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1 Introduction

Most goods and services are sold at fixed prices. Yet auctions are used as the allocation

mechanism in a wide variety of contexts, including procurement contracts, treasury bills and

the granting of oil drilling and spectrum rights. Technology companies such as Facebook,

Google and Microsoft sell advertisers access to online consumers through display and search

advertising auctions. And though the majority of eBay’s revenue now comes from fixed price

listings of new goods, they still sell a large number of goods (both in absolute and dollar

terms) by auction.

These markets share many common features. Buyers get multiple purchase opportunities

over time, either for exactly the same product (e.g. in search advertising where a product

is a keyword), or for close substitutes (e.g. in treasury bill auctions). This allows bidders to

intertemporally substitute, making participation and bidding decisions in light of the option

value of waiting for future purchasing opportunities. Both bids and participation choices

will reflect individual-specific preferences over the heterogeneous products available. For

example, in highway procurement, Lewis and Bajari (2011) document matching between

contractors and contract based primarily on distance and contract size, while in online labor

markets, employers are more likely to award contracts to workers from their own country

(Krasnokutskaya et al., 2016).

In the fixed price context, an influential discrete choice demand estimation approach has

been developed that models how buyers with unit demand and heterogeneous preferences

decide which goods to purchase (e.g. Berry (1994), Berry et al. (1995), Gowrisankaran and

Rysman (2009)). However, until recently, there has been no analogous work in the empirical

auctions literature, which has generally focused on the analysis of a repeated cross-section

of static auctions for identical products. The goal of this paper is to fill this gap.

A “whole-market” approach that incorporates dynamics and product differentiation can be

important for policy counterfactuals. For example, in setting optimal reserves, a static

model of second-price sealed bid auctions would suggest that when a monopolist changes her

reserve price policy, she should expect no change in buyer behavior (it is weakly dominant

for a buyer to bid their valuation regardless). By contrast, in our dynamic setting, a new

reserve price policy will affect buyer’s continuation values, and therefore bids throughout

the marketplace. Reserve prices will also have an effect on the endogenous set of incumbent

bidders. And without taking product differentiation seriously, we cannot use auction data to
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say much about cross-price elasticities, or how an increase in the supply of one good would

affect the transaction prices of other goods (see Newberry (2015) for evidence that increased

supply depresses prices on eBay).

The present paper analyzes a model that is very closely related to the above work on fixed

price markets, but with a data-generating process that is given by equilibrium play in a

dynamic auction market. Vis-à-vis that literature, our approach is analogous to the second-

choice demand estimation approach of Berry et al. (2004) because we use bids placed by

the same bidder on different products. This is informative about the joint distribution of

valuations or, in the parlance of the fixed-price market literature, cross-elasticities. The

auction format also allows us to credibly identify a region of the distribution of valuations

that we often struggle with: the right tail. This region can be hard to identify in fixed–

price markets because of limited variation in characteristics (in particular, prices); for the

subset of buyers whose choice behavior doesn’t change over the support of observed prices,

identification is entirely parametric. To put it more succinctly, we can’t invert an inequality,

but we can invert bids.

Here we offer what we hope is a comprehensive analysis of our model: we characterize

participation and bidding decisions, prove existence of equilibrium, offer a number of non-

parametric identification results, and apply the model to measure consumer surplus in the

market for compact cameras on eBay. Along the way, we deal with many of the method-

ological issues that are likely to arise in similar models of auction markets.

Specifically, we consider a model of repeated second-price auctions of differentiated products,

in which buyers with unit demand and heterogeneous, perfectly persistent and privately

known multidimensional valuations for a finite set of types of good must work out when to

participate and how much to bid. Persistence of preferences is a realistic feature of many

auction markets, but causes game theoretic problems that do not arise in fixed price markets.

So-called “leakage effects” are a particular concern, whereby a bidder’s bid today may reveal

their valuation to other bidders, affecting the evolution of future play (this remains true even

when other bidders cannot observe rival bids; less information just implies a harder filtration

problem for the bidders and the outside analyst).

When markets are “small” (in the sense that there are few bidders in the market), the ap-

proach of the dynamic games literature has been to simply assume that everything persistent

is commonly known, and that all private shocks are iid (see e.g. Jofre-Bonet and Pesendorfer
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(2003), Aguirregabiria and Mira (2007), Bajari et al. (2007), Pakes et al. (2007); Fershtman

and Pakes (2012) is a recent exception). But in “large” markets (i.e. many anonymous

bidders), it is attractive to instead assume that players form beliefs about their rivals in a

simpler way. Here we assume that bidders simply take the distribution of rival bids for each

product as given and optimize against this, forming neither more refined beliefs (by condi-

tioning on other information available to them) nor considering the possibility of trying to

manipulate the evolution of this distribution with their bid. An equilibrium is a fixed point

in which bidders optimize given their beliefs about rival bids, and those beliefs are consistent

with the long run time-averages of equilibrium play, i.e. the stationary distribution. This is

similar to ideas elsewhere in the literature, such as the model of belief formation in Krusell

and Smith (1998) and the oblivious / mean-field equilibrium concept of Weintraub et al.

(2008) and Iyer et al. (2014).

In equilibrium, losing bidders “win” the opportunity to play the game again tomorrow. The

optimal strategy requires that bidders bid their valuation less their continuation value when-

ever this is positive, and otherwise not participate. A bidder’s valuation is thus identified

by adding their bid to their continuation value. In other words, to estimate demand, one

must estimate continuation values. We show that these can be learned from observing a

bidder’s “pseudo-type” — their optimal bid on each product — as well as the distributions

of competing bids and the exit and supply processes.1

The existence of an inversion from bids to types is often sufficient to prove identification

in static auctions (e.g. Guerre et al. (2000), Athey and Haile (2007)): when each bidder

bids exactly once, the distribution of pseudo-types is just the distribution of bids, which

is observed. But when bidders bid multiple times, they may win (an therefore exit) before

recording a “complete,” or invertible, history consisting of a bid on every product (i.e. before

their pseudo-type is known). The probability of reaching a complete history varies with

type, so we need to correct for selection in measuring the distribution of pseudo-types. By

combining this new selection correction idea with the familiar inversion approach, we are

able to bound demand. Our identification result is pointwise up to the set of bidders who

prefer not to participate in some auctions.

In subsequent sections, we extend the model to cases with limited data, reserve prices,

1A common refrain in the empirical auctions literature is that losers’ payoffs are “normalized to zero.”
We view this as a strong assumption, rather than a normalization. In our model the continuation value that
bidders anticipate when they lose is not constant across bidders, but instead depends on their private type.
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random coefficient demand, public signals that refine beliefs about market conditions, unob-

served heterogeneity, idiosyncratic preferences and random latent outside options. Most of

these extensions are reasonably straightforward given the tools developed earlier, as well as

results on deconvolution used in Li and Vuong (1998) and Krasnokutskaya (2011). The main

exception is the case with outside options and endogenous exit, which is harder. There we

show that observable differences in the exit rate across bidders imply a first order separable

differential equation that can be used to identify differences in their outside options.

The final section of the paper applies this framework to data from eBay’s compact camera

market. We document that substitution over time and across cameras with different levels of

resolution occurs in this market, and that there is both observable and unobservable hetero-

geneity within cameras of a given resolution. We model preferences as a linear combination

of a random taste for a camera and a random taste for camera resolution, and estimate the

distribution of these random coefficients. We show that our estimated model is able to match

the data well, and then use it to calculate consumer surplus. We find that consumer surplus

is twice as large as we would have estimated had we ignored continuation values, $6.04 per

bidder rather than $2.73. We chose the application for its expositional value rather than any

policy implications: it gives us the opportunity to show how our methodology can be im-

plemented with limited data; how it fares under unobserved heterogeneity, and to illustrate

that dynamics and substitution are important for understanding auction markets.

Literature Review. The paper is related to various strands of literature. Jofre-Bonet

and Pesendorfer (2003) was the first paper to attack estimation in a dynamic auction game.

Subsequent to this, a number of papers have looked at dynamics on the eBay platform specif-

ically. Budish (2008) examines the optimality of eBay’s market design with respect to the

sequencing of sales and information revelation. In Said (2009), the author investigates effi-

ciency and revenue maximization in a similar setup through the lens of dynamic mechanism

design. Zeithammer (2006) developed a model with forward-looking bidders, and showed

both theoretically and empirically that bidders shade down current bids in response to the

presence of upcoming auctions of similar objects. Ingster (2009) develops a dynamic model

of auctions of identical objects, and provides equilibrium characterization and identification

results. Sailer (2006) estimates participation costs for bidders facing an infinite sequence

of identical auctions. Nekipelov (2007) analyzes a model where bidders attempt to prevent

learning by late bidding, while Hopenhayn and Saeedi (2016) develop and estimate a model
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in which bidder’s bidding opportunities and valuations evolve dynamically within an auc-

tion according to a Markov process. Bodoh-Creed et al. (2013) employ our methodology in

analyzing the optimal fee structure for the eBay platform. Hendricks and Sorensen (2014)

offer a model, similar to our own but in continuous time and with a single product type, and

analyze the efficiency of the eBay trading mechanism.

Relative to this literature, our main contribution is the focus on sequential auctions of

heterogeneous objects, where bidders have multidimensional persistent private valuations.

In short, we are focused on developing a demand system. This is also a topic of interest in

other recent papers. Adams (2009) examines the problem of nonparametric identification

when differentiated products are sold by simultaneous auction, and Krasnokutskaya et al.

(2014) develop a model of participation and bidding in an online labor market. Our paper

differs from these papers in allowing buyers to participate repeatedly and dealing with the

dynamic issues this creates. One of the advantages of using a dynamic model is that we

are able to make use of panel data in estimation, rather than treating it as a repeated

cross-section, which allows identification of individual bidder preferences.

Paper Structure. The paper proceeds as follows. In the next section we introduce the

basic model, and prove existence of and characterize equilibrium. Sections 3 and 4 discuss

non-parametric identification of the basic model and a series of extensions. Section 5 presents

our application, while Section 6 concludes.

2 Model and Equilibrium Analysis

We consider a market in which competing products are sold by second-price sealed bid

auctions. These auctions are held in discrete time, with either zero or one good auctioned

per period over an infinite horizon. Since our focus is on demand, we assume for simplicity

that supply is random and exogenous. Bidders have unit demand, and enter the market with

private and perfectly persistent valuations for each of the objects. They are inattentive, and

are active in any particular period with constant probability. When active, they choose

whether or not to participate in the current auction, and how much to bid. We show that

they bid their valuation less their continuation value, and assume they assess the latter based

on the steady-state distribution of supply and competing bids, rather than on current market
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conditions (e.g. the number of competing bidders in the current auction). Winning bidders

exit the market with certainty, while losing bidders exit with constant probability.

We have chosen this set of assumptions to match some features of the market for digital

cameras on eBay, which is our empirical application. In any eBay category (such as digital

cameras), there are many different products sold by auction to a large number of anonymous

buyers.2 Although these auctions typically last for many days, and thus overlap — so that

at any given point in time there are many auctions occurring simultaneously — they finish

at different ending times, in sequence. As Bajari and Hortaçsu (2004) and Hendricks and

Porter (2007) have noted, this timing, combined with the way the proxy bidding system

works, imply that eBay is well approximated as sequence of second-price sealed bid auctions.

2.1 Environment

We formalize the above description of the environment in what follows:

Supply. There are J distinct kinds of goods sold in a market, indexed by j = 1 . . . J . We

denote the set of products by J . In each period t, a good may be available for purchase.

Supply is exogenous and Markov, with the current product jt drawn from a stationary

multinomial distribution conditional on the lagged product jt−1. We allow for the possibility

that no product is available in a given period, and so supply can be summarized by a square

transition matrix Q of size J + 1× J + 1, where the entry Qj,k gives the probability product

k will be supplied next when j is currently offered (and the last row and column give the

cases where no product is offered now and will be offered later, respectively). We assume

moreover that the multinomials have full support, so that regardless of what was supplied

at t− 1, it is possible that any of the J products (or nothing) is supplied at t. When a good

is available, it is sold by second-price sealed-bid auction.

Demand. At the beginning of each period, Et buyers enter the market, where Et is sampled

independently over time from a distribution FE with support {0, 1, 2 . . . E}. Each buyer has

unit demand, and has a perfectly persistent value for each of the goods summarized by a

privately known vector of valuations x = (x1, x2 · · · xJ) ∈ RJ . This value is drawn iid across

buyers on entry according to a distribution F with strictly positive density over its support

2eBay hides the identity of the bidders by replacing parts of the username with asterisks.
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X = [0, x]J . The new entrants combine with the population of buyers from previous periods

to form a cohort of bidders of size Nt. To ensure that the maximum number of buyers N is

bounded, we assume that when Nt = N , no-one enters (Et = 0).

New entrants are always active; the remaining incumbent members of the cohort are active

in each period with iid chance τ . Active buyers participate in the current auction (if one

is held), observing the product currently under auction, and placing a weakly positive bid

b ∈ R+. We assume that the good sells only if the highest bid is strictly positive, so a

buyer can always opt-out of an auction by bidding zero. Agents are risk-neutral and have

quasi-linear utility, receiving a total payoff of xj − p for buying a good j at price p, and zero

otherwise. If an auction is held and a bidder wins the auction, they exit the market. All

other active bidders exit with probability (1−r) (i.e. r ∈ (0, 1) is the survival rate). Inactive

bidders do not exit. We assume that agents do not discount future payoffs, although the

exogenous exit probability effectively leads to discounting. We discuss bidder beliefs and

strategies in the next section.

2.2 Analysis

We begin our analysis by looking at the buyer’s incentives. In our application to the compact

camera market on eBay, it seems reasonable to assume that buyers have simple models of

the competition they face. We formalize this idea by assuming that bidders believe that the

distribution of the highest competing bid is equal to the historical average and best respond

accordingly (this assumption or some variant is implicitly used in the existing literature

(Ingster, 2009; Hendricks and Sorensen, 2014)). Let B1
j be a random variable denoting the

highest bid in an auction for good j, and let G1
j be its cumulative distribution function.

Assumption 1 (Beliefs about competing bids). Following any history of play, bidders

believe that the highest rival bid in an auction for good j has distribution G1
j .

This is a sensible way for bidders to form beliefs, though it is non-standard. Agents in games

are usually modeled as Bayesian, and so would condition on the recent bidding history and

any other observables in their information set (e.g. the number of competing bidders in the

current auction) to update their prior and form a posterior over the current distribution of

types in the market.3 We have elected to model bidder beliefs in this way both because

3Even if this data was hidden a bidder could learn from their own experience over time (e.g. a bidder
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it substantively simplifies the game theory, and because the gap between the behavior of

sophisticated Bayesian bidders and those that obey assumption 1 is probably small.

Just as information about competitor valuations has no effect on the optimal bid in a static

second-price auction, knowing the current distribution of types in the market is useful only

to the extent that it predicts future competition, which determines continuation values.

Since bidders participate only intermittently and eBay is a large market with high turnover

of market participants, current market conditions have little predictive power for future

competition. Assumption 1 is thus a good approximation to the behavior of Bayesian bidders

in this marketplace, though the model can be extended to weaken this assumption and allow

bidders to condition on other state variables (see section 4.3.2).

Under this assumption, the only payoff relevant-information in each period is the bidder’s

type and the current object under auction (we show this below). So without loss of generality

a pure strategy is just a vector β : X → RJ , a bid on each product as a function of type, with

jth coordinate βj. Moreover, let µβj (·) denote the ergodic measure of the first-order statistic

of bids, which depends on β.4 We can think of this measure as capturing the time-average

we would compute if we picked a β and simulated the market for an arbitrarily long time.

We are now in a position to define what it means for the market to be in equilibrium (subject

to our restriction on beliefs):

Definition 1 (Equilibrium). A pure strategy equilibrium is a tuple (βe, {G1
j}) such that

(Optimality) βe(x) is a best response for type x given beliefs {G1
j(b)}j∈J , and

(Consistency) for every j, G1
j(b) = µβ

e

j ([0, b]).

The definition mirrors the requirements for a Bayes–Nash equilibrium: play must be optimal

given beliefs, and beliefs must be consistent with play. The consistency requirement explicitly

connects beliefs, as specified by Assumption 1, to the distribution of the highest bid on each

product implied by rivals’ strategies.

who lost yesterday might reason that competition was fierce yesterday, and may still be so today). This
gives rise to a winner’s curse effect (Budish, 2008). There is some evidence that this kind of learning occurs
on eBay: Coey et al. (2015) show that bidders tend to (modestly) increase their bids in subsequent auctions
for the same product, although they attribute this to deadlines rather than learning.

4In an earlier version of this paper, we proved that for any β, such an ergodic measure exists, is unique
and converged to at geometric rate - details available on request. The speed of convergence makes us more
confident that the data is drawn from the recurrent ergodic class.
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We can now specify the buyer’s decision problem. It is dynamic, since losers may have an

opportunity to bid at a later date. The relevant state variables are just the buyer’s type

and the product–type currently being auctioned, since Assumption 1 implies that this is

sufficient for beliefs about the highest competing bid (which together with the bid determines

allocations and payments). These state variables are Markov, and so the buyer faces a

Markov decision problem.

Define the state transition matrix Q̃ ≡
∑∞

s=1 τ(1 − τ)s−1Qs. This is the distribution over

products a bidder bidding on j today expects to see when they are next active. Notice

that as τ → 0 (so that bidders are infrequently active), each row of Q̃ will converge to the

steady-state distribution of supply, which we denote by π. Let vj(x) be the continuation

value of a bidder of type x who is active and bidding on product j. Then we can write down

a Bellman equation:

vj(x) = max
b∈R+

∫ (
1(b ≥ B1

j ∨ b > 0)(xj −B1
j ) + 1(b < B1

j ∨ b = 0)r
∑
k

Q̃j,kvk(x)

)
dG1

j(B
1
j ).

(1)

The first term in the integral represents the case where the bidder submits the largest nonzero

bid, winning the auction and obtaining surplus equal to current valuation less a payment

given by the second-highest bid (potentially zero). The second term represents the case

where the bidder loses and survives to bid another day, obtaining their continuation value

for the next period in which they will be active. These events determined by the realization

of the highest competing bid, which by Assumption 1 the bidder believes to be distributed

according to G1
j . Solving the above maximization problem, we get:

Lemma 1 (Best Responses). Suppose that beliefs satisfy Assumption 1. Then a bidder’s

expected payoff is maximized by bidding their valuation less continuation value if this is

positive, and otherwise bidding zero:

βj(x) = max{xj − r
∑
k

Q̃j,kvk(x), 0}. (2)

When βj(x) is zero or interior to the support of G1
j , the best response is unique. Moreover,

βj(x) is continuous, increasing in xj (strictly when βj(x) > 0) and decreasing in xk for k 6= j

(strictly when βj(x) > 0 and βk(x) > 0).
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(a) Two Bidding Functions (b) Three Bidders

Figure 1: These figures offer an illustration of the bidding strategies described by Lemma
1 in a two-dimensional example. In panel 1(a) the two functions represent optimal bids on
product 1 as a function of bidders’ valuations for good 1, fixing their valuation for good 2.
Panel 1(b) represents three exemplary bidders: their types {x, x′, x′′} and their associated
bids {b, b′, b′′}. See the text for discussion.

In static second price auctions, bidders bid their values so that they are indifferent between

marginally winning (paying their bid, earning zero surplus) and marginally losing (earning

zero surplus). The same logic applies here: bidders must be indifferent between marginally

winning and losing, and since losers receive their continuation value, bids must be equal to

value less continuation value. It is possible that a bidder prefers to wait for a product they

value more highly rather than win the current object at a price of zero, in which case opting

out of the auction by bidding zero is optimal.

The assumption that bids are either zero or interior to the support of {G1
j}j∈J is necessary

for uniqueness, since if there is an interval [b, b′] on which rival bids are unsupported and

the putatively unique best response falls in this range, any other bid in the range will also

be a best response. Note that the characterization in (2) is implicit — i.e., vj(x) is defined

recursively according to the Bellman equation in (1) — but since the value functions in

Markov Decision Problems are unique (Stokey et al., 1989), the characterization of optimal

bids as valuations less continuation values immediately delivers uniqueness of {βj(x)} (i.e.

that they are functions). Continuity follows from the continuity of payoffs in types. Mono-

tonicity is natural: if a bidder values object j more, they optimally increase their bid for it,

and correspondingly shade their bids on substitute objects down.
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We offer some graphical intuition for the bidding strategies of Lemma 1 in Figure 1 with a

two-dimensional example. Panel 1(a) depicts the monotonicity properties of optimal bids.

The more a bidder values product 1 the more she bids on it. However, bidders with higher

valuations also shade more; a bidder’s continuation value is monotone increasing in her value

for product 1, which induces the concavity of the function. Increases in her valuation for

product 2 cause a level shift, and may even drive non–participation if x1 is small — or x2 is

large — enough. Panel 1(b) depicts three conjectured bidder types (x, x’, and x”) and their

corresponding bids (b, b’, and b” respectively). The bidder of type x has a high valuation

for both products and therefore shades both of her bids substantially. The bidder of type

x′ gets the same high utility from product 1, but zero utility from product 2. Therefore she

does not participate in auctions of product 2; she prefers to wait for auctions of product 1.

Finally, the bidder of type x′′ is unlikely to win in either state of the world, and therefore

shades her bid very little, but participates in both auctions.

Theorem 1 (Existence). A pure strategy equilibrium exists in which strategies are charac-

terized by Lemma 1. When J = 1, there is a unique equilibrium within the class of strategies

characterized by Lemma 1.

The proof is non-trivial. We must find a fixed point in strategy-space: the equilibrium

strategies βe must be a best response to the distributions {G1
j}, i.e. the ergodic distributions

of the highest competing bid on each product generated by βe and the entry, supply and exit

processes. To show that such a strategy βe exists, we apply Schauder’s fixed point theorem

on the space of continuous functions on the type space X . Doing so requires some functional

analysis. In the appendix we show that the set of best responses to any continuous bidding

function is uniformly equicontinuous and bounded (a compactness condition), and that the

best response varies smoothly with the bidding function (a continuity condition).

The case with a single product (J = 1) is easier, and we can prove uniqueness of equilibrium.

This is because the types are totally ordered and monotone bidding preserves that ordering,

so that the chance of winning an auction is entirely pinned down by a bidder’s type. As a

result who wins and who loses can be determined without knowing the equilibrium bidding

function, so that the economy admits a unique ergodic distribution of types. Uniqueness of

optimal bids follows from a contraction mapping argument.5

5That uniqueness result for the single product case is only within the class of strategies characterized by
Lemma 1: somewhat trivially, it is possible to construct an equilibrium in which a point mass of bidders for
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3 Identification

In this section we state and prove the main theoretical result of the paper, which is that the

demand system outlined above is non-parametrically identified up to constraints imposed

by non-participation (a limitation we make precise below). We think this is useful because

it makes explicit the assumptions that are needed to identify the primitives of the dynamic

game. Our result is constructive, so it also provides some guidance as to a sensible estimation

strategy.

We begin with a scenario in which the econometrician has excellent data and wishes to

estimate the baseline model of Section 2 (we investigate cases with limited data and more

complex demand models in Section 4 below).

Assumption 2 (Observable Data). In every auction, the econometrician observes the

product-type being sold, all positive bids and the identities of the bidders that made them.

Even in this case we assume that the econometrician does not observe zero bids, since

those stand in for non-participation in our model (i.e. non-participation is non-observable).

Despite this, identification of a number of components of the model follows directly. First,

{G1
j} is directly observable from the data as the distribution of winning bids on each product.

The supply transition matrix Q is identified by the probability that item k is auctioned

following item j.

The activity rate τ and survival probability r cannot be directly measured from the sample

analogs because some types will optimally choose to not participate even when active. To

deal with this, we measure τ and r from a sample consisting of bidders who have been

observed bidding on every product. Such bidders have revealed themselves to be types that

will participate whenever active. Define for each of these bidders a qualifying time t1i , the

time at which they qualified to be in this subset (i.e. the time at which they bid on the last

remaining product they had not previously bid on). Then for bidders in this sample

r = P(bidder i is observed in any period > t1i |bidder lost in period t1i ) (3)

and,

whom, for some j, βj(x) is neither zero nor interior to G1— i.e. those who submit supX βj(x)— choose to
bid something arbitrarily larger.
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rτ = P(bidder i is observed in period t1i + 1|bidder lost in period t1i ). (4)

Since the RHS of (3) and (4) are observed in the data, from this pair of equations one can

solve for r and τ . Once we have r, Q and τ , we can compute the state transition matrix

Q̃ =
∑∞

s=1 τ(1− τ)s−1Qs. Next, define the inverse bidding function ξ : RJ → RJ by

ξ(b) ≡ b + rQ̃(I − rQ̃)−1G1(b)
(
b− E[B1|B1 < b]

)
. (5)

In view of the above analysis showing that r, Q̃ and {G1
j}j∈J are identified, ξ is also identified.

Notice that ξ(b) is equal to the vector of of a buyer’s bids plus a second term that is equal

to their vector of continuation values.6 There is a clear intuition for the second term: when

a buyer wins with a bid bj, he gets a payoff equal to his value less the expected payment,

which we can decompose as (bj −E[B1
j |B1

j < bj]) + (xj − bj). The latter component is equal

to his continuation value (Lemma 1 again, as he only wins if bj > 0), and so the payoff can

be written as (bj −E[B1
j |B1

j < bj]) plus an opportunity to play the game again. The buyer’s

continuation value is thus equal in value to the stream of payments from a set of J annuities,

where the jth pays G1(bj)(bj − E[B1
j |B1

j < bj]) in expectation whenever j is auctioned. The

pre-multiplication by rQ̃(I − rQ̃)−1 sums the appropriate discounted geometric series.

In view of Lemma 1, this sum in (5) equal to the bidder’s value whenever the bid is positive,

so ξ is an inverse bidding function on the region b > 0. When components of the bid vector

b are zero, however, we still obtain an upper bound on the bidder’s valuation. Combining

this yields

Lemma 2 (Bidder–wise Inversion). Let b = β(x). Then x ≤ ξ(b) with equality on every

dimension j such that bj > 0 (i.e. x = ξ(b) if bj > 0 for all j).

This result characterizes the bidder–wise content of data from an auction market. Should

we observe a complete, strictly positive bid vector, it implies that we can exactly identify

the bidder’s type. In the particular case where J = 1, the inverse bidding function takes the

simple form:

ξ(b) = b+
r

1− r
G1(b)(b− E[B1|B1 < b])

6The diligent reader can derive this expression by stacking the Bellman equations from (1) in vector form
and then substituting in the optimal bidding strategies from Lemma 1.
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the discrete-time analogue to the inverse bidding function in Hendricks and Sorensen (2014).

Given this inversion result, it will be helpful from now on to refer to the bid-vector b ≡ β(x)

as type x’s “pseudo–type”. Let the distribution of pseudo–types be F̃. It will suffice to

identify F̃ to bound demand F. To see this, define a vector-valued indicator function 1(b > 0)

with 1j(b > 0) = 1 if bj > 0 and 1j(b > 0) = 0 otherwise. Then by Lemma 2, we have

1(b)ξ(b) ≤ x ≤ ξ(b). These pointwise inequalities translate into bounds on F:

P({b : ξ(b) ≤ x}) ≤ F (x) ≤ P({b : 1(b > 0)ξ(b) ≤ x}). (6)

The missing part of our identification proof is a way of identifying the distribution of pseudo–

types (and thus the probabilities on each side of the inequality in (6)). With a single product,

this is a simple counting exercise: how many bidders are there who make each bid b (i.e. what

is the bid distribution G(b))? With multiple products this counting exercise is complicated

by selection, because most bidders will exit before placing a bid on every available product.

We deal with sample selection by choosing subsets of the data for which selection can be

explicitly modeled and accounted for. There are many such subsets one could construct in

order to prove identification. For example, one possible subset is the set of all complete bid

vectors. The (joint) distribution of complete bids is observable, but selected: pseudo–types

with high b1 (e.g.) will typically bid on product 1 and then win and exit, and therefore have

low density in the selected sample of complete bid vectors.

One problem with this conditioning set is that there are many paths a bidder can take to make

a complete bid vector, and so calculating the probability of this event requires enumerating

and computing the probability of many paths. So instead we work with the set of bidders

whose history falls into the following set H: they enter when good 1 is available, bid, lose

and survive, then next period good 2 is available, and the bid, lose and survive . . . J is

available, they bid, lose and survive. Such bidders can be identified given the data available

under Assumption 2. Every pseudo–type who participates on every product is almost surely

represented in this set, as every type on the interior of X̃ can lose an auction and survive to

bid on a different product. We re-weight the observed frequency of pseudo–types observed

in this subset by the inverse probability of inclusion– a selection correction that will allow us

to learn about the distribution of pseudo–types and, from (6), the distribution of types. To

compute the weights, we need to identify the probability sH(b) that a pseudo–type b ends

up in the set H, which is relatively straightforward for our choice of H:
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Lemma 3 (Selection correction). Let Assumption 2 hold. Then sH(b) is identified.

Let the joint density of their bids be gH(b). Lemma 3 allows us to re-weight the density

gH(b) to get the density of pseudo–types with b > 0:

f̃(b|b > 0) ∝ gH(b)

sH(b)
(7)

But this only characterizes bidders with b > 0. Revisiting our example in Figure 1(b),

bidders of types x and x′′ are represented in H, but not x′, who never participates in auctions

for product 1. Pseudo–types that don’t participate on some products will never enter H

(i.e. sH(b) = 0), and so to move from the conditional distribution to the unconditional

distribution takes a little more work. The idea is to define less restrictive sets H ′ ⊃ H

(e.g. sets of bidders who are observed bidding on product 1) and look for “extra mass” in

those sets generated by these non-participating pseudo–types. In the appendix, we make

this argument formal, applying induction on the cardinality of the set of products each type

participates in, starting from types who bid on every product. Combining these arguments:

Theorem 2 (Non-parametric identification). Let Assumption 2 hold. Then F̃ is point

identified and F is partially identified, according to (6).

This result combines the bidder–wise inversion of Lemma 2 with the selection correction

result of Lemma 3. The dynamics of the auction market are important in both steps: in the

first, the inverse bidding function ξ(·) captures bidders shading their bids by the option value

of losing and participating in future auctions; in the second, sH(b) accounts for selection

into our sample, which is inherently dynamic when J > 1.

The reason that Theorem 2 yields partial rather than complete identification is that we

allow for bidder non-participation. If bidders were required to participate (e.g. primary

dealers in US Treasury auctions), then identification would be exact. Moreover, we note

that identification of our model is only incomplete in the left tail of the type distribution,

precisely because it is driven by non-participation. Our identification result is exact in the

right tail, which is typically the relevant region for computing policy-relevant statistics, e.g.

welfare or expected revenue.

Finally, the proof and our exposition above hinged on a specially selected subset of bidders

with history H. We chose this subset for expositional clarity alone: though our identification
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argument is constructive, in practice we expect that the econometrician will be thoughtful

about which subsets — and therefore which variation in the data — to exploit in light of

their particular application.7 In the same spirit, since the choice of H was expositional, so

too is Lemma 3. One could construct a similar argument for alternative subsets.

4 Extensions

In this we provide characterization and identification results for variations on the basic model.

We begin by showing that the model remains identified with data on only the winning and

second highest bid in each auction, as well as in the presence of reserve prices. We also

show, parallel to the the demand estimation literature for fixed price markets, that the

model is amendable to projection onto product characteristics, as in the random coefficient

utility models of Berry et al. (1995). We then generalize the model to a setting in which

there are additional state variables — beyond the product-type — that may affect bidder

valuations and beliefs. After characterizing bidding behavior in this case, we are also able to

show that the model remains non-parametrically identified in cases with unobserved product

heterogeneity and idiosyncratic payoff shocks. Lastly, we consider a version of the model in

the presence of an unobserved, external fixed price market that agents may purchase from

instead of buying at auction, generating endogenous exit.

4.1 Limited Data

In many real world applications, the data does not contain all bids and identities. Or even

if it does — as in our eBay application here — one may be concerned that not all bids are

serious (in the sense that they are equal to βj(x)), and want to identify the model using data

only on the winning and second highest bid. Haile and Tamer (2003) offer a behavioral model

of ascending price auctions to motivate this concern, and a number of papers have taken

identification under this or similar data limitations seriously (Athey and Haile, 2002; Song,

2004; Menzel and Morganti, 2013; Platt, 2015) We consider the case where the econometrician

observes the two highest order statistics and show that the model remains identified.

7This argument anticipates the illustrative empirical application of Section 5, where we choose to use only
data for bidders who are observed bidding multiple times. See in particular the discussion of the empirical
design in Section 5.2.
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Assumption 3 (Limited Data). In each auction, the econometrician observes the product

auctioned, the top two bids and the identities of the bidders placing them.

Lemma 2 still applies, so identifying (F̃, {G1
j}j∈J , Q, r, τ) is sufficient to identify ξ(·) and

bound F according to (6). The primitives {G1
j}j∈J and Q are still directly observable in the

data. But now the difficulties in identifying r and τ we had earlier are exacerbated by the

fact that a bidder will have (unobserved) gaps in their history whenever they were active but

did not place one of the top two bids. Our data is thus censored. But since the probability

of being censored depends on the distribution of the second highest bids, which is observed,

the parameters τ and r remain point identified (see the Appendix for a proof).

Thus the remaining problem is identifying the distribution of pseudo-types F̃ from the ob-

served bidding data. Once again, we can think of this as a selection problem. Consider

the subset of bidders whose history falls into the set H ′ (a modified version of H): they

enter when good 1 is available,make the second highest bid (and are thus observed), then

next period good 2 is available, they make the second highest bid . . . good J is available and

they make the second highest bid. Since the event “make the second highest bid bidding on

product j” is measurable with the data promised by Assumption 3, these bidders can be

identified in the data. And by similar arguments to those offered before, we can identify the

probability sH′(b) that we need for selection correction. This gives us:

Theorem 3 (Identification under Limited Data). Let Assumption 3 hold. Then F is

partially identified, according to (6).

For further intuition on this result, recall the discussion of our selection of the history H at

the end of Section 3. There are a number of possible histories on which we could have built

our identification result — H was an expository choice, but H ′ is also feasible. As long as

the process by which bidders are selected into the sample can be recovered from observables,

our identification result is robust subject to the emendation of the selection correction.

4.2 Random Coefficients

Let us suppose that the products have fixed (non-time-varying) characteristics, observable

to the econometrician. These are summarized in a J × K matrix Z, where the number of

characteristics K is less than the number of products J . We make two assumptions on Z:
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that it is of full rank (this is necessary for identification), and that all entries are positive

(this is unnecessary but simplifies the analysis by allowing the inequality in (8) below).

Let bidder i have valuations of the form xi = Zαi, so that their preferences are summarized

by a random coefficient αi (a K × 1 column vector). Instead of sampling valuations x upon

entry from F, we assume that bidders sample their random coefficient α from Fα instead.

We would like to identify the distribution Fα.

This demand structure is a special case of the model in which valuations x come from some

higher-dimensional distribution F, and as a result optimal bidding and the inversion result

in Lemma 2 remain unchanged. We can bound Fα using the more general result in (6):

P({b : ξ(b) ≤ Zα}) ≤ Fα(α) ≤ P({b : 1(b > 0)ξ(b) ≤ Zα}) (8)

where we have simply replaced x in (6) by Zα. Intuitively, the probability that a random

coefficient is lower than some level α is the same as the probability that the valuations are

lower than the corresponding level Zα, and can be bounded in the same way.

Corollary 1 (Identification under random coefficients). Suppose Assumption 3 holds.

Then Fα is partially identified, according to (8).

Though the result is straightforward, it highlights the generality of the type space of our

model from Section 2. As in demand systems for fixed-price markets, projection down to

preferences over characteristic space yields dimension reduction. Since we can partially iden-

tify a high-dimensional model with random preferences over products, we can also partially

identify a lower-dimensional model of random preferences for characteristics too.

4.3 Demand with Richer Signals

We now analyze a more substantial variation of the basic model in which we allow for both

public and private signals that affect both beliefs and valuations. This framework is the

basis for two extensions: public signals that affect beliefs about the state of the market and

unobserved heterogeneity in product attributes.

To accommodate this, we need a richer state space. Assume that in each period, a state

variable s ∈ S is publicly observed. This state variable may affect bidder valuations, so we

model a bidder’s valuation as a random function xi(s). Exactly how xi(s) is sampled will
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depend on the specifics of the model. For example, in the original model, the state variable

was the product-type under auction (i.e. s ∈ J ), so valuations were xi(j) ≡ xi,j where xi,j

was the jth element of xi, and xi was sampled iid across bidders i from F. The state variable

may also affect beliefs about competing bids, so we modify Assumption 1 accordingly:

Assumption 4 (Beliefs with Public States). When the public state is s, bidders believe

that the highest rival bid in the current auction has distribution G1(·|s).

For example, bidders may believe that when there is a lot of supply of a given good on the

market, the highest competing bid will be lower. Assume also that bidders believe the state

transitions according to an exogenous Markov transition kernel P (s′|s) (exogenous in that

it is unaffected by the actions in the current auction).

Definition 2 (Equilibrium with Public States). A pure strategy equilibrium is a pair

(βe(·, s), G1(·|s)) such that:

(Optimality) βe(x|s) is a best response for type x given beliefs G1(b|s) ∀s ∈ S.

(Consistency) G1(b|s) = µ([0, b]|s) ∀s ∈ S.

Then by the same logic that we offered for Lemma 1, it is optimal for bidders to bid their

valuation less their discounted continuation value, and we obtain:

Lemma 4 (Best responses, general state space). The equilibrium bidding function β(s)

satisfies:

β(s) = max{x(s)− r
∫
v(s′)dP (s′|s), 0} (9)

where v(s) is the value function, defined according to the Bellman equation:

v(s) = max
b
G1(b|s)(x(s)− E[B1|B1 < b, s]) + r(1−G1(b|s))

∫
v(s′)dP (s′|s) (10)

4.3.1 Public States and Bidder Beliefs

A special case of particular interest is when S = J ×{s1, . . . , sS} and xi(s) = xi,j, i.e. when

the state informs beliefs about competitor play, but does not encode valuation-relevant in-

formation. We call attention to this not because it is technically demanding, but because

it remedies a limitation of the baseline model: that it misses the intuition of a dynamic
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marketplace in which bidders respond to changes in market fundamentals. We can encode

countably sophisticated information into the public state space S, including histories, chang-

ing primitives, and foresight.

For instance, suppose that bidders know not only what is being auctioned today, but the

sequence of products that are being auctioned k − 1 periods into the future. Then, S =

J k, and bidders’ continuation values will now depend upon realizations of future supply.

Alternatively, suppose that τ , the re-arrival rate of bidders, evolves over {τL, τH} in a public

and Markov process. Now, S = J ×{τL, τH}. In the τH world bidders face more competition

from more bidders, and so it is useful to let this be reflected in G1(·|s).

It is straightforward to see that this presents no theoretical difficulty for identification. The

simplest approach is by brute force application of Theorem 2: simply define J̃ to contain

|S| duplicates of the product space J and proceed as before. It is also possible to show,

using a contraction mapping argument, that the full J ×|S| bid vector is identified from any

J-vector that includes a bid for each product type.8

4.3.2 Unobserved Heterogeneity and Idiosyncratic Shocks

We now introduce a variant of the model with unobserved product heterogeneity and id-

iosyncratic taste shocks (this will be useful in the application). In this setting unobserved

product heterogeneity (ξt) is public and transient, and idiosyncratic taste shocks (εi,t) are

private and transient. We assume that valuations are:

xi(j, ξt, εi,t) = xi,j + ξt + εi,t (11)

where xi,j is sampled as in the basic model, ξt is sampled iid across auctions from Fξ and εi,t

is sampled iid across bidders and auctions from Fε. We assume in addition that xi,j, ξt and

εi,t are mutually independent and that ξt and εi,t are mean zero. We make a full support

assumption on εi,t so that every type x bids on every product with positive probability

(i.e. they participate when they get a sufficiently large idiosyncratic shock). Notice that

a random coefficients model with unobserved heterogeneity and idiosyncratic shocks in the

spirit of Berry (1994) and Berry et al. (1995) is a special case of this model, in the sense

8This implies that the requirements for a “complete” bid vector are not made more taxing as the econo-
metrician adds public states. Details available from authors upon request. However, the dimension of the
first-stage objects the econometrician must estimate will grow as public states are added.
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that it projects the valuations xi,j onto characteristics.

We split the identification analysis into two parts: a first step in which we define pseudo-

types and show an inversion from pseudo-types to types; and a second step in which we show

that the distribution of pseudo-types is identified.

Inversion. For valuations of the form in (11), Lemma 4 implies we have bids9:

bi,j,t = max{xi,j + ξt + εi,t − r
∑
k

Q̃j,kvk(x), 0}

where the continuation value in the first term depends only on the permanent part of the

state x rather than the transitory iid shocks ξt and εi,t (though the presence of idiosyncratic

shocks creates option value that is included in vk(x)).

Define a pseudo-type vector b̌(x) elementwise according to b̌i,j(x) = xi,j − r
∑

k Q̃j,kvk(x).

We use the check notation to distinguish the pseudo-types from the bids. The pseudo-type

is the permanent part of the bid vector; positive bids can be written as pseudo-type plus the

two transitory shocks. In contrast to bids, pseudo-types can be negative. We can then write

the bids as:

bi,j,t = max{b̌i,j + ξt + εi,t, 0}

Let B1
j,t be the winning bid in each auction, and define Ǧ1

j as the distribution of B1
j,t − ξt.

In the presence of unobserved heterogeneity, all bidders will adjust their bids by ξt (which

they all value equally), and so the raw distribution of winning bids G1
j will have additional

variance relative to the distribution Ǧ1
j .

Lemma 5 (Inversion, general demand). Suppose {Ǧ1
j}j∈J , Q̃, r and Fε are known.

Then x = ξ̌(b̌), where ξ̌(b̌) = b̌ + rQ̃(I − rQ̃)−1ǔ(b̌) and

ǔj(b̌) =

∫
Ǧ1
j(b̌j + ε)(b̌j + ε− EǦ1

j
[B1

j |B1
j < b̌j + ε])dFε(ε)

As in the basic model, each pseudo-type can be mapped back to an underlying type. But

there are a number of important differences between this result and the earlier one. First,

since pseudo-types can now be negative, this mapping is exact (rather than holding only for

9Since εi,t is private rather than public information, strictly speaking this is not implied by Lemma 4.
But since εi,t only affects the bidder’s current valuation and nothing else, adding it to the bid is optimal.
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strictly positive pseudo-types, as in the basic model). Second, the expected utility from the

optimal bid in any period now includes the idiosyncratic shock, both in the continuation

value and in adjusting the bids. The unobserved heterogeneity does not enter expected

utility, as it shifts all bids in an auction up by ξt, and thus the extra valuation of ξt is exactly

canceled out by an additional payment of ξt conditional on winning. Finally, this inversion

cannot be applied bidder-wise to bid vectors, since bid vectors are not pseudo-types (they

now include unobserved heterogeneity and idiosyncratic shocks). Instead, we will apply the

inversion ξ(·) to the distribution of pseudo-types as a whole.

But first we need to identify both Fε and {Ǧ1
j}j∈J , as these are required by Lemma 5.

Identifying these objects will require making some deconvolution arguments (Li and Vuong,

1998; Krasnokutskaya, 2011). Let us start with identifying {Ǧ1
j}j∈J . Take pairs of bids

placed in the same auction, by bidders that have just entered the data. The pair can be

written as a common part ξt plus a vector of independent shocks (sums of the pseudo-type

and the idiosyncratic shocks). Since all the terms are mutually independent, and E[ξ] = 0,

by Kotlarski’s lemma, the distribution Fξ is identified (Kotlarski, 1967). Then, since each

observed G1
j is a convolution of Fξ and the corresponding Ǧ1

j , and Fξ is identified, we can

again apply deconvolution to get {Ǧ1
j}j∈J .

Next consider identification of Fε. Take a very specific sample: the pair of bids of bidders

who entered the sample, bid on product 1, lost, and bid on product 1 again. So we have:

bi,1,t1 = b̌i,1 + ξt1 + εi,t1

bi,2,t2 = b̌i,1 + ξt2 + εi,t2

with the following statistical structure: all the distinct variables are mutually independent;

ξt1 and ξt2 are drawn from Fξ; εi,t2 is drawn from Fε; but εi,t1 is drawn from some other

distribution F̃ε because the sample is selected: only losing bidders in the first auction (more

likely to be those who drew low ε’s and placed low bids) are in the sample.

This can be written in the form Y1 = M +U1 and Y2 = M +U2 for M = b̌i,1, U1 = ξt1 + εi,t1 ,

U2 = ξt2 + εi,t2 with M,U1, U2 mutually independent and E[U2] = 0. Applying Kotlarski’s

lemma again, the distribution of U2 = ξt2 + εi,t2 is identified (see also Evdokimov and White

(2012)). This is itself a convolution of the identified Fξ and the unknown Fε, and so by

applying deconvolution again, we identify Fε.
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Identification of Pseudo-Type Distribution. In view of Lemma 5 and the above de-

convolution analysis we know that given the distribution of pseudo-types F̃ we can identify

F. But F̃ is latent. So let us instead work with the set of bidders with history H, where H

is defined as before (i.e. these are bidders who enter when good 1 is available, are active,

bid, lose, survive...). Let GH be the distribution of their bid vectors in those J auctions.

Define the convolution operator ∗ acting on distributions F and G of independent random

variables X and Y by PF∗G(A) =
∫
X

∫
Y

1(X + Y ∈ A)dF (X)dG(Y ) for any measurable set

A. Note that F is identified from F ∗G whenever G is known. Then we have:

GH =
(

(F̃ ∗ Fε)|complete
)
∗ Fξ

where Fε is the distribution of idiosyncratic error vectors and Fξ is the distribution of

unobserved heterogeneity vectors (both J-vectors). We indicate that the distribution of the

convolution of the pseudo-types and the idiosyncratic errors is selected by the process of

looking for bid vectors that are complete in the first J auctions.

Then since GH is observed and Fξ is identified by previous arguments (since the ξt are

iid, the vector has distribution equal to the J-product of the marginals Fξ), the object(
(F̃ ∗ Fε)|complete

)
is identified. We would next like to get the unconditional distribution

F̃ ∗ Fε. Following the logic of lemma 3, this requires identifying for each draw from F̃ ∗ Fε

(i.e. for a pseudo-type plus an idiosyncratic shock vector) the probability that such a bidder

ends up in the set H. But since {Ǧ1
j}j∈J , Q,r and τ are all identified, the proof goes

through exactly as before. So by applying selection correction, F̃ ∗Fε is identified. One last

deconvolution suffices to identify F̃ separately. Summarizing:

Theorem 4 (Identification with Unobserved Heterogeneity and Idiosyncratic Shocks).

Let Assumption 2 hold. For the demand system given by (11), F, Fξ and Fε are all non-

parametrically identified.

In view of the many deconvolution operations, and the slow convergence rates of estimators

based on deconvolution, this identification argument cannot be taken directly to data unless

the data set is very large indeed. In our application, where we use a similar demand system,

we impose a number of parametric assumptions to be practical.
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4.4 Reserve Prices

In many markets, sellers set reserve prices on their items. They do this to avoid selling

them at a price below their best outside use (either retained by the seller, sold in a different

market, or sold in this market at a later date), and to extract more money from buyers.

Sellers may set reserves non-strategically (e.g. at cost, or the $1 starting bid recommended

for many products on eBay), or to maximize expected revenue. They will generally know

everything commonly known by the bidders, which may include characteristics latent to the

econometrician.10 Reserves are sometimes implemented as minimum bids, which restrict

participations to types with sufficiently high values (e.g. on eBay). In other settings (e.g.

online advertising), the reserve may only be applied after the bids have been recorded (“secret

reserves”), in order to adjust allocation and payment.

Reserve prices can be easily accounted for in the model. Suppose that sellers charge reserve

prices on each item sold, drawn iid from distributions {GR
j }. We assume that buyers know the

distributions of reserve prices. Re-define G1
j as the conditional distribution of the maximum

of the highest competing bid and the reserve price on product j, and let assumption 1

hold as before. Bids are equal to valuation less continuation value, where the continuation

value is dependent on the distribution of reserve prices. High reserve prices directly depress

continuation values by lowering the likelihood that a bidder is successful in future auctions.

They also mean fewer bidders exiting the market, toughening competition.

For identification, the function ξ(·) still offers a valid inversion, though the distributions {G1
j}

are now amended to reflect the reserves. So if we can identify the pseudo-type distribution

F̃, we can bound F. With secret reserves, we can pointwise identify F̃ just as before.

On the other hand, with minimum bids, we again face a selection problem: only bids that

clear the minimum bid will be observed. So in the selection correction step, we need to

take into account the reserves in calculating sH(b). Moreover — in contrast to all the prior

analysis — some types might never be observed.11 For example, suppose there is only one

product, and it always gets a $100 reserve. Then types with values below $100 will never

bid. The mass of such types cannot be inferred from the data. This implies that we can only

10For example, Roberts (2013) explores a model in which an unobserved heterogeneity term ξ is observed
by sellers and used to set reserve prices. He shows that the reserve prices can then be used as controls in
estimating demand.

11In the baseline model, every type bids on at least one product with positive probability. This remains
true in the limited data case, since there is always some chance of being one of the top two bidders (e.g.
when no other bidders are active that period).
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identify F̃ for the subset of types who bid on at least one product with positive probability.

And even conditioning on types that bid with positive probability, we can only partially

identify F̃. This translates into weaker bounds on F, though the right tail of valuations will

still be well-identified, and this is often what is needed for policy counterfactuals.

4.5 Outside Options

We conclude our extensions with a variation of the model in which there are latent outside

options. We introduce outside options by describing a more general environment with passive

search. In each period t, both new entrants and active incumbents are presented with either

an auction of one of the goods in J (as in the basic model), or an opportunity to buy one of

the goods in J at a fixed price in another market (observed by the bidder, unobserved to the

econometrician). Beliefs about opposing bids in the auction market follow Assumption 1,

and are captured by the distributions GA
j (we switch superscript to indicate “auction”).

Prices in the outside market are stochastic, sampled independently and identically over time

according to product-specific continuous distributions GO
j (where the “O” stands for outside)

with strictly positive density over their support. We make a support inclusion assumption:

supp(GO
j ) ⊆ supp(GA

j ), so that the highest bid in the auction market would always suffice

to buy the corresponding good in the fixed price market. This assumption seems weak given

our intuitions about the size of price fluctuations in auction versus fixed price markets. We

make use of it in our arguments below.

Search in this environment is “passive” in the sense that active bidders do not actively choose

which product to bid on, nor whether to go to the fixed price or auction market. This is

consistent with our initial model.12 But bidders are sophisticated and take into account

future opportunities when making decisions today.

The transition matrix Q̃ is now of size 2J×2J , indicating the distribution over options that a

bidder participating on some product j in one of the two markets {Auction,Fixed Price} will

encounter when next active. We simplify by assuming that this distribution is independent

of the past state, so that it is multinomial (πA, πO), where the J-vector πA is the distribution

over the J products offered at auction, πO is the distribution over outside options, and∑
j π

A
j +

∑
j π

O
j = 1. This simplification is substantive: without it we would need to make

inferences about the Markovian transitions between unobserved states in the outside market.

12See a previous version of this paper for a model with optimal auction entry.
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The buyer’s decision whether or not to buy at price pj in the fixed price market for good

j takes the form of a reservation rule: buy iff pj < bOj , for bOj a reservation value. We can

therefore think of the buyer as “bidding” bOj in the fixed price market, winning when bOj

exceeds the price pj and paying pj. This allows us to shoehorn the fixed price market into

our original auction market analysis:

Lemma 6 (Best responses, outside option). The equilibrium bidding function β(x)

satisfies:

βkj (x) = max{xj − rv(x), 0} , k = {A,O} (12)

where v(x) is the ex-ante value function, defined according to the Bellman equation:

v(x) =
J∑
j=1

∑
k={A,O}

πkj

(
max
b
Gk
j (b)(xj − EGkj [B

1|B1 < b]) + (1−Gk
j (b))rv(x)

)
(13)

Here we take advantage of the iid multinomial state transitions to work instead with an “ex-

ante” Bellman equation, where v(x) is the value of an active bidder prior to the realization of

the good/market they’re participating in. As a result, all bids take the form of valuation less

continuation value (if positive), where that continuation value is a scalar function of type.

An immediate implication of (12) is that the buyer’s bid in the auction market and their

reservation value in the fixed price market are identical. Knowing a bidder’s pseudo-type

b (still a J-vector) is therefore enough information to characterize their behavior in both

markets. This insight will help in the identification argument that follows.

Identification. We consider identification where the econometrician has excellent data on

the auction market (i.e. Assumption 2 holds), but knows nothing about the outside market,

nor observes bidder participation in the outside market. As a result, our identification

arguments are based on an analysis of how exit rates vary across pseudo-types, which is

informative as to their outside options.

Let a pseudo-type b be the J-vector of bids on each product (equal across the two markets),

and define the inverse bidding function ξ : RJ → RJ :

ξ(b) = b +
r

1− r

J∑
j=1

∑
k={A,O}

πkj

(
Gk
j (bj)

(
bj − EGkj [B

1|B1 < bj]
))
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where once again ξ(b) takes the form of bid plus continuation value, where the continuation

value is equal to a stream of discounted payoffs in both auction and fixed price markets. Given

the distribution of pseudo-types F̃ (partially identifiable using the exact same argument as

in Lemma 3), we can partially identify F.

So the only new part of the analysis is showing that ξ(b) remains identified in the presence

of latent outside options. The distribution of winning bids {GA
J } can be identified from the

data, as can {πAj } (up to a normalizing factor), but {GO
j , π

O
j } are both latent.

To identify these, we look at how exit rates change with pseudo-types. Define ΠO =
∑

j π
O
j ,

the probability of entering the fixed price market when active, and π̃Oj =
πOj
ΠO

, the probability

of drawing good j when active in the fixed price market. The probability that pseudo-

type b exits after participating for a single period in the fixed price market is k(b) =

(1 − r) + r
∑

j π̃
O
j G

O
j (bj), where the first term comes from exogenous exit after losing, and

the second from the chance that they buy. So after losing an auction, the probability that a

bidder exits our data is given by:

e(b) = (1− r)︸ ︷︷ ︸
exogenously exits

+ r︸︷︷︸
survives

(
ΠOk(b) + (ΠO)2(1− k(b))k(b) . . .

)︸ ︷︷ ︸
exits in the outside market

= (1−r)+r ΠOk(b)

1− ΠO(1− k(b))

We can learn the function e(b) by observing the subsequent exit rates of bidders who have

made complete bid vectors b. The exit rates of “extremal” pseudo-types are particularly

informative. One can show e(0) = (1 − r) + rΠO(1−r)
1−rΠO . Let bj = (0, 0 . . . bj . . . 0) denote a

pseudo-type who bids bj on good j and zero on everything else, and let b̄j be the type who

makes the highest such bid b̄j. By our earlier support inclusion assumption, b̄j purchases j

in the fixed price market with certainty. Then we have

e(b̄j) = (1− r) + r
ΠO(1− r) + rπOj

1− rΠO
−j

So the J + 1 exit rates e(0) and {e(b̄j)}Jj=1, can be written as a function of J + 1 latent

variables: r and {πOj }, since ΠO is just
∑J

j=1 π
O
j . In the appendix we show that this system

of equations has a unique solution, so that r and {πOj } are identified.

Finally, consider type bj, who “bids” bj on product j and zero otherwise. Their per-period

probability of exit in the fixed price market is k(bj) = k(bj) = (1 − r) + rπ̃Oj G
O
j (bj) and
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consequently their exit probability upon losing in the auction market is:

e(bj) = (1− r) + r
ΠO(1− r) + rπOj G

O
j (bj)

1− r
(
ΠO − πOj GO

j (bj)
)

Take a derivative in bj on both sides of the above equation:

e′(bj) = r
rπOj G

O′
j (b)(1− ΠO)

(1− r
(
ΠO − πOj GO

j (bj)
)
)2

which is a separable first-order ordinary differential equation in GO
j (b). For fixed r, {πj}

and e′(bj), this equation has a unique solution for GO
j (b) (see appendix). Then since r,

{πj} and e′(bj) are identified, so is GO
j (b) for each j, which by earlier arguments suffices to

identify ξ(·). To use this function to bound the distribution of types F, we need to identify

the distribution of pseudo-types F̃, which requires a selection correction argument. But the

argument in Lemma 3 suffices for this, since the presence of an outside market doesn’t affect

the probability of the particular sequence of events H considered in that proof. Summarizing:

Theorem 5 (Identification with an outside option). Suppose Assumption 2 holds, and

that supp(GO
j ) ⊆ supp(GA

j ) for every j. Then F is partially identified, according to (6).

5 Empirical Application

We present an application of our identification result to the auction market for compact

cameras on eBay.com. We selected this market as an illustration for several reasons. First,

as noted earlier, the eBay auction design is strategically similar to a sequence of second-price

sealed bid auctions. Second, most consumers only purchase a single camera, so the unit de-

mand assumption seems reasonable. Third, compact cameras are measurably differentiated

in a salient characteristic — namely resolution — which consumers may value differently,

affording us an opportunity to highlight a random coefficients variation of our model. The

demand model we estimate allows for random consumer preferences for resolution in the

spirit of Berry et al. (1995), but in the “pure characteristics” setting of Berry and Pakes

(2007). We estimate the parameters of this model using a maximum likelihood approach

and use those estimates to characterize consumer surplus and optimal bidding strategies.
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5.1 Data and Market Overview

The eBay Marketplace. eBay is widely considered to be the world leader in online

auctions. Various elements of its platform design, such as the use of proxy bidding agents,

feedback scores and “buy-it-now” offers have been widely copied. At any time, eBay hosts a

large number of object listings from a variety of sellers. Buyers can browse these, either by

navigating through categories delineated by the site, or by directly searching for key phrases.

For example, a search for “digital compact camera” will typically bring up thousands of

listings. Some of these are offered at “buy-it-now,” i.e. fixed, prices. As Einav et al. (2016)

have documented, over 60% of listings on eBay are now at fixed prices (though auctions were

more common at the time our data was collected). We will ignore the presence of a fixed

price market in what follows, effectively ignoring substitution opportunities between the two

markets in favor of focusing on substitution within the auction market.

Restricting to auctions yields a list of items, ordered by time until auction end. These

auctions all end at different times, so bidders face a set of sequential auctions. Unsurprisingly,

there is substantial heterogeneity in the cameras offered, in terms of brand, resolution, zoom

and accessories (to name some of the most salient features). Bidders can research past prices

for different items by searching the completed listings.

Bids are placed through eBay’s proprietary “proxy bidding” system. Bidders enter the

maximum they are willing to pay for the item, and then eBay’s proxy bidding system will

bid up from the current standing price in standardized increments on their behalf until

either their bid is the highest yet entered in the system, or an additional increment would

take them over their maximum. For example, if bidder A enters a bid of $8000 on a camera

where the standing price is $6000 and the highest bid placed in the system by a rival is

$7000, then the system will update the standing price to $7100 ($7000 + $100 increment),

and will record this bidder as the currently high bidder. Under unit demand high bidders

become “committed” to the auctions they enter, in the sense that if they bid in another

auction, there is a risk of winning a second object they don’t need.

Fear of premature commitment is perhaps one reason why bidders tend to bid late in auctions.

For example, on eBay Motors, 75% of bids are placed in the last day of the auction (Lewis,

2007). Similar results have been found elsewhere on eBay and in other auction markets, and

a wide range of alternative explanations for late bidding have been offered (see e.g. Roth and

Ockenfels (2002)). The combination of late and proxy bidding suggest that eBay’s auction
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market is well approximated as a sequence of second-price sealed bid auctions, so that our

model can be applied to this setting.

Data. We purchased a dataset concerning all sales of digital compact cameras over a 2-year

period from TeraPeak, a data analytics company The data includes attributes of the camera

auctioned (resolution, zoom, brand, product name, bundling of a tripod, extra battery etc),

attributes of the listing (starting price, secret reserve, listing title), and the outcome of the

auction. Each listing may be associated with several bids, all of which we observe — including

the highest bid, which is not visible on the website and typically unavailable in “scraped”

auction datasets from the platform. Market participants are persistent in our dataset — as

in our model — and we observe their attributes (feedback, location) and construct measures

of experience and activity from observed behavior.

We work with a subset of the data, consisting only of new compact cameras, sold in the

3-month period between February 5th and May 6th of 2007. We restrict attention to new

cameras to limit the influence of unobserved heterogeneity, though as we will see, this is still

a substantial problem. We analyze this particular time period because supply was relatively

stable over those 3 months, so the stationarity assumptions implicit in our calculations of

the continuation values are reasonable. We pick cameras with the most common resolution

levels: those with (rounded) resolution between 5 megapixels and 10 megapixels (MP). We

clean the data by excluding auctions with missing data, potential shill bidding, outlying bids

and auctions that are terminated by the first bidder exercising a buy-it-now option (this is

unusual). See the data appendix for further details on sample construction.

This leaves us with a dataset of 19160 auctions, 4387 sellers and 74375 unique bidders.

Summary statistics are presented in Table 1. In the top panel, we summarize the data at an

auction level (i.e. an observation is an auction). The average gap between the winning bid

and the closing price is $10.60. This is a direct estimate of the average consumer surplus

of winning bidders in a static auction model, but we will show that it is a substantial

underestimate once continuation value is taken into account. The probability of sale is quite

high, at 0.95. Those products that do not sell tend to be among the small handful which

employ “secret reserve prices”, whereby the item only sells if the highest bid meets a reserve

price set by the seller but hidden from bidders. On average an auction attracts 7 – 8 unique

bidders, and 16 – 17 bids, though there is substantial variance.

Table 1 also summarizes the data at the seller and bidder level. There are just over four
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listings for every seller in our marketplace. The distribution of seller shares is skewed, with

large, experienced sellers making up the bulk of listings. However there are many such large

sellers and the seller concentration measure (HHI) remains low at 0.04. On the bidders’ side

we find some motivation for the assumptions of our model Most bidders are unsuccessful in

acquiring an item (the purchase rate is 24.3%), but they are active in the market for nearly a

week and on average are observed bidding in two different auctions, with some participating

in many more than that.13 This repeated participation is not driven by multi-unit demand—

99% of our bidders make one or fewer compact camera purchases.

5.2 Descriptive evidence

Having introduced the data, we now offer some descriptive evidence that indicates our model

is a reasonable approximation to the behavior we see in the market.

Do bidders substitute across products? If bidders generally bid on the same products

repeatedly (or have identical preferences over product characteristics), one might think that

the single-good models familiar from the existing empirical auctions literature may suffice.

So to get some evidence on this, we look for evidence of substitution across products. There

are many distinct products sold in our dataset, but in the demand system below we allow

random coefficients over camera resolution, and so this is the relevant definition of a product

for the purposes of our analysis. We therefore calculate a transition matrix across cameras of

different resolution, shown in Table 2. Each entry in the matrix is the probability (expressed

as a percentage) that a bidder who bids on a camera of the resolution in a given row subse-

quently bids on a camera with the column resolution. We find that most buyers that bid on

multiple cameras tend to bid on a product with the same resolution next, but the probability

of this is far away from 100%, ranging from 45.5% to 80.5%. When they substitute, they

tend to pick a product of similar resolution (the biggest off-diagonal elements are generally

close to the diagonal).

Do bidders have option value? Another focus of our approach has been to emphasize

dynamic bidding and option values. Option values arise from price fluctuations — a bid that

loses today may win tomorrow. Many economists have the intuition that in large markets

13We say a bidder is “active” from the start of the first auction they bid in to the end of the last auction.
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Table 1: Summary Statistics: Online Auctions of Compact Cameras

Mean Std. Dev. Min Max

Auction-Level Data

Winning bid 203.0 108.3 0.01000 2900
Closing price 192.4 97.08 0.01000 2025
Shipping cost 18.49 9.482 0 190
Starting price 49.83 86.66 0.01000 600
Secret reserve? 0.0872 0.282 0 1
Item sold? 0.949 0.220 0 1
Bid count 16.72 10.17 1 95
Number of unique bidders 7.615 3.910 1 34
Camera resolution (megapixels) 6.912 1.279 5 10.10
Optical zoom 4.520 2.767 1 18
Digital zoom 4.183 1.088 2 10
Comes with accessories 0.477 0.499 0 1
Number of auctions 19160

Seller-Level Data

Number of listings 4.367 51.34 1 2677
Number of sales 4.120 50.99 0 2664
Seller feedback 1001.9 7145.5 -1 252861.2
Number of sellers 4387
Seller HHI 0.0351

Bidder-Level Data

Auctions participated in 1.962 3.441 1 186
Incumbent period (days) 2.706 5.537 -0.000746 77.82
Time between bids (days) 4.208 9.640 0 93.06
Number of purchases 0.243 0.475 0 22
≤ 1 purchase 0.990 0.101 0 1
Bidder feedback 82.88 463.8 -999 60013
Winning bidder’s age 36.27 16.02 1.742 95.98
Number of bidders 74375
Buyer HHI 0.0000636

Notes: Summary statistics for the full dataset, which consists of all auctions of compact cameras auctions
on a large online platform that ended during the period Feb 5 – May 6, 2007. Observations with missing
product characteristics have been dropped. The “incumbent period” for a buyer is measured as the time
from the start-date of the first auction bid in to the end of the last auction bid in. “Time between bids” is
the gap between the first and second bids by a buyer on different objects, measured only for the subsample
of bidders with multiple bids. “Seller HHI” is the Herfidahl–Hirschman index for sellers, based on their share
of items sold. “Buyer HHI” is the analogous measure for buyers, based on the share of items bought.

32



Table 2: Substitution Patterns for Repeat Bidders

5MP 6MP 7MP 8MP 10MP

5MP 64.8 17.3 12.3 4.2 1.4
6MP 5.9 75.3 13.7 3.5 1.7
7MP 2.9 8.8 80.8 5.2 2.4
8MP 2.6 5.4 10.2 78.3 3.6
10MP 1.9 6.1 13.0 8.0 71.0

Notes: Each entry in the matrix gives the observed frequency with which a bidder who is observed bidding
on the row product is next observed bidding on the column product.

the law of one price holds, and so price fluctuations should be minimal. This is not true

here. The top left panel of Figure 2 shows the median daily transaction prices (including

shipping) on different models of camera, over the sample period. There is quite a lot of

variability — an typical change is 10% — and since it is a median price, this is not driven

entirely by outliers.

To rule out variation based on compositional effects, we drilled down to look at the highest

volume seller’s most popular product (a Kodak Easyshare Z710), and plotted the price series

against time (fluctuations could be within a day), shown in the top right panel of Figure 2.

Prices vary from below $200 to over $250 dollars. Doing some rough back of the envelope

calculations based on the observed price distribution, a bidder with a valuation of $250 (red

dashed line), bidding once a day, with a daily exit hazard rate of 0.5, should optimally shade

their bid down to $238 (green dashed line), because of the option value (and should expect

to pay closer to $225, yellow dashed line). Indeed this option value should be present in

many online markets: Einav et al. (2011) have found the standard deviation in price to be

on the order of 10% of the transaction price in most eBay categories.

We also observe that the average time between bids is just over four days, with many auctions

closing in the meantime. This suggests that bidders are inattentive (i.e. τ close to zero). In

view of this, Assumption 1 seems quite reasonable: information from the current auction is

probably a poor predictor of what conditions will be like the next time the bidder bids.

Is there unobserved product heterogeneity? The way we specify valuations below

incorporates random coefficients over camera resolution, as well as common preferences for

observable camera attributes (e.g. brand) and an unobservable component. To motivate the
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Figure 2: Market Dynamics. The left panel shows the median daily price (including shipping) over the
sample period, separately by camera resolution (4MP cameras omitted for clarity). The right panel shows
the closing transaction prices on auctions of a Kodak Easyshare Z710 from a single seller over the sample
period, superimposing over this the valuation, optimal bid and expected payment of a bidder with $250
valuation (see text for more details).

inclusion of this unobserved product heterogeneity, we perform a simple heuristic estimation

exercise. We take bids that have been “normalized” to account for observable heterogeneity

(we explain this process below), and look at bidders who have bid exactly twice on cameras

at two different resolution levels (e.g. 7MP and 8MP cameras). Dividing the difference in

their normalized bids by the difference in the camera resolutions gives us a crude estimate

of this bidder’s willingness to pay for megapixels, and the distribution of differences across

such bidders gives us an idea of the diversity in bidders’ willingness to pay.

Figure 3 presents the density of that statistic computed at the bidder level for this restricted

subset, without any kind of selection correction. While the mean of this distribution is

positive (reassuringly) and the variance is large (motivating heterogeneous preferences for

resolution), there is a troublesome and substantial mass to the left of zero. It is implausible

that many consumers have negative marginal utility from higher resolution cameras, and

we instead interpret this as evidence of unobserved product heterogeneity in our data that

confounds this simple approach (we will offer more direct evidence below).
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Figure 3: Density of
bi,j1−bi,j2

resi,j1−resi,j2
. This figure presents a kernel density plot of the ratio between the

difference in bids across cameras of two resolution levels and the difference in resolution levels, across bidders.

5.3 Estimation

We construct a demand system in which consumers obtain value from the purchase of a

single camera, a value which has an idiosyncratic component and a common component.

Formally, bidder i’s valuation for product j offered in auction t is given by:

xi,j,t = αi,c + resjαi,r︸ ︷︷ ︸
idiosyncratic

+Zj,tγ + ξj,t︸ ︷︷ ︸
common

(14)

This combines the random coefficients of section 4.2, and the unobserved heterogeneity

of 4.3.2 and adds some observable common demand shifters Zj,t. Bidder i’s type in our

model, αi, is a double: their fixed utility draw for obtaining any camera (αic) as well as an

idiosyncratic preference shock for resolution (αir). The auction-specific term ξj,t captures

unobserved heterogeneity that is observable to all bidders but not the econometrician. We

assume that it is distributed normally with mean zero and variance σξ,j that varies freely with

the resolution type of the camera. The bidder type αi is drawn, iid upon bidder entry, from

the distribution Fα, which is our main estimation target. We assume mutual independence

of (αi, Zj,t, ξj). On the supply side, we assume that the distribution of arriving auctions is
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iid multinomial over the product space with a J-vector of probability weights π.

Estimation of supply and exit rates. Estimation begins with the recovery of the sur-

vival rate r, and the multinomial supply π. Note that with multinomial supply, the activity

rate τ plays no role in optimal bidding and need not be estimated (whereas with Markov

supply transitions Q, the activity rate drives a wedge between supply transitions and the

state transitions Q̃).

Survival Rate of Bidders (r): We estimate this parameter using a censored negative

binomial model fit to the likelihood of bidder exit using the full sample of bids. A

bidder exits if they do not return to bid again. However we treat this outcome as

censored if the last bid event was in the final six weeks of our dataset.14

Supply (π): π̂ is the observed market share of each of the six resolution types.

Bid normalization. Cameras differ in both observable and unobservable features. The

first step in working with the bids is to normalize out the contribution of observables for

which bidders have common preferences (Haile et al., 2006). Applying our earlier theory to

the valuations in (14), the bidding equation takes the form:

bi,j,t = max{0, αi,c + resjαi,r + Zj,tγ + ξj,t − v(αi,c, αi,r)} (15)

i.e. valuation less continuation value. Restricting attention to positive bids, and adding and

subtracting ψj ≡ EFα [αi,c + resjαi,r − v(αi,c, αi,r)], we get an estimating equation in reduced

form:

bi,j,t = ψj + Zj,tγ + ei,j,t

where the error term ei,j,t combines an individual-specific deviation in bid from that of the

average type and the common unobserved heterogeneity. Since these are both independent

of Zj,t), we can estimate γ consistently by OLS with product fixed effects.

14We maintain the assumption of exogenous exit on the part of bidders, though it could be weakened using
the methods of Section 4.5. While the assumption might seem somewhat unrealistic, we found no evidence
in reduced–form regressions of a systematic correlation between exit of losing bidders and the level of their
bid. In the end, we chose to highlight the extensions that were most necessary to fit the basic features of
the data discussed above.
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We only run this regression on a subsample of our data, consisting of the two highest bids

in every auction. This is motivated by the behavioral intuition of Haile and Tamer (2003).

Because eBay’s proxy bidding system is formally an ascending auction, the bid of the third,

fourth, or n-th highest bidder may not reflect their intended final bid (what they would

have bid in a sealed-bid auction i.e. valuation less continuation value). It is common for

bidders to “test out” a sequence of ascending bids to see if they can become the standing

high bidder, but if in this process the price comes to exceed their intended final bid then it

will be censored from the dataset. For this reason we restrict attention to the two highest

bids in each auction, who are never censored in this way.

As controls Zj,t we include product line fixed effects, listing attributes including shipping

options, seller feedback, and optional listing features (e.g., sellers may pay a fee for their

results to be highlighted in search results), as well as a set of dummies for resolution, optical

zoom, and digital zoom levels.15 We report results for the main controls of interest in Table

3. They are generally sensible, with bids increasing in seller feedback, decreasing in shipping

costs, and particularly high for listings with free shipping, consistent with the findings of

Einav et al. (2011).

Define the normalized bids b̃i,j,t = bi,j,t−Zj,tγ = αi,c+resjαi,r−v(αi,c, αi,r)+ξj,t. We will work

with our estimate of these bids bi,j,t−Zj,tγ̂ in what follows. Consider the difference between

two normalized bids on the same product, by the same bidder in two different auctions.

These should differ only by ξj,t1 − ξj,t2 , and since these random variables are independent of

each other, we can estimate the variance of ξj,t as σ2
ξ,j = V ar(bi,j,t− bi,j,t′)/2 where the RHS

variance is estimated by pooling over all t < t′ pairs available.

Opposing bids. Recall from the identification analysis of section 4.3.2 that the relevant

strategic object for bidders to form beliefs about is {Ǧ1
j}, the distribution of the highest

competing bid net of unobserved heterogeneity (since ξj,t just acts as a common bid shifter).

So we need to estimate {Ǧ1
j}. Also, for the reasons outlined above, we only want to use the

top two bids in each auction in estimation. This places us in the “limited data” case, and

will require correcting for selection into the top two bids. So we also need to estimate {Ǧ2
j}.

We observe the raw distributions of the first and second highest normalized bids {G1
j , G

2
j}

(i.e. the convolution of b̌i,j and ξj,t). Based on the shape of these, we assume a Gamma

15Note that we include resolution dummies to avoid omitted variable bias, however we exclude these
coefficients when predicting the normalized bids below.
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Table 3: First-Stage Normalization Regression

(1)
Winning bid

Free shipping 24.21∗∗∗

(1.913)

Shipping cost 0.405∗∗∗

(0.0446)

Seller feedback (thousands) 0.0665∗∗∗

(0.00764)
R2 0.721
N 18432

Notes: This table presents selected coefficients from the first-stage normalization regression. Unreported here,
the regression also includes dummies for all (rounded) resolution, optical zoom, and digital zoom values, as
well as product-level fixed effects. It also includes a large array of listing attributes such as featured listing
status, whether the seller paid for a scheduled end-time, and dummies for bundled accessories. Note that the
coefficients on the resolution dummies are set to zero before predicting the normalized bids for subsequent
analysis. Standard errors in parentheses, * p < 0.05, ** p < 0.01, *** p < 0.001.

distribution for {Ǧ1
j , Ǧ

2
j} with separate shape and scale parameters for each product and

order statistic. We estimate these parameters by method of moments (i.e. we pick these

parameters to match the mean and variance of the distribution of the normalized highest

bid, taking our estimates of σ2
ξ,j in the earlier step as given).

We summarize the results of all these preliminary estimation steps in Table 4. We find that

bidders are quite likely to return and bid again upon a loss (r = 0.57). Unobserved het-

erogeneity varies substantially with resolution type and is particularly important for 10MP

cameras, where we anticipate there is more differentiation of high-end products.

Aside: consumer surplus. Even without estimating the full demand system, at this

point we can already say something useful about consumer surplus. In the static model

consumers bid their valuations whereas in our dynamic setting we have shown that they

shade their bids substantially. This shading will bias static estimates of consumer surplus.16

In the static framework where bj = xj, the difference between the highest bid and the

16Coey et al. (2015) also make a point of computing consumer surplus in a dynamic framework, although
theirs is based on valuations with “deadlines.”
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Table 4: First-Stage Parameters

r 0.5646
(0.0014)

π 5mp 6mp 7mp 8mp 10mp
0.1382 0.3020 0.3816 0.0934 0.0847

(0.0033) (0.0044) (0.0046) (0.0028) (0.0027)

σξ 5mp 6mp 7mp 8mp 10mp
15.43 12.75 14.16 11.16 22.24

(0.1474) (0.0729) (0.0539) (0.1581) (0.1667)

G(1) 5mp 6mp 7mp 8mp 10mp
k 12.57 19.21 17.06 17.68 38.98

(0.5235) (0.5097) (0.4253) (1.0151) (1.7325)

θ 10.04 8.17 10.83 11.86 7.12
(0.3798) (0.2020) (0.2522) (0.6243) (0.4260)

G(2) 5mp 6mp 7mp 8mp 10mp
k 11.63 18.57 16.33 15.80 44.71

(0.5355) (0.5348) (0.4240) (0.9675) (1.9974)

θ 9.91 7.81 10.59 12.36 5.83
(0.4035) (0.2070) (0.2544) (0.6959) (0.3753)

Notes: This table presents estimates of the first-stage parameters of the model. See text for estimation
details. Standard errors are presented in parentheses.

second-highest bid is a direct measure of surplus per auction. So for a psuedotype b entering
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a random auction according to π,

E[CSstatic(b)] =
∑
j

πj{G1
j(bj)[bj − E[B(1)|b(1) < bj]]}

To compute this object we take total surplus to be the total sum of {B(1) − B(2)}i, i.e. the

valuation of the first-highest bidder minus the price paid, across all auctions, and then divide

by the total number of bidders. From Table 1 the average difference between the first– and

second–highest bid in our dataset is $10.60, which yields an expected consumer surplus of

($10.60 × (19160 auctions ÷ 74375 bidders) = ) $2.63 per bidder in our dataset.

In the dynamic model, however, bidders shade their bids: bj = xj − rv(b). Note moreover

that, if we take bidders’ beliefs to be correct, v(b) = E[CSdynamic(b)].17 In this setting,

E[CSdynamic(b)] =
∑
j

πj{G1
j(bj)[ xj︸︷︷︸
=bj+

∑
k Q̃j,kvk(b)

−E[B(1)|b(1) < bj]] + (1−G1
j(bj))r

∑
k

Q̃j,kvk(b)}

=
∑
j

πj{G1
j(bj)[bj − E[B(1)|b(1) < bj]]}︸ ︷︷ ︸

=E[CSstatic(b)]

+
∑
j

πjr
∑
k

Q̃j,kvk(b)︸ ︷︷ ︸
=rE[CSdynamic(b)]

=
1

1− r
E[CSstatic(b)].

Note that in the second equality, we take advantage of the fact that π is the ergodic distri-

bution of Q, and therefore Q̃π = π for any τ .

This computation yields a substantially larger estimate of consumer surplus per bidder:

((0.4354)−1 × $2.73 = ) $6.04, or $24.35 per auction. This large correction reflects the fact

that the bidders who are most likely to win also shade the most, and therefore it is for these

that the static model most underestimates valuations.

Estimation of Demand. At this stage, we have estimates of π, r and the distributions

{G1
j , G

2
j} of first and second order statistics, after adjusting for observed and unobserved

heterogeneity. We also have a dataset of normalized bids that were themselves first or second

highest bids in auctions, and therefore plausibly equal to valuation less continuation value.

17This relies on an assumption that τ is sufficiently small that each time a bidder participates, sufficient
time has passed that the market is once again in steady-state i.e. v(b) can be calculated without sophisticated
conditioning on histories. We could be more mathematically precise — as we were in the earlier selection
correction argument — but as we argued when discussing Table 1, τ appears to be small.
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In principle, we could continue by applying our nonparametric identification strategy from

Theorem 4 directly in estimation, for bidders who are observed bidding on each least two

different products (since the random coefficient is two-dimensional, two different products

suffices for identification). But there are less than 300 such bidders in our dataset, and this

makes the necessary deconvolution analysis unattractive in view of the slow convergence

properties of such estimators (Carroll and Hall, 2004).

So instead we take a parametric approach, assuming that αc and αr are distributed Γ(kc, θc)

and Γ(kr, θr), respectively. We chose the gamma distribution because our estimation sample

consists of the right tail of bids, i.e. first– and second– highest bids, and so we want a para-

metric model with flexibility to fit the shape of that tail. Therefore θ ≡ {kc, θc, kr, θr} makes

up the set of parameters of the demand system we ultimately hope to recover. Following

the logic of our non-parametric identification argument, we need to see bidders bid multiple

times in order to identify demand. So we estimate the model using a sample of bidders who

submit either the first or second–highest bid in auctions on exactly two distinct resolution

types, a sample of 264 bidders (very few bidders come first or second on three or more dis-

tinct products, so we simplify the analysis by excluding their data). Under our parametric

assumptions, we have the following likelihood of each observation:

L(bi|θ) =

∫
P{Bi|β(α)}

P{|Bi| = 2|β(α)}︸ ︷︷ ︸
selection probability


∏

j∈{Bi}

fξ,j(bj − βj(α))

︸ ︷︷ ︸
unobserved heterogeneity

 dF (α|θ)︸ ︷︷ ︸
demand

. (16)

where bi is a two-vector, indicating an observed pair of bids by i; Bi is the set of products

bidder i bids on; β(α) is type α’s pseudo-type (i.e. what they would bid on each product

in the absence of unobserved heterogeneity); fξ,j is the density of ξj, assumed normal with

mean zero and variance σ2
ξ,j and F (α|θ) is the distribution of α at parameter vector θ.

This likelihood function has three components: the first, P{Bi|β(α)}/P{|Bi| = 2|β(α)} is

the selection probability; the likelihood that a bidder of type α is observed in a subset of

the product space Bi conditional on the event |Bi| = 2, i.e. our sample construction. The

second component of the likelihood function is the deviation of the observed bid b from the

predicted bid β(α) on the components j ∈ Bi, which can be accounted for by unobserved

heterogeneity. Finally, we integrate with respect to the type distribution F (α|θ), the only
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point at which the parameter vector θ enters.18

Estimating bid functions and selection probabilities. In order to compute the like-

lihood of any observation at a parameter vector θ, we will need to compute the optimal

bidding function β(α) and the selection probability P{Bi|β(α)}. We start with the optimal

bid function. In the case of iid supply, this is given in Lemma 6 by (12), where the continu-

ation value is defined recursively according to the Bellman equation (13), taking πOj = 0 for

all j. Fix a type α and an associated J-vector of valuations x. We solve for their optimal

bids and associated continuation value by value iteration: given a (scalar) continuation value

v(x), define the following mapping from R+ into itself:

Tx(v) =
π · (G1(x− v)(x− EG1 [B1|B1 ≤ x− v]))

1− r ((1−G1(x− v)) · π)

where · denotes dot product, and G1 and EG1 are now J-vectors. The continuation value

for type x(α) satisfies Tx(v) = v, and from this we obtain the bidding function β(α) =

max{0,x(α)− v(α)}.

Next, given a bid b associated with the type α, we work out the probability that a particular

bidder is observed in a subset B ⊆ J of the set of possible auctions. The building block

for this is the function P(A,b), defined as the probability that a bidder with bid vector

b, entering in a randomly sampled period, exits before they are “observed” in any auction

outside of the set A ⊆ J . Define P(A,b, j) in the same way, but additionally conditioning

on the bidder entering in state j, so that P(A,b) =
∑

j πjP(A,b, j). Recalling that we treat

bidders as “observed” only when they make bids that qualify for our estimation sample (i.e.

one of the top two bids in the auction), we can write the latter probability recursively as:

P(A,b, j) = 1(j ∈ A)
(
G1
j(bj) + (1−G1

j(bj))(1− r + rP(A,b))
)

+ 1(j 6∈ A)
(
(1−G2

j(b))((1− r) + rP(A,b))
) (17)

On the first line of the RHS we consider the case where j ∈ A: that bidder will be observed

only in A if they exit immediately (either by winning or exogenously exiting), or survive and

then transition to a new random state, in which case the chance is P(A,b). The second line

18In principle there is a conceptual problem here if the observations overlap in the sense that some of the
bidders in our estimation sample participate in the same auctions, as this places restrictions on the value of
ξ. In practice this overlap problem does not occur.
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(a) αr = 0 (b) αr = 20

(c) αr = 0 (d) αr = 20

Figure 4: Estimated Bid Functions and Selection Probabilities. This figure presents bid functions
and selection probabilities as a function of αc, holding fixed αr at two levels: 0 and 20.

is for the case where j 6∈ A, and then the bidder must not be observed in j, so they must

make a bid below the second highest. Given that this is the case, again they must either

exit immediately or survive and we get P(A,b) again.19

Now G1
j and G2

j are known, and P(A,b) is a weighted sum of the P(A,b, j), so for any (A, b)
we can get P(A,b) as the solution to a linear system with unknowns {P(A,b, j)}j∈J . Then

we can use these objects to compute the probability that a bidder is observed in exactly the

set B. For instance, if we are interested in the probability that a bidder of type α is observed

in a subset B = {2, 4} we can compute P({2, 4}|β(α)} = P({2, 4}, β(α)) − P({2}, β(α)) −
P({4}, β(α)) + P({φ}|β(α)).

19This calculation assumes that the true state space coincides with the one that bidders use in forming
beliefs. This is not necessary (we could condition on history), but is practical given our data constraints.
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Figure 4 illustrates the resulting bid functions and selection probabilities when these proce-

dures are applied to our data. The selection probability is for the event that a bidder bids

on exactly two different products (|B| = 2), i.e. that a bidder is selected into our estimation

sample. Panel (a) shows the bid function for a bidder with αr = 0, i.e. a bidder who places

no value on resolution, and consequently bids the same on every product. Their bid function

“peels away” from the 45-degree line. This makes intuitive sense: as αc increases, their

continuation value increases as well, causing them to shade their bids. Panel (b) repeats this

exercise for the case where αr = 20. They now bid differently on each product, with the five

dotted lines showing their bids on the lowest resolution camera (bottom line) up to the top

resolution camera (top line), as αc varies. The shape is largely preserved, except that now

there is a positive intercept because valuations are positive even with αc = 0.

In panels (c) and (d) we show the selection probabilities for these two types of bidders (αr = 0

in (c) and αr = 20 in (d)) as αc varies. The “hump-shape” arises because the probability

of |B| = 2 is increasing at first as the likelihood that the bidder is ever first or second rises,

but later declines as the probability that they win their first auction and exit before bidding

again goes to one.

Optimization. We now proceed to the problem of optimizing the likelihood. Usually one

would proceed by applying some optimization routine in an outer loop to the likelihood (16),

evaluating it by Monte Carlo integration, holding the randomness in the draws of α fixed

across evaluations k (Pakes and Pollard, 1989). But this is computationally costly, as for

many different α draws we will have to evaluate the bidding and selection functions.

Notice that the parameter vector θ enters the likelihood (16) only through the distribution

of random coefficients F (α|θ). This allows us to employ an alternative approach based on

re-weighting. Fixing α, define

hi(α) ≡ P{Bi|b(α)}
P{φ|b(α)}

(∏
j∈Bi

φ

(
bi − bj(α)

σξ,j

))
, (18)

and note that this object is computable for any α from the results of the first-stage estimation.

Therefore, taking as our objective function the log-likelihood of the dataset, we can write

L(θ, {bi}) =
∑
i

log

∫
hi(α)dF (α|θ). (19)
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One natural and computationally efficient way to proceed would then be to sample α uni-

formly from the type space S times (for S the number of draws in the Monte Carlo inte-

gration), and then optimize the simulated criterion function by re-weighting their likelihood

contribution according to f(α|θ). Instead, we choose to use importance sampling, i.e. sam-

pling from and re-weighting relative to a user-chosen distribution, denoted G(α). We do this

for two reasons: first, for efficiency — we would like to sample more points from the center of

the true distribution if possible, since this is where the gradient of the likelihood is sharpest.

Second, we would like the sampled distribution to have unbounded support, mirroring our

parametric assumption on F (α|θ).

Let the set of points be drawn from G(α); then we have:

θ̂ = arg max
θ

L(θ, {bi}) =
∑
i

log
S∑
s=1

hi(α)
f(αs|θ)
g(αs)

. (20)

We implemented the estimator in two steps: first, we choose G1 to be a normal with very

large variance, and obtained a first estimate θ̃. In a second step, we drew from a distribution

G2(α) = F (α|θ̃) and re-optimized. This two-step procedure should improve the efficiency

of our estimator, as the second sample should be more centered and thus provide a better

approximation to the integral.

5.4 Results

Estimates from this ML exercise are presented in Table 5. Our results suggest that camera

resolution is the main determinant of consumer utility, but that there is substantial hetero-

geneity in how consumers value this attribute. They predict a mean taste for cameras of

22.26 with a standard deviation of 51.06, and a mean taste for resolution of 22.75 and a

standard deviation of 6.41. Recall that we have estimated F, whereas the observed bids in

the data (i.e., first- or second-highest bids) will tend to come from bidders sampled the right

tail of the distribution.

As a measure of goodness of fit we also compute moments of the bid distribution that were

not used directly in estimation. In Table 6 we present means and standard errors of the

observed bids by product type as well as means and standard errors as predicted by our

model at θ̂. In order to compute the latter we simulated 10,000 draws from F (α|θ̂) and then
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Table 5: Demand System Estimates

αc αr
k̂ 0.19 13.73

(0.06) (1.74)

θ̂ 117.14 1.73
(31.70) (0.22)

Notes: This table presents estimates for {kc, θc, kr, θr}, the parameters governing the distribution of random
coefficient preferences for compact cameras according to the utility function (14).

Table 6: Sample and Simulated Moments from the Bid Distribution

5mp 6mp 7mp 8mp 10mp

Sample mean bid 122.82 152.51 181.59 202.43 272.07
Simulated mean bid 120.61 144.56 168.25 192.05 239.68

Sample standard deviation 38.56 38.21 47.23 51.18 48.93
Simulated standard deviation 36.29 38.96 43.86 47.77 58.23

Notes: This table compares moments from the sample bid distribution to moments that are predicted from
the estimates in Table 5. Simulated moments are computed by taking 100,000 draws from F (α|θ̂), computing
bid vectors for each type, simulating unobserved heterogeneity ξ, and taking a weighted average according
to the probability that each bid is selected into the sample of observed bids.

weighted their bids according to the probability of being observed in each state.

The results in Table 6 suggests that our results fit the data reasonably well, though there

is some divergence, in particular for the higher–end cameras in the market. We believe this

to be largely a function of the parametric compromises we made in order to focus on the

sharply identified set of 264 bidders who bid on multiple different resolution types. However

for 6MP to 8MP cameras, which make up the bulk of our sample, we match these moments

quite closely. Note that the moments are out-of-sample in that they incorporate bidders who

are observed once but then exit; these bidders are not used in estimation.

6 Conclusion

This paper offers a flexible demand system for the study of auction markets as markets.

We developed a notion of equilibrium in such markets and proved its existence, and in turn

were able to characterize the conditions under which bidders’ actions can be inverted to
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infer their private type. While this is sufficient for identification if we treat auctions as

independent, isolated draws from a distribution, in an auction marketplace we also need

to account for the selection of bidders into the observed and identified set. Subject to the

constraints of non-participation, we are able to partially identify the distribution of types by

explicitly modeling this selection as a function of observable equilibrium objects. We show

that this result extends to accommodate familiar features of auction data and demand models

in fixed-price markets, including data limitations, random coefficient demand, unobserved

heterogeneity, and latent outside options.

The selection correction turns out to be an important source of flexibility in the model. It

allows us to accommodate standard limitations of auction data. It also gives the econome-

trician flexibility to pick and choose sources of variation in the data — in this case particular

histories — that they trust for identification.

A second important source of flexibility in the model is that we have made all the substitution

between products occur inter-temporally. High-dimensional preferences are thus projected

down to a valuation for the current product and a continuation value which , thanks to

the Markov dynamics of the game, we can model in a straightforward way. These Markov

dynamics also give us the flexibility to extend the state space of the game to incorporate

arbitrary public signals about the state of the market on which bidder behavior may depend.

We illustrated much of this flexibility in an application to the auction market for compact

cameras on eBay. There we estimated the distribution of types for a utility function that

looked a lot like the kind you might estimate in a fixed-price market using standard methods

in industrial organization. While we were able to document a substantial bias in the estimates

of consumer surplus that would come out of an alternative, static model, as well as match

out-of sample moments of the bid distribution, the main objective was to illustrate the kinds

of judgment calls faced by an econometrician applying our method, which can accommodate

a wide array of data limitations, utility functions, information structures, and assumptions

about outside options.

Our contribution — the development of a demand system for auction markets — is meant

to mirror similar work in fixed-price markets, and to a similar end: the structural estimation

of demand allows us to do counterfactuals of both private and public interest. Though we

have developed a flexible framework, there remain several open directions for future work:

we believe that our framework would generalize naturally to multi-unit demand, in which
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bidders may shade against the opportunity cost of moving further down their marginal utility

curve. This is an important direction for the modeling of ad auctions and treasury auctions.

There are also unmet challenges in the modeling of substitution across auctions within-period

rather than inter-temporally. Auction markets are a pervasive mechanism for the allocation

of goods and services, and beyond our contribution there remains much work to be done to

understand competition between and substitution among them.
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Bodoh-Creed, A., J. Böehnke, and B. Hickman (2013): “Optimal Design of Two-

Sided Market Platforms: An Empirical Case Study of Ebay,” Working Paper.

Budish, E. (2008): “Sequencing and Information Revelation in Auctions for Imperfect

Substitutes: Understanding eBay’s Market Design,” Working paper, Harvard University.

Carroll, R. J. and P. Hall (2004): “Low order approximations in deconvolution and

regression with errors in variables,” Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 66, 31–46.

Coey, D., B. Larsen, and B. Platt (2015): “A Theory of Bidding Dynamics and

Deadlines in Online Retail,” .

Einav, L., C. Farronato, J. Levin, and N. Sundaresan (2016): “Auctions versus

Posted Prices in Online Markets,” Working Paper.

Einav, L., T. Kuchler, J. Levin, and N. Sundaresan (2011): “Learning from Seller

Experiments in Online Markets,” Working Paper, Stanford.

Evdokimov, K. and H. White (2012): “SOME EXTENSIONS OF A LEMMA OF

KOTLARSKI,” Econometric Theory, 28, 925–932.

Fershtman, C. and A. Pakes (2012): “Dynamic Games with Asymmetric Information:

A Framework for Empirical Work,” Forthcoming in the Quarterly Journal of Ecnomics.

Gowrisankaran, G. and M. Rysman (2009): “Dynamics of Consumer Demand for New

Durable Goods,” Working paper, University of Arizona.

Guerre, E., I. Perrigne, and Q. Vuong (2000): “Optimal Nonparametric Estimation

of First-Price Auctions,” Econometrica, 68, 525–574.

Haile, P., H. Hong, and M. Shum (2006): “Nonparametric Tests for Common Values

in First-Price Sealed-Bid Auctions,” NBER Working Paper 10105.

49



Haile, P. A. and E. Tamer (2003): “Inference with an Incomplete Model of English

Auctions,” The Journal of Political Economy, 111, 1–51.

Hendricks, K. and R. Porter (2007): “A Survey of Empirical Work in Auctions,” in

Handbook of Industrial Organization, ed. by M. Armstrong and R. Porter, North-Holland,

vol. III.

Hendricks, K. and A. Sorensen (2014): “The Role of Intermediaries in Dynamic Auc-

tion Markets,” Working Paper, University of Wisconsin.

Hopenhayn, H. and M. Saeedi (2016): “Dynamic Bidding in Second Price Auctions,”

Working Paper.

Ingster, A. (2009): “A Structural Study of a Dynamic Auction Market,” Working Paper,

NYU Stern.

Iyer, K., R. Johari, and M. Sundararajan (2014): “Mean Field Equilibria of Dynamic

Auctions with Learning,” Management Science, 60, 2949–2970.

Jofre-Bonet, M. and M. Pesendorfer (2003): “Estimation of a Dynamic Auction

Game,” Econometrica, 71, 1443–1489.

Kotlarski, I. (1967): “On characterizing the gamma and the normal distribution.” Pacific

J. Math., 20, 69–76.

Krasnokutskaya, E. (2011): “Identification and Estimation in Highway Procurement

Auctions under Unobserved Auction Heterogeneity,” Review of Economic Studies, 71,

293–327.

Krasnokutskaya, E., K. Song, and X. Tang (2014): “The Role of Quality in On-Line

Service Markets,” Working paper, Johns Hopkins.

Krasnokutskaya, E., C. Terwiesch, and L. Tiererova (2016): “Trading across

Borders in Online Auctions,” Working Paper, Johns Hopkins.

Krusell, P. and A. A. Smith (1998): “Income and Wealth Heterogeneity in the Macroe-

conomy,” Journal of Political Economy, 106, 867—896.

Lewis, G. (2007): “Asymmetric Information, Online Disclosure and Adverse Selection: The

Case of eBay Motors,” Working paper, Harvard.

50



Lewis, G. and P. Bajari (2011): “Procurement Contracting with Time Incentives: The-

ory and Evidence,” Quarterly Journal of Economics, 126.

Li, T. and Q. Vuong (1998): “Nonparametric Estimation of the Measurement Error

Model Using Multiple Indicators,” Journal of Multivariate Analysis, 65, 135–165.

Menzel, K. and P. Morganti (2013): “Large Sample Properties for Estimators Based

on the Order Statistics Approach in Auctions,” Quantitative Economics, 4, 329–375.

Nekipelov, D. (2007): “Entry Deterrence and Learning Prevention on eBay,” Mimeo, UC

Berkeley.

Newberry, P. W. (2015): “The effect of competition on eBay,” International Journal of

Industrial Organization, 40, 107 – 118.

Pakes, A., M. Ostrovsky, and S. Berry (2007): “Simple Estimators for the Parameters

of Discrete Dynamic Games, with Entry/Exit Examples,” Rand Journal of Economics, 38,

373—399.

Pakes, A. and D. Pollard (1989): “Simulation and the Asymptotics of Optimization

Estimators,” Econometrica, 57, 1027–1057.

Platt, B. (2015): “Inferring Ascending Auction Participation from Observed Bidders,”

Working Paper.

Roberts, J. W. (2013): “Unobserved heterogeneity and reserve prices in auctions,” The

RAND Journal of Economics, 44, 712–732.

Roth, A. E. and A. Ockenfels (2002): “Last-Minute Bidding and the Rules for End-

ing Second-Price Auctions: Evidence from eBay and Amazon Auctions on the Internet,”

American Economic Review, 92, 1093–1103.

Said, M. (2009): “Auctions with Dynamic Populations: Efficiency and Revenue Maximiza-

tion,” Working paper, Yale University.

Sailer, K. (2006): “Searching the eBay Marketplace,” Working Paper, University of Mu-

nich.

Song, U. (2004): “Nonparametric Estimation of an eBay Auction Model with an Unknown

Number of Bidders,” Working Paper, University of British Columbia.

51



Stokey, N. L., R. E. Lucas, and E. C. Prescott (1989): Recursive Methods in

Economic Dynamics, Harvard University Press.

Weintraub, G., C. L. Benkard, and B. Van Roy (2008): “Markov Perfect Industry

Dynamics with Many Firms,” Econometrica, 76, 1375–1411.

Zeithammer, R. (2006): “Forward-looking bidding in online auctions,” Journal of Mar-

keting Research, 43, 462–476.

A Proofs Appendix

Lemma 1.

Proof. Recall that G1
j is the CDF of the highest competing bid for good j. Then we have:

βj(x) = arg max
b∈R+

∫ (
1(b ≥ B1

j ∧ b > 0)(xj −B1
j ) + 1(b < B1

j ∨ b = 0)ṽj(x)
)
dG1

j(B
1
j ) (21)

for ṽj(x) = r
∑

j Q̃j,kvk(x). Consider the RHS of (21). The integrand takes the value xj−B1
j

when B1
j ≤ b and ṽj(x) when B1

j > b and so can be maximized by choosing b so that the

event B1
j ≤ b occurs iff xj−B1

j − ṽj(x) ≥ 0. There are two relevant cases: first, if ṽj(x) > xj,

then the bidder strictly prefers to lose the auction. In this case they bid zero, equivalent to

non-participation in our framework. Otherwise, b = xj − ṽj(x) maximizes the RHS of (21)

and thus βj(x) = max{xj− r
∑

j Q̃j,kvk(x), 0}. If βj(x) is interior to the support of G1
j , then∫

1(B1
j ≤ b)(xj − B1

j )dG(B1
j ) is strictly decreasing, and so the crossing with vj(x) — and

therefore the argmax of (21) — is unique.

For continuity, consider two types x1 and x2. We know that maxj vj(x
2)− vj(x1) is at most

maxj |x2
j−x1

j | because x1 can copy the strategy of x2, getting the same allocations and making

the same payments, so the only difference in value functions comes from the underlying

valuations. Continuity of the value functions immediately follows. Bidding strategies take

the form max{xj − ṽ(x), 0}, and since xj − ṽ(x) is continuous in x and the maximum of two

continuous functions is itself continuous, we are done.

For monotonicity, consider two types x1 and x2 with x1
k = x2

k for all k 6= j and x1
j <

x2
j . Now vk(x

2) − vk(x
1) ≤ x2

j − x1
j for all k, since x1 can follow the strategy β(x2) and
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get the exact same payoff as type x2 except when bidding on product j, when they get

a payoff at most x2
j − x1

j lower. Also vk(x
2) − vk(x

1) ≥ 0 for all k since x2 can follow

β(x1) and get at least as high a payoff. Then if βj(x
2) > 0 and βj(x

1) > 0, we have:

βj(x
2)− βj(x1) = x2

j − x1
j − r

∑
k Q̃j,k(vk(x

2)− vk(x1)) ≥ x2
j − x1

j − r(x2
j − x1

j) > 0 proving

the bid function is strictly increasing on this region; and examining the other cases (e.g.

βj(x
1) = 0) yields that is weakly increasing. Finally, if βk(x

2) > 0 and βk(x
1) > 0, then

βk(x
2) − βk(x

1) = −r
∑

l Q̃k,l(vl(x
2) − vl(x

1)) ≤ 0 which (together with analysis of other

cases) shows the bid function is decreasing in the value of other products and strictly so if

the βj(x
2) > 0.

Theorem 1.

Proof. We prove existence of a pure strategy equilibrium in continuous strategies. Let C(X )

be the space of continuous functions on X , metrized by the sup norm. Since X is compact,

C(X ) is a Banach space. Moreover C(X ) is convex. Define the best response function Γ(β)

to any strategy β ∈ C(X ) as in Lemma 1, i.e. Γ(β)(x) = max{xj − ṽj(x), 0}, where ṽ de-

pends implicitly on the rival strategies β through the ergodic measure over the distribution

of highest bids µj. Now Γ(β) is uniformly bounded for every β ∈ C(X ), since 0 and x respec-

tively lower and upper bound all best responses for each x, and X is bounded. Moreover,

every β ∈ Γ(C(X )) admits a modulus of continuity of 1, since by the argument of Lemma 1,

types that are ε-close make ε-close best responses to any opposing bid distribution. This

establishes that the set of functions Γ(C(X )) is uniformly equicontinuous, and it follows by

Arzelà-Ascoli that Γ(C(X )) is a compact subset of C(X ).

Next, we need to show that Γ is continuous in β when β ∈ C(X ). The first step is to show that

the distribution of highest bids µj is continuous in β in the weak-* topology, because payoffs

depend on rivals strategies only through the distribution of the highest competing bid. Now,

this distribution arises from the composition of a sequence of functions: µj = g(κj(β(µF ))),

where µF is the underlying type distribution and β is the bidding function, so that β(µF ) is

the distribution of pseudo-types µ̃j. The function κj maps the pseudo-type distribution into

an ergodic distribution over the vector of bids in a auction for good j (a vector of bids of

random length). In earlier working papers we have shown that κj is a continuous function

(i.e. the ergodic distribution is well defined, unique, and smoothly varies with the bids of
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entrants).20 Finally g maps this distribution into the distribution of the highest bid by taking

the max of each vector, itself a continuous operation. So if f is any continuous bounded

real-valued function, f ◦ g ◦ ξj is also continuous, implying that for β′ close to β in the sup

norm, f ◦ g ◦ ξj ◦ β(x) close to f ◦ g ◦ ξj ◦ β′(x) pointwise, and so certainly Eµj(β)f close to

Eµ′j(β′)f , proving weak convergence.

The second step is to show that if the highest bid distributions are close in the sense of weak

convergence, then so are the best responses. We first argue that the value functions must

be close. Let vj(x, µ) be the value of the game for x starting from an auction for product j,

when the bid distributions are given by µ = {µj}. Since the player can only win once and

exits exogenously at rate (1− r), this value is upper bounded for every j by the maximum

expected single-period payoff when bidding optimally (over all j). The single-period payoff

is uj(x, µ) =
∫ βj(x,µ)

0
(xj −B1

j )dµj(B
1
j ). So under the sup norm ‖vj(x)‖ = supj supx vj(x):

‖vj(x, µ)− vj(x, µ′)‖ ≤ ‖uj(x, µ)− uj(x, µ′)‖

= ‖
∫ βj(x,µ)

0

(xj −B1
j )dµj(B

1
j )−

∫ βj(x,µ
′)

0

(xj −B1
j )dµ

′
j(B

1
j )‖

≤
∥∥∥max

{∫ βj(x,µ)

0

(xj −B1
j )dµj(B

1
j )−

∫ βj(x,µ)

0

(xj −B1
j )dµ

′
j(B

1
j ),∫ βj(x,µ

′)

0

(xj −B1
j )dµj(B

1
j )−

∫ βj(x,µ
′)

0

(xj −B1
j )dµ

′
j(B

1
j )
}∥∥∥

where the last line follows since making the strategies the same across the two different

distributions of rival bids must make one of the terms smaller and so the maximum payoff

differential bigger. Now since the integrands in the final line are continuous, if µ is close to

µ′ in the weak-* topology, the final expression must be close to zero, which proves continuity

by a sandwich argument. This immediately suffices to prove continuity of the best responses

(from their functional form). Putting this all together, we get the required continuity of Γ

in β. So Γ is a continuous mapping from a convex Banach space into a compact subset of

that space, and thus has a fixed point by Schauder’s fixed point theorem.

We prove uniqueness in the case J = 1 by constructing a contraction mapping. Let β and

β′ be two equilibrium bidding strategies, necessarily monotone and continuous by earlier

results. By definition of equilibrium, Γ(β) = β and Γ(β′) = β′. Let v(x, β) and v(x, β′)

be the corresponding value functions (dropping the vector notation since there is a single

20Details available from the authors on request.
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product). Then Γ is a contraction:

‖Γ(β)− Γ(β′)‖ = max
x

(x− rv(x, β))− (x− rv(x, β′))

< max
x
|G1

β (β(x))
(
x− Eβ[B1|B1 ≤ β(x)]

)
−G1

β′

(
β′j(x)

) (
x− Eβ′ [B1|B1 ≤ β′(x)]

)
|

≤ max
x

G1
β (β(x))

∣∣Eβ[B1|B1 ≤ β(x)]− Eβ′ [B1|B1 ≤ β′(x)]
∣∣

≤ ‖β − β′‖

where in the third line we use the fact that G1
β (β(x)) = G1

β′ (β
′(x)) for all x. This property

holds because under both strategies the same winner is chosen in each auction (types are

totally ordered), so that the distribution of highest bids is equal across strategies if evaluated

at the bids of a fixed type x in any state s. Therefore Γ is a contraction which guarantees

uniqueness of the fixed point.

Lemma 2.

Proof. Let G1(b) be the J-vector giving the probability the pseudo-type b will win on each

product (i.e. it stacks G1
j(bj)); similarly let E[B1|B1 < b] be J-vector of expected payments

conditional on winning. Write the vector version of the Bellman equation in (1):

v(x) = G1(b)
(
x− E[B1|B1 < b]

)
+ (1−G1(b))rQ̃v(x)

= G1(b)
(
b + rQ̃v(x)− E[B1|B1 < b]

)
+ (1−G1(b))rQ̃v(x)

= G1(b)
(
b− E[B1|B1 < b]

)
+ rQ̃v(x)

where in the second line we use the bidding characterization of Lemma 1 to conclude that

G1(b)x = G1(b)(b + rQ̃v(x)). Re-arrange terms in the final line to get the value function

as the solution to a linear system:

v(x) = (I − rQ̃)−1G1(b)
(
b− E[B1|B1 < b]

)
Since r ∈ (0, 1) the matrix (I − rQ̃) is invertible (Stokey et al., 1989). Now by definition the
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j-th component of ξ is

ξj(b) = bj + r
[
Q̃(I − rQ̃)−1G1(b)

(
b− E[B1|B1 < b]

)]
j

= bj + r
[
Q̃v(x)

]
j

where the last equality follows from the previous display (the j subscript indicates the j-

th element of the vector). By Lemma 1, bj = max{xj − r
[
Q̃v(x)

]
j
, 0} so if bj > 0 we

have xj = bj + r
[
Q̃v(x)

]
j

= ξj(b); and if bj = 0 we have xj − r
[
Q̃v(x)

]
j
≤ 0 implying

xj ≤ r
[
Q̃v(x)

]
j

= ξj(b). Together this gives x ≤ ξ(b) with equality on the dimensions

where bj > 0.

Lemma 3.

Proof. Fix a pseudo-type b. Let Aj be the event “b bids bj on product j and loses, j periods

after entry” (e.g. A1 is bidding and losing on product 1 directly after entering). Then

sH(b) = P(H|b) = P(∩Jj=1Aj) = P(A1)P(A2|A1)P(A3|A2, A1) . . .P(AJ |AJ−1 . . . A1)

Now, P(A1) = rτπ1

(
1−G1

j(bj)
)

for π1 the steady-state probability that good 1 is sup-

plied. And P(Aj|Aj−1 . . . A1) = rτQj−1,j

(
1−G1

j(b1|Aj−1 . . . A1)
)
. By Assumption 2, r, τ ,

and Q are identified, as are the conditional probabilities of winning {G1
j(b|·)} following the

(measurable) sequences of events {Ak}j−1
k=1, so sH(b) is identified.

Theorem 2.

Proof. We will prove that F̃ is point identified; the partial identification of F via (6) follows

immediately. To do this, we must find the unconditional density f̃(b). We will do this

iteratively, starting with pseudo-types who participate on all products (i.e. b > 0), and

proceeding with pseudo-types who participate on all but one product etc. Formally, we will

show that f̃(b) is identified by induction on the number of zero elements of b, first showing

that with no zero elements the density is identified (the base step), and then that if the

density is identified for points with n− 1 zero elements, it is also identified for those with n

zero elements (the induction step).

Base step. In the main text we show that f̃(b|b > 0) is identified. We also observe the

probability that a randomly chosen bidder will have a history that falls into H, P (H).
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Putting this together we get

f̃(b) = f̃(b|b > 0)
P (H)∫

sH(b)f̃(b|b > 0)db

where the second expression is the probability that a random pseudo-type has b > 0.

Induction step. We must show that if f̃(b) is identified for all points b with n − 1 zero

elements, then it is identified whenever b has n zero elements. Fix a b with n zero elements.

Wlog, assume they bid bn on the first J − n products (i.e. bn is a J − n vector) and

do not participate on the rest (i.e. bid zero). Let fn(bn) be the unconditional density of

pseudo-types restricted to the first J − n elements (i.e. fn(bn) =
∫
f̃(bn, s)ds).

Consider the event Hn, that a bidder enters when good 1 is available, are active, lose and

survive, then next period good 2 is available, they are active, lose and survive . . . good

J − n is available, and they are active, bid, lose and survive. The joint density of the

(J − n)-dimensional bid vector conditional on this event, denoted gHn(bn), is observed. By

arguments similar to those in Lemma 3, the probability of ending up in that set for any bn,

denoted sHn(bn), is identified (note that evaluating this probability does not require a full

J-vector of bids). And proceeding as in the base step, we can get the unconditional density

of the (J − n)-dimensional bid vectors, fn(bn).

Now, by definition fn(bn) =
∫
f̃(bn, s)ds, which implies that f̃(b) = fn(bn)−

∫
s6=0

f̃(bn, s)ds.

And by the induction assumption, f̃(bn, s) is identified whenever s is not identically zero,

implying that both fn(bn) and
∫
s6=0

f̃(bn, s)ds are known, and so f̃(b) is identified.

Theorem 3.

Proof. The text makes most of the required arguments. The missing step is to show that τ

and r are point identified. Let H ′ be defined as in section 4.1; bidders in this set have been

observed in J successive auctions, of products 1, 2, . . . J , coming second each time. Each

such bidder has a known pseudo-type b. Let t1i be the time at which they entered H ′ (i.e. J

periods after entry). Define the events a ≡ “are observed in the auction at t1i + 1” and b ≡
“are observed in the auction at t1i + 2. Let G2

j be the distribution of the second-highest rival

bid. Let j1 be the type-of-good auctioned at period t1i + 1 and let j2 be the type-of-good
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auctioned at t1i + 2. We have:

P (a) ≡ pa = r︸︷︷︸
survived

τ︸︷︷︸
active

G2
j1

(bj1|H ′)︸ ︷︷ ︸
observed

and

P (b) ≡ pb = r︸︷︷︸
survived

(1− τ(1− rG1
j1

(bj1|H ′)))︸ ︷︷ ︸
did not exit in period t1i + 1

τ︸︷︷︸
active

G2
j2

(bj2|H ′, did not exit in period t1i + 1)︸ ︷︷ ︸
observed

Let k1 = G2
j1

(bj1|H ′), k2 = G1
j1

(bj1|H ′) and k3 = G2
j2

(bj2|H ′, did not exit in period t1i + 1).

From the first equation, rτ = pa
k1

, and substituting into the second yields pb = pak3
k1

(
1− τ + pak2

k1

)
.

This is linear in τ and therefore has a unique solution.

Corollary 1.

Proof. The event x < Za is by definition F (Za), which by (6) is bounded below by P({b :

ξ(b) ≤ Za}) and above by P({b : 1(b > 0)ξ(b) ≤ Za}. Because Z has only positive entries,

the event x < Za is both necessary and sufficient for the event α < a, which in turn is by

definition Fα(α), yielding the bounds result in (8).

Lemma 4.

Proof. Follows immediately from the first part of the proof of Lemma 1, replacing j subscripts

with functions of s.

Lemma 5.

Proof. From the main text, we have that b̌i,j(x) = xi,j − r
∑

k Q̃j,kvk(x). Re-arranging and

stacking as vectors, x = b̌ + rQ̃v(x), for v(x) the J-vector of continuation values. By a

similar argument to that in the proof of Lemma 2, we have that v(x) = (I − rQ̃)−1ǔ(b̌)

where u(b̌) is the vector of expected static surpluses of a type b̌ when bidding on each of the

products, prior to drawing the idiosyncratic shock ε and unobserved heterogeneity ξ. Now

as indicated in the text, each element uj(b̌) is invariant to the realization of ξ, as it shifts
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all bids in the auction up equally. But ε matters for static surplus. Integrating out:

uj(b̌) = Eε

[
EǦ1

j

[
max{0, b̌j + ε−B1

j }
]]

=

∫
Ǧ1
j(b̌j + ε)(b̌j + ε−EǦ1

j
[B1

j |B1
j < b̌j + ε])dFε(ε)

Theorem 4.

Proof. The result follows from the arguments made in the main text.

Lemma 6.

Proof. The arguments given in the first part of the proof of Lemma 1 establish that βkj (x) =

max{xj − r
∑J

l=1

∑
m={A,O} Q̃(k,j),(m,l)v

m
l (x), 0}, where the subscript (k, j), (m, l) gives the

transition probability from market k, product j to market m product l. But since supply

is by assumption multinomial, we can replace Q̃(k,j),(m,l) with πml to get βkj (x) = max{xj −
r
∑J

l=1

∑
m={A,O} π

m
l v

m
l (x), 0}. From the definition of the ex-ante value function in (13),

v(x) =
∑J

l=1

∑
m={A,O} π

m
l v

m
l (x), and the result follows by making this substitution in the

line above.

Theorem 5.

Proof. The text makes most of the required arguments. There are two missing steps: (i)

showing that the extremal exit rates e(0) and e(b̄j) are sufficient to identify r and {πOj }; (ii)

showing that the derivatives of the exit rates suffice to identify the price distributions {GO
j }.

Step 1: To simplify notation, define ej ≡ e(b̄j) and e0 ≡ e(0) and drop “O” superscripts.

Recall that ej = (1 − r) + r
Π(1−r)+rπj
1−r(Π−πj) . Expand Π =

∑
k πk, and multiply through by

1− r(
∑

k πk − πj) to get:

ej(1− r
∑
k 6=j

πk) = (1− r)(1− r
∑
k 6=j

πk) + rπj + r(1− r)
∑
k 6=j

πk

Re-arranging and canceling terms:

re(j)
∑
k 6=j

πk + rπj = ej − 1 + r
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Dividing by r:

ej
∑
k 6=j

πk + πj =
1

r
(ej − 1 + r) (22)

Fixing r and stacking the equations for each ej (j = 1 . . . J), we have a linear system in

π1 · · · πJ , where the coefficient matrix is of full rank. It thus has either zero or one solution

π1(r) · · · πJ(r) for each value of r. For the purposes of identification we know there must be

at least one solution corresponding to the parameters of the true DGP, and need to show

that we cannot find two different values of r and corresponding solutions of the linear system

that are consistent with the data.

Let Π(r) =
∑

k πk(r), and use the remaining equation:

e0 = (1− r) + r
Π(r)(1− r)
1− rΠ(r)

Re-arranging and canceling terms:

1− e0 = r (1− Π(r)e0)

Solving for r:

r =
1− e0

(1− Π(r)e0)
(23)

Let the RHS of (23) be φ(r). Since 0 ≤ Π(r) ≤ 1, we have 1 − e0 ≤ φ(r) ≤ 1, and φ(r)

is continuous in r since Π(r) is continuous in r. Moreover, φ′(r) = Π′(r)e0(1−e0)
(1−Π(r)e0)2

> 0, since

Π′(r) is positive (it is the sum of solutions to a matrix equation whose RHS,1
r
(ej − 1 + r) is

increasing in r). This implies that we have at least one solution to (23) (the RHS is below

the LHS at 1 − e0 and above it at 1, both sides are increasing and continuous functions

of r). Call any such solution r∗. We would like to show it is unique. Notice that we can

rewrite the expression for φ′(r) as Π′(r)e0(1−e0)
(1−Π(r)e0)2

= φ(r)2 Π′(r)e0
1−e0 . At r∗ we have φ(r∗) = r∗, so

φ′(r∗) = r∗2 Π′(r∗)e0
1−e0 . Moreover, since Π(r) is the sum of solutions to (22), it can be written

as a weighted sum
∑

j wj
1
r
(ej − 1 + r), where the weights depend on the inverse of a matrix

whose entries are equal to 1 or elements of {ej} (i.e. the weights are not functions of r). It

follows that Π′(r) is equal to
∑

j wj
1−ej
r2

. Using this, we get φ′(r∗) = e0
1−e0

∑
j wj(1−ej). This

derivative is not a function of r, so all solutions r∗ share the same derivative φ′(r∗). This

implies a unique solution, since for two monotone continuous univariate functions to intersect

multiple times it is necessary that when they cross, sometimes the one crosses the other from
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above, and sometimes below, with necessarily different derivatives in these different cases.

Step 2: Fixing a j and dropping the j notation we have:

e′(b) = r
rπG′(b)(1− Π)

(1− r (Π− πG(b)))2

Solving for G′(b) and grouping known functions we get:

dG

db
= h(b)j(G)

for h(b) = e′(b)/(r2π(1 − Π)) and j(G) = (1 − r (Π− πG))2. This has solution G(b) =

J−1(H(b)+c) for H(b) =
∫ b

0
h(s)ds and J(G) =

∫ G
0
j(s)ds. The boundary condition G(0) = 0

implies c = 0 (via J−1(c) = 0 and thus J(0) = 0 = c), giving final solution G(b) = J−1(H(b)),

where both h(b) and j(G) are identified by the argument in Step 1, and e′(b) is observed for

bidders who make complete bids (and moreover e(b) is constant in bidder history, so that

conditioning on bidders who have complete bid vectors does not introduce selection).

B Data Appendix

B.1 Data Source

We used data from eBay auctions for compact cameras that was purchased from Terapeak,

a private company that uses eBay data to offer analytics tools for sellers on the platform.

Our data included listing, seller, and bidder attributes as documented in Table 1 from the

main text.

B.2 Sample Construction

We restricted attention to auctions for new compact cameras that ended between the dates

of Feb 5 and May 6, 2007. By way of data cleaning we also imposed the following restrictions:

1. We were somewhat concerned that we may have been observing some “shill” bidding

by sellers intent on raising revenues. We used the following rather coarse procedure to

detect such bidding behavior: for any given bidder, if they won at least five auctions
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and at 80% of them were from the same seller, then we flagged them as a shill bidder.

We excluded all auctions in which a so-designated shill bidder was among the set of

observed bidders.

2. There are many senses in which a bid may be an “outlier”. We excluded all winning

bids that were more than twice the sale price of the listing (either the second-highest

bid or the reserve price, whichever is greater).

3. Though we did not exclude auctions that used the Auction-Buy-it-Now feature, we

did exclude auctions that ended with the execution of the BIN option. This option

disappears once the first bid is made, so those listings function as regular auctions

afterwards. See Ackerberg et al. (2009) for a fuller treatment of Auction-Buy-it-Now

auctions.

4. We drop listings for which we are missing data on attributes (e.g., zoom, resolution),

for which those attributes are unreasonable or technically impossible, or where the

product line is not indicated.
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