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1 Introduction

The wide dispersion of measured human capital in children and its strong correla-
tion with later life outcomes has prompted a renewed interest in understanding the
determinants of skill formation among children (for a recent review, see Heckman
and Mosso, 2014). However, the empirical challenges in estimating the skill forma-
tion process, principally the technology of child development, is hampered by the
imperfect measures of children’s skills we have available. While measurement issues
exist in many areas of empirical research, they may be particularly salient in research
about child development. There exists a number of different measures of children’s
skills, each measure can be arbitrarily located and scaled, and provide widely differ-
ing levels of informativeness about the underlying latent skills of the child. In the
presence of these measurement issues, identification of the underlying latent process
of skill development is particularly challenging, but nonetheless essential, because
ignoring the measurement issues through ad hoc simplifying assumptions could bias
the empirical conclusions.

This paper makes two contributions. First, using the estimation framework of
Cunha and Heckman (2007, 2008) and Cunha et al. (2010) we develop alternative
empirically grounded restrictions on the measurement of skills that allow identifica-
tion of general skill technologies. Although our identification analysis considers only
particular parametric classes of models and is less general than the non-parametric
analysis in Cunha et al. (2010), the class of models we consider includes nearly all of
the models researchers have estimated.1 Second, we estimate a model of skill forma-
tion that allows for general interactions in skill production between a child’s stock
of existing skills and parental investments. This allows us to estimate the hetero-
geneity in the returns to parental investments at different stages of development and
estimate sources of dynamic complementarities between early and later investments.

We analyze the concept of “age-invariant” measures, measures that allow the com-
parison of skill development as children age and imply restrictions on how measures
relate to each other over the development period. These assumptions are certainly
not appropriate for all measures, but at least some skill measures are designed by
psychometricians and child development researchers for these kinds of purposes. We
show that if these types of measures are available, then more general skill technolo-

1Our particular point of departure is the log-linear measurement models estimated in Cunha
et al. (2010) and other recent papers (e.g., Attanasio et al., 2020). There are only a few exceptions
to this in the current literature that we are aware of. See Del Boca et al. (2014a) and Williams
(2019) for examples of studies that allow for discrete measures, and Bond and Lang (2013, 2018)
for an example of non-linear transformations of test scores. Cunha et al. (2021) provide a recent
summary of this research.
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gies can be identified. But if these measures are unavailable, then one can consider
alternative restrictions, in particular some restriction on the skill formation technol-
ogy. There is therefore a tradeoff between restrictions on the measurement model
and the skill technology, where restrictions on one reduce the need for restrictions
on the other.

We also provide some guidance for empirical researchers. We show in particu-
lar that age-standardizing measures (Z-scores), a popular technique for transforming
and describing skill distributions does not guarantee comparability as required for
identifying the underlying skill technology. As we show, age-invariant measures re-
quire assumptions about the relationship between unobserved skills and observed
measures, which can neither be directly tested nor guaranteed through generic data
transformations.

We then estimate a flexible parametric version of our model using data from the
US National Longitudinal Survey of Youth (NLSY). We examine the development
of cognitive skills in children from age 5 to age 14, and estimate a model of skill
development allowing for complementarties between parental investment and chil-
dren’s skills; endogenous parental investment responding to the stock of children’s
skills, maternal skills, and family income; Hicks neutral dynamics in TFP and free
returns to scale; and unobserved shocks to the investment process and skill produc-
tion. Following Cunha et al. (2010), our empirical framework treats not only the
child’s cognitive skills as measured with error, but investment and maternal skills as
well.

Following our identification analysis, we develop a multiple step instrumental
variable estimator. Our estimator is not only relatively simple and tractable, but
also robust to parametric distributional assumptions on the marginal distribution of
latent variables and measurement errors, as is commonly imposed in the prior empir-
ical literature. We jointly estimate the technology of skill formation, the process of
parental investments in children, and the adult distribution of completed schooling
and earnings. We also allow the parameters of the production technology and in-
vestment process to freely vary as the child ages. The measures in the NLSY dataset
of cognitive achievement for children (PIAT scores), which were designed to account
for developmental changes in children’s skills, are assumed to be age-invariant over
the age range we consider (ages 5-14). Our estimates of high TFP and increasing
returns to scale at early ages indicate that investments are particularly productive
early in the development period. In contrast to existing estimates of positive static
complementarity in skills, we find that the marginal productivity of early investments
is substantially higher for children with lower existing skills, suggesting the optimal
targeting of interventions to disadvantaged children.
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Our estimates of the dynamic process of investment and skill development allow us
to estimate the heterogeneous treatment effects of some simple policy interventions.
We show that income transfer to families at age 5-6 would substantially increase chil-
dren’s skills and completed schooling, with the effects larger for low income families.
When we compare these estimates to those using models that ignore measurement
error, we estimate policy effects which are substantially smaller, indicating that the
methods we adopt are important quantitatively to answering key policy questions.

The next three sections present our empirical model, identification analysis using
a simplified model, and estimation procedure including a discussion of data sources
and measures. The remaining sections present our empirical results, comparisons to
existing estimates, and policy counterfactual results.

2 Stylized Model

In this Section, we describe our model of skill development. Here, we omit several
model features to simplify the discussion and subsequent identification analysis in
the next section. We introduce these elements in later sections when we take the
model to the data.

2.1 Skill Production Technology

Child development takes place over a discrete and finite period, t = 0, 1, . . . , T , where
t = 0 is the initial period (say birth) and t = T is the final period of childhood (say age
18). There is a population of children and each child in the population is indexed i.
For each period, each child is characterized by a skill stock θi,t and a flow investment
Ii,t. In what follows, we consider only a single scalar skill and scalar investment, but
it is straight-forward to generalize this to multiple skills and multiple investments.
For each child, the current stock of skill and current flow of investment produce next
period’s stock of skill according to the skill formation production technology:

θi,t+1 = ht(θi,t, Ii,t, ηi,θ,t) for t = 0, 1, . . . , T − 1 (1)

where ηi,θ,t is a production shock. Equation (1) can be viewed as a dynamic state
space model with θi,t the state variable for each child i. The production technol-
ogy ht(·) is indexed with t to emphasize that the technology can vary as children
age. According to this technology, the sequence of investments and shocks and the
initial stock of child skills θi,0 produce the sequence of skill stocks for each child i:
θi,0, θi,1, . . . , θi,T .
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In the remainder of the paper, we work with technologies of the form:

ln θt+1 = lnAt + ψt ln ft(θt, It) + ηθ,t for t = 0, 1, . . . , T − 1 , (2)

where, we have dropped the i subscript to simplify our notation. ft(θt, It) represents
a production function whose location and scale (in logs) are fully represented by
the total factor productivity (TFP) term At and the return to scale parameter ψt,
respectively.2 ft(θt, It) can be specified as a constant return to scale Cobb-Douglas
function, a more general CES function, or various “trans-log” functions, among oth-
ers.3

2.2 Policy-Relevant Effects of Interest

There are several features of the technology which have particular relevance to un-
derstanding the process of child development and in evaluating policy interventions
to improve children’s skills. First, a key question is the productivity of investments
at various child ages. At what ages are investments in children particularly produc-
tive in producing future skills (“critical periods”) and, conversely, at what ages is it
difficult to re-mediate deficits in skill? Second, how does heterogeneity in children’s
skills, at any given period, affect the productivity of new investments in children?
Complementarity in the production technology between current skill stocks and in-
vestments implies heterogeneity in the productivity of investments across children.
Third, how do investments in children persist over time and affect adult outcomes?
Do early investments have a high return because they increase the productivity of
later investments (dynamic complementarities) or do early investments “fade-out”
over time? These features of the technology of skill development then directly inform
the optimal timing of policy interventions – the optimal investment portfolio across
early and late childhood – and the optimal targeting of policy – to which children
should scarce resources be allocated to, with the goal of using childhood interventions
to affect eventual adult outcomes.

2In the Appendix, in a more formal semi-parametric analysis, we define the function ft as one
with known location and scale, i.e. the location and scale parameters for the ht super-function (1)
are represented by the lnAt and ψt parameters, and the sub-function ft therefore has no unknown
parameters for scale and location.

3See Cunha et al. (2010) for a non-parametric analysis of more general technologies.
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2.3 Complementarities and Heterogeneity in Skill Produc-
tion

We conclude this Section by emphasizing the importance of functional forms to the
policy questions of interest described above, and in particular the heterogeneity in the
productivity of parental investments. Much of the previous empirical work adopted
parametric specifications for the ft function assuming CES forms (general or Cobb-
Douglas special cases), see for example Cunha and Heckman (2008); Cunha et al.
(2010). In these cases, the marginal return to parental investments is assumed to be
(weakly) positive with respect to the current stock of skills:

∂2θt+1

∂It∂θt
≥ 0 ∀t.

Although this assumption of a positive contemporaneous complementarity is gen-
erally non-controversial when the inputs are labor and capital, in this case it implies
a specific pattern of heterogeneous marginal products in the current period: the
marginal product of parental investments is larger for higher skilled children. Al-
though, as shown by Cunha and Heckman (2008) and Cunha et al. (2010), even
with this type of function, it still may be optimal in terms of later adult outcomes to
target investments to skill-disadvantaged children at early ages because of a dynamic
complementarity.

In our empirical model, we consider a simple alternative model utilizing trans-log
forms that allow for both positive and negative contemporaneous/static complemen-
tarities:

ln θt+1 = lnAt + γ1,t ln θt + γ2,t ln It + γ3,t ln It · ln θt + ηθ,t, (3)

where γ3,t is a free parameter that characterizes the heterogeneity in the returns to
parental investments. A positive value of γ3,t indicates that parental investments
are more productive for already highly skilled children, and a negative value implies
a higher productivity for skill disadvantaged children. Although it does not nest
the CES form, this specific parametric model is flexible in the sign of the static
complementarity.

3 Measurement and Identification

In this Section we discuss our main identification result. In particular, we show
that even with common assumptions about measurement errors, production func-
tion parameters and key policy relevant effects are under-identified without further
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restrictions. A key issue is that changes over the development period in the location
and scale of the production function cannot be identified separately from changes in
the location and scale of the measures. We discuss a range of restrictions that are suf-
ficient for identification, and focus in particular on empirically grounded restrictions
on the measurement process that allow identification of more general technologies.

3.1 Measurement Model

The focus of this paper and much of the recent literature in economics is estimat-
ing the technology determining child skill development (1), while accommodating
the reality that researchers have at hand various often arbitrarily constructed and
imperfect measures of children’s skills. Following the influential prior work in this
area (Cunha and Heckman, 2007; Cunha et al., 2010; Cunha and Heckman, 2008),
our framework recognizes that children’s skills are not directly measured by a single
measure, but there exists multiple measures, which can have some relationship to
the unobserved latent skill stock θt.

We follow the vast majority of the empirical literature and assume a (log) lin-
ear system of measures, which is certainly not without a loss of generality as we
discuss below.4 For each period t, we have Mt measures for latent skills ln θt:
m = 1, 2, . . . ,Mt. Zt,m represents the specific observed measure, and it is modeled
as:

Zt,m = µt,m + λt,m ln θt + ϵt,m for t = 0, 1, . . . , T (4)

and m = 1, . . . ,Mt.

The measurement parameters µt,m and λt,m represent the location and scale of the
measures, respectively, and ϵt,m is the measurement error, with E(ϵt,m) = 0 without
loss of generality. We assume measurement errors are independent of latent skills
and investment and independent of each other at each period t. To simplify the
identification analysis in this Section, we assume that investments are observed.
Following this identification analysis, we present a more general model relaxing this
assumption, and discuss specific assumptions sufficient for identification of the model
with unobserved investment, which are straight-forward extensions of the analysis
presented here.

4For example, the empirical analysis of Cunha and Heckman (2007); Cunha et al. (2010); Cunha
and Heckman (2008) and Attanasio et al. (2020).
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As has been long recognized, measures of child skills (e.g. test scores and the
like) are fundamentally ordinal: they indicate a rank ordering of children on the par-
ticular measure, but do not necessarily provide an interval or cardinal representation
of latent skills (see Cunha et al. (2021) for a recent review). However, the log-linear
measurement model we use (4), following much of the current literature, does im-
pose a kind of cardinality on the measures in that values of the skill measures (in
expectation) map into specific values of latent log skills, up to the unknown location
and scale parameters µt,m, λt,m. A number of papers have discussed the problems
with such assumptions and various solutions.5

While acknowledging this important issue, our focus here is on a separate issue:
how the measures relate to each other across periods/ages (t). We show that this is
critical to identifying the dynamics in the production technology, and in particular
how the productivity of investments change as children age. And, moreover, this
issue would still be a relevant issue even with more general measurement models
(ones that allow for non-linear or discrete relationships).

3.2 Under-Identification Problem

We begin by noting that with some normalization in the initial period (t = 0), and at
least 3 measures of skills in this period, we identify the distribution of initial latent
skills.6 But without further restrictions, we cannot separately identify the location
and scale of the measures in periods after the initial one from the scale and location
of the production technology. Some intuition comes from analyzing the change in
the mean of the observed measures between t+ 1 and t:

E(Zt+1,m)− E(Zt,m) = (µt+1,m − µt,m) + λt+1,mE(ln θt+1)− λt,mE(ln θt)

= (µt+1,m − µt,m) + (λt+1,m − λt,m)︸ ︷︷ ︸
measurement

E(ln θt) + λt+1,m (E(ln θt+1)− E(ln θt))︸ ︷︷ ︸
latent skills

where an increase in the average observed measures can be attributed to either a
change in the measurement parameters such that the measures have become “easier”
(the first two terms) or to an increase in average latent skills (the last term).

5See for example Bond and Lang (2013, 2018) for issues related to measuring black-white skill
gaps, and Ballou (2009) for issues in the education value-added context. See Del Boca et al. (2014a)
and Williams (2019) for examples of studies that allow for discrete measures. Cunha et al. (2021)
discuss more examples.

6This is a well known result and details for our full model are provided in the next Section.
Repeated “re-normalizations” for each period imply restrictions on the parametric model, and are
not in general normalizations, as discussed in Agostinelli and Wiswall (2016).
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An analogous under-identification problem exists when attempting to infer changes
in the productivity of investments as children age from changes in the marginal prod-
uct of mean measures with respect to investment:

∂E(Zt+1,m|It)
∂It

− ∂E(Zt,m|It−1)

∂It−1

= λt+1,m
∂E(ln θt+1|It)

∂It
− λt,m

∂E(ln θt|It−1)

∂It−1

= (λt+1,m − λt,m)︸ ︷︷ ︸
measurement

∂E(ln θt|It−1)

∂It−1

+ λt+1,m (
∂E(ln θt+1|It)

∂It
− ∂E(ln θt|It−1)

∂It−1

)︸ ︷︷ ︸
latent productivity

where recall that our timing convention specifies θt+1 a function of It investment, and
we further assume to simplify the analysis that investment is independent of the mea-
surement errors and production shock. Here an increase in the partial derivative of
average skill measures with respect to investment can either be attributed to a change
in the measurement scale parameters as the measures become more “sensitive” to
latent skills (first term) or to a change in the primitive technology as investments
become truly more productive in producing latent skills (last term). The lack of
identification implies that without further restrictions we cannot simply use changes
in the sensitivity of measures to investment to infer “sensitive” or “critical” periods,
as in the Cunha and Heckman (2008) analysis, periods in which children’s skills are
particularly malleable and interventions are likely to be particularly effective.

This under-identification issue has a close analog in the extensive literature esti-
mating teacher “value-added” using student test scores (Chetty et al., 2014). Rare in
this literature is data allowing teacher quality to be anchored to adult outcomes (for
an exception see Chetty et al., 2011), and almost the entirety of the empirical results
rest on particular measures of student skills, typically grade-specific standardized
test scores (for some discussion of general issues see Ballou, 2009). In the Appendix,
we provide a value-added framework connecting our child development model to
the standard estimating equations in the education value-added literature, where we
replace our generic childhood investments with teacher assignment.7 We conclude
that the main statistic of interest in this literature–the variance of the estimated
teacher effects, which indicates how “productive” teachers are in affecting student
learning–is not a scale-free parameter. Much as in the previous case, the variance in
the teacher effects estimated in one grade versus another can vary widely, not only

7Note that the same issue applies to estimating the productivity of other education inputs,
including school or school district level value-added. For recent work estimating latent factor
models including both parental and school inputs, see Agostinelli et al. (2019).
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because of changes in the underlying productivity of teachers across grades, but be-
cause of changes in the measures. Although the common scaling parameter does not
affect the rankings of teachers within grade, if the measurement scale changes across
grades, we cannot use standard value-added estimates to infer the effect of policies
that would for example reallocate teachers across grades, the analogous policy to
re-distributing generic childhood investments from late to early periods as analyzed
here and elsewhere, by Cunha et al. (2010) for example.

In the remaining analysis we focus on the identification of the semi-parametric
form given in (2):

ln θt+1 = lnAt + ψt ln ft(θt, It) + ηθ,t for t = 0, 1, . . . , T − 1

The previous empirical literature has primarily focused on standard parametric spec-
ifications for the technology of skill formation, such as Cobb-Douglas and CES spec-
ifications for the ft sub-function, with constant return to scale ψt = 1 and unitary
TFP At = 1 for all t.8

The technology (2) has a free location and scale represented by the lnAt param-
eter (TFP in levels) and the ψt parameter (returns to scale in levels), respectively.
Allowing for the log-linear measurement model (4), these technology parameters are
not identified due to the missing “link” between skill measures across periods. Com-
bining equations (4) and (2) we have

Zt+1,m = (µt+1,m + λt+1,m lnAt)︸ ︷︷ ︸
= β0,t,m

+(λt+1,mψt)︸ ︷︷ ︸
= β1,t,m

ln ft(θt, It) + ut,m, (5)

where the new error term is ut,m = λt+1,mηθ,t + ϵt+1,m. Equation (5) indicates that
even if the “reduced-form” parameters (β0,t,m, β1,t,m) are identified, the technology
location and scale parameters (At, ψt) are not separately identified from the next
period measurement location and scale parameters (µt+1,m, λt+1,m). Next, we provide
a framework that exploits the design of specific skill measures to separately identify
these features.

3.3 Age-Invariance

An extensive literature, principally in psychometrics and education, is concerned
with designing skill measures that can be vertically scaled across children of different

8See for example the estimated models in Cunha and Heckman (2008) and Cunha et al. (2010).
Cunha et al. (2010) has non-parametric identification results for more general models.
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ages so that the development of children can be consistently tracked.9 These types of
measures primarily consist of tests designed to be applicable for children of various
ages, and include a range of test items which show meaningful variation for both
younger and older children. An example is a vocabulary test in which children are
asked to define words of increasing difficulty. To the extent that one could administer
this same test to children in a range of ages, the count of words defined correctly
could be considered an age-invariant measure of latent skill in this domain.

In our framework, we formalize this idea by defining age-invariant measures:

Definition 1 A pair of measures Zt,m and Zt+1,m is age-invariant if E(Zt,m|θt =
p) = E(Zt+1,m|θt+1 = p) for all p ∈ R++.

Age-invariant measures imply that two children with the same level of latent skill
would on average perform equally well, independently of their age. Age-invariance
can be thought of as a kind of factor model restriction, akin to those commonly
imposed limiting the number of latent skills. In this case, the restriction is that
the only relevant variable for the measure is the level of latent skill possessed by
the child, not the child’s age directly. Definition 1 together with the assumptions
on our measurement model implies that the measurement parameters for a specific
age-invariant measure m are constant over the two age periods (µt,m = µt+1,m and
λt,m = λt+1,m).

10

Whether a given pair of measures is age-invariant depends on the measures avail-
able, and must be evaluated on a case-by-case basis. Using pairs of unrelated mea-
sures, such as counts of body parts a toddler can identify to measure skills at age
1 and SAT scores to measure skills at age 18, would not constitute a pair of age-
invariant measures as there is no reason to believe they would even have the same

9See the extensive literature review in Kolen and Brennan (2014). They review the methods
to develop vertically scaled measures and various challenges. In their taxonomy, the measures we
use in our empirical exercise were developed using a “common item design” (in which students at
different ages receive at least some overlapping test items, as discussed in more detail below). They
also review the extensive literature evaluating these methods and various ad hoc ways researchers
and practitioners have attempted to construct vertical scales from measures not necessarily designed
for this purpose.

10Age-invariance, together with the linear measurement model and the mean-independence as-
sumption of the measurement noise (E[ϵt,m| ln θt] = E[ϵt,m] = 0), implies the following restrictions
on measurement parameters for our log-linear measurement model: µt+1 + λt+1 ln p = µt + λt ln p
for all p. Re-arranging, we have (µt+1−µt) = ln p (λt−λt+1) for all p. This is the case if and only if
µt = µt+1 and λt = λt+1. Note that given our restricted measurement model, it would be sufficient
to assume this condition directly. However, we prefer to work with the more general definition of
age-invariance to build intuition.
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location and scale. Other measures may be age-invariant, such as certain test score
measures developed specifically to track development as children age. Examples of
these types of measures for the cognitive skill domain include the Peabody Indi-
vidual Achievement Test (PIAT) and the Woodcock-Johnson tests, both of which
are specifically designed to track child development over a wide range of child ages.
These measures have have been used in numerous studies, both inside and outside
economics. In our empirical application, we use the PIAT measures and discuss in
more detail why we believe these measures are age-invariant.11

A few remarks:

� Age-invariance is not required across all periods. A sufficient condition for
identification of the technologies considered here is that there are at least some
pairs of measures ages (e.g., from 5 to 6, from 7 to 8, etc.) that are age-invariant
for these age-pairs. Moreover, age-invariance is not required for all measures,
and additional non-age-invariant measures can be incorporated along with the
age-invariant ones.

� Age-invariance does not impose any particular correlation between measures
across ages. Age-invariance is not an assumption that measures are equally
informative at all ages. There can be various degrees of measurement noise
in individual measures such that there is low inter-period/age correlations in
age-invariant measures. A corollary is then that a small inter-age correlation
in measures does not necessarily suggest a lack of age-invariance, although it
may suggest that the skill domains measured are changing across ages (see e.g.
Lewis and McGurk, 1972).

� More generally, age-invariance does not impose any particular structure on
the marginal distribution of latent skills nor on the measurement errors. Age-
invariance for example does not rule out ceiling or floor effects whereby the
relationship between latent skills and measures is non-linear. Following much
of the existing literature we impose log-linearity in the measurement system
and assume latent skills and measurements errors are independent, but it is

11Several recent papers explicitly invoke age-invariance assumptions regarding their particular
measures. Attanasio et al. (2020) argue that the raw count of number of tasks completed from
the Bayley cognitive scale is age-invariant over the age range they consider. Using the same data,
Attanasio et al. (2019a) argue that a transformed age-equivalent version of the Bayley is age-
invariant. And, Attanasio et al. (2019b) use the Peabody Picture Vocabulary Test (PPVT) as
an age-invariant measure. These studies also assume age-invariance for certain non-cognitive and
health measures. As in our paper, these assumptions are justified on a case-by-case basis.
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possible to use the primitive age-invariance assumption in combination with
other measurement models, including those allowing for discrete or non-linear
measures (e.g., Williams, 2019).12

� Age-invariant measures need not imply overlap in the skill distribution across
ages. It is possible that in some population there are no two children of dif-
ferent ages with the same level of latent skills. Age-invariance imposes general
restrictions on the measures, in particular the common scale and location in
our log-linear case.

� Our concept of age-invariance should not be confused with “age-standardized”
or “age-equivalent” measures. The latter are two transformations of the raw
data: age-standardized measures are constructed to be mean 0 and standard
deviation 1 at each age, and age-equivalent measures are constructed to ex-
press raw scores relative to the typical development pattern using mean or
median scores by age. Although age-equivalence transformations are actually
predicated on the assumption of age-invariance, they do not guarantee that
the resulting transformed measures are age-invariant. Age-invariant measures
cannot be automatically constructed using ex post data transformations be-
cause the age-invariance property concerns the relationship between data and
unobserved latent skills, which must be argued for on a case-by-case basis.
However, it is possible that certain transformations may result in measures
which are age-invariant whereas the raw measures are not, and vice versa.

Note also that our concept of age-invariance is unrelated to the concept of
“anchoring” (Cunha et al., 2010). Anchoring in this influential work is a trans-
formation of the latent variables in terms of adult outcomes (e.g. earnings).
Age-invariance, and the related measurement parameter assumptions, concern
the relationship between skill measures and their associated latent variables
during childhood.

� In practice, age-invariant measures need not only encompass measures with
testing instruments that are given exactly to children of different ages (i.e.
children given the exact same test questions). Many tests intended to track
development across ages are often administered such that the questions are
endogenously determined by the previous answers of the child. Therefore, while
not all children are in fact answering the exact same test questions, their scores

12We do note that substantial floor or ceiling lumping evident in the raw data may cast doubt on
the age-invariance assumption. As discussed below, our particular assumed age-invariant measures
do not exhibit substantial floor or ceiling lumping.
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are determined in an age comparable way. The typical test includes a number
of test items ranging from low to high difficulty questions. Testing begins
by first establishing a baseline test item for each child. While the baseline
is initially based on the child’s age, the baseline is adjusted downward (to
less difficult questions) as the child is unable to answer questions correctly.
Once the baseline is established, the test then progressively asks more difficult
questions. Testing stops when the child makes a certain number of mistakes.
The score is then determined as the number of correct answers before testing
stops. Included in this number of correct answers are the lower difficulty test
items prior to the baseline item because it is assumed the child would have
answered these items correctly (given she was able to answer more the difficult
items).

� Finally, we note that while we work with a sufficient condition for measures
such that we exclude age from the measurement system, we could weaken this
exclusion condition to allow some restricted parametric forms of age-varying
in the measures. For example, if the researcher believes in some constant
linear age-varying profile in the measures, this could be incorporated into the
measurement system and identification of the primitive technology likely would
still obtain. We leave these hybrid cases to future work.

3.4 Cobb-Douglas Example

In this final identification section we provide one simple parametric example illus-
trating how age-invariant measures can identify a simple production technology. We
continue to work with a simplified model in which we assume investment is perfectly
observed and exogenous. In the next section we analyze the full model we bring
to data, and the Appendix provides a more general semi-parametric identification
analysis.

Consider a Cobb-Douglas production function, which for skills developed in pe-
riod 1 is specified as:

ln θ1 = lnA0 + ψ0(γ0 ln θ0 + (1− γ0) ln I0) + ηθ,0 (6)

with γ0 ∈ (0, 1). The parameters lnA0 and ψ0 represent the location and scale of
the production function.

Assuming that the initial period (t = 0) measurement parameters {µ0,m, λ0,m}m
are already identified, we define the “error-contaminated” measures for the initial
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period and the next period measures as:13

Z̃0,m ≡ Z0,m − µ0,m

λ0,m
= ln θ0 + ϵ̃0,m ,

where ϵ̃0,m = ϵ0,m
λ0,m

, while the next period measure is a function of latent skills as

follows:

Z1,m = µ1,m + λ1,m ln θ1 + ϵ1,m.

As in all of our analysis above, the measurement parameters µ1,m and λ1,m are
treated as free parameters. Substituting the production technology into the period
1 measurement equation, we have

Z1,m = µ1,m + λ1,m lnA0 + λ1,mψ0(γ0 ln θ0 + (1− γ0) ln I0) + λ1,mηθ,0 + ϵ1,m

= (µ1,m + λ1,m lnA0) + λ1,mψ0(γ0(Z̃0,m − ϵ̃0,m) + (1− γ0) ln I0) + λ1,mηθ,0 + ϵ1,m

= β0,0 + β0,1Z̃0,m + β0,2 ln I0 + π0,m (7)

where equation (7) is a reduced-form equation of the original technology, with

π0,m = λ1,mηθ,0 + ϵ1,m − λ1,mψ0γ0ϵ̃0,m.

The reduced-form parameters β0,0, β0,1, β0,2 are combinations of unknown measure-
ment parameters µ1,m, λ1,m and unknown production function parameters lnA0, ψ0, γ0:

β0,0 = µ1,m + λ1,m lnA0,

β0,1 = λ1,mψ0γ0,

β0,2 = λ1,mψ0(1− γ0)

Assuming that the reduced-form parameters (βs) are identified, we are still faced
with an under-identification problem as there are 5 unknown primitive parameters
lnA0, ψ0, γ0, µ0,m, λ1,m, and there are only 3 identified reduced form parameters in

13In the estimation section we describe how to identify the initial measurement parameters
and initial latent skill distribution. Our identification of the initial conditions follows standard
arguments used in the current literature (e.g., Cunha et al., 2010).
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(7). One could impose a technology restriction (e.g. lnA0 = 0 and ψ0 = 1), but our
goal is to use the available data to identify a general technology.14

We assume that the measures Z0,m, Z1,m constitute a pair of age-invariant mea-
sures (Definition 1). This implies the measurement restriction µ0,m = µ1,m = µm

and λ0,m = λ1,m = λm. Given the identification of the initial period measurement
parameters µ0,m, λ0,m, we can then identify the remaining technology parameters:

ψ0 =
β0,1+β0,2

λm
,

γ0 =
β0,1

β0,1+β0,2
,

lnA0 =
β0,0−µm

λm
.

We can continue in this way, and with the presence of age-invariant measures for
the remaining periods, to identify the full sequence of primitive technology parame-
ters.15

4 Estimation

In this Section, we move beyond the stylized model analyzed in preceding sections
and lay out the specific functional forms of the more general model we estimate.
Our specification of the multi-dimensional initial conditions, parental investment
functions, and adult outcome equations largely follow the empirical model of Cunha
et al. (2010).16 We conclude this Section by discussing the estimation algorithm:

14These kinds of production function restrictions can also be understood as restrictions in a
traditional “reduced form” error-in-variables model (Chamberlain, 1977). In this literature, iden-
tification is often achieved by a proportionality restriction (e.g. linear regression parameters are
assumed proportional to each other), i.e. restrictions imposed on the β parameters directly. In our
case, the restrictions we consider come from restrictions on the primitive production function or
measurement system, which is intuitively appealing because we can understand the consequences
of these restrictions more clearly.

15Some more recent studies have provided complementary identification results in similar set-
tings. For example, Del Bono et al. (2020) show that if researchers are interested in the average
marginal effects of improving childhood inputs on later in life adult outcomes, this only requires
the identification of reduced form treatment effects, and not separate identification of the tech-
nology and measurement parameters. In addition, Freyberger (2020) provides several additional
identification results, including new results on the identification of CES production functions.

16Two notable differences: First, we do not model the child’s non-cognitive skill production.
Second, we do not assume a particular marginal distribution for the latent variables or measurement
errors (assumed Normal or mixture of two Normal distributions in Cunha et al., 2010), with the
exception of the initial conditions distribution.
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a sequential instrumental variable estimator with instruments derived from primi-
tive assumptions about the correlation of measurement errors, latent variables, and
unobserved shocks.

4.1 Functional Forms

4.1.1 Multidimensional Initial Conditions

We assume periods t last for 2 years, and the initial period t = 0 corresponds to
age 5-6 and the last period t = 4 corresponds to ages 13-14. The full set of initial
conditions consist of the child’s initial (at age 5-6) stock of skills θ0, the mother’s
cognitive and non-cognitive skills (θMC and θMN), which are assumed to be time
invariant over the child development period, and the level of family income at the
initial period (Y0). Define the vector of initial conditions as

Ω = (ln θ0, ln θMC , ln θMN , lnY0)

Although our estimation algorithm for the skill technology does not require any
parametric specification for the initial conditions, for counterfactual exercises we need
to model and estimate the initial relationship between latent skills and family income.
For this reason, we assume a parametric distribution for the initial conditions:

Ω ∼ N(µΩ,ΣΩ)

where µΩ = [0, 0, 0, µ0,lnY ]. µ0,lnY is the mean of log household income when chil-
dren are 5-6 years old. The means of the remaining variables are set to zero as a
normalization. ΣΩ is the variance-covariance matrix for the initial conditions. With
the exception of income, the remaining variables are treated as latent factors with
measures described below.

4.1.2 Parental Investments

We specify a parametric policy function for parental investment. The parametric
policy function depends on the current stock of the child’s skills, mother’s skills, and
family income:

ln It = α1,t ln θt + α2,t ln θMC + α3,t ln θMN + α4,t lnYt + ηI,t (8)

Yt is household income in period t, and ηI,t is the investment shock, where ηI,t i.i.d. ∼
N(0, σ2

I,t) for all t, and is assumed independent of latent skills and income. Moreover,
we assume that the investment policy function has constant returns to scale, where
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∑
j αj,t = 1 for all t, following Cunha et al. (2010); Attanasio et al. (2015a,b).

Because the set of available measures of parental investments change with the child’s
age, we cannot assume that the investment measures are age-invariant, which implies
that the scale of the investment equation cannot be separately identified from the age-
varying measurement factor loadings. Finally, our concept of investment represents
both quantity and quality aspects, where we use measures of investments which
capture quantity aspects (e.g. time parents spent reading to children) and quality
aspects (e.g. whether children are “praised” by their parents).

This specification of investment is an approximation of the parental behavior,
and is not derived from an explicit economic model of the household behavior. The
advantages of this approach are twofold. First, it provides a simple and tractable
model of the investment process, which avoids the computational burden of solving
and estimating a formal model of household behavior. Second, this approach has
the potential to allow for some generality as our specification of the investment pro-
cess can be consistent with multiple models of the household. Other recent work
derives parental endogenous behavior from explicit models of the household, includ-
ing explicit representations of household preferences, decision making, beliefs, and
constraints (see for example Bernal, 2008; Del Boca et al., 2014a,b; Cunha, 2013;
Cunha et al., 2013; Doepke and Zilibotti, 2017; Agostinelli, 2019; Doepke et al.,
2019; Agostinelli et al., 2020). The advantage of these latter approaches is that
the counterfactual policy analysis incorporates well defined household responses to
policy, see Del Boca et al. (2014b) for some discussion.

Given the investment function does not derive from an explicit model, we in-
terpret the parameters in a more “reduced-form” way. The parameter α1,t can be
interpreted as reflecting whether parents “reinforce” existing skill stocks (α1,t > 0) or
“compensate” for low skill stocks (α1,t < 0). The parameters α2,t and α3,t reflect the
extent to which the mother’s skills relate to the quantity and quality of her parental
investment as in the case where more skilled mothers read to their children more
or provide higher quality interactions. Finally, the parameter α4,t reflects the influ-
ences that household resources have on the extent of parental investments, and it
includes the combined effects of constraints the household faces (such as credit mar-
ket constraints), as well as the household’s preferences for investing scarce resources
in children (see Caucutt et al., 2015).

Finally, to close the investment model, we assume that log family income (lnYt)
follows an AR(1) process:

lnYt+1 = µY + ρY lnYt + ηY,t (9)

where the innovation is ηY,t i.i.d. ∼ N(0, σ2
Y ) and is assumed independent of all latent
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variables. As specified above, initial family income Y0 is allowed to be correlated
with mother’s and children’s initial skills, and hence our model captures important
correlations between household resources and the skills of parents and children.17

4.1.3 Skill Technology

The skill technology is specified according to the translog form introduced earlier in
Equation 3:

ln θt+1 = lnAt + γ1,t ln θt + γ2,t ln It + γ3,t ln It · ln θt + ηθ,t,

We assume that both the stock of skills θt and It are unobserved and measured
with error. The production shock ηθ,t, representing omitted inputs, is assumed dis-
tributed ηθ,t i.i.d. ∼ N(0, σ2

θ,t). Our investment specification allows investment flows
It to be endogenous to the current stock of child skills, mother’s skills, and time
varying household income, but are assumed independent of the contemporaneous
skill shock ηθ,t.

18 Further, we assume the contemporaneous latent stock of skills θt is
independent of the current production shock, although correlated with past shocks
given the dynamic technology specification.

4.1.4 Adult Outcome

In order to provide a more meaningful metric to evaluate policy interventions, we
relate “adult” outcomes to the stock of children’s skills in the final period of the
child development process (period T = 4 or age 13-14). This follows the “anchoring”
concept of Cunha et al. (2010). Each adult outcome Q is determined by

Q = µQ + αQ ln θT + ηQ, (10)

where ηQ is assumed independent of ln θT . We use years of schooling measured at
age 23 and log earnings at age 29 as adult outcomes. Schooling is an attractive adult
outcome to use because it explains a large fraction of adult earnings and consumption,
is largely determined at an early point in adulthood, and, unlike realized labor market
earnings, does not suffer from a censoring issue due to endogenous labor supply.

17Note that as with the assumption about the joint distribution of the initial conditions, our
specific model for the evolution of household income is not strictly necessary for estimation of the
main model primitives, in this case the investment equation. But to conduct counterfactual simu-
lations we need to simulate household income paths for any given draw from the joint distribution
of initial child skills, mother skills, and income.

18Identification relaxing this assumption would likely require some valid instrument for latent
investment, perhaps derived from some randomized experimental intervention.
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4.1.5 Measurement

We allow for all of the key variables to be measured with error. The full measurement
system for latent investment, child cognitive skills, and mother’s cognitive (MC) and
non-cognitive (MN) skills is given by

ZI,t,m =µI,t,m + λI,t,m ln It + ϵI,t,m for all t,m

Zθ,t,m =µθ,t,m + λθ,t,m ln θt + ϵθ,t,m for all t,m

ZMC,m =µMC,m + λMC,m ln θMC + ϵMC,m for all m

ZMN,m =µMN,m + λMN,m ln θMN + ϵMN,m for all m

We assume measurement errors are independent of each other contemporane-
ously, independent of each other over-time, independent of latent variables, and
independent of production and investment shocks. We do not make any assumption
about the marginal distributions of the measurement errors, but use the primitive
independence assumptions to form internally-valid instruments, as described below.

4.2 Estimation Algorithm

Our estimation approach directly follows our identification approach in treating the
measurement parameters as nuisance parameters which can be computed sequen-
tially along with the primitive parameters of the model generating the latent vari-
ables. The estimation algorithm is robust to parametric distributional assumptions
on the marginal distributions of latent variables and measurement errors, as is com-
monly imposed in the prior empirical literature. Following the estimation of the
initial conditions using standard techniques, we sequentially estimate for each age
the investment and production functions, followed by the measurement parameters
for the measures used for that age. The sequential algorithm we develop has the ad-
vantage of tractability because our estimator does not require the simulation of the
full model; the primitives of the production technology and investment functions can
be estimated directly from data without simulation. In addition, another advantage
of our approach over a joint estimation approach is by breaking the estimator into
steps, we make the identification assumptions as transparent as possible. Of course,
the disadvantage of our approach is a potential loss of efficiency from not estimating
the parameters jointly and exploiting “cross-step” restrictions.19

19It should be noted that to compute counterfactual simulations, we do simulate the full model
forward from the estimated initial conditions, using the estimated model primitives. But simulating
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Step 0 (Estimate Initial Conditions and Initial Measurement Parameters)

First, we estimate the measurement parameters at the initial period (age 5-6)
for both children’s and mother’s skills. To estimate these measurement parameters,
we use ratios of covariances and measurement means. We choose one measure each
for children’s cognitive skills, mother’s cognitive skills, and mother’s non-cognitive
skills as the normalizing measure (which we label m = 1, without loss of generality)
and normalize the factor loading for these measures to be 1: λθ,0,1 = 1, λMC,1 = 1,
λMN,1 = 1. We estimate the remaining factor loadings using the average of the
covariances between all of the remaining measures, where each factor loading is
computed from

λθ,0,m =
Cov(Zθ,0,m, Zθ,0,m′)

Cov(Zθ,0,1, Zθ,0,m′)
∀m ̸= m′ ,

λω,m =
Cov(Zω,m, Zω,m′)

Cov(Zω,1, Zω,m′)
∀m ̸= m′ and ∀ω ∈ {MC,MN} .

Given the normalization that log skills are mean 0 in the initial period, we compute
the initial measurement intercepts as

µθ,0,m = E(Zθ,0,m) ∀m,

µω,m = E(Zω,m) ∀m and ∀ω ∈ {MC,MN} .

With the factor loading estimates in hand, we then estimate the initial period
variance-covariance matrix ΣΩ using variances and covariances in measures of skills
and family income (assumed measured without error). This step provides estimates
of the initial joint distribution of children’s skills, mother’s skills, and family income.
In this initial step, we also estimate the parameters of the income process (9) using
a regression of log family on lagged log family income.

Finally, given the estimates of the measurement parameters for children and
mother skills, we form the following “residual” measures:

Z̃θ,0,m =
Zθ,0,m − µθ,0,m

λθ,0,m
∀m,

Z̃ω,m =
Zω,m − µω,m

λω,m
∀m and ∀ω ∈ {MC,MN} .

counterfactuals in this way does not require assuming anything about the marginal distribution of
measurement errors or latent variables (beyond the initial period).
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We are now ready to estimate the investment function for period t = 0, where
the investment in this first period depends on the initial child’s skills and household
characteristics (mother’s skills and family income).

Step 1 (Estimate Investment Function Parameters):

Following the errors-in-variables formulation described above, we substitute a
“raw” measure for investment ZI,0,m and a “residual” measure for each of the la-

tent skills (Z̃θ,0,m, Z̃MC,m, Z̃MN,m) into the model of investment defined in terms of
primitives (8):

ZI,0,m − µI,0,m − ϵI,0,m
λI,0,m

= α1,0(Z̃θ,0,m − ϵ̃θ,0,m) + α2,0(Z̃MC,m − ϵ̃MC,m)

+α3,0(Z̃MN,m − ϵ̃MN,m) + α4,0 lnY0 + ηI,0

Re-arranging, we have

ZI,0,m = µI,0,m + λI,0,mα1,0Z̃θ,0,m + λI,0,mα2,0Z̃MC,m + λI,0,mα3,0Z̃MN,m + λI,0,mα4,0 lnY0

+ ϵI,0,m + λI,0,m(ηI,0 − ϵ̃θ,0,m − ϵ̃MC,m − ϵ̃MN,m)

= β0,0,m + β1,0,mZ̃θ,0,m + β2,0,mZ̃MC,m + β3,0,mZ̃MN,m + β4,0,m lnY0 + πI,0,m (11)

where ϵ̃θ,0,m =
ϵθ,0,m
λθ,0,m

, ϵ̃MC,m =
ϵMC,m

λMC,m
, ϵ̃MN,m =

ϵMN,m

λMN,m
, βj,0,m = λI,0,mαj,0 for all j

and
πI,0,m = ϵI,0,m + λI,0,m(ηI,0 − α1,0ϵ̃θ,0,m − α2,0ϵ̃MC,m − α3,0ϵ̃MN,m).

Estimation of (11) by OLS would yield inconsistent estimates of the βj,0,m coeffi-
cients because the measures are correlated with their measurement errors (included
in the residual term πI,0,m). Here the structure of the model affords the researcher
several possible strategies to consistently estimate the βj,0,m coefficients. We use an
instrumental variable estimator with the vector of excluded instruments composed
of alternative measures of skills: [Zθ,0,m′ , ZMC,m′ , ZNC,m′ ]. Under our previous as-
sumptions about the measurement errors, these instruments are valid because the
alternative measures are uncorrelated with all of the components of π0,m. Using this
IV strategy, we obtain consistent estimators for the βj,t,m coefficients. The primitive
parameters of the investment function are then recovered from

αj,0 =
βj,0,m∑4
j=1 βj,0,m

∀j ∈ {1, . . . , 4}
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Step 2 (Compute Measurement Parameters for Latent Investment):

After estimating the primitive parameters of the investment function, we recover
the scale and location for the investment equation without further assumptions on
the measurement equation parameters. The intercept and factor loading for the
investment measure are given by

µI,0,m = β0,0,m ,

and

λI,0,m =
4∑

j=1

βj,0,m .

With these consistent estimators for the measurement parameters, we form the
“residual” measures for investment in period t = 0:

Z̃I,0,m =
ZI,0,m − µI,0,m

λI,0,m
≡ ln I0 + ϵ̃I,0,m ,

where ϵ̃I,0,m =
ϵI,0,m
λI,0,m

.

Step 3 (Estimate Skill Production Technology)

We assume we have available at least one child skill measure which is age-
invariant. Label the age-invariant measure to be measure m, and for this measure
we have µθ,t,m = µθ,0,m and λθ,t,m = λθ,0,m for all t.

Substituting the residual measures into the production technology (3), we have

Zθ,1,m − µθ,1,m − ϵθ,1,m
λθ,1,m

= lnA0 + γ1,0(Z̃θ,0,m − ϵ̃θ,0,m) + γ2,0(Z̃I,0,m − ϵ̃I,0,m)

+ γ3,0(Z̃θ,0,m − ϵ̃θ,0,m)(Z̃I,0,m − ϵ̃I,0,m) + ηθ,0 .

With some algebra, we can re-write this as:

Zθ,1,m = δ0,0,m + δ1,0,mZ̃θ,0,m + δ2,0,mZ̃I,0,m + δ3,0,mZ̃θ,0,m · Z̃I,0,m + πθ,0,m , (12)

where the new error term πθ,0,m is:

πθ,0,m = ϵθ,1,m+λθ,1,m[ηθ,0−γ1,0ϵ̃θ,0,m−γ2,0ϵ̃I,0,m−γ3,0(Z̃θ,0,mϵ̃I,0,m+Z̃I,0,mϵ̃θ,0,m−ϵ̃θ,0,mϵ̃I,0,m)] .
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The rest of the reduced-form parameters (δs) map into the structural parameters
and measurement parameters in the following way:

δ0,0,m = µθ,1,m + λθ,1,m · lnA0

δj,0,m = λθ,1,mγj,0 for any j ∈ {1, 2, 3}.

As with the investment function, estimation of (12) using OLS would lead to
an inconsistent estimator. The vector of excluded instruments is composed of alter-
native measures of skills and investment: [Zθ,0,m′ , ZI,0,m′ , Zθ,0,m′ · ZI,0,m′ ]. Under
our measurement assumptions, these instruments are valid because the alternative
measures are uncorrelated with all of the components of πθ,0,m.

20 With a consistent
estimator of the δs in hand, we can then recover the structural parameters:

lnA0 =
δ0,0,m − µθ,1,m

λθ,1,m

γj,0 =
δj,0,m
λθ,1,m

∀ j ∈ {1, 2, 3} ,

where both measurement parameters µθ,1,m and λθ,1,m are already identified under
the age-invariance assumption.

Step 4 (Estimate Variance of Investment and Production Function Shocks):

The variances of both the investment shocks (σ2
I,0) and of the production function

shocks (σ2
θ,0) remain to be estimated. In order to estimate σ2

I,0, we use the covariance
between the residual term (πI,0,m) in (11), and an alternative residual measure of

investment Z̃I,0,m′ = ln I0 + ϵ̃I,0,m′ as follows:

Cov

(
πI,0,m
λI,0,m

, Z̃I,0,m′

)
= V (ηI,0) = σ2

I,0 .

To compute the residual measure Z̃I,0,m, we need to compute the measurement
parameters for this measure. We do this by following the procedure explained in

20Perhaps the less obvious terms are terms such as this E(Z̃θ,0,mϵI,0,m|Zθ,0,m′ · ZI,0,m′). Under
the assumption of independence of the errors, we have

E(Z̃θ,0,mϵI,0,m|Zθ,0,m′ · ZI,0,m′) = E(Z̃θ,0,m|Zθ,0,m′ · ZI,0,m′)E(ϵI,0,m|Zθ,0,m′ · ZI,0,m′)

given ϵI,0,m is independent of Z̃θ,0,m. Given the independence assumption, the latter term is

E(ϵI,0,m|Zθ,0,m′ · ZI,0,m′) = E(ϵI,0,m) = 0. Therefore, E(Z̃θ,0,mϵI,0,m|Zθ,0,m′ · ZI,0,m′) = 0.
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the Steps 1 and 2 above, with the alternative measure ZI,0,m′ . The variance of
the production shock is estimated in the same way using an alternative measure of
children’s skills in period t = 1:

Cov

(
πθ,1,m
λθ,1,m

, Z̃θ,1,m′

)
= V (ηθ,0) = σ2

θ,0 .

Remaining Steps

We repeat Steps 1-4 for the remaining periods until the final period of child
development T . This algorithm produces estimates of the parameters for all child
ages.

Finally, after we have computed the full path of primitive parameters for the
investment and production functions, we are able to estimate the adult outcome
process (10). We estimate equations for both years of education at age 23 and log
earnings at age 29. We use the same IV method as before to solve the measurement
error issue. Substituting the measures for skills at age 13-14 (T = 4) in equation
(10), we have:

Q = µQ + αQZ̃θ,4,m + (ηQ − αQϵ̃θ,4,m) (13)

where we use a second measure for skills at age 13-14 as an instrumental variable to
identify αQ.

Standard Errors

To account for the sources of estimation uncertainty among different steps and
the sample design of the data, we adopt a bootstrap algorithm. Because of the
original sampling design of the data, we implement a block bootstrap algorithm that
samples all the children of each family to account for the intra-family correlation,
and all of the observations at each age for each child to account for the intra-child
correlation. We generate a distribution of estimated parameters by re-estimating the
model, including all estimation steps in sequence, for each of the random samples
of families. This distribution is used to compute the standard errors and confidence
intervals.

4.3 Data

We estimate the model using information about children and their families obtained
from the National Longitudinal Study of Youth 1979 (NLSY). Descriptive statistics
for the sample and additional data construction details are left for the Appendix.
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The NLSY dataset is constructed by matching female respondents of the original
dataset with their children who were part of the Children and Young Adults surveys,
from 1986 to 2012. The dataset provides observations of the first period of the model
(age 5-6) through adulthood. The total number of children in our sample is 11,509.

The NLSY dataset contains multiple measures of children’s skills, mother’s skills,
and parental investments. The complete set of measures, their ranges and descrip-
tive statistics for our sample are included in the Appendix. For children’s skills we
rely on different sub-scales of the Peabody Individual Achievement Test (PIAT) in
Mathematics, Reading and Recognition, and the Peabody Picture Vocabulary Test
(PPVT). Finally, we use information for children when they become young adults to
link the children’s skills into a more meaningful metric to evaluate policy interven-
tion: we use children’s highest grade completed at age 23 or older and their earnings
at age 29. The information about the educational attainment is measured as the
highest grade completed as of date of last interview. We considered schooling infor-
mation only for those young adults who were at least 23 years old or older in the last
2012 interview. Age 29 earnings is in real 2012 dollars.

For mother’s cognitive skills we use sub-scales of the Armed Services Vocational
Aptitude Battery (ASVAB), and for mother’s non-cognitive skills we use the Rotter
and Rosenberg indexes. For parental investments, we use the various HOME score
measures from direct observation and interview with the mother. Family income
includes all sources of income for the parents, including mother’s and father’s labor
income, and any sources of non-labor income.

Finally, we rely on PIAT-Math scores for our age-invariant measure, from age 5
to 14. As discussed in Ollendick and Cerny (2013), the PIAT was designed to provide
a reliable measurement of the cognitive developmental level of children. The authors
discuss that the validity of the PIAT has been measured by observed developmental
changes, correlations with other tests, and factor analysis. Dunn and Markwardt
(1970) reviewed the psychometric properties of the PIAT measures. Developmental
changes in children has been shown to be strongly associated with an increase in
scores with age or grade.

In the Appendix, we describe the testing procedure for these assessments (taken
from the NLSY codebooks). The PIAT-Math consists of 84 items of increasing
difficulty. For our sample, the mean score increases from about 12 items correct for
children aged 5-6 to 54 items correct for children aged 13-14. Less than 1 percent
of the sample scored at the maximum value of the test (all 84 items correct) or at
the minimum value (0 items correct). In addition, there is substantial variation in
scores at each age. As we note above, the absence of a binding floor or ceiling in the
measure is not proof of age-invariance, but does suggest the measure is not merely
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appropriate for a subset of children.

5 Results

In this Section we discuss our parameter estimates and simulate the estimated model
to describe the development of children’s skills. We conclude this Section with a series
of policy counterfactual experiments using the estimated model. These exercises
provide a metric to interpret the estimates with respect to adult outcomes, schooling
and earnings.

5.1 Parameter Estimates

5.1.1 Initial Conditions

Table B-1 reports estimates of the initial conditions variance-covariance matrix ΣΩ

and the associated correlation matrix. We normalize children’s cognitive skills to
the PIAT-Mathematics test, mother’s cognitive skills to the ASVAB2 (Arithmetics
reasoning) and mother’s non-cognitive skills to the Self-Esteem 1 (Rosenberg Self-
Esteem: “I am a person of worth”) measure. The variances and covariances of the
latent skills, and the investment and production function parameters, are interpreted
relative to these normalizations. As expected, we estimate that children’s skills,
mother’s cognitive and non-cognitive skills, and family income are all highly posi-
tively correlated. For space considerations, estimates of the dynamic family income
process can be found in the Appendix.

5.1.2 Investment Function

Table B-2 reports the estimates of the investment function specified in Section 4.1.2.
At ages 5-6, we find that investment is increasing in children’s skills, mother’s skills,
and family income. Because of the log-log form of the investment equation, we can in-
terpret parameter estimates as elasticities. However, we note that the interpretation
of these estimates still depends on the particular normalizations and log-linear form
of the measurement equations. The parameter estimate of 0.230 on the log children’s
skills variable indicates that a 1 percent increase in children’s skills raises investment
by 0.23 percent, an inelastic response. The positive coefficient suggests that parents
are “reinforcing” existing skills with further investments: children with higher skills
are receiving even more investment than children with lower skills. Mother’s cognitive
and non-cognitive skills also increase investment at ages 5-6, with non-cognitive skills
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of the mother estimated to have a substantially higher elasticity than cognitive skills.
These coefficients indicate that mothers with higher skills are providing higher in-
vestments in children. Turning to the importance of income to parental investments,
we find that a 1 percent increase in family income raises investment by 0.34 percent.
The response of investment with respect to mother’s skills and family income reflects
the combination of parental preferences and household constraints, which we cannot
unfortunately separately distinguish using this reduced-form model of investment.
Given that positive correlation between mother’s initial skills, child’s initial skills,
and household income, these estimates of the investment function indicate that en-
dogenous investment increases inequality in children’s skills. The estimated variance
of the investment shock reveals how much of the remaining variation in parental
investments remains unexplained by this model, such as investments from schools,
peers, and the child herself.

Comparing parameter estimates of the investment function over the development
period reveals that the influence of the child’s prior skills on investments becomes
much smaller at later ages, indicating that parental investments become less rein-
forcing of existing skill stocks at older ages. As the child develops, we find that the
mother’s non-cognitive skills become the dominant influence on investment. How-
ever, while the importance of family income falls somewhat from an elasticity of 0.34
at age 5-6 to 0.275 at age 11-12, income is still a significant and positive factor for
parental investment even at later ages.

5.1.3 Production Function

Table 2 reports the parameter estimates for the technology of skill formation, as
described in Section 2.3. At all ages, we find that skills are “self-productive” (next
period’s skills are increasing in existing skill stocks) and that skills are positively
increasing in investment. For age 5-6 skill production, we estimate a significant neg-
ative complementarity between the stock of a child’s skills and parental investments
(the interaction term ln θt ln It). This result highlights the importance of departing
from the Cobb-Douglas/CES specifications.

The elasticities of skill production with respect to investment are heterogeneous,
and we graph the skill elasticity for the age 5-6 production function in Figure 1 with
respect to the existing stock of children’s skill. The estimated negative coefficient on
the interaction term indicates that the elasticity of skill production with respect to
investment is decreasing in the child’s current skill level. For low skill children, the
elasticity approaches 1.5, indicating that a 1 percent increase in investment increases
next period’s skills by 1.5 percent. For already high skill children, the elasticity
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approaches 0.2, indicating that a 1 percent increase in investment raises future skills
by only 0.2 percent.

The heterogeneous investment elasticities suggest that interventions would have
the largest effect on skill disadvantage children. This result stands in contrast to
the estimates from previous works in the literature, which were based on CES (or
linear) technologies. These technology specifications restrict the heterogeneity of the
investment productivity by assuming that the marginal productivity of investment
must be increasing (or constant) with respect to a child’s skills. Note also that unlike
the CES (constant returns to scale) case, our unrestricted model allows investment
elasticities to be larger than 1. Indeed, our estimates suggest that, at least for some
children, skill production is relatively highly elastic with respect to investment.

The high TFP estimate for age 5-6 and the increasing returns to scale indicate
that existing skills and investments at this initial age are very productive relative to
later ages; early periods are more sensitive. These estimates of high returns to early
investment will underlie the policy experiment results we discuss next. As children
age, Table 2 indicates that skills and investments become generally less productive
and skills less “malleable.” We graph the estimated TFP at each age in Figure 2. Our
estimate of TFP at age 11-12 falls to 1/6 the level at age 5-6, indicating a dramatic
slowdown in the productivity of existing skills and investments in producing new
skills. This feature of the technology is largely consistent with the evidence that
cognitive skills are difficult to change as children reach age 10.21

5.1.4 Adult Outcomes

Table B-3 presents our estimates of the completed schooling outcome equation and
log earnings equation. We estimate that a 1 unit increase in children’s log skills at
age 13-14 leads to an increase of 0.15 years of school and a 0.041 increase in log
earnings at age 29. Below, we use these estimates to “anchor” our policy estimates
to a meaningful adult outcome metric.

5.2 Estimated Child Development Path

We analyze the quantitative implications of the estimated model by simulating the
dynamic model. Simulation of the model proceeds by drawing 10,000 children from
the estimated initial conditions distribution, and, for each child, forward simulating
the path of income, investments, children’s skills, and adult outcomes.

21In the Appendix, we report estimates of the technology using alternative sample definitions
and adding additional covariates. The results are qualitatively similar.
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Figure 3 shows the estimated development path of mean log latent cognitive skills.
Figures 4 and 5 show the dynamics in the distribution of latent skills. And, Figure 6
provides the estimated dynamics in the distribution of latent investment.

Perhaps not surprisingly, we find that children’s mean latent skills grow substan-
tially over this development period, from age 5 to 14, with the most rapid growth
at early ages and growth slowing somewhat in the later period. As discussed above,
key to the identification of the non-stationary change in children’s skills is the use of
age-invariant measures of children’s skills. In addition to growth in mean skills, we
estimate that the latent distribution of cognitive skills becomes more dispersed as
children age (Figure 4). Inequality rises substantially as there are different rates of
skill growth for children at different percentiles of the initial skill distribution. Figure
5 shows that skills for high skill children at the 90th percentile grow 20% from age
5-6 to age 9-10 and grow 9% during the rest of the childhood. For low initial skill
children at the 5th percentile, growth is slower, with a 6 % growth rate from age 5-6
to age 7-8 and a 3 % growth rate from age 11-12 to age 13-14.

5.3 Policy Experiments

In this sub-section, we use the estimated model to analyze the effect of income
transfers on childhood skill development and adult outcomes. We argue that this
experiment provides a meaningful metric to understand the magnitude of the pa-
rameter estimates, as well as allowing us to study the possible trade-offs of designing
childhood policies.

5.3.1 Effects on Final Skills

We first consider a simple exercise designed to assess the optimal timing of the income
transfer. In Figure 7 we show the average change in the latent children’s log skills at
age 13-14 by the different timing (age) of income transfer: E[ln θ

′
T (a)− ln θT ], where

θ
′
T (a) is the level of skill at age t = T (age 13-14) with an income transfer of $10,000
dollars (in 2012 $) provided to the family at age t = a, and θT is level of skill at
age 13-14 in the baseline estimates (no income transfer). The transfer is a one-time
transfer, and we do not allow households to save past transfers or borrow from future
transfers. The figure shows that a $10,000 transfer given at age 5-6 increases the
average stock of age 13-14 skills by approximately 16 percent. Providing the same
transfer later has a smaller average effect. Providing a $10,000 transfer at age 11-12
would increase the average skill stock at age 13-14 by less than 3 percent. This result
reflects the high productivity of investment in the early periods and the high level of
productivity of existing stocks of skill in producing future skills.
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5.3.2 Effects on Completed Schooling

Figure 8 displays the results of the same set of policy experiments as in Figure 7 but
using completed schooling at age 23 as the outcome. In this Figure, we plot E(S

′
(a)−

S), where S
′
(a) is the number of months of completed schooling for an income transfer

of $10,000 given at age a, and S is the number of months of completed schooling
in the baseline model (no income transfer). We find that a $10,000 transfer given
at age 5-6 would increase the number of average months of completed schooling by
0.3 months. Providing the same transfer at a later period would increase completed
schooling by only 0.05 months.

5.3.3 Heterogeneous Treatment Effects

The previous results showed the average effect of policies providing transfers at differ-
ent stages of the development process. Our modeling framework allows for potentially
important sources of heterogeneity by the child’s initial skills, mother’s skills, and
initial family income levels; all of which could affect the individual level treatment
effect. The model estimates allow us to directly estimate this heterogeneity in the
policy treatment effects.

Figure 9 plots the heterogeneous effect of the income transfer policy at age 5-6 on
completed months of schooling by the percentile of initial (age 5-6) family income.
This figure also plots the average treatment effect (ATE), the average effect over the
income distribution (the same effect as reported above). While the ATE is about
0.3 months, the effect varies considerably depending on the child’s initial level of
income. For the children from poor households in the lowest income percentiles,
the effect of the income transfer is to increase completed schooling by 1 month or
more, and for the children from the richest households, the effect is near 0. The
large heterogeneous effects by family income stem from the estimated importance of
family income in producing child investments and the estimated positive correlation
of income with maternal skills and the child’s initial skills. This heterogeneity in
the effects by income mirrors the heterogeneity in income effects found in previous
papers using alternative sources of identification (see Dahl and Lochner, 2012; Loken
et al., 2012; Agostinelli and Sorrenti, 2018). Using the varied effects of the Norwegian
oil boom to instrument for family income, Loken et al. (2012) report estimates on
completed schooling which are smaller in magnitude than those reported here, but
similar qualitatively in finding that the effects are substantially larger for low income
Norwegian families.

Figure 10 plots the heterogeneous effect of the same policy by the level of the
child’s initial (age 5-6) skill. The ATE plotted in this Figure is the same as in the
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previous figure as it is simply the effect averaged over the initial skill distribution.
In this Figure, we also see evidence of heterogeneous treatment effects, with low
initial skill children benefiting more (up to about 0.8 months of additional schooling)
from the policy intervention than high initial skill children (near 0 effect). But the
importance of heterogeneity by initial skill is substantially smaller than by family
income. This suggests that it is better to target the policy to low income households
than low skill households, but of course it cannot be worse to target based on both
criteria.

5.4 Quantifying the Importance of Measurement Error

Our results presented thus far have been for the model with measurement error
corrections, estimated using what we argue are skill measures that are age-invariant.
We next briefly discuss how the estimates of the primitive production technology
would differ if we ignore the measurement error issues. Note that there is no clear
theoretical prediction about the sign of the measurement error bias, given that our
models are dynamic, non-linear, and consist of inter-related multiple equations. Our
analysis allows us to quantify the importance of measurement error, using policy
predictions on adult schooling as a meaningful metric for comparison.

Table 3 presents the estimated policy effects for two specifications, measurement
error corrected and uncorrected. In Panel A of Table 3, we present the average treat-
ment effects (ATE) on adult schooling of the $10,000 income transfer at various ages
for both estimators. The first row shows the estimates that account for measurement
error: we estimate that the income transfer at age 5-6 would increase average school-
ing by 0.3 additional months. The second row shows the estimated ATE if we do
not correct for measurement error. Using these uncorrected estimates, we estimate
policy effects that are almost 5 times smaller than the measurement error corrected
estimates, a substantial reduction in the estimated effect of an income transfer.

Panel B of Table 3 repeats the analysis but focusing on the heterogeneity in the
treatment effect at different parts of the family income distribution. Similar conclu-
sions are evident here: ignoring measurement error leads to a substantial reduction
in the estimated policy effects of the income transfer. For example, we see that
ignoring measurement error would lead to estimated policy effects on low income
families at the 10th percentile that are five times lower than the estimated effects
once we account for measurement error.
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5.5 Cost-Benefit Analysis

We have thus far shown that the estimated model implies that a policy intervention
of providing income transfers to families would produce modest but positive gains
in children’s skills, with larger effects for poorer households. Would these gains be
justified given the cost? We next present a simple cost-benefit analysis that focuses on
an income transfer policy to the needy families in our sample (at the 10th percentile
of initial family income).

Table 4 shows the effects of the income transfer policy, by children’s age, on the
present value of earnings. In our cost-benefit analysis we calculate the net benefits
of the income transfer at age 5-6 by family income in terms of the net present value
of future earnings. The cost of the policy includes the direct transfer, as well as the
cost of additional schooling. The benefit of this policy is the comparison between
the present value of worker’s earnings with and without that income transfer during
childhood. In other words, we compute the counterfactual present value of earnings
if the worker’s family had received the income transfer when the worker was a child
under different scenarios about the baseline adult earnings. The effect of the family
income transfer to the growth in children earnings are computed using estimates in
Table B-3 under the assumption that the change in the growth rate due to the policy
intervention is constant over the life-cycle.22

Table 4 suggests that, considering both the cost of the income transfer and the
cost of additional education, the net benefit of the policy is positive for earlier ages
and it declines throughout childhood. The largest policy net benefit is when children
are 5-6 years old, and it turns negative if the income transfer is implemented too
late, when the child is 11-12 years old. The present value for the policy intervention
at age 5-6 is slightly more than $29,000 and the net benefit is around $18,000.

6 Conclusion

This paper develops new identification results based on measurement restrictions on
skill measures. These empirically grounded assumptions are sufficient for identifi-
cation of general skill development technologies, including features that were not
previously considered, total factor productivity and returns to scale. Based on our
identification results, we develop a robust estimator using a sequential estimating
algorithm. Our estimator does not require strong assumptions about the marginal
distribution of measurement errors or the latent factors.

22We assume that the baseline adult earnings are constant over the life cycle. Allowing for
earnings growth would generate higher benefits of the policy.
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We estimate the skill production process using data for the United States and a
flexible parametric model of skill development allowing free skill production comple-
mentarity between a child’s stock of skills and parental investments. Our parameter
estimates reveal that investments are more productive at early ages and in particular
for disadvantaged children. Our findings of a positive return to income transfers at
early ages, especially for poorer households, is largely consistent with prior evidence
of a positive effect of income on a number of child outcomes (see Dahl and Lochner,
2012; Loken et al., 2012; Agostinelli and Sorrenti, 2018) using different sources of
identification. Our results suggest that family income is a better “target” than ini-
tial children’s skills for children’s skills, with positive net returns when the policy
targets low-income families. Lastly, our finding that the estimated policy effects
are attenuated by measurement error bias demonstrates the critical importance of
correcting estimates for measurement error.
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Table 1: Sample Descriptive Statistics

Mean SD

N Obs 19070

N of Mothers 3199

N of Children 4941

% Male Children 51.32

% Female Children 48.68

% Hispanic Children 21.44

% Black Children 30.44

% Other Races 48.12

Mom Education 12.59 2.63

Family Income 61657.88 47527.85

Children Final Years of Education 13.30 2.36

Notes: This table shows the main descriptive statistics of the
CNLSY79 sample we use to estimate the model. Children’s Com-
pleted Education is the child’s completed years of education at age
23. The variable ”other races” represents all children which are not
black neither Hispanic (i.e. it includes white, non-Hispanic children).
Income is in $2012 USD.
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Table 2: Estimates for the Skill Technology

Model Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 1.966 1.086 0.897 1.065
(0.153) (0.035) (0.027) (0.029)

[1.71,2.21] [1.03,1.15] [0.85,0.93] [1.02,1.11]

Log Investments 0.799 0.695 0.713 0.252
(0.261) (0.337) (0.403) (0.538)

[0.43,1.22] [0.16,1.21] [-0.03,1.24] [-0.53,1.16]

Log Skills × -0.105 -0.005 -0.003 0.003
Log Investments (0.066) (0.019) (0.013) (0.010)

[-0.21,-0.03] [-0.04,0.03] [-0.02,0.02] [-0.02,0.02]

Standard Deviation 5.612 4.519 3.585 4.019
Shocks (0.173) (0.184) (0.180) (0.246)

[5.38,5.93] [4.28,4.88] [3.27,3.87] [3.71,4.43]

Log TFP 13.067 14.747 11.881 2.927
(0.294) (0.365) (0.538) (0.952)

[12.67,13.60] [14.24,15.47] [11.20,12.93] [1.40,4.48]

Notes: This table shows the measurement error corrected estimates for the technology of skill
formation. Each column shows the coefficients of the technology of skill formation at the given
age. The dependent variable is log skills in the next period t+ 1, and the covariates (inputs)
are at time t. For example, the first column shows the coefficients for the skills inputs at
age 5-6 which lead to log skills at age 7-8. Both standard errors in parenthesis and the 90%
confidence interval in square brackets are computed using a clustered bootstrap at the family
level.
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Table 3: Estimated Policy Effects and Measurement Error

Panel A: ATE by Age of Income Transfer

Age of Income Transfer ($ 10,000)
Model Age 5-6 Age 7-8 Age 9-10 Age 11-12

Measur Error Corrected 0.300 0.172 0.129 0.050
[0.170,0.430] [0.044,0.299] [-0.001,0.258] [-0.058,0.157]

Not Corrected for Measur Error 0.062 0.029 0.022 0.013
[0.042,0.082] [0.014,0.044] [0.007,0.036] [-0.000,0.027]

Panel B: ATE at age 5-6 by Family Income

Low Income Families
(10th Income Percentile)

High Income Families
(90th Income Percentile)

Measur Error Corrected 0.642 0.069
[0.369,0.915] [0.034,0.105]

Not Corrected for Measur Error 0.126 0.018
[0.085,0.166] [0.012,0.023]

Notes: Panel A shows the average treatment effects (ATEs) on additional months of completed education by
age of policy intervention ($10,000 income transfer) with and without correcting for measurement error. Panel
B shows the ATEs by family income percentiles (10th vs 90th percentiles).



Table 4: Average Effect of an Income Transfer by Age of Transfer (Outcome: PV of
Earnings)

Age of
Intervention

Benefit on
PV Earnings

Direct Cost
(Income Transfer) Cost of Education Net Benefit

($) ($) ($) ($)

5 29126.81 10000 749.58 18377.23
7 15598.78 10000 403.65 5195.14
9 11541.43 10000 299.12 1242.31
11 4365 10000 113.43 -5748.43

Notes: This table shows the benefit-cost analysis for a $10,000 dollars transfer to family. The
benefit on the PV of earnings is the difference between the present value of earnings with and
without that transfer when worker was age 5-6. The effect of family income transfer on earnings
growth is computed adjusting for the increased earning growth implied by estimates in Table B-
3. The cost of that policy takes into account both the direct transfer and the discounted cost of
additional education that the policy induces. We use a yearly cost of school of 10,000 dollars per
year. We discount future earnings with an interest rate of 2%.
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Figure 1: Estimates of Skill Production Elasticity with Respect to Investment at
Age 5-6
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Notes: This figure shows the measurement error corrected estimates of the elasticity of children’s
skills at age 7-8 (θ1) with respect to parental investments at age 5-6 (I0):

∂ ln θ1
∂ ln I0

= γ2,0 + γ3,0 ln θ0.
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Figure 2: Total Factor Productivity (TFP) Estimates
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Notes: This figure shows the estimated log TFP (correcting for measurement error). The x-axis
shows children age. Child age of 5 is age 5-6, 7 is age 7-8, and so on.
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Figure 3: Estimated Mean of Log Latent Skills
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Notes: This figure provides the mean log latent skills (E(ln θt)) predicted by the estimated model,
controlling for measurement error . The x-axis shows children age. Child age of 5 is age 5-6, 7 is
age 7-8, and so on. Log latent skills at age 5-6 are normalized to be mean 0.
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Figure 4: Estimated Distribution of Log Cognitive Latent Skills at Age 5-6 and Age
13-14
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Notes: This figure shows the distribution of log latent skills at age 5-6 and at age 13-14 simulated
from the estimated model, controlling for measurement error. Log latent skills at age 5-6 are
normalized to be mean 0.

44



Figure 5: Estimated Dynamics in the Latent Skills Distribution
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Notes: This figure shows the dynamics of the log latent skill distribution simulated from the esti-
mated model, controlling for measurement error. Log latent skills at age 5-6 are normalized to be
mean 0.
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Figure 6: Estimated Distribution of Log Investments at Age 5-6 and Age 13-14
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Notes: This figure shows the distribution of log latent investments at age 5-6 and at age 13-14
simulated from the estimated model, controlling for measurement error.
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Figure 7: Average Effect of Income Transfer by Age of Transfer (Outcome: Final
Period ln θT Skills)
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Notes: This figure shows the average log points change in the latent children’s skills at age 13-14 by
the different timing (age) of income transfer for the estimated model, controlling for measurement

error. The transfer is $10,000 in family income at some age t. We report E
[
ln θ

′

T (a)− ln θT

]
,

where θ
′

T (a) is level of skill at age 13-14 with an income transfer of $10,000 dollars provided to the
family at age a, and θT is level of skill at age 13-14 at baseline (no income transfer).
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Figure 8: Average Effect of an Income Transfer by Age of Transfer (Outcome: School-
ing at Age 23)
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Notes: This figure shows the average change in the number of months of completed schooling at age
23 by different timing (age) of income transfer for the estimated model, controlling for measurement

error. We report E
[
S

′
(a)− S

]
, where S

′
(a) is the number of months of completed schooling at

age 23 with an income transfer of $10,000 given at age a while S is the number of months of
completed schooling at baseline (no income transfer). This figure reports the results of the same
policy experiment as Figure 7 but with respect to a different outcome measure (schooling).
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Figure 9: Heterogeneity in Policy Effects by Age 5-6 Household Income (Outcome:
Schooling at Age 23)
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Notes: This figure plots the heterogeneous effect of a $10,000 income transfer at age 5-6 on completed
months of schooling by the percentile of initial (age 5-6) family income for the estimated model,
controlling for measurement error. In the estimated income distribution for our sample, income
categories 10, 50, and 90 contain families with about $14,000, $45,000, and $145,000 of annual
family income. This figure also plots the average effect of the policy in the population
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Figure 10: Heterogeneity in Policy Effects by Age 5-6 Children’s Skills (Outcome:
Schooling at Age 23)
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Notes: This figure plots the heterogeneous effect of a $10,000 income transfer at age 5-6 on completed
months of schooling by the percentile of the child’s initial (age 5-6) skill for the estimated model,
controlling for measurement error. This figure also plots the average effect of the policy in the
population.
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ONLINE APPENDIX
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A Additional Analysis

A.1 Technologies and Output Elasticities

In this Appendix, we analyze the restrictions on key elasticities imposed by common
functional forms. One rationale for the choice of a technology specification with
free returns to scale is the flexibility this specification offers with respect to the im-
plied output elasticity. We consider the output elasticity with respect to investment
defined as

ϵI,t ≡
∂ ln θt+1

∂ ln It

This elasticity is key to quantifying the effects of policy interventions.
In the general CES case, with technology given by

θt+1 =
[
γtθ

ϕt
t + (1− γt)I

ϕt
t

]ψt
ϕt ,

the output elasticity is given by

ϵI,t =
ψt

ϕt

[
γθϕtt + (1− γt)I

ϕt
t

]ψt
ϕt

−1

ϕ(1− γt)I
ϕt−1
t · It[

γtθ
ϕt
t + (1− γt)I

ϕt
t

]ψt
ϕt

=
ψt(1− γt)I

ϕt
t

γtθ
ϕt
t + (1− γt)I

ϕt
t

∈ [0,∞)

In the special case of constant returns to scale (CRS), ψt = 1, and ϵI,t ∈ (0, 1). CRS
implies this elasticity is bounded from above by 1. The general free returns to scale
case allows a larger than unit elastic response.

Similarly, the general translog function,

ln θt+1 = α1t ln θt + α2t ln It + α3t ln θt ln It

with elasticity

ϵI,t = α1t + α3t ln θt

also allows higher than unit elastic elasticities.
The CES technology with constant returns to scale restricts the output elasticity

to be between 0 and 1: a one percent change in investment leads to a less than one
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percent change in next period skills. This prediction is independent of data, hence
it can potentially be very restrictive in the context of child development and skill
formation.

A.2 Semi-Parametric Identification

In this Appendix, we present a more general identification analysis, relaxing some
of the functional form assumptions on the skill technology. Utilizing the main text
log-linear specifications for measurement error, we begin with a measure of latent
skill in period 1 Z1,m expressed as a function of both the measurement parameters
and the technology:

Zθ,1,m = µθ,1,m + λθ,1,m ln f0(θ0, I0) + (λθ,1,mηθ,0 + ϵθ,1,m)

= q0(θ0, I0) + u0,m (A-1)

where the combined residual u0,m = λθ,1,mηθ,0 + ϵθ,1,m is mean-zero. The period
0 child’s skill (θ0) and parental investments (I0) on the RHS are unobserved, but

we have some “error-contaminated” measurements (Z̃θ,0,m, Z̃I,0,m) derived from the

previous identification step: Z̃θ,0,m = ln θ0 + ϵ̃θ,0,m and Z̃I,0,m = ln I0 + ϵ̃I,0,m, where
ϵ̃θ,0,m =

ϵθ,0,m
λθ,0,m

and ϵ̃I,0,m =
ϵI,0,m
λI,0,m

.

Equation (A-1) can be thought of as a semi-parametric regression equation relat-
ing an observed measure of period 1 skills to a non-parametric function of unobserved
period 0 skills and investment and an additively separable error term. The new er-
ror term in this equation u0,m has two parts: the production shock ηθ,0 and the
measurement error ϵθ,1,m. There are two identification challenges here: (i) the unob-
servability of the RHS skills and investents (θ0, I0); and (ii) the potential endogeneity
of these inputs: the error term u0,m being correlated with ln θ0 and ln I0. As noted in
Adusumilli and Otsu (2018), estimating the model given in (A-1) relies on two long-
standing and largely parallel econometric research programs on non-parametric IV
models and models with errors-in-variables (e.g., Hausman et al., 1991; Schennach,
2004). Sufficient conditions for identification of q0 are given in Adusumilli and Otsu
(2018), and they rely on the existence of a relevant instrumental variable vector W0

which satisfy two key conditions: (i) E(u0,m|W0) = 0 and (ii) (ϵ̃θ,0,m, ϵ̃I,0,m) ⊥ W0.
In addition, a third requirement on the measurement errors is (iii) (ϵ̃θ,0,m, ϵ̃I,0,m) ⊥
(θ0, I0).

Given the non-parametric identification of the function q0, the next step is un-
packing the components of this function to provide identification for the dynamics
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of the next period skills. Without loss of generality, we write the first term of the
production technology in (2) as

ln f0(θ0, I0) = lnA0 + ψ0 lnK0(θ0, I0), (A-2)

where lnA0 and ψ0 are the location and scale of the (log) technology, and K0(θ0, I0)
is a Known Location and Scale (KLS) function, which we define as follows:

Definition A-1 A production function Kt(θt, It) has Known Location and Scale
(KLS) if for two non-zero input vectors (θ′t, I

′
t) and (θ′′t , I

′′
t ), where the input vectors

are distinct, the outputs Kt(θ
′
t, I

′
t) and Kt(θ

′′
t , I

′′
t ) (with Kt(θ

′
t, I

′
t) ̸= Kt(θ

′′
t , I

′′
t )) are

both known (do not depend on unknown parameters), finite, and non-zero.

A production technology with known location and scale implies that, for a change
in inputs from (θ′t, I

′
t) to (θ

′′
t , I

′′
t ), the change in outputKt(θ

′
t, I

′
t)−Kt(θ

′′
t , I

′′
t ) is known.

Other points in the production possibilities set may be unknown, i.e. they depend
on free parameters to be estimated. Writing the technology as in (A-2), we have
intuitively separated out two parameters representing location and scale from the
general function f0, the parameters lnA0 and ψ0. A leading example of a KLS
function is the CRS CES function:

θt+1 = (γtθ
σt
t + (1− γt)I

σt
t )1/σt

with γt ∈ (0, 1) and σt ∈ (−∞, 1]. In this case it is easy to show that, for all pairs
(θt, It) such that θt = It, the output is known: θt+1 = θt = It. This result follows
from the constant return to scale property of the CES. Suppose θt = It = a, we then
have:

θt+1 = (γta
σt + (1− γt)a

σt)1/σt = (aσt)1/σt = a .

Returning to the general problem, substituting equation (A-2) into the main
equation (A-1), we have

Z1,m = (µθ,1,m + lnA0λθ,1,m) + (λθ,1,mψ0) lnK0(θ0, I0) + u0,m (A-3)

At this point, we cannot separately identify the period 1 measurement parameters
(µθ,1,m, λθ,1,m) from production function parameters (lnA0, ψ0). That is, we cannot
separately identify the location and scale of the measurement function from the
location and scale of the production function. We consider identification under one
of two prototypical restrictions:

Assumption A-1 Measurement Function Restriction

µθ,t,m = µθ,0,m and λθ,t,m = λθ,0,m for all t > 0 and for some m
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Assumption A-2 Production Function Restriction

lnAt = 0 and ψt = 1 for all t

Under either set of restrictions, we identify all of the parameters of interest. Let
(θ′0, I

′
0) and (θ′′0 , I

′′
0 ) be the two input vectors for which K0 is, by definition, known

and non-zero. Then we have a system of two equations:

q0(θ
′
0, I

′
0) = (µθ,1,m + lnA0λθ,1,m) + (λθ,1,mψ0) lnK0(θ

′
0, I

′
0)

q0(θ
′′
0 , I

′′
0 ) = (µθ,1,m + lnA0λθ,1,m) + (λθ,1,mψ0) lnK0(θ

′′
0 , I

′′
0 )

where the q0 function (defined in equation A-1) is identified given the arguments
above. The two parameters α′ = (µθ,1,m + lnA0λθ,1,m) and α

′′ = (λθ,1,mψ0) are just-
identified. Under the measurement function restriction Assumption A-1, we identify
lnA0 and ψ0, in addition to the other parameters. Or, under the production function
restriction Assumption A-2, we identify µθ,1,m and λθ,1,m, in addition to the other
parameters.

Importantly, one does not need to assume both a production function and mea-
surement function restriction. Either assumption is sufficient for identification in this
context, and imposing both is over-identifying. There are other types of restrictions
that would be sufficient for identification, but these two broad classes of restrictions
help clarify an important range of options.

A.3 A Reappraisal of the Value-added Analysis

A large and growing literature estimates teacher quality by measuring teachers’ “pro-
ductivity” in affecting student test scores (Chetty et al., 2014). Rare in this literature
is data allowing teacher quality to be anchored to adult outcomes (for an exception
see Chetty et al., 2011), and almost the entirety of the empirical results rest on
particular measures of student skills, typically grade-specific standardized test scores
(for some discussion of general issues see Ballou, 2009).

Although it is not common in the current literature to express teacher value-
added in terms of latent child skills, we can write the standard framework in our
notation as

ln θi,t+1 = lnAt + γt ln θi,t + δj(i),t + ηi,θ,t (A-4)

where j(i) indicates that teacher j teaches student i, t is grade-level rather than
age, and δj(i),t represents teacher j’s “value-added”. Here δj(i),t replaces parental
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investment in our models, where the productivity of teachers δj(i),t is treated as an
unobserved fixed effect common to a classroom of students. For recent work estimat-
ing latent factor models including both parental and school inputs, see Agostinelli
et al. (2019).

The current value-added literature typically estimates models of this form, using
observed measures for student test scores:

Zi,θ,t+1,m = β0,t,m + β1,t,mZi,θ,t,m + δ̃j(i),t,m + πi,θ,t,m (A-5)

where Zi,θ,t+1,m and Zi,θ,t,m are measures of the underlying latent skills (typically

age-standardized test scores in mathematics or reading). δ̃j(i),t,m is the value-added
of teacher j on grade t+1, given the particular left-hand-side measure of skills m in
t+ 1. By using the measurement model in (4), we can map the parameters in (A-5)
into the parameters of interest in (A-4):

β1,t,m = γt,m · λθ,t+1,m

λθ,t,m

δ̃j(i),t,m = δj(i),t · λθ,t+1,m

The above result highlights two main conclusions. First, in the absence of
additional restrictions on the measurement model–for example our age-invariance
restrictions–the estimated educational production function parameter β1,t,m does not
have a well-defined interpretation, as the estimated value depends on the changes in
how latent skills influence the observed measures (factor loadings) between the grade
levels t and t+ 1.

Second, the main statistic of interest–the variance of the the estimated teacher
effects, which indicates how “productive” teachers are in affecting student learning–is
not a scale-free parameter:

V (δ̃j(i),t,m) = V (δj(i),t) · λ2θ,t+1,m

Higher or lower estimates of the variance in teacher effects can be due to the partic-
ular factor loadings of the observed scores m, distinct from the variance of the actual
underlying teacher value-added. Although the common scaling parameter does not
affect the rankings of teachers within grade, if this scale changes across-grades, then
one cannot separately identify across-grade changes in the true productivity of teach-
ers from changes in the scale of the measures.
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B Additional Tables and Figures

B.1 Additional Tables for Estimates Corrected for Measure-
ment Error
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Table B-1: Estimates for Initial Conditions

Log Child Skills
at age 5

Log Mother
Cognitive Skills

Log Mother
Noncognitive Skills

Log Family
Income

Variance-Covariance Matrix

Log Child Skills 4.947 6.254 0.122 0.668
at age 5 (0.469) (0.476) (0.031) (0.065)

Log Mother 6.254 30.190 0.593 2.588
Cognitive Skills (0.476) (1.027) (0.136) (0.098)

Log Mother 0.122 0.593 0.046 0.058
Noncognitive Skills (0.031) (0.136) (0.017) (0.012)

Log Family 0.668 2.588 0.058 0.780
Income (0.065) (0.098) (0.012) (0.018)

Correlation Matrix

Log Child Skills 1.000 0.512 0.256 0.340
at age 5 (0.000) (0.026) (0.029) (0.027)

Log Mother 0.512 1.000 0.504 0.533
Cognitive Skills (0.026) (0.000) (0.025) (0.015)

Log Mother 0.256 0.504 1.000 0.307
Noncognitive Skills (0.029) (0.025) (0.000) (0.022)

Log Family 0.340 0.533 0.307 1.000
Income (0.027) (0.015) (0.022) (0.000)

Notes: This table shows the estimated variance-covariance matrix (ΣΩ) and associate correlation matrix of
the initial conditions at age 5-6. Standard errors in parenthesis are computed using a clustered bootstrap at
the family level.
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Table B-2: Estimates for Investment Equation

Model Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 0.230 0.027 0.020 0.018
at age 5 (0.059) (0.009) (0.009) (0.009)

[0.15,0.33] [0.02,0.04] [0.01,0.04] [0.01,0.04]

Log Mother 0.071 0.004 0.012 -0.005
Cognitive Skills (0.022) (0.009) (0.015) (0.013)

[0.04,0.12] [-0.01,0.02] [-0.01,0.04] [-0.03,0.02]

Log Mother 0.359 0.742 0.694 0.712
Noncognitive Skills (0.130) (0.059) (0.083) (0.087)

[0.11,0.53] [0.64,0.82] [0.53,0.80] [0.54,0.81]

Log Family 0.341 0.227 0.274 0.275
Income (0.076) (0.056) (0.076) (0.087)

[0.25,0.48] [0.16,0.32] [0.17,0.42] [0.17,0.45]

Standard Deviation 1.186 1.019 0.868 1.087
Shocks (0.230) (0.147) (0.235) (0.295)

[0.97,1.54] [0.83,1.29] [0.66,1.32] [0.82,1.72]

Notes: This table shows the measurement error corrected estimates for the investment
equation. Each column shows the coefficients of the investment equation at the given
ages. The dependent variable is (log) investment in period t, determined by the RHS
variables at time t. For example, the first column shows the coefficients at age 5-
6 parental investments determined by age 5-6 child’s skill and family income. Both
standard errors in parenthesis and the 90% confidence interval in square brackets are
computed using a clustered bootstrap at the family level.
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Table B-3: Estimates for Adult Outcome
Equation

Model Schooling Log Wage

Constant 7.088 8.394
(0.397) (0.252)

[6.56,7.71] [8.03,8.79]

Log Children Skills 0.151 0.041
at age 13-14 (0.009) (0.006)

[0.14,0.16] [0.03,0.05]

Variance Shocks 4.333 0.875
(0.142) (0.064)

[4.07,4.56] [0.77,0.97]

Notes: This table shows the estimates for two adult
outcome equation specifications: schooling and log
earnings. In both cases the estimates are corrected for
measurement error. The dependent variable is either
the years of completed education for the child at age
23 or log earnings at age 29. Both standard errors in
parenthesis and the 90% confidence interval in square
brackets are computed using a clustered bootstrap at
the family level.
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Table B-4: Estimates for Income Process

Constant 0.377
(0.012)

[0.36,0.40]

Log Family Income t-1 0.753
(0.008)

[0.74,0.76]

Standard Deviation Innovation 0.579
(0.008)

[0.57,0.59]

Initial Mean Log-Income 1.372
at age 5-6 (0.016)

[1.35,1.40]

Notes: This table shows the estimates for the income
process. The dependent variable is log family income
at time t. Log Family Income t−1 is log family income
two years prior. Both standard errors in parenthesis
and the 90% confidence interval in square brackets are
computed using a clustered bootstrap at the family
level.
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Table B-5: Children’s Skills Measures

Measures Range Values Age Range Scoring Order

(The Peabody Individual Achievement Test):
Math 0-84 5-14 Positive
Recognition 0-84 5-14 Positive
Comprehensive 0-84 5-14 Positive

Notes: This table shows the features of children cognitive measures. The first column indicate each type of
children skills measure we use to estimate our model. The second column shows the minimum and maximum
value that each measure takes. The third column shows the minimum and maximum children age at which
each measure is available. The last column indicates whether the measure is ordered positively (the higher
score tend to reveal higher skills) or negatively (the lower score tend to reveal higher skills).
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Table B-6: Mothers Cognitive Skills Measures

Measures Range Values Scoring Order

Arithmetics 0-30 Positive
Word Knowledge 0-35 Positive
Paragraph Composition 0-15 Positive
Numeric Operations 0-50 Positive
Coding Speed 0-84 Positive
Math Knowledge 0-25 Positive

Notes: This table shows the features of mother cognitive measures.
The first column indicate each type of mother cognitive skills mea-
sure we use to estimate our model. The second column shows the
minimum and maximum value that each measure takes. The last col-
umn indicates whether the measure is ordered positively (the higher
score tend to reveal higher skills) or negatively (the lower score tend
to reveal higher skills).
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Table B-7: Mothers Noncognitive Skills Measures

Type of variables Range Values Label Scoring Order

Mother Noncognitive Measures

(Rosenberg indexes):
I am a person of worth

1-4

1= Strongly agree

Negative
I have a number of good qualities 2= Agree
I am able to do things as well as most other people 3= Disagree
I take a positive attitude toward myself 4= Strongly disagree

I am inclined to feel that I am a failure

1-4 Positive
I felt I do not have much to be proud of 1= Strongly agree
I wish I could have more respect for myself 2= Agree
I certainly feel useless at times 3= Disagree
At times I think I am no good at all 4= Strongly disagree

(Rotter Indexes):

Rotter 1 ( Life is in control or not) 1-4

1= In Control and closer to my opinion

Negative
2= In control but slightly closer to my opinion
3= Not in control but slightly closer to my opinion
4= Not in control and closer to my opinion

Rotter 2 (Plans work vs Matter of Luck) 1-4

1= Plans work and closer to my opinion

Negative
2= Plans work but slightly closer to my opinion
3= Matter of Luck but slightly closer to my opinion
4= Matter of Luck and closer to my opinion

Rotter 3 (Luck not a factor vs Flip a coin) 1-4

1= Luck not a factor and closer to my opinion

Negative
2= Luck not a factor but slightly closer to my opinion
3= Flip a coin but slightly closer to my opinion
4= Flip a coin and closer to my opinion

Rotter 4 (Luck big role vs Luck no role) 1-4

1= Luck big role and closer to my opinion

Positive
2= Luck big role but slightly closer to my opinion
3= Luck no role but slightly closer to my opinion
4= Luck no role and closer to my opinion

Notes: This table shows the features of mother noncognitive measures. The first column indicate each type of mother cognitive skills measure we
use to estimate our model. The second column shows the minimum and maximum value that each measure takes. The third column shows the type
of answers associated with each measure value. The last column indicates whether the measure is ordered positively (the higher score tend to reveal
higher skills) or negatively (the lower score tend to reveal higher skills).
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Table B-8: Descriptive Statistics about Children’s Cognitive Skills Measures

Number
of

Measures Mean Std Min Max Values

Age 5-6

PIAT Math 11.858 4.278 0.000 37.000 32.000
PIAT Recognition 12.864 5.048 0.000 57.000 35.000
PIAT Comprehensive 12.770 4.930 0.000 49.000 35.000

Age 7-8

PIAT Math 23.016 8.681 0.000 74.000 58.000
PIAT Recognition 25.748 8.774 0.000 80.000 67.000
PIAT Comprehensive 24.099 8.142 0.000 69.000 60.000

Age 9-10

PIAT Math 38.720 10.832 0.000 84.000 71.000
PIAT Recognition 40.825 11.487 0.000 84.000 76.000
PIAT Comprehensive 37.540 10.231 0.000 78.000 64.000

Age 11-12

PIAT Math 48.184 10.543 0.000 84.000 78.000
PIAT Recognition 51.079 13.278 0.000 84.000 74.000
PIAT Comprehensive 45.732 11.272 0.000 84.000 72.000

Age 13-14

PIAT Math 53.767 11.387 0.000 84.000 78.000
PIAT Recognition 58.670 14.262 0.000 84.000 74.000
PIAT Comprehensive 51.015 12.229 0.000 84.000 74.000

Notes: This table shows main sample statistics of children cognitive skills mea-
sures by children age.
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Table B-9: Descriptive Statistics of Parental Investment Measures

Parental Investments
Measures Mean Std Min Max

How often mom reads to child 4.22 1.41 1 6
How often mom eats with child 3.32 1.61 0 5
How often child was taken to museum 2.19 0.97 1 5
How often child is praised 5.56 4.37 0 20
How often complimented child 4.70 4.05 0 20

Notes: This table shows main sample statistics of parental investment measures.
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Table B-10: Descriptive Statistics of Mother Cognitive and Noncognitive Skills Mea-
sures

Mother Cognitive Skills
Number

of
Measures Mean Std Min Max Values

Mom‘s Arithmetic Reasoning Test Score 13.946 6.603 0.000 30.000 31.000

Mom‘s Word Knowledge Test Score 21.773 8.562 0.000 35.000 36.000

Mom‘s Paragraph Composition Test Score 9.620 3.778 0.000 15.000 16.000

Mom‘s Numerical Operations Test Score 31.044 11.831 0.000 50.000 51.000

Mom‘s Coding Speed Test Score 42.953 17.468 0.000 84.000 85.000

Mom‘s Mathematical Knowledge Test Score 10.853 5.867 0.000 25.000 26.000

Mother Non Cognitive Skills

Mom‘s Self-Esteem: ”I am a person of worth” 2.461 0.549 0.000 3.000 4.000

Mom‘s Self-Esteem: ” I have good qualities” 2.338 0.539 0.000 3.000 4.000

Mom‘s Self-Esteem: ”I am a failure” 3.379 0.618 1.000 4.000 4.000

Mom‘s Self-Esteem: ”I am as capable as others” 2.291 0.567 0.000 3.000 4.000

Mom‘s Self-Esteem: ”I have nothing to be proud of” 3.360 0.669 1.000 4.000 4.000

Mom‘s Self-Esteem: ”I have a positive attitude” 2.183 0.619 0.000 3.000 4.000

Mom‘s Self-Esteem: ”I wish I had more self-respect” 2.796 0.817 1.000 4.000 4.000

Mom‘s Self-Esteem: ”I feel useless at times” 2.650 0.770 1.000 4.000 4.000

Mom‘s Self-Esteem: ”I sometimes think I am no good” 3.039 0.802 1.000 4.000 4.000

Mom‘s Rotter Score:”I have no control” 2.863 1.058 1.000 4.000 4.000

Mom‘s Rotter Score: ”I make no plans for the future” 2.386 1.192 1.000 4.000 4.000

Mom‘s Rotter Score: ”Luck is big factor in life” 3.205 0.856 1.000 4.000 4.000

Mom‘s Rotter Score: ”Luck plays big role in my life” 2.594 1.024 1.000 4.000 4.000

Notes: This table shows main sample statistics of mother cognitive and non-cognitive skills measures.
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Table B-11: Measurement Parameter Estimates for Chil-
dren’s Cognitive Measures

Measures µ λ Signal Noise

Age 5-6

PIAT Math 11.858 1.000 0.273 0.727
PIAT Recognition 12.864 2.238 0.981 0.019
PIAT Comprehensive 12.770 2.159 0.957 0.043

Age 7-8

PIAT Math 11.858 1.000 0.764 0.236
PIAT Recognition 15.592 0.906 0.613 0.387
PIAT Comprehensive 15.014 0.802 0.559 0.441

Age 9-10

PIAT Math 11.858 1.000 0.777 0.223
PIAT Recognition 10.297 1.136 0.892 0.108
PIAT Comprehensive 12.273 0.936 0.763 0.237

Age 11-12

PIAT Math 11.858 1.000 0.804 0.196
PIAT Recognition 2.107 1.347 0.920 0.080
PIAT Comprehensive 6.129 1.089 0.834 0.166

Age 13-14

PIAT Math 11.858 1.000 0.924 0.076
PIAT Recognition 8.556 1.195 0.842 0.158
PIAT Comprehensive 9.041 1.002 0.803 0.197

Notes: This table shows the measurement error parameters and
associated statistics for children cognitive measures. The first two
columns shows the measurement parameters (µ and λ), while the
last two columns shows the signal and noise variance decomposition
for the children cognitive measures.



Table B-12: Measurement Parameter Estimates for Mother Cognitive and Noncognitive
Measures

Mother Cognitive Skills
Measures µ λ Signal Noise

Mom’s Arithmetic Reasoning 13.946 1.000 0.692 0.308

Mom’s Word Knowledge 21.773 1.345 0.745 0.255

Mom’s Paragraph Composition 9.620 0.584 0.722 0.278

Mom’s Operations 31.044 1.720 0.638 0.362

Mom’s Coding Speed 42.953 2.308 0.527 0.473

Mom’s Mathematical Knowledge 10.853 0.854 0.639 0.361

Mother Non Cognitive Skills

Mom’s Self-Esteem: ”I am a person of worth” 2.461 1.000 0.152 0.848

Mom’s Self-Esteem: ”I have good qualities” 2.338 1.263 0.252 0.748

Mom’s Self-Esteem: ”I am a failure” 3.379 1.612 0.311 0.689

Mom’s Self-Esteem: ”I am as capable as others” 2.291 1.127 0.181 0.819

Mom’s Self-Esteem: ”I have nothing to be proud of” 3.360 1.746 0.312 0.688

Mom’s Self-Esteem: ”I have a positive attitude” 2.183 1.474 0.260 0.740

Mom’s Self-Esteem: ”I wish I had more self-respect” 2.796 2.080 0.297 0.703

Mom’s Self-Esteem: ”I feel useless at times” 2.650 1.861 0.268 0.732

Mom’s Self-Esteem: ”I sometimes think I am no good” 3.039 2.096 0.313 0.687

Mom’s Rotter Score: ”I have no control” 2.863 1.497 0.092 0.908

Mom’s Rotter Score: ”I make no plans for the future” 2.386 2.081 0.140 0.860

Mom’s Rotter Score: ”Luck is a big factor in life” 3.205 1.372 0.118 0.882

Mom’s Rotter Score: ”Luck plays big role in my life” 2.594 1.002 0.044 0.956

Notes: This table shows the measurement error parameters and associated statistics for mother cognitive
and noncognitive measures. The first two columns show the measurement parameters (µ and λ), while the
last two columns show the signal and noise variance decomposition for the mother measures.



Figure B-1: Heterogeneity in Policy Effects by Age 5 Household Income (Outcome:
Schooling at Age 23, No Measurement Error Correction)
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Notes: This figure plots the heterogeneous effect of a $10,000 income transfer at age 5-6 on completed
months of schooling by the percentile of initial (age 5-6) family income for the estimated model,
not controlling for measurement error. In the estimated income distribution for our sample, income
categories 10, 50, and 90 contain families with about $14,000, $45,000, and $145,000 of annual
family income. This figure also plots the average effect of the policy in the population.
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Figure B-2: Heterogeneity in Policy Effects by Age 5 Children’s Skills (Outcome:
Schooling at Age 23, No Measurement Error Correction)
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Notes: This figure plots the heterogeneous effect of a $10,000 income transfer at age 5-6 on completed
months of schooling by the percentile of the child’s initial (age 5-6) skill for the estimated model,
not controlling for measurement error. This figure also plots the average effect of the policy in the
population.
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C Additional Robustness Analysis
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Table C-1: Estimates for Skill Technology with CHS Sample

Model Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 1.638 0.879 0.866 0.988
(0.261) (0.056) (0.072) (0.056)

[1.17,1.99] [0.76,0.94] [0.74,0.98] [0.88,1.07]

Log Investments 1.120 -0.141 -0.476 -0.602
(0.602) (0.283) (0.646) (0.591)

[0.42,2.21] [-0.64,0.29] [-1.29,0.26] [-1.42,0.51]

Log Skills × -0.057 0.014 0.025 0.012
Log Investments (0.153) (0.015) (0.022) (0.014)

[-0.26,0.22] [-0.00,0.04] [-0.00,0.06] [-0.01,0.03]

Standard Deviation 5.459 3.684 3.536 3.624
Shocks (0.301) (0.331) (0.358) (0.364)

[5.06,6.03] [3.27,4.46] [3.11,4.29] [3.32,4.44]

Log TFP 14.057 17.928 12.825 7.214
(0.661) (0.723) (1.907) (1.882)

[12.88,14.94] [17.16,19.42] [10.22,16.99] [3.98,11.24]

Notes: This table shows the measurement error corrected estimates for the technology of skills
formation for the same estimating sample as in Cunha et al. (2010): firstborn white children.
Each column shows the coefficients of the technology of skills formation at the given age. The
dependent variable is log skills in the next period t + 1, and the covariates (inputs) are at
time t. For example, the first column shows the coefficients for the skills inputs at age 5-6
which lead to log skills at age 7-8. Both standard errors in parenthesis and the 90% confidence
interval in square brackets are computed using a clustered bootstrap at the family level.
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Table C-2: Estimates for Skill Technology with Additional Controls

Model Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 1.920 1.084 0.896 1.067
(0.138) (0.036) (0.025) (0.027)

[1.68,2.15] [1.02,1.15] [0.85,0.93] [1.02,1.11]

Log Investments 0.745 0.673 0.713 0.270
(0.250) (0.333) (0.390) (0.557)

[0.41,1.11] [0.15,1.28] [-0.03,1.18] [-0.53,1.19]

Log Skills × -0.098 -0.004 -0.003 0.003
Log Investments (0.062) (0.018) (0.013) (0.010)

[-0.21,-0.03] [-0.04,0.03] [-0.02,0.02] [-0.02,0.02]

Standard Deviation 5.612 4.519 3.585 4.019
Shocks (0.173) (0.184) (0.180) (0.246)

[5.38,5.93] [4.28,4.88] [3.27,3.87] [3.71,4.43]

Log TFP 13.420 15.060 12.105 3.133
(0.303) (0.431) (0.567) (0.942)

[12.95,13.96] [14.36,15.82] [11.35,13.18] [1.52,4.74]

Notes: This table shows the measurement error corrected estimates for the technology of skills
formation once we add additional controls in the investment equation in (8). In particular,
we control for: a set of dummies for the maximum number of children ever observed in the
household, a set of dummies for the mother’s marital status, maternal hours worked, maternal
hourly wage and a dummy for employment status (employed/non-employed). Each column
shows the coefficients of the technology of skills formation at the given age. The dependent
variable is log skills in the next period t + 1, and the covariates (inputs) are at time t. For
example, the first column shows the coefficients for the skills inputs at age 5-6 which lead to
log skills at age 7-8. Both standard errors in parenthesis and the 90% confidence interval in
square brackets are computed using a clustered bootstrap at the family level.
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D Skills measures in CNLSY79

Measures for Cognitive Skills

� Peabody Picture Vocabulary Test

The Peabody Picture Vocabulary Test, revised edition (PPVT-R) ”measures
an individual’s receptive (hearing) vocabulary for Standard American English
and provides, at the same time, a quick estimate of verbal ability or scholastic
aptitude” (see Dunn and Dunn, 1981). The PPVT was designed for use with
individuals aged 3 to 40 years. The English language version of the PPVT-R
consists of 175 vocabulary items of generally increasing difficulty. The child
listens to a word uttered by the interviewer and then selects one of four pictures
that best describes the word’s meaning. The PPVT-R has been administered,
with some exceptions, to NLSY79 children between the ages of 3-18 years of
age until 1994, when children 15 and older moved into the Young Adult survey.
In the current survey round, the PPVT was administered to children aged 4-5
and 10-11 years of age, as well as to some children with no previous valid PPVT
score.

The first item, or starting point, is determined based on the child’s PPVT age.
Starting at an age-specific level of difficulty is intended to reduce the number
of items that are too easy or too difficult, in order to minimize boredom or
frustration. The suggested starting points for each age can be found in the
PPVT manual (see Dunn and Dunn, 1981).

Testing begins with the starting point and proceeds forward until the child
makes an incorrect response. If the child has made 8 or more correct responses
before the first error, a “basal” is established. The basal is defined as the last
item in the highest series of 8 consecutive correct answers. Once the basal is
established, testing proceeds forwards, until the child makes six errors in eight
consecutive items. If, however, the child gives an incorrect response before
8 consecutive correct answers have been made, testing proceeds backwards,
beginning at the item just before the starting point, until 8 consecutive correct
responses have been made. If a child does not make eight consecutive responses
even after administering all of the items, he or she is given a basal of one. If
a child has more than one series of 8 consecutive correct answers, the highest
basal is used to compute the raw score.

A “ceiling” is established when a child incorrectly identifies six of eight con-
secutive items. The ceiling is defined as the last item in the lowest series of
eight consecutive items with six incorrect responses. If more than one ceiling is
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identified, the lowest ceiling is used to compute the raw score. The assessment
is complete once both a basal and a ceiling have been established. The ceiling
is set to 175 if the child never makes six errors in eight consecutive items.

A child’s raw score is the number of correct answers below the ceiling. Note
that all answers below the highest basal are counted as correct, even if the child
answered some of these items incorrectly. The raw score can be calculated by
subtracting the number of errors between the highest basal and lowest ceiling
from the item number of the lowest ceiling.

� The Peabody Individual Achievement Test (PIAT): Math

The PIAT Mathematics assessment protocol used in the field is described in
the documentation for the Child Supplement (available on the Questionnaires
page). This subscale measures a child’s attainment in mathematics as taught
in mainstream education. It consists of 84 multiple-choice items of increasing
difficulty. It begins with such early skills as recognizing numerals and progresses
to measuring advanced concepts in geometry and trigonometry. The child looks
at each problem on an easel page and then chooses an answer by pointing to
or naming one of four answer options.

Administration of this assessment is relatively straightforward. Children enter
the assessment at an age-appropriate item (although this is not essential to
the scoring) and establish a ”basal” by attaining five consecutive correct re-
sponses. If no basal is achieved then a basal of ”1” is assigned (see PPVT).
A ”ceiling” is reached when five of seven items are answered incorrectly. The
non-normalized raw score is equivalent to the ceiling item minus the number
of incorrect responses between the basal and the ceiling scores.

� The Peabody Individual Achievement Test (PIAT): Reading Recog-
nition

The Peabody Individual Achievement Test (PIAT) Reading Recognition sub-
test, one of five in the PIAT series, measures word recognition and pronuncia-
tion ability, essential components of reading achievement. Children read a word
silently, then say it aloud. PIAT Reading Recognition contains 84 items, each
with four options, which increase in difficulty from preschool to high school
levels. Skills assessed include matching letters, naming names, and reading
single words aloud.

The only difference in the implementation procedures between the PIAT Math-
ematics and PIAT Reading Recognition assessments is that the entry point into
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the Reading Recognition assessment is based on the child’s score in the Math-
ematics assessment, although entering at the correct point is not essential to
the scoring.

The scoring decisions and procedures are identical to those described for the
PIAT Mathematics assessment.

� The Peabody Individual Achievement Test (PIAT): Reading Com-
prehension

The Peabody Individual Achievement Test (PIAT) Reading Comprehension
subtest measures a child’s ability to derive meaning from sentences that are
read silently. For each of 66 items of increasing difficulty, the child silently
reads a sentence once and then selects one of four pictures that best portrays
the meaning of the sentence.

Children who score less than 19 on Reading Recognition are assigned their
Reading Recognition score as their Reading Comprehension score. If they score
at least 19 on the Reading Recognition assessment, their Reading Recognition
score determines the entry point to Reading Comprehension. Entering at the
correct location is, however, not essential to the scoring.

Basals and ceilings on PIAT Reading Comprehension and an overall nonnormed
raw score are determined in a manner identical to the other PIAT procedures.
The only difference is that children for whom a basal could not be computed
(but who otherwise completed the comprehension assessment) are automati-
cally assigned a basal of 19. Administration instructions can be found in the
assessment section of the Child Supplement.
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E Monte Carlo Exercise

We implement a Monte Carlo exercise to examine the properties of our estimator.
The true data generating process is assumed to be the our estimated model, with
some additional parametric assumptions about the measurement error process. In
order to simulate the dataset, we use both the estimated measurement parameters
and the joint distribution of children skills and investments. In addition, we assume
that all the measurement noises are Normally distributed. We assume that the
standard deviation of the error terms for all the skills measures are 0.5 (children and
mothers) while we fix to 0.1 the standard deviation of the error terms for all the
investment measures.

We generate a simulated longitudinal dataset of 10,000 children ranging from age
5-6 to age 13-14. In particular, the Monte Carlo analysis is performed estimating
the model on 200 simulated data sets. In the following tables we show the mean
estimates over the 200 estimates of the coefficients.

We focus only on estimates of skills technology, investment process and children’s
skills measurement parameters. Tables E-1-E-3 show true and mean estimated pa-
rameters. Overall, the estimator is able to recover the true parameters with minimal
bias.
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Table E-1: Monte Carlo Estimates for Investment Process

True Parameters Monte Carlo Estimates
Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 0.230 0.027 0.020 0.018 0.249 0.026 0.020 0.018

Log Mother Cognitive Skills 0.071 0.004 0.012 -0.005 0.077 0.002 0.008 -0.011

Log Mother Noncognitive Skills 0.359 0.742 0.694 0.712 0.322 0.748 0.700 0.700

Log Family Income 0.341 0.227 0.274 0.275 0.352 0.224 0.272 0.292

Variance Shocks 1.186 1.019 0.868 1.087 1.263 0.993 0.827 1.103

Notes: This table shows both the true estimates (reported also in Table B-2) and the mean Monte Carlo estimates for
the investment equation. Each column shows the coefficients of the investment equation at the given ages. The dependent
variable is investment in period t which is determined by the covariates at time t . For example, the first column shows
the coefficients at age 5-6 for parental investments and child’s skill and family income at age 5-6 as well.
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Table E-2: Monte Carlo Estimates for Skill Technology

True Parameters Monte Carlo Estimates
Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 1.966 1.086 0.897 1.065 1.955 1.091 0.897 1.071

Log Investment 0.799 0.695 0.713 0.252 0.759 0.700 0.839 0.502

( Log Skills * -0.105 -0.005 -0.003 0.003 -0.092 -0.005 -0.005 -0.002

Log Investment )

Return to scale 2.660 1.776 1.606 1.320 2.623 1.786 1.731 1.571

Variance shocks 5.612 4.519 3.585 4.019 5.613 4.520 3.586 4.018

Log TFP 13.067 14.747 11.881 2.927 13.060 14.689 11.801 2.594

Notes: This table shows both the true estimates (reported also in Table 2) and the mean Monte Carlo
estimates for the technology of skills formation. Each column shows the coefficients of the technology of
skills formation at the given age. The dependent variable is log skills in the next period t+1 while the
covariates (inputs) are at time t. For example, the first column shows the coefficients for the skills inputs
at age 5-6 which lead to log skills at age 7-8.
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Table E-3: Monte Carlo Estimates for Measurement Parameters

True Constant (µ) Monte Carlo Constant (µ) Estimates

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 13-14 Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 13-14

PIAT Math 11.858 11.858 11.858 11.858 11.858 11.858 11.858 11.858 11.858 11.858

PIAT Recognition 12.864 15.592 10.297 2.107 8.556 12.864 15.592 10.298 2.110 8.555

PIAT Comprehensive 12.770 15.014 12.273 6.129 9.041 12.770 15.013 12.270 6.132 9.040

True Factor Loadings (λ) Monte Carlo Factor Loadings (λ) Estimates

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 13-14 Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 13-14

PIAT Math 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

PIAT Recognition 2.238 0.906 1.136 1.347 1.195 2.238 0.906 1.136 1.347 1.196

PIAT Comprehensive 2.159 0.802 0.936 1.089 1.002 2.159 0.802 0.936 1.089 1.002

Notes: This table shows both the true estimates (reported also in Table B-11) and the mean Monte Carlo estimates for the measurement
parameters of children skills measures equation. Each column shows the parameters at the given ages for each test score.
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F Distribution of Test Scores

Figure F-1: Distribution of PIAT Math, Reading Comprehension, and Reading
Recognition
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The figure shows the distribution in our sample of PIAT Math, PIAT Reading Comprehen-
sion, and PIAT Reading Recognition.
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Figure F-2: PIAT Math by Children’s Age
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The figure shows the distribution in our sample of PIAT Math by children’s age.
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Figure F-3: PIAT Reading Comprehension by Children’s Age
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The figure shows the distribution in our sample of PIAT Reading Comprehension by chil-
dren’s age.
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Figure F-4: PIAT Reading Recognition by Children’s Age
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The figure shows the distribution in our sample of the PIAT Reading Recognition by chil-
dren’s age.
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