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Prices versus Quantities with Policy Updating∗

William A. Pizer† and Brian Prest‡
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Abstract

This paper considers how policy updates and trading of regulated quantities over time
changes the traditional comparative advantage of prices versus quantities. Quantity regula-
tion that can be traded over time leads firms to set current prices equal to expected future
prices. A government seeking to maximize net societal benefits can take advantage of this
behavior with a sequence of quantity policy updates that achieves the first best in all periods.
Under price regulation where current prices remain fixed until future policy changes occur,
no such opportunity exists to achieve the first best, and prices are never preferred. However,
if we assume policy updates are driven in part by political “noise” rather than maximizing
net societal benefits, the result changes and prices can again be preferred. The comparative
advantage now depends the relative variance of noise shocks compared to true cost and ben-
efit shocks. This contrasts sharply with the traditional comparative advantage that depends
on the relative slopes of marginal costs and benefits. Applied to climate change, we estimate
the comparative advantage of intertemporally tradable quantities (over prices) to be $2 bil-
lion over five years. This estimate grows if updates occur less frequently or could be made
negative by political noise.

1 Introduction

For more than forty years, economic thinking about the relative welfare advantage of alternative
price and quantity regulation under uncertainty has gone something like this: When the regulator
is uncertain about costs known to firms, the difference in expected net benefits between otherwise
equivalent price and quantity policies hinges on the difference between the slopes of the marginal
benefit and cost schedules, multiplied by the variance of the cost shock (Weitzman 1974). One
intuition is that government policy is attempting to replicate society’s expected marginal benefits
in the form of a demand schedule in the regulated market. A flat schedule (prices) works better
when marginal benefits are relatively flat (e.g., Pizer 2003); a vertical schedule (quantities) works
better when marginal benefits are relatively steep. A corollary to the Weitzman result is that
uncertainty about marginal benefits (unless correlated with costs) does not affect comparative
advantage of the two instruments (Stavins 1996).

∗The authors appreciate comments from seminar participants at the 2016 AERE Summer Meeting, the Beijing
Institute of Technology, the 2016 NBER Spring Meeting, and the Duke Environmental Economics Workshop, as
well as Gilbert Metcalf, Terry Dinan, and Roger von Haefen.
†Sanford School of Public Policy, Duke University. billy.pizer@duke.edu
‡University Program in Environmental Policy, Duke University. brian.prest@duke.edu
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As we show in this paper, however, the outcomes can change significantly in a dynamic set-
ting. In a model that extends Weitzman to multiple periods with policy updating, we show that
intertemporally tradable quantity regulation can always achieve the first-best outcome. Price reg-
ulation can only achieve the first best in special cases and is never strictly preferred in this setting.
Moreover, the comparative advantage now depends on uncertainty about both costs and bene-
fits. We obtain this result despite the maintained assumption that the government sets its policy
for each period based on previous-period information, while the firm chooses its action based on
current-period information.

This result arises because of the interaction between policy updating and the arbitrage condition
created by an interteporally tradable quantity regulation. In the static model, cost shocks lead
price and quantity regulation to diverge in different ways from the first best. The same outcomes
would occur in our dynamic setting if the quantity instrument could not be traded across periods,
regardless of whether policies are updated or not. With intertemporal trading, however, the
opportunity to save (or borrow) regulated quantities for (or from) the next period implies an
arbitrage condition between current and expected next-period prices as firms cost minimize. A
benefit-maximizing government can take advantage of this behavior with a particular strategy of
updating the quantity regulation in order to achieve the first best. It can do this even with its
constraint of setting policy each period based on previous-period information.

By contrast, under price regulation there is no comparable arbitrage condition. The govern-
ment’s strategy of updating the price regulation can influence expectations about next-period
prices and policies, but cost-minimizing behavior by firms does not change the current-period
price that they face. That is, if firms shift polluting activity in response to expectations about
future pollution taxes, they do not affect the current pollution tax. Coupled with the assump-
tion that the current-period policy is set based on previous-period information, the best that a
benefit-maximizing government can do with a price policy in this setting is to achieve a second-best
outcome similar to the result in Weitzman (1974).

Viewed another way, a dynamic policy setting can relax the information requirements needed to
achieve the first-best policy. An intertemporally tradable quantity policy need not be set to achieve
the first-best outcome in any particular period so long as firms expect the quantity allocation to
be adjusted appropriately in the future. Our proof requires a final period where uncertainty is
finally resolved and, in general, the regulator may need to use trading ratios to manipulate the
arbitrage condition. However, in a simple two-period model without discounting, we show how the
government merely sets the first-best allocation in the second period plus a “top-up” for the first
period.

Of course it far from obvious whether policy updates to a particular regulation are always
driven by society’s welfare maximization. With this in mind, our paper considers the possibility
that the regulator’s objective deviates from society’s marginal net benefits by some amount. This
could reflect special interest politics, as environmental advocates or business interests hold too
much sway over the government, or legal or other constraints. This possibility — what we might
call uncertain political “noise” — favors price regulation as the adverse influence is at least delayed
until the policy takes effect.

The motivation for this line of thinking stems from an attempt to explain observed outcomes
under real-world quantity regulation and to relate these outcomes to the question of comparative
advantage. Figure 1 shows the price behavior in the SO2 trading program from 1995 through
2010. Starting in 2004, future reforms to the program — a policy update in the form of the Clean
Air Interstate Rule or CAIR — began to be debated. This new rule would have updated the
existing policy to reflect newer evidence of improved health benefits from lower emission levels
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Figure 1: History of SO2 allowance spot market prices as 2010 updates were developed

(that is, higher marginal benefits of the policy). While none of the changes to the program would
have come into effect prior to 2010, the current (spot) price of SO2 emission permits moved in
parallel to shifting expectations of future prices because of the ability to save or “bank” current
permits for future use. Current prices adjusted to reflect the improved marginal benefit estimates
that were to be implemented in the future, thereby achieving these higher net benefits in practice
almost immediately. Had an SO2 tax been in place, however, an expectation of a higher tax in
2010 would not have influenced the current tax. This feature arguably favors quantity regulation,
as the planned improvement in the policy target is realized immediately, before the change has
actually been implemented.

Starting in 2006, however, the price fell as the EPA reconsidered the proposed rules and later
court challenges succeeded in vacating the regulation. In this case, particularly as the price fell
to zero well before the new policy came into effect, an SO2 tax would have at least maintained
the previous level of net benefits until any policy update occured. Thinking through events in
this market, one sees that the distinction between price and quantity regulation relates to the
equalization of current and expected future prices under quantity regulation. The comparative
advantage then depends on the degree to which future policy updates and prices reflect welfare
maximization or something else.

The SO2 program is far from unique in terms of intertemporal trading and policy updating.
The linkage over time of markets for regulated quantities through permit banking is consistent
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with virtually all existing tradable permit programs.1 Meanwhile, most real-world environmental
regulations are updated over time in response to new information. The 1970 Clean Air Act
makes specific provisions for the National Ambient Air Quality Standards to be updated every
five years in response to new information (see 42 U.S. Code §7409). More recently, the European
Union announced a package of changes in their Emissions Trading Scheme, in large part owing to
low prices and (presumably) low compliance costs.2 California is similarly contemplating revised
targets for the next phases of their program, hopefully based on improved information.3 At the
U.S. federal level, in 2010 an interagency working group estimated the social cost of carbon (SCC)4

to be $24 per metric ton in 2010. That number was revised upward to $37 based on new modeling
estimates of damages in 2013.5

There is a similar list of policy updates where one might question whether aggregate welfare
maximization is the main goal. These include New Jersey’s decision to exit the Regional Green-
house Gas Initiative (RGGI) in May 2011, Australia’s decision to terminate their carbon pricing
program in July 2014, and the U.S. Supreme Court decision to stay implementation of the Clean
Power Plan in February 2016.

In the remainder of the paper, we first review the basic Weitzman (1974) result and other
relevant literature. We then show how the Weitzman result changes if we allow policy updates
and intertemporal quantity trading. To illustrate our main results, we present a simple two-
period model with a common shock across both periods and no discounting. After showing how
intertemporally tradable quantity regulation can achieve the first best outcome, we introduce
the possibility that policy updates might be driven by influences other than new information
about costs and benefits, such as shifting special interests or evolving legal or other constraints.
This reintroduces the possibility that price regulation is strictly preferred, with the comparative
advantage determined by the magnitude of this policy noise relative to new information about
costs and benfits. All of these results can be generalized to multiple periods with AR(1) error
processes and discounting, as we demonstrate in section 5. Finally, we apply our model to the case
of global climate change, estimating that intertemporally tradable quantities provide an expected
welfare gain over price regulation of $2 billion per five-year period, assuming policies are updated
every five years, a number that grows if updates occur less frequently.

2 The Weitzman Result and Subsequent Work

In his seminal 1974 article, Martin Weitzman explored the difference between price and quantity
regulation in a simple linear model. Assuming costs and benefits represented by

C(q, θ) = c0 + (c1 + θ)(q − q̂) + c2
2

(q − q̂)2 (1)

B(q, η) = b0 + (b1 + η)(q − q̂)− b2
2

(q − q̂)2, (2)

1This includes lead phase-down program in the 1980s, the acid rain program in the 1990s and 2000s, the
European Emissions Trading Scheme, California’s cap-and-trade program, among others. Most programs allow
limited borrowing.

2See http://ec.europa.eu/clima/policies/2030/index_en.htm.
3See http://www.arb.ca.gov/cc/scopingplan/scopingplan.htm.
4The SCC represents the marginal benefit of reducing CO2 emissions by one metric ton.
5Both figures are estimated for emissions reductions occurring in 2015 and presented in 2007 dollars. See

Interagency Working Group on Social Cost of Carbon (2010) and (2013) for details.
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linear marginal costs and benefits can be written as

MC(q, θ) = c1 + θ + c2(q − q̂) (3)

MB(q, η) = b1 + η − b2(q − q̂). (4)

Here, θ represents cost uncertainty while benefit uncertainty is captured in a similar way by η. For
an arbitrary q̂, the parameters c1 and c2 describe marginal costs in a flexible way, and similarly
so for b1 and b2. As in Weitzman, we assume c2 > 0 and b2 ≥ 0, MC(0, θ) < MB(0, η) and
MC(q, θ) > MB(q, η) for large enough q. This implies a single first-best outcome, regardless of
whether q is a good or a bad.6

In his paper, the linear model is described as an approximation to more general functions about
the point q̂ where marginal costs equal marginal benefits on average. That is, he (and we) assume
MC(q̂, 0) = MB(q̂, 0) and c1 = b1. While this assumption is not required to derive the key results,
it simplifies the exposition and the expected optimal government policies. These become q̃O = q̂
for quantities and p̃O = c1 = b1 for prices. Here and throughout, we use a t̃ilde over a variable
to indicate a chosen government policy; the superscript O more specifically refers to the Original
Weitzman framework for policymaking.

With this setup, Weitzman derives his main result. When price and quantity regulations are
set to maximize expected net benefits, the expected welfare advantage of prices is given by

∆O =
σ2
θ

2c22
(c2 − b2). (5)

Weitzman’s appealingly simple result (5) shows that the direction of the welfare advantage ∆O de-
pends only on the relative slopes of marginal costs and marginal benefits, c2 and b2. We previously
mentioned the intuition that a price policy, filling in the otherwise absent market demand role,
better matches the marginal benefit schedule when it is relatively flat (and vice-versa for quantity
policies when the marginal benefit schedule is relatively steep). Another intuition is that price
regulation offers welfare savings because such a policy does more when costs are low and less when
costs are high. To the extent costs are convex (large c2), this improves welfare. At the same time,
a price policy introduces variability into q, which is fixed under quantity regulation. To the extent
benefits are concave (large b2), variable q reduces welfare. The net effect depends on the sign of
c2 − b2. Put simply, if marginal benefits are relatively steep compared to marginal costs, then
getting the quantity “right” is important in welfare terms, implying that quantity instruments are
expected to perform better. Otherwise, price instruments are to be preferred.

The magnitude of both the expected cost saving and benefit loss depends on variability in
costs — here, the variation in θ. Benefit uncertainty — variability in η — does not appear in the
expression. Benefit uncertainty does lower expected welfare, but it does so equally for price and
quantity regulation.

Weitzman’s findings have been extended to many other contexts in the literature. This includes
alternative forms of uncertainty (Fishelson, 1976; Yohe, 1978; Stranlund and Ben-Haim, 2008) and
non-linear marginal costs and benefits (Yohe, 1978; Kelly, 2005). In all of these cases, the basic
result generally remains that flatter marginal benefits favor prices and steeper marginal benefits

6Weitzman focuses on q as a good (e.g., clean air) for simplicity. However, our motivating example is pollution
where marginal benefits may be flat and where quantity controls are more easily viewed as regulating a bad (e.g.,
emissions). There is nothing in the model or notation that favors one or the other, but the reader should keep in
mind that for bads, marginal benefits and hence prices are negative; firms must pay rather than being paid for
producing bads.
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favor quantities. Other work has considered the correlation between marginal cost and benefit
uncertainty (Yohe 1978; Stavins, 1996). Such correlation can overwhelm the basic Weitzman
intuition in theory, but it has never been demonstrated to be relevant in practice. Kaplow and
Shavell (2002) take a different tack. They propose to fix the price only after firms report their total
emissions based on the expected marginal benefit schedule. This allows them to achieve welfare
improvements over either fixed prices or fixed quantities, but raises questions as such policies have
not been seen in practice. Yet other work has examined whether the choice of price or quantity
controls affect other outcomes (e.g., investment in Chao and Wilson, 1993, and Zhao, 2003), but
none of this latter work speaks to the normative question of welfare impacts.

Most relevant for our paper are extensions to Weitzman that look at uncertainty and instrument
choice in a dynamic policy context. Yates and Cronshaw (2001) consider the value of intertemporal
permit trading in a deterministic setting, noting that allowing one-for-one banking may not be
optimal and introduce the idea of trading ratios (something we return to in our multi-period model).
Newell and Pizer (2003) and Fell, MacKenzie, and Pizer (2012) both extend the original Weitzman
framework to multiple periods where benefits can depend on the accumulated level of the pollutant,
rather than the annual flow. Despite the key difference that one allows intertemporal trading and
the other does not, they find results broadly similar to Weitzman. Flatter marginal benefits and
steeper marginal costs still favor prices, and vice-versa for quantity regulation. Importantly, these
papers do not consider the possibility that policies might be updated.

Several papers do consider policy updates in a multi-period setting. Newell, Pizer, and Zhang
(2005) are entirely focused on policy updating, but only in the limited sense of whether an in-
tertermporally tradable quantity policy could respond to cost shocks in order to to mimic a price
policy over time. The idea of benefit uncertainty and that policy updating might be focused
on new information about benefits is absent. In an unrelated paper focused on the idea of an
allowance reserve (a hybrid price-quantity policy), Murray, Newell, and Pizer (2009) argue that
emissions trading with an allowance reserve could provide a higher level of cost-effectiveness than
either emission taxes or emissions trading alone. Part of their argument is related to our idea
that intertemporal emissions trading has an advantage when policies are updated in response to
meaningful new information. Like the previous paper, this abstracts from the notion of welfare
and benefits. They assume a cumulative emission goal that is updated in the future and only seek
to minimize costs.

Finally, Hoel and Karp (2002) compare welfare outcomes under price and quantity regulation
with policy updates but without intertemporal trading of the quantity instrument. They focus
on a stock pollutant, whereby the fluctuations in the accumulated stock that occur under a price
policy can be attenuated with policy updates. This feature coupled with the lack of intertemporal
trading of quantities gives prices an extra welfare advantage in this setting.

These papers focused on a multi-period setting can be categorized by whether they include
four features: uncertainty, intertemporal trading, policy updating, and explicit welfare analysis.
None of them contain all four, which leads us to the current paper. This paper can be viewed as
extending and clarifying the notion that policy updates coupled with intertemporal trading seems
to provide some sort of advantage for quantity controls. In contrast to previous work that included
both of these features, however, we consider benefits and benefit uncertainty and focus on welfare.
This allows us to show that policy updates seeking to maximize societal benefits lead to a clear
preference for quantity regulation that can be traded over time.
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3 Policy Updating

We now expand the earlier Weitzman model to two periods with the same, but uncertain, costs
and benefits in both periods. The regulator sets the first-period price or quantity policy prior to
learning about costs and benefit uncertainty, θ and η in (1) and (2), but we consider the possibility
that s/he sets the second-period policy once the uncertainty is known. That is, we change the
information asymmetry to represent a lag in policy implementation in the context of evolving
knowledge rather than a perpetual difference in what may be known or unknown.

We pause for a moment to highlight this slight shift in interpretation. Weitzman focuses on the
difficulty of the government to know true costs that are more naturally known to the firms that
experience them. In the same way, one could view benefit uncertainty as a deep uncertainty about
the true marginal benefits that the government simply cannot know. From such a vantage point,
the government only can infer θ after firms respond to the policy and may never learn η at all. We
take a slightly different perspective. We think of θ and η as an evolution of society’s best estimate
of marginal costs and benefits over time. That is, everyone’s best guess is θ = η = 0 in period zero.
Information improves in period one. This may be due to firms’ responses to the government policy
but is also a function of improved science and experience that arises from the steady march of time.
In our view the government learns about θ and η alongside the firm but is unable or unwilling
to act quickly enough to change the first-period policy directly.7 The government is able to set
second-period policy based on this observed information and does so according to a pre-announced
rule. Meanwhile, the firm can deduce the government’s second-period policy before taking action
in the first period through knowledge of θ and η and this pre-announced rule.8 The information
structure and decisions over time are depicted in Figure 2.

Figure 2: Timeline of events with updating in a simple two-period model

7We intentionally do not specify the length of each period. As in Hoel and Karp (2002), the length of each
period primarily determines how often policies are updated. To the extent policymaking is a slow process, it is
perhaps best to imagine a period being several or even many years long. Under this assumption, it makes sense to
assume first-period policy will not be changed directly. While there are examples of tax changes enacted late in a
given year being applied retroactively to liabilities incurred earlier in that year, using a retroactive mechanism over
a much longer period seems infeasible in practice.

8In this case, we are assuming the government is a Stackelberg leader and the firm does not attempt to strate-
gically influence the government’s second-period behavior. This is consistent with the idea of the regulated “firm”
representing an aggregation of multiple firms in a competitive market.

7



In addition to the assumed information structure and decision sequence, we make the further
assumption that the quantity instrument can be traded between the two periods. As we have
noted, this is consistent with virtually all observed tradable permit systems that allow current
period permits to be saved, or “banked”, for use in the future and many that allow some volume
of future period permits to be used early, or “borrowed”.

We now characterize firm behavior, the government’s welfare-maximizing price and quantity
policies, and the relative advantage of prices versus quantities, for both fixed and updated policies.

3.1 Firm Behavior

In the traditional Weitzman framework, firm behavior under a generic quantity policy q̃ was to
trivially set q = q̃. Here, it is not so simple in the first period as the firm has the option to use
the assigned quantities q̃1 or to deviate, creating a bank B = q̃1 − q1. This bank can be in surplus
or deficit B ≷ 0 to be made up in the second period. For that reason, we work backwards: In the
second period, there is no option except q2 = q̃2 + B. Then, in the first period we can write the
firm’s problem as:

max
B
−C(q̃1 −B, θ)− C(q̃2 +B, θ).

We ignore discounting for the moment. We also take advantage of the fact that there is no
uncertainty from the perspective of the firm. It knows the cost and benefit shocks before it makes
any decisions and knows the government’s optimal second-period policy based on θ and η. This
leads to an arbitrage condition for the firm: MC(q1, θ) = MC(q2, θ). That is, equalize marginal
costs across periods. Given the same cost function in both periods, we have a simple solution:

q1 = q2 =
q̃1 + q̃2

2
. (6)

That is, divide the cumulative quantity regulation equally over the two periods. This is true
regardless of what kind of quantity policy (fixed or updating) is used to define q̃2.

Firm behavior under a price policy is the same as derived by Weitzman. Facing prices p̃t in
either period for output qt, firms will choose qt to maximize profits. That is,

max
qt

p̃tqt − C(qt, θ),

recalling that p̃t will be positive or negative depending on whether qt is a good or a bad. This
leads to a simple rule for the firm: MC(qt, θ) = p̃t. That is, set marginal costs each period to
the regulated price. Given the definition of marginal costs in (3), this yields Weitzman’s response
function,

h(p̃t, θ) = q̂ +
p̃t − c1 − θ

c2
.

3.2 Optimal Price and Quantity Policies

For comparison, we first consider what happens when the government chooses its policies to max-
imize expected net benefits over both periods without knowing the values of η and θ (that is,
without updating). Absent updating, this replicates the earlier Weitzman policy result but now
extended over two periods, which we denote with superscript W . In the case of intertemporally
tradable quantities, it is clear from equation (6) that only the total quantity volume q̃ = q̃1 + q̃2
matters as a policy choice variable and the allocation between periods does not matter. Following

8



the Weitzman approach that costs and benefits are approximated around q̂ where b1 = c1, it is
trivial to show that expected net benefits are maximized when the cumulative quantity is given
by q̃W = 2q̂, which could be implemented with q̃Wt = q̂ in each period. In the case of prices,
the symmetry of the problem leads to the original Weitzman solution p̃Wt = c1 = b1, resulting in
equilibrium quantities of q̂ − θ

c2
in each period.

With updating, the government has the ability to pick q̃2 and p̃2 after observing θ and η. In
the case of prices, this is relatively straightforward because there is no behavioral link between
periods and the government faces two distinct optimizations. In period one, p̃U1 = c1 leading to
equilibrium quantities of q̂ − θ

c2
as before, where superscript U indicates the government’s welfare

maximizing solution to the updating policy problem. In period two, we have a first-order condition
for the optimal updating policy p̃U2 when all the uncertain outcomes are now known:(

MB
(
h(p̃U2 , θ

)
, η)−MC

(
h(p̃U2 , θ

)
, θ)
)
hp(p̃

U
2 , θ) = 0.

Substituting and rearranging, we have

c2(θ − η) + (b2 + c2)(p̃
U
2 − c1 − θ) = 0,

or

p̃U2 = c1 +
b2θ + c2η

b2 + c2
.

This is the expression for the first-best, updated price in the second period. Note that in the second
period, the regulator is able to achieve the first-best outcome as there is no longer an information
asymmetry.

Optimal quantities are also straightforward. Let q̃ = q̃1 + q̃2. From the previous discussion, we
know that the firm chooses q1 = q2 = q̃/2. This is true regardless of how the government divides
q̃ between periods one and two. Therefore, the government’s problem amounts to figuring out the
cumulative, two-period quantity policy q̃U to maximize net benefits:

max
q̃

[2B(q̃/2, η)− 2C(q̃/2, θ)] ,

where we let q̃U denote this optimized policy. Note that because the government can choose the
second-period allocation after it observes the uncertain outcomes, it can determine the cumula-
tive quantity target q̃ using the true values of θ and η, thereby circumventing the information
asymmetry!

Working through the first-order condition

b1 + η − b2(q̃U/2− q̂)− c1 − θ − c2(q̃U/2− q̂) = 0,

or, rearranging,

q̃U/2 = q̂ +
η − θ
b2 + c2

.

Letting q̃U1 be arbitrary, we have

q̃U2 = 2q̂ + 2
η − θ
b2 + c2

− q̃U1 = q∗ + (q∗ − q̃U1 ) (7)

as the optimal, updated quantity policy. Intuitively, the second-period allocation is the first-best
outcome for the second period q∗ = q̂ + η−θ

b2+c2
, plus a “top-up” (q∗ − q̃U1 ) to adjust the first-period
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allocation to the first-best level. This achieves the first-best outcome in both periods (in contrast
to the price policy, which only achieves the first-best outcome in the second period). That is,
knowing the firm will equalize marginal costs and divide the cumulative allocation across both
periods, the regulator adjusts the quantity policy in the second period to accommodate the first-
best outcome in both periods. This suggests that the comparative advantage for the updating
policies will simply reflect the first-period loss under the price policy, which we now show.

3.3 Comparative Advantage

Without updating, the comparative advantage of prices versus quantities, ∆W , is simply the orig-
inal Weitzman result over two periods, or

∆W = 2∆O =
σ2
θ

c22
(c2 − b2).

With updating, both policies achieve the first-best outcome in the second period. The comparative
advantage stems from differences in the first-period outcome, namely the loss associated with the
standard price instrument,

∆U = E
[(
B(h(p̃U1 , θ), η)− C(h(p̃U1 , θ), θ)

)
−
(
B(q̃U/2, η)− C(q̃U/2, θ)

)]
=
−(σ2

η + (b2/c2)
2σ2

θ)

2(b2 + c2)
. (8)

We provide an algebraic proof of (8) in the appendix, but a simple graphical proof is as follows.9

In the first period, the updating price policy is simply the standard price policy, p̃U1 = c1 and leads
to the outcome at point b in Figure 3. Meanwhile the updating quantity policy obtains the first
best q = q̃U/2 = q̂ + η−θ

b2+c2
at point c.

Whereas the quantity outcome is first best, we can see from the figure that the price policy
leads to the shaded deadweight loss, DWL. This is a triangle where the “height” in the quantity
dimension is θ

c2
+ η−θ

b2+c2
= η+(b2/c2)θ

b2+c2
. The “base” along the price dimension equals the height times

b2 + c2. The area is then one-half base times height, or (η+(b2/c2)θ)2

2(b2+c2)
. Taking expectations of this

area yields the expressed loss in (8).

3.4 Discussion of Key Assumptions

It is clear that the price policy is never preferred in this model. The quantity policy is first best
in both periods while the price policy is generally only first best in the second period. In the
special case where marginal benefits are flat (b2 = 0) and there is no benefit uncertainty (σ2

η = 0),
the relative advantage is zero. In such a case, prices achieve the first best. Thus, quantities with
updating is weakly superior to prices. Quantities always achieves the first-best outcome and the
welfare loss from price policies depends on both cost and benefit uncertainty.

This is quite different from the Weitzman result, without updating, where the difference between
the marginal benefit and cost slopes determines an otherwise ambiguous preference between price
and quantity controls. Moreover, both price and quantity controls are second best in the Weitzman

9The point where the x-axis intercepts the y-axis in Figure 3 should not be interpreted as the origin. It is zero
for the x-axis but will be a negative number for the y-axis in the case of a bad. That is, this figure arises in the
first quandrant for a good but the fourth quandrant for a bad.
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Figure 3: Illustration of deadweight loss from price policy

framework due to the information asymmetry faced by the government. Benefit uncertainty does
not appear in the comparative advantage expression (5) because it equally affects the expected
welfare loss from both prices and quantities.

What’s going on? It is clear that there is an important interaction between policy updating
and intertemporal trading, both of which tend to be present in practice. We have demonstrated
that without updating and with intertemporal trading, the original Wetizman result remains in
both periods. It is similarly easy to see that without intertemporal trading and with updating, the
original Weitzman result remains in the first period (because the first period is just the Weitzman
setup). But these two features together lead to a different result. In this setting, if firms have
expectations about second-period policy updates before they make choices in the first period, the
potential to trade across periods leads them to equalize current and expected future prices driven
by the expected policy update. The result must be different. But must it achieve first-best?

Several additional implicit or explicit assumptions lead to the first-best outcome. First, we make
a rational expectation assumption that firms are, in fact, expecting what the government ultimately
does. This seems reasonable, as anything else should eventually lead to revised expectations.
Second, we need to identify a quantity-policy updating rule for the government such that the
expected next-period prices indeed achieve the first-best outcome. In the simple two-period model,
we made that easy by assuming the periods were identical with a single common shock and no
discounting. We will see in section 5 that more generally, with different shocks in different periods
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and more periods, there is still an updating rule that achieves the first-best in every period. Finally,
we assume the government regularly updates policy based on societal net benefits and not some
other objective. This is perhaps the most questionable assumption, to which we now turn.

4 Policy Updating with Noise

While improved cost-benefit information in future policy decisions can improve current-period
regulatory outcomes under intertemporally tradable quantity controls, what if something other
than improved information influences future policy? It is easy to imagine policy decisions being
driven in part by special interests and more narrowly defined benefits rather than broad, societal
costs and benefits. If we expect such changes to an intertemporally tradable quantity target in the
future, we should be worried that these changes will be transmitted back to the present.

In particular, suppose that when the government updates its policy it acts as if marginal
benefits in (4) are subject to an additive disturbance ε reflecting uncertain special-interest political
pressure rather than true information about societal benefits. One could also interpret this term as
the Lagrangian multiplier on uncertain legal, political, or other constraints that bound the policy
choice. Put simply, suppose the government now makes use of a “noisy” marginal benefit function
given by

MBnoisy(q, η, ε) = MB(q, η) + ε = b1 + η − b2(q − q̂) + ε (9)

that it wishes to equate with marginal costs in order to update its policy. The function MB
without any subscript continues to refer to true, societal marginal benefits, while MBnoisy is the
divergent, special-interest or constrained version of marginal benefits used to update policy. For
simplicity, we assume there is no noise when policy is initially set for the first period, and ε refers
to the distortion introduced in period 1 along with the other true shocks to costs and benefits. In
section 5 we extend this to an evolving noise process.

In adding this notion of political noise, we make the same information assumption about noise
as we do about the true shocks to costs and benefits. Namely, the firm has more up-to-date
information about the evolution of political noise than is necessarily reflected in current policy.
More specifically, the government sets policy for period 1, p̃N1 or q̃N1 , before any political noise or
shocks to costs and benefits occur. Here, superscript N refers to the policy chosen in our setup
with noise. By the time it acts in period 1, the firm knows the value of ε as well as θ and η that
will be used to update policies coming into effect in period 2. At the same time or soon after, the
government sets p̃N2 or q̃N2 based on that same realization of θ, η, and ε.

Returning for a moment to our SO2 trading program example, firms were well aware of evolving
information, political forces, and legal opinions that were shaping the regulatory environment for
2010 and beyond. This awareness influenced pollution behavior and permit prices beginning as
early as 2004. From 2004 to 2006, these changes were arguably driven by better information
about welfare-improving, societal marginal benefits reflected in the initially proposed CAIR, which
suggested such benefits were well in excess of $1600 per ton (U.S. EPA 2005). During 2006-2009, the
influences were arguably non-welfare-improving political forces and legal decisions, as the market
price diverged from marginal benefits. In our model terminology, consider the period 2004-2009
(and earlier years going back to 1995) as an elongated period 1. This policy was established under
the 1990 Clean Air Act Amendments, which we would call period 0. During 2004-2009, firms
expected the policy to be updated based on this period 1 information for 2010 and beyond, which
we would call period 2.
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Solving for the optimal price policy is relatively straightforward because the choices each period
are not linked by the firm. Choosing p̃N1 such that E[MBnoisy(h(p̃N1 , θ), η, 0)−MC(h(p̃N1 , θ), θ)] = 0,
we have the government’s “optimal” price policy for period 1 as viewed in period 0. Note that
the government is seeking to take expectations of θ and η but not ε. The value of ε — zero before
the first period — enters directly, as the government’s current special interests or current legal
constraints are what matter for setting policy. This leads to

p̃N1 = E[p∗]. (10)

For period 2, uncertainty is revealed and noise is realized, so the government chooses p̃N2 such that
MBnoisy(h(p̃N2 , θ), η, ε)−MC(h(p̃N2 , θ), θ) = 0, or

p̃N2 = p∗ +
c2ε

b2 + c2
. (11)

The expression p∗ represents the first-best price outcome in terms of true aggregate net benefits,10

but the government’s objective now deviates from the goal of maximizing expected, aggregate
net benefits. Using the firm’s reaction function, which is unchanged from our basic model, the
equilibrium quantity outcomes are:

q1 = h(p̃N1 , θ) = q̂ − θ

c2

= q∗ − η + (b2/c2)θ

b2 + c2

q2 = h(p̃N2 , θ) = q̂ +
η − θ
b2 + c2

+
ε

b2 + c2

= q∗ +
ε

b2 + c2
.

where q∗ is the first-best outcome in each period. These quantity outcomes are the same as those
in our basic model plus the noise distortions in the second period.

Under a quantity policy with updating and intertemporal trading, we know the firm will simply

set qt =
q̃N1 +q̃N2

2
and what matters is this cumulative allocation as before. With the revealed values

of θ and η and the realized value of ε, the government can choose q̃N2 based on an arbitrary choice
of q̃N1 such that MBnoisy = MC each period, or

b1 + η − b2
(
q̃N1 + q̃N2

2
− q̂
)

+ ε = c1 + θ + c2

(
q̃N1 + q̃N2

2
− q̂
)

q̃N2 = 2q̂ + 2
η − θ
b2 + c2

+ 2
ε

b2 + c2
+ 2

b1 − c1
b2 + c2

− q̃N1

= q∗ +
ε

b2 + c2
+

(
q∗ +

ε

b2 + c2
− q̃N1

)
, (12)

which is again the same as the allocations in our basic model plus adjustments for the noise
distortion. Given that firm behavior divides the cumulative allocation over both periods, we have

q1 = q2 =
q̃N1 + q̃N2

2
= q∗ +

ε

b2 + c2
(13)

10As noted in section 3.2, the first-best price is p∗ = c1 + b2θ+c2η
b2+c2

.
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each period, which is the government’s “optimal” outcome given its own noisy view of marginal
benefits, MBnoisy(qt, η, ε), which includes the ε distortion. This outcome is clearly not first best
from an aggregate welfare perspective.

What happens to our comparative advantage expression? In the second period, both policies
produce the same outcome (namely q2 = q∗ + ε

b2+c2
), so the comparative advantage derives solely

from how the policies differ in the first period. In period 1, the noisy price policy obtains q1 =
q∗− η+(b2/c2)θ

b2+c2
and the noisy quantity policy obtains q1 = q∗+ ε

b2+c2
. Both deviate from the first-best

q∗, and the comparative welfare advantage of a noisy price policy compared to a noisy quantity
policy simply compares the relative losses arising from these two deviations,

∆N =
σ2
ε − (σ2

η + (b2/c2)
2σ2

θ)

2(b2 + c2)
, (14)

Here, ∆N will be positive only if the variance from the added noise distortion, ε, under a quantity
policy is larger than the variance from not getting the optimal price right p∗ − E[p∗] under a
price policy. If we think about the improved information about costs and benefits as a signal, this
amounts to asking whether the signal to noise ratio is greater than 1. Note that if b2 = 0 and

marginal benefits are flat, this simplifies to ∆N =
σ2
ε−σ2

η

2(b2+c2)
, and the signal simply refers to improved

information about benefits.
In our SO2 example, it would seem to be an open question whether the signal to noise ratio

is ≷ 1. The period from 2004 to 2006 was a large signal. The period from 2006 to 2009 was an
equally large noise. Therefore, in this case the question of whether prices should be preferred to
quantities remains open.

The important point is that when there is policy updating and intertemporal quantity trading,
so long as firms have rational expectations, what matters for welfare is the signal to noise ratio
associated with policy updates, not the relative slopes of marginal costs and benefits. This is what
governs the relative advantage of price regulation compared to quantity regulation in this simple
model. And that is because the key feature of quantity-based regulation is not that it fixes the
quantity, but because it allows expected future prices to govern the market.

5 Multiple Periods

We now extend our model and results to a multi-period setting. The purpose is to show that there
are general price and quantity updating rules for the government that almost exactly replicate
the previous two-period results comparing prices and quantities with noise (and without noise,
if ε = 0). In expanding to multiple periods, we now assume cost and benefit uncertainty follow
arbitrary AR(1) processes. That is, we keep the same expressions for marginal benefits and costs
each period, (3) and (4), but assume11

ηt = ρηηt−1 + µt

θt = ρθθt−1 + νt.

11One may be concerned that the linear-quadratic approximation of marginal costs and marginal benefits may
break down over long periods of time. It can be shown that our results all continue to hold if the b and c terms
in the marginal cost benefit functions change arbitrarily over time. In particular, if those terms are additionally
indexed by t, the result continues to hold with appropriate adjustments to the allocation policy and trading ratios,
but now the b2 and c2 values in the comparative advantage expression are similarly indexed by t, and hence the
comparative advantage varies over time.
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Similarly, we keep the same expression for noisy marginal benefits (9) but now assume the noise
process follows a random walk,

εt = εt−1 + ωt,

In contrast to the cost-benefit errors that may be mean reverting, we assume the government does
not believe its current political position or constraints will revert back towards zero. Put another
way, the current political situation is expected to persist.

We assume η0 = θ0 = ε0 = 0 and µt, νt, and ωt are i.i.d. random errors for t > 0 up to some
final period T . After that point, for t > T we assume µt = νt = ωt = 0 and qt can be fixed forever
at the desired rate by the government. This assumption of a final period analogous to the idea
that at some point the regulatory problem is fully solved.

The government’s policy choice for prices and quantities amounts to a dynamic programming
problem each period, choosing today’s policy to maximize a given objective subject to future
policies doing the same and firm profit-maximization. We assume that only information up to
period t − 1 is used to set period t policy. Meanwhile, firms are able to use period t information
when they choose their (profit-maximizing) action in period t, including knowledge of how the
government will behave in the future. This maintains the information structure assumed in the
previous section as shown in Figure 4.

Figure 4: Timeline of events with updating in a T -period model

As before, firms facing quantity regulation with intertemporal trading have the flexibility to
over- or under-comply each period. That is, the chosen quantity qt can be above or below the
allocation q̃t. With only two periods, we defined a bank that existed for a single period as the
surplus or deficit given by B = q̃1 − q1, which was then applied to the second period allocation.
With multiple periods, we might imagine a bank that accumulates based on Bt = Bt−1 + q̃t − qt
until the final period T when the bank in that period is applied to the final period allocation,
similar to the two-period model. Here Bt is the bank at the end of period t,

Instead, we introduce the one substantive difference between the multiple-period and two-
period models: In the multiple-period model, we assume the existence of non-unitary trading
ratios between periods under quantity regulation and assume the regulator is able to update those
ratios alongside updates to the quantity allocation. Specifically, we modify the aforementioned
bank accumulation rule in the following way:

Bt = R̃tBt−1 + q̃t − qt,
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The trading ratio is given by R̃t and converts a one-unit deficit or surplus of period t−1 quantities
at the end of period t− 1 into those available at the beginning of period t.

The idea of non-unitary trading ratios, which was previously proposed in Yates and Cronshaw
(2001), is not as theoretical as it might seem. Such an approach has been proposed several times
and used at least once. For example, the Clean Air Interstate Rule increased the stringency of the
original Acid Rain Trading Program by effectively applying a trading ratio of 0.5 from 2009 to 2010
and 1/1.43 from 2014 to 2015.12 Similarly, the American Clean Energy and Security Act in the
111th Congress (H.R. 2454, a.k.a. the “Waxman-Markey Bill”) proposed to exchange allowances
in existing state programs for new federal allowances at a ratio that preserved the original value
of the state allowances when they were first issued.13 Further, New Zealand’s emissions trading
scheme has applied a “two-for-one” rule under which one permit allows for two tons of emissions;
that rule is expected to change, effectively diminishing the future value of banked allowances.
Indeed, New Zealand’s Climate Change Minister has said of the rule, “It was always a temporary
measure...carbon must cost more than it does right now.”14. Finally, as China plans to transition
from its regional carbon market pilots to a national-level program, it plans to allow permits from
the pilots to be carried over to the national one at a discounted factor that depends on the degree
of over-allocation in the pilots.15

Having defined the multiple-period problem, we now need to find government policy rules that
satisfy the first-order conditions for their objective function and mimic our simple two-period
results. For a price policy, the dynamic programming problem simplifies to a series of one-period
optimizations. We show in the appendix that setting

p̃Mt = E[p∗t |t− 1] +
c2εt−1

b2 + c2
(15)

satisfies the government’s first-order condition,

E[MBnoisy(h(p̃Mt , θt), ηt, εt−1)|t− 1] = E[MC(h(p̃Mt , θt), θt)|t− 1].

The superscript M indicates the multi-period result and p∗t = c1 + b2θt+c2ηt
b2+c2

is (as before) the first-
best price outcome from a pure welfare perspective. That is, given the government’s position of
setting policy one period ahead for period t, (15) represents its best effort to do so based on the
available information ηt−1 and θt−1 and subject to political noise εt−1.

For a quantity policy, we also show in the appendix that, if the government follows the allocation
rule

q̃Mt = E[q∗t |t− 1] +
εt−1

b2 + c2
+ R̃t

(
q∗t−1 +

εt−1

b2 + c2
−
(
E[q∗t−1|t− 2] +

εt−2

b2 + c2

))
(16)

and sets the trading ratio R̃t according to the rule

R̃M
t =

p∗t−1 + (c2/(b2 + c2))εt−1

β(E[p∗t |t− 1] + (c2/(b2 + c2))εt−1)
, (17)

then the choice
qt = q∗t +

εt
b2 + c2

(18)

12See 70 Fed. Reg. 91 (May 12, 2005), page 25291.
13See Title VII, Subtitle B, Section 790.
14See http://carbon-pulse.com/17084/
15http://carbon-pulse.com/18710/?utm_source=CP+Daily&utm_campaign=ec84ec8ee3-CPdaily22042016&

utm_medium=email&utm_term=0_a9d8834f72-ec84ec8ee3-37668485
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is a feasible choice for the firm each period. In the above expressions, β is the discount rate used
by the firm and q∗t = q̂ + η−θ

b2+c2
is (as before) the first-best quantity outcome. Note that both q̃Mt

and R̃M
t only depend on t− 1 information, and therefore meet the information structure that we

assume. After demonstrating (18) is feasible, we show this choice also satisfies the firm’s first-order
condition for profit maximization. Finally, we note that (18) is exactly the government’s choice
to set MBnoisy(qt, ηt, εt) = MC(qt, θt) each period. That is, when acting with period t information
(setting period t + 1 policy), the government exactly achieves its period t optimum. Absent any
noise (εt = 0 ∀t), we have MB = MC ∀t and the government’s optimum exactly corresponds to
the welfare-maximizing first-best outcome.

These multi-period results are logical extensions of our two-period results. The two-period price
policy had different expressions for the first-period (10) and second-period (11) prices. However,
these are just special cases of the multi-period price outcome (15) corresponding to the first and
last period. When t = 1, we have εt−1 = ε0 = 0 as we have assumed ε0 = 0. That is, p̃M1 = E[p∗1].
This mimics the first-period price policy in the two-period model, which includes an expected
first-best price term but no noise. And when t = T , E[p∗t |t − 1] = p∗T − (µT + (b2/c2)νT ) = p∗T as
we have assumed µt = νt = 0 for t ≥ T . That is, p̃MT = p∗T + (c2εT )/(c2 + b2). This mimics the
second-period price policy in the two-period model, where there is a noise term but expectations
are unnecessary because uncertainty is resolved. More generally, when T > 2 and 1 < t < T , the
price policy expression in (15) includes both the expected first-best price and the noise distortion.

Compared to the two-period quantity outcome (13), the multi-period quantity outcome (18)
now has a time index on both the quantity optimum q∗t and noise εt. It is otherwise identical. The
government’s multi-period quantity rule (16) includes both a current-period allocation and a “top
up” for the previous period, as does the two-period quantity rules (7) and (12).

The main difference is the introduction of the trading ratio R̃M
t defined in (17). This is necessary

to allow the flexible control of prices over time, as one-for-one trading would necessarily imply
expected prices rising at 1/β compared to current prices. However, trading ratios will be close to
unity when the discount rate is small and when ρθ and ρη are close to 1 (i.e., the cost and benefit
processes are approximately random walks). In these cases, βE[p∗t |t − 1] ≈ p∗t−1, so R̃M

t ≈ 1 and
non-unitary trading ratios may not be necessary to approximate the government’s optimal policy.

Turning to the comparative advantage of prices versus quantities in a multi-period setting, we
have

∆M =
σ2
ω − (σ2

µ + (b2/c2)
2σ2

ν)

2(b2 + c2)
. (19)

for each period. Expression (19) again closely resembles the two-period expression (14), with
the variances of η, θ, and ε replaced with those of the innovation terms µt, νt, and ωt. That is,
the error in the price policy each period is determined by the innovation terms µt and νt rather
than ηt and θt. Meanwhile, under the quantity policy, the equilibrium outcomes incorporate both
improved cost and benefit information and future noise. Owing to the assumption that noise
follows a random walk, the variance of future noise (affecting quantities) is larger than current
noise (affecting prices), with their difference being simply σ2

ω. This expression is derived in the
appendix.

6 Application to Climate Change Policy

Climate change policy has been lurking in the background as an important application of this
paper and has motivated examples of stylized facts and assumptions. But what happens when we

17



put quantitative estimates of climate change mitigation costs and benefits, and their associated
uncertainties, into our expressions for comparative advantage?

Ignoring political noise for the moment (e.g., letting σ2
ω = 0), our expression for ∆M depends

on the variance of cost and benefit shocks and the slopes of marginal costs and benefits. A
standard approximation in the climate change literature is that marginal benefits are flat and
b2 = 0 (e.g., Newell and Pizer, 2008). With that assumption, both b2 and σ2

ν vanish from the
expression and we only need estimates σ2

µ and c2. Newell and Pizer (2003) provide an estimate of

c2 = 1.6× 10−7$/ton2. We use the recent update to the U.S. Government’s Social Cost of Carbon
(Interagency 2013) to calibrate the error in marginal benefits. Namely, the central estimate changed
from $24/ton to $37/ton, or by $13/ton, in 3 years. Assuming η follows a random walk, that gives
3-year variance of 169 ($/ton)2 or σ2

µ = 56 ($/ton)2 for the 1-year variation. We then have

∆M =
σ2
ω − (σ2

µ + (b2/c2)
2σ2

ν)

2(b2 + c2)

=
−σ2

µ

2c2
(ignoring noise and assuming b2 = 0)

=
−56 ($/ton)2

2(1.6× 10−7$/ton2)

= − $175 million.

That is, if policy is set for each year t based on year t− 1 information (e.g., the policy is set one
year in advance), the global loss from price policies is $175 million per year. Of course, policies are
not set every year. The recent Paris agreement suggests policies might be set every five years. In
the first year, the loss would be $175 million, but over five years, the loss would be $2.4 billion in
present value.16 Were policies updated every twenty years, which seems more in line with major
U.S. policy adjustments (e.g., the 1990 Clean Air Amendments followed 20 years after the 1970
Clean Air Act; the 2010 adjustments to the SO2 regulations came 20 years after 1990 amendments),
the loss would be $25.5 billion in present value for each 20 year period.

A tougher question is to estimate the variance of the political noise innovation σ2
ω. The 2015

Paris Agreement calls for limiting climate change warming to 2◦C, or possibly 1.5◦C. Meanwhile,
the position of many climate skeptics would be that marginal benefits are close to zero (if not
negative). While both of these positions might be viewed as the basis for a legitimate MB estimate,
they could also be viewed as a basis for political noise.

Rather than attempt to quantify σ2
ω with such information, we make the observation that when

marginal benefits are flat, the condition for price regulation to be preferred simplifies to σ2
ω > σ2

µ.
That is, prices are preferred if changes driven by political noise are larger than changes driven by
true changes in estimated marginal benefits. Though a subjective judgment, it certainly seems
plausible that this condition would be satisfied.

16Because we assume benefits follow a random walk, the variance in the second year will be twice the variance in
the first year; the variance in the third year will be three times the variance in the first year (and so on). The sum
over t years is therefore t(t + 1)/2 times the value in a single year. This sum must also be discounted; we use same
the 3% discount rate used to generate the estimates for the social cost of carbon.
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7 Conclusion

After governments set their policies, new information often arises (or is revealed) about the benefits
and costs of those policies. Much of the previous work comparing price and quantity regulation has
focused on the importance of this information asymmetry in a one-period world or when policy
remains fixed indefinitely. In this framework, Weitzman (1974) demonstrated that price-based
regulation is preferred when marginal benefits are relatively flat compared to marginal costs and
that the magnitude of the preference also depends on the variance of cost uncertainty.

We argue that governments eventually, if not regularly, update key regulatory policies. More-
over, quantity regulation is typically tradable over time. In this case, we show that what matters
about quantity policies is not that they fix quantities but that they allow current prices to respond
to expected future policy updates. When such policy updates seek to maximize welfare, we show
that quantity regulation generally achieves the first-best welfare outcome and prices are never
preferred. This highlights an important interaction between policy updates and intertemporal
trading: Trading over time creates an arbitrage condition whereby expected future price changes
will change prices today. This can be used by the regulator to overcome the information asymme-
try. Such near-term anticipatory influences cannot arise under price-based regulation, which will
only change prices at the moment the future policy update comes into force and only influence
near-term outcomes to the extent marginal costs are linked over time (through indirect means such
as long-term investments).

When we consider the possibility of noisy policymaking, where something other than wel-
fare maximization drives the policy updates, a trade-off between price and quantity regulation
re-emerges. Quantity controls with intertemporal trading and policy updates allow both new
information about true costs and benefits and new noise to drive current prices. The relative
advantage expression then depends on the difference between these variances. When marginal
benefits are flat (as in the case of carbon dioxide emissions and global climate change), the sign of
the expression simplifies to depend only on the difference between the added noise variance and
the added marginal benefit variance. This is quite different from the original Weitzman result and
most of the existing literature.

There are important caveats to our results. We have already noted the possible need for trading
ratios between periods depending on the nature of cost and benefit shocks and discounting. There
is only limited experience with such ratios in practice, though that may be changing. Price and
quantity policies are also rarely enacted in isolation; most exist alongside myriad other regulations.
California, for example, has at least four major regulations operating in tandem with its emission
trading program (Borenstein et al. 2015). We have not considered how such policies affect our
results.

We assume there is a significant lag in policy updates between when the change is well-
established and when it occurs. This is relatively standard in regulatory policy, where regulated
firms are given considerable lead time and the process itself involves many steps. Tax policy
changes, however, typically happen quickly (if not retroactively) to prevent avoidance behavior. It
is unclear whether updates to price-based regulation would follow more of a tax policy precedent,
or a regulatory policy precedent.

Finally, we assume that once new information is known, particularly persistent cost information,
there is confidence that this will be figured into a policy update. If this is not the case, we return
to the traditional Weitzman framework until such confidence arises. That is, imagine a cost shock
permanently reduces the cost of achieving an emission cap, but there is no expectation of an update
to tighten the cap. Without such expectations to raise prices, the Weitzman setup (and results)
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would return.
Regardless of these caveats, the underlying intuition remains. The traditional (economic)

debate over price versus quantity regulation has emphasized relative slopes. When we consider
the reality of policy updates over time and intertemporally tradable quantity regulation, however,
it is clear price expectations matter. That can be a good thing for quantity regulation when the
policy process is rational and well-behaved, but it can be a bad thing when the policy process is
noisy and subject to significant swings in policy objectives. These concerns have a necessary role
in comparing real-world price and quantity policies.
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A Appendix

A.1 Comparative Advantage in Two Periods

In the body we showed that the firm’s reaction function is h(p̃t, θ) = q̂+ p̃t−c1−θ
c2

. The government’s

optimal policy in the first period is to tax at p̃1 = c1, meaning h(p̃1, θ) = q̂ − θ
c2

. We also showed

that under a quantity instrument, the firm produces q̃U/2 = q̂ + η−θ
b2+c2

.

Now define ∆U , the difference between the expected net benefits under a price versus a quantity
instrument. If ∆U < 0, quantity regulation is preferred. Since there is no more uncertainty in the
second period, the net benefits in that period are the same across instruments, meaning we need
only consider the difference in period 1. We now derive our primary result.

∆U = E
[(
B(h(p̃U1 , θ), η)− C(h(p̃U1 , θ), θ)

)
−
(
B(q̃U/2, η)− C(q̃U/2, θ)

)]
= E

[
(b1 − c1 + η − θ)(h(p̃U1 , θ)− q̃U/2)− b2 + c2

2
((h(p̃U2 , θ)− q̂)2 − (q̃U/2− q̂)2)

]
= E

[
(η − θ)

(
−θ
c2
− η − θ
b2 + c2

)
− b2 + c2

2

((
−θ
c2

)2

−
(
η − θ
b2 + c2

)2
)]

= −E

[
(η − θ)

(
θ

c2
+

η − θ
b2 + c2

)
+
b2 + c2

2

((
−θ
c2

)2

−
(
η − θ
b2 + c2

)2
)]

= −E

[(
b2
c2
θη − b2

c2
θ2 + η2 − ηθ

(b2 + c2)

)
+

(b2 + c2)
2θ2 − c22(η − θ)2

2c22(b2 + c2)

]

= −E

[(
b2
c2
θη − b2

c2
θ2 + η2 − ηθ

(b2 + c2)

)
+

(( b2
c2

)2 + 2 b2
c2

)θ2 − η2 + 2ηθ

2(b2 + c2)

]

= −E

[
2 b2
c2
θη − 2 b2

c2
θ2 + 2η2 − 2ηθ + (( b2

c2
)2 + 2 b2

c2
)θ2 − η2 + 2ηθ

2(b2 + c2)

]

= −E

[
η2 + ( b2

c2
)2θ2 + 2 b2

c2
θη

2(b2 + c2)

]

=
−(σ2

η + (b2/c2)
2σ2

θ)

2(b2 + c2)
.

QED.
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A.2 Multiple Periods with Noise

In this section, we prove our assertion from section 5 that the main result holds in multiple periods
with noise. The general auto-regressive error structure for costs and benefits is given by

ηt = ρηηt−1 + µt

θt = ρθθt−1 + νt,

and the random walk structure for the noise term:

εt = εt−1 + ωt

with η0 = θ0 = ω0 = 0 and µt = νt = ωt = 0 for t ≥ T .

A.2.1 Equilibrium under a Price Policy

In each period t − 1, the government sets a price for period t to maximize its noisy view of the
expected net benefits function. The first order condition is

E[MBnoisy(h(p̃t, θt), ηt, εt−1)−MC(h(p̃t, θt), θt)|t− 1] = 0.

Using the reaction function above, the definitions of noisy marginal benefits (9) and marginal costs
(3), and canceling b1 = c1 we have

ρηηt−1 − b2
(
p̃t − c1 − ρθθt−1

c2

)
+ εt−1 = ρθθt−1 + c2

(
p̃t − c1 − ρθθt−1

c2

)
.

Re-arranging, we have an equilibrium price of

p̃t = c1 +
c2(ρηηt−1 + εt−1) + b2ρθθt−1

b2 + c2
= E[p∗t |t− 1] +

c2εt−1

b2 + c2
.

Using the firm reaction function, h(p̃t, θt) = q̂ + p̃t−c1−θt
c2

, we can find the equilibrium outcomes
under the price policy:

qt = h(p̃t, θt) = q̂ − θt
c2

+
εt−1 + ρηηt−1 + (b2/c2)ρθθt−1

b2 + c2

= q∗ +
εt−1 − (µt + (b2/c2)νt)

b2 + c2
.

That is, under a price policy, the realized outcome in each period deviates from the societal first-
best level by the amount εt−1−(µt+(b2/c2)νt)

b2+c2
each period.

A.2.2 Equilibrium under a Quantity Policy

The banking constraint with a dynamic trading ratio is given by

Bt = R̃tBt−1 + q̃t − qt,

with B0 = 0 and Bt = 0 for t ≥ T . That is, we assume the problem effectively ends at period T ,
beyond which there is no uncertainty. The government can set its optimal policy and there is no
need for banking.
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Our strategy is to guess the government’s rule for setting the allocation and dynamic trading
ratio each period. We then show that, with these rules, this optimal quantity level is both feasible
for the firm and satisfies the firm’s first order conditions for profit maximization.

Our proposed allocation rule in every period is given by

q̃t = E[q∗t |t− 1] + (εt−1/(b2 + c2)) + R̃t

(
q∗t−1 − E[q∗t−1|t− 2] +

εt−1 − εt−2

b2 + c2

)
,

and the proposed dynamic trading ratio is given by

R̃t =
p∗t−1 + (c2/(b2 + c2))εt−1

β(E[p∗t |t− 1] + (c2/(b2 + c2))εt−1)

for t > 1 where p∗t = c1 + b2θt+c2ηt
b2+c2

is the first-best (i.e., excluding noise) price corresponding to

q∗t . We set R̃1 = 0. We now show that the firm’s choice qt = q∗t + εt/(b2 + c2) (implying pt =
p∗t + (c2/(b2 + c2))εt) is both feasible given the terminal banking condition BT = 0 and satisfies the
firm’s first-order condition for profit maximization (the arbitrage condition pt = βR̃t+1E[pt+1|t]).

To see feasibility note that this choice of qt yields B1 = −(q∗1 −E[q∗1|0] + ε1/(b2 + c2)) assuming
ε0 = θ0 = η0 = B0 = 0 and more generally

Bt = −
(
q∗t − E[q∗t |t− 1] +

εt − εt−1

b2 + c2

)
for t < T . This can be shown by induction. That is, given this value for Bt, qt = q∗t + εt

b2+c2
, and

the allocation and banking rules shown above, we can show that the relationship holds for t+ 1:

Bt+1 = R̃t+1Bt + q̃t+1 − qt+1

= R̃t+1Bt + R̃t+1

(
q∗t − E[q∗t |t− 1] +

εt − εt−1

b2 + c2

)
+ E[q∗t+1|t]− q∗t+1 −

εt+1 − εt
b2 + c2

= −
(
q∗t+1 − E[q∗t+1|t] +

εt+1 − εt
b2 + c2

)
as desired. Assuming ωT = µT = νT = 0, we have BT = 0. Thus, qt = q∗t + εt/(b2 + c2) is feasible
for the firm.

We now show that picking qt = q∗t + εt/(b2 + c2) satisfies the first-order condition for the firm.
Namely, each period the firm faces:

Vt(Bt−1, θt−1, ηt−1, εt−1, νt, µt, ωt) = max
Bt
−C(R̃tBt−1+q̃t−Bt, θt)+βE[Vt+1(Bt, θt, ηt, εt, νt+1, µt+1, ωt+1)|t],

where we have replaced qt with Bt as the choice variable to simplify taking derivatives. The
first-order condition is then

MC(qt, θt) = −βE
[
∂Vt+1(Bt, θt, ηt, εt, νt+1, µt+1, ωt+1)

∂Bt

|t
]
.

We also have:
∂Vt(Bt−1, θt−1, ηt−1, εt−1, νt, µt, ωt)

∂Bt−1

= −R̃tMC(qt, θt).
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Thus, the first order condition is that MC(qt, θt) = βE[R̃t+1MC(qt+1, θt+1)|t]. Given Rt+1 only
depends on information at t, we can further simplify to

MC(qt, θt) = βR̃t+1E[MC(qt+1, θt+1)|t].

This is simply the no arbitrage condition with discounting, trading ratios, and uncertainty about fu-
ture shocks. Namely, today’s marginal cost must equal the discounted, trading-ratio-adjusted, ex-
pected marginal cost next period. Given the definition of R̃t = (p∗t−1+(c2/(b2+c2))εt−1)/(β(E[p∗t |t−
1] + (c2/(b2 + c2))εt−1)), and using the definition of MC(q, θ) from (1), this condition is satisfied
when qt = q∗t + εt/(b2 + c2).

Thus, qt = q∗t + εt
b2+c2

is feasible for the firm and satisfies the first-order conditions of both the
firm.

QED.

Note that this realized outcome deviates from the societal first-best outcome by the amount
εt

b2+c2
in each period.

A.2.3 Optimality of the Proposed Quantity Policy to Government

In the previous section we showed that the proposed quantity policy was feasible and optimal for
the firm. Now we show that the proposed policy is optimal for the government (i.e., it leads to
the the government’s optimal outcome). At period t the government wishes to maximize noisy
net benefits based on the contemporaneous values θt, ηt, and εt. That is, at period t the optimal
outcome qt must satisfy the first order condition:

MBnoisy(qt, ηt, εt) = MC(qt, θt)

b1 + ηt − b2(qt − q̂) + εt = c1 + θt + c2(qt − q̂)

qt = q̂ +
ηt − θt + εt
b2 + c2

= q∗t +
εt

b2 + c2

As shown in the previous section, this is exactly the outcome realized under the proposed
quantity policy. Therefore the proposed quantity policy is optimal for the government.

QED.

A.2.4 Comparative Advantage

In the previous sections, we showed that in each period we have a deviation from q∗t under the price

policy of of εt−1−(µt+(b2/c2)νt)
b2+c2

and a deviation under the quantity policy of εt
b2+c2

. These correspond

to deadweight losses of (εt−1−(µt+(b2/c2)νt))2

2(b2+c2)
and

ε2t
2(b2+c2)

, respectively. We can compute the expected
welfare loss per period for each policy, relative to the first best, as

−(σ2
εt−1

+ σ2
µ + (b2/c2)

2σ2
ν)

2(b2 + c2)
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for the price policy and
−σ2

εt

2(b2 + c2)

for the quantity policy. We can take the difference to find the comparative advantage of noisy
prices compared to noisy quantities,

∆N =
σ2
ω − (σ2

µ + (b2/c2)
2σ2

ν)

2(b2 + c2)
,

where σ2
ω = σ2

εt − σ
2
εt−1

under the assumption εt = εt−1 + ωt.

QED.
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