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We look into the impact of measurement error in capital on the estimation of production 
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with measurement error in capital and the standard simultaneity bias due to unobserved 
productivity shocks. We use lagged investment to instrument for potentially mis-measured capital 
stock, while conditioning on the part of productivity that is persistent. Our estimation routine 
nests standard approaches in the literature, such as Ackerberg, Caves, and Frazer (2015). It 
requires no additional data as investment is usually collected with other producer level data. We 
show through Monte-Carlo experiments that a 40 percent measurement error in capital yields 
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times larger than those using standard approaches that only control for simultaneity.
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1 Introduction

Production functions are a central component in a variety of economic analyses. However,

these often first need to be estimated using data on individual production units, and there is

a vast literature on how to deal with the challenges of measurement of output and inputs, and

the identification in the presence of unobserved productivity shocks.1 While it is well known

by practitioners that the measurement of capital assets poses a problem for the estimation of

production functions, there is scant evidence on the severity of this problem, and in addition

how to address it.2 There is reason to believe that, more than any other input in the production

process, there are severe errors in the recording of a producer’s capital stock. These errors can

be potentially large and extremely difficult to reduce through improved collection efforts since

the errors pile up over time through the capital accumulation process.

The role of measurement error in capital in forming conclusions about the drivers of pro-

ductivity growth is perhaps well-known by economists, but they have not been the focus of

much analysis. Two separate JEL articles have been (partly) dedicated to discuss productivity

measurement, and the role of measurement error in inputs – see Bartelsman and Doms (2000)

and Syverson (2011). But there is unfortunately not much guidance for empirical work in how

to deal with it. This paper shows that commonly used estimation techniques in the productivity

literature fail in the presence of plausible amounts of measurement error in capital. We propose

a simple solution that requires no additional data, while nesting the most common approaches

in the literature, and hereby allowing to correctly measure the role of capital accumulation as

a major potential driver of productivity growth (at the aggregate and producer level).

The presence of measurement error in capital is, perhaps indirectly, reflected in the well-

documented fact that when estimating production functions with firm fixed-effects, capital

coefficients are extremely low, and sometimes even negative.3 Another interpretation is that

capital is a fixed factor of production, and, therefore, the variation left in the time series is es-

sentially noise. However, this also implies that changes in capital, which capture depreciation, is

1See Olley and Pakes (1996); Levinsohn and Petrin (2003); Ackerberg, Caves, and Frazer (2015) for some
famous examples.

2Griliches and Mairesse (1998); Becker, Haltiwanger, Jarmin, Klimek, and Wilson (2006) for instance.
3Griliches and Mairesse (1998) state, “In empirical practice, the application of panel methods to micro-

data produced rather unsatisfactory results: low and often insignificant capital coefficients and unreasonably low
estimates of returns to scale.”.
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potentially contaminated by measurement error. Indeed, in an in-depth study of measurement

issues related to capital, Becker, Haltiwanger, Jarmin, Klimek, and Wilson (2006) find that dif-

ferent ways of measuring capital that ought to be equivalent, such as using perpetual inventory

methods or inferring capital investment from the capital producing sectors, lead to different

results for a variety of outcomes, such as parameter estimates of the production function, and

the investment and capital patterns.

Recent advances in econometric modelling and estimation techniques have introduced con-

trol functions methods whereby unobserved productivity is replaced by a function of inputs,

including capital, other inputs and productivity shifters (Ackerberg, Benkard, Berry, and Pakes,

2005). This function is unknown, and therefore has to be estimated alongside the production

function. This greatly limits the joint-treatment of the endogeneity of inputs and measurement

error of inputs, in one internally consistent framework (see Kim, Petrin, and Song (2016) for

a treatment of measurement error in such a setting). Furthermore, the control function ap-

proach fundamentally relies on the productivity shock to be orthogonal to the capital stock.

The intuition being that capital is slow to respond, and can not be adjusted within a period.

Therefore, any (potential) measurement error in capital is captured in the empirical measure

of the productivity shock, violating the orthogonality condition, leading to a bias in the capital

coefficient.

The point of departure of this paper is to revisit the impact of measurement error in the

capital stock, while preserving the main features of the control function approach. In doing

so, we make two contributions. First we exploit the implicit (log) linearity of the production

function and the underlying productivity process, present in the most common approaches, to

deal with both the simultaneity bias and measurement error in inputs. Using control function

techniques allows us to isolate the productivity shock, on which we can form moments for

estimation. The moment conditions can be formed in a very flexible way to account for both

measurement error in inputs, here capital, and various model specifications, including the speed

of adjustment of inputs and, the market structure of output and input markets. Second, we

propose to use (lagged) investment to identify the marginal product of capital, rather than

the year-on-year variation in capital stock, where poorly measured depreciations attenuate the

capital coefficient. In other words, rather than using the entire within-producer time-series

variation in the capital stock to identify the capital coefficient, we rather rely on measured
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capital changes that line up with instances where producers invest.

Very few papers consider the role of measurement error in capital, or in inputs more gener-

ally. Van Biesebroeck (2007) evaluates the performance of various production function estima-

tors, including the so-called control function approaches, in the presence of measurement error,

although not with a specific focus on measurement error in capital. He compares various meth-

ods in the presence of log additive mean-zero independent and standard normally distributed

errors to all inputs, measurement error in output and input prices. While his focus is on the

bias in the estimated coefficients, we provide an estimator that is robust to the presence of such

measurement error, in the context of endogenous input choices.

An often used alternative to production function estimation is the so-called factor-share

approach. In general, and in order to accommodate imperfect competitive output markets, the

output elasticities are directly computed in data through the ratio of an input’s expenditure

over total costs.4 The latter includes the payments to capital which rely not only on an estimate

of the user cost of capital, but also on a measure of the capital stock. Therefore, the factor-share

approach is subject to a potential measurement error problem as well.5

2 Measurement error in capital

In this section, we discuss the relevance of obtaining the correct parameter value of the capital

coefficient for any productivity analysis. We then discuss in greater detail what the potential

sources of measurement error in capital are, and how we incorporate measurement error into

the estimation of the production function. This discussion leads us to conclude that (lagged)

investment is a natural instrument for the recorded capital stock.

2.1 Relevance for productivity analysis

Dealing with measurement error in capital is critical to obtain reliable estimates of the capital

coefficient. We hereby revisit an older and important debate on the relative importance of

4See Foster, Haltiwanger, and Syverson (2008) and De Loecker, Eeckhout, and Unger (2020) for applications
of the approach.

5Under constant returns to scale, no adjustment cost and perfect competitive output markets, revenue shares
(the ratio of an input’s expenditure in total revenue) can be used to estimate the production function (Asker,
Collard-Wexler, and De Loecker, 2014), while under imperfect competition, the user cost of capital — which is
rarely measured directly — needs to be observed.
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capital accumulation and total factor productivity growth in explaining periods of high-growth

throughout the world, at various points in time. The essence of the debate can be traced back

to the measurement of the capital stock, and its growth, in the national accounts. If a country,

a region, or an individual producer for that matter, experience a growth in output, it can come

from factor accumulation or productivity growth. Economists care greatly as to which one it

is, for the plain and simple reason that one is free, and the other is not. Factor accumulation,

in the case of capital, requires investment, on top of offsetting depreciation, and it is privately-

held, and purchased in the capital market at prevalent market prices; and thus imply a user

cost of capital. In contrast, if output rises due to productivity growth, say due to technological

progress, all factors become more productive.

This debate between productivity and factor accumulation was particular lively in the af-

termath of the East Asian growth miracle. The industrial revolution in several East Asian

countries, during (roughly) 1960 and 1990, lead to periods of rapid growth; Taiwan, Singapore,

Hong Kong and Korea recorded average annual output-per-worker growth of 4.3, 4.2, 4.7 and

4.9 percent, respectively. The conflicting views on the source of his phenomenal output growth

are reflected in several prominent papers. Hsieh (2002) put forward evidence, using duality the-

ory, that indeed the source behind the output growth was TFP, while Young (1995) concluded

that factor accumulation was the main driver behind this success.

Against this background, a separate literature developed taking the newly arrived micro-

datasets to estimate production functions. These data cover the very same variables, output

and input data, as in the analysis of Young (1995) and Hsieh (2002), but instead of aggregated

to the level of a country (by means of inspecting the national accounts), they are recorded at

the level of an individual producer. A major focus was on developing approaches that can deal

with the transmission bias, leading to otherwise biased factor shares of the various inputs. This

literature, starting with Olley and Pakes (1996), was also interested in productivity growth

episodes, and detecting the drivers behind it. One important take-away from this literature is

that the estimate of the factor share of capital is greatly affected by whether we recognize that

a producers’s input choices are systematically related to productivity, and that as industries

mature a non-random set of producers is forced to exit. In the case of US telecom equipment

producers, Olley and Pakes (1996) report a capital coefficient of 0.35, compared to the within-

estimator (the benchmark at the time) of 0.06. While no attempts in this study, or in any of
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the subsequent work, were made to connect this to aggregate implications, it is clear that any

conclusion, on what the drivers of output growth might be, will be highly sensitive to which

point estimate is used. In a similar type of analysis Collard-Wexler and De Loecker (2015)

demonstrate the importance of the point estimate on capital in detecting the productivity

effects from the introduction of a new technology, in their case the minimill in steel production.

While we broadly relate to the literature on the relative importance of productivity and

capital, as prominently featured in the literature mentioned above, we do not engage in a

revision of a particular debate, but our findings on the magnitude of the capital coefficient do

impact this discussion. Furthermore, we expect measurement error in capital to be problematic

for any analysis of micro-level correlations of productivity. If we systematically underestimate

the factor share of capital, we also underestimate its marginal product. This underestimate of

the role of capital will be loaded into the productivity residual. Thus, any firm characteristic

that is correlated with capital, such as firm size, export participation, research and development

or management, among others, will falsely appear to be associated with higher productivity.

2.2 Sources of Measurement Error in Capital

Capital stock is typically measured in one of two ways, using either book value, or the per-

petual inventory method (PIM, hereafter). The book value of capital is measured using direct

information on the value of capital, as recorded in a firm’s balance sheet. The PIM adds up

depreciated past investments, and thus, requires data on investment, and recorded deprecia-

tions to construct capital stock. Of course, these approaches are related since the book value

of capital is frequently the outcome of firms themselves applying the PIM in their internal

accounting. PIM is the most common approach to construct capital stock series in census data,

while accounting-based filing typically supply the book value of tangible fixed assets (e.g. Orbis

and Computstat are two well-known examples); see Becker, Haltiwanger, Jarmin, Klimek, and

Wilson (2006) for an excellent overview. PIM measures the capital stock of a particular asset

Ka using:

Kat =
∞∑
j=0

θajtIat−j, (1)

where θajt is the weight at time t of asset a of vintage j and, thus, captures the depreciation

profile, and Iat−j is the real gross investment of vintage j. Literally applying equation (1) is
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virtually impossible, even when we rely on the highest quality dataset, such as the U.S. Census

of Manufacturers. Instead, applied work typically relies on a more familiar law of motion for

capital:

Ke
it = (1− δst)Ke

it−1 + Iit−1, (2)

where we now calculate current capital stock for a more aggregated asset e, such as equipment

and buildings, and rely on an industry-wide depreciation rate for assets δst, where s indicates

the industry, i indexes the producer, and t is year. Finally, real gross investment expenditure

is ideally corrected for sales and the retirement of capital assets.

This immediately raises a few measurement issues. First, this approach requires an initial

stock of capital, Ke0, at the date on which production started. Second, investment price defla-

tors are rarely available at the producer-level — these are typically computed at the industry

level. This is a problem, since asset mix can be differ considerably across producers within

the same industry. Third, depreciation rates are assumed to not vary across producers and

vintage of the capital stock, which again creates measurement error in capital. Aggregating

over heterogeneous assets with a common depreciation factors is, thus, expected to introduce

noise in the capital stock measure, as well. Moreover, depreciation does not simply follow a

fixed factor, and this all is further compounded by reported depreciation being governed by tax

treatment of depreciation rather than by economic depreciation.6

In contrast, investment is more precisely recorded through the purchases of various capital

goods and services in a given year. This is in stark contrast to capital stock, which is accumu-

lated over time, and this further exacerbates the problem. While, to some extent, every input,

including labor and intermediate inputs, is subject to measurement error, capital is distinct in

this dimension.

The use of book value as recorded in a producer’s balance sheet is also subject to measure-

ment error. In principle, one can rely on both measures — the book value and the constructed

capital stock using PIM — and see how they line up. In the U.S. Census data on manufacturing,

such as the Annual Survey of Manufacturing and the Census of Manufacturers, these perpet-

ual inventory and direct assets measures differ by 15 to 20 percent (see Becker, Haltiwanger,

Jarmin, Klimek, and Wilson (2006)). This suggests a reasonable amount of measurement error

6For example, when regulators set electricity rates (see, for instance, Progress Energy – Carolinas (2010)),
they often have hundreds of pages of asset-specific depreciations depending on the lifespan of a boiler, car, truck,
or building, and these depreciation rates typically have fairly intricate time series patterns.
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in capital that is likely to be persistent over time. Given that we see measurement error even

in the highest-quality data sources such as the U.S. Census of Manufacturers, capital measure-

ment error may be more prevalent for datasets covering developing countries. In the latter,

we are often precisely interested in identifying factors driving productivity growth, and the

(mis) allocation of resource; therefore, accurately measuring the marginal products, and capital

growth is of first-order importance. Finally, intangible capital is an increasing part of total

capital stock (see Corrado, Hulten, and Sichel (2009) and Haskel and Westlake (2017)). For all

the issues in measuring physical capital, such as buildings or machinery, measuring intangible

capital such as research and development or brand equity, is substantially harder.

In the next section, we introduce the identification and associated estimation strategy. In

Section 4, we turn to a series of Monte Carlo analysis, to demonstrate the performance of

our estimator. We illustrate our approach, in Section 5, by contrasting the estimated capital

coefficients using our procedure to traditional approaches. We do this for three distinct datasets

that have a long tradition in the productivity literature, including China’s NBES, the Indian

census of manufacturing (ASI) and a sample of Chilean manufacturing producers.

3 Identification and Estimation Strategy

We present the identification strategy to accommodate both unobserved productivity shocks

and measurement error in capital. This strategy suggests a straightforward estimation routine

that does not require additional data, and does not not add any complexity to the standard

estimation routines such as the class considered by ACF.

3.1 Identification under measurement error and productivity shocks

We consider a production function of the type:

qit = f(mit) + βllit + βkkit + ωit, (3)

where qit, lit, kit,mit and ωit denote (log) output, labor, capital, materials and productivity,

respectively. This captures the class of Hicks-neutral production functions including the gross

output and Leontief Cobb-Douglas specifications – i.e., f(mit) = βmmit and f(mit) = 0, re-
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spectively.7 In levels these two production functions are given by

Qit =

{
Mβm

it L
βl
itK

βk
it Ωit (Gross-Output),

min {βmMit, L
βl
itK

βk
it Ωit} (Leontief).

(4)

In what follows we consider the standard DGP considered by ACF that allows to identify the

production function that is perfect competitive output markets and competitive input markets

with common factor prices. This allows us to focus on the role of measurement error in capital.

In subsection 3.22 we briefly discuss departures from this perfect competition framework.

The laws of motion. Capital and productivity follow the (standard) law of motions:

Kit = (1− δ)Kit−1 + Iit−1 (5)

ωit = ρωit−1 + ξit (6)

This is a departure from the literature, which typically only assumes a first-order (exogenous)

Markov process, that allows for a non-linear process of the form ωit = g(ωit−1)+ξit. In practice,

typically an AR(1) process is used. Moreover, when the properties of new estimators, such as

ACF, are evaluated via Monte-Carlo experiment, these also assume an AR(1) process.8

Measurement error in capital When we turn to the actual solution and implementation

of our estimator, we rely on the commonly assumed errors-in-variable structure, where the

observed log of the capital stock (k) is the sum of the log true capital stock (k∗) and the

measurement error (εk):

kit = k∗it + εkit, (7)

7To avoid the unlikely case that the data on materials is generated by unexpected large swings in the price
of materials after labor and capital are installed, such that the Leontief FOC would fail to hold, we do not
consider the more general Leontief structure G(Mit), but rather βmMit.

8While we consider an AR(1) process, the approach goes through for higher-order AR processes of the form∑P
p=1 ρpωt−p. It thus remains an empirical matter how to evaluate the trade-off between allowing for non-

linearities and higher-order AR terms. Our approach does, however, accommodate endogenous processes of the
form ωit = ρ1ωit−1 +ρ2dit−1, where dit is an action taken by the firm to impact future productivity, e.g. export
status or innovation. See De Loecker (2013) for a discussion, and Braguinsky, Ohyama, Okazaki, and Syverson
(2015) for a recent application.
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where we use the ∗ notation to denote variables measured without error – the one that is typically

observed by the firm – and the unstarred notation to denote the observed value. This linear

form of measurement error allows us to use IV to rid the model of bias from error-in-variables.

We refer to this representation, loosely, as the reduced form for the various measurement

error sources we have described. We assume that εkit is classical measurement error — i.e. it is

uncorrelated with true capital stock kit. We do, however, allow for εkit to be serially correlated

over time (within a producer). Since capital is constructed using historical information on the

cost of assets, it is unlikely that there is no serial dependence in measurement error of the value

of assets.

We further assume that this measurement error is orthogonal to last period’s investment

choice:

E(iit−1ε
k
it) = 0. (8)

Throughout we denote (log) investment as iit, and we observe investment without error. 9 Thus,

the main premise is that investment at time t−1 is informative about the capital stock at time

t, conditional on lagged capital, but is not correlated with the measurement error in capital

εkit. This makes lagged investment a valid instrument, as lagged investment is, by the presence

of the law of motion on capital, predictive of the current capital stock, and this assumption

guarantees that it is orthogonal to the measurement error. This condition holds by construction

if the measurement error is not serially correlated. However,we do allow for serially correlated

measurement error in capital as the likely source behind measurement error is due errors in

depreciation, which naturally give rise to dependency over time.

Of course, merely using lagged investment as an IV would not work: given that investment

choices depend on unobserved productivity, the exclusion restriction is violated. Our approach

is specifically designed to jointly treat the two sources of endogeneity: simultaneity and errors

in variables.

Simultaneity with Errors-in-Variables Let us consider the empirical counterpart of the

production function, where we follow the literature and include measurement error in output

9We can allow for measurement error in investment, as long as this measurement error is not correlated with
the measurement error in capital εkit, and if investment enters without error in the PIM calculation. This is
precisely what our Monte Carlo simulations accommodate.
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(εit)
10

qit = βllit + βkkit + ηit, (9)

where ηit is a composite error term composed of productivity, and measurement error in capital

and output:

ηit ≡ ωit − βkεkit + εit. (10)

The search for an instrument (zit) in this setting consists of satisfying both :

E(kitzit) 6= 0 and E(ηitzit) = 0. (11)

This implies that not only that the instrument needs to be orthogonal to the capital and

output measurement error (ε+ εk), but also orthogonal to the productivity term ω — to avoid

the standard simultaneity bias. The literature has long recognized that the latter is difficult to

find, since candidates that are correlated with inputs are, more often than not, also correlated

with productivity, and therefore fail to satisfy the exclusion restriction. Input prices often fall

in this category, since they are expected to be correlated with the inputs, but at the same

likely correlated with productivity. Our setup adds a second source of endogeneity through the

presence of capital measurement error, and we now explain how our approach can deal with

both sources of endogeneity – i.e., E(kitωit) 6= 0; the simultaneity problem, and E(kitε
k
it) 6= 0;

the errors-in-variable problem.

It is instructive to consider how treating each source of endogeneity separately leads to a

biased estimate of the capital coefficient (and potentially also the labor coefficient – more on

this below). In fact deploying a pure IV approach using lagged investment would result in using

the moment condition E(ηitiit−1) = 0. The investment instrument is strong, as E(iit−1kit) > 0

due to the capital accumulation process. However, this IV approach would yield an upward bias

since η captures productivity (ω), and we expect investment to be increasing in productivity

E(iit−1ωit) > 0, through the persistent part of the productivity shock – i.e. the inequality

reduces to E(iit−1ωit−1) > 0.11

10The error in output relates to true output as follows: qit = q∗it + εit where q∗ is true output and q denotes
measured output.

11Indeed, in our monte-carlo experiements in section 4 the IV estimator is higher than the OLS estimator.
This pattern is mimicked by our applications, so we present this IV estimator, both to illustrate the bias it
causes, but also, to show what is being leveraged in the data to yield consistently higher capital coefficients.
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Following the standard ACF approach would lead to a moment condition on the productivity

shock that still contains the measurement error in capital and would set the following moment

condition equal to zero to identify βk:

E(ξ̃itkit) = 0, (12)

where ξ̃it ≡ ξit−βkεkit +ρβkε
k
it−1. The presence of measurement error, at both t and t−1 makes

it impossible to identify the capital coefficient.

Our approach, however, relies on the following conditional orthogonality condition:

E(ηitiit−1|ωit−1) = 0, (13)

which with help from the assumed laws of motion (equations (5) and (6), respectively) leads to

the following moment condition that identifies the capital coefficient.

E(ξ̃itiit−1) = 0. (14)

This expression highlights that we require (lagged) investment to be orthogonal to contem-

poraneous measurement error in capital (stated in equation (8)).12

The labor coefficient is identified using standard moment conditions (depending on what

one is willing to assuming about labor market frictions and adjustment costs). We do, however,

expect the labor coefficient to be biased in the presence of measurement error in capital, even

under the standard ACF approach, and this for the simple reason that labor and capital are

correlated. Under the Cobb-Douglas production technology, assumed throughout the literature

and in this paper, the two inputs are positively correlated and if there are no unobserved pro-

ductivity shocks, one can show that this will lead to an upward bias of the labor coefficient.

The intuition behind this result is that labor will pick up the true capital variation through

the positive correlation of labor and (true) capital, and thus overestimate the impact of labor

on output variation.13 This has further implications for returns to scale. Correcting for the

presence of measurement error in capital leads to ambiguous returns to scale implications; de-

pending both on the severity of the error in capital recording and the strength of the correlation

between labor and capital in the data.

12Unlike the approach introduced by Olley and Pakes (1996) where only firms that invest can be used to esti-
mate the production function, our approach has the potential to treat the zero investment firms as information
about the change in capital that is potentially contaminated with error.

13See chapter 11 of Maddala and Lahiri (1992) and Pischke (2007) for a formal treatment of the signal-to-noise
bias in multivariate regression analysis.
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3.2 Estimation

We present the main estimation algorithm that nests the standard approach in the literature,

but considers serially correlated measurement error in capital.

3.2.1 Benchmark

The estimation procedure consists of two steps, and follows the discussion in ACF closely.14

The main difference is that we exploit the (log) linear production structure in capital, labor

and productivity, which dictates a (log) linear control for productivity. The log linearity of the

production function guarantees that the control for productivity (through the cost minimizing

first-order condition used to control for unobserved productivity) will also be log-linear, and

allow to treat the error in capital measurement. Under our baseline specification of the Leontief

production function, the cost minimizing material choice gives a simple log-linear control for

productivity given by:

ωit = ln βm +mit − βllit − βkkit (Leontief). (15)

Note that this control is independent of the presence input price variation, and imperfect

competitive output or input markets. It merely states that the firm is optimally deploying the

mix of inputs given the technology. Alternatively, under the gross output production function

we follow ACF-LP and invert the material demand equation and (also) obtain a log linear

expression for productivity given by:

ωit = − ln βm + (1− βm)mit + pmt − pt − βllit − βkkit (Gross-Output), (16)

where all lower cases denotes logs, and pm and p are the material input and output price,

respectively.15 Note that in either the Leontief or Gross-Output, we obtain log-linear control

functions.16

14The Not-for-Publication Appendix A provides precise details on these estimators, and our webpage has code
for these in STATA.

15In this setting the input demand equation does depend on the specific features of output and input markets,
such as input price variation and imperfect competition.

16If we replace the productivity shock in the production function with the control for productivity (regardless
of which production function we consider), we are left with a regression of output net of material variation on a
constant (and time dummies) and the measurement error in output: qit−mit = c+εit. This is a standard finding
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In both specifications, the first step consists of running a simple linear IV-regression where

capital is instrumented with lagged investment:

qit = θt + θllit + θkk̂it + θmmit + ε̃it

= φit + ε̃it,
(17)

where θt captures the constant term and the time-varying prices (under the gross output speci-

fication), ε̃it = εit−βkεkit, and we use θh (h = {l,m, k}) to denote the reduced-form parameters,

on each input, capturing both the production function coefficients and the parameters govern-

ing the control for unobserved productivity, and k̂it denotes the predicted capital stock from

the first-stage IV.17

The moment conditions introduced in the previous section can now be formed by observing

that the joint productivity-measurement error of capital term (conditional on the parameter

vector β) is obtained using ωit(β) − βkε
k
it = φit − βllit − βkkit. Using the law of motion

on productivity the moment conditions can be constructed to estimate the labor and capital

coefficient, respectively:

E
[
ξ̃it(β)

(
lit−1

iit−1

)]
= 0. (18)

In contrast with the standard approach (ACF) where E(ξ̃itkit) = 0 is used to identify the

capital coefficient, we rely on lagged investment to be orthogonal to the productivity shock.

Our approach, however, preserves the flexibility of the ACF approach with respect to selecting

alternative DGP, and in the absence of measurement error both estimators (ACF and ours)

coincide.

The identification and estimation of the material coefficient, in case of the gross-output

specification follows immediately from the assumption of perfect competitive output markets.

in the literature, see for instance, footnote 17 on page 2444 of ACF. However, the norm is to run a regression
of output on labor, capital and materials. It is worth weighing the pros and cons. From a purely applied point
of view, it is very strong to suggest that the variation in materials in sufficient to capture output, and it seems
sensible to include labor, capital and estimate a coefficient on materials, all to eliminate the measurement error
in output. From a pure theoretically point of view, it is sufficient to run a regression of output net of materials
and recover the constant term. The advantage is that the measurement error in capital is not affecting the
estimate of predicted output (used subsequently to isolate the productivity shock). Running this regression
would then constitute the first stage for both technologies, and is robust to measurement error in capital. Note
that this result is a consequence of modeling the productivity shock as a log-additive shock to a Cobb-Douglas
input aggregator.

17Measured capital is predicted using lagged investment, labor, materials and year dummies.
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Taking the first-order condition of profits with respect to materials immediately generates

βm = PmM
PQ

, as an estimate. Due to the potential measurement error in output (ε), taking

the average of the material-revenue share would yield a biased estimate. Instead, we take the

median material revenue share across the sample to obtain a consistent estimate of βm. While

the coefficient on materials is often not of direct interest in the case of the Leontief production

function, it is given by the ratio of (physical) materials-to-output, M
Q

, where again we consider

the median across firms and time.18

4 Monte Carlo Analysis

We evaluate our estimator in a series of Monte Carlo analyses in which the main interest lies in

comparing the capital coefficient across methods as we increase the level of measurement error

in capital. We follow Ackerberg, Caves, and Frazer (2015) closely, starting with their data-

generating process, and add measurement error to capital. We depart from ACF by adding

time-varying investment costs in the investment policy function in order to generate additional

time-series variation in capital stock.

We refer the reader to Appendix B for the details of the underlying model of investment,

but the main features of our setup are as follows. We rely on a constant returns to scale

production function with a quadratic adjustment cost for investment. This model yields closed-

form solutions for both labor and capital, where labor is set using a static first-order condition

given firm-specific wages.19 Productivity and wages follow an AR(1) process, and we consider

a quadratic adjustment cost for investment: φitI
2
it, where φit — which should be considered as

the price of capital — itself follows a first-order Markov process. We solve the model in closed

form, extending the work in Syverson (2001) and discussed in Appendix B.2, and this generates

our perfectly measured Monte Carlo dataset on output, inputs, investment and productivity.

We then overlay measurement error on this dataset composed of AR(1) processes with

18The presence of measurement error in output thus invalidates relying on average factor shares. See Appendix
A.1 for more details and also see Asker, Collard-Wexler, and De Loecker (2014) and De Loecker, Eeckhout, and
Unger (2020) for an application of this estimator.

19ACF also deal with two other data-generating processes, other than the approach we described (called
DGP1 in their paper). In Appendix B.4, we also consider optimization error in labor (DGP2) and an interim
productivity shock between labor and materials as in ACF (DGP3), along with optimization error in labor. We
find similar results from any of the DGP’s considered by ACF.
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normally distributed shocks:

εit = ρqεit−1 + uqit

εkit = ρkεkit−1 + ukit,
(19)

where uq ∼ N (0, σ2
q ), and uk ∼ N (0, σ2

k). In other words, we allow for serially correlated

measurement error in output and capital.

We analyze on the impact of increasing εk, which is governed by the variance σ2
k. We

distinguish between the role of measurement error within a given Monte Carlo, and the overall

distribution of estimated coefficients across 1,000 Monte Carlo runs.

Table B.1 in the Appendix shows the parameters used in our Monte Carlo. We pick the same

parameters for the size of the dataset, production function, and processes for productivity and

wages as in ACF. For the process for the price of capital, denoted φit, we pick parameters that

match the the cross-sectional dispersion of capital (std.[kit] = 1.6) and the time-series variation

in capital (Corr.[kit − kit−1] = 0.93) in the Annual Survey of Industries in India (discussed in

Section 5), choosing an autocorrelation term for the process of φ of 0.9 and a shock variance of

0.3.20

Finally, we pick parameters for the measurement error in inputs and output. We choose a

measurement error for output with a standard deviation of 30 percent, and a low autocorrelation

of 0.2. For the error in capital (εk), we choose a serial correlation coefficient of 0.7, so a fairly

high persistence, and a standard deviation of 0.2. Note that this assumption on the time series

process for capital measurement error yields a difference between k and k∗, which has a standard

deviation of 30 percent.

Table 1 presents the estimated capital and labor coefficients from this Monte Carlo exercise,

with (true) parameters of the production: βk = 0.4 and βl = 0.6. We compare the performance

of estimators that use investment to instrument for mismeasured capital proposed in this paper,

that we call Control IV, and of those that do not, that we call Control estimator.

The Control IV estimator yields unbiased — i.e., the mean parameters are the same as the

true ones — and, precise estimates, with a standard deviation of 0.02. In contrast, the standard

Control function estimator yields downwardly biased estimates of the capital coefficient, with

20Indeed, it is this last moment that the ACF Monte Carlo has difficulty replicating: it predicts a serial
correlation coefficient of capital of 0.997, which is much more than in any producer-level dataset we are aware
of.
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Table 1: Monte-Carlo Results
(βk = 0.4, βl = 0.6)

Coefficient OLS FE IV Control Control IV
Capital 0.04 0.03 0.07 0.32 0.40
(s.e.) (0.01) (0.01) (0.01) (0.03) (0.02)
Labor 0.95 0.90 0.94 0.52 0.60
(s.e.) (0.01) (0.01) (0.01) (0.02) (0.02)

Notes: Mean and Standard deviation over 1,000 Monte-Carlo replications presented of DGP 1 in ACF with

capital measurement error. Control refers to the control function approach used in ACF, while control IV refers

to the control function that uses investment as an instrument. The estimates without control functions are

OLS, IV with capital instrument by investments, FE with firm fixed effects.

an average of 0.32 versus a true value of 0.4. As in ACF, the OLS estimator for capital is

downwardly biased because of the simultaneity problem, with βOLSk = 0.04. The IV estimator

is similarly biased, but shows a substantially larger capital coefficient than the OLS ones. Figure

1 plots the distribution of estimates of both the labor and capital coefficient showing that the

Control and Control IV estimates have similar variances, but there is very little overlap in the

distributions of the estimated coefficients.

4.1 The impact of measurement error

In Figure 2, we plot the average estimate of βk over 100 replications against the variance of

capital measurement error σk for both the Control IV and Control estimators. This Monte

Carlo simulation shows that standard estimator become progressively more biased away from

the true value of βk as the measurement error in capital increases. It is of course difficult to

guess the relevant range of this variance, but the main takeaway is that our IV-based estimator

is insulated from this problem. The simulations do suggest that standard methods deliver an

estimate of half the magnitude for a standard deviation in the capital measurement error σk of

about 0.2, which corresponds to a standard deviation between k and k∗ of 0.28 in the stationary

distribution.

It is important to note that our estimator is robust to capital measurement error, while

still undoing the simultaneity bias that typically plagues the production function estimation.
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Figure 1: The distribution of the estimated capital and labor coefficient in a Monte Carlo
(βk = 0.4, βl = 0.4)
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Note: We plot the distribution of the estimated capital coefficient across 1000 Monte Carlo replications, with

βk = 0.4, and σ2
k = 0.2.

Figure 2: Impact of measurement error on capital coefficient in a Monte Carlo (βk = 0.4):
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Note: We plot the estimated capital coefficient as a function of the variance in the capital measurement error

(σ2
k). Average of 100 Monte Carlo replications per value of σk.

Therefore, applying our estimator when the capital stock is accurately measured also provides

consistent estimates of the production function coefficients.
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4.2 Alternative sources of measurement error

As discussed before, we have considered what we refer to as a reduced form for the measurement

error in capital. That is, we consider the standard representation of an errors-in-variable,

whereby the measurement error is (log) additive — here k + εk. In Appendix C, we discuss an

alternative source of measurement error in capital, derived structurally from the measurement

error in depreciation rates: Kit = (1−δit)Kit−1+Iit and δit = (δ+εdit); i.e., there is measurement

error in depreciation rates.

This form of measurement error does not map into a log-additive structure, and, we evaluate

our estimator in the presence of this alternative setup. The main takeaway from Appendix Fig-

ure C.1 is that our estimator outperforms the other approaches but, given the formal violation

of the moment conditions, leads to a small bias of the capital coefficient for large values of the

variance of the capital measurement error.

The evidence from the Monte Carlo unequivocally favors our estimator in the presence of

measurement error in capital and, moreover, suggests that the bias can be quite severe for

moderate measurement error in capital. To verify how large this problem is in real data, we

now apply our estimator, exactly as performed in our Monte Carlo analysis, to three different

datasets of manufacturing plants, in India, China and Chile.

5 Applications to plant-level data

We illustrate our approach by applying it to three plant-level datasets. The first dataset we use

is from the Annual Survey of Industries from India. This a plant-level survey for over 600,000

plants over a twenty-year period. Allcott, Collard-Wexler, and O’Connell (2016) have previously

used and described this dataset. The second dataset is the Chilean census, as used in Pavcnik

(2002) and Levinsohn and Petrin (2003), and covers plants in the Chilean manufacturing sector

for the period 1979-1986. Finally, we evaluate the impact of our correction to the Chinese

manufacturing database provided to us by Brandt, Van Biesebroeck, and Zhang (2012). All

variables are deflated using industry-specific price deflators and Appendix D describes each

dataset briefly, and presents basic summary statistics.

These three datasets have been used extensively to study productivity dynamics, but at the

same time have distinct features related to the measurement of capital. The data on Chinese
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establishments report the book value of plants and investment, while the Indian and the Chilean

census data report both the book value and the (constructed) capital stock using the perpetual

inventory method. In addition, the economic environments are different in important ways.

There is substantial investment during the process of economic transition in China, while in

India and Chile the presence of small unproductive firms and persistent frictions paints a very

different productivity dynamic over time. We expect these differences to materialize in the

estimated coefficient, and in the role and importance of measurement error in the capital stock.

Throughout, we compare estimated production function coefficients (on labor and capital)

from our approach to those obtained by simple OLS, IV (without the simultaneity control) and

the control function approaches including the investment IV one presented in this paper. We

estimate a separate capital and labor coefficient for each industry in each country. We do this

for both the structural Leontief model (q = βll + βkk) and for the more usual gross-output

production function (q = βll+βmm+βkk) where we use a first-order condition to estimate the

material coefficient. We focus our discussion primarily on the gross-output specification, since

it uses a production function that is far more commonly studied in the empirical literature, but

the pattern of results is similar for the Leontief specification.

We start by reporting the median for the various estimators in Table 2, but also include

the 25th and 75th percentile across industries to give an idea of the range of estimates. We

confirm a well-known result in the literature that using fixed effects lowers the capital coefficient

substantially. In the case of the Gross-Output production function, the capital coefficient falls

from a median of 0.12 for OLS to 0.06 for firm FE in India, and from 0.24 to 0.12 for Chile, with

no difference for China. By itself, this does not conclusively show that there is measurement

error in capital. However, if capital is fixed over a long period of time, we cannot identify its

marginal product using the time series variation within producers. China is a clear case where

capital is changing at an unprecedented rate, quite atypical from the capital evolution of most

countries. Our next specification, IV (investment), considers a two-stage least squares regression

of output on capital and labor, where we instrument for capital with lagged investment. We

find substantially higher capital coefficients compared to OLS, of 0.06 versus 0.18 in China,

0.12 versus 0.17 in India, and 0.10 versus 0.22 in Chile, respectively. This reinforces our prior

that instrumenting for capital with lagged investment may lead to a higher capital coefficient.

However, investment and unobserved productivity are very likely to be positively correlated, so

20



Table 2: Production Function Coefficients

Gross Output with FOC Materials

China India Chile
Capital Labor Capital Labor Capital Labor

OLS 0.06 0.12 0.12 0.25 0.10 0.43
[0.04 0.09] [0.09 0.17] [0.09 0.15] [0.18 0.32] [0.04 0.06] [0.33 0.51]

FE 0.06 0.11 0.06 0.19 0.05 0.30
[0.03 0.09] [0.07 0.15] [0.04 0.09] [0.14 0.24] [0.08 0.13] [0.22 0.38]

IV 0.18 0.03 0.17 0.16 0.22 0.19
[0.11 0.23] [0.00 0.06] [0.14 0.25] [0.12 0.21] [0.19 0.37] [0.03 0.40]

Control 0.05 0.12 0.09 0.27 0.09 0.38
[0.02 0.10] [0.07 0.21] [0.07 0.11] [0.23 0.341] [-0.01 0.12] [0.33 0.57]

IV Control 0.12 0.10 0.19 0.19 0.16 0.21
[0.08 0.17] [0.04 0.19 [0.12 0.20] [0.17 0.30 [0.13 0.35] [0.03 0.59 ]

Leontief

China India Chile
Capital Labor Capital Labor Capital Labor

OLS 0.28 0.45 0.38 0.70 0.24 0.89
[0.22 0.33] [0.38 0.54] [0.36 0.80] [0.64 0.80] [0.19 0.31] [0.85 0.97]

FE 0.26 0.40 0.17 0.60 0.12 0.71
[0.22 0.30] [0.36 0.45] [0.16 0.30] [0.36 0.45] [0.07 0.14] [0.66 0.81]

IV 0.64 0.13 0.60 0.40 0.55 0.45
[0.54 0.74] [0.46 0.99] [0.54 0.74] [0.46 0.99] [0.45 0.74] [0.15 0.65]

Control 0.25 0.60 0.33 0.76 0.22 1.01
[0.10 0.40] [0.33 0.89] [0.27 0.41] [0.65 0.88] [0.14 0.30] [0.84 1.06]

IV Control 0.31 0.73 0.44 0.68 0.29 0.97
[0.20 0.42] [0.46 0.99] [0.20 0.42] [0.46 0.99] [0.12 0.38] [0.87 1.32 ]

Notes: We report the median coefficient across all industries for each dataset. In parenthesis we show the 25th

and 75th percentile for each coefficient. Leontief specification is Qit = min {βmMit, L
βl

itK
βk

it Ωit}, and Gross

Output with FOC Materials is given by Mβm

it Lβl

itK
βk

it Ωit, where the material coefficient is computed using the

median of the material revenue share (βm = Median[
PM

t Mit

PtQit
]).
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the increase in the capital coefficient in the IV regression might also reflect the endogeneity of

investment.

Turning to the estimators that control for the simultaneity of inputs, and the impact of

measurement error in capital. We find the capital coefficient increases from a median of 0.05

for an ACF control function to 0.12 for our control IV approach for China. Likewise, the median

coefficient increases from 0.09 to 0.19 for India, and from 0.09 to 0.16 for Chile. The fact that

the capital coefficient roughly doubles is striking, but completely in line with the predictions

from our Monte-Carlo, say in figure 2, if the variance of the measurement error σk is around

0.2. In addition, the Leontief production function shows a similar pattern of increasing capital

coefficients when moving from the control to the control IV approach. The capital coefficient

increases from 0.25 to 0.31 for China, 0.33 to 0.44 for India, and 0.22 to 0.29 for Chile.

As for the labor coefficient, in general we find that the cases where the capital coefficient

increases, the labor coefficient offsets this decrease. For instance, for the gross-output produc-

tion function, the control function labor coefficient decreases from 0.12 to 0.10 when we use our

IV approach in China, 0.27 to 0.19 for India, and 0.38 to 0.21 for Chile. Likewise, the labor

coefficient in the IV estimates are lower than the OLS ones, falling from 0.12 to 0.03 for China,

0.25 to 0.16 for India, and 0.43 to 0.19 for Chile respectively for the case of the gross-output

production function. Note as well that the Monte-Carlos were less dispositive as to the effect

of capital measurement error on the labor coefficient.

Finally, in Figure 3 we plot the industry-specific capital and labor coefficients by country,

with the top panel showing the gross-output production function, and the bottom panel showing

the Leontief. The vertical axis shows the capital coefficient from our IV estimator, while the

horizontal axis shows the capital coefficient that does not instrument with investment, and the

red solid line is the 45 degree line.

The bulk of the observations for the capital coefficient are above the 45-degree line (in

red), indicating that our IV estimates are higher than the non-IV estimates for capital. This

is particularly true for the Gross-Output production function. Note as well, that there is

nothing mechanical about our higher capital coefficients: there are several industries where we

find a lower capital coefficient using the IV control approach versus the control function. The

labor coefficients are also a bit lower, but this pattern is less striking. These differences are

also frequently statistically significant. We have computed the standard errors for the Control

22



Figure 3: Industry-specific Coefficients
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Notes: Each observation is a two-digit industry (as classified by the respective national industry classification),

and we plot the capital coefficient obtained from our procedure (i.e., IV) against the alternative control function.

The red line is the 45-degree line.

and Control IV estimators using a bootstrap procedure, and report these in Table E in the

Appendix. We test for the capital coefficient being larger in the IV Control estimator than the

Control estimator at the 90 percent level, which happens in 15 percent of industries for the

Leontief production function, and in 17 percent of industries for the Gross-Output production

function. In contrast, the capital coefficient for the Control estimator is only larger than the

Control IV estimate at the 90 percent level for only 4 percent of industries for the Leontief

production function, and none of the industries for the Gross-Output.
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Taking these results at face value suggests that measurement error in capital leads to ob-

taining capital coefficients that are significantly lower — i.e., half the magnitude. This has

important consequences for any subsequent productivity analysis.

6 Concluding remarks

This paper revisits the estimation of production functions in the presence of measurement error

in capital. Our starting point is that appropriately measuring capital is one of the most difficult

tasks that go into estimating a production function. There is, however, rather surprisingly little

work that deals directly with measurement error in capital, or any input for that matter.

Introducing an estimator that relies on a hybrid IV-control function approach, we build

on what have now become standard techniques to address the simultaneity bias, and add an

IV strategy to correct for the measurement error of capital. We propose a simple strategy

that relies on investment to inform us about the marginal product of capital; specifically,

we use lagged investment as an instrument for the capital stock while still controlling for

the standard simultaneity bias. The latter is crucial to capture the well-known endogeneity

concern that arises due the presence of unobserved productivity shocks. Our approach therefore

captures leading estimators in the literature that have come to be widely used throughout

various subfields of economics.

From an applied point, our estimator is easy to implement and adds no extra cost to the user,

and allows for a great deal of flexibility in incorporating recent advances in the estimation of

production function in the context of market imperfections, both in output and input markets,

or the presence of adjustment frictions for factors.

Monte Carlo simulations show that our estimator performs well, even in cases of rather large

measurement error. We also apply our estimator to Indian, Chilean and Chinese producer-level

data. We estimate capital coefficients that are double those obtained with standard techniques.

This indicates that correcting for measurement error in capital can be a first-order concern,

and it has immediate implications for the literature that studies productivity dynamics, firm

growth, investment, productivity dispersion, and the covariates of productivity growth. Indeed,

any analysis where the conclusions rest on estimates of the marginal product of capital, by itself,

or as an input into measurement of productivity, can be misleading in the presence of errors in

the recording and measurement of the capital stock.
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A Factor shares and Alternative Environments

We present a more detailed discussion on the use of the factor share approach to identify and estimate
the material coefficient in the baseline setup of our framework. Departures from perfect competitive
output and input markets are briefly discussed and we offer an illustration under a specific model
of product differentiation under common input prices, and highlight that the main features of our
approach are robust to considering such an environment.

A.1 Factor shares

Under the standard DGP op perfect competition it is well-known that the output elasticity of a variable
input in production can immediately be measured in the data using the revenue share of an input X:

βX =
(PXX)it

(PtQ̃)it
. (A.1)

where PXX is the expenditure on the inputX, and PQ is observed revenue, including the measurement
error in output (Q̃t = Qit exp(εit)). In the case of the Cobb-Douglas production function (either gross
output if we wish to measure the coefficient on materials, or Cobb-Douglas in labor and capital, if we
wish to measure the coefficient on labor), we have to confront the substantial dispersion in the revenue
share in (any) dataset. Under the assumed setup this dispersion can only come from measurement
error in output, and therefore we need to rely on an estimator that is robust to this.

The presence of measurement error in output then calls for a simple estimator:

β̂X = Median

[
(PXX)it

(PQ̃)it

]
, (A.2)

where the median is used instead of the mean, due to the error in the denominator of this expression.
This estimator is a consistent estimator of βX if we assume that the output measurement error satisfies
Med[εit = 0]. This is obtained by letting the median operator go through the observed revenue share:

(PXX)it
PtQit

1

exp(Median[εit])
, (A.3)

where we use the property of the exponential being a monotone function. Thus, our estimator proposed
in equation (A.2) is a consistent estimator of βX . Likewise, we can estimate the material coefficient βm
under the gross output production function, and under Leontief the estimator considers the median
of the output share (Mit

Q̃it
).

Under the gross output specification, a special case presents itself whereby only the capital coef-
ficient is required to be estimated using GMM. Using the estimates β̂l and β̂m, we can net out the
contribution of these inputs to output: yit = qit−βllit−βmmit. We can then proceed with our estima-
tion routine relying on yit as the measure of output (instead of qit in the first-stage). This discussion
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outlines how control function methods can be combined with factor-share approaches in our method.
However, the factor share approaches crucially relies on the assumptions of flexible input choice and
competitive output markets.

A.2 Alternative environments

In most settings, we observe firms charging different prices for their output, and paying different prices
for inputs, which leads to an additional complication since researchers typically have access to only
(deflated) revenues and expenditures on inputs. We believe this to be a very important concern.
The starting point of our analysis, however, is to assume we have correctly converted the revenue
and expenditure data to the comparable units in a physical sense, and this is precisely the setup of
Ackerberg, Caves, and Frazer (2015).

A related but distinct concern is the presence of imperfect competitive output and input markets.
As discussed in the review article by De Loecker and Goldberg (2014), both observations lead to
two challenges: unobserved output and input price variation plagues identification, and second, the
control for unobserved productivity needs to be adjusted to accommodate the departures from perfect
competition and identical prices across firms. The approach suggested in this paper is thus valid under
commonly assumed models of imperfect competition, either when adopting the Leontief technology,
or in the case of the gross-output production function by extending the input demand equation as
in De Loecker and Warzynski (2012) and De Loecker, Goldberg, Khandelwal, and Pavcnik (2016).
We discuss briefly, and illustrate it with a few leading cases, how our approach can be adjusted to
incorporate departures from the standard setup in the main text of the paper.

Leontief As discussed in the main text, under the Leontief technology the presence of imperfect
competition does not affect the control. The reason is simple: regardless of input price differences,
or imperfect competition in the product market, as long as firms cost minimize and produce at the
optimal point where F (L,K)Ω = βMM , the control is valid.

Gross Output Under this technology, the control function approach is adopted and alternative
environments (such as input price differences and imperfective product and factor markets) require
additional terms to be included in the control to reflect the dependance of optimal input demand on
these output and input market conditions. In general, let the vector zit captures these factors, then
ωit = h(mit, kit, lit, zit). A few leading cases that are of interest are: input price variation, demand-
side heterogeneity (e.g. export demand, product-level demand differences), quality differences. See
De Loecker and Goldberg (2014) and De Loecker, Goldberg, Khandelwal, and Pavcnik (2016) for a
detailed discussion.

The FOC approach to estimating the material coefficient is, however, no longer valid under im-
perfect competitive output markets, and therefore to estimate the material coefficient βm under the
gross output specification, we can no longer rely on the factor share.This is precisely the approach of
De Loecker and Warzynski (2012) to estimate markups: comparing the revenue share to the output
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elasticity of a variable input generates a measure of the markup. We therefore introduce an additional
moment condition to identify the material coefficient – i.e., E(ξ̃itmit−1) = 0. This requires additional
structure to the problem by relying on observed, and serially correlated material prices, that are to
be included in the control for productivity. Under Leontief the material coefficient remains as before.

Finally, our approach, like ACF, can also handle different timing assumptions on the choice of
inputs. For instance, in the case in which labor faces adjustment costs, the labor input now constitutes
a state variable, and labor choices will not entirely react to productivity innovation shocks ξit. In the
case of one-period hiring, labor at time t and labor at t − 1 are exogenous variables. The moments

condition is then given by: E
[
ξ̃it
(
lit
)]

= 0 Thus, the source of identification for the labor coefficient

is then precisely that adjustment costs vary across firms, to the extent that these vary with the labor
stock (see Bond and Söderbom (2005) for a discussion).
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B Monte Carlo: details

In this section, we describe details of the Monte Carlo that we will use to evaluate the performance of
our estimator.

Table B.1: Monte Carlo Parameters

Data Size
Number of Firms N= 1,000
Time Periods T= 10

Production Function Parameters
Capital Coefficient βk = 0.4
Labor Coefficient βl = 0.6
Depreciation Rate δ = 0.2
Productivity Process ρω=0.7, σω = 0.3
Wage Process ρw=0.3, σw = 0.1


Taken from ACF.

Cost Capital φ ρφ=0.9, σφ = 0.3
} Dispersion of Log Capital of 1.6

Autocorrelation of Capital of 0.93

Measurement Error Parameters
Error in Capital ρk = 0.7, σk = 0.2

}
High Persistence, and 30 percent measurement
error in stationary distribution

Error in Output ρy = 0.2, σy = 0.3
}

Low Persistence, and 30 percent measurement
error in stationary distribution

We specify laws of motion for each of the variables in the data-generating process.

B.1 Timing

First, we specify the timing assumptions in our model. Investment is chosen with one period time
to build. Materials are chosen statically — i.e., after the firm knows its productivity Ωit. Labor is
chosen statistically in for DGP 2 and DGP 3, and in an interim period for DGP 1 — i.e., part of the
productivity shock is revealed before the firm makes its labor choice.

Second, there are four exogenous state variables, productivity Ait, wages Wit, output prices Pit,
and the price of capital φit, which all have log AR(1) processes. The only endogenous state variable
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is capital.
Logged productivity A has a first-order Markov evolution:

ait = ρaait−1 + uait, (B.1)

where ua ∼ N (0, σ2
a).

In addition, log wages have a first-order Markov process:

wit = ρwwit−1 + uwit, (B.2)

and likewise for the logged price for output (P ):

pit = ρppit−1 + upit, (B.3)

where uw ∼ N (0, σ2
w) and up ∼ N (0, σ2

p). For the purposes of the Monte Carlo, we will normalize
pit ≡ 1, the case of perfect competition.

B.2 Derivation of Investment Policy as in Syverson (2001)

In this section, we derive a closed form for the investment function in Syverson (2001), to show that
we can allow a time-varying cost of capital φit. This derivation is very close to Syverson (2001), so
our goal is merely to show that this model admits a time-varying cost of capital φit.

Firms have flow profits given by:

Πit = PitAitL
α
itK

1−α
it −WitLit −

φit
2
I2
it, (B.4)

where P is the price of output, A is physical productivity, W refers to firm specific wages, and I is
investment.

The firm’s value function V is given by:

V (Pit, Ait,Kit,Wit, φit) = max
Lit,Kit

PitAitL
α
itK

1−α
it −WitLit

+ βEitV (Pit+1, Ait+1,Kit+1,Wit+1, φit+1)

such that Kit+1 = (1− δ)Kit + Iit

(B.5)

where δ is the depreciation rate of capital.
Labor is chosen using the usual first-order condition ∂Πit

∂Lit
= 0:

PitAitαL
α−1
it K1−α

it = Wit

→ Lit =

[
αPitAit
Wit

] 1
1−α

Kit

(B.6)
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And, likewise, investment solves the Euler Equation, ∂V
∂I = 0, giving,

φitIit = βEitVK(Pit+1, Ait+1,Kit+1,Wit+1, φit+1). (B.7)

The envelope condition yields:

VK(Pit, Ait,Kit,Wit, φit) =(1− α)PitAitL
α
itK
−α
it

+ (1− δ)EitVK(Pit+1, Ait+1,Kit+1,Wit+1, φit+1).
(B.8)

Substituting into the first-order conditions, the envelope condition becomes

φitIit =βEit
[
(1− α)α

α
1−αW

− α
1−α

it+1 P
1

1−α
it+1A

1
1−α
it+1

]
+ β(1− δ)Eitφit+1Iit+1. (B.9)

And then iterating this equation forward — i.e., replacing EitφitIit with the right-hand side in
equation (B.9) — yields:

φitIit =βEit
[
(1− α)α

α
1−αW

− α
1−α

it+1 P
1

1−α
it+1A

1
1−α
it+1

]
+ β(1− δ)Eitβ

[
(1− α)α

α
1−αW

− α
1−α

it+2 P
1

1−α
it+2A

1
1−α
it+2

]
+ [β(1− δ)]2 Et+1φit+2Iit+2

φitIit =βEit
[
(1− α)α

α
1−αW

− α
1−α

it+1 P
1

1−α
it+1A

1
1−α
it+1

]
+ β(1− δ)Eitβ

[
(1− α)α

α
1−αW

− α
1−α

it+2 P
1

1−α
it+2A

1
1−α
it+2

]
+ [β(1− δ)]2 β

[
(1− α)α

α
1−αW

− α
1−α

it+3 P
1

1−α
it+3A

1
1−α
it+3

]
+ [β(1− δ)]3 Et+2φit+3Iit+3.

(B.10)

Writing in the form of geometric series

Iit =
β(1− α)

φit
α

α
1−αEit

∞∑
j=0

{
[β(1− δ)]jW

− α
1−α

it+1+jP
1

1−α
it+1+jA

1
1−α
it+1+j

}
(B.11)

Given that we assume that Pit, Ait and Wit follow the log-linear AR(1) process with normal error
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terms, the investment function becomes:

Iit =
β(1− α)

φit
α

α
1−αEit

∞∑
j=0

{[β(1− δ)]jW
−αφ

i+1
w

1−α
it

j∏
s=0

(uwt+1+i−s)
−αφ

s
w

1−α P
φi+1
p

1−α
it

·
j∏
s=0

(upt+1+i−s)
φsp
1−αA

φi+1
a

1−α
it

j∏
s=0

(uat+1+i−s)
φsa
1−α }

=
β(1− α)

φit
α

α
1−α

j∏
s=0

{[β(1− δ)]jW
−αφ

i+1
w

1−α
it

j∏
s=0

Eit(uwt+1+i−s)
−αφ

s
w

1−α P
φi+1
p

1−α
it

·
j∏
s=0

Eit[(upt+1+i−s)
φsp
1−α ]A

φi+1
a

1−α
it

j∏
s=0

Eit[(uat+1+i−s)
φsa
1−α ]}

Since for ε ∼ N (0, σ2), we have E(u
φs

1−α ) = exp( σ2φ2s

2(1−α)2
); then, the investment function can be

further simplified as:

Iit =
β(1− α)

φit
α

α
1−αEit

∞∑
i=0

{[β(1− δ)]jW
−αφ

i+1
w

1−α
it

j∏
s=0

exp

(
α2σ2

wφ
2s
w

2(1− α)2

)
P
φi+1
p

1−α
it

·
j∏
s=0

exp

(
σ2
pφ

2s
p

2(1− α)2

)
A
φi+1
a

1−α
it

j∏
s=0

exp

(
σ2
aφ

2s
a

2(1− α)2

)
}.

(B.12)

B.3 Process for the Price of Capital

In the original Monte Carlo proposed by Ackerberg, Caves, and Frazer (2015), the authors extend the
model proposed by Syverson (2001) by allowing for the price of capital φ to differ between firms — i.e.,
to allow the price for capital to be a firm-specific φi. This is important, in the context of their Monte
Carlo, since it allows a higher cross-sectional dispersion of capital between firms than that generated
by reasonable processes of productivity, given the patterns in standard producer-level data.

In this paper, we also need capital to move around more than it does in Ackerberg, Caves, and
Frazer (2015), with a process that generates a serial correlation coefficient for capital of 0.99. Instead,
we have the following AR(1) process:

φit = ρφφit−1 + σφuφit, (B.13)

where uφit ∼ N (0, 1).
Figure B.1 shows the relationship between the autocorrelation of the price of capital and estimates

of the capital coefficient using both the one and two-step estimators proposed in the paper. To make
these estimates more comparable, when we change ρφ, we adjust σφ so that the stationary distribution
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Figure B.1: Persistence of the price of capital φ; i.e., ρφ, and estimate of the capital coefficient

of φ, given by the usual formula for an AR(1) process with normal errors σ√
1−ρ2

, is unchanged. In

panel a, showing one-step estimators, for a wide range range of ρφ parameters below one, our estimator
performs very well. However, at very high levels of persistence of φ, our IV one-step estimate drops
to 0.2. In contrast, the estimates for panel b, showing two-step estimators, do not change much as we
vary the persistence of the price of capital φ.

B.4 Alternative Data-Generating Processes

We evaluate the performance of our estimator in two alternative data-generating processes (DGPs),
as considered in ACF in their Monte Carlos.

• DGP 1:

DGP 1 is the case considered in the main Monte Carlos in the paper. Note that labor is chosen
a half-period before materials are picked. More precisely, labor is chosen at time t − 0.5, and
materials are chosen at time t, where the productivity process is adjusted so that the stochastic
process for ωit−0.5 is given by:

ωit = ρ0.5ωit−0.5 + ξbit,

where ξbit is an appropriately adjusted normally distributed shock.

• DGP 2:
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DGP2 refers to the case of optimization error in labor. The variance of the wage distribution is
shut down, σw = 0, but instead, firms face an optimization error in labor. Thus, lit = l∗it + εlit
where εlit ∼ N (0, 0.37).

• DGP 3:

DGP 3, has the same process as DGP 1, but adds in optimization error in labor,lit = l∗it + εlit,
where εlit ∼ N (0, 0.37), as in DGP 2.

Figure B.2, below replicates Figure 2 for DGP 1, 2 and 3, and shows the sensitivity of our IV
and non-IV two-step estimators to the measurement error in capital. Notice that the pattern that we
document in the Monte Carlos for DGP 1 in the main paper is the same as what we find for these
alternative DGPs: our estimator performs well with varying degrees of capital measurement error,
while the standard control function approaches are biased for reasonable amounts of measurement
error.
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k). Average of 100 Monte Carlo replications per value of σk. The true value of βk = 0.4.

Figure B.2: Relationship between βk and Measurement error σk in Capital for different DGPs
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C Different Processes for Measurement Error in Capital

In our main specifications in this paper, we rely on the process for measurement error having the form:

kit = k∗it + εkit, (C.1)

where εkit is a mean zero measurement error, which may be serially correlated. While this is the
standard formulation for an errors-in-variables structure, we contrast this approach to, what we refer
to as, a structural derived measurement error for capital. After we introduce this setup, we perform
an analogous Monte Carlo analysis to evaluate our estimator, and we make sure that both approaches
are directly comparable through their implied variance in the measurement error of capital.

As discussed in Section 2, we consider the main source of the capital measurement error to stem
from errors in depreciation Dit = δitKi−1t, where the correct measure is given by dit = δ∗itK

∗
it−1.

Applying the same law of motion for capital as before, it is easy to show that the measured capital
stock under the error in depreciation rates is given by:

Kit =
t∑

τ=0

I∗iτ −
t∑

τ=0

Diτ−1, (C.2)

where we keep the assumption that we observe investment without error and, for simplicity, also the
initial capital stock.21 The source of measurement error is, thus, from the cumulative depreciation
errors, and we capture as follows: δit = δ∗ + εdit. Both the reduced-form and the structural approach
generate a wedge between the measured and true capital stock, in levels K and K∗, respectively.
After some algebra, we have a direct mapping between the structural measurement error, εdit, and the
reduced form measurement εkit:

εdit =
K∗it
K∗0

exp (εkit). (C.3)

This relationship is important when comparing the performance of our estimator across both Monte
Carlos: a much smaller variance in the depreciation error, εdit, is needed to generate a certain variance
of the classical measurement error, εkit.

22

C.1 Monte Carlo Analysis

All parameters of the Monte Carlo are the same as before, except that we parameterize εdit ∼ N (0, σd).
True depreciation is given by D∗it = δK∗i−1t. However, measured depreciation is given by Dit =
(δ + εdit)Kit.

21This is without loss of generality for the purpose of this Appendix.
22We have traced this out in our Monte Carlo analysis, and we obtain about a 20-1 ratio — i.e., we obtain

similar implied variances for the measurement error using either σk = 0.2 or σd = 0.01.
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Figure C.1 presents the results of this Monte Carlo for both the IV Control method we propose
and the Control method that does not use investment as an instrument. Plot the relationship between
the mean estimate of βk over 1,000 replications, as we vary method and a two-step , across the three
data-generating process considered by ACF.

Figure C.1 shows that under a small amount of measurement error in depreciation — say, on the
order of a 0.01 variance shock to a depreciation rate of 0.1 — the IV control function method we have
proposed does fairly well, with mean estimates around the true value of 0.4. In contrast, the mean
estimates that do not instrument with investment, show a drop of βk to 0.3, with a 0.01 variance shock
to the depreciation rate, in line with the previous results that we showed illustrating that measurement
error in capital stock leads to downward bias on the capital coefficient.

Notice that Figure C.1 does not show that our IV Control function estimator is consistent for any
value of measurement error in depreciation. Indeed, the process for measurement error in depreciation
does not lead to the log additive error structure on capital that we need for estimation. Instead, our
goal is merely to point out that our estimator might perform well for alternative measurement error
structures, at least for some small deviations from our structure.
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Note: We plot the estimated capital coefficient as a function of the variance in the capital measurement error

(σ2
k). Average of 100 Monte Carlo replications per value of σd. The true value of βk = 0.4.

Figure C.1: Relationship between βk and Measurement error σd in Depreciation
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D Data Appendix

We apply our estimator to three datasets, covering manufacturing plants in China, India and Chile.
There have been numerous productivity studies using these data, and, therefore, are completely stan-
dard in which variables are reported, and how they are constructed.

D.1 Chilean manufacturing

Annual plant-level data on all manufacturing plants with at least ten workers were provided by Chile?s
Instituto Nacional de Estadistica (INE). These data, which cover the period 1979-1986, include pro-
duction, employment, investment, intermediate input, and balance-sheet variables. Industries are
classified according to the four digit ISIC industry code. Output and input price indices are con-
structed at the three digit industry and obtained directly from average price indices produced by the
Central Bank of Chile. We directly observe total number of employees, total real value of produc-
tion, total real intermediate input, total real book-value of fixed assets, gross additions to capital
(i.e. investment). In total there are 37,600 plant-year observations reporting employment, with a
minimum of 4,205 plants in 1983 and 5,814 plants in 1979. Following Levinsohn and Petrin (2003)
we rely on the law of motion for capital where investment is productive within the year, reflecting
the accounting standards of reported additions to capital stock (i.e. Kt = (1 − δ)Kt−1 + It). See
Pavcnik (2002), Levinsohn and Petrin (2003) and Asker, Collard-Wexler, and De Loecker (2014) for
productivity studies using these data.

D.2 Chinese manufacturing

We Chinese manufacturing is described in detail in Brandt, Van Biesebroeck, and Zhang (2012).
This is firm-level data for the period 1998–2007 that are the product of annual surveys conducted
by the National Bureau of Statistics (NBS). The survey includes all industrial firms that are either
state-owned, or are non-state firms with sales above 5 million RMB. There are plant-level identifiers
that

There are 1,557,915 plant-by-year observations at 346,434 unique plants. For plants observed
multiple times, only about 1 percent have gaps between yearly observations.

D.3 Indian manufacturing

We use India’s Annual Survey of Industries (ASI) for establishment-level microdata; this dataset
is described in more detail in Allcott, Collard-Wexler, and O’Connell (2016). Registered factories
with over 100 workers (the “census scheme”) are surveyed every year, while smaller establishments
(the “sample scheme”) are typically surveyed every three to five years. The publicly available ASI
includes establishment identifiers that are consistent across years beginning in 1998, but we have plant
identifiers going back to 1992. We have a plant-level panel for the entire 1992-2010 sample.
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The ASI is comparable to manufacturing surveys in the United States and other countries. Vari-
ables include revenues, value of fixed capital stock, total workers employed, total costs of labor, and
materials. Industries are grouped using India’s NIC (National Industrial Classification) codes, which
are closely related to SIC (Standard Industrial Classification) codes.

There are 615,721 plant-by-year observations at 224,684 unique plants. 107,032 plants will be
immediately dropped from our estimators because they are observed only once. For plants observed
multiple times, 60 percent of intervals between observations are one year, while 91 percent are five
years or less.

The mean (median) plant employs 79 (34) people and has gross revenues of 139 million (20 million)
Rupees, or in U.S. dollars approximately $3 million ($400,000).

41



E Standard Errors Across Estimators

Table E.1: Standard errors

Leontief

China India Chile
Capital Labor Capital Labor Capital Labor

OLS 0.02 0.03 0.01 0.01 0.03 0.05
FE 0.03 0.04 0.01 0.02 0.04 0.06
IV 0.05 0.05 0.02 0.03 0.09 0.13
Control 0.13 0.23 0.05 0.11 0.05 0.13
IV Control 0.12 0.24 0.09 0.19 0.20 0.45

Gross Output with FOC Materials

China India Chile
Capital Labor Capital Labor Capital Labor

OLS 0.01 0.01 0.00 0.01 0.01 0.03
FE 0.01 0.02 0.01 0.01 0.04 0.04
IV 0.02 0.02 0.01 0.01 0.05 0.07
Control 0.13 0.23 0.05 0.11 0.05 0.13
IV Control 0.12 0.24 0.09 0.19 0.20 0.45

Notes: We report the median standard error across all industries for each dataset. Leontief specification is

Qit = min {βmMit, L
βl

itK
βk

it Ωit}, and Gross Output with FOC Materials is given by Mβm

it Lβl

itK
βk

it Ωit, where the

material coefficient is computed using the median of the material revenue share (βm = Median[
PM

t Mit

PtQit
]).
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Appendix For Online Publication

A Estimators: code and implementation

In this section we describe the estimators proposed in this paper in great detail, enough so that they
can easily be coded up by other researchers, and code for these estimators is also available in STATA.

A.1 Leontief

1. Estimate φ function.

qit = θllit + θkkit + θmmit + εit

by 2SLS using exogenous regressors W = [lit, iit−1,mit], and obtain φ̂it = θllit + θkkit + θmmit.
Note that the control function (not IV) has Wit = [lit, kit,mit] instead — the OLS estimator.

2. For a parameter β, minimize the criterion Q(β) using:

(a) Compute ωit = φ̂it − βkkit − βllit
(b) Estimate the AR(1) process for productivity, ωit = ρωit−1 , by OLS, obtain ρ̂. Recover

productivity shock ξ̃it = ωit−ρ̂ωit−1 – where tilde refers to the presence of the measurement
error in capital.

(c) Compute Q(β) as the empirical analogue of the moment condition E
[
ξ̃it

(
lit−1

iit−1

)]
= 0.

Q(β) = (ξz)′(z′z)−1(ξz),

where ξ denotes the stacked vector of ξ̃it, and z denotes the stacked vector of [iit−1, lit−1].
Note that the control function (not IV) has Zit = [kit, lit−1] instead.

(d) Find β̂ as the minimizer of Q(β).

A.2 Gross Output (FOC Materials)

1. Estimate βm

β̂m = Median

(
PMMit

PQit

)
.

2. Produce output yit netted out from material contribution.

yit = qit − β̂mmit
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3. Estimate φ function.

yit = θllit + θkkit + θmmit + εit

by 2SLS using exogenous regressors W = [lit, iit−1,mit], and obtain φ̂it = θllit + θkkit + θmmit.

4. For a parameter β, minimize the criterion Q(β) using:

(a) Compute ωit = φ̂it − βkkit − βllit
(b) Estimate the AR(1) process for productivity, ωit = ρωit−1 , by OLS, obtain ρ̂. Recover

productivity shock ξit = ωit − ρ̂ωit−1.

(c) Compute Q(β) as the empirical analogue of the moment condition E
[
ξ̃it

(
lit−1

iit−1

)]
= 0.

Q(β) = (ξz)′(z′z)−1(ξz),

where ξ denotes the stacked vector of ξ̃it, and z denotes the stacked vector of [iit−1, lit−1].

(d) Find β̂ as the minimizer of Q(β).
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