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ABSTRACT
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economically viable storage options, renewable energy integration has so far been possible thanks 
to the presence of fast-reacting mid-merit fossil-based technologies, which act as back-up 
capacity. This paper discusses the role of fossil-based power generation technologies in 
supporting renewable energy investments. We study the deployment of these two technologies 
conditional on all other drivers in 26 OECD countries between 1990 and 2013. We show that a 
1% percent increase in the share of fast-reacting fossil generation capacity is associated with a 
0.88% percent increase in renewable in the long run. These results are robust to various 
modifications in our empirical strategy, and most notably to the use of system-GMM techniques 
to account for the interdependence of renewable and fast-reacting fossil investment decisions. 
Our analysis points to the substantial indirect costs of renewable energy integration and highlights 
the complementarity of investments in different generation technologies for a successful 
decarbonization process.
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1. Introduction 
The ability to match future economic growth with reduced pressure on the environment (through so-called 

“green growth”) is inextricably linked with the deployment and diffusion of low carbon technologies. A 

crucial sector in this respect is that of energy, which in 2012 accounted for two thirds of global CO2 

emissions. Indeed, this sector alone can contribute to more than 40% of the emission reductions needed for 

a “Two Degree Scenario”. To achieve this goal, it will be necessary among other things to deploy 

renewable energy sources and reduce the carbon intensity of fossil-based generation technologies (IEA 

2015). 

The widespread diffusion of cleaner technologies in the energy sector is currently hindered for three 

main reasons. First, renewable technologies recently witnessed dramatic decreases in costs, but they are 

not yet fully cost-competitive with fossil-based power generation, except in favorable geographical 

locations. Second, the energy sector is sticky and a change in the paradigm of electricity production faces 

multiple challenges: the need to upgrade infrastructure (i.e. the electricity grid) and the considerable sunk 

costs in existing, less efficient power plants. Third, renewable energy sources such as wind and solar, 

which today are the most cost-competitive options, are intermittent and non-dispatchable. Increasing the 

penetration of these energy sources in the system is particularly challenging given the current lack of 

cheap large-scale storage technologies. Indeed, this last issue may prove the most crucial, as it would 

challenge the deployment of renewables even if these were cost competitive and old fossil-based capital 

vintages were close to the end of lifetime.  

We shed some light on how renewable energy integration has been historically handled. The topic we 

address is not new to energy system operators and experts: unlike energy produced using fossil fuel 

sources, generation from the most promising renewables is non-dispatchable and often reaches peak 

supply in times not coinciding with peak demand. 1  This increases the risk of shortage, and lowers 

reliability and security of supply. To compensate, much back-up generation capacity needs to be kept in 

place. For instance, Eon Netz (2004), one of the four grid managers in Germany, indicates that 8 MW of 

back-up capacity are required for any 10 MW of wind capacity added to the system. Martin Hermann, 

CEO of 8minutenergy Renewables, argues that only the ability to store solar electricity for three to five 

hours will eventually “allow a precise overlap between the PV production curve and the demand peak,” 

while 20 hours of storage are necessary for PV to work as a base load resource (REW 2011). Such large 

scale storage technologies or the dispatch of electricity over long distances are still not possible at 

                                                           
1 For instance, wind turbines produce most electricity in the early hours of the day and at night and cannot cover daytime peak 
demand; wind speeds vary significantly from day to day but also between seasons. Solar power plants output is strongly affected 
by cloud coverage and varies between seasons. Hence, it can cover daytime peak load, but not the residential sector nighttime 
peak load demand. Both these renewable energy options require a significant amount of backup capacity. 
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competitive costs at present. 2  Indeed, the issue of how to successfully manage renewable energy 

integration has attracted increasing attention, especially as their share in the system increases to levels 

never witnessed before (Carrrara and Marangoni 2015).  

To date, back-up capacity has been mostly provided through fossil-based technologies. Importantly, 

there are different categories of fossil-based technologies. Base-load fossil generation (BLF henceforth), 

which comprises coal based and low efficiency generation technologies, cannot easily compensate for 

renewable variability due to slow reacting times and high capital costs. Fast-reacting fossil technologies 

(FRF henceforth), which includes most gas-generation technologies, Combined Heat and Power and 

Integrated Gasification Combined Cycle to name a few, are characterized by mid-merit order, quick ramp-

up times, lower capital costs and modularity (meaning that efficiency does not fall significantly with size). 

They are thus particularly suitable to meet peak demand and mitigate the variability of renewables.  

A careful consideration of the relationship between renewable capacity and other generation 

technologies, and especially fast-reacting fossil-based electricity generation, unveils two significant 

shortcomings of existing empirical and theoretical analyses. First, it highlights that the trade-off between 

renewable deployment and security of supply is exacerbated as renewable penetration increases. Second, it 

suggests that unless cheap storage options become widely available in the immediate future, the 

penetration of renewable energy will increase system costs, as a significant amount of capital-intensive 

and under-utilized back-up capacity will have to be maintained. Overlooking these two issues leads to an 

underestimation of the costs of the energy transition. This is particularly troublesome considering that 

higher renewable penetration rates will further increase system variability and hence require a parallel 

expansion of back-up resources (NYISO, 2010 and REW 2011).  

We contribute to the debate by providing a careful macro-analysis of the historic interplay between the 

deployment of renewable and fossil electricity generation capacity in a sample of 26 Organization for 

Economic Cooperation and Development (OECD) countries between 1990 and 2013. As in the related 

paper by Popp et al. (2011), we focus on installed capacity as our proxy for technology investment and 

penetration. We complement previous contributions by focusing on the role of fossil-based technologies, 

and further splitting them into base-load and fast-reacting fossil generation. 

Controlling for country fixed effects and the rich dynamics of RE capacity, we show that, all other 

things equal, a 1% percent increase in the share of fast reacting fossil technologies is associated with a 

0.88% percent increase in renewable generation capacity in the long term. This is a sizeable effect, which 

is attributable to the high persistence of RE capacity in our dynamic specification. To be sure, the short-

term effect of a 1% increase in FRF capacity is a modest 0.03% increase in RE. This result is robust to 

                                                           
2 Electricity transmission operates under a number of significant constraints, among which the interconnections between different 
regional electricity grids and the capacity constraints of transmission lines that limit movement of energy. 
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various changes in the specification and in the estimation technique, including the use of system-GMM to 

account for the fact that investment decisions in renewable and fast-reacting fossil are correlated.  

The rest of the paper is organized as follows. Section 2 details some of the challenges of the 

integration of renewable energy generation in the power system, reviews the available literature on the 

topic, and highlights our contribution to the debate. Section 3 presents our dependent variable and main 

variables of interest and provides descriptive statistics. Section 4 details the empirical strategy. Section 5 

presents our results, and quantifies them in a detailed way. Section 6 concludes, highlighting the policy 

implications of our analysis.  

2. Managing renewable energy integration in the energy system 
Decoupling economic activities from fossil-fuel use (and hence, from anthropogenic carbon emissions) is 

the only way to avoid severe and pervasive impacts from climate change while sustaining economic 

growth (IPCC, 2014). As testified by the outcomes of the COP21, all governments are committed to 

addressing this challenge by implementing policies to promote cleaner technologies and to limit the use of 

polluting inputs. The integration of renewable sources in the energy system is one of the key components 

of such decarbonization strategy. However, as argued in the Introduction, this integration raises many 

challenges in terms of planning, operation, and reliability practice.3 In particular, renewable technologies 

are not comparable with fossil-based generation in terms of dispatchability. This translates into high 

system costs4 of renewable generation, as it requires holding significant back-up capacity to ensure a 

balanced energy supply throughout the day. In fact, these challenges will only further increase as the share 

of renewable energy generation increases to levels never witnessed before. To date these aspects have 

been only marginally considered in economic analyses of renewable energy deployment. 

The issue of how to match demand and supply instantaneously, and in particular to meet peak demand, 

has always characterized energy systems, since electricity cannot be stored in an economically viable way 

for extended periods of time or dispatched for long distances without significant loss. This means that 

even power systems fully based on dispatchable technologies (such as fossil fuels) incur into system costs 

due to the necessity to hold spinning capacity, namely reserve generation capacity always on hold to offset 

                                                           
3 For instance, renewables imply a more flexible and decentralized approach to energy generation. In addition, they shift the merit 
order of power generation options and lower the price of electricity. The merit order is a ranking criterion whereby in a centralized 
system generation capacity should be brought online in increasing order of marginal costs (considerations are also given to the 
amount of energy that can be generated). Implementing the merit order ensures that electricity dispatch is done minimizing the 
cost of production. Sometimes generating units must be started out of merit order, for instance in cases of transmission congestion 
or system reliability. The high demand for electricity during peak hours pushes up the bidding price for electricity, and the 
relatively inexpensive base-load power supply mix is supplemented by ‘peaking power plants,' which charge a premium for their 
electricity since their marginal costs are higher. Renewable sources, with high merit, hence reduce the overall costs of electricity, 
and particularly so in times of peak demand (Sensfuss and Ragwitz 2008). 
4 System costs are the total costs above plant-level to supply electricity at a given load and given level of security of supply. 
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variations in demand and supply. Generally speaking, peak demand has been met thanks to gas-fired and 

diesel turbines, which have fast rump-up times and are modular.5 Conversely, other technologies with 

higher capital costs, lower operating costs and slower reaction times (such as coal-based or nuclear power 

plants) have been used to handle base-load production.  

The problem of matching demand and supply is magnified in the case of renewables due to their 

variability vis-à-vis fossil-based generation and to the fact that times of peak production do not necessarily 

take place at times of high demand. Variability in generation has been identified as a significant barrier to 

the integration of both wind and solar resources (e.g., GE Energy 2008, Lorenz et al. 2011, Marquez and 

Coimbra 2011, Mathiesen and Kleissl 2011, Gowrisankaran et al 2016, Sinn 2016). To date, given their 

relatively low penetration, the integration of renewable sources has not required drastic changes in system 

operations. Peak-load generation technologies such as gas turbines have been used to compensate for 

variability, alongside other load-following “mid-merit” generation technologies (such as combined cycle, 

and specifically combined cycle gas turbines), which have been used to this end as the penetration of 

renewables increased in the last decades.6  

As a result, the estimated indirect costs of renewables are at least an order of magnitude greater than 

those associated with dispatchable fossil-fuel technologies. For the latter, system costs are relatively 

modest, generally estimated below USD 3 per MWh in OECD countries. For the formers, such costs are as 

high as USD 40 per MWh for onshore wind, USD 45 per MWh for offshore wind and USD 80 per MWh 

for solar (IEA 2012). These high estimates are the direct results of the need for additional system reserves 

and back-up generation to ensure system reliability.7 Renewable energy system costs will also increase 

over-proportionally with the amount of variable electricity in the system, with far-fetching implications for 

the energy markets and security of supply (OECD 2012, NYISO 2010, IEA 2012, Baker et al. 2013, Sinn 

2016).8Ignoring them can thus lead to a severe underestimation of the social and private costs of any 

energy transition.  

                                                           
5 Unlike steam turbines, which require a period of 1-1.5 hours for heating after start up, cold gas turbines heat within 6 to15 
minutes following the start-up (http://www.eolss.net/sample-chapters/c18/e6-43-33-06.pdf). The most attractive option is to use 
the most efficient types of gas-fired plants as back-up capacity. These consist of co-generation gas-fired plants, which use gas to 
produce both electricity and heat for additional applications. Co-generation is an attractive option since back-up capacity is used 
below peak and often at low levels of capacity. Unfortunately, our data do not allow discerning if gas turbines are used in co-
generation mode. Hydro generation has also been traditionally used to meet peak demand, as electricity production can rump up 
fast. However, hydro is very dependent on endowment and it is unlikely that it can be expanded further (especially in big plants) 
since most of the resource is already exploited in most of the countries included in our sample. Biomass is also an excellent 
candidate, but concerns over tradeoffs relating to land use for biomass and biofuel production versus food are high. 
6 Such technologies can respond to changes in load much faster than conventional steam power plants, but slower than gas 
turbines (see http://www.wartsila.com/energy/learning-center/technical-comparisons/combustion-engine-vs-gas-turbine-part-load-
efficiency-and-flexibility and http://iea-etsap.org/web/Highlights%20PDF/E02-gas_fired_power-GS-AD-gct%201.pdf ) 
7 Indeed, Baker et al. (2013) argue that new solar PV capacity displaces only a small percentage of already existing dispatchable 
capacity. 
8 To attenuate such costs, it will be necessary for system operators to alter system infrastructure, introduce demand-side 
management programs, and change the operating capabilities of conventional generation. 

http://www.eolss.net/sample-chapters/c18/e6-43-33-06.pdf
http://www.wartsila.com/energy/learning-center/technical-comparisons/combustion-engine-vs-gas-turbine-part-load-efficiency-and-flexibility
http://www.wartsila.com/energy/learning-center/technical-comparisons/combustion-engine-vs-gas-turbine-part-load-efficiency-and-flexibility
http://iea-etsap.org/web/Highlights%20PDF/E02-gas_fired_power-GS-AD-gct%201.pdf
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Notwithstanding the importance of this topic, the economic literature focusing on energy innovation 

and deployment has largely overlooked this issue to date. A first set of contributions focuses on the role of 

energy and environmental policies in promoting renewable investment and deployment, proxied by 

installed capacity. Shrimali and Jenner et al. (2013) explore the contribution of different policy 

instruments to solar PV development in the US commercial and residential sectors over the years 1998-

2009, but their analysis does not touch upon the possible role of other generation technologies. Jenner et 

al. (2013) extend the analysis to the EU and show that solar PV deployment has been driven by feed-in 

tariffs (FITs). They partially recognize the role of other generation technologies in affecting RE 

investments (i.e. yearly capacity additions) by conditioning their empirical analysis on the share of power 

generation from traditional energy sources (nuclear, coal and gas), but they do not distinguish between the 

roles of different fossil-based technologies (FRF vs. BLF) and they do not discuss the implication of their 

findings in this respect. Popp et al. (2011) show that technological improvements have a small positive 

impact on investments in RE generation in OECD countries, but find that policies are not significant. Also 

in this case, the analysis does not control for the possible interaction between investments in renewable 

energy and (fast-reacting) fossil generation technologies. Generally speaking, the role of fossil-based 

generation is overlooked in these studies under the implicit assumption of high substitutability between 

clean and dirty technologies. This assumption is shared by the theoretical contributions on directed 

technical change, which assume a relatively high degree of substitutability between the two (Acemoglu et 

al., 2012). We contribute to this strand of literature by providing the first macro-level empirical analysis of 

the diffusion of RE generation while accounting for the interaction with investments in other generation 

capacity, and specifically fossil-based capacity. In addition, our empirical specification takes into account 

a rich dynamic structure of investments in power generation, improving on the linear technological model 

of diffusion which is assumed in Popp et al. (2011).   

A second strand of empirical literature studies the determinants of renewable energy deployment by 

focusing on power production (rather than capacity), with no specific attention to the role of energy and 

environmental policies. Aguirre and Ibikunle (2014) investigate the drivers of country-level RE growth in 

a broad sample size of countries (including Brazil, Russia, India, China and South Africa). They show that 

coal, oil and gas contribution to electricity generation is negatively associated with renewable growth (see 

also Pfeiffer and Mulder, 2013). Narbel (2013) provides evidence that RE generation is inversely related 

to energy dependency from abroad, proxied by coal imports. Overall, these contributions suggest that 

renewable and fossil energy are substitutes, as the share of renewable generation is inversely related to the 

share of fossil generation. However, by focusing on the actual amount of electricity produced, these 

studies cannot provide any insights on the sunk costs associated with back-up capacity. As argued in 

Jenner et al. (2013) “generation determines the actual return on investment while capacity reflects the 
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expected return on investment.” Our analysis contributes to this strand of literature by exploring the 

relationship between renewable and other generation technologies using capacity rather than production 

data. In this way, we are able to capture the investment decision as purely as possible, since capacity 

informs on investments without being confounded by other forces that investors cannot fully foresee or 

control, such as weather conditions, equipment performance, and other such factors.  

A third strand of literature comprises the contributions which use integrated assessment models 

(IAMs) to provide insights on the evolution of demand and the generation mix over time. In these models 

is it of paramount importance to properly account for the constraints imposed by variable renewable 

energy sources. Carrara and Marangoni (2015) show that several strategies are adopted to this end in 

IAMs, depending on the granularity of the model and the complexity with which it portrays the energy 

sector. For instance, some models impose hard upper bounds on variable renewable sources penetration, 

while others rely on implicit or explicit cost mark-up for renewables, or constraints on the flexibility or 

installed capacity of the power generation fleet. Our contribution provides insights on the historical 

interaction between renewable and fossil generation technologies, and can inform the IAMs community 

regarding the calibration of such constraints. This is particularly true for those models which describe the 

energy system at the aggregate level and considering that we provide both short-run and long-run 

estimates.  

Our focus is thus on the historic relationship between renewable energy integration and the presence 

of fossil-based generation technologies which are used as back-up capacity. The core of the paper is 

devoted to the empirical investigation of whether, absent cost-competitive storage technologies, the 

successful integration of renewable was possible (and higher) partly due to the availability of fast-reacting 

fossil-based units. In the next Section, we describe in detail our data sources, while Section 4 presents our 

empirical approach. 

3. Data and Descriptive Statistics 
Our sample includes 26 OECD countries betweeen 1990 and 2013. 9  Our dependent variable is the 

percentage of net installed electrical capacity in RE technologies (𝐶𝑎𝑝𝑖𝑡𝑅𝐸) over total electricity capacity 

(𝑇𝑜𝑡𝐶𝑎𝑝𝑖𝑡)  in country i, time t, which reflects the investment decision as purely as possible (see 

discussion in Section 2):   

                                                           
9 The sample is slightly unbalanced due to missing data and includes: Australia, Austria, Belgium, Canada, the Czech Republic, 
Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, the Netherlands, New Zealand, Norway, Poland, 
Portugal, the Slovak Republic, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The missing 
values are concentrated at the end of the sample period for France and Germany, while at the beginning of the sample period for 
the Czech Republic and the Slovak Republic. These countries account for the majority of worldwide RE investment over the 
period considered. 
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𝑆ℎ𝑎𝑟𝑒 𝐶𝑎𝑝𝑖𝑡𝑅𝐸 =
𝐶𝑎𝑝𝑖𝑡𝑅𝐸

𝑇𝑜𝑡𝐶𝑎𝑝𝑖𝑡
∗ 100  

Renewable energy technologies include solar, wind, geothermal, ocean/tide/wave and biomass from 

the IEA Renewable Energy Information Database (2016a). We exclude hydro from the calculation of RE 

capacity because, as pointed out by Popp et al. (2011), it is a mature technology for which most of the 

natural endowment is already exploited. Furthermore, hydro is a fast-reacting dispatchable technology and 

is often used to meet peak demand. As such, it does not share the same characteristics and limitations of 

the other RE technologies. Furthermore, since our main argument is that FRF technologies compensate for 

the variability of RE, we test the robustness of our results by also excluding biomass (which is storable) 

from the definition of RE capacity. 

Fossil technologies are split into base-load fossil generation and fast-reacting fossil technologies, 

with the latter being the best candidates to compensate for renewable variability, as argued above. The 

IEA Electricity Information Database (2016b) distinguishes between the following generation 

technologies: Gas Turbines; Combined Cycle; Internal combustion/diesel; Steam; and Other type of 

generation. We define FRF as the sum of Gas Turbines and Combined Cycle, as these are mid-merit 

technologies often used to address peak load. Conversely, we define BLF as Internal combustion/diesel; 

Steam; and Other type of generation. These are technologies which are generally characterized by lower 

efficiency levels and slower ramp up times.10 

Figure 1 shows the development of the shares of installed capacity in RE, FRF and BLF for 

selected countries and on average in the sample. The share of BLF technologies declined over time except 

in Japan, with some countries such as Denmark and Italy experiencing a rather sharp decrease. 

Conversely, both RE and FRF technologies increased significantly, especially in the second part of the 

sample, albeit with different rates across countries. A sharp and more uniform increase in renewable 

characterizes EU countries starting around the signing of the Kyoto Protocol. Denmark stands out, with 

very high investments in RE already in the 1990s, almost entirely due to wind power. We see a similar 

change in FRF around the year 1996, with some countries, such as Italy and the US, increasing capacity 

significantly. 

 

                                                           
10 IEA (2016b) allows a breakdown based on the energy carrier (gas, oil, coal or other combustible fuels) Unfortunately, it is not 
possible to distinguish installed capacity along both dimensions (i.e. energy carrier and conversion technology (IEA 2013).  
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Figure 1: Share of installed capacity in RE, FRF, BLF, average and selected countries. 

 

To explore the relationship between RE and FRF capacity, we estimate a regression model where the 

capacity share in FRF technology (𝑆ℎ𝑎𝑟𝑒 𝐶𝑎𝑝𝑖𝑡𝐹𝑅𝐹) is the main explanatory variable of interest, and is 

included in a regression alongside other determinants previously explored in the literature. This allows us 

to quantify the relationship between 𝑆ℎ𝑎𝑟𝑒 𝐶𝑎𝑝𝑖𝑡𝑅𝐸  and 𝑆ℎ𝑎𝑟𝑒 𝐶𝑎𝑝𝑖𝑡𝐹𝑅𝐹  ceteris paribus, namely 

conditioning our estimates on several other confounding factors affecting the level of RE generation 

capacity in country i at time t.  

Among the most important drivers of renewable deployment previously identified in the literature are 

public policies, which pertain to two realms: environmental policy and market regulation. On the one 

hand, environmental policies such as feed-in tariffs, tax credits, emission targets and investment incentives 

are specifically designed to accelerate the diffusion of RE technologies by reducing the cost wedge with 

fossil generation. Their role in supporting the development and diffusion of renewable technologies has 

been widely explored in the theoretical and empirical literature (see Popp et al 2010 for a review). As 

such, our analysis necessarily includes them among the key determinants of renewable investments.  
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On the other hand, the liberalization of the electricity market had the effect, among the other things, of 

shifting the balance of power from centralized, large and regulated providers to smaller actors specialized 

in cleaner technologies (Nicolli and Vona, 2016). While it is theoretically well established that the degree 

of competition in the energy market affects the incentives to innovate in renewable energy technologies 

(Nesta et al. 2014; Nicolli and Vona, 2016), this is to the best of our knowledge the first paper to consider 

the effect of market competition on the deployment of both renewable and fossil energy technologies. 

Conditioning our analysis on the level of market liberalization is particularly important given the 

significant changes that characterized OECD countries in the last decades.  

Regarding environmental policies, we use data from the OECD Environmental Policy Stringency 

(EPS) database (Botta and Koźluk 2014). This data includes information 15 environmental policy 

instruments for OECD countries over the years 1990-2012, and rates their stringency on a scale from 1 

and 6.11 Among the policy instruments included in the EPS database, we select the ones that are more 

relevant for the power sector. In line with the findings of Johnstone et al. (2010), we include in our 

preferred specification feed-in tariffs (FITs) and renewable energy certificates as the most important 

policies supporting RE deployment. FITs promote the integration of renewable in the power system by 

guaranteeing a fixed remuneration to RE generation. Our underlying assumption is that feed-in-tariffs are 

particularly effective in supporting new and small producers in the power market. Conversely, renewable 

energy certificate promote RE deployment by requiring that utilities produce or purchase a certain share of 

renewable power as part of their portfolio. In this respect, certificates are expected to be particularly 

effective. We define the variable “FIT” as the average of a country’s score for the solar and wind FITs 

from the EPS database. The variable “Certificates” is defined as the average of the score for White, Green 

and CO2 certificates.  

We also test also the effects of other two policy instruments in additional empirical specifications: 

“Taxes” (defined as the average of CO2, SOx, NOx and Diesel taxes scores) and “Limits” to pollutants 

(defined as the average of SOx, NOx, and Particulate Matters limits scores). Unlike FITs and Certificates, 

these do not provide a direct incentive to invest in RE and thus are expected to have smaller effect on the 

deployment of RE.  

Regarding the level of market regulation, we include the OECD index capturing the level of entry 

barriers in the electricity market, which accounts for both freedom of access to the grid by producers and 

freedom of choice by consumers. The index varies on a 1-6 scale, with the highest values indicating a 

higher level of entry barrier (Conway et al., 2005). The scale of production for RE installation is usually 
                                                           
11 The OECD EPS database contains information on 15 different environmental policy instruments implemented in OECD 
countries, which include Non-Market Based (NMB) and Market Based (MB) instruments. NMB policies are limits to pollutants 
(SOx, NOx, Particulate Matters and Sulphur Content of Diesel) and Government energy-related R&D expenditures as a 
percentage of GDP. MB policies are feed in tariffs (FITs - Solar and Wind), taxes (on CO2, SOx, NOx and Diesel), certificates 
(White, Green and CO2) and the presence of deposit and refund schemes (DRS).  
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much smaller than the one of traditional fossil plants (e.g. rooftop PV) and more suitable for a 

decentralized market composed of several producers. Therefore, we expect that the diffusion of both RE 

and small scale FRF technologies will be favored by the reduction of entry barriers. 

Hence, the basic vector of policy controls 𝐏𝐎𝐋 in our analysis is defined as follows:  

 

𝐏𝐎𝐋𝑖𝑡−1 = [FITit−1;Certi�icatesit−1;  PMRit−1] 

To capture the optimal lag between all variables in the 𝐏𝐎𝐋 vector and our dependent variable, we use 

a moving average of the policy variables between 𝑡 − 1  and 𝑡 − 3 . We limit ourselves to this time 

window, rather than considering all lags of the policy proxies between 𝑡 − 1  and 𝑡 − 𝑘 , to be 

parsimonious, given that, as we will explain more in detail below, our empirical strategy already takes into 

account a rich dynamic structure of the dependent variable.  

Figure 2 shows the evolution of the policy variables on average in our sample and for selected 

countries. FITs increased steadily over time, indicating that more and more countries relied on this policy 

instrument to promote renewable energy capacity and generation. However, countries like Italy or 

Denmark experience high fluctuations. The use of Certificates started around the year 2000, and increased 

very fast after 2005, but with some heterogeneity across countries. Japan and the US score rather low on 

this specific policy instrument. The deregulation of the power sector (PMR) led to a rather sharp increase 

in entry (i.e. a decrease of entry barriers) in all countries since the mid-1990s. The use of Taxes in the 

sample has increased, but at a much lower speed than other policy instruments, including Limits to 

pollutants.  

To isolate the true relation between installed capacity in the different power generation technologies, 

our model controls for additional confounding factors likely to affect RE investments. Details on the data 

source for each variable are presented in Table 1. 

First, GDP per capita and electricity consumption are included to capture overall economic well-

being, expectations about future demand and as well as all other demand-side factors not captured by the 

policy indicators and related to country or economy size. All these forces are expected to increase the need 

for new generation capacity irrespective of the technology considered.  
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Figure 2: Indexes of policy stringency - FITs, Certificates, PMR, Taxes, Limits -- average and selected 

countries.  

 
Second, we include a set of controls specific to the country’s energy system. For instance, France 

relies heavily on nuclear power, which is a carbon free source of electricity, and this should decrease its 

need to invest in either renewable or fossil-based technologies. We hence include the share of capacity in 

nuclear as a control variable. Conversely, as shown in Narbel (2013), investments in alternative energy 
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sources are lower in countries which are less dependent on energy imports. The same can be argued with 

respect to investments in higher efficiency fossil-based power production. We control for energy 

dependence by including a variable defined as net energy imports over total energy use. A variable 

controlling for rents associated with the extraction of coal, oil and gas is also included as a way to capture 

in-house resource advantages in fossil fuel endowments and profitability, which likely affect the 

incentives to invest in any type of additional generation capacity. We also add the average age of each 

installed megawatt of electricity capacity to proxy for the fact that countries with older capital stock are 

more likely invest in new capacity.  

Third, although large scale storage technologies for power production are not available in the market 

at cost-competitive prices during our sample period, expectations about the fast deployment of such 

technologies may influence investment decisions. Therefore, we control for the technological evolution of 

storage technologies by including in our specification a variable measuring the knowledge stock in storage 

and smart grids technologies. This is built using the perpetual inventory method, as in Verdolini and 

Galeotti (2011). 

 
Table 1: Descriptive Statistics 
 

 
 

Variable Mean Median Quartile_1 Quartile_3 SD Minimum Maximum Data Source
Share of REN capacity 
(excl. hydro, waste)

0.05 0.02 0.00 0.07 0.08 0 0.47 IEA 2016a

Share of REN capacity 
(excl. hydro, waste, biomass)

0.04 0.01 0.00 0.04 0.07 0 0.40 IEA 2016a

Share of FRF capacity 0.13 0.09 0.03 0.21 0.12 0 0.49 IEA 2016b
Share of BLF capacity 0.46 0.47 0.28 0.62 0.23 0.005 0.93 IEA 2016b
Share of NUKE capacity 0.12 0.11 0.00 0.19 0.14 0 0.55 IEA 2016b
Share of HYDRO capacity 0.27 0.19 0.08 0.37 0.25 0.001 1.00 IEA 2016a

Limits 2.14 0.99 0.99 3.96 1.64 0 5.94 Botta and 
Koźluk 2014

Taxes 0.80 0.00 0.00 1.65 1.03 0 3.96 Botta and 
Koźluk 2014

PMR 2.65 2.00 0.00 6.00 2.64 0 6.00 Conway et al. 
2005

FIT 1.39 0.00 0.00 2.50 1.78 0 6.00 Botta and 
Koźluk 2014

Certificates 0.54 0.00 0.00 0.66 0.97 0 5.28 Botta and 
Koźluk 2014

Knowledge stock 
(storage/grid)

83.40 7.96 1.52 35.49 239.10 0 2022.00 OECD 2015

Knowledge stock 
(storage/grid/FC/H2)

188.40 17.23 3.52 78.34 516.20 0 3963.00 OECD 2015

Fossil Fuel Rents 1.03 0.11 0.01 0.86 2.78 0 21.22 WDI 2016
GDP per capita 10.33 10.41 10.15 10.60 0.39 9.15 11.09 WDI 2016
Energy Dependence 0.08 0.06 0.02 0.12 0.09 0 0.59 WDI 2016
Energy Consumption 1215 472 218 1171 2457 43 14494.00 WDI 2016
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Table 2: Descriptive Statistics, by country  
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Average 0.05 0.04 0.13 0.46 0.12 0.27 2.14 0.80 2.65 1.39 0.54 83.40 188.40 1.03 10.33 2.72 0.08 1215
Australia 0.03 0.02 0.13 0.67 0.00 0.18 0.32 0.65 1.64 0.46 0.47 7.69 26.79 1.98 10.47 2.60 0.00 654
Austria 0.08 0.03 0.11 0.24 0.00 0.63 3.63 0.00 2.78 2.39 0.53 9.58 21.73 0.14 10.55 2.70 0.19 245
Belgium 0.05 0.03 0.19 0.34 0.36 0.09 2.67 0.00 3.01 0.00 0.90 5.10 12.42 0.00 10.50 2.83 0.13 295
Canada 0.02 0.01 0.05 0.24 0.11 0.58 2.18 1.08 2.96 0.89 0.03 53.69 137.30 3.43 10.51 2.63 0.03 1812
Czech Republic 0.03 0.02 0.02 0.68 0.16 0.12 3.96 1.58 3.01 1.44 0.42 3.30 3.80 0.14 10.03 2.83 0.08 330
Denmark 0.21 0.18 0.10 0.72 0.00 0.00 2.24 1.72 2.13 2.04 0.75 7.34 17.14 1.72 10.60 3.16 0.11 215
Finland 0.10 0.01 0.15 0.49 0.17 0.19 3.17 0.00 1.42 0.17 0.55 7.10 17.68 0.00 10.43 2.80 0.11 409
France 0.02 0.02 0.01 0.21 0.54 0.22 2.15 1.23 2.81 2.65 0.82 127.30 253.50 0.03 10.43 2.96 0.01 1572
Germany 0.13 0.12 0.06 0.64 0.17 0.08 3.42 0.00 2.61 3.57 0.43 197.90 551.40 0.10 10.52 2.71 0.06 2224
Greece 0.05 0.05 0.14 0.56 0.00 0.25 1.65 0.00 3.41 3.52 0.49 0.45 1.88 0.04 10.14 2.44 0.07 164
Hungary 0.03 0.01 0.17 0.59 0.23 0.01 1.85 1.15 3.29 1.54 0.42 3.23 4.29 0.77 9.84 3.04 0.18 177
Ireland 0.07 0.07 0.30 0.53 0.00 0.10 2.02 0.00 3.29 0.30 0.40 0.88 1.80 0.12 10.49 2.81 0.02 73
Italy 0.05 0.04 0.23 0.47 0.00 0.26 1.89 1.22 2.97 1.67 0.83 20.57 68.15 0.17 10.45 2.80 0.15 1075
Japan 0.01 0.01 0.05 0.59 0.17 0.18 1.42 2.04 2.67 0.26 0.12 1019 2005 0.01 10.39 2.46 0.00 3329
Korea, Rep. 0.01 0.00 0.23 0.45 0.20 0.23 2.33 0.98 3.91 2.15 0.01 215.90 387.20 0.01 9.97 2.19 0.00 1112
Netherlands 0.06 0.04 0.33 0.59 0.02 0.00 2.25 0.00 2.41 1.41 0.82 11.50 36.98 1.39 10.61 2.69 0.14 451
Norway 0.01 0.01 0.01 0.01 0.00 0.98 2.32 0.52 0.26 0.00 0.63 5.06 15.79 13.45 10.95 2.55 0.05 399
Poland 0.02 0.01 0.01 0.91 0.00 0.07 1.87 2.93 3.59 0.50 0.92 1.91 2.85 0.48 9.61 2.95 0.02 821
Portugal 0.10 0.08 0.13 0.41 0.00 0.39 2.15 0.00 2.51 2.94 0.45 0.06 1.00 0.00 10.12 2.48 0.12 148
Slovak Republic 0.02 0.01 0.06 0.32 0.28 0.31 0.99 1.56 3.81 0.52 0.39 0.66 0.89 0.08 9.78 2.92 0.18 122
Spain 0.11 0.10 0.05 0.44 0.12 0.28 2.12 0.98 2.12 3.30 0.46 5.31 11.29 0.02 10.30 2.63 0.03 715
Sweden 0.08 0.02 0.05 0.17 0.28 0.48 2.04 1.81 1.30 0.00 1.35 16.01 26.40 0.00 10.51 3.00 0.07 625
Switzerland 0.01 0.00 0.01 0.04 0.17 0.78 2.53 0.34 4.80 2.85 0.00 17.94 39.35 0.00 10.81 2.74 0.38 205
Turkey 0.01 0.01 0.22 0.39 0.00 0.39 0.78 0.00 3.29 0.61 0.00 0.21 1.74 0.21 9.52 2.12 0.01 411
United Kingdom 0.04 0.03 0.27 0.50 0.15 0.05 2.28 0.00 0.38 0.67 1.59 71.78 186.10 1.40 10.39 2.73 0.03 1218
United States 0.03 0.02 0.23 0.53 0.11 0.11 1.68 1.11 2.46 0.30 0.30 359.20 1067.00 0.87 10.71 2.87 0.01 12799
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Tables 1 and 2 provide descriptive statistics for our variables of interest on average across the sample 

and by country. Overall, the share of RE capacity is rather low (5 percent and 3.5 percent when including 

or excluding biomass from the calculation, respectively). However, this share spans from 0 up to 47 

percent. The share of FRF technologies is about two and a half times higher on average, but the maximum 

penetration rate is very similar to that of renewables (49 percent). Overall, the distribution of RE 

investments in much more skewed to the left than that of FRF technologies. BLF technologies, on the 

other hand, provided the bulk of generation capacity over the sample period, while the share of nuclear 

generation is comparable to that of FRF. Germany, Spain and the Nordic countries (excluding Norway) 

are leaders in non-hydro RE deployment and generally have high FITs, high Certificates and low entry 

barriers in the electricity markets. Interesting for the purpose of this paper, eight countries are above the 

median in both RE and in FRF; in particular, Ireland, Netherland, Italy and Finland are leaders in both.  

4. Empirical Strategy 
In this Section we illustrate our empirical strategy, which is designed to address, to our best, the 

econometric issues which characterize the identification of the effect of FRF capacity on RE capacity. As 

explained above, we assume that the percentage of RE capacity (𝑆ℎ𝑎𝑟𝑒 𝐶𝑎𝑝𝑖𝑡𝑅𝐸 ) is a function of the 

percentage of FRF capacity (𝑆ℎ𝑎𝑟𝑒 𝐶𝑎𝑝𝑖𝑡𝐹𝑅𝐹), of the policy variables and of all other controls. Because 

capacity is a stock and thus is highly persistent, we consider a dynamic econometric model. Specifically, 

we estimate variants of the following equation:  

 

𝑆ℎ𝑎𝑟𝑒𝐶𝑎𝑝i,tRE = ∑ ρs𝑆ℎ𝑎𝑟𝑒 𝐶𝑎𝑝i,t−sREk
s=1 + β𝑆ℎ𝑎𝑟𝑒 𝐶𝑎𝑝i,t−1FRF + θ𝑷𝑶𝑳𝑖,𝑡−1 +  α𝐗i,t−1 + µi + µt + εi,t,

 (1)  

 

where 𝑆ℎ𝑎𝑟𝑒 𝐶𝑎𝑝i,tRE, 𝑆ℎ𝑎𝑟𝑒 𝐶𝑎𝑝i,t−1FRF  and 𝐏𝐎𝐋i,t−1 are as explained in the previous Section; µi and µt are 

country and time effects, respectively, with the former capturing time-invariant country characteristics and 

the latter absorbing the influence of global shocks; εit is an error term and Xit−1 is the vector of other 

controls. This empirical specification improves on that of the closely related paper of Popp et al. (2011), 

which uses the change in 𝐶𝑎𝑝𝑖𝑡𝑅𝐸 (∆𝐶𝑎𝑝𝑖𝑡𝑅𝐸) as dependent variable, because it accounts in a flexible way 

for the rich dynamics of capacity. Our approach is more general as it nests the one where the dependent 
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variable is in first difference (i.e. s = 1 and ρ1 = 1)12 and provides two advantages. On the one hand, the 

inclusion of more than one lag portrays rich and technology-specific dynamics, allowing to retrieve both 

the short- and long-term effects of our variables of interest. Specifically, the latter is equal to the short-

term effect multiplied by 1/(1 −∑ ρ�sk
s=1 ). On the other hand, we can take advantage of GMM estimation 

methods to lower endogeneity concerns regarding the main explanatory variable of interest (Capit−1FRF ). We 

briefly discuss these two advantages in turn here, and present detailed results in the next Section.  

First, investments in RE are likely planned to structurally reduce energy dependence and carbon 

emissions in the long run, and therefore they are expected to be highly persistent. The potentially rich 

dynamics of RE capacity requires the ex-ante choice of the appropriate lag length for the lagged terms of 

the dependent variable in equation (1). Following Acemoglu et al. (2014) and Popp (2016), we use a 

practical approach to determine the optimal number of lags required to correctly specify such dynamics. 

We estimate a basic model which includes only the lagged dependent variable alongside time and country 

fixed effects and we add lagged terms up to the point where the additional lag is not statistically 

significant. These estimates are presented in Table A1 in the Appendix and discussed in next Section. To 

show the robustness of our results, we also presents estimates for the specification in first difference used 

in Popp et al. (2011).13  

Second, and most importantly, we need to choose the appropriate estimator to obtain an unbiased 

coefficient for our variables of interest. It is well known in the literature that a simple within-

transformation fails to provide accurate estimates in dynamic panels (Nickell, 1981). This bias is due to 

the mechanical correlation between the within-transformed error term and the right-hand side variables, 

and it decreases with  1/𝑇, where 𝑇 is the number of periods considered. In our case  𝑇 = 24 , hence the 

bias should be small and a fixed effect estimator is a good starting point. While the debate regarding the 

best estimator for dynamic panels is still open, the system-GMM estimator has gained some consensus 

especially in the case of highly persistent series (Arellano and Bover, 1995; Blundell and Bond, 1998). 

The basic rationale underpinning this estimator is to instrument the lagged terms of the dependent variable 

with lags and lagged differences. Compared to the difference-GMM estimator proposed by Arellano and 

Bond (1991), the system GMM approach mitigates the weak instrument problem using moment conditions 

both for the equation in levels and in first-differences (Bond, 2002). This problem exists because, by 

definition, lagged levels are weak instrument of the subsequent first-differences when a variable is highly 

persistent.   

                                                           
12 This is evident from the fact that a model as: ∆𝑦𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝜀𝑖𝑡 is equivalent to 𝑦𝑖𝑡 = ρ𝑦𝑖𝑡−1 + 𝛽𝑋𝑖𝑡 + 𝜀𝑖𝑡 under the constraint 
that 𝜌� = 1. If the series  𝑦𝑖𝑡  is highly persistent, ∆𝑦𝑖𝑡  is near a pure random disturbance and the estimates of our effects of interest 
�̂� are more likely to be estimated imprecisely.  
13 The specification used by Popp et al. (2011) is: ∆𝑆ℎ𝑎𝑟𝑒 𝐶𝑎𝑝itRE = β𝑆ℎ𝑎𝑟𝑒 𝐶𝑎𝑝it−1FRF + θ𝐏𝐎𝐋i,t−1 +  α 𝑋𝑖,𝑡−1 + μi + μt + εit. 
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The flexibility of the system-GMM approach is especially useful to mitigate bias in the estimation of 

the effect of the share of capacity in FRF on RE investments. In our context, the coefficient associated 

with the variable 𝑆ℎ𝑎𝑟𝑒 𝐶𝑎𝑝it−1FRF  and estimated using an OLS approach cannot be interpreted as causal 

because unobservable shocks are likely correlated with investments decisions. Of particular concern is the 

fact that actual investments in both FRF and RE result from long-term planning of utilities under 

environmental and “dispatchability” constraints. Instrumenting 𝑆ℎ𝑎𝑟𝑒 𝐶𝑎𝑝it−1FRF  with the history of both 

capacities in RE and FRF reduces endogeneity concerns because the predicted 𝑆ℎ𝑎𝑟𝑒 𝐶𝑎𝑝� it−1
FRF  reflects a 

given country’s past long-term investment strategies in both RE and FRF investments. This arguably 

smoothens the influence of time varying shocks, such as unobserved changes in energy policy or the entry 

of a new large player, affecting both RE and FRF investments. We are aware that our estimation strategy 

does not fully succeed in dealing with the endogeneity of FRF capacity. Indeed, a full test of the role 

played by FRF technologies as backup capacity for intermittent RE would require convincing external 

instruments or an exogenous variation in FRF capacity. Such a thorough test is left for future research, but 

the robustness of our results to different specifications reassures with respect to the validity of our results, 

given the data constraints we face.  

5. Estimation Results 
Table 3 presents the main results of our analysis using variations of Equation (1) presented above. An 

important initial insights provided by our estimates is that there is a sizeable amount of persistence in the 

RE dynamics, thus supporting our choice of a rich dynamic model. More specifically, if we consider only 

one or two lags, RE capacity behaves similarly to a random walk with a drift (see Table A1). Adding the 

third lag (which is significant in the base specification presented in Table A1), the dynamics of RE 

capacity becomes less persistent. The cumulative effect of past RE capacity on current RE capacity is 

estimated at 0.972 in our favorite specification (Model 3 in Table 3). This implies that the short-term 

effect of FRF capacity on RE capacity is small compared to the long-term effect. For this reason, it is 

important to distinguish between the two effects using a general dynamic framework, as is the case in this 

analysis.  

  



18 
 

Table 3: Empirical results, Share of renewable installed capacity 

 
Notes: Standard errors clustered at the level of country in parentheses. *, ** and *** indicate p-values 
of <.1, <.05 and <.01, respectively. All models include year dummies. 

excl. hydro, 
waste

excl. hydro, 
waste

excl. hydro, 
waste

excl. hydro, 
waste, 

biomass

excl. hydro, 
waste

Model 1 Model 2 Model 3 Model 4 Model 5
Dependent variable, t-1 1.303*** 1.286*** 1.293*** 1.340*** 1.414***

(0.06) (0.06) (0.06) (0.08) (0.09)
Dependent variable, t-2 -0.221** -0.215** -0.247** -0.264** -0.391***

(0.09) (0.09) (0.10) (0.12) (0.11)
Dependent variable, t-3 -0.095 -0.090 -0.074 -0.107 -0.069

(0.07) (0.07) (0.08) (0.09) (0.08)
Share in FRF capacity, t-1 0.029** 0.027**

(0.01) (0.01)
Share in FRF capacity, t+1 -0.013

(0.02)
Share in FRF capacity, t+2 0.016

(0.02)
Share in FRF capacity, t+3 -0.007

(0.01)
PMR (moving average) -0.082*** -0.091** -0.092** -0.062* -0.054*

(0.03) (0.04) (0.04) (0.03) (0.03)
FIT (moving average) 0.097 0.118* 0.118* 0.081 0.092*

(0.06) (0.07) (0.06) (0.06) (0.05)
Certificates (moving average) 0.305*** 0.284*** 0.311*** 0.238*** 0.173**

(0.07) (0.07) (0.07) (0.06) (0.07)
Limits (moving average) 0.043

(0.07)
Taxes (moving average) -0.120

(0.10)
FFS rents, t-1 -0.005 -0.010 -0.008 -0.014

(0.04) (0.03) (0.02) (0.04)
GDP per capita, t-1 -1.209 -1.175 -1.107 -0.295

(0.84) (0.86) (0.78) (0.81)
Average age of capital, t-1 -0.478 0.173 0.278 -0.521

(0.63) (0.67) (0.59) (0.57)
Energy Dependence, t-1 0.114 0.67 0.998 -0.677

(1.36) (1.55) (1.60) (0.84)
Electricity Consumption, log, t-1 0.043 -0.546 -0.332 -0.166

(0.37) (0.38) (0.36) (0.52)
Share NUKE capacity, t-1 -0.015 -0.024 -0.021 0.009

(0.02) (0.03) (0.03) (0.01)
Knowledge stock (grid/storage), t-1 0.248 0.213* -0.051

(0.15) (0.12) (0.12)
Observations 541 527 498 498 417
R-squared 0.981 0.981 0.976 0.975 0.970

Dependent variable:                                                 
Share of REN capacity
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Moving to more detailed comments, Model 1 presents a basic specification where we consider only 

FITs, Certificates and PMR as determinants of RE deployment. Two main considerations emerge from 

this model, which shed light on previous results in the literature. First, in line with recent studies on the 

effect of competition on RE innovation (Nesta et al., 2014; Nicolli and Vona, 2016), lowering entry 

barriers promotes the deployment of RE. Second, environmental policies have a positive impact on the 

diffusion of RE capacity. This last result goes in the direction of confirming that environmental policies 

are indeed key drivers of renewable energy generation. Previous empirical evidence in this respect was 

rather mixed. For instance, Popp et al (2011) finds only a modest and often statistically insignificant 

effect, while other contributions point to the effectiveness of FITs but not of other policies (Jenner et al., 

2013). The difference between the results put forward in these contributions and our analysis can be 

ascribed to several factors which we are not in a position to test directly, including the choice of 

econometric approach, the choice of policy proxies and the time frame and geographical focus of the 

analysis.  

Furthermore, the effects of both environmental policy and market regulation are economically 

relevant. On the one hand, the short-term effects appear small. An inter-quartile change in the policy 

variables is associated with an increase in 𝑆ℎ𝑎𝑟𝑒𝐶𝑎𝑝i,tRE of 0.2% for FITs and Certificates and 0.5% for 

PMR. On the other hand, the long-term effects are 77 times larger in the base specification (Model 1) and 

35 times larger in our favorite specification (Model 3, see discussion below). Notice that for PMR an 

interquartile change is equivalent to going from “no freedom of access and choice for producers and 

consumers” to “full opening up of the market”, while the interquartile changes in Certificates and FIT 

entail less extreme variations. The large long-term effect of PMR (i.e. 17.5% in our favorite specification) 

reflects the key role of independent power producers and decentralized generation in the deployment of 

key RE technologies, such as Wind and Solar.  

Model 2 adds both the vector of relevant controls 𝑋𝑖,𝑡−1 and the other policy variables (Limits and 

Taxes). These additional regressors fail to reach acceptable levels of significance and their inclusion does 

not affect in a major way the coefficients associated with the main policy variables. Given the lack of 

significance of the coefficients for the Taxes and Limits variables, we exclude them from our specification 

and focus on the FIT, Certificates and PMR variables.  

Model 3 presents our preferred specification, which includes our variable of interest  𝑆ℎ𝑎𝑟𝑒𝐶𝑎𝑝i,t−1FRF  

alongside all controls 𝑋𝑖,𝑡−1  and the proxy indicating the stock of knowledge related to storage 

technologies. Our results indicate that the presence of FRF technologies favors investment in RE, 

conditional on all other covariates. Once again, the estimated short-term effects of the policy variables are 

small, but their high persistence gives rise to significantly larger long-term effects. In the short-term, a one 

percent increase in FRF capacity brings to a 0.028% increase in the share of RE. In the long term, the 
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effect becomes nearly a one-to-one increase (i.e. 1.02%). Indeed, the large long-run point estimates we 

present are consistent with the insights from technical assessments made by practitioners and international 

institutions, as explained in Section 2. For instance, Baker et al. (2013) argue that new solar PV capacity 

displaces only a small percentage of dispatchable capacity. Our results also confirm the insights from Eon 

Netz (2004) and REW (2011) indicating that wind and solar are in need of close to a one-to-one back-up 

capacity. We discuss the implications of these results in the concluding Section.  

As mentioned in the previous Section, our econometric model nests the model used in Popp et al. 

(2011). Table A2 in the Appendix presents the estimation of our favorite specification using the first-

difference transformation of the dependent variable as in Popp et al. (2011) to show the robustness of our 

results.14 While the short-term effect of FRF on RE capacity is very similar to the one we obtain, our 

approach has the advantage of allowing the assessment of long-term effects.   

A possible concern regarding the estimated effect of FRF capacity on RE diffusion is represented by 

the fact that RE include biomass, which differs from other renewable energy sources in two respects. First, 

it is dispatchable, namely it can be stored and burned when needed. Second, biomass can be fed into many 

burners which also burn fossil fuels, and can be co-fired by mixing it with coal and gas. Therefore, 

including biomass in the definition of RE could lead to biased estimates. To gauge the strength of our 

results, we re-estimate our favorite specification subtracting biomass capacity from our definition of 

dependent variable (Model 4). Our general conclusion is that the enabling role of FRF technologies with 

respect to RE investment is not driven by any mechanical correlation between FRF investments and 

biomass. Specifically, we observe a small decline in the effect of FRF on RE, which is however still close 

to unity in the long-run: a 1% increase in FRF capacity is associated with a 0.88% increase in RE capacity. 

It is interesting to stress that in the specification without biomass the policy effects become weaker and 

more similar to that estimated in Popp et al. (2011), while PMR remains the most important policy driver. 

Finally, the effect of storage technologies becomes statistically significant at conventional level, pointing 

to the importance of complementary technologies which improve the dispatchability of intermittent RE 

technologies such as wind and solar. It is indeed well known that the speed of technical change in storage 

technologies will be as important as the direct speed of technical change in RE technologies to make RE 

autonomous and thus fully substitutable to fossil fuel technologies.  

As an additional step to improve the identification of the effect of FRF capacity, Model 5 replaces 

𝑆ℎ𝑎𝑟𝑒𝐶𝑎𝑝i,t−1FRF  with leads of the same variable, from 𝑡 + 1 to 𝑡 + 3. This allows us to test the robustness of 

our results to the assumptions regarding the way in which agents form expectations. Indeed, by using lags 

of the variable of interest, our estimation strategy so far implicitly assumed that agents follow an adaptive 

rule to form expectations. On the contrary, positive significant coefficients associated with the leads of 
                                                           
14 That is: ∆𝑆ℎ𝑎𝑟𝑒 𝐶𝑎𝑝itRE = β𝑆ℎ𝑎𝑟𝑒 𝐶𝑎𝑝it−1FRF + θ𝐏𝐎𝐋i,t−1 +  α 𝑋𝑖,𝑡−1 + μi + μt + εit. 
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FRF capacity would indicate that agents are forward-looking. This would undermine our estimation 

strategy and point to reverse causality issues which would be difficult to address in an appropriate way 

with the data at hand. It is thus reassuring to observe that the coefficients associated with the leads of 

𝑆ℎ𝑎𝑟𝑒𝐶𝑎𝑝iFRF  are never significant, suggesting that our model is well specified.  

Nonetheless, the results presented so far do not fully resolve all the endogeneity concerns regarding 

the estimated effect of FRF capacity. Because FRF and RE investments are the outcomes of a joint 

decision of power producers, unobservable time varying shocks can affect both types of investments. As 

illustrated in the previous Section, system GMM represents the best option to identify the effect at stake, 

absent a clear exogenous policy change affecting either FRF or RE capacity. Note that system GMM can 

be criticized because, as Roodman (2009) points out, when N is small the method has ‘too many 

instruments’ compared with the number of observations. This leads to an overfitting of the endogenous 

regressions, which in the second stage will give results nearly identical to those obtained without 

instrumenting. To solve this problem, Roodman (2009) proposes to collapse the instrument matrix to 

retain only the relevant information and to reduce the number of lags used to build the instruments. This 

correction should in theory allow to obtain reliable standard specification tests such as the Hansen’s test of 

overidentifying restrictions. In our case, however, given that N is particularly small (26 countries), the p-

value associated with the Hansen’s test is implausibly good. We thus present the Hansen’s test and the 

estimated coefficients obtained using a simplified equation, where we replace year effects with a linear 

and a quadratic time trend.  

Results of the system-GMM estimates are shown in Table 4, which show the estimates of our 

preferred specification with and without biomass (Model 1 and Model 3) and the estimates obtained 

replacing year fixed effects with a time trend to obtain plausible values of the Hansen’s test (Model 2 and 

Model 4). Three conclusions emerge from this table. First, standard tests validate our specification: the 

Hansen’s test does not reject the null hypothesis of instruments’ exogeneity, while the Arellano-Bond tests 

always fails to reject the alternative hypothesis of second-order autocorrelation. This latter test is 

particularly important for a consistent estimation of the coefficients of interest. Second, the system GMM 

results indicate that the combined effect of the lagged terms is close to one and thus is larger than that 

presented in Table 3. The combined effect of the lagged terms remains high, but smaller than one when we 

add a fourth lag in the dependent variable, as shown in Table A3 of the Appendix. Third, the coefficients 

associated with our variable of interest 𝑆ℎ𝑎𝑟𝑒 𝐶𝑎𝑝it−1FRF  are roughly half the size of those presented in Table 

3. While this indicates that not addressing the issues of endogeneity leads to an overestimation of the role 

of FRF in supporting RE generation, the higher persistency in the series of RE makes it difficult to 

compute a reasonable long-term effect in this case.  
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Table 4: Empirical results, endogeneity and system-GMM estimation 

 
Notes: Standard errors clustered at the level of country in parentheses. *, ** and *** indicate p-values of <.1, 
<.05 and <.01, respectively. Models 1 and 3 include year dummies, Models 2 and 4 include a quadratic time 
trend.  

excl. hydro, waste excl. hydro, waste, 
biomass excl. hydro, waste excl. hydro, waste, 

biomass
Model 1 Model 2 Model 3 Model 4

Dependent variable, t-1 1.374*** 1.391*** 1.419*** 1.430***
(0.07) (0.06) (0.08) (0.09)

Dependent variable, t-2 -0.286** -0.307*** -0.308** -0.311**
(0.10) (0.09) (0.13) (0.12)

Dependent variable, t-3 -0.072 -0.074 -0.104 -0.113
(0.08) (0.07) (0.09) (0.08)

Share in FRF capacity, t-1 0.012 0.016** 0.018** 0.014*
(0.01) (0.01) (0.01) (0.01)

PMR (moving average) -0.031 -0.021 -0.015 -0.001
(0.03) (0.03) (0.02) (0.02)

FIT (moving average) 0.107** 0.109** 0.097** 0.091**
(0.05) (0.05) (0.05) (0.04)

Certificates (moving average) 0.139** -0.024 0.117** 0.053
(0.06) (0.08) (0.05) (0.04)

FFS rents, t-1 -0.007 -0.010 0.005 -0.004
(0.02) (0.02) (0.02) (0.02)

GDP per capita, t-1 -0.013 0.0765 -0.008 0.074
(0.20) (0.22) (0.21) (0.20)

Average age of capital, t-1 0.348 0.585** 0.339 0.375
(0.21) (0.24) (0.25) (0.22)

Energy Dependence, t-1 -0.823 -1.518* -0.486 -0.954
(0.72) (0.87) (0.64) (0.73)

Electricity Consumption, log, t-1 -0.083 -0.109 -0.064 -0.065
(0.07) (0.10) (0.07) (0.08)

Share NUKE capacity, t-1 -0.001 -0.001 -0.002 -0.002
(0.00) (0.01) (0.00) (0.00)

Knowledge stock (grid/storage), t-1 0.015 0.010 0.013 0.002
(0.06) (0.06) (0.06) (0.05)

Observations 498 498 498 498
Adjusted R2 0.3268 -0.0117 0.8758 0.7322
Adjusted R2 crit. prob. 0.7438 0.9906 0.3811 0.4640
Hansen J 0 11.00 0 8.91
Hansen crit. prob. 1 0.53 1 0.71
Instruments 79 29 79 29

Dependent variable:                                                 
Share of REN capacity
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To give a clearer interpretation to our results of the feedback of FRF capacity on RE diffusion, we also 

study the determinants of FRF diffusion (Table 5). This exercise allows showing to what extent the 

decisions regarding FRF investments are affected by RE capacity as well as by other common drivers. Our 

main argument is based on the assumption of no effect of RE investments on FRF investments, and on the 

further assumption that the drivers of FRF investments are different from the ones of RE investments. 

Indeed, Table 5 shows that RE capacity has no effect on FRF capacity, both when using lags and leads of 

the dependent variable in our estimation. Similarly, environmental policies have no effect on the change in 

FRF capacity, except for the negative effect of emission limits. This highlights the fact that to date 

investors in FRF plants seem to have paid little attention both to the installed capacity in RE and to 

environmental policies. It also provides some evidence that there is a sort of “asymmetric” 

complementarity between RE and FRF investment, where the latter are key support technologies for the 

former, but not viceversa.  

Results of the drivers of FRF capacity are also interesting per se, given the importance of these 

technologies for decarbonization. Table 5 highlights the fact that the main drivers of FRF are related to the 

size of the economy (GDP per capita) and to the growth rate of energy consumption as well as to the rents 

associated with fossil fuels.  Notice that in this case, we include only one lag to account for the dynamics 

of the dependent variable (see Table A1 in the Appendix). Overall, our results indicate that FRF 

investments are more volatile than RE investments, and that they respond more to demand shocks than to 

policy shocks. 

As a final robustness exercise, we perturb our main specification adding the shares of capacity in 

technologies other than FRF on the right hand side of equation (1). While ideally we would like to control 

for all other technologies at the same time, this is impossible due to the high collinearity which 

characterizes these variables: by definition all shares sum to 1. For this reason, we add the share of another 

technologies one at a time to our base specification. Results are presented in Table 6. Models 1 and 2 

include the share of capacity in Hydro in the estimation of the share of RE with and without biomass, 

respectively. Along the same lines, Models 3 and 4 the share of capacity in coal-burning technologies and 

Models 5 and 6 the share of capacity in Base Load Fossil technologies.  The perturbations we implement 

are motivated by the role that these technologies have in the energy system: Hydro is often used to 

compensate fluctuations in demand and supply, while the inclusion of Coal and BLF capacity is meant to 

test our assumption that only FRF technologies (which are gas-burning rather than coal-burning) 

contribute to increasing the share of RE capacity. Overall, this table confirms previous results: the 

inclusion of additional variables does not change the estimates associated with the FRF capacity and 

confirms that there is no feed-back effect between variable renewables and capacity in other generation 

technologies. 
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Table 5: Empirical results, Share of fast-reacting fossil installed capacity 

 
Notes: Standard errors clustered at the level of country in parentheses. *, ** and *** indicate p-
values of <.1, <.05 and <.01, respectively. All models include year dummies. 

  

Model 1 Model 2 Model 3 Model 4
Dependent variable, t-1 0.911*** 0.875*** 0.855*** 0.849***

(0.02) (0.04) (0.04) (0.06)
Share in REN capacity, t-1 0.0194

(0.04)
Share in REN capacity, t+1 0.019

(0.13)
Share in REN capacity, t+2 -0.048

(0.21)
Share in REN capacity, t+3 0.026

(0.13)
PMR (moving average) 0.013 0.022 0.049 0.021

(0.08) (0.10) (0.11) (0.13)
FIT (moving average) -0.026 -0.101

(0.08) (0.11)
Certificates (moving average) -0.187 0.119

(0.11) (0.23)
Limits (moving average) -0.241* -0.292** -0.344***

(0.13) (0.11) (0.12)
Taxes (moving average) 0.0600

(0.19)
FFS rents, t-1 0.137 0.165* 0.218**

(0.09) (0.09) (0.10)
GDP per capita, t-1 2.627* 2.910** 3.600*

(1.40) (1.35) (2.10)
Average age of capital, t-1 -2.246 -2.790 -2.826

(1.80) (1.96) (2.49)
Energy Dependence, t-1 3.348 0.991 1.067

(3.34) (2.74) (3.15)
Electricity Consumption, log, t-1 2.326* 3.007*** 3.930***

(1.19) (0.80) (1.25)
Share NUKE capacity 0.001 -0.012 -0.069

(0.06) (0.05) (0.14)
Stock of knowledge -0.855** -0.857*
(grid/storage/FC/H2), t-1 (0.35) (0.42)
Observations 541 525 525 456
R-squared 0.927 0.928 0.930 0.921

Dependent variable:                                                 
Share of FRF capacity, t



25 
 

Table 6: Empirical results, Additional share variables 

 

Notes: Standard errors clustered at the level of country in parentheses. *, ** and *** indicate p-values of <.1, 
<.05 and <.01, respectively. All models include year dummies. 
 

excl. hydro, 
waste

excl. hydro, 
waste, 

biomass

excl. hydro, 
waste

excl. hydro, 
waste, 

biomass

excl. hydro, 
waste

excl. hydro, 
waste, 

biomass

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Dependent variable, t-1 1.281*** 1.330*** 1.291*** 1.333*** 1.289*** 1.360***

(0.06) (0.0757) (0.0663) (0.0876) (0.0607) (0.0761)
Dependent variable, t-2 -0.251** -0.269** -0.272*** -0.336*** -0.247** -0.269**

(0.10) (0.12) (0.10) (0.10) (0.10) (0.12)
Dependent variable, t-3 -0.062 -0.097 -0.057 -0.031 -0.076 -0.096

(0.08) (0.09) (0.06) (0.06) (0.07) (0.09)
Share in FRF capacity, t-1 0.023* 0.023* 0.029** 0.027** 0.023 0.053**

(0.01) (0.01) (0.01) (0.0113) (0.03) (0.02)
Share in HYDRO capacity, t-1 -0.040 -0.028

(0.03) (0.02)
Share in COAL capacity, t-1 -0.027 -0.029

(0.02) (0.02)
Share in BLF capacity, t-1 -0.007 0.030

(0.04) (0.02)
PMR (moving average) -0.088** -0.060* -0.104*** -0.070* -0.093** -0.060*

(0.04) (0.04) (0.04) (0.04) (0.04) (0.03)
FIT (moving average) 0.122** 0.083 0.152*** 0.119** 0.117* 0.083

(0.06) (0.05) (0.05) (0.05) (0.06) (0.05)
Certificates (moving average) 0.319*** 0.244*** 0.269*** 0.193*** 0.312*** 0.245***

(0.07) (0.06) (0.07) (0.05) (0.07) (0.05)
FFS rents, t-1 -0.011 -0.007 0.004 -0.004 -0.009 -0.007

(0.03) (0.02) (0.02) (0.02) (0.03) (0.02)
GDP per capita, t-1 -0.938 -0.953 -1.638** -1.559** -1.208 -0.946

(0.88) (0.81) (0.77) (0.68) (0.88) (0.80)
Average age of capital, t-1 0.056 0.204 0.690 0.868 0.182 0.199

(0.73) (0.63) (0.67) (0.59) (0.67) (0.63)
Energy Dependence, t-1 0.887 1.142 0.737 0.887 0.661 1.149

(1.56) (1.60) (1.37) (1.44) (1.56) (1.60)
Electricity Consumption, log, t-1 -0.845*** -0.537* -0.464 -0.228 -0.498 -0.550*

(0.29) (0.31) (0.43) (0.39) (0.37) (0.31)
Share NUKE capacity -0.034 -0.027 0.012 0.014 -0.029 0.0024

(0.032) (0.031) (0.02) (0.02) (0.04) (0.03)
Knowledge stock (grid/storage), t-1 0.264* 0.226* 0.262 0.250* 0.241 0.227*

(0.14) (0.12) (0.16) (0.13) (0.15) (0.12)
Observations 498 498 466 466 498 498
R-squared 0.976 0.975 0.977 0.976 0.976 0.975

Dependent variable:                                                 
Share of REN capacity
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6. Conclusions 
This paper presents an econometric analysis of the determinants of the diffusion of renewables in a sample 

of 26 OECD countries over the years 1990-2013, with a specific focus on the role of fast-reacting fossil 

technologies. We contribute to the literature with one key result. We show that absent economically viable 

storage options, countries where FRF capacity was available were more likely, ceteris paribus, to invest in 

renewable energy generation. While short-run effects are low, in the long run the relation between FRF 

and RE capacity has been almost a one-to-one increase (i.e. 0.88%). This result holds in a series of 

demanding robustness checks, including system-GMM estimators, different definitions of RE capacity and 

the inclusion of other technologies besides FRF technology.  

The evidence presented here supports the conclusion that to date FRF technologies have enabled RE 

diffusion by providing reliable and dispatchable back-up capacity to hedge against variability of supply. 

Our paper calls attention to the fact that renewables and fast-reacting fossil technologies appear as highly 

complementary and that they should be jointly installed to meet the goals of cutting emissions and 

ensuring a stable supply. In this respect, our analysis complements recent attempts to systematically assess 

the grid-level system costs for different technologies. Our long-run estimations of the relation between 

FRF and RE point indeed to the high indirect costs of the latter. 

These considerations must be appropriately recognized and internalized in the policy debate to avoid 

serious challenges to the security of electricity supply in the coming years. As the share of RE increases, 

so will the requirements for increased back-up capacity and serious stresses will be put on the energy 

system unless the relationship and the complementarity between FRF and RE technologies are 

appropriately acknowledged. Our analysis thus draws attention to the fact that the technical and pecuniary 

system costs are of such magnitude that they will have to be acknowledged, and can’t be borne in a diffuse 

manner. A particularly thorny issue is linked with the need to take a long-term perspective and to consider 

the future need of replacing existing mid-merit/load following capacity as they reach the end of their 

lifetime. Indeed, while not paying the external cost of pollution, FRF technologies provide the 

unremunerated positive externality of long-term flexible capacity for back-up (OECD 2012). Pricing both 

back-up services and greenhouse gas emissions appears as a key priority of a sound energy policy.  

We thus argue that a policy and academic debate centered on the juxtaposition of renewable (clean) 

and fossil (dirty) technologies misses this important point, leads to an underestimation of the costs of 

renewable energy integration, and does not contribute to stressing the importance of funding and 

developing solid alternative options such as cheap storage technologies. Overstating the ability to 

substitute fossil generation with renewable energy generation may lead to a poor support of alternative 

enabling technologies. Conversely, our analysis suggests the need for a systemic perspective and the 
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coordination of different types of investments (in storage technologies, RE and FRF) to successfully 

pursue sustainable development through the integration of large shares of RE energy in the power system. 

While our results are robust to a series of modifications in the empirical strategy, a fruitful avenue for 

future research will be a thorough test of our conclusions based on a convincing external instruments or 

exogenous variation in FRF capacity. This will further lower any concerns linked with the possible 

endogeneity of the share of FRF capacity.    
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Appendix 
 

Table A1. Appropriate lag structure, RE and FRF technologies 

Notes: Standard errors clustered at the level of country in parentheses. *, ** and *** indicate p-values of <.1, 
<.05 and <.01, respectively. All models include year dummies. 

 

  

excl. hydro, 
waste

excl. hydro, 
waste, 

biomass

excl. hydro, 
waste

excl. hydro, 
waste, 

biomass
Dependent variable

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Dependent variable, t-1 1.041*** 1.400*** 1.351*** 1.340*** 0.911*** 0.889***
(0.015) (0.06) (0.06) (0.06) (0.01) (0.05)

Dependent variable, t-2 -0.400*** -0.223** -0.226** 0.008
(0.07) (0.10) (0.09) (0.05)

Dependent variable, t-3 -0.143** -0.098
(0.07) (0.10)

Dependent variable, t-4 -0.039
(0.07)

Observations 593 567 541 515 541 513
R-squared 0.979 0.981 0.980 0.979 0.927 0.920

Share of REN capacity Share of FRF capacity
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Table A2. Additional Results, Popp et al. (2011) specification 

 

Notes: Standard errors clustered at the level of country in parentheses. *, ** and *** indicate p-values of <.1, 
<.05 and <.01, respectively. All models include year dummies.  

excl. hydro, waste excl. hydro, waste, 
biomass

Model 1 Model 2
Share in FRF capacity, t-1 0.0272* 0.0270*

(0.02) (0.0150)
PMR (moving average) -0.115*** -0.0927**

(0.04) (0.0382)
FIT (moving average) 0.171** 0.130*

(0.08) (0.0754)
Certificates (moving average) 0.429*** 0.348***

(0.08) (0.0798)
FFS rents, t-1 -0.0127 -0.00983

(0.04) (0.0301)
GDP per capita, t-1 -1.148 -1.101

(1.09) (1.052)
Average age of capital, t-1 -0.137 0.0460

(0.70) (0.618)
Energy Dependence, t-1 0.403 0.681

(1.60) (1.651)
Electricity Consumption, log, t-1 -0.406 -0.217

(0.49) (0.493)
Share NUKE capacity, t-1 -0.0342 -0.0404

(0.04) (0.0443)
Knowledge stock (grid/storage), t-1 0.296 0.269*

(0.18) (0.155)
Observations 545 545
R-squared 0.403 0.424

Dependent variable:                                  
Δ Share of REN capacity
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Table A3. Additional GMM models 

 

Notes: Standard errors clustered at the level of country in parentheses. *, ** and *** indicate p-values of <.1, 
<.05 and <.01, respectively. Models 1 and 3 include year dummies, Models 2 and 4 include a quadratic time 
trend. 

excl. hydro, 
waste

excl. hydro, 
waste, 

biomass

excl. hydro, 
waste

excl. hydro, 
waste, 

biomass
Model 1 Model 2 Model 3 Model 4

Dependent variable, t-1 1.374*** 1.388*** 1.419*** 1.428***
(0.069) (0.067) (0.092) (0.092)

Dependent variable, t-2 -0.284*** -0.312*** -0.306** -0.306**
(0.100) (0.093) (0.123) (0.118)

Dependent variable, t-3 -0.062 -0.018 -0.097 -0.098
(0.107) (0.119) (0.099) (0.083)

Dependent variable, t-4 -0.036 -0.081 -0.021 -0.036
(0.099) (0.109) (0.094) (0.094)

Share in FRF capacity, t-1 0.011 0.014* 0.016* 0.012
(0.007) (0.008) (0.009) (0.010)

PMR (moving average) -0.045* -0.039 -0.016 -0.008
(0.023) (0.025) (0.019) (0.017)

FIT (moving average) 0.103* 0.101** 0.095* 0.089*
(0.050) (0.049) (0.048) (0.045)

Certificates (moving average) 0.151*** -0.017 0.118** 0.055
(0.054) (0.072) (0.049) (0.034)

FFS rents, t-1 -0.018 -0.022 0.002 -0.012
(0.018) (0.017) (0.020) (0.018)

GDP per capita, t-1 0.042 0.140 0.005 0.112
(0.216) (0.232) (0.229) (0.208)

Average age of capital, t-1 0.460** 0.743*** 0.390 0.435*
(0.212) (0.261) (0.273) (0.223)

Energy Dependence, t-1 -0.948 -1.667* -0.583 -1.103
(0.774) (0.955) (0.655) (0.735)

Electricity Consumption, log, t-1 -0.132 -0.167 -0.091 -0.096
(0.080) (0.114) (0.077) (0.074)

Share NUKE capacity, t-1 -0.004 -0.004 -0.004 -0.005
(0.004) (0.005) (0.004) (0.004)

Knowledge stock (grid/storage), t-1 0.032 0.032 0.026 0.014
(0.062) (0.068) (0.062) (0.054)

Observations 474 474 474 474
Adjusted R2 0.585 0.561 0.875 0.841
Adjusted R2 crit. prob. 0.559 0.575 0.382 0.401
Hansen J 0.000 9.067 0.000 9.964
Hansen crit. prob. 1.000 0.768 1.000 0.697
Instruments 79 31 79 31

Dependent variable:                                                 
Share of REN capacity


	1. Introduction
	2. Managing renewable energy integration in the energy system
	3. Data and Descriptive Statistics
	4. Empirical Strategy
	5. Estimation Results
	6. Conclusions
	References
	Appendix



