Design and treatment 

In the late 1990s, the International Food Policy Research Institute (IFPRI) designed a cluster-

randomized experiment to estimate the impact of conditional cash transfers (CCTs) on the 

poverty, education, and health outcomes of households in poor Honduran municipalities. In the 

absence of a national poverty map, researchers identified poor municipalities with a nutrition-

related proxy from a 1997 census of first-graders’ heights (Secretaría de Educación, 1997). 

IFPRI (2000) ordered 298 municipalities by their mean municipal height-for-age z-scores. 

Seventy-three municipalities with the lowest scores were eligible (the implied cutoff was -2.3, 

highlighting the extremely high rates of stunting). Three were excluded due to accessibility, 

leaving an experimental sample of 70.  

In 1999, IFPRI divided the sample into 5 quintiles of mean municipal height-for-age. Within 

quintiles, municipalities were randomly assigned to three treatment arms and a control group (in 

                                                      
5 Buddelmeyer and Skoufias (2004) analyzed Mexico’s well-known Progresa experiment (and a 

proxy means test and cutoff used to determine eligibility). In contrast to other results, they found 

that experimental enrollment estimates in samples “close” to the eligibility cutoff were roughly 

similar or slightly larger than full-sample estimates. 
6 Angrist and Rokkanen (2015) show how RDD effects might be estimated “away” from the 

cutoff if the assignment variable is ignorable, conditional on a set of covariates unaffected by the 

treatment. Dong and Lewbel (2015) note that the relative slopes of lines fit to data within 

bandwidths on either side of the cutoff provide insights into how modest changes in the 

assignment cutoff could affect the magnitude of estimated effects.  
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a ratio of 4:4:2:4).  Arms 1 and 2 received conditional cash transfers, while arms 2 and 3 were to 

receive grants to schools and health centers. Moore (2008) suggests the grants were sparsely 

implemented as late as 2002. Using this paper’s census data, Galiani and McEwan (2013) failed 

to reject the null that average treatment effects in arms 1 and 2 were equal (relative to the 

control). Arm 3 had small and statistically insignificant effects relative to the control (but its 

effect was statistically different from arm 2). Following Galiani and McEwan (2013), we 

compare 40 municipalities in a pooled CCT treatment arm and 30 in a pooled control group. 

In the CCT treatment, households were eligible for an annual per-child cash transfer of L 800 

(about US$50) if a child between 6 and 12 enrolled in primary school grades 1 to 4.7 Children 

with higher attainment were not eligible, and households could receive up to 3 per-child 

transfers.  During the experiment, transfers were distributed in November 2000, May-June 2001, 

October 2001, and late 2002 (Galiani and McEwan, 2013; Morris et al., 2004). The average 

household in experimental municipalities would have been eligible for transfers equal to about 

5% of median per capita expenditure (Galiani and McEwan, 2013). This is smaller than most 

Latin American CCTs such as Progresa (Fiszbein and Schady, 2009). Indeed, payments were 

only intended to cover the out-of-pocket and opportunity costs of enrolling a child in school 

(IFPRI, 2000). 

 

  

                                                      
7 A school attendance condition was apparently not enforced (Glewwe and Olinto, 2004). 
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B. Data and replication 

Galiani and McEwan (2013) used the 2001 Honduran census—collected in late July 2001—

to estimate the short-run effects of offering CCTs to eligible children.8 Their sample contained 

120,411 6-12 year-olds eligible for the education transfer, residing in the 70 experimental 

municipalities. The census includes three dummy dependent variables: (1) whether a child was 

enrolled on the census date, (2) whether a child worked outside the home in the week preceding 

the census, and (3) whether a child worked exclusively in the home during the preceding week 

(Appendix Table A.1 provides variable definitions).9 

Their preferred specification regressed each dependent variable on a treatment dummy, 

dummy variables indicating randomization blocks, and a set of individual and household 

covariates unlikely to have been affected by the treatment. Table 1 replicates the main results. 

The regressions in this and subsequent tables control for block dummy variables, the 21 

covariates described in Table A.1, squared terms for continuous variables, and dummy variables 

indicating missing values of any covariate. In addition to analytic standard errors clustered by 

municipality, we report symmetric p-values from the wild cluster bootstrap percentile-t that 

imposes the null hypothesis (Cameron, Gelbach, and Miller, 2008). 

In the full sample, the treatment increases the probability of enrollment by 8.1 percentage 

points (a 13% increase relative to the control group). The treatment reduces the probability of 

work outside the home by 3.1 p.p. (32%) and work only inside the home by 4.1 p.p. (30%). The 

effects are larger in the two poorest blocks (1 and 2), and closer to zero and not statistically 

                                                      
8 A related literature uses a panel household survey—collected in 2000 and 2002—to estimate 

effects on child health and nutrition (Morris et al., 2004), education (Glewwe and Olinto, 2004), 

and adult labor supply (Alzúa et al., 2013). 
9 The interpretation of work-only-inside-home variable is governed by the flow of survey 

questions. 
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significant in three less-poor blocks (3, 4, and 5). In blocks 1 and 2, the effect on enrollment, 

work outside the home, and work inside the home are, respectively, 15 p.p. (25%), -6.8 p.p. (-

54%), and -6.2 p.p. (-41%). The magnitude of these effects is notable given the comparatively 

small size of the transfer.10 

 

3. A Geographic Quasi-Experiment 

A. Sample 

The Honduran census does not record the precise location of dwellings. To proxy location, 

we use the latitude and longitude of caseríos. In Honduras, 18 departments contain 298 

municipalities and over 3700 aldeas (villages). Within the boundaries of villages, points identify 

the center of over 24,000 caseríos (“hamlets”) that are contiguous groups of dwellings. We 

calculated the straight-line distance between each caserío and its nearest municipal border.11 

We then identified a sample of 801 experimental, treated caseríos (with 23,974 children) that 

share a municipal border with 794 non-experimental, untreated caseríos (with 25,025 children). 

In the pooled sample of children, the 10th, 50th, and 90th percentiles of the distance-to-border 

distribution are 0.37, 2.02, and 4.22 kilometers, respectively. We henceforth refer to this as the 

GQE (or geographic quasi-experiment) sample. 

                                                      
10 Benedetti, Ibarrarán, and McEwan (2016) analyze a later Honduran CCT experiment—also 

conducted in a sample of poor municipalities—which offered much larger transfers. They found 

smaller effects on both enrollment and child labor, which they attributed to a weaker application 

of the education enrollment condition. 
11 We identified the caserío coordinates for 93% of all 6-12 year-olds in the census (and 95% of 

the full experimental sample). The missing coordinates are due to incomplete geocoding of 

caseríos in an ArcGIS file obtained from the Infotecnología unit of the Secretaría de Educación 

in 2008. 
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The map in Figure 1 illustrates the subsample of GQE caseríos that fall within 2 kilometers 

of a municipal border (in the next section, we provide a rationale for using this distance buffer). 

It highlights that treated caseríos are a non-random sample of all treated caseríos. In particular, 

treated caseríos are excluded when their municipalities are fully circumscribed by other 

treatment or control municipalities in the experimental sample. 

 

B. Covariate balance near municipal borders 

By focusing on treated and untreated children that reside near municipal borders, there may 

be fewer differences in observed and, perhaps, unobserved variables that affect child outcomes. 

We assess this in the top-left panel of Figure 2, using 21 covariates from the experimental 

analysis. Dots indicate the absolute values of standardized treatment-control differences for each 

covariate. The left-most dots pertain to the full GQE sample just described, while others refer to 

GQE samples restricted by increasingly narrow distance buffers. 

Balance in the GQE sample is sensitive to distance-to-border, markedly improving when 

caseríos fall within 2 kilometers of the border. In the 2-kilometer subsample, it is notable that 20 

of 21 covariates show treatment-control differences of less than 8% of a standard deviation, and 

none are statistically different from zero at conventional levels (see Table 2). This is despite the 

fact that there are large mechanical differences in mean municipal height-for-age z-scores due to 

the selection rule for the experimental sample (see Figure 3.) The bottom-left panel of Figure 2 

shows F-statistics from omnibus tests of covariate balance.12 In each subsample, we regress the 

treatment dummy on the 21 covariates, squared terms for continuous variables, and dummies 

                                                      
12 A simulation in Hansen and Bowers (2008) shows that a similar test using logistic regression 

leads to over-rejection of the null with a modest number of assigned units (100). In the present 

case, we are concerned with comparing balance across subsamples. 
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indicating missing values. The F-statistic declines as distance-to-border restrictions are applied, 

consistent with prior evidence. 

In the right-hand panels of Figure 2, we can compare balance in GQE samples to balance in 

experimental samples with similar distance-to-border restrictions. As anticipated, given 

randomized assignment, covariate balance in the experiment does not depend on the distance of 

caseríos to municipal borders. The top-right panel shows that absolute values of treatment-

control differences for 21 covariates are rarely larger than 10% of a standard deviation, 

regardless of distance. The bottom-right panel of Figure 2 shows relatively stable F-statistics of 

around 2 from the omnibus test. 

In fact, the smallest F-statistics in the GQE are approximately twice as large as those in the 

experimental sample. In the 2 kilometer GQE sample, this is driven by imbalance in a single 

covariate (Lenca).  Children on the treated side of borders are about 10 percentage points more 

likely to self-identify as a member of the indigenous Lenca group (see Table 2). National poverty 

headcounts are higher among Lenca than non-indigenous Hondurans.13 Nevertheless, this does 

not necessarily imply imbalance in unobserved socioeconomic outcomes such as poverty, 

because there is demonstrable balance in many poverty proxies such as schooling and household 

assets. 

 

C. Potential threats to internal validity 

Why might imbalance persist close to borders? One explanation is that Lenca households 

manipulated treatment status by moving after experimental assignment, but prior to the census. 

                                                      
13 In a national sample from 2004, the poverty headcount is 49% among non-indigenous 

individuals and 71% among ethnic and racial minorities (World Bank, 2006). 
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We regard this as unlikely for three reasons. First, the cash transfer for a typical household was 

extremely small (less than 5% of a household’s consumption) and unlikely to provide sufficient 

liquidity for poor households to move. Second, 91% of children in the 2-kilometer GQE sample 

were born in their municipality of residence, and only 4% lived in a different caserío, aldea, or 

city in 1996 (five years before the census date). Both variables are among those with the smallest 

cross-border differences in the GQE, and neither is statistically different from zero (see Table 

2).14 Third, there is a similar pattern of imbalance in the 2-kilometer sample of untreated, 

experimental caseríos that share a border with untreated, non-experimental caseríos (see Table 

B.2; we later use this sample to conduct a placebo test). In other words, imbalance persists even 

when there is no CCT treatment to create incentives for cross-border sorting.  

Thus, a second explanation is that some households chose dwellings years or decades before 

treatment assignment, but were not indifferent to attributes of communities on opposite sides of 

the border. Figure 4 illustrates the proportion of Lenca children in aldeas (a sub-territory of 

municipalities), along with the GQE caseríos. Cross-border imbalance is most evident on the 

eastern-most municipal borders of the experimental sample, but is certainly not a feature of all 

border segments. Most notably, one interior segment cleaves the “twin cities” of La Esperanza 

and Intibucá, both rich centers of Lenca culture. Though in separately-governed municipalities, 

the towns are commonly referred to by a single name (and treated as such by locals). 

In summary, there is evidence of balance in the GQE sample (with a buffer of 2 kilometers) 

on 20 of 21 covariates that are typically correlated with child education and labor outcomes. 

From a design perspective, it is notable that covariate selection was imposed by an earlier paper 

                                                      
14 It is possible that households somehow misreported their answers, but seems unlikely given 

the fact that census data collection was independent of PRAF, IFPRI, and the original impact 

evaluation’s data collection schedule.  
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(Galiani and McEwan, 2013). However, there is persistent imbalance in one covariate (Lenca) 

that is plausibly correlated with unobserved determinants of child outcomes. In this volume, 

Keele et al. (2016) report similar covariate imbalances close to borders, leading them to invoke 

an assumption of conditional geographic mean independence (also see Keele et al., 2015). That 

is, potential outcomes are assumed to be mean independent of treatment assignment within a 

specified buffer, conditional on observed covariates.15 We make a similar ignorability 

assumption within a 2-kilometer buffer and refer to the design as a geographic quasi-experiment. 

We do not assume local continuity in potential outcomes at municipal borders, as one might 

in a “pure” geographic discontinuity design (Imbens and Zajonc, 2009; Keele and Titiunik, 

2015). First, our evidence suggests that assignment is not locally randomized, given long-

standing municipal borders and households’ ability to sort around them. Second, we are forced to 

proxy the location of dwellings using the latitude and longitude of caseríos. This leads to mass 

points in the putative assignment variables,16 even though standard methods for analyzing 

discontinuity designs rely on continuous assignment variables (Calonico et al., 2014; Keele et al., 

2016). 

 

D. GQE estimates 

                                                      
15 The standardized differences are within thresholds beyond which regression adjustment is 

particularly sensitive to specification (Imbens and Wooldridge, 2009; Rubin, 2001). 
16 In a histogram of distance-to-border distribution in the GQE sample—available from the 

authors—there is a puzzlingly large spike on the untreated side of the border, between 3 and 4 

kilometers away. In fact, this is the town of Santa Bárbara (identified as a single caserío in 

Honduran data). It stretches about 2 kilometers across at its widest point and contains 1178 

dwellings with eligible children. If distance-to-border had been measured without error for each 

dwelling, it might have “filled” an apparent notch in the histogram. This is the most severe 

example in the GQE sample of mis-measurement of the assignment variable, given the use of 

caserío rather than dwelling location. In the full GQE sample of caseríos, the mean (median) 

number of dwellings is 16.6 (8), and the 90th and 95th percentiles are 33 and 47, respectively. 
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Using the 2-kilometer GQE sample, Table 3 reports estimates from ordinary least squares 

regressions that control for the same covariates as Table 1, but excluding experimental block 

dummy variables. The analytic standard errors apply multi-way clustering on both municipality 

and border segments, given the spatial proximity of treatment and control caseríos (Cameron, 

Gelbach, and Miller, 2011). A separate border segments exists for every unique combination of 

bordering municipalities. Overall, there are 81 municipalities and 65 non-nested border 

segments.17 As in Table 1, we also report symmetric p-values from the wild cluster bootstrap 

percentile-t that imposes the null hypothesis, clustering by municipality (Cameron, Gelbach, and 

Miller, 2008). 

In the 2-kilometer GQE sample, the treatment increases enrollment by a marginally 

significant 5.7 percentage points, or 2.4 p.p. smaller than the experimental estimate in Table 1. In 

blocks 1-2, the enrollment effect is 10.6 p.p., or 4.4 p.p. lower than the experimental estimate. In 

blocks 3-5, both the GQE and the experiment find similarly small and statistically insignificant 

estimates. 

The results are mixed for the two work-related variables. In the GQE sample, the treatment 

reduces work outside the home by 2.4 p.p. in all blocks and 8.6 p.p. in blocks 1-2 (only the latter 

is marginally statistically significant). The experimental estimates are roughly similar. Neither 

the GQE nor the experiment suggest any effects in blocks 3-5. In contrast, the GQE estimates are 

attenuated for work inside the home, relative to the experimental estimates. There is never a 

large or statistically significant effect for this dependent variable in the GQE sample. Yet, in the 

experiment, there were reductions of 4.1 and 6.2 p.p., respectively, in all blocks and blocks 1-2. 

                                                      
17 When GQE estimates are reported within subsamples of blocks 1-2 and 3-5, control 

observations in untreated, non-experimental municipalities are assigned to the block 

corresponding to the treated observations on the opposite side of the border segment. 
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Despite these differences between the GQE and the experiment, bootstrapped p-values in 

Table 3 suggest that the estimates are not statistically distinguishable from one another. Even so, 

one can pose a practical question: would a reasonable policy analyst—relying on the GQE point 

estimates and blinded to the experimental ones—have reached conclusions as optimistic as those 

of Galiani and McEwan (2013)? Most likely the attenuated GQE estimates would have yielded 

more guarded conclusions. 

 

4. Empirical Strategy 

A. External and internal validity of the GQE 

We consider two explanations for the divergence in point estimates of the GQE and the 

experiment, related to external and internal validity. Recall that treated caseríos in the GQE are a 

non-random subset of all treated caseríos. First, they are close to municipal borders. Second, they 

share a border with untreated, non-experimental caseríos. This naturally excludes caseríos in the 

spatial core of the experimental sample. As Figures 3 and 4 suggest, excluded caseríos might 

exhibit higher rates of child stunting or greater concentrations of indigenous children. 

Thus, treated children in the GQE are plausibly different in variables observed by the 

econometrician—such as distance-to-border, height-for-age, and ethnicity—and perhaps in 

unobserved variables, such as income. If these variables moderate treatment effects, then the 

GQE estimates—even internally valid ones—will differ from the experimental benchmarks in 

Table 1. In the present application, it is plausible that GQE caseríos are “less poor” than other 

treated ones. Since treatment effects are much larger in the poorest municipalities (see Table 1), 

this provides a plausible explanation for the attenuated GQE treatment effects. 
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An alternative explanation for the divergence of point estimates is related to internal validity. 

Suppose that treated children in the GQE differ in unobserved ways from their bordering control 

group, even after conditioning on a rich set of covariates (e.g., they are more likely to be poor, an 

unmeasured variable). This too could explain attenuated treatment effects, assuming that poorer 

children are less likely to enroll in school and more likely to work. 

 

B. Experimental samples used to assess validity 

Table 4 summarizes the experimental samples that we use to assess the external and, then, 

the internal validity of the GQE. The full experimental sample was already used, in Table 1, to 

obtain estimates of the average treatment effect (ATE). Given the design of the experiment, the 

estimates are generalizable to a well-defined, policy-relevant population of Honduran children 

residing in malnourished municipalities. 

We next limit the experimental sample to children residing in caseríos no more than 2 

kilometers from any municipal border. This sample—denoted experiment 1—is used to obtain 

estimates of ATE1. If distance-to-border does not moderate treatment effects, then ATE and 

ATE1 (and estimates thereof) should be similar. 

We further limit the sample of experiment 1 to children residing in caseríos no more than 2 

kilometers from a municipal border shared with untreated, non-experimental caseríos.  This 

sample—denoted experiment 2—includes exactly the same sample of treated caseríos (and 

children) as the GQE.  However, its control group consists of the experimental control group 

subject to the same sample restriction (illustrated in Figure 5). By using an experimental control 

group instead of a quasi-experimental one, we can abstract from the internal validity of the GQE 

and focus on external validity. If observed and unobserved moderators are similarly distributed 
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across the samples of experiments 1 and 2, then ATE1 and ATE2 (and estimates thereof) should 

be similar. 

If they differ, then it weakens the GQE’s claim on external validity. More constructively, one 

can further diagnose whether the samples of experiment 1 and 2 differ in their distributions of 

observed moderators of treatment effects. If they do, then one can re-weight the sample in 

experiment 2 to resemble that of experiment 1, and re-estimate effects (Cole and Stuart, 2010). 

To the extent that relevant moderators are observed and contribute to the estimation of the 

weights, then weighted estimates should be similar to estimates of ATE1. If they still diverge, 

then it suggests that a relevant moderator is unobserved. The next subsection will further 

elaborate the assumptions and method. 

Lastly, we assess the internal validity of the GQE in two ways. We first compare GQE 

estimates from Table 3 to those of ATE2, which uses an experimental rather than quasi-

experimental control group for the same sample of treated children. Any divergence is indicative 

of bias in the GQE. Second, we implement the placebo test alluded to in an earlier section. We 

construct a placebo sample of untreated, experimental caseríos no more than 2 kilometers from a 

municipal border shared with untreated, non-experimental caseríos. We anticipate finding zero 

effects in the “GQE” placebo sample, conditional on covariates. A positive or negative effect is 

likely the result of imbalance in unobserved variables. 

 

C. Inverse-probability weighting and external validity 

Using the potential outcomes framework, let the outcome 𝑌 for individual 𝑖 be a function of a 

randomly-assigned treatment 𝑇𝑖. The difference in potential outcomes under treated (1) and 
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untreated (0) conditions is 𝑌𝑖(1) − 𝑌𝑖(0). Table 1 reported estimates of the average treatment 

effect (ATE) in a well-defined, policy-relevant sample, denoted 𝑆. 

We will further report estimates of ATE2 in the non-random subsample of experiment 2, 

denoted 𝑆2. If the treatment has heterogeneous effects on individuals, moderated by a set of 

variables 𝑋, then effects may differ across samples depending on the distribution of 𝑋. An 

intuitive method of correcting for this difference is to re-weight 𝑆2 so that its distribution of 

moderators is similar to 𝑆 (Cole and Stuart, 2010; Stuart et al., 2015). 

Closely following Hotz, Imbens, and Mortimer (2005), we specify three assumptions under 

which the procedure can recover ATE from 𝑆2.18 Assumption 1 is that the treatment is randomly 

assigned in 𝑆2:  

𝑇𝑖 ⊥ [𝑌𝑖(1), 𝑌𝑖(0)]|𝑆2. 

The assumption is satisfied because there was random assignment in 𝑆, and 𝑆2 is a subsample of 

treatment and control groups obtained by imposing exogenous sample restrictions. 

Assumption 2 asserts that one’s presence in the subsample does not depend on potential 

outcomes, given the moderators: 

(𝑖 ∈ 𝑆2 ) ⊥ [𝑌𝑖(1), 𝑌𝑖(0)]|𝑋𝑖. 

Hotz et al. (2005) refer to this as unconfounded location. Stuart et al. (2011) invoke a similar 

assumption and refer to it as unconfounded sample selection. Both papers highlight the need to 

measure all relevant moderators in order to satisfy the assumption. Lastly, Assumption 3 imposes 

a requirement of common support for the moderators between the two samples. For each 

moderator, it must be the case that: 

                                                      
18 Given the assumptions described below, Hotz et al. (2005) show that 𝐴𝑇𝐸 =
𝐸[𝑌𝑖(1) − 𝑌𝑖(0)|𝑆] = 𝐸{𝐸[𝑌𝑖|𝑇𝑖 = 1, 𝑆2, 𝑋𝑖] − 𝐸[𝑌𝑖|𝑇𝑖 = 0, 𝑆2, 𝑋𝑖]|𝑆}. 
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0 < 𝑃(𝑖 ∈ 𝑆2|𝑋𝑖) < 1. 

In the present context, assumption 3 does not hold for one moderator, namely distance-to-border 

(since observations more than 2 kilometers from the border have zero probability of contributing 

to 𝑆2). However, we can reframe the task as generalizing from the sample 𝑆2 to 𝑆1, which also 

imposes the 2-kilometer distance restriction (Stuart et al., 2011). Common support holds for all 

other covariates. 

Assumption 2 may not hold if there are unobserved moderators. A typical study cannot verify 

this, just as a typical observational study cannot directly test for selection-on-unobservables into 

a treatment or control group. In contrast, we can compare weighted estimates in experiment 2 to 

estimates of ATE1. Any difference suggests that relevant moderators are unobserved. 

To implement the method, we estimate inverse probability weights (Cole and Stuart, 2010; 

Stuart et al., 2015).19 In 𝑆1—which imposes the 2-kilometer distance buffer—we estimate a logit 

regression in which the dependent variable indicates observations in 𝑆2. The regressors include 

21 covariates, 6 squared terms, and dummy variables indicating missing values.20 They further 

include block dummy variables, mean municipal height-for-age, distance-to-border, and squared 

terms for the latter two. Lastly, we calculate inverse probability weights for observations in 𝑆2 as 

𝑤𝑖(𝑋𝑖) = 1/�̂�(𝑋𝑖), where �̂� is the estimated probability that an observation is selected for 𝑆2. 

 

5. Results 

A. External validity: experiment 1 

                                                      
19 Cole and Stuart (2011) prove that the method yields consistent estimates—in this paper, of 

ATE1—under assumptions similar to those just described.   
20 When weighted estimates are reported in subsamples (e.g., blocks 1-2), we separately estimate 

weights in that subsample. 
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Tables 5 to 7 reports results for the three dependent variables. Experiment 1 includes children 

residing in caseríos within 2 kilometers of any municipal border. Imposing this restriction 

slightly increases the positive enrollment estimates and makes the work-related estimates slightly 

more negative. In Table 4, for example, the enrollment estimate is 8.9 percentage points inside 

the buffer (versus 8.1 in Table 1). Further limiting the sample to blocks 1 and 2, the estimate in 

experiment 1 is 16.3 p.p. (versus 15 p.p. in Table 1). There is no ready explanation for the slight 

increases in enrollment effects in Table 5 (and slightly more negative work effects reported in 

Tables 6 and 7). The mean covariate differences between the full experimental sample and 

experiment 1 are small and statistically insignificant (full results are available from the authors). 

This suggests that distance-to-border is a proxy for other, unobserved moderators. 

 

B. External validity: experiment 2 

Tables 5 to 7 also report estimates for experiment 2. Recall that it includes the same treated 

observations as the GQE sample, but with an experimental control group. Imposing this sample 

restriction reduces the enrollment estimates by 2.6 p.p. relative to experiment 1, apparently 

driven by a 3 p.p. decline in the blocks 1-2 subsample. A similar pattern of attenuation is evident 

for work-in-home estimates (Table 7), but not for work-outside-home (Table 6). For the latter 

variable, the coefficient in the blocks 1-2 sample is slightly more negative. 

Did the sample restriction in experiment 2 change the distribution of plausible moderating 

variables? In fact, observations in the experiment 2 sample are 8 percentage points less likely to 

belong to blocks 1-2 (see Appendix Table C.1). There are also substantial differences for specific 

covariates, especially within blocks 1-2 (see Figure 6). For example, households of children in 

experiment 2 are 12 p.p. more likely to have electric light, 10 p.p. more likely to own a 
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television, and their mothers have two-thirds of a year more schooling, on average. In addition to 

Galiani and McEwan (2013), the literature on Latin American CCTs usually finds that effects on 

school enrollment are larger among poorer households (Fiszbein and Schady, 2009). This implies 

that sample selection on observed (and perhaps unobserved) moderating variables—all common 

proxies for poverty—is responsible for the pattern of attenuated estimates in experiment 2. 

 

C. External validity: weighted estimates in experiment 2 

To further examine this issue, we estimated the probability that each observation in 

experiment 1 was selected for experiment 2 (using the logit specification described earlier). The 

mean difference in the estimated propensity score between the samples of experiment 2 and 

experiment 1 is 0.045 (or 37% of the standard deviation in the experiment 1 sample). For each of 

the 21 covariates, we then estimated the standardized difference between the weighted mean in 

experiment 2—applying the inverse-probability-weights described earlier—and the unweighted 

mean in experiment 1. As Figure 6 illustrates, re-weighting nearly eliminates observed 

differences between the two samples. 

Finally, Tables 5 to 7 report weighted estimates in the experiment 2 sample. We anticipate 

that the weighted estimates will more closely resemble those from experiment 1. On the contrary, 

we find that the point estimates from unweighted and weighted specifications in experiment 2 are 

quite similar (and both exhibit similar patterns of attenuation relative to experiment 1). One 

interpretation is that sample selection into experiment 2 altered the distribution of unobserved 

variables that moderate treatment effects, leading to a violation of assumption 2. 

What else might be done? One possibility is to implement a two-stage correction for sample 

selection, à la Heckman (1979). In the sample of experiment 1, one estimates a first-stage probit 
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with a dependent variable indicating selection into experiment 2. It includes the same 

independent variables as the logit used to estimate the inverse-probability weights, in addition to 

variable(s) that affects selection into experiment 1, but not child outcomes. Of course, 

compelling exclusion restrictions are usually hard to come by (and no obvious candidates exist in 

our application). Finally, in the second-stage regression, one includes the inverse Mills ratio as a 

regressor (along with other covariates) and examines its sign and significance for evidence of 

sample selection bias. 

 

D. Internal validity 

Recall the estimates in experiment 2 use the same group of treated children as the GQE, but 

with an experimental control group. How do they compare to the quasi-experimental GQE 

estimates reported in Table 3? For enrollment, the GQE estimates are attenuated relative to those 

of experiment 2 (which themselves were attenuated relative to those of experiment 1). This is 

especially evident in the blocks 1-2 subsample. The enrollment effect is 13.3 p.p. in experiment 2 

and 10.6 in the GQE. The work-related variables provide less obvious conclusions because the 

estimates—in the experiment 2 and GQE samples—are small and not significant at 5% in blocks 

1-5. In blocks 1-2, however, the point estimates for work-outside-home have a similar magnitude 

in both samples. In summary, the evidence is suggestive the GQE enrollment estimates are 

downward biased relative to the unbiased estimates from experiment 2.  

Finally, Table 8 reports the placebo test described earlier. In the first column, the coefficients 

are small and statistically insignificant, providing some evidence that the GQE estimates are not 

explained by selection-on-unobservables. The pattern is not as clear in blocks 1-2, likely due to 

the much smaller samples of municipalities (recalling the experimental control group contained 
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fewer municipalities than the treatment group). Overall, the imprecision prevents us from ruling 

out some bias in the GQE estimates. 

 

E. Compound treatment irrelevance 

The GQE must assume that the conditional cash transfer is the only treatment that varies 

across borders (or, if there is another, that is does not affect potential outcomes). Keele and 

Titiunik (2015, 2016) describe this assumption as compound treatment irrelevance. In the 

Honduran context, the most likely violation occurs when a municipal border is also a department 

border. Although the management and financing of Honduran public schools is still highly 

centralized, each department controls some functions, especially related to personnel 

management. This leaves open the possibility that the assumption is violated, and so we assess 

robustness to the dropping of observations near municipal border segments that also happen to be 

department borders. 

Of course, this occasions further non-random sample restrictions, which may affect external 

validity. Thus, Tables D.1 to D.3 repeat all experimental analyses from Tables 5 to 7 after 

excluding municipal border segments that are also a department border. The immediate result is 

a reduction in the number of municipalities in experiment 2 (from 52 to 43). Despite the reduced 

precision, the substantive findings are similar to earlier ones, focusing especially on blocks 1-2. 

The large effects for enrollment and work-at-home (in experiment 1) are attenuated in 

experiment 2, while the effects are more robust across samples for work-outside-home. Applying 

inverse probability weights to experiment 2 again has little effect on the point estimates. Table 

D.4 then replicates the GQE estimates. Here too, the substantive conclusions are similar. The 

only obvious difference is an attenuation of the enrollment estimate in blocks 1-2 (from 10.6 to 
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7.3 percentage points), though the full-sample estimates are within 0.2 percentage points of one 

another. 

 

6. Conclusions 

 This paper analyzed a geographic quasi-experiment embedded in a cluster-randomized 

experiment in Honduras. In the experiment, average treatment effects on school enrollment and 

child labor were large—especially in the poorest blocks—and could be generalized to a policy-

relevant population given the original sample selection criteria (Galiani and McEwan, 2013; 

IFPRI, 2000). In contrast, the geographic quasi-experiment yielded point estimates that, for two 

of three dependent variables, were attenuated. A judicious policy analyst without access to the 

experimental results might have provided misleading advice based on the magnitude of point 

estimates.  

We assessed two main explanations for the difference in point estimates, related to external 

and internal validity. The GQE sample is necessarily restricted to children residing close to a 

municipal border with cross-border variation in the treatment. Sample selection modifies the 

distribution of some observed and (perhaps) unobserved variables that moderate treatment 

effects, relative to the original experiment. We find that this explains some, but not all of the 

attenuation, especially for school enrollment effects. The remainder is plausibly explained by 

imbalance in unobserved variables between treatment and control groups in the 2-kilometer GQE 

sample. While there is treatment-control balance along a wide range of pre-specified covariates, 

the GQE enrollment estimates are still attenuated relative to the benchmark estimates of 

experiment 2.  
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Both findings suggest that researchers using geographic designs should carefully describe 

how their geographically-imposed convenience sample differs from that of a well-defined, policy 

relevant population. If feasible, they might further apply inverse-probability weighting as a 

robustness check (following Cole and Stuart, 2010 and the analysis herein). Moreover, they 

should carefully assess treatment-control balance in the geographic sample. In this volume, 

Keele et al. (2016) discuss related consideration when units of analysis (such as households) 

cannot be precisely geo-located. 

The findings on external validity have broader implications for the design and interpretation 

of randomized field experiments, which often rely on convenience samples defined by observed 

and unobserved moderators of treatment effects (such as poverty, distance to urban centers, 

agents’ willingness to submit to randomization, and so on). At a minimum, experiments should 

specifically describe the criteria for sample selection (e.g., Campbell et al, 2012), and whether 

these variables are plausible moderators of treatment effects. Our paper suggests that authors can 

push this exercise further and assess robustness after re-weighting the experimental convenience 

sample to resemble a policy-relevant population, with appropriate caveats about selection-on-

unobservables into the convenience sample (Hotz et al., 2005; Cole and Stuart, 2010; Stuart et 

al., 2015). 
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Table 1: Replication of experimental estimates in Galiani and McEwan (2013) 

 

 All blocks Blocks 1-2 Blocks 3-5 

Enrolled in school 0.081*** 0.150*** 0.035 

 (0.024) (0.035) (0.025) 

N 120,411 44,358 76,053 

Control mean 0.646 0.600 0.680 

 BS p(sym) 0.007 0.005 0.198 

    

Works outside home -0.031*** -0.068*** -0.008 

 (0.012) (0.017) (0.013) 

N 98,783 36,261 62,522 

Control mean 0.097 0.126 0.075 

 BS p(sym) 0.013 0.005 0.585 

    

Works in home -0.041*** -0.062*** -0.027 

 (0.013) (0.018) (0.017) 

N 98,783 36,261 62,522 

Control mean 0.136 0.150 0.126 

 BS p(sym) 0.010 0.005 0.145 

    
 

Note: *** indicates statistical significance at 1%, ** at 5%, and * at 10%. Robust standard errors 

are in parentheses, clustered by municipality (70, 28, and 42, respectively, in all blocks, blocks 

1-2, and blocks 3-5). BS p(sym) is the symmetric p-value from a wild cluster-bootstrap 

percentile-t procedure with 399 replications. The regressions in this and all subsequent tables 

control for block dummy variables, the 21 covariates in Table A.1, squared terms for 6 

continuous variables, and dummy variables indicating missing values of variables. Sample sizes 

are lower for the work-related variables because the census restricts the question to children 7 

and older. 
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Table 2: Balance in the geographic quasi-experiment (≤ 2 kilometers from border) 

  

 T/C p-value 

 differences  

Age -0.002/-0.001 0.979 

Female 0.007/0.013 0.383 

Born in municipality -0.004/-0.013 0.849 

Lenca 0.094/0.231 0.166 

Moved 0.006/0.032 0.505 

Father is literate 0.040/0.081 0.470 

Mother is literate 0.030/0.060 0.531 

Father's schooling 0.231/0.076 0.689 

Mother's schooling 0.147/0.050 0.778 

Dirt floor 0.008/0.017 0.915 

Piped water 0.004/0.009 0.949 

Electricity 0.022/0.053 0.827 

Rooms in dwelling 0.041/0.054 0.747 

Sewer/septic 0.030/0.063 0.683 

Auto 0.006/0.029 0.780 

Refrigerator -0.014/-0.051 0.791 

Computer -0.001/-0.020 0.746 

Television 0.012/0.035 0.890 

Mitch -0.002/-0.009 0.890 

Household members 0.054/0.022 0.692 

Household members, 0-17 0.013/0.007 0.920 

Predicted mean municipal 

child height-for-age z-

score 

-0.464/-1.538 0.001 

 

Note: In the difference column, the first number is the mean difference and the second number if 

mean difference divided by the full-sample standard deviation. p-values account for clustering by 

municipality. 
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Table 3: Estimates of the geographic quasi-experiment (≤ 2 kilometers from border) 

 

 All blocks Blocks 1-2 Blocks 3-5 

    

Enrolled in school 0.057* 0.106** 0.035 

 (0.032) (0.054) (0.041) 

N 24360/81/65 6888/26/19 17472/61/46 

 BS p(sym) 0.095 0.072 0.463 

 Diff RCT p(sym) 0.537 0.580 0.998 

    

Works outside home -0.024 -0.086* -0.005 

 (0.015) (0.044) (0.016) 

N 20009/81/65 5591/26/19 14418/61/46 

 BS p(sym) 0.122 0.025 0.743 

 Diff RCT p(sym) 0.677 0.715 0.885 

    

Works only inside home 0.014 -0.013 0.026 

 (0.017) (0.026) (0.022) 

N 20009/81/65 5591/26/19 14418/61/46 

 BS p(sym) 0.468 0.613 0.330 

 Diff RCT p(sym) 0.010 0.105 0.048 

    
 

 Note: *** indicates statistical significance at 1%, ** at 5%, and * at 10%. Robust standard 

errors are in parentheses, clustered by municipality and border segment (see text for details). N 

indicates the number of eligible children, municipalities, and border segments. BS p(sym) is the 

symmetric p-value from a wild cluster- bootstrap percentile-t procedure (clustering on 

municipalities) with 399 replications. Diff RCT p(sym) is the p-value from the test of equality 

between a GQE estimate and the corresponding experimental estimate from table 1, computed 

using 399 replications. All regressions control for the variables described in the note to Table 1 

(but excluding block dummy variables). 
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Table 4: Experimental samples used to assess external and internal validity of the GQE 

  
 Sample restriction on full 

experimental sample 

Parameter(s) 

Full experimental sample — ATE 

Experiment 1 2 km from any municipal border ATE1 

 

Experiment 2 2 km from municipal borders 

shared with untreated, non-

experimental caseríos 

Unweighted: ATE2 

*Weighted: ATE1 

 

Note: ATE is the average treatment effect in the full experimental sample (Galiani & McEwan, 

2013), and subscripts indicate average treatment effects in subsamples of the experiment. * 

indicates that identification relies on a selection-on-observables assumption described in the text. 
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Table 5: Estimates for experiments 1 and 2 (dependent variable: enrolled in school) 

 
 All blocks Blocks 1-2 Blocks 3-5 

    

Experiment 1 0.089*** 0.163*** 0.041 

 (0.025) (0.042) (0.025) 

N 65310/70 26122/28 39188/42 

 BS p(sym) 0.013 0.010 0.180 

    

Experiment 2 0.063* 0.133** 0.035 

 (0.035) (0.059) (0.040) 

N 21703/52 6996/17 14707/35 

 BS p(sym) 0.133 0.095 0.455 

    

Experiment 2 (weighted) 0.064* 0.134** 0.022 

 (0.035) (0.054) (0.037) 

N 21703/52 6996/17 14707/35 

 BS p(sym) 0.107 0.055 0.560 

    
 

Note: *** indicates statistical significance at 1%, ** at 5%, and * at 10%. Robust standard errors 

are in parentheses, clustered by municipality. N indicates the number of eligible children and the 

number of municipalities. BS p(sym) is the symmetric p-value from a wild cluster-bootstrap 

percentile-t procedure with 399 replications. All regressions control for the variables described in 

the note to Table 1. 
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Table 6: Estimates for experiments 1 and 2 (dependent variable: works outside home) 

 
 All blocks Blocks 1-2 Blocks 3-5 

    

Experiment 1 -0.042*** -0.082*** -0.017 

 (0.012) (0.022) (0.012) 

N 53703/70 21387/28 32316/42 

 BS p(sym) 0.003 0.003 0.217 

    

Experiment 2 -0.032* -0.090** -0.009 

 (0.017) (0.034) (0.017) 

N 17883/52 5691/17 12192/35 

 BS p(sym) 0.095 0.013 0.632 

    

Experiment 2 (weighted) -0.034* -0.087** -0.009 

 (0.017) (0.033) (0.018) 

N 17883/52 5691/17 12192/35 

 BS p(sym) 0.070 0.007 0.637 

    

 

Note: *** indicates statistical significance at 1%, ** at 5%, and * at 10%. Robust standard errors 

are in parentheses, clustered by municipality. N indicates the number of eligible children and the 

number of municipalities. BS p(sym) is the symmetric p-value from a wild cluster-bootstrap 

percentile-t procedure with 399 replications. All regressions control for the variables described in 

the note to Table 1. 
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Table 7: Estimates for experiments 1 and 2 (dependent variable: works only in home) 

 
 All blocks Blocks 1-2 Blocks 3-5 

    

Experiment 1 -0.041*** -0.067*** -0.024 

 (0.013) (0.021) (0.016) 

N 53703/70 21387/28 32316/42 

 BS p(sym) 0.007 0.025 0.188 

    

Experiment 2 -0.024 -0.026 -0.023 

 (0.019) (0.025) (0.023) 

N 17883/52 5691/17 12192/35 

 BS p(sym) 0.320 0.352 0.448 

    

Experiment 2 (weighted) -0.018 -0.020 -0.013 

 (0.019) (0.025) (0.022) 

N 17883/52 5691/17 12192/35 

 BS p(sym) 0.438 0.515 0.630 

    
 

Note: *** indicates statistical significance at 1%, ** at 5%, and * at 10%. Robust standard errors 

are in parentheses, clustered by municipality. N indicates the number of eligible children and the 

number of municipalities. BS p(sym) is the symmetric p-value from a wild cluster-bootstrap 

percentile-t procedure with 399 replications. All regressions control for the variables described in 

the note to Table 1. 
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Table 8: Placebo estimates (≤ 2 kilometers from border) 

 

 All blocks Blocks 1-2 Blocks 3-5 

    

Enrolled in school -0.025 0.073 -0.052 

 (0.036) (0.063) (0.035) 

N 13980/47/40 4064/17/12 9916/33/28 

 BS p(sym) 0.525 0.415 0.165 

    

Works outside home -0.014 -0.035 -0.008 

 (0.018) (0.054) (0.015) 

N 11573/47/40 3365/17/12 8208/33/28 

 BS p(sym) 0.542 0.705 0.623 

    

Works only inside home -0.001 -0.069** 0.024 

 (0.019) (0.032) (0.018) 

N 11573/47/40 3365/17/12 8208/33/28 

 BS p(sym) 0.930 0.135 0.188 

    
 

 Note: *** indicates statistical significance at 1%, ** at 5%, and * at 10%. Robust standard 

errors are in parentheses, clustered by municipality and border segment (see text for details). N 

indicates the number of eligible children, municipalities, and border segments. BS p(sym) is the 

symmetric p-value from a wild cluster- bootstrap percentile-t procedure (clustering on 

municipalities) with 399 replications. All regressions control for the variables described in the 

note to Table 1 (but excluding block dummy variables). 
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Figure 1: Caseríos in the geographic quasi-experiment 

 
Note: Experimental treatment municipalities are lightly shaded; experimental control 

municipalities are darkly shaded. Unshaded areas are untreated, non-experimental municipalities. 

Dots indicate caseríos within 2 kilometers of municipal borders shared by experimental treatment 

municipalities and untreated non-experimental municipalities. The inset map indicates 

department borders. 
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Figure 2: Covariate balance increasingly close to municipal borders 

 
Note: In the upper panels, dots indicate the absolute value of the standardized mean difference 

(using the full-sample standard deviation) between the treatment and comparison group for 21 

covariates in Table A.1, within the specified distance-to-border (Appendix B reports 

unstandardized differences, standardized differences, and cluster-adjusted p-values). In the lower 

panels, dots indicate F-statistics from regressions of the treatment dummy on the 21 covariates, 

squared terms for 6 continuous covariates, and dummy variables indicating missing values. 
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Figure 3: Mean municipal height-for-age Z-scores in 1997 

 
Note: Lighter shades indicate increasingly negative values of the predicted mean municipal 

height-for-age Z-scores (Galiani and McEwan, 2013), using 20 quantiles of the municipal 

distribution. Municipal borders are outlined. Dots indicate caserios in the geographic quasi-

experimental sample within 2 kilometers of municipal borders. 
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Figure 4: Proportion of eligible children self-identifying as Lenca in 2001 

 
Note: Darker shades indicate higher proportions of children self-identify as Lenca (or another 

racial or ethnic minority), using 20 quantiles of the aldea (village) distribution. Municipal 

borders are outlined. Dots indicate caserios in the geographic quasi-experimental sample within 

2 kilometers of municipal borders. 
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Figure 5: Caseríos in experiment 2 

 
Note: Experimental treatment municipalities are lightly shaded; experimental control 

municipalities are darkly shaded. Unshaded areas are untreated, non-experimental municipalities. 

Dots indicate caseríos within 2 kilometers of a municipal border with untreated non-experimental 

municipalities. The inset map indicates department borders. 
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Figure 6: Comparing covariate means between samples in experiments 1 and 2 

 
Note: Dots indicate the absolute value of the standardized mean difference (using the full-sample 

standard deviation) between the pooled experiment 2 sample and the pooled experiment 1 

sample, for the 21 covariates in Table A.1. In all panels, the sample includes caseríos within 2 

kilometers of municipal borders. In the right panel, the mean of the experiment 2 sample is 

weighted, as described in the text.  
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Appendix A 
 

Table A.1:  Census variable definitions 

 

 Variable definition and census question(s) used to construct variable 

  

Dependent variables  

Enrolled in school 1=Enrolled in school on census date; 0=not (F8). 

Works outside home 

1=Worked during past week, including self-employment, family business, 

and agricultural work; 0=not (F12, F13A01-04); only reported for ages 7 

and up. 

Works only in home 
1=Worked during past week, exclusively on household chores; 0=not 

(F13B10). Variable only reported for ages 7 and up. 

  

Independent variables  

Age Integer age on census date (F3). 

Female 1=Female; 0=Male (F2). 

Born in municipality 1=Born in present municipality; 0=not (F4A). 

Lenca 1=Lenca or other non-mestizo ethnicity/race; 0=not (F5). 

Moved 
1=Resided in a different caserío, aldea, or city in 1996;0=resided in current 

caserío, aldea, or city in 1996 (). 

Father is literate 1=Father is literate; 0=not (F7, F1, F2). 

Mother is literate 1=Mother is literate; 0=not (F7, F1, F2). 

Father's schooling Years of father’s schooling (F9, F1, F2). 

Mother's schooling Years of mother’s schooling (F9, F1, F2). 

Dirt floor 1=Dwelling has dirt floor; 0=not (B5). 

Piped water 1=Dwelling has piped water from public or private source; 0=not (B6). 

Electricity 
1=Electric light from private or public source; 0=light from another source 

(ocote, etc.) (B8). 

Rooms in dwelling Number of bedrooms used by household (C1). 

Sewer/septic 1=Household has toilet connected to sewer or septic system; 0=not (C5). 

Auto 1=Household has at least one auto; 0=not (C7). 

Refrigerator 1=Household has refrigerator; 0=not (C8a). 

Computer 1=Household has computer; 0=not (C8g). 

Television 1=Household has television; 0=not (C8e). 

Mitch 
1= at least 1 household member emigrated after Hurricane Mitch in 

October 1998; 0=not (E1). 

Household members Total individuals residing in household. 

Household members, 0-17 Total individuals, ages 0-17, residing in household. 

  

 

Notes: The 2001 Honduran census form is available at 

http://unstats.un.org/unsd/demographic/sources/census/quest/HND2001es.pdf  
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Appendix B: Treatment-control balance 

 

Table B.1: Balance in experiments 1 and 2 (≤ 2 kilometers from border) 

 

 Experiment 1 sample Experiment 2 sample 

 T/C p-value T/C p-value 

 differences  differences  

Age -0.055/-0.029 0.124 -0.066/-0.036 0.333 

Female 0.000/0.000 0.961 0.005/0.011 0.452 

Born in municipality -0.016/-0.059 0.325 -0.015/-0.055 0.482 

Lenca -0.007/-0.014 0.925 -0.057/-0.129 0.632 

Moved 0.004/0.026 0.419 0.015/0.082 0.088 

Father is literate 0.030/0.062 0.305 0.029/0.059 0.539 

Mother is literate 0.027/0.055 0.277 0.030/0.061 0.467 

Father's schooling 0.228/0.086 0.285 0.432/0.150 0.382 

Mother's schooling 0.215/0.083 0.234 0.407/0.144 0.350 

Dirt floor 0.046/0.102 0.312 0.078/0.167 0.347 

Piped water -0.000/-0.001 0.994 -0.001/-0.003 0.981 

Electricity 0.012/0.032 0.802 0.085/0.217 0.322 

Rooms in dwelling 0.050/0.071 0.308 0.104/0.139 0.342 

Sewer/septic 0.049/0.107 0.171 0.050/0.105 0.434 

Auto -0.008/-0.040 0.455 0.012/0.058 0.512 

Refrigerator 0.004/0.019 0.831 0.035/0.142 0.377 

Computer 0.001/0.022 0.404 0.003/0.055 0.211 

Television 0.009/0.033 0.779 0.068/0.219 0.341 

Mitch 0.008/0.067 0.088 0.024/0.170 0.006 

Household members 0.186/0.078 0.087 0.310/0.128 0.067 

Household members, 0-17 0.146/0.076 0.115 0.274/0.141 0.075 

Predicted mean municipal 

child height-for-age z-

score 

0.001/0.004 0.989 -0.029/-0.129 0.735 

 

Note: See Table 4 for sample definitions of experiment 1 and 2. In the difference columns, the 

first number is the mean difference and the second number is the mean difference divided by the 

full-sample standard deviation. p-values account for clustering by municipality. 

 

  



 46 

  

Table B.2: Balance in the placebo sample (≤ 2 kilometers from border) 

  

 T/C p-value 

 differences  

Age 0.057/0.030 0.191 

Female 0.005/0.010 0.513 

Born in municipality 0.012/0.045 0.537 

Lenca 0.200/0.485 0.085 

Moved -0.013/-0.076 0.063 

Father is literate 0.009/0.019 0.750 

Mother is literate -0.043/-0.087 0.111 

Father's schooling -0.069/-0.026 0.771 

Mother's schooling -0.239/-0.095 0.261 

Dirt floor -0.020/-0.041 0.800 

Piped water -0.037/-0.077 0.439 

Electricity -0.046/-0.127 0.382 

Rooms in dwelling -0.007/-0.010 0.867 

Sewer/septic 0.023/0.050 0.632 

Auto -0.015/-0.075 0.177 

Refrigerator -0.008/-0.037 0.691 

Computer -0.000/-0.014 0.587 

Television -0.019/-0.073 0.495 

Mitch -0.008/-0.084 0.066 

Household members -1.036/-0.156 0.266 

Household members, 0-17 -0.977/-0.161 0.254 

Predicted mean municipal 

child height-for-age z-

score 

-0.495/-1.423 0.001 

 

Note: See the text for definition of the placebo sample. In the difference column, the first number 

is the mean difference and the second number is the mean difference divided by the full-sample 

standard deviation. p-values account for clustering by municipality. 
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Appendix C: Covariate differences between experimental subsamples (≤ 2 kilometers from 

border) 

 

Table C.1: All blocks 

 

 Experiment 2 - Experiment 1 

 Unweighted Weighted 

Age 0.009/0.005 -0.002/-0.001 

Female 0.000/0.000 -0.001/-0.001 

Born in municipality -0.004/-0.016 0.008/0.028 

Lenca -0.066/-0.141 0.002/0.003 

Moved 0.003/0.016 0.000/0.001 

Father is literate -0.014/-0.029 -0.001/-0.003 

Mother is literate 0.017/0.034 0.000/0.000 

Father's schooling 0.087/0.033 -0.007/-0.003 

Mother's schooling 0.208/0.080 -0.003/-0.001 

Dirt floor -0.040/-0.089 0.001/0.003 

Piped water 0.007/0.015 -0.007/-0.014 

Electricity 0.037/0.105 0.003/0.007 

Rooms in dwelling 0.037/0.052 -0.001/-0.001 

Sewer/septic 0.039/0.086 -0.008/-0.017 

Auto 0.003/0.013 0.000/0.001 

Refrigerator 0.013/0.060 0.002/0.010 

Computer 0.001/0.016 0.000/0.002 

Television 0.028/0.105 0.003/0.012 

Mitch 0.006/0.054 0.000/0.001 

Household members -0.079/-0.033 0.003/0.001 

Household 

members, 0-17 

-0.082/-0.043 0.000/0.000 

Predicted mean 

municipal child 

height-for-age z-

score 

0.052/0.204 0.015/0.058 

Block 1 or 2 

(proportion) 

-0.078/-0.158 -0.007/-0.015 

Estimated 

propensity score 

0.045/0.369 0.005/0.039 

 

Note: In each cell, the first number is the mean difference between the experiment 2 sample and 

experiment 1 sample; the second number is the mean difference divided by the standard 

deviation in the experiment 1 sample. In the weighted column, the means for experiment 2 apply 

inverse probability weights described in the text.  
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Table C.2: Blocks 1-2 

 

 Experiment 2 - Experiment 1 

 Unweighted Weighted 

Age -0.069/-0.037 -0.003/-0.002 

Female -0.002/-0.005 -0.003/-0.005 

Born in municipality 0.003/0.012 0.015/0.055 

Lenca -0.008/-0.015 0.002/0.004 

Moved 0.010/0.061 -0.001/-0.006 

Father is literate 0.019/0.039 0.006/0.012 

Mother is literate 0.063/0.126 0.001/0.003 

Father's schooling 0.486/0.183 0.031/0.012 

Mother's schooling 0.658/0.250 0.006/0.002 

Dirt floor -0.073/-0.173 -0.005/-0.012 

Piped water 0.060/0.123 -0.016/-0.032 

Electricity 0.122/0.396 0.001/0.004 

Rooms in dwelling 0.166/0.223 -0.005/-0.007 

Sewer/septic 0.083/0.176 -0.008/-0.018 

Auto 0.023/0.127 -0.001/-0.007 

Refrigerator 0.055/0.280 0.001/0.006 

Computer 0.003/0.087 0.000/0.001 

Television 0.103/0.405 0.001/0.004 

Mitch 0.020/0.163 0.001/0.005 

Household members -0.038/-0.016 -0.006/-0.002 

Household 

members, 0-17 

-0.107/-0.056 -0.005/-0.003 

Predicted mean 

municipal child 

height-for-age z-

score 

0.041/0.213 0.026/0.134 

Estimated 

propensity score 

0.077/0.535 0.005/0.035 

 

Note: In each cell, the first number is the mean difference between the experiment 2 sample and 

experiment 1 sample; the second number is the mean difference divided by the standard 

deviation in the experiment 1 sample. In the weighted column, the means for experiment 2 apply 

inverse probability weights described in the text.  
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Table C.3: Blocks 3-5 

 

 Experiment 2 - Experiment 1 

 Unweighted Weighted 

Age 0.041/0.022 0.008/0.004 

Female 0.003/0.005 -0.000/-0.001 

Born in municipality -0.008/-0.027 0.001/0.004 

Lenca -0.068/-0.158 -0.003/-0.008 

Moved -0.001/-0.007 -0.001/-0.004 

Father is literate -0.020/-0.041 -0.010/-0.020 

Mother is literate -0.008/-0.016 -0.005/-0.011 

Father's schooling -0.052/-0.020 -0.049/-0.019 

Mother's schooling -0.016/-0.006 -0.044/-0.017 

Dirt floor -0.014/-0.029 0.004/0.010 

Piped water -0.024/-0.051 -0.006/-0.013 

Electricity -0.011/-0.029 0.001/0.002 

Rooms in dwelling -0.022/-0.031 -0.008/-0.012 

Sewer/septic 0.025/0.055 -0.008/-0.017 

Auto -0.008/-0.040 -0.002/-0.008 

Refrigerator -0.009/-0.037 0.001/0.004 

Computer -0.001/-0.015 0.000/0.001 

Television -0.009/-0.032 0.003/0.009 

Mitch 0.000/0.001 -0.000/-0.002 

Household members -0.065/-0.027 0.007/0.003 

Household 

members, 0-17 

-0.043/-0.023 0.009/0.005 

Predicted mean 

municipal child 

height-for-age z-

score 

0.007/0.084 0.001/0.008 

Estimated 

propensity score 

0.048/0.358 0.001/0.007 

 

Note: In each cell, the first number is the mean difference between the experiment 2 sample and 

experiment 1 sample; the second number is the mean difference divided by the standard 

deviation in the experiment 1 sample. In the weighted column, the means for experiment 2 apply 

inverse probability weights described in the text.  
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Appendix D:  Experimental and quasi-experimental estimates that exclude department 

borders (≤ 2 kilometers from border) 

 

Table D.1: Estimates for experiments 1 and 2 (dependent variable: enrolled in school) 

 
 All blocks Blocks 1-2 Blocks 3-5 

    

Experiment 1 0.094*** 0.167*** 0.047* 

 (0.026) (0.045) (0.024) 

N 54089/70 22344/28 31745/42 

 BS p(sym) 0.007 0.013 0.092 

    

Experiment 2 0.056 0.141* 0.029 

 (0.036) (0.074) (0.039) 

N 17156/43 5736/14 11420/29 

 BS p(sym) 0.210 0.150 0.575 

    

Experiment 2, weighted 0.056 0.139* 0.012 

 (0.039) (0.071) (0.039) 

N 17156/43 5736/14 11420/29 

 BS p(sym) 0.253 0.135 0.777 

    
 

Note: *** indicates statistical significance at 1%, ** at 5%, and * at 10%. Robust standard errors 

are in parentheses, clustered by municipality. N indicates the number of eligible children and the 

number of municipalities. BS p(sym) is the symmetric p-value from a wild cluster-bootstrap 

percentile-t procedure with 399 replications. All regressions control for the variables described in 

the note to Table 1. 
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Table D.2: Estimates for experiments 1 and 2 (dependent variable: works outside home) 

 
 All blocks Blocks 1-2 Blocks 3-5 

    

Experiment 1 -0.047*** -0.086*** -0.020* 

 (0.013) (0.024) (0.012) 

N 44433/70 18277/28 26156/42 

 BS p(sym) 0.003 0.003 0.152 

    

Experiment 2 -0.033 -0.107** -0.004 

 (0.020) (0.043) (0.017) 

N 14139/43 4656/14 9483/29 

 BS p(sym) 0.182 0.058 0.858 

    

Experiment 2, weighted -0.040* -0.104** -0.004 

 (0.022) (0.041) (0.017) 

N 14139/43 4656/14 9483/29 

 BS p(sym) 0.120 0.043 0.855 

    

 

Note: *** indicates statistical significance at 1%, ** at 5%, and * at 10%. Robust standard errors 

are in parentheses, clustered by municipality. N indicates the number of eligible children and the 

number of municipalities. BS p(sym) is the symmetric p-value from a wild cluster-bootstrap 

percentile-t procedure with 399 replications. All regressions control for the variables described in 

the note to Table 1. 
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Table D.3: Estimates for experiments 1 and 2 (dependent variable: works only in home) 

 

 All blocks Blocks 1-2 Blocks 3-5 

    

Experiment 1 -0.042*** -0.061** -0.029* 

 (0.014) (0.024) (0.015) 

N 44433/70 18277/28 26156/42 

 BS p(sym) 0.018 0.075 0.105 

    

Experiment 2 -0.016 -0.023 -0.015 

 (0.020) (0.030) (0.024) 

N 14139/43 4656/14 9483/29 

 BS p(sym) 0.545 0.502 0.578 

    

Experiment 2, weighted -0.008 -0.022 -0.001 

 (0.020) (0.030) (0.024) 

N 14139/43 4656/14 9483/29 

 BS p(sym) 0.790 0.545 0.958 

    
 

Note: *** indicates statistical significance at 1%, ** at 5%, and * at 10%. Robust standard errors 

are in parentheses, clustered by municipality. N indicates the number of eligible children and the 

number of municipalities. BS p(sym) is the symmetric p-value from a wild cluster-bootstrap 

percentile-t procedure with 399 replications. All regressions control for the variables described in 

the note to Table 1. 
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Table D.4: Estimates for geographic quasi-experiment (all dependent variables) 

 

 All blocks Blocks 1-2 Blocks 3-5 

    

Enrolled in school 0.059* 0.073 0.047 

 (0.030) (0.055) (0.041) 

N 17288/56/43 5835/17/13 11453/41/30 

 BS p(sym) 0.062 0.205 0.300 

    

Works outside home -0.025 -0.085* -0.001 

 (0.017) (0.052) (0.014) 

N 14200/56/43 4724/17/13 9476/41/30 

 BS p(sym) 0.133 0.058 0.968 

    

Works only inside home 0.014 -0.005 0.023 

 (0.017) (0.028) (0.024) 

N 14200/56/43 4724/17/13 9476/41/30 

 BS p(sym) 0.468 0.887 0.398 

    
 

Note: *** indicates statistical significance at 1%, ** at 5%, and * at 10%. Robust standard errors 

are in parentheses, clustered by municipality and border segment (see text for details). N 

indicates the number of eligible children, municipalities, and border segments. BS p(sym) is the 

symmetric p-value from a wild cluster-bootstrap percentile-t procedure (clustering on 

municipalities) with 399 replications. All regressions control for the variables described in the 

note to Table 1 (but excluding block dummy variables). 

 




