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ABSTRACT

There has been a proliferation of websites that warehouse instructional materials designed to be 
taught by teachers in a traditional classroom. While this new technology has revolutionized how 
most teachers plan their lessons, the potential benefits of this innovation are unknown. To present 
evidence on this, we analyze an experiment in which middle-school math teachers were randomly 
given access to high-quality “off-the-shelf” lessons. Only providing teachers with online access to 
the lessons increased students’ math achievement by 0.06 of a standard deviation, but providing 
teachers with online access to the lessons along with supports to promote their use increased 
students’ math achievement by 0.09 of a standard deviation. Benefits were much larger for 
weaker teachers, suggesting that weaker teachers compensated for skill deficiencies by 
substituting the lessons for their own efforts. Survey evidence suggests that these effects were 
mediated by both improvements in lesson quality and teachers having more time to engage in 
other tasks. We rationalize these results with a multitask model of teaching. The intervention is 
more scalable and cost effective than most policies aimed at improving teacher quality, 
suggesting a real benefit to making high-quality instructional materials available to teachers on 
the internet.
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I Introduction

Teachers have been shown to have sizable effects on student test scores (Kane and Staiger 2008;
Rivkin et al., 2005) and longer-run outcomes (Chetty et al., 2014a; Jackson, 2016b). However,
relatively little is known about how to effectively improve teacher quality (Jackson et al., 2014).
Teaching is a complex job that involves multiple tasks (Holmstrom and Milgrom, 1991) such as de-
signing lessons, delivering them, managing the classroom, etc. However, most research on teacher
effectiveness has been focused on how teachers deliver lessons (e.g. Pianta, 2011; Taylor and Tyler,
2012; Araujo et al., 2016) and stayed largely silent on the potentially important task of improving
the lessons that teachers deliver. To help fill this space, in this paper we examine an interven-
tion aimed at increasing the quality of the lessons used by teachers in the classroom. Specifically,
we study the student achievement effects of providing teachers with free access to high-quality,
off-the-shelf lessons on the Internet.

There has been a recent proliferation of lesson plans and instructional materials that can be
accessed online. These lessons and materials are disseminated online but are usually designed
to be taught by teachers in a traditional classroom. One of the early sites called Teachers Pay
Teachers was launched in 2006 and allowed teachers to sell their lesson plans and instructional
materials to other teachers. As of 2016, this site is estimated to have an active membership of
approximately 4 million (this is more than all primary and secondary teachers in the United States
which are estimated to be 3.5 million). Other major players in this product space provide mostly
free and openly licensed instructional materials such as LearnZillion, Pinterest, and Amazon Inspire
(Madda, 2016). There is considerable demand among teachers for these online resources. Opfer
et al. (2016) found that over 90 percent of secondary teachers look to the internet for instructional
materials when planning lessons. Even though this innovation may have little visible effect on how
teachers deliver lessons, it has revolutionized how teachers plan and create the lesson content that
they deliver.

Lesson sharing websites create a positive information externality such that all teachers, irrespec-
tive of geography or experience, may have access to high-quality lesson plans. These lesson plans
may be designed by expert educators and may embody years of teaching knowledge and skills that
most individual teachers do not possess themselves. In principle, through these websites, the cre-
ation of one high-quality lesson has the potential to improve the outcomes of millions of students.
However, the extent to which providing teachers access to high-quality online instructional materi-
als improves their student’s performance is unknown. We present the first rigorous examination of
this question. Specifically, we implemented a randomized field experiment in which middle-school
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math teachers in three school districts were randomly provided access to high-quality off-the-shelf
lessons, and we examine the effects on their students’ subsequent academic achievement.

At the heart of our intervention are high-quality, off-the-shelf lessons. These lessons differ from
those in most traditional math classrooms. In the typical US math class, teachers present defini-
tions and show students procedures for solving specific problems. Students are then expected to
memorize the definitions and practice the procedures (Stigler et al., 1999). In contrast, informed
by education theory on inquiry-based instruction (Dostál, 2015), embedded learning (Lave and
Wenger, 1991; Brown et al., 1989), classroom discussion (Bonwell and Eison, 1991), and scaf-
folding (Sawyer, 2005), the off-the-shelf lessons we used in this study were designed to promote
deep undemanding, improve student engagement, and promote retention of knowledge.1 Under our
experiment, teachers were randomly assigned to one of three treatment conditions. In the “license
only” condition, teachers were given free access to these online lessons. Note that while these
lessons were provided online, they are designed to be taught by teachers in a traditional classroom
setting. To promote lesson adoption, some teachers were randomly assigned to the “full treatment”
condition. In the full treatment, teachers were granted free access to the online lessons, received
email reminders to use them, and were invited to an online social media group focused on lesson
implementation. Finally, teachers randomly assigned to the control condition continued “business-
as-usual.”

Because the treatments were assigned randomly, we identify causal effects using multiple re-
gression. Students of teachers in the license only group and the full treatment group experienced
a 0.06σ and 0.09σ test score increase relative to those in the control condition, respectively. The
full treatment has a similarly sized effect as that of moving from an average teacher to one at the
80th percentile of quality, or reducing class size by 15 percent. Because the lessons and supports
were all provided online, the marginal cost of this intervention is low. Moreover, the intervention
can be deployed to teachers in remote areas where coaching and training personnel may be scarce,
and there is no limit to how many teachers can benefit from it. Back-of-the-envelope calculations
suggest a benefit-cost ratio above 900, and an internal rate of return greater than that of interven-
tions such as the Perry Pre-School Program (Heckman and Masterov, 2007), Head Start (Deming,
2009), class size reduction (Chetty et al., 2014b) or increases in per-pupil school spending (Jackson
et al., 2016).

A useful methodological innovation of this paper is that we demonstrate that, even with a single
year of achievement data, one can test for heterogeneous treatment effects by teacher/classroom

1While there is much observational evidence that teachers who engage in these best practices have better student
outcomes (e.g., Pianta, 2011, Mihaly et al., 2013, Araujo et al., 2016), there is very little experimental evidence on how
promoting best practices among existing teachers impacts achievement tests.
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quality using conditional quantile regression models (Koenker and Bassett, 1978). We follow this
approach. Even though information technology is complementary to worker skill in many settings
(e.g. Katz and others, 1999, Akerman et al., 2015), our results reveal that the benefits of online les-
son use are the largest for the least effective teachers, and decrease with effectiveness (as measured
by teacher/classroom value added).

To highlight the economics at play, we conceptualize teaching as being a multitask job (Holm-
strom and Milgrom, 1991) involving two complementary tasks: planning lessons and all other
activities (lesson delivery, classroom management, etc.). We model student achievement as a func-
tion of both the quality of the lesson the teacher teaches and also how effective she is at other
complementary activities (such as deliver the lesson, manage classroom behaviors, etc.). The best
teachers are those that can perform both tasks. Off-the-shelf lessons are a technology that guaran-
tees a minimum lesson quality for a fixed cost. By allowing teachers who use this technology to
focus less of their time on lesson planning and more of their effort on lesson delivery (i.e. special-
ize), the technology simplifies the job of teaching. In the model, student outcomes may improve
due to improvement in the quality of lessons, but also through teachers having more time to spend
on other tasks. The larger effects for weaker teachers are consistent with our model in which (a)
weaker teachers experience the largest direct improvements in lesson quality, (b) the amount of
planning time saved by using the lessons is higher for less able teachers, and (c) the marginal ef-
fect of any time savings associated using off-the-shelf lesson is larger for weaker teachers (due to
diminishing returns).

Looking to mechanisms, in our preferred specification, teachers who were only granted free
access to the lessons looked at 1.59 more lessons, and report teaching 0.65 more lessons than con-
trol teachers, while, on average, fully-treated teachers (access plus supports) looked at 4.4 more
lessons, and taught 1.9 more lessons than control teachers. This is consistent with the positive test
score effects being driven largely by lesson use. The level of lesson use in the full treatment relates
to about one-third of a years’ worth of material. This pattern suggests that the effects are likely
driven by increased lesson use. We also analyze effects on student surveys. Consistent with im-
proved lesson quality and the aims of the intervention, treated students are more likely to say that
teachers emphasize deep learning and more likely to feel that math has real life applications. Con-
sistent with teachers spending more time on tasks complementary to lesson planning (as theorized
in the model), treated teachers give students more individual attention. The facts that there were
meaningful test score gains in the license only condition suggests that the improved outcomes in
the full treatment condition are not driven by the additional supports to promote lesson use but by
increased lesson use itself. To provide further evidence of this, we show that (a) the treatment arms
with the largest increases in lesson use also had the largest test score improvements, (b) on average,
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the test score effects increase with lesson use, and (c) conditional on lesson use, receiving the extra
supports was unrelated to test scores.

Given the large documented benefits to lesson use, we explore why take-up was not more robust.
Since lesson use was voluntary, the regular reminders and additional supports to use the lessons may
have been important in the full treatment condition. Though suggestive, we uncover patterns in the
data that are consistent with the relatively low levels of lesson adoption being due to teachers’
behavioral biases. In our context, such biases may lead teachers to procrastinate and postpone
exerting the effort to implement the lessons until it is too late (O’Donoghue and Rabin, 1999).
While speculative, the notion that such biases are at play is supported by survey evidence, and the
fact that lesson use dropped off most suddenly when the email reminders ceased.

The approach to improving instructional quality we study is a form of division of labor; class-
room teachers focus on some tasks, while creating instructional content is (partially) performed by
experts with particular skills in that domain. As such, this paper adds to a nascent literature explor-
ing the potential productivity benefits of teacher specialization in schools (e.g. Fryer, 2016; Jacob
and Rockoff, 2011). Moreover, our findings contribute to the education policy literature because
the light touch approach we employ stands in contrast to more involved policy approaches that
seek to improve the skills of the existing stock of teachers through training, selection, or changes
in incentives (e.g. Taylor and Tyler, 2012; Muralidharan and Sundararaman, 2013; Rothstein and
others, 2015). Also, while there is evidence certain kinds of instructional materials are associated

with better student outcomes (Chingos and Whitehurst, 2012), we provide an experimental demon-
stration that an intervention that exogenously introduces high-quality instructional materials into
existing classrooms has a sizable causal effect on student outcomes. The findings also contribute
to the growing literature on the effective use of technology in education. Most existing studies of
technology in education have focused on the effects of computer use among students (e.g. Beuer-
mann et al., 2015; for a recent survey, see Bulman and Fairlie, 2016) or on the effects of specific
educational software packages (e.g. Angrist and Lavy, 2002, Rouse and Krueger, 2004, Banerjee
et al., 2007, Barrow et al., 2009, Taylor, 2015). In contrast, this paper examines whether technology
can help teachers enhance their traditional teaching practices through the dissemination of teach-
ing knowledge in a scalable and cost-effective way.2 Finally, this study relates to the personnel
economics and management literatures by presenting a context in which one can improve worker
productivity by simplifying the jobs workers perform (Bloom et al., 2012; Jackson and Schneider,
2015; Anderson et al., 2001; Pierce et al., 2009).

2In related work, Comi et al. (2016) find that effectiveness of technology at school depends on teachers’ ability to
incorporate it into their teaching practices.
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There are now thousands of lessons of varying quality available for download online. From a
policy perspective, websites that make online lessons and instructional materials available to any-
one with an internet connection may facilitate a large positive externality and have revolutionized
how teachers source and create instructional content. Indeed, this change in how teachers create
instructional materials has led to recent popular press headlines such as “How the Internet is com-

plicating the art of teaching” and “How did we teach before the Internet?”. Our findings suggest
that if districts can identify high-quality lessons, make them available to their teachers, and promote
their use, the benefits could be as large, if not larger, than the positive effects we document here.

The remainder of the paper is as follows. Section II describes the off-the-shelf lessons used in
the intervention and outlines the experiment. Section III describes the data. Section IV presents
the empirical strategy and Section V describes the main results we obtained. Section VI provides a
stylized model which is used to derive testable predictions, Section VII explores the mechanisms,
and Section VIII concludes.

II The Intervention

II.1 The Off-the-Shelf Lessons

The job simplifying technology at the heart of the intervention is off-the-shelf lessons. These
lessons are from the Mathalicious curriculum.3 Unlike a typical math lesson that would involve
rote memorization of definitions provided by the teacher along with practicing of problem-solving
procedures (Stigler et al., 1999), Mathalicious is an inquiry-based math curriculum for grades 6
through 12 grounded in real-world topics. All learning in these lessons is contextualized in real-
world situations because students engage in activities that encourage them to explore and think
critically about the way the world works.4 For example, in one of the more simple lessons titled
“New-Tritional Info” (see Appendix K), students investigate how long LeBron James (a well-known
National Basketball Association athlete) would have to exercise to burn off the calories in different
McDonald’s menu items. This more simple lesson would likely be taught over the course of one or

3http://www.mathalicious.com/about
4Mathalicious lessons are designed for teaching applications of math. The Common Core defines rigorous mathe-

matics instruction as having an equal emphasis on procedures, concepts, and applications. Teaching procedures involve
showing students how to perform certain mathematical procedures, such as how to do long division. Teaching con-
cepts would involve simple word problems that make the mathematical concept clear. Teaching applications are where
students use math to explore multiple facets of some real-world question. In teaching applications, students would
develop their own models, test and refine their thinking, and talk about it with each other. Model-eliciting activities
(Lesh and Doerr, 2003) would fall into this category.
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two class periods. Because most secondary school children are familiar with McDonalds and Le-
Bron James, this lesson is interesting and relevant to their lives, and the math concepts presented
are embedded in their everyday experiences. Also, because the lesson teaches students about rates
through problem solving, students may gain an intuitive understanding of rates through experience
rather than through rote memorization.

The lesson titled “Xbox Xponential” (see Appendix L) is a more complex, and representative,
lesson that illustrates how students learn math through exploration of the real world. This lesson
would be taught over three or four class periods. In the first part of the lesson, students watch a
short video documenting the evolution of football video games over time. Students are asked to
“sketch a rough graph of how football games have changed over time” and then asked to describe
what they are measuring (realism, speed, complexity, etc). They are then guided by the teacher to
realize that “while a subjective element like ‘realism’ is difficult to quantify, it is possible to measure

speed (in MHz) of a console’s processor.” In the second part of the lesson, students are introduced
to Moore’s 1965 prediction that computer processor speeds would double every two years. They
are then provided with data on the processor speeds of game consoles over time (starting with the
Atari 2600 in 1977 through to the XBOX 360 in 2005). Students are instructed to explain Moore’s
law in real world terms and to use this law to predict the console speeds during different years. In
the third part of the lesson, students are asked to sketch graphs of how game consoles speeds have
actually evolved over time, come up with mathematical representations of the patterns in the data,
and compare the predictions from Moore’s Law to the actual evolution of processor speeds over
time. During this lesson, students gain an intuitive understanding of measurement, exponential
functions, extrapolation, and regression through a topic that is very familiar to them - video games.

Teachers during these lessons do not serve as instructors to present facts (as is typical in most
classroom settings), but serve as facilitators who guide students to explore and discover facts about
the world on their own. The idea that math should be learned in real world contexts (situated learn-
ing) through exploration (inquiry-based learning) has been emphasized by education theorists for
years (Lave and Wenger, 1991; Brown et al., 1989; Dostál, 2015). However, because the existing
empirical studies on this topic are observational, this paper presents some of the first experimental
evidence of a causal link between inquiry-based situated math instruction and student achievement
outcomes.

Because the Mathalicious lessons are memorable and develop mathematical intuition through
experience, they serve as “anchor lessons” that teachers can build upon during the year when in-
troducing formal math ideas. For example, after teaching New-Tritional Info, teachers who are
introducing the idea of rates formally would say, “Remember how we figured out how long it takes
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for LeBron to burn off a Big Mac? This was a rate!” and students would use the intuition built up
during the anchor lesson to help them understand the more formal lesson about rates (which may
occur days or weeks later). Each of these “anchor lessons” touches on several topics and may serve
as an anchor for as much as two months of math classes. This is particularly true for the more
complex lessons such as “Xbox Xponential” that provides an intuitive introduction to several math
concepts. When the Mathalicious curriculum is purchased by a school district, each Mathalicious
lesson lists the grade and specific topics covered in that lesson, and proposed dates when each
lesson might be taught. Full fidelity with the curriculum entailed teaching 5 to 7 lessons each year.

In addition to the lessons, one treatment arm of the intervention involved an additional compo-
nent to facilitate lesson use, called Project Groundswell. Project Groundswell allowed teachers to
interact with other teachers using Mathalicious lessons online through Edmodo (a social network-
ing platform designed to facilitate collaboration among teachers, parents, and students).5 Through
Edmodo, Project Groundswell provided a private online space to have asynchronous discussions
with both Mathalicious developers and also other Mathalicious teachers concerning lesson imple-
mentation. Project Groundswell also included webinars (about 7 per year) created by Mathalicious
developers. During these webinars, Mathalicious personnel would walk teachers through the nar-
rative flow of a lesson, highlight key understandings that should result from each portion of the
lesson, anticipate student responses and misconceptions, and model helpful language to discuss the
math concepts at the heart of the lesson. In sum, Project Groundswell entailed online supports to
facilitate Mathalicious lesson use.

II.2 The Experiment

Three Virginia school districts participated in this study: Chesterfield, Henrico, and Hanover.
Across all grade levels, 59,186 students were enrolled in 62 Chesterfield public schools; In to-
tal, 50,569 students were enrolled in 82 Henrico public schools; and 18,264 students were enrolled
in 26 Hanover public schools in the 2013-2014 school year (NCES). All grades 6 through 9 math
teachers in these districts were part of the study. Teachers were placed into one of the three condi-
tions described below:

Treatment Condition 1: Full Treatment (Mathalicious subscription and Project Groundswell)

Full treatment teachers were granted access to both the Mathalicious lessons and also Project
Groundswell. They were invited to an in-person kickoff event where Mathalicious personnel re-

5http://www.edmodo.com/
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viewed the on-line materials, introduced Project Groundswell, provided a schedule of events for
the year, and assisted teachers through the login processes. During the first few months, full treat-
ment teachers received email reminders to attend webinars in real time or watch recordings. Under
Project Groundswell, teachers were enrolled in one of four grade-level Edmodo groups (grade 6, 7,
8, and 9). Teachers were encouraged to log in on a regular basis, watch the webinars, use their peers
as a resource in implementing the lessons, and to reflect on their practice with Mathalicious devel-
opers and each other.6 Importantly, participation in all components of the treatment was entirely
voluntary.

Treatment Condition 2: License Only Treatment (Mathalicious subscription only)

Teachers who were assigned to the license only treatment were only provided with a subscrip-
tion to the Mathalicious curriculum. These teachers received the same basic technical supports
available to all Mathalicious subscribers. However, they were not invited to participate in Project
Groundswell (i.e. they were not invited to join an Edmodo group and did not receive email re-
minders). In sum, at the start of the school year, these teachers were provided access to the lessons,
given their login information, and left to their own devices.

Treatment Condition 3: Control Condition (business-as-usual)

Teachers who were randomly assigned to the control condition continued “business-as-usual.”
That is, control teachers continued to use the non-Mathalicious curriculum of their choice. They
were not offered the Mathalicious lessons, nor were they invited to participate in Project Groundswell.
Because these school districts had not been offered Mathalicious lessons before the intervention,
control teachers would not have been familiar with the curriculum and would not have been using it.
Insofar as any spillovers did occur (through treatment teachers sharing materials with colleagues in
the control group), our estimated effects would be attenuated toward zero. In any case, our survey
evidence on Mathalicious lesson use suggests that any spillover effects, if they exist, are negligible.

Assignment of Teachers to Treatment Conditions

Prior to conducting the study, for each district, the research team and Mathalicious decided on
a predetermined number of licenses that could be allocated to teachers in each district. In summer
2013 (the summer before the intervention), the research team received a list of all math teachers
eligible for this study from each district, with teacher qualifications and demographics. To facilitate
district participation in the study, two of the districts were allowed to pre-select certain teachers that

6The Project Groundswell model is based on the notion that effective teacher professional development is sustained
over time, embedded in everyday teacher practice (Pianta, 2011) and enables teachers to reflect on their practice with
colleagues (Darling-Hammond et al., 2009).
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they wished to receive access to the Mathalicious licenses (i.e., receive either Treatment Condition
1 or Treatment Condition 2). We refer to these teachers as “requested” teachers. All requested
teachers were identified and removed from the control condition. All of the remaining unrequested
licenses in each district were allocated randomly to the remaining teachers.7 As such, among those
that were not requested teachers, whether a teacher received a license was random. In a second
stage, among all teachers who had licenses (i.e. both those who were pre-selected and those who
received the license by random chance) we randomly assigned half to receive the full treatment (i.e.
Treatment Condition 2). Among non-requested teachers, treatment status is random conditional on
district, and among requested teachers, assignment to the full treatment is random conditional on
district. As such, treatment assignment was random conditional on both “requested” status and
district, and the interaction between the two. Accordingly, all models condition on district and
“requested” status and their interaction.8 Moreover, our main results are robust to excluding the
requested teachers.9 The use of randomization ensured that conditional on requested status and
district, teachers (and their students) had no control over their treatment condition and therefore
reduced the plausibility of alternative explanations for any observed ex post differences in outcomes
across treatment groups (Rosenbaum, 2002).

Table 1 shows the average baseline characteristics for teachers and students in each treatment
condition. Baseline characteristics are similar across treatment conditions. To test for balance, we
test for equality of the means for each characteristic across all three treatment conditions within
each district conditional on requested status. We present the p-value for the hypothesis that the
groups’ means are the same. Across the 17 characteristics, only one of the models yields a p-value
below 0.1. This is consistent with sampling variability and indicates that the randomization was
successful.

III Data

The data used in this study come from a variety of sources. The universe is all middle school
teachers in the three school districts and their students (363 teachers and 27,613 students). Our
first data sources are the administrative records for these teachers and their students in the 2013-4
academic year (the year of the intervention). The teacher records included total years of teaching

7Because the number of unrequested licenses varied across districts, the probability of being randomly assigned to
the license condition varied by district. Note that all the empirical models include district fixed effects to account for
such differences.

8Table A1 of Appendix A summarizes teacher participation by district, requested status, and treatment condition.
9See Appendix B for our main test score results that exclude requested teachers from the sample.
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experience, gender, race, highest degree received, age, and years of teaching experience in the
district. The administrative student records included grade level, gender, and race. Students were
linked to their classroom teachers. These pre-treatment student and teacher attributes are shown in
Table 1.

The key outcome for this study is student math achievement (as measured by test scores). We
obtained student results on the math portion of the Virginia Standards of Learning (SoL) assessment
for each district for the academic years 2012-13 and 2013-14. These tests comprise the math
content that Virginia students were expected to learn and were required for students in grades 3-8,
Algebra I, Geometry, and Algebra II. These test scores were standardized to be mean-zero unit-
variance in each grade and year.10 Reassuringly, like for all other incoming characteristics, Table 1
shows that incoming test scores are balanced across the three treatment conditions. Note that test
scores in 2013 are similar between students in the control and full treatment groups (a difference
of 0.04σ ) but in 2014 are 0.163σ higher in the full treatment condition relative to the control
condition.11 The relative improvement in math scores over time is 0.163-0.04=0.123σ between the
full treatment and the control group. By comparison, the relative improvement in English scores
over time (where there should be no effect) between the full treatment and the control group is
0.003σ . These simple comparisons telegraph the more precise multiple regression estimates we
present in Section V.

We supplement administrative records with data from other sources to measure lesson use and to
uncover underlying mechanisms. Using teacher survey data, we observe the self-reported lessons
they taught and read. Because these data are from surveys, using them will automatically have
zeros for those individuals who do not complete the surveys - leading to an underestimate of the
effect of the treatments on lesson use. We describe how we address this problem in Section V. As
such, we supplement these data with the more objective measure of lessons downloaded. Based
on both these data sources, our two measures of Mathalicious lesson use are (a) the number of
lessons looked at, and (b) the number of lessons taught. They are constructed as follows. For each
lesson, we record whether it was downloaded for each teacher’s account using tracker data from the
Mathalicious website. For each lesson, we code up a lesson as having been looked at if either the
tracker indicated that it was downloaded or if the teacher reported reading or teaching that lesson.
The lessons taught measure comes exclusively from survey reports.

10In Hanover district, the exam codes were not provided so that the test scores are standardized by grade and year
only. In our preferred specification, we control for the interaction between incoming test scores and district indicators.

11So that we can include all students with math scores in 2014 in regression models, students with missing 2013
math scores are given an imputed standardized score of zero. To account for this in regression models we also include
an indicator denoting these individuals in all specifications.
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To explore causal mechanisms, surveys were given to students.12 Survey questions were de-
signed by the research team in conjunction with Mathalicious to measure changes in factors hypoth-
esized to be affected by the intervention (see Appendix C for survey items). The student surveys
were administered in the middle and at the end of the intervention year in two of the districts.
We will focus on the end of year surveys. The student surveys were designed to measure student
attitudes toward mathematics and academic engagement. While both teacher and student survey
items are linked to individual teachers, the student surveys were anonymous. The survey items are
discussed in greater detail in Section VII.

IV Empirical Strategy

We aim to identify the effect of treatment status on various teacher and student outcomes. Owing
to the random assignment of teachers, one can obtain consistent estimates of the treatment effect by
comparing mean outcomes across the treatment conditions. As pointed out in Bloom et al. (2005),
the statistical precision of estimated randomized treatments in education settings is dramatically
improved by adjusting the outcomes for differences in pre-treatment covariates.13 Accordingly,
to improve statistical precision, we compare outcomes across treatment categories in a multiple
regression framework while controlling for a variety of student and teacher characteristics.

Because randomization took place at the teacher level, for the teacher-level outcomes, we esti-
mate the following regression equation using ordinary least squares:

Ydt = αd +β1Licensedt +β2Fulldt +Xdtδd +πdReqdt + εdt (1)

Ydt is the outcome measure of interest for teacher t in district d, Licensedt is an indicator variable
equal to 1 if teacher t was randomly assigned to the license only condition, and Fulldt is an indicator
variable equal to 1 if teacher t was randomly assigned to the full treatment condition (license plus
supports). Accordingly, β1 and β2 represent the differences in outcomes between the control and
the license only groups, and between the control and the full treatment groups, respectively. The

12We also administered teacher surveys for this study. However, due to high differential attrition rates the results are
inconclusive and we do not discuss effects on these data in the main text. Teacher surveys were administered in the
middle and at the end of the intervention year in all three school districts. They were designed to measure teacher job
satisfaction and classroom practices. Results on the teacher surveys are presented in Appendix I.

13Intuitively, even though groups may have similar characteristics on average, the precision of the estimates is
improved because covariates provide more information about the potential outcomes of each individual participant.
The increased precision can be particularly large when covariates are strong predictors of the outcomes (e.g. lagged
test scores are very strong predictors of current test scores).
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treatment assignment was random within districts and after accounting for whether the teacher
was requested for a Mathalicious license. Consequently, all models include a separate dummy
variable for each district to absorb the district effects, αd , and we include an indicator variable
Reqdt denoting whether teacher t requested a license in district d. To improve precision, we also
include Xdt , a vector of teacher covariates (these include teacher experience, gender, ethnicity, and
grade level taught) and student covariates averaged at the teacher level (average incoming student
math and English test scores, and the proportion of males, and the proportion of black, white,
Hispanic, and Asian students).

Our main outcome of interest is student test scores in mathematics. For this outcome, we
estimate models at the individual student level and employ a standard value added model (Todd
and Wolpin, 2003) that includes individual lagged test scores as a covariate (in addition to other
individual student-level demographic controls and also classroom averages of all the student-level
characteristics). Specifically, where students are denoted with the subscript i, in our test score
models, we estimate the following regression equation using OLS:

Yidt = ρYidt−1 +αd +β1Licensedt +β2Fulldt +Xidtδd +πdReqdt + εidt (2)

In (2), Xidt includes student race, student gender, teacher level averages of the student-level covari-
ates (including lagged math and English test scores), as well as all of the teacher-level covariates
from (1). Because treatment status is randomly assigned at the teacher level, the use of student-level
covariates primarily serves to improve statistical precision. However, including student-level co-
variates could also help to account for any potential imbalances across treatment groups. Standard
errors are adjusted for clustering at the teacher level in all student-level models.

V Main Results

V.1 Effects on Student Achievement in Mathematics

To measure the effect of the intervention on student achievement in mathematics (our main outcome
of interest), we use two forms of math test scores – raw and standardized scores. Raw test scores are
measured on a 0-600 scale, while the standardized test scores refer to the raw scores standardized
by exam. Test scores are analyzed at the individual student level, and standard errors are adjusted
for clustering at the teacher level.
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Results for math test scores are summarized in Table 2. The results reveal positive effects on
math test scores from simply providing licenses, and even larger positive and statistically significant
effects for the full treatment. The first model (columns 1 and 3) includes the key conditioning
variables (district fixed effects interacted with requested status) and the average lagged math scores
in the classroom interacted with the district. Looking at raw test scores, this parsimonious model
(Column 1) shows that scores were 2.65 points higher (p-value>0.1) among teachers in the license
only condition, and 7.899 points higher among teachers in the full treatment condition than the
control condition (p-value<0.01). Because standardized scores are easier to interpret, and they
adjust for differences across grades and exam types, we focus our discussion on these standardized
scores. In this model (column 3), teachers who only had access to the lessons had test scores
that were 5% of a standard deviation higher than those in the control condition (p-value>0.1), and
teachers with access to both Mathalicious lessons and extra supports increased their students’ test
scores by 10.5% of a standard deviation relative to those in the control condition (p-value<0.05).
One cannot reject that the full treatment teachers have outcomes different from those in the license
only group, but one can reject that they have the same outcomes as teachers in the control group.

Columns 2 and 4 present models that also include all teacher and classroom level controls.
While the point estimates are similar, the standard errors are about 15 percent smaller. In the
preferred student-level model in Column 5 (all student-level, teacher level, and classroom level
controls), teachers who only had access to the lessons had test scores that were 6% of a standard
deviation higher than those in the control condition (p-value<0.1). This modest positive effect
indicates that merely providing access to high-quality lessons can improve outcomes. Looking at
the full treatment condition, teachers with access to both Mathalicious lessons and extra supports
increased their students’ test scores by 8.6% of a standard deviation relative to those in the control
condition (p-value<0.05). To ensure that the student and teacher level models tell the same story,
we estimate the teacher level model where average test scores are the dependent variable (column
6). Because randomization took place at the teacher level, this is an appropriate model to run. In
such models (with all teacher and classroom level controls), teachers in the license only condition
increased their students’ test scores by 5.5% of a standard deviation relative to those in the control
condition (p-value<0.1), and full treatment condition increased their students’ test scores by 9.3%
of a standard deviation relative to those in the control condition (p-value<0.01). In sum, across all
the models, there is a robust positive effect of both the license only treatment and the full treatment
(relative to the control condition) on student test scores of roughly 6 and 9 percent of a standard
deviation, respectively. Also, across all models, the full treatment is associated with larger and
more precisely estimated math test score gains than the license only treatment.

To assuage concerns that the estimated effects are spurious, we report a falsification exercise
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with English test scores as the main outcome in Columns 7 and 8. Even though assignment to treat-
ment was random, one may worry that treated students, by chance, received a positive shock for
reasons unrelated to the treatment. Alternatively, one may worry that there was something else that
could drive the positive math test score effects that is correlated with the random treatment assign-
ment. To test for these possibilities, we use data on English test scores at the end of the experiment.
Because the Mathalicious website provided lessons only for math curriculum, test scores for En-
glish are a good candidate for a falsification test – if it were the lessons that drove our findings in
Columns 1-6, not some unobserved characteristic that differed across experimental groups, then we
would observe a positive effect for math scores and no effect for English scores. This is precisely
what one observes. There are no statistically or economically significant differences in English test
scores across treatment groups. This reinforces the notion that the improved math scores are due
to increased lesson use and are not driven by student selection, Hawthorne effects, or John Henry
effects.

V.2 Effect Heterogeneity by Teacher Quality

In principle, because effective teaching requires both good lesson plans and good lesson delivery,
these off-the-shelf lessons may be complementary to teacher effectiveness. Conversely, weaker
teachers who are relatively ineffective at improving student performance may benefit greatly from
the provision of off-the-shelf lessons. To test which scenario holds empirically, we see if the
marginal effect of the treatment is larger or smaller for teachers lower down in the quality dis-
tribution. Following the teacher quality literature, we conceptualize teacher quality as the ability
to raise average test scores. Because we only have a single year of data, we cannot distinguish be-
tween classroom quality and teacher quality per se; however, we know from prior research that the
two are closely related. As such, following Chetty et al. (2014a) , we proxy for teacher quality with
classroom quality. As is typical in the value-added literature, we define a high-quality classroom
as one that has a large positive residual (i.e. a classroom that does better than would be expected
based on observed characteristics) and we define a low-quality classroom as one that has a large
average negative residual.

To test for effects by teacher effectiveness, ideally one would estimate teacher effectiveness
using some pre-experimental data, and then interact the randomized treatment with the teacher’s
pre-treatment effectiveness. Unfortunately, we only have access to a single year of achievement
data so that we take a different, but closely related, approach. To test for different effects for class-
rooms at various points in the distribution of classroom quality, we employ conditional quantile
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regression. Conditional quantile regression models provide marginal effect estimates at particular
quantiles of the residual distribution (Koenker and Bassett, 1978). As we formally show in Ap-
pendix D, when average test scores at the teacher level are the dependent variable, the teacher-level
residual from (1) is precisely the standard value-added measure of classroom quality. That is, Ap-
pendix D shows that the marginal effect of the treatment at the p-th percentile from the conditional
quantile regression of equation (1) is the marginal effect of the treatment for teachers at the p-th
percentile of effectiveness. The interpretation of the point estimates from conditional quantile re-
gression models applied to the teacher-level test score regressions are intuitive and fall naturally
out of the empirical setup.14 To estimate the marginal effect of the full treatment for different
percentiles of the classroom quality distribution, we aggregate test scores to the teacher level and
estimate conditional quantile regressions for the 10th through 90th percentiles in intervals of 5 per-
centile points. We then plot the marginal effects of the full treatment against the corresponding
quantiles along with the 90 percent confidence interval for each regression estimate. This plot is
presented for math test scores in Figure 2.

Even though the relationship is non-linear, Figure 2 exhibits a clear declining pattern indicating
larger benefits for low-quality classrooms than for high-quality classrooms. The estimated slope
through the data points is -0.00073 (p-value<0.01) which implies that as one goes from a class-
room/teacher at the 75th percentile to one at the 25th percentile, the marginal effect of the full
treatment increases by 50*0.00073 = 0.0365σ . To more accurately model this non-linear relation-
ship, we fit a piece-wise linear function with a structural break at the 60th percentile. At and below
the 60th quantile the slope is 0.0003 and not statistically significant (p-value=0.243), while above
the 60th quantile the slope is -0.00314 (p-value=0.001). The data indicate that for the bottom 60
percent of teachers, the marginal effect of the full treatment is 0.11σ , and that the full treatment is
only ineffective for the most able teachers in the top ten percent of the effectiveness distribution.
This is consistent with a model where off-the-shelf lessons and teacher quality are substitutes in the
production of student outcomes such that they may be very helpful for the least effective teachers.

Given this decline, one may worry that the intervention might reduce effectiveness for high-
quality classrooms. Indeed such patterns were observed for computer-aided instruction in Taylor
(2015). However, even at the 95th and 99th percentile of classroom quality, the semi-parametric
point estimates are positive (albeit not statistically different from zero). To ensure that these patterns
are real, as a falsification exercise, we estimate the same quantile regression model for English test
scores (see Appendix E). As one would expect, there is no systematic relationship for English

14To assuage concerns that the teacher-level model yields different results from the student-level model, Appendix F
shows that the OLS test score regressions aggregated to the teacher level yield nearly identical results to those at the
student level across all specifications and falsification tests.

16



scores, and the estimated point estimates for English are never statistically significantly different
from zero at the ten percent level. This provides further evidence that the estimated effects on math
scores are causal, and that the pattern of larger treatment effect for the less able teachers is real.

VI Model

The fact that providing online off-the-shelf lessons improved the outcomes of teachers on average,
with very large benefits at the bottom of the teacher effectiveness distribution and small but pos-
itive effects at the top suggests that certain economic forces and mechanisms may be at play. To
facilitate interpretation of our results, we lay out a stylized model of teacher behavior that yields
these same predictions regarding the treatment effects on student outcomes. The model also yields
some additional empirical predictions regarding the underlying mechanisms that we will test em-
pirically. For ease of exposition, we provide an intuitive graphical presentation of the model below,
and provide formal mathematical arguments in Appendix G.

We model teachers as being akin to firms (consumers) choosing the ‘profit’ (utility) maximizing
mix of inputs (goods) given a fixed total cost (budget) and fixed input prices (prices of goods).
Teachers produce student test scores (yi), where i is a student in the teacher’s class. Student i’s test
scores depend on the teacher’s allocation of time (T ) between creating lessons (d) and all other
tasks (n). Variable n captures all tasks complementary to creating lessons which include lesson
delivery, classroom management, and others. For simplicity, student i’s test scores take a form
of a Cobb-Douglas function in d and n with homogeneous output elasticities and heterogeneous
individual shocks. Teacher abilities to create lessons and perform all other tasks are modeled as
input “prices” (pd) and (pn). These prices denote the amount of time needed to create one unit of
lesson quality and produce one unit of other tasks, respectively. All teachers have the same time
allocation (T ), but higher ability teachers have lower p’s such that they can produce more overall
learning per unit of time.

Teachers maximize their students’ weighted average test scores by choosing how much time
to spend on other tasks (n ≥ 0) and how much time to spend on lesson creation (d ≥ 0), subject
to the time constraint (T ) and the prices they face (pn and pd). To illustrate the model visually,
the optimal allocation is depicted in Panel (a) of Figure 1. The isocost curve is depicted by the
straight line segment with slope −pn/pd , and different levels of average test scores are represented
by different indifference curves. Higher average test scores are on higher indifference curves (up
and to the right). At the optimal mix of inputs d∗ and n∗, the teacher’s indifference curve (i.e.
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average test scores) is tangent to the isocost curve such that test scores are maximized with this mix
of inputs given the time constraints faced by the teacher. As we show in Appendix G, at the output
maximizing allocation, average test scores are decreasing in both pn and pd . That is, average test
scores increase with teacher ability. We define d∗ and n∗ as the optimal allocation with no lessons.

We model off-the-shelf lessons as a technology that guarantees a minimum level of lesson
quality (d) at some fixed time cost F . Panel B of Figure 1 depicts the scenario in which the fixed
cost is equal to zero (i.e F = 0). Because teachers can always spend more time on lesson quality
than the minimum, the new technology shifts the isocost curve up by d. However, the maximum
time allocation for other tasks is unchanged, so that the isocost curve is vertical at (T/pn). The
teacher adopts the technology if the average test scores she can attain under this technology are
greater than that without. We define d̃ and ñ as the optimal allocation after adopting the lessons.

With no cost of lesson adoption, for teachers with equilibrium lesson quality above the mini-
mum guaranteed by the lessons (i.e. d∗ > d), the lessons simply increase the total amount of time
that can be spent on either more lesson planning or other tasks, leading to a positive ‘income’ effect.
The new indifference curve IC2 shows that a higher level of standard scores is achieved by using
off-the-shelf lessons, with both d̃ and ñ being higher than without lessons. For ease of exposition,
we make the simplifying assumption that no teacher would find it optimal to locate at the kink with
lesson use.15 That is, we make the realistic assumption that it will always be optimal to spend some
of one’s own time planning lessons, even if the online lessons are high quality.

Now consider the case where the fixed cost of lesson adoption is non-zero. With some fixed time
cost (F > 0) to adoption, the isoquant no longer shifts up by d, but shifts up only by d−F/pd < d.
Specifically, the isoquant shifts out by the guaranteed lesson quality minus the loss in lesson quality
associated with the time (F) spent adopting the lessons. It is straightforward to see graphically that
the outward shift in the isoquant is smaller for high ability teachers (with low pd and pn) and larger
for lower ability teachers (with higher pd and pn). Because the upward shift in the isoquant is
larger for the low ability teachers, the potential benefits to lesson use are larger for the low ability
teachers. Intuitively, the high ability teachers have a higher opportunity cost of time so that, for
the same fixed time cost F , the high types lose more in potential student achievement than the
low types. This differential shift and the corresponding larger benefit to lesson use for less able
teachers are depicted in panels C (higher ability teacher) and D (lower ability teacher). Note that
if the production function exhibits diminishing returns to scale, this would further increase the
difference in benefits between high and low ability teachers.

15For teachers with equilibrium lesson quality d∗ < d, some will locate at the kink such that both d and n are higher
with lesson use. A minimal assumption to prevent this behavior is listed in Appendix G. However, for simplicity, one
could also make a sufficient assumption that at the optimum without lessons all teachers are such that d∗ >= d.
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The simple framework depicted in Figure 1 produces some useful predictions that can be tested
empirically. The first, most obvious, prediction is that, among teachers who use the lessons, the
optimal lesson quality (d) should increase. This occurs either because the lessons used are of higher
quality than what the teacher would have created on her own (a direct lesson use effect), or because
the time savings afforded by the lessons allows teachers to improve their lesson quality (a time sav-
ings effect). While it is obvious that lesson quality will increase if the online lessons are sufficiently
high quality, the model highlights the fact that even lessons of modest quality can benefit even the
most able teachers because of the time savings mechanism. The second, less obvious prediction
from the model is that because one of the benefits of the lessons is time savings, teachers who adopt
the lessons will spend more time doing other complementary tasks (n). The model also makes some
predictions regarding the overall effect of lesson adoption and also regarding which teachers are
most likely adopt lessons. In sum, the model yields the following four predictions:

Prediction 1: If teachers know their ability, among those who chose to adopt lessons voluntarily,
the gains in average test scores from using the off-the-shelf lessons are non-negative.

Prediction 2: Among those who chose to adopt lessons, teacher time spent on n (that is, all tasks
complementary to lesson planning) should increase.

Prediction 3: Among teachers who chose to adopt lessons, the effect on lesson quality d is posi-
tive.

Prediction 4: The gains to using off-the-shelf lessons are decreasing in teacher effectiveness (as
measured by ability to raise average test scores).16

VII Mechanisms

Section V established that student achievement in mathematics improved in the license only con-
dition relative to the control condition and with even larger improvements in the full treatment
condition. In this section, we shed light on the underlying causal mechanisms, and empirically test
the remaining predictions from the model.

16If one is willing to make the additional assumption that teachers have full information regarding their ability,
another prediction from our model is that absent external nudges or reminders (i.e. the license only condition), less
effective teachers (as measured by the ability to raise average test scores) will be more likely to use the lessons. We
do not include this as a formal prediction because, due to data limitations, we are unable to convincingly test this
prediction empirically. We discuss the data limitation in more detail in Footnote 17.
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VII.1 Effects on Mathalicious lesson use

The first mechanism we explore is the extent to which the test score effects are driven by increased
Mathalicious lessons use. We have two sources of data to measure Mathalicious use, both of
which are imperfect. First, we rely on self-reported measures of which Mathalicious lessons were
taught or read. This information was reported by teachers during the mid-of-year and end-of-year
surveys. As such, these data may suffer from bias due to survey non-response. Second, we use the
data received from Mathalicious site logs on whether a teacher downloaded a certain lesson or not
(based on login email). While the lessons downloaded measure is not subject to bias due to survey
non-response, the download tracker may understate lessons downloaded for two reasons. First, the
download tracker was not available for the first month of the experiment so that overall downloads
are under-recorded. Second, the tracker was only able to track downloads for teachers that used
their official public school email address. While teachers were urged to use their school email
accounts, there was nothing preventing teachers from using their personal email accounts. With
these imperfect sources of information on lesson use, we construct three measures: the number
of Mathalicious lessons taught (as reported by the teacher across both surveys), the number of
Mathalicious lessons the teacher looked at (either reported as taught, reported as read, or tracked
as downloaded), and the the number of Mathalicious lessons tracked as downloaded. To gain a
sense of whether teachers made use of the extra supports to facilitate Mathalicious lesson use, we
also employ data on webinars attended in real-time. While the webinars were designed to facilitate
real-time interaction among teachers and Mathalicious facilitators, they were recorded and made
available for asynchronous viewing. As such, this measure may not capture the extent to which
teacher viewed webinars, and may understate the extent to which teacher used these additional
supports.

We analyze the effect of the treatment on these measures of use in Table 3. Because our mea-
sures of lessons taught and viewed are (partially) obtained from survey data, we only have complete
lesson use for teachers who completed the surveys during both waves. Because lesson use is zero
in the control condition, imputing zero lesson use for those who did not fill in both the mid-year
and the end-of-year surveys will mechanically lead to a downward bias for those in the partial or
full treatment conditions. As such, in Panel A, we report estimated effects only on those teachers
for whom we have complete survey data (i.e. data for both the mid-year and end-of-year surveys).
Only 20 percent of all teachers have completed survey data in both waves so that the estimated ef-
fects are rather imprecise. However, the patterns are instructive and are robust across all measures
of lesson use for which we have more data. All models include the full set of controls mentioned
in Section IV.
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The point estimates in the top panel reveal that among teachers with complete survey data, those
in the license only condition looked at 1.4 more lessons, taught 0.092 more lessons, downloaded
1.969 more lessons, and attended 0.168 more webinars than control teachers. None of these differ-
ences is significant at the ten percent level, but the magnitudes are instructive. Teachers in the full
treatment condition looked at 5.1 more lessons, taught 2.28 more lessons, downloaded 3.699 more
lessons, and attended 0.499 more webinars than teachers in the control condition. Only the effect
on webinars attended is statistically significantly different from zero at the 5 percent level. While
using teachers with complete data deals with downward bias due to survey-non-response, it may
also introduce upward bias if those teachers who complete surveys tend to have higher levels of use
than those who do not. We test for this formally in Appendix H, where we show that conditional
on treatment status, survey participation is unrelated to lessons downloaded. This would suggest
that the results that use data only for teachers with complete surveys, while imprecise, should yield
an accurate estimate of the effect of the treatment on lesson use.

To improve precision and use data obtained from a larger number of teachers, we also compute
lesson use based on teachers that completed either the mid-year survey or the end of year survey.
Because teachers who do not complete one of the surveys are automatically assigned zero use for
that survey wave, these results are biased toward zero. As such, these estimates are likely to be
lower in magnitude than the real effects. Panel B presents the estimated effects among the 60
percent of teachers with at least partially complete survey data (i.e. survey data in at least one of
the two waves). Among teachers with partially complete survey data, teachers in the license only
condition looked at 1.396 more lessons, taught 0.466 more lessons, downloaded 1.034 more lessons
and attended no more webinars than teachers in the control condition. The effects on lessons looked
at and lessons downloaded are significant at the 5 percent level. Consistent with the larger effect
on test scores, the effects on use are larger in the full treatment condition. Teachers in the full
treatment condition looked at 2.618 more lessons, taught 0.983 more lessons, downloaded 2.134
more lessons and attended 0.097 more webinars than teachers in the control condition. While the
point estimates are smaller that results using the 20 percent of teachers with full data (as expected),
all the marginal effects are meaningful and significant at the 5 percent level for the full treatment
condition.

Because using teachers with partially complete survey data mechanically leads to a downward
bias in our estimated effects on lesson taught (because missing data in non-completed surveys is
assumed to be zero), we address the missing data problem more rigorously using multiple imputa-
tion (Rubin, 2004; Schafer, 1997) to impute lesson use for those individuals who did not complete
the surveys. Within each multiple imputation sample, we impute the missing numbers of lessons
looked at and lessons taught using predicted values for other teachers in the same treatment condi-

21



tion from a Poisson regression (note that these are count data). Recall that Appendix H indicates
that the lesson download behavior of teachers in the same treatment condition is unrelated to hav-
ing complete survey data so that this imputation method is likely valid. For the lessons looked at,
we conduct multiple imputation for the survey responses before combining it with the tracker data.
The regression results based on imputed use (for missing data) are presented in Panel C of Table 3.
The results are very similar to those in Panel A that uses teachers with complete survey data. How-
ever, now all the differences between the treatment groups and the control group are statistically
significant at the one percent level. These are our preferred estimates because they use data for the
full sample of teachers. Note that standard errors are corrected for multiple imputation using the
method in Rubin (2004). The point estimates indicate that teachers in the license only condition
looked at 1.586 more lessons and taught 0.657 more lessons than teachers in the control condition,
while teachers in the full treatment condition looked at 4.4 more lessons and taught 1.925 more
lessons than teachers in the control condition.17

Across all models, teachers who received only the Mathalicious licenses looked at and taught
more lessons than control teachers, while teachers who received the full treatment looked at and
taught more lessons than either the control teachers or those who received licenses only. To avoid
overstating the effects of lesson use on outcomes, it is important that we do not understate the
increases in lessons use. Accordingly, we take the conservative approach and focus on the larger
and more credible estimates in Panels A and C that rely on teachers with complete data on lesson
use. To put these estimates into perspective, each Mathalicious lesson provides intuition for topics
that span between 3 and 6 weeks. As such, teachers in the full treatment looked at Mathalicious
lessons that could impact about one-half of the school year and report teaching lessons that could
impact about two-thirds of the school year. Accordingly, while the full treatment group never
reached full fidelity with the Mathalicious model (which is between 5 and 7 lessons per year),
the increased lesson use likely translated into changes in instruction for a sizable proportion of
the school year. In Section VII.4, we present evidence on why the usage may not have been as
widespread.18 Another noteworthy result is that the attendance at webinars was very low in the full

17Finally, as a robustness check of the reliability of the survey data, we also analyze results only using the online
tracker data on the full sample. Any missing data is imputed to be zero, so that these are lower bound estimates.
These results are presented in Panel D. Teachers in the license only condition looked at at least 1.115 more lessons
and downloaded at least 0.916 more lessons than those in the control condition. Both effects are significant at the 5
percent level. Teachers in the full treatment condition looked at at least 2.236 more lessons and downloaded at least
1.900 more lessons that those in the control condition. Importantly, both of these differences is statistically significant
at the 1 percent level.

18 One prediction from our model is that absent external incentives, if teachers are aware of their own ability, lesson
adoption should be highest among the least effective teachers. Unfortunately, we cannot test this convincingly due to
data limitations. As discussed previously, in order to test for treatment effect heterogeneity by teacher effectiveness,
one would ideally employ historical data on teachers (and their students) and then interact the treatment with measures
of teacher effectiveness obtained out of sample. Because we only have one year of achievement data linked to lagged
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treatment condition even though lesson use was higher. This suggests that the increased use in the
full treatment condition was not driven by the additional supports per se, but may have been driven
by the regular reminders to use the lessons. We present suggestive evidence of this in Section VII.4.

VII.2 Effects on Student Perceptions and Attitudes

The specific aims of the Mathalicious lessons were to promote deeper student understanding, instill
a sense that math has real world applications, and develop greater student interest and engagement
in the subject. As such, by changing the lessons teachers deliver, the intervention lessons could
alter student attitudes toward mathematics. To test this, we analyze effects on student responses on
an anonymous survey given at the end of the Fall semester (December) and also at the end of the
experiment (May). These survey responses cannot be linked to individual students, but are linked to
the math teacher. Due to permission restrictions, these survey data were collected for Chesterfield
and Hanover only. On the surveys, we asked several questions on a Likert scale and used factor
analysis to extract common variation from similar items. After grouping similar questions, we
ended up with 6 distinct factors.19 Each factor is standardized to be mean zero, unit variance.

Teachers are only partially treated at the time of the mid-year survey, while responses at the
end of the year reflect exposure to the intervention for the full duration. To account for this, among
those in the license only treatment, we code the variable Licensedt to be 1 during the end-of-year
survey and 1/3 in the mid-year survey. Similarly, among those in the full treatment, we code the
variable Fulldt to be 1 during the end-of-year survey and 1/3 in the mid-year survey.20 Using data
from both surveys simultaneously, we estimate the effect on student responses to the survey items
using the following equation, where all variables are defined as in (1) and Postidt is an indicator that
is equal to 1 for the end-of-year survey and zero otherwise.

Yidt = αd +β1Licensedt +β2Fulldt +Xdtδd +πdReqdt + γPostidt + εidt (3)

As with test scores, we analyze the student surveys at the student level. Table 4 presents results
from models that include no controls (Panel A) and models that include the full set of controls

outcomes, this is not feasible. We are able to get around this data limitation by exploiting the specific interpretation
of conditional quantile regression models when testing for achievement effects (as shown in Appendix D). However,
the conditional quantile models applied to lesson use do not have the same interpretation. As such, we are unable to
provide any credible empirical evidence on this prediction.

19To avoid any contamination associated with the treatments, we only used data for the control group in forming
the factors. When grouping questions measuring the same construct, each group is explained by only one underlying
factor. Factor loadings for each individual question are presented in Appendix C.

20Note that our results are robust to using fractions of similar magnitude, e.g., 1/2 or 1/4.
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(Panel B).

In order for the estimation to be credible, it requires that the survey response rates are similar
across all treatment arms. As such, the first column is a model where the dependent variable is
the survey response rate computed at the teacher level.21 The analytic sample in this model is all
students in the testing file (irrespective of whether they completed a survey) in the two participating
districts. Overall, the survey response rate was 66 percent. Importantly, there are no statistically
significant differences in survey response rates across the three treatment arms. In fact, the model
with no controls, the survey response rate is slightly lower in the treatment arms than in the con-
trol group, while in the model with full controls the survey response rate is slightly higher in the
treatment arms than in the control group. Moreover, the estimated treatment effects on the survey
questions are similar in models with and without controls (for which the direction of the response
rates are opposite in sign), so that any differences in response to questions are not likely driven by
differential non-response.

Because the estimated effects on the factors are so similar in models with and without controls,
we focus our discussion on the models with all controls (Panel B). The first factor measures whether
students believe that math has real life applications. The results in Column 9 of Table 4 show that,
while there is no effect for the license only condition, students in the full treatment condition
are more likely to report that math has real life application than students in the control group.
Specifically, students of the full treatment teachers agree that math has real world applications
0.162σ more than those of control teachers (p-value<0.05). This is consistent with the substance
and stated aims of the Mathalicious lessons and confirms our priors that their content was more
heavily grounded in relevant real-world examples than what teachers would have been teaching
otherwise.

The next three factors measure student interest in math class, effort in math class, and mo-
tivation to study in general, respectively. Even though none of these are directly targeted by the
intervention, the lessons may increase interest in math, and such benefits could spill over into broad
increases in academic engagement. There is weak evidence of this. Students with full treatment
teachers report meaningfully higher levels of interest in math (0.087σ ). However, this effect is
not statistically significant at traditional levels. The estimated coefficient on effort in math class is
0.045σ for the license only condition and a zero for the full treatment condition. In the full treat-
ment, there is a small positive effect on the general motivation to study and a small negative effect
on motivation to study in the license only condition. None of the effects on these three factors are

21For each teacher we use the test score data to determine how many students could have completed a survey. We
then compute the percentage of students with completed surveys for each teacher and weight the regressions by the
total number of students with the teacher.
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statistically significant, but the magnitudes and direction of the estimates are suggestive.

The next two factors relate to student perceptions of their math teacher and allow us to test two
of the predictions from the model. The fifth factor measures whether students believe their math
teacher emphasizes deep understanding of concepts. This relates directly to the specific aims of
the Mathalicious lessons. The model predicts that the optimal lesson quality should increase under
the treatment so that we should see increases in agreement with statements regarding the teacher
promoting deeper understanding. The sixth factor measures whether students feel that their math
teacher gives them individual attention. Our model predicts that off-the-shelf lessons may free
up teacher time toward other tasks that are complementary to lesson planning. There are many
such tasks, but we hypothesize that providing one-on-one time is one. As such, one would expect
that the additional time afforded by the lessons may allow teachers to provide students with more
one-on-one instruction.22 The results support the premise of our model that teacher who used the
Mathalicious lessons improved lesson quality. Students from the full treatment group are 0.175σ

(p-value<0.05) more likely to agree that their math teacher promotes deep understanding. Also,
consistent with off-the-shelf lessons freeing up teacher time to exert more effort in the classroom
toward other complementary tasks, student agreement with statements indicating that their math
teacher spends more one-on-one time with them is 0.033σ higher in the license only treatment
condition (p-value>0.1) and 0.144σ higher in the full treatment condition than in the control con-
dition (p-value<0.05).

In sum, the survey evidence shows that, among students whose teachers used the Mathalicious
lessons most robustly (i.e. full treatment teachers), student perceptions regarding math and their
math teachers changed in the expected directions. However, we do not find strong evidence of
effects on these outcomes among students in the license only condition. This may either reflect no
movement on these survey measures in the license only condition or that effects of the license only
condition that are too small to detect. In any case, students of teachers in the full treatment say
that there are more real life applications of math, and report somewhat higher levels of interest in
math class. Moreover, they report that their teachers promote deep understanding and spend more
one-on-one time with students. These patterns are consistent with the aims of the intervention, are
consistent with some of the key predictions of the model, and are consistent with the pattern of
positive test score effects.23

22Jackson (2016a) also uses more one-on-one time as a measure of teacher time. He finds that in more homogeneous
classrooms, teachers spend more one-on-one time with students likely due to time savings.

23We also analyze teachers’ survey responses to assess whether the intervention had any effect on teachers’ attitudes
toward teaching, or led to any changes in their classroom practices. Although the response rate on the teacher survey
was similar the that of the student surveys (61.43 percent), the response rates were substantially higher among teachers
in the full treatment condition. As such, the results on the teacher surveys are inconclusive. Moreover, we do not find
any systematic effects on any of the factors based on the teacher survey items. We present a detailed discussion of the
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VII.3 Are the Effects Driven By Lesson Use Per Se?

The full treatment, which involved both lesson access and additional supports, led to the largest
improvement in test scores. The extra supports were not general training, but were oriented toward
implementing specific Mathalicious lessons. As such, it is unlikely that the gains were driven by
the extra supports and not the lessons themselves. The fact that we find meaningful positive effects
in the license only condition confirms that this is the case. Also, the fact that webinar attendance
was so low overall suggests that many teachers in the full treatment were not using the additional
online supports. The evidence presented thus far suggests that the improvements are due to lesson
use rather than the extra supports, but we present more formal tests of this possibility in this section.

If the benefits of the intervention were driven by Mathalicious lesson use, then those treatments
that generated the largest increases in lesson use should also have generated the largest test score
increases. To test for this, using our preferred student level models, we estimate the effects of
each treatment arm (license only or full) in each of the three districts (i.e. six separate treatments)
relative to the control group in each district.24 Figure 3 presents the estimated effects on lessons
taught against the estimated effects on math test scores for each of the six treatments. Each data
point is labeled with the district and the treatment arm (1 denotes the license only treatment and
2 denotes the full treatment). It is clear that the treatments that generated the largest increases
in lesson use were also those that generated the largest test score gains. There is a very robust
positive linear relationship. To test more formally whether the extra supports provided in the full
treatment explain the pattern of treatment effects, we estimate a regression line through these 6 data
points predicting the estimated test score effect using the estimated effect on lessons taught and an
indicator for whether the treatment arm was the full treatment. In this model, conditional on the
treatment type, the estimated slope for lessons taught on test scores is 0.047 (p-value<0.01). To
use this variation more formally, we estimate instrumental variables models predicting student math
test scores and using the individual treatment arms as instruments for lessons taught (detailed in
Appendix J). The preferred instrumental variables regression model yields a coefficient on lessons
taught of 0.033, suggesting that for every additional lesson taught test scores increase by 0.033σ .
Importantly, in this model, one cannot reject the null hypothesis that the marginal effect of the full
treatment is zero conditional on the lessons taught effect. These patterns indicate that (a) those
treatments with larger effects on lesson use had larger test score gains and (b) the reason the full
treatments had a larger effect on test scores is that they had a larger effect on lesson use.

teacher survey results in Appendix I.
24When estimating effects on lessons taught, we use multiple imputation as outlined in Section V.
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VII.4 Patterns of Lesson Use Over Time

Given the sizable benefits to using the off-the-shelf lessons, one may wonder why lesson use was
not even more widespread. To gain a sense of this, we present some graphical evidence of lesson
use over time. Figure 4 shows the number of lessons downloaded by license only and full treatment
groups in different months. As expected, lesson use was much larger in the full treatment condition
than that in the license only condition. However, Figure 4 reveals a few other interesting patterns.
There was a steady decline in the number of lessons downloaded over time within groups. While
there were 97 downloads in the full treatment in November 2014, there were only 8 downloads in
May 2015. Similarly, in the license only group, while there were 59 downloads in the November
2014, there were only 4 downloads in May 2015. To determine whether this decline is driven
by the same number of teachers using Mathalicious less over time, or a decline in the number of
teachers using Mathalicious over time, we also plot the number of teachers downloading lessons by
treatment group over time. There is also a steady decline in the number of teachers downloading
lessons so that the reduced use is driven by both reductions in downloads among teachers, and a
reduction in the number of teachers downloading lessons over time.

Even though we have no dispositive evidence on why lesson use was not higher, or why lesson
use dropped off over time, we speculate that it may have to do with behavioral biases and time
management. The patterns of attrition from lesson downloads over time are remarkably similar to
the patterns of attrition at online courses (Koutropoulos et al., 2012), gym attendance (DellaVigna
and Malmendier, 2006), and fitness tracker use (Ledger and McCaffrey, 2014). Economists hy-
pothesize that such behaviors may be due to individuals underestimating the odds that they will be
impatient in the future and then procrastinate (O’Donoghue and Rabin, 1999; Duflo et al., 2011).
Similar patterns in Figure 4 provide a reason to suspect that similar behaviors may be at play. In our
context, these patterns may reflect teachers being optimistic about their willpower to use the lessons
such that they started out strong, but when the time came, they procrastinated and did not make the
time to implement them later on. However, it is also possible that as teachers use the lessons, they
perceive that they are not helpful and decide to discontinue their use after downloading the first few
lessons. Most of the empirical patterns support the former explanation. First, the rate of decay of
lesson use is more rapid in the license only treatment than in the full treatment group. Specifically,
without the additional supports to implement the lessons, the drop-off in lesson use was more rapid.
In the full treatment group, downloads fell by about 45 percent between Nov/Dec and January/Feb,
while it fell by over 80 percent during that same time period in the license only group. If the reason
for the drop-off was low lesson quality, drop-off should have been similarly rapid for both groups.
The second piece of evidence is that the there is a sizable reduction in lessons downloaded in the
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full treatment condition after February when Mathalicious ceased sending out email reminders to
teachers, while lesson use was stable in the license only condition. The third piece of evidence
comes from surveys. We employed data from the end of year survey that asked treated teachers
why they did not use off-the-shelf lessons more. Looking specifically at the question of whether
the lessons were low quality, only 2 percent of teachers mentioned this was a major factor and
almost 89% stated that is was not a factor at all. In sum, poor lesson quality does not explain the
drop-off in lesson use, being reminded mattered, and the patterns of drop-off are very similar to
other contexts in which behavioral biases played a key role – suggesting that procrastination is a
plausible explanation.

The last piece of evidence to support the procrastination hypothesis also comes from the survey
evidence shown in Figure 5. The main reason cited for not using more lessons was a lack of time.
Taken at face value, one might argue that the pressures on teacher time increased over the course of
the year such that lesson use declined over time. However, this cannot explain the large differences
in the trajectory of lesson use over time across the treatment arms. The explanation that best fits
the observed patterns and the survey evidence is that, without the reminders and extra supports
(i.e. Edmodo groups), teachers were unable to hold themselves to make the time to implement
the lessons. The patterns also suggest that providing ways to reduce procrastination during the
school year (such as sending constant reminders or providing some commitment mechanism) may
be fruitful ways to increase lesson use. Other simple approaches may reduce the incentive to
procrastinate at the moment by providing designated lesson planning time, or granting lesson access
the summer before the school year when the demands on teachers’ time may be lower.

VIII Discussion and Conclusions

Teaching is a complex job that requires that teachers perform several complementary tasks. One
important task is planning lessons. In the past few years, the availability of lesson plans and instruc-
tional material for use in the traditional classroom that can be downloaded from the internet has
increased rapidly. Today over 90 percent of secondary teachers look to the Internet for instructional
materials when planning lessons Opfer et al. (2016) and lesson warehouse sites such as Teachers
Pay Teachers have more active user accounts than teachers in the United States. Teacher use of
these online lessons is a high-tech form of division of labor; classroom teachers focus on some
tasks while creating instructional content is (partially) performed by others. If this technological
change now provides all teachers access to high-quality lessons, the social benefits could be very
large. However, the extent to which providing teachers access to high-quality online instructional
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materials improves their student’s performance had not previously been explored. To speak to this
question, we implemented a randomized field experiment in which middle-school math teachers in
three school districts were randomly provided access to high-quality, off-the-shelf lessons, and we
examine the effects on their students’ subsequent academic achievement.

The online “off-the-shelf” lessons provided in our intervention were not typical of ordinary
mathematics lesson plans. The off-the-shelf lessons were experiential in nature, made use of real-
world examples, promoted inquiry-based learning, and were specifically designed to promote stu-
dents’ deep understanding of math concepts. Though education theorists hypothesize that such
lessons improve student achievement, this is among the first studies to test this idea experimentally.

Offering the lessons for free had modest effects on lesson use and modest (but economically
meaningful) effects on test scores (0.06σ ). However, fully-treated teachers (who also received on-
line supports to promote lesson use) used the lessons more and improved their students’ test scores
by about 0.09σ relative to teachers in the control condition. These positive effects appear to have
been mediated by students feeling that math had more real life applications, and having deeper
levels of understanding. There is also evidence that as teachers substituted the lessons for their
own lesson planning efforts, they were able to spend more time on other tasks such as providing
one-on-one time with students. Consistent with our multitask model of teaching, the positive test
score effects are largest for the weaker teachers. We hypothesize that the relatively low levels of
lesson use may be due to behavioral biases among teachers such that they put off taking the time
to implement the lessons until it is too late (i.e. they may procrastinate). Our findings imply that
regular reminders and supports were helpful to keep teachers engaged enough to implement the
lesson through the school year.

Because the lessons and supports were all provided online, the per teacher costs of the interven-
tion are low. An upper bound estimate of the cost of the program is $431 per teacher.25 Chetty et al.
(2014a) estimate that a teacher who raises test scores by 0.14σ generates marginal gains of about
$7,000 per student in present value future earnings. Using this estimate, the test score effect of
about 0.09σ would generate roughly $4,500 in present value of future earnings per student. While
this may seem like a modest benefit, consider that each teacher has about 90 students in a given
year so that each teacher would generate $405,000 in present value of students’ future earnings.
This implies a benefit-cost ratio of 939. Because of the low marginal cost of the intervention, it
is extraordinarily cost effective. Furthermore, because the lessons and supports are provided on

25The price of an annual Mathalicious subscription is $320. The cost of providing the additional supports (e.g., extra
time for Mathalicious staff time to run Project Groundswell) was $25,000. With 225 treated teachers, this implies an
average per teacher cost of $431. Because the subscription partly recovers fixed costs, the marginal cost is lower than
this. One can treat this as an upper bound of the marginal cost.
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the Internet, the intervention is highly scalable and can be implemented in remote locations where
other policy approaches would be infeasible.

Our findings show that by providing teachers with access to high-quality, off-the-shelf lessons
on the Internet is a viable and cost-effective alternative to the typical policies that seek to improve
the skills of the existing stock of teachers through training, selection, or changes in incentives (e.g.
Taylor and Tyler, 2012; Muralidharan and Sundararaman, 2013; Rothstein and others, 2015). Our
findings also suggest that policies aiming to modify the production technology of teaching (such
as changes in curriculum design, innovative instructional materials, and others) may be fruitful
avenues for policymakers to consider.
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Tables and Figures

Figure 1: Illustration of the Model.
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Figure 2. Marginal Effect of the Full Treatment by Teacher Quality.
Mathematics Test Scores.
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Notes: The solid black line represents the treatment effect estimates from estimating equation (1) using conditional
quantile regression. The dependent variable is the teacher-level average standardized 2014 math test scores. The shaded
area depicts the 90% confidence interval for each conditional quantile regression estimate. For a formal discussion of
the method, see Appendix D. The specification includes controls for the requested indicator, average teacher-level 2013
math and reading test scores, and teacher-level shares of students with missing 2013 math and reading test scores - all
interacted with district fixed effects. Other controls include teachers’ education level, years of experience, sex, race,
grade fixed effects, as well as the percentage of male, black, white, Asian, and Hispanic students in their class.



Figure 3. Estimated Effect on Math Test Scores by Estimated Effect on Lessons Taught
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Notes: This figure plots average treatment effects on lesson use and standardized math scores, separately by district
and by treatment. Chesterfield, Hanover, and Henrico are the school districts in Virginia where the intervention took
place. The ‘License only’ treatment is denoted by the number 1, and the ‘Full Treatment’ is denoted by the number
2. The Y-axis displays coefficients for specifications identical to those estimated in Columns (5) of Table 2. The X-
axes displays coefficients for specifications similar to those estimated in Panel C Column (10) of Table 3. However,
all regressions are estimated based on a restricted sample within each district that compares each treatment group to
the control group in the same district. For example, the ‘Chesterfield 1’ label means that the corresponding point
displays the coefficients from the aforementioned regressions estimated within Chesterfield only and without the ‘Full
Treatment’ teachers. The black line represents the best linear prediction based on six points displayed on each graph.
The size of the dots corresponds to the relative size of the district-treatment groups in terms of the number of students.



Figure 4. Downloads of Mathalicious Lessons Over Time
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Notes: Data on lesson downloads come from the teachers’ individual accounts on the Mathalicious website. Mathali-
cious ceased to send out email reminders to teachers in the Full Treatment group after February 2014.



Figure 5. Reasons for Lack of Mathalicious Lesson Use.
License Only and Full Treatment Teachers Combined (n=71).
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Notes: Data come from teacher responses to the following question on an end-of-year teacher survey: ‘Which of the
following kept you from teaching a Mathalicious lesson this year?’. There were 10 reasons provided as non-mutually
exclusive options. We report the percentage of completed responses that cite each of the 10 reasons. We combine
the responses of both treatments in a single figure because the patterns are very similar in the license only and full
treatment conditions.



Table 1. Summary Statistics.

N Mean SD Mean     
(Control)

Mean     
(License Only)

Mean          
(Full Treatment)

P-value for balance 
hypothesis 

(w/district Fixed 
Effects and 
Requested)

(1) (2) (3) (4) (5) (6) (7)
Has MA degree 363 0.424 0.495 0.386 0.433 0.462 0.767
Has PhD degree 363 0.008 0.091 0.007 0.010 0.008 0.863
Teacher is female 363 0.802 0.399 0.793 0.769 0.840 0.852
Years teachinga 363 11.730 8.628 12.150 11.130 11.750 0.425
Teacher is white 363 0.884 0.320 0.879 0.865 0.908 0.622
Teacher is black 363 0.096 0.296 0.114 0.096 0.076 0.745
Grade 6 363 0.311 0.464 0.300 0.240 0.387 0.503
Grade 7 363 0.366 0.482 0.343 0.413 0.353 0.169
Grade 8 363 0.342 0.475 0.321 0.356 0.353 0.746
Participation across webinars 363 0.014 0.117 0 0 0.042 0.005***
Total no. Mathalicious lessons the teacher taught 236b 0.818 2.123 0.275 0.750 1.519 0.053*
Total no. Mathalicious lessons the teacher taught or read 236b 1.030 2.884 0.275 0.853 2.078 0.034**
Total no. Mathalicious lessons the teacher downloaded 363 1.132 3.221 0.064 1.173 2.353 0.004***
Total no. Mathalicious lessons the teacher downloaded, read, or taught 256c 2.184 4.458 0.337 2.107 4.157 0.001***
Student is male 27613 0.516 0.074 0.515 0.519 0.513 0.798
Student is black 27613 0.284 0.249 0.293 0.300 0.259 0.652
Student is white 27613 0.541 0.261 0.534 0.535 0.553 0.588
Student is Asian 27613 0.054 0.063 0.055 0.046 0.059 0.044**
Student is Hispanic 27613 0.083 0.078 0.081 0.078 0.089 0.395
Student is of other race 27613 0.036 0.025 0.034 0.036 0.037 0.209
Math SOL scores, standardized by exam type, 2013 24112d 0.0521 0.979 0.037 0.043 0.076 0.644
Math SOL scores, standardized by exam type, 2014 27613 -0.002 1.001 -0.071 -0.021 0.092 0.887
Reading SOL scores, standardized by grade, 2013 24878d 0.015 0.997 -0.010 -0.025 0.077 0.690
Reading SOL scores, standardized by grade, 2014 24409e 0.008 0.997 -0.021 -0.027 0.068 0.969
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Notes: *** - significance at less than 1%; ** - significance at 5%, * - significance at 10%. a Using years in district for Henrico. b The number of lessons taught and
read were reported by teachers in the mid-year and end-of-year surveys. 127 teachers did not take part in either of the surveys, hence the missing values. c See (b)
for an explanation of attrition. 20/127 teachers with missing values in (b) had non-zero values for the number of lessons downloaded. d A small share of students
have no recorded 2013 test scores. This is likely due to transfers into the district. e 18 teachers did not have students with reading scores that year. Other comments:
The test of equality of the group means is performed using a regression of each characteristic on treatment indicators and the district fixed effects interacted with the
requested indicator. P-values for the joint significance of the treatment indicators are reported in Column (7). For student-level characteristics, standard errors are
clustered at teacher level.



Table 2. Effects on Student Test Scores.

2014 Raw 
Score

2014 Raw 
Score

2014 
Standardized 

Score

2014 
Standardized 

Score

2014 
Standardized 

Score

2014 
Standardized 

Score

2014 Raw 
Score

2014 
Standardized 

Score

(1) (2) (3) (4) (5) (6) (7) (8)
License Only 2.653 3.583* 0.050 0.061* 0.060* 0.055* 1.105 0.025

[2.136] [1.926] [0.040] [0.034] [0.033] [0.032] [1.041] [0.019]
Full Treatment 7.899*** 7.057*** 0.105** 0.094** 0.086** 0.093*** 0.460 0.008

[2.662] [2.308] [0.046] [0.038] [0.038] [0.035] [1.223] [0.022]
District FE x Requested Y Y Y Y Y Y Y Y
District FE x Teacher-Level Lagged Test Scores Y Y Y Y Y Y Y Y
District FE x Individual Lagged Test Scores N N N N Y N Y Y
All controls N Y N Y Y Y Y Y
Observations 27,613 27,613 27,613 27,613 27,613 363 25,038 25,038
Unit of Observation Student Student Student Student Student Teacher Student Student

Falsification: EnglishMathematics

Notes: *** - significance at less than 1%; ** - significance at 5%; * - significance at 10%. Standard errors clustered at the teacher level are reported in square
brackets. All specifications include controls for the requested indicator, average teacher-level 2013 math and reading test scores, and teacher-level shares of students
with missing 2013 math and reading test scores - all interacted with district fixed effects. So that we can include all students with math scores in 2014 in regression
models, students with missing 2013 standardized math and reading scores were given an imputed score of zero. To account for this in regression models, we also
include indicators denoting these individuals in all specifications. Results are robust to restricting the sample to students with complete data. Columns (5), (7),
and (8) control for individual-level 2013 math and reading test scores. Additional student-level controls include race, and gender. Additional teacher-level controls
include teachers’ educational attainment, years of experience, sex, race, grade fixed effects, as well as the percentage of male, black, white, Asian, and Hispanic
students in the classroom. Standardized scores refer to the raw scores standardized by exam type. In the absence of exam type data for Hanover, test scores for that
district were standardized by grade.



Table 3. Effects on Lesson Use.
Panel A:  Subsample of Teachers Who Answered Both Mid-Year and End-of-Year Surveys (~20%).

Lessons Looked Lessons Taught Lessons Downloaded Webinars Viewed

(1) (2) (3) (4)
License Only 1.404 0.092 1.969 0.168

[5.018] [1.650] [4.178] [0.175]
Full Treatment 5.103 2.284 3.699 0.499**

[5.021] [1.912] [4.225] [0.231]
All controls Y Y Y Y
Observations 69 69 69 69

Panel B: Subsample of Teachers Who Answered either Mid-Year or End-of-Year Survey (~60%).

Lessons Looked Lessons Taught Lessons Downloaded Webinars Viewed

(5) (6) (7) (8)
License Only 1.396** 0.466 1.034** -0.027

[0.700] [0.407] [0.490] [0.018]
Full Treatment 2.618*** 0.983** 2.134*** 0.097**

[0.720] [0.390] [0.588] [0.041]
All controls Y Y Y Y
Observations 236 236 236 236

Panel C: Multiple Imputation Estimates. Missing Outcome Data From Panel A Imputed Using Multiple Imputation.

Lessons Looked Lessons Taught Lessons Downloaded Webinars Viewed

(9) (10) (11) (12)
License Only 1.586*** 0.657***

[0.418] [0.191]
Full Treatment 4.404*** 1.925*** N/A N/A

[0.605] [0.282]
All controls Y Y
Observations 363 363

Panel D: Full Sample Estimates. Missing Data for Lessons Looked and Taught Replaced with Zero (Lower Bound).

Lessons Looked Lessons Taught Lessons Downloaded Webinars Viewed

(13) (14) (15) (16)
License Only 1.115*** 0.262 0.916*** -0.013

[0.422] [0.221] [0.328] [0.009]
Full Treatment 2.236*** 0.573** 1.900*** 0.048**

[0.506] [0.238] [0.457] [0.022]
All controls Y Y Y Y
Observations 363 363 363 363

Notes: *** - significance at less than 1%; ** - significance at 5%; * - significance at 10%. Robust standard errors
are reported in square brackets. Standard errors in Panels C are corrected for multiple imputation according to Rubin
(2004). All specifications include controls for the requested indicator, average teacher-level 2013 math and reading
test scores, and teacher-level shares of students with missing 2013 math and reading test scores - all interacted with
district fixed effects. Additional controls include teachers’ education level, years of experience, sex, race, grade fixed
effects, as well as the percentage of male, black, white, Asian, and Hispanic students in their class. The data on
lessons downloaded and webinars watched are available for all 363 teachers. The number of lessons taught or read
was missing for some teachers because of survey non-response: 69 teachers completed both mid-year and end-of-
year surveys, 236 teachers completed either of the two. Panel A restricts the sample to 69 teachers who completed
both surveys. Panel B restricts the sample to 236 teachers who completed either survey. Panel C uses data from 69
teachers to impute the missing values using multiple imputation (Rubin, 2004). Multiple imputation is performed using
a Poisson regression (outcomes are count variables) and 20 imputations. Imputed values in each imputation sample
is based on the predicted values from a Poisson regression of lesson use on treatment and requested status. Panel D
studies all 363 teachers, replacing missing data for lessons looked and taught with zeros.



Table 4. Students’ Post-Treatment Survey Analysis (Chesterfield and Hanover only).

Math has Real 
Life 

Application

Increased 
Interest in 

Math Class

Increased 
Effort in Math 

Class

Increased 
Motivation for 

Studying in 
General

Math Teacher 
Promotes 
Deeper 

Understanding

Math Teacher 
Gives 

Individual 
Attention

Panel A. No Controls.
(1) (2) (3) (4) (5) (6) (7)

License Only -0.052 -0.017 -0.030 0.010 -0.021 0.052 0.085
[0.083] [0.072] [0.075] [0.046] [0.053] [0.076] [0.078]

Full Treatment -0.036 0.158** 0.058 0.030 0.036 0.204** 0.187***
[0.095] [0.076] [0.074] [0.045] [0.050] [0.081] [0.072]

End-of-Year Indicator Y Y Y Y Y Y Y
District FE x Requested N N N N N N N
All controls N N N N N N N
Observations 27,450 18,013 17,855 18,010 17,822 17,899 18,503
Panel B. With All Controls.

(8) (9) (10) (11) (12) (13) (14)
License Only 0.100 -0.012 -0.018 0.045 -0.021 0.001 0.033

[0.082] [0.060] [0.062] [0.035] [0.035] [0.065] [0.063]
Full Treatment 0.012 0.162** 0.087 0.003 0.039 0.175** 0.144**

[0.099] [0.063] [0.074] [0.044] [0.035] [0.070] [0.069]
End-of-Year Indicator Y Y Y Y Y Y Y
District FE x Requested Y Y Y Y Y Y Y
All controls Y Y Y Y Y Y Y
Observations 27,450 17,959 17,799 17,954 17,768 17,843 18,443

Share of 
Completed 

Surveys

Standardized Factors

Notes: *** - significance at less than 1%; ** - significance at 5%, * - significance at 10%. Standard errors clustered at the teacher level are reported in square
brackets. For details on the estimating strategy, see (3). Each outcome, except for the share of completed surveys, is a result of factor analysis and encompasses
variation from several individual questions. For details on how the factors were formed, see Appendix C. The specifications in Panel A do not contain any covariates
other than the treatment and end-of-year indicators. The specifications in Panel B add controls for district fixed effects, average teacher-level 2013 math and reading
test scores, and teacher-level shares of students with missing 2013 math and reading test scores (all interacted with the requested indicator), as well as teachers’
education level, years of experience, sex, race, grade fixed effects, and the percentage of male, black, white, Asian, and Hispanic students in their class. The fact
that the survey was anonymous prevented us from including any student-level covariates. The regressions presented in Column (1) are estimated at the teacher level.
The share of completed surveys for each teacher was calculated by comparing the number of completed student surveys with the number of students with complete
data on math test scores.



For Online Publication.

Appendix A. Treatment Allocation.

Table A1. Total Number of Teachers Participating, by District and Treatment Condition.

Control License Only Full Treatment Total Requested
Hanover 19 18 19 56 0
Henrico 46 46 43 135 89

Chesterfield 75 40 57 172 33
Total 140 104 119 363 122

Treatment By District



Appendix B. Main Result without Requested Teachers.

Table B1. Main Result without Requested Teachers

2014 Raw 
Score

2014 Raw 
Score

2014 
Standardized 

Score

2014 
Standardized 

Score

2014 
Standardized 

Score

2014 
Standardized 

Score

2014 Raw 
Score

2014 
Standardized 

Score
(1) (2) (3) (4) (5) (6) (7) (8)

License Only 2.125 2.684 0.039 0.042 0.043 0.048 -0.688 -0.012
[2.111] [2.023] [0.038] [0.036] [0.036] [0.035] [1.050] [0.019]

Full Treatment 9.382*** 8.714*** 0.124*** 0.108** 0.101** 0.117*** 1.880 0.030
[2.904] [2.692] [0.046] [0.045] [0.044] [0.043] [1.450] [0.026]

District FE x Requested Y Y Y Y Y Y Y Y
District FE x Teacher-Level Lagged Test Scores Y Y Y Y Y Y Y Y
District FE x Individual Lagged Test Scores N N N N Y N Y Y
All controls N Y N Y Y Y Y Y
Observations 16,883 16,883 16,883 16,883 16,883 241 14,427 14,427
Unit of Observation Student Student Student Student Student Teacher Student Student

Mathematics Falsification: English

Notes: *** - significance at less than 1%; ** - significance at 5%; * - significance at 10%. Standard errors clustered at the teacher level are reported in square
brackets. Only teachers who did not request a license are included in the analysis. All specifications include controls for the requested indicator, average teacher-
level 2013 math and reading test scores, and teacher-level shares of students with missing 2013 math and reading test scores - all interacted with district fixed
effects. So that we can include all students with math scores in 2014 in regression models, students with missing 2013 standardized math and reading scores were
given an imputed score of zero. To account for this in regression models, we also include indicators denoting these individuals in all specifications. Results are
robust to restricting the sample to students with complete data. Columns (5), (7), and (8) control for individual-level 2013 math and reading test scores. Additional
student-level controls include race, and gender. Additional teacher-level controls include teachers’ educational attainment, years of experience, sex, race, grade fixed
effects, as well as the percentage of male, black, white, Asian, and Hispanic students in the classroom. Standardized scores refer to the raw scores standardized by
exam type. In the absence of exam type data for Hanover, test scores for that district were standardized by grade.



Appendix C. Construction of Factors for The Student Survey.

Factor 1: Factor 2: Factor 3: Factor 4: Factor 5: Factor 6:
Math has Real Life 

Application
Increased Interest in Math 

Class
Increased Effort in Math 

Class
Increased Motivation for 

Studying in General
Math Teacher Promotes 
Deeper Understanding

Math Teacher Gives 
Individual Attention

My math teacher often 
connects what I am 

learning to life outside the 
classroom

I usually look forward to 
this class

I work hard to do my best 
in this class

I set aside time to do my 
homework and study

My math teacher 
encourages students to 
share their ideas about 

things we study in class

My math teacher is willing 
to give extra help on 

schoolwork if I need it

(0.570) (0.644) (0.212) (0.320) (0.621) (0.605)
In math how often do you 
apply math situations in 

life outside of school

Sometimes I get so 
interested in my work I 

don't want to stop

Lower bound hours per 
week studying/working on 

math outside class 

I try to do well on my 
schoolwork even when it 

isn't interesting to me

My math teacher 
encourages us to consider 

different solutions or 
points of view

My math teacher notices if 
I have trouble learning 

something

(0.584) (0.610) (0.212) (0.373) (0.652) (0.605)
In math how often do your 

assignments seem 
connected to the real world

The topics are 
interesting/challenging

I finish whatever I begin. 
Like you?

My math teacher wants us 
to become better thinkers, 
not just memorize things

(0.628) (0.562) (0.617) (0.574)
Do you think math can 

help you understand 
questions or problems that 

pop up in your life?

Times per week you talk 
with your parents or 

friends about what you 
learn in math class

I am a hard worker. Like 
you?

In math how often do you 
talk about different 

solutions or points of view

(0.507) (0.373) (0.691) (0.501)
Number of students in 

math class who feel it is 
important to pay attention 

in class

I don't give up easily. Like 
you?

My math teacher explains 
things in a different way if 

I don't understand 
something in class

(0.305) (0.623) (0.595)

Notes: Each factor is represented in a different column. The individual questions used to create each factor are presented. The rotated factor loadings are presented
in parentheses under each question.



Appendix D. Effect Heterogeneity by Teacher Quality.

As a start, we use the teacher value-added model as presented in Jackson et al. (2014).26 We show
that marginal effects in this standard value-added model, when aggregated up to the teacher level,
yield a very intuitive interpretation in conditional quantile regression models. Specifically, we
will show that when average student test scores (at the teacher level) are used as an outcome, the
estimated coefficient of a randomized treatment using conditional quantile regression at quantile
τ , is the estimated effect of that treatment on teachers at the τth percentile of the teacher quality
distribution.

The standard teacher effects model states that student test scores are determined as below:

Yit = Xitβ +µt +θc + εit

Here Yit is student i’s test score, where student i is being taught by teacher t. Xit are observable
student covariates, εit is the idiosyncratic student-level effect, θc is the classroom fixed effect, and,
finally, µt is the teacher t’s value added. That is, a teacher’s value added is the average increase
(relative to baseline) in student test scores caused by the teacher. Let us aggregate this model to the
teacher level by taking averages.

Ȳt =
1
S

S

∑
i=1

Yit = X̄tβ +µt +θc + ε̄t

Our hypothesis is that teacher effects are impacted by the treatment. That is, we posit that:

µt = βT Tt +νt

, where βT is the influence of Mathalicious lessons on the teacher’s value added, while νt is the
teacher fixed effect before introducing the treatment. The full model is now:

Ȳt = βT Tt + X̄tβ−T +νt +θc + ε̄t (4)

Now note that treatment was randomized across teachers. In terms of our model this means that Tt
is independent of all other random variables in the model, i.e. Tt ⊥⊥ {X̄t ,νt ,θc, ε̄t}. Now, assuming
that βT and β−T may vary with the quantile τ , let us apply the quantile function to the equation
above:

Qτ(ȳt |T, X̄) = βT (τ)Tj + X̄tβ−T (τ)+Qτ(νt(τ)+θc(τ)+ ε̄t(τ)|X̄)

Now, assuming Qτ(νt(τ)+ θc(τ)+ ε̄t(τ)|T, X̄) = 0 for each quantile τ ,27 the quantile regression
coefficient β̂T (τ) is a consistent estimate of βT (τ) in the model 4. Moreover, it is asymptotically
normal. This can be proven by putting the moments into a GMM framework, e.g. see Buchinsky
(1998). To conclude, conditional quantile regression model provides marginal effect estimates at
particular quantiles of the distribution of the residual, which in our case can be interpreted as teacher
value-added.

26We suppress the time subscript, as there is no time dimension in our application.
27This is a standard assumption in the quantile regression literature. For a reference, see e.g. Buchinsky (1998)



Appendix E. Quantile Regression: English Test Scores.

Figure E1. Marginal Effect of the Full Treatment by Classroom Quality.
Falsification Test: English Test Scores.
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Notes: The solid black line represents treatment effect estimates that result from model (1) being evaluated at different
quantiles of teacher quality using conditional quantile regression. Teacher-level average standardized 2014 English test
scores serve as the main outcome. The shaded area depicts the 90% confidence interval for each regression estimate.
For a formal discussion of the method, see Appendix D.



Appendix F. Test Score Regressions - Teacher Level.

Table F1. Effect on Student Math Scores, Aggregated to the Teacher Level.

2014 Raw 
Score

2014 Raw 
Score

2014 
Standardized 

Score

2014 
Standardized 

Score

2014 Raw 
Score

2014 
Standardized 

Score
(1) (2) (3) (4) (5) (6)

License Only 1.669 4.291** 0.017 0.055* 2.096 0.015
[2.087] [2.072] [0.034] [0.032] [5.874] [0.022]

Full Treatment 8.401*** 7.905*** 0.093** 0.093*** 1.637 0.003
[2.431] [2.234] [0.039] [0.035] [3.826] [0.024]

District FE x Requested Y Y Y Y Y Y
District FE x Lagged Test Scores Y Y Y Y Y Y
All controls N Y N Y Y Y
Observations 363 363 363 363 363 363
Unit of Observation Teacher Teacher Teacher Teacher Teacher Teacher

Mathematics Falsification: English

Notes: *** - significance at less than 1%; ** - significance at 5%; * - significance at 10%. Robust standard errors
are reported in square brackets. All specifications include controls for the requested indicator, average teacher-level
2013 math and reading test scores, and teacher-level shares of students with missing 2013 math and reading test scores
- all interacted with district fixed effects. Other controls include teachers’ education level, years of experience, sex,
race, grade fixed effects, as well as the percentage of male, black, white, Asian, and Hispanic students in their class.
Standardized scores refer to the raw scores standardized by exam type. In the absence of exam type data for Hanover,
test scores for that district were standardized by grade.



Appendix G. Stylized Model of Teacher Multitasking.

G1. General set-up

Let us consider the general optimization problem for a teacher and then lay out the parametric
assumptions we impose. In our model, a teacher cares about her students’ test scores (yi, where i is
a student from a class of size s). In turn, student i’s test score depends on the teacher’s allocation
of time (T ) between planning lessons (d) and other tasks (n). Teacher’s (in)ability to plan lessons
is modeled as a ‘price’ pd that amplifies the time needed to achieve d units of lesson quality.
Similarly, ‘price’ pn denotes the teacher’s ability to achieve n units of other teaching tasks. Note
that the higher teacher’s abilities are, the lower are her corresponding p’s. Formally, we write:

U
({

yi(n,d)
}s

i=1

)
→ max
{n,d}

(5)

s.t. pnn+ pdd ≤ T
n≥ 0 ; d ≥ 0

We model off-the-shelf lessons as a technology that guarantees a minimum quality of lesson plan-
ning d at a fixed time cost F . Teachers can either stick to their own efforts or delegate part of lesson
planning to off-the-shelf lessons. If a teacher chooses to pay a fixed cost F and adopt off-the-shelf
lessons, she is now able to spend the time saved from adopting lessons (pdd) on improving the
lessons further or on other tasks. Thus, the optimization problem of a teacher with off-the-shelf
lessons could be formally written as follows:

U
({

yi(n,d)
}s

i=1

)
→ max
{n,d}

(6)

s.t. pnn+ pdd ≤ T + pdd−F
n≥ 0 ; d ≥ d

G2. Special Case with Functional Form Assumptions

For the ease of exposition, we will consider a special case of the model with two functional form
assumptions. Let U be a weighted average of students’ test scores:

U
({

yi(n,d)
}s

i=1

)
=

1
s

s

∑
i=1

wiyi(n,d)



Furthermore, let yi be a Cobb-Douglas-type function with a common elasticity α ∈ [0,1], but with
a student-level heterogeneity parameter Ai:28

yi(n,d) = Ainαd1−α

Finally, we assume that the stock of time is large enough, so that:29

T >
α

1−α
pdd +F

This assumption allows us to rule out the possibility that some teachers will choose to locate at the
kink of the budget line with off-the-shelf lessons. Instead, we can focus on teachers with a budget
line that continues as a straight line after reaching the kink (drawn as a dotted line on Panels C and
D in Figure 1).30

G2.1. Solving the model without off-the-shelf lessons

After solving the problem in (5) using standard arguments for a Cobb-Douglas utility functions, we
get the following optimal allocation:

n∗ =
αT
pn

; d∗ =
(1−α)T

pd

The optimal level of test scores is:

U(n∗,d∗) =
s

∑
i=1

wiAiT
s

[
αα(1−α)1−α

pα
n p1−α

d

]
(7)

28Ai > 0 can be interpreted as student i’s ability or an individual shock parameter. Technically, Ai is indistinguishable
from the weight wi with which a teacher values student i’s test score.

29Under α = 1/2 this assumption is equivalent to a statement that the stock of time each teacher possesses is large
enough to cover both the fixed cost of lesson adoption (F) and the time needed to achieve d on her own (pdd). Given
that a teacher has to spend much time on tasks unrelated to designing lessons (n), this assumption is reasonably weak.
It also captures an intuition that the fixed cost of adopting the lessons are not likely to be prohibitively large. Finally,
this assumption leads to a realistic outcome that it will always be optimal to spend some of one’s own time planning
lessons, even if the online lessons are high quality.

30Many of these assumptions are made solely for the illustrative purposes and could be relaxed. For instance,
we could obtain similar predictions under the general utility and test score functions with reasonable assumptions
on derivatives, as the main driving forces behind our results would remain unchanged. One could also weaken the
assumption that the cost of adopting a lessons F does not depend on teacher ability - to the extent that the wedge
between the cost differential is not as sharp as a difference between pdd∗ and p′dd∗ where p′d > pd , our predictions will
still go through. (This latter conjecture is intuitive because low ability teachers will likely be much closer to high ability
teachers in adopting lessons than in creating lessons of similar quality from scratch.) Similarly, one could weaken the
assumption that teachers do not locate at the kink of the budget line, as this assumption does not change the fact that
(i) the direct increase in lesson quality will be more important for the low ability teachers, (ii) the time savings from
off-the-shelf lessons will be higher for the low ability teachers, and (iii) the law of diminishing returns will reinforce
the differences in benefits across teacher skill.



Note that average test scores decrease both in pn and pd , i.e. increase in teacher ability. This is in
line with our intuition that, all else equal, higher ability teachers would have students with higher
test scores on average.

G2.2. Solving the model with off-the-shelf lessons

Applying similar calculations in Section G2.1 to the problem in (6), and ignoring the constraint of
d ≥ d, we obtain the following optimal allocation:31

ñ =
α(T + pdd−F)

pn
; d̃ =

(1−α)(T + pdd−F)

pd

The optimal level of test scores is:

U(ñ, d̃) =
s

∑
i=1

wiAi(T + pdd−F)

s

[
αα(1−α)1−α

pα
n p1−α

d

]
(8)

G2.3. Adoption of off-the-shelf lessons

A teacher adopts off-the-shelf lessons whenever student test scores under such technology are
greater or equal to the test scores without it. Since teachers are heterogeneous in parameters pn
and pd , let us find a set of threshold values p̂ = {p̂n, p̂d} such that teachers with p̂ are indifferent
between using off-the-shelf lessons and sticking to their own effort. Threshold values p̂ are defined
by the following equation:

s

∑
i=1

wiAiT
s

[
αα(1−α)1−α

p̂α
n p̂1−α

d

]
=

s

∑
i=1

wiAi(T + p̂dd−F)

s

[
αα(1−α)1−α

p̂α
n p̂1−α

d

]
(9)

, with the optimal utility level without off-the-shelf lessons (7) on the left-hand side and the optimal
utility with off-the-shelf lessons (8) on the right-hand side. After canceling repeating parameters,
we get a threshold value of p̂d = F/d. Specifically, teachers choose to adopt off-the-shelf lessons
whenever pd > F/d and choose not to if pd ≤ F/d. These calculations are intuitive as teachers
choose to adopt the lessons whenever time savings from off-the-shelf lessons (pdd) are greater
or equal to the associated time costs (F). Importantly, under our assumptions, this adoption rule
mechanically leads to d̃ ≥ d. To conclude, in our model, the adoption decision fully depends on
the teacher (in)ability to develop lesson plans.

31As will be shown in Section G2.3., ignoring the constraint of d ≥ d is valid in this model. The reason is that
the teachers who choose to adopt the lessons are those for whom, under our assumptions, the optimal level of lesson
planning d̃ without this constraint is larger than d.



G2.4. Evaluating the predictions

Prediction 1: If teachers know their ability, among those who chose to adopt lessons voluntarily,
the gains in average test scores from using the off-the-shelf lessons are non-negative.

This prediction holds by construction, see Section G2.3.

Prediction 2: Among those who chose to adopt lessons, teacher time spent on n (that is, all tasks
complementary to lesson planning) should increase.

Indeed, for those who chose to adopt off-the-shelf lessons, the teacher time spent on
other teaching tasks strictly increases. This follows directly from the adoption rule:

T −F + pdd > T =⇒ ñ =
α(T −F + pdd)

pn
>

αT
pn

= n∗

Prediction 3: Among teachers who chose to adopt lessons, the effect on lesson quality d is positive.

Using the same proof procedure as for Prediction 2, one can show that d̃ > d∗ for
the teachers who chose to adopt off-the-shelf lessons.

Prediction 4: The gains to using off-the-shelf lessons are decreasing in teacher effectiveness (as
measured by ability to raise average test scores).

First, one can show that the gains from adopting the lessons U(ñ, d̃)−U(n∗,d∗) are
strictly increasing in pd:

∂ [U(ñ, d̃)−U(n∗,d∗)]
∂ pd

=
s

∑
i=1

wiAi

s

[
αα(1−α)1−α

p̂α
n p̂1−α

d

][
αd +

(1−α)F
pd

]
> 0

Moreover, one can prove that, when both pd and pn are increased simultaneously by
the same percentage, the difference U(ñ, d̃)−U(n∗,d∗) strictly increases. Specifi-
cally, after taking the exact differential of U(ñ, d̃)−U(n∗,d∗), we show that simul-
taneous increases of pd and pn by the same percentage (i.e. such that d pd/pd =
d pn/pn = ε) lead to an increase of the total difference:

d[Ũ−U∗] =
s

∑
i=1

wiAi

s

[
αα(1−α)1−α

p̂α
n p̂1−α

d

][
[α pdd +(1−α)F ]

d pd

pd
− [α(pdd−F)]

d pn

pn

]
=

=
s

∑
i=1

wiAi

s

[
αα(1−α)1−α

p̂α
n p̂1−α

d

]
Fε > 0

To conclude, our model predicts bigger gains from off-the-shelf lessons for less
effective teachers.



Appendix H. Survey Response and Lesson Downloads.

Table H1. Survey Response and Lessons Downloads.

1 = Participated in 
Both Surveys

1 = Participated in 
Both Surveys

1 = Participated in 
Either Survey

1 = Participated in 
Either Survey

(1) (2) (3) (4)
Lessons Downloaded 0.008 0.011 0.003 0.004

[0.009] [0.008] [0.009] [0.009]
Treatment Status Y Y Y Y
District FE x Requested Y Y Y Y
All controls N Y N Y
Observations 363 363 363 363

Notes: *** - significance at less than 1%; ** - significance at 5%, * - significance at 10%. Robust standard errors are
reported in square brackets. The outcomes are indicators for participation in both (either) mid-year and (or) end-of-year
teacher surveys. All specifications include controls for the treatment indicators and the requested indicator interacted
with district fixed effects. Other controls include average teacher-level 2013 math and reading test scores interacted
with district fixed effects, teacher-level shares of students with missing 2013 math and reading test scores interacted
with district fixed effects, teachers’ education level, years of experience, sex, race, grade fixed effects, as well as the
percentage of male, black, white, Asian, and Hispanic students in their class.



Appendix I. Teacher Survey.

This appendix explores the effects of providing teachers with licenses for off-the-shelf lessons, with
or without complementary supports, on teacher behavior as reported by teachers themselves in an
end-of-year survey.

As with the student surveys, we created factors based on several questions. The first four
factors measure teachers’ classroom practices: the first is based on a single question is how much
homework teachers assign; the second one measures how much time teachers spend practicing
for standardized exams; the third factor measures inquiry-based teaching practices, and the fourth
factor measures how much teacher engage in individual or group work. We also asked questions
regarding teacher attitudes to create three factors. The first factor we construct represents teacher’s
loyalty to the school. The second factor is measuring the level of support coming from schools. The
third factor measures whether teachers enjoy teaching students. Similar to the classroom practices,
we find no systematic changes on these measures. Finally, we also construct a measure of teachers’
perceptions of student attitudes. The first such factor measures whether teachers consider their
students disciplined, and the other factor measures teachers’ perception of the classroom climate
among students.

Table J1 summarizes our regression results. Unfortunately, there are large difference in survey
response rates across the treatment arms for teachers. The fully treated teachers were 12 percentage
points more likely to response to the surveys than control teachers. As such, one should interpret
the teacher survey results with caution. Having presented the limitation of the teacher surveys, the
data provide little evidence that either the full treatment or the license only treatment has any effect
on teacher satisfaction, teacher classroom practices, or their perception of the classroom dynamics
among students. The only practice for which the effect is on the borderline of being statistically
significant is treatment teachers assigning more homework. Taken at face value, these patterns
suggest that teacher in the full treatment condition simply substituted the off-the-shelf lessons for
their own lessons and may have assigned more homework as a results. However, treated teachers
did not appear to make many any other changes to their classroom practices or teaching style. This
implies that the positive observed effects simply reflect off-the-shelf substituting for low teacher
skills rather than any learning of change in teacher teaching style.



Table I1. Teacher Post-Treatment Survey Analysis.

Missing 
survey

Homeworks 
assigned 
(hours)

Time spent 
practicing 

standardized 
exams (%)

Teaching 
practices 
(factor)

Student-
teacher 

interactions 
(factor)

Would like to 
stay in this 

school 
(factor)

Supportive 
school 
(factor)

Enjoy 
teaching 
(factor)

Students are 
disciplined 

(factor)

Student 
group 

dynamics 
(factor)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
License Only 0.071 -0.033 0.007 0.077 -0.024 -0.142 0.010 0.065 0.056 0.064

[0.065] [0.093] [0.241] [0.188] [0.201] [0.164] [0.203] [0.222] [0.190] [0.177]
Full Treatment 0.079 0.117 -0.042 0.003 -0.100 -0.090 -0.019 -0.193 0.173 0.004

[0.076] [0.093] [0.266] [0.195] [0.207] [0.176] [0.217] [0.201] [0.207] [0.209]
District FE x Requested Y Y Y Y Y Y Y Y Y Y
All controls Y Y Y Y Y Y Y Y Y Y
Observations 363 209 209 205 203 207 206 204 205 205

Teacher attitude Student attitudeTeaching practices

Notes: *** - significance at less than 1%; ** - significance at 5%; * - significance at 10%. Robust standard errors are reported in square brackets. Factors are obtained
through factor analysis of related survey questions. For details, see exact factor loadings in Table I2. All specifications include controls for the requested indicator,
average teacher-level 2013 math and reading test scores, and teacher-level shares of students with missing 2013 math and reading test scores - all interacted with
district fixed effects. Other controls include teachers’ education level, years of experience, sex, race, grade fixed effects, as well as the percentage of male, black,
white, Asian, and Hispanic students in their class.



Table I2. Teacher Post-Treatment Survey. Factor Loadings.

Factor 1: Factor 2: Factor 3: Factor 4: Factor 5: Factor 6: Factor 7:

Teaching practices Student-teacher interactions Would like to stay in this 
school Supportive school Enjoy teaching Students are disciplined Student group dynamics

How often do you ask your 

students to:

How often do students do 

the following?

How many of your students 

do the following?

… explain the reasoning 
behind an idea?

Work individually without 
assistance from the teacher

I usually look forward to 
each working day at this 

school

My school encourages me to 
come up with new and 

better ways of doing things.

Teaching offers me an 
opportunity to continually 

grow as a professional.
Come to class on time.

Students build on each 
other’s ideas during 

discussion.
(0.464) (0.585) (0.754) (0.705) (0.329) (0.20) (0.734)

... analyze relationships 
using tables, charts, or 

graphs?

Work individually with 
assistance from the teacher I feel loyal to this school.

I am satisfied with the 
recognition I receive for 

doing my job.

I find teaching to be 
intellectually stimulating. Attend class regularly. Students show each other 

respect.

(0.608) (0.713) (0.705) (0.679) (0.47) (0.226) (0.51)
… work on problems for 

which there are no obvious 
methods of
solution?

Work together as a class 
with the teacher teaching 

the whole class

I would recommend this 
school to parents seeking a 

place for their child

The people I work with at 
my school cooperate to get 

the job done.

I enjoy sharing things I’m 
interested in with my 

students

Come to class prepared with 
the appropriate supplies and 

books.

Most students participate in 
the discussion at some 

point.

(0.626) (0.635) (0.675) (0.496) (0.692) (0.516) (0.60)
… use computers to 

complete exercises or solve 
problems?

Work together as a class 
with students responding to 

one another

I would recommend this 
school district as a great 

place to work for my friends

I have access to the 
resources (materials, 

equipment, etc.) I need
I enjoy teaching others. Regularly pay attention in 

class.
Students generate topics for 

class discussions.

(0.277) (0.355) (0.414) (0.424) (0.731) (0.733) (0.636)

… write equations to 
represent relationships?

Work in pairs or small 
groups without assistance 

from each other

If I were offered a 
comparable teaching 

position at another district, I 
would stay.

I find teaching interesting. Actively participate in class 
activities.

(0.395) (0.221) (0.502) (0.713) (0.747)

… practice procedural 
fluency?

Work in pairs or small 
groups with assistance from 

each other
Teaching is challenging. Always turn in their 

homework.

(0.206) (0.182) (0.194) (0.685)
Teaching is dull.

(-0.435)
I have fun teaching

(0.673)
Teaching is inspiring.

(0.59)

Notes: Each factor is represented in a different column. The individual questions used to create each factor are presented. The rotated factor loadings are presented
in parentheses under each question.



Appendix J. Instrumental Variables Estimation.

As an additional test of whether lesson use is indeed responsible for an increase in math scores,
we estimate instrumental variables regressions of test scores against lesson use using indicators
for the six treatments as instruments. Note that we impute lesson use for those with missing or
incomplete use data. The results are presented in Table J1. Looking at the student level regression
(Column 2), the instrumental variable coefficient on lessons taught is 0.033σ and is statistically
significant at the 5 percent level. The effects are similar at the teacher level (Column 4). Note
that in both these models the first stage F-statistic is above 10. In our placebo tests, the effects for
English scores are very close to zero and are not statistically significant (Columns 8). To directly
test for the possibility that the additional supports may have a positive effect irrespective of lesson
use, we estimate the same instrumental variables regression while controlling for receiving the full
treatment. In such models (Column 3 and 6), conditional on lesson use, the coefficient on the full
treatment dummy is negative and not statistically significant, while the coefficient on lesson use is
slightly larger (albeit no longer statistically significant due to larger standard errors). This is very
similar to the results based on comparisons across the different treatments. Overall the patterns
presented are inconsistent with the benefits being due to the extra supports, and provide compelling
evidence that all of our effects are driven by the increased lesson use itself.



Table J1. Instrumental Variables (IV) Estimation with Lessons Taught as an Endogenous Variable.

2014 
Standardized 

Score

2014 
Standardized 

Score

2014 
Standardized 

Score

2014 
Standardized 

Score

2014 
Standardized 

Score

2014 
Standardized 

Score

2014 
Standardized 

Score

2014 
Standardized 

Score

(1) (2) (3) (4) (5) (6) (7) (8)
Lessons Taught 0.038** 0.033** 0.039 0.044** 0.039** 0.032 0.002 0.004

[0.018] [0.015] [0.033] [0.018] [0.016] [0.031] [0.010] [0.008]
Full Treatment -0.014 0.018

[0.076] [0.071]
District FE x Requested Y Y Y Y Y Y Y Y
District FE x Teacher-Level Lagged Test Scores Y Y Y Y Y Y Y Y
District FE x Individual Lagged Test Scores Y Y Y N N N Y Y
All controls Y Y Y Y Y Y Y Y
Observations 27,613 27,613 27,613 363 363 363 25,038 25,038
First Stage F-stat 23.84 41.87 4.607 15.51 16.69 3.252 20.94 46.52
Unit of Observation Student Student Student Teacher Teacher Teacher Student Student
Instruments Treatment Treatment X 

District
Treatment X 

District
Treatment Treatment X 

District
Treatment X 

District
Treatment Treatment X 

District

Falsification: EnglishMathematics

Notes: *** - significance at less than 1%; ** - significance at 5%, * - significance at 10%. Standard errors clustered at the teacher level are reported in square
brackets. All specifications include controls for the requested indicator, average teacher-level 2013 math and reading test scores, and a teacher-level shares of
students with missing 2013 math and reading test scores - all interacted with district fixed effects. Additional controls include teachers’ education level, years of
experience, sex, race, grade fixed effects, as well as the percentage of male, black, white, Asian, and Hispanic students in their class. In addition, the student-level
specifications in Columns (1)-(3) and (7)-(8) control for individual-level math and reading test scores and all student level demographics. Standardized test scores
refer to the raw test scores standardized by exam type. In the absence of exam type data for Hanover, test scores for that district were standardized by grade.



Appendix K. Sample Mathalicious Lesson #1.

This appendix includes the first 3 out of 7 pages extracted from the lesson guide for teachers.

 

lesson 
guide 

licensed under CC-BY-NC 

NEW-TRITIONAL INFO 
How long does it take to burn off food from McDonald’s? 

  

 

Many restaurants are required to post nutritional information for their foods, 
including the number of calories.  But what does “550 calories” really mean?  
Instead of calories, what if McDonald’s rewrote its menu in terms of exercise? 

In this lesson, students will use unit rates and proportional reasoning to 
determine how long they’d have to exercise to burn off different McDonald’s 
menu items.  For instance, a 160-pound person would have to run for 50 
minutes to burn off a Big Mac.  So…want fries with that?! 

 

Primary Objectives 

 

 Calculate the number of calories burned per minute for different types of exercise and body weights 

 Correctly write units (e.g. calories, cal/min, etc.) and simplify equations using them 

 Calculate how long it would take to burn off menu items from McDonald’s 

 Discuss effects of posting calorie counts, and what might happen if exercise information were posted instead 
 

 

Content Standards (CCSS) Mathematical Practices (CCMP) Materials 

   
Grade 6 RP.3d, NS.3 MP.3, MP.6  Student handout 

 LCD projector 

 Computer speakers 
    

 

Before Beginning… 

Students should understand what a unit rate is; if they have experience calculating and using unit rates to solve 
problems, even better. 
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Lesson Guide: NEW-TRITIONAL INFO 

 

Preview & Guiding Questions 

Students watch a McDonald’s commercial in which NBA superstars LeBron James and Dwight Howard play one-on-
one to determine who will win a Big Mac Extra Value Meal.  When it’s done, ask students, “How long do you think 
LeBron James would have to play basketball to burn off all the calories in a Big Mac?” 

The goal isn’t for students to come up with an exact answer.  Instead, it’s to get them thinking about the various 
factors that determine how many calories someone burns when he/she exercises.  People burn calories at a faster 
rate when they do more strenuous exercise.  Also, larger people burn more calories doing the same activity than 
smaller people.  We don't expect students to know these things for sure, but they might conjecture that easier 
activities burn fewer calories, and that different people doing the same activity burn calories at a different rate. 

 How long do you think LeBron James would have to play basketball to burn off the calories in a Big Mac? 

 What are some factors that might determine how long it would take someone to burn off calories? 

 Do you think everyone burns the same number of calories when they exercise?  Why or why not?  

 

Act One 

After students have discussed some possible factors affecting how quickly someone burns calories, they will learn in 
Act One that there are three essential things to consider: their body, the type of exercise, and the duration of 
exercise.  Students will first calculate how many calories people with different body types (including LeBron) will 
burn per minute while performing a variety of activities.  Based on this, they’ll be able to answer the question in the 
preview: LeBron would have to play basketball for about 86 minutes in order to burn off a Big Mac Extra Value Meal.  
Even if he played for an entire game, he wouldn’t be able to burn off his lunch! 

 

Act Two 

Act Two broadens the scope even further by considering a wider assortment of exercises and different McDonald’s 
items.  Students will determine how long someone would have to do different activities to burn off each menu item.  
Then, they will listen to an NPR clip about the fact that McDonald’s now posts calorie information for all of its items 
on the menu.  Students will discuss whether or not this seems like an effective way to change people’s behavior.  We 
end with the following question: what might happen if McDonald’s rewrote its menu in terms of exercise? 

 
 
 

 



 

 
 

3 
Lesson Guide: NEW-TRITIONAL INFO 

Act One: Burn It 

1 When you exercise, the number of calories you burn depends on two things: the type of exercise and your weight.  Playing 
basketball for one minute, for example, burns 0.063 calories for every pound of body weight. 

Complete the table below to find out how many calories each celebrity will burn in one minute of exercise. 

  

    

cal. burned in one min. 
Selena Gomez Justin Timberlake Abby Wambach LeBron James 

125 lb 160 lb 178 lb 250 lb 

 
Basketball 
0.063 cal/lb 

7.88 calories 
per minute 

10.08 calories 
per minute 

11.21 calories 
per minute 

15.75 calories 
per minute 

 
Soccer 
0.076 cal/lb 

9.50 calories 
per minute 

12.16 calories 
per minute 

13.53 calories 
per minute 

19.00 calories 
per minute 

 
Walking 
0.019 cal/lb 

2.38 calories 
per minute 

3.04 calories 
per minute 

3.38 calories 
per minute 

4.75 calories 
per minute 

 

 

Explanation & Guiding Questions 

The math in this question is fairly straightforward.  However, students might get confused by all the different units, 
and it may be worth demonstrating how they simplify.  For instance, when LeBron James plays basketball, he burns 
0.063 calories for every pound of body weight each minute.  Since he weighs 250 pounds, he will burn 

( 
0.063 cal

1 lb
 × 250 lb) per minute = 

0.063 cal

1 lb
 × 

250 lb

1
 per minute = 15.75 calories in one minute. 

Of course, not all students will be this intentional with their units, and it would be cumbersome to repeat this 
process for all twelve boxes.  Still, it may be worth pointing out how the units simplify, lest “calories per minute” 
seem to come out of left field.  However students calculate their unit rates, they should be able to explain what they 
mean in their own words, e.g. “Every minute that LeBron plays basketball, he burns 15.75 calories.” 

 For a given exercise, who do you think will burn more calories in a minute – LeBron or Selena – and why? 

 What does the unit rate, “0.063 calories per pound,” mean? 

 What does the unit rate, “15.75 calories per minute,” mean? 

Deeper Understanding 

 Why do you think Selena Gomez burns so many fewer calories than LeBron does?  (All your cells consume 
energy, i.e. burn calories, and LeBron, being so much heavier, has many more cells.) 

 Why does playing soccer burn so many more calories per minute than walking does?  (In soccer, a player 
runs, jumps, and kicks.  These require more energy than walking.  A calorie is a measure of energy.) 

 How long would someone have to walk to burn the same number of calories as a minute of soccer?  (Since 
walking burns 1/4 the calories of soccer, a person would have to walk 4 times as long, or 4 minutes.) 



Appendix L. Sample Mathalicious Lesson #2.

This appendix includes the first 3 out of 8 pages extracted from the lesson guide for teachers.

	

lesson	
guide	

licensed	under	CC-BY-NC	

XBOX	XPONENTIAL	
How	have	video	game	console	speeds	changed	over	time?	

	 	

	

In	 1965	 Gordon	Moore,	 computer	 scientist	 and	 Intel	 co-founder,	 predicted	
that	computer	processor	speeds	would	double	every	two	years.		Twelve	years	
later	the	first	modern	video	game	console,	the	Atari	2600,	was	released.	

In	this	lesson,	students	write	an	exponential	function	based	on	the	Atari	2600	
and	Moore's	Law	and	research	other	consoles	to	determine	whether	they've	
followed	Moore's	Law.	

	

Primary	Objectives	

	
• Apply	an	exponential	growth	model,	stated	verbally,	to	various	inputs	
• Generalize	with	an	exponential	function	to	model	processor	speed	for	a	given	year	
• Research	actual	processor	speeds,	and	compare	them	to	the	model's	prediction	
• Calculate	the	annual	growth	rate	of	the	model	(given	biannual	growth	rate)	
• Use	technology	to	model	the	actual	processor	speeds	with	an	exponential	function	
• Interpret	the	components	of	the	regression	function	in	this	context,	and	compare	them	to	the	model	

	
	

Content	Standards	(CCSS)	 Mathematical	Practices	(CCMP)	 Materials	

	 	 	
Functions	

	
	

Statistics	

IF.8b,	BF.1a,	LE.2,	
LE.5	
	
ID.6a	

MP.4,	MP.7	 • Student	handout	
• LCD	projector	
• Computer	speakers	
• Graphing	calculators	
• Computers	with	Internet	

access	
	 	 	 	
	

Before	Beginning…	

Students	should	be	familiar	with	the	meaning	of	and	notation	for	exponents,	square	roots,	percent	growth	and	the	
basics	of	exponential	functions	of	the	general	form	y	=	abx.	 	Students	will	need	to	enter	data	in	calculator	lists	and	
perform	an	exponential	regression,	so	if	they're	inexperienced	with	this	process,	you	will	need	time	to	demonstrate.	
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Preview	&	Guiding	Questions	

We'll	begin	by	watching	a	short	video	showing	the	evolution	of	football	video	games.	

	 	 	 	

Ask	students	to	sketch	a	rough	graph	of	how	football	games	have	changed	over	time.		Some	will	come	up	with	a	graph	
that	 increases	 linearly,	 perhaps	 some	 increasing	 at	 an	 accelerating	 rate.	 	 Some	 students	may	 show	 great	 leaps	 in	
technology	with	new	inventions,	while	others	may	show	the	quality	leveling	off	in	the	more	recent	past.	

Then,	 ask	 them	 to	 label	 the	axes.	 	 The	horizontal	 axis	will	 be	 time	 in	 years,	 but	what	 about	 the	 vertical	 axis?	 	Ask	
students	to	describe	what	they	are	measuring,	exactly,	when	they	express	the	quality	of	a	video	game.	 	They	might	
suggest	realism,	speed	or	power.		Students	should	try	to	explain	how	they	would	measure	these	(or	others	they	come	
up	with),	and	 realize	 that	while	a	 subjective	element	 like	 "realism"	 is	difficult	 to	quantify,	 it	 is	possible	 to	measure	
speed	(in	MHz)	of	a	console's	processor.	

• Sketch	a	graph	of	how	you	think	video	games	have	changed	over	time.	
• What	was	the	reasoning	behind	the	shape	of	the	graph	you	sketched?	
• What	does	your	horizontal	axis	represent?	
• What	label	did	you	assign	to	the	vertical	axis?		Which	of	these	are	measureable?	

	

Act	One	

In	1965	Gordon	Moore,	 computer	 scientist	 and	 Intel	 co-founder,	 predicted	 that	 computer	processor	 speeds	would	
double	 every	 two	 years.	 	 Starting	 with	 the	 1.2	 MHz	 Atari	 2600	 in	 1977	 (the	 first	 console	 with	 an	 internal	
microprocessor),	 students	 apply	 the	 rule	 "doubles	 every	 two	 years"	 to	 predict	 the	 speed	 of	 consoles	 released	 in	
several	different	years.	 	By	extending	 the	 rule	 far	 into	 the	 future,	 they	are	motivated	 to	write	a	 function	 to	model	
processor	speed	in	terms	of	release	year:	1.2	⋅	2t/2.		They	will	understand	that	1.2	represents	the	speed	of	the	initial	
processor,	the	base	of	2	is	due	to	doubling,	and	the	exponent	t/2	represents	the	number	of	doublings.	

	

Act	Two	

How	does	the	prediction	compare	to	what	has	actually	happened?		Students	research	the	actual	processor	speed	of	
several	consoles	released	over	the	years.		By	comparing	predicted	vs.	actual	processor	speeds	in	a	table,	we	see	that	
they	were	slower	 than	Moore's	Law	predicted.	 	How	different	are	 the	models,	 though?	 	Students	 first	algebraically	
manipulate	the	"doubling	every	two	years"	model	to	create	one	that	expresses	the	growth	rate	each	year.		Then,	they	
use	 the	 list	and	regression	 functionality	of	 their	graphing	calculators	 to	create	an	exponential	 function	 that	models	
the	actual	data.		By	comparing	the	two	functions,	they	conclude	that	while	the	actual	annual	growth	rate	(30%)	was	
slower	than	the	predicted	annual	growth	rate	based	on	Moore's	Law	(41%),	the	Atari	2600	was	also	ahead	of	its	time.	
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Act	One:	Moore	Fast	

1 In	1965,	computer	scientist	Gordon	Moore	predicted	that	computer	processor	speeds	would	double	every	two	
years.		Twelve	years	later,	Atari	released	the	2600	with	a	processor	speed	of	1.2	MHz.	

Based	on	Moore’s	Law,	how	fast	would	you	expect	the	processors	to	be	in	each	of	the	consoles	below?	

	 	 	 	 	 	
Atari	2600	 Intellivision	 N.E.S.	 Atari	Jaguar	 GameCube	 XBOX	360	

1977	 1979	 1983	 1993	 2001	 2005	

1.2	MHz	 2.4	MHz	 9.6	MHz	 307.2	MHz	 4,915	MHz	 19,661	MHz	

	 								×2	 						×2×2	 ×2×2×2×2×2	 				×2×2×2×2	 										×2×2	  

 
Explanation	&	Guiding	Questions	

Before	turning	students	loose	on	this	question,	make	sure	they	can	articulate	the	rule	"doubles	every	two	years".			

It	is	common	for	students	to	correctly	double	1.2MHz	and	get	2.4	MHz	in	1979,	but	then	to	continue	adding	1.2	at	a	
constant	rate	every	two	years.		Most	will	self-correct	as	they	check	in	with	their	neighbors,	but	be	on	the	lookout	for	
that	misunderstanding	of	the	pattern.			

Once	students	have	finished	the	table,	and	some	have	started	to	think	about	the	next	question,	you	can	display	the	
answers	and	prompt	students	to	explain	their	reasoning.	

• Restate	Moore's	Law	in	your	own	words.	
• How	many	times	should	the	processor	speed	have	doubled	between	the	release	of	the	Intellivision	and	the	

release	of	the	N.E.S.?	
• What	operation	did	you	keep	doing	over	and	over	again?	
• Where	did	that	307.2	come	from?		How	did	you	calculate	that?	

Deeper	Understanding	

• What's	an	easier	way	to	write	×2×2×2×2×2?		(×25)	
• In	what	year	would	Gordon	Moore	say	a	76.8	MHz	processor	would	be	released?		(1989,	since	76.8	=	9.6	×	23,	

so	6	years	after	1983.)	
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