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1 Introduction

One of the most robust empirical regularities in bargaining is the phenomenon called the
deadline effect : the agreement is delayed until the very last minute before the deadline (see
e.g., Roth, Murnighan, and Schoumaker, 1988)). The labor negotiations are settled only at
the “eleventh hour”before a strike starts and the litigants pursue costly negotiations only
to reach an “agreement on the steps of the courthouse.”These are all well-known by the
practitioners of negotiation. Recently, general public also witnessed dramatic examples of
deadline effect in the political arena. The Democratic and Republican leaders reached an
agreement to raise the debt ceiling on July 31 2011 and passed a law only on August 2, 2011,
under the threat of a US Treasury default on August 3, 2011. In “fiscal cliff”negotiations
of late 2012, they reached an agreement on a new tax law late on the new year eve, in order
to avert an across-the-board tax increase starting in the new year (the president signed the
bill on January 2, 2013).
Deadlines are not the only sources of political gridlock. Elections seem to be another

factor. Mayhew (1991) shows that the US Congresses between 1947-1990 enacted 25% fewer
important laws on average when they convened in the two years before a presidential election
compared to the two years after. Binder (2000) notes as an example that House Republicans
were reluctant to negotiate over tax cuts in late 1999, after President Bill Clinton vetoed
their initial proposal, in the hopes of regaining the presidency. Their beliefs were in fact
vindicated, and under the presidency of George W. Bush, Republicans passed a sweeping
tax cut legislation in 2001 shortly after the election.
One rationale for gridlock, proposed by many authors, is optimism: players might be

holding out since they both perceive there will be a better opportunity to strike deal (see
Yildiz (2011) for a survey of the literature). But why does optimism lead to gridlock at
certain times, such as before deadlines or elections, but not at other times, such as after
elections? When gridlock is avoided, how does optimism affect the finer details of bargaining
outcomes– such as the players’shares from an agreement? To address these questions, we
develop a bargaining model with the key feature that the bargaining power is somewhat
durable. We show that durability plays a central role in understanding bargaining delays
driven by optimism, as well as the nature of agreement outcomes in political negotiations.
Our model features two risk-neutral players, say Ann and Bob, who are negotiating in

order to divide a dollar. Ann’s bargaining power at time t, πAnnt ∈ [0, 1], determines Ann’s
share of the surplus from agreeing today rather than negotiating for one more period. Bob’s
bargaining power is the residual, πBobt = 1− πAnnt . In sequential bargaining, the bargaining
power corresponds to the probability of making a take-it-or-leave-it offer at time t; there
will be another offer in the next round if the offer is rejected. We view the bargaining
power as capturing in reduced form the fundamental bargaining strength of the parties. For
example, in legal negotiations, the bargaining power of a litigant might reflect the extent
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to which the available evidence supports her case. In congressional negotiations, in which
players correspond to parties, the bargaining power might capture the extent to which the
President and the Congressmen support the party on the negotiated issue. We specify the
bargaining power as an exogenous stochastic process in continuous time, and characterize
how it translates into endogenous bargaining outcomes.
We capture players’ optimism by allowing them to have subjective beliefs about the

bargaining power process. At time t, Ann may expect her bargaining power at a future time
t∗ > t to be 3/4 on average, while, symmetrically, Bob expects his own bargaining at time t∗

to be 3/4 on average. Observe that Bob is optimistic about his own bargaining power relative
to Ann, who expects Bob’s bargaining power at time t∗ to be only 1/4 on average. Likewise,
Ann is optimistic about her bargaining power relative to Bob. We quantify players’optimism
by the extent to which the sum of their expectations of their own bargaining powers exceeds
1. In this example, their optimism about time t∗ is measured by 3/4 + 3/4− 1 = 1/2.
Our key assumption is that the bargaining power process is somewhat durable, which

also puts some discipline on optimism. Specifically, we assume the bargaining power changes
only due to important events. In political negotiations, the bargaining power would naturally
change due to elections, but it could also change due to major events that might influence the
public opinion– such as political scandals or international conflict. The players observe–
and therefore agree on– the current value of the bargaining power. They also agree on how
frequently– and in the case of elections, when– important events happen. But they have
subjective and optimistic beliefs that the events will shift the bargaining power in their favor.
This setup ensures that the players cannot hold very optimistic beliefs about the short run,
especially if the bargaining power is very durable. The players can hold optimistic beliefs as
they consider the more distant future.
Our model lends itself to a tractable and intuitive solution. A player’s expected payoff

from bargaining can be written as a weighted average of the player’s current bargaining
power, and a second term that depends on the players’beliefs about the long-run levels of
the bargaining power. We refer to the weight on the current bargaining power as congruence.
When players reach agreement, congruence captures the extent to which the agreement shares
reflect their current bargaining powers. In political negotiations, congruence can also be
thought of as a form of political capital : the extent to which a player that has “won”the last
election (and thus, has higher current power) receives a higher payoff from bargaining. If the
political capital is high, and players reach agreement, then the player in power implements
the outcomes in its favor.
Our model reveals a simple cost-benefit analysis of gridlock: the parties delay the agree-

ment if their optimism about their shares in a future agreement is higher than the cost of
waiting. Optimism about shares is in turn equal to the product of optimism about bargain-
ing power and congruence– which translates bargaining power into shares. Therefore, to
understand bargaining delays, it is necessary to understand what causes high optimism, and
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more subtly, what causes high congruence.
Durability turns out to be a key determinant of both optimism and congruence. It

decreases optimism and increases congruence. Consequently, agreement is delayed in run up
to times when durability increases. To see the rationale, suppose bargaining power becomes
more durable at some t∗ and the durability remains constant thereafter. We show that the
players reach an agreement at t∗, and the congruence at t∗ is an increasing function of the
durability level at t∗. Durability not only reduces optimism, pushing the players towards
agreement, but it also ensures that the current bargaining power has a high influence on the
agreement outcomes. In contrast, prior to t∗, the players can hold highly optimistic beliefs
about the bargaining power at t∗– because the bargaining power is less durable there. The
combination of high congruence at t∗ and high level of optimism about t∗ leads to a high
level of optimism about the shares at t∗, enticing players to wait until t∗. We refer to this
phenomenon as the durability effect.
For a concrete example, imagine Ann and Bob’s bargaining power becomes constant

starting at time t∗; that is, πAnnt = πAnnt∗ and πBobt = πBobt∗ for each t ≥ t∗. At time t∗

onwards, the future bargaining powers are known. Hence, at t∗, they reach an agreement,
giving πAnnt∗ to Ann and πBobt∗ to Bob. Congruence at time t∗ is one, the highest possible
level. Now, imagine that the bargaining power is less durable before t∗, and players are
highly optimistic about t∗ at some t < t∗: they both expect their bargaining powers at time
t∗ to be 3/4, as described earlier. Suppose the time t value of receiving one dollar at time
t∗ is more than 2/3 dollars. Then, Ann believes she can obtain more than 2/3× 3/4 = 1/2

dollars simply by waiting until time t∗. Similarly, Bob believes he can obtain more than 1/2

dollars by waiting until time t∗. Clearly, there is no division of the dollar at time t that can
satisfy both players’optimistic expectations, and they disagree at t.
Times such as t∗ at which durability increases and leads to high congruence are common

in practice. Elections provide a natural application. In political negotiations, the bargain-
ing power might change considerably depending on which party will win an upcoming the
election. Moreover, the parties’post-election bargaining powers are unlikely to change sig-
nificantly for a considerable while (e.g., until the next major election). In view of these
observations, we establish an election effect : optimistic parties disagree before the election,
and agree after the election with terms that are congruent with the interests of the winning
party– consistent with Republicans passing a tax cut legislation in 2001.
Less obviously, we show that deadlines provide another application of the durability effect.

Suppose t∗ corresponds to a time at which a possibly stochastic deadline becomes likely to
arrive. If the players do not agree by the time the deadline arrives, then they receive zero. In
this setting, we establish a deadline effect: optimistic players delay agreement before time t∗,
and agree at time t∗ with terms that are congruent with their bargaining powers– as in the
earlier example. Intuitively, even though the bargaining power after time t∗ is not durable
in the strict sense of the word, it is highly durable in the sense that it is unlikely to change
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much before the stochastic deadline arrives.
Our unifying explanation for gridlock with optimism is, then, an increase in the effective

durability of bargaining power. Deadlines and elections are two (seemingly distinct) phe-
nomena both of which increase effective durability and lead to high congruence. Consistent
with this intuition, we find that the severity of gridlock in these settings depends on– among
other aspects– how much the effective durability increases. For instance, the deadline effect
is more prominent when the deadline is less uncertain, and the election effect is more promi-
nent when the bargaining power is more durable in non-election times. We also establish
additional comparative statics for deadline and election effects, linking the severity of grid-
lock to the players’optimism, their cost of delay, and– for the case of elections– the parties’
relative popularity with voters.
While deadlines and elections can both cause gridlock, elections are often associated

with more structure. For instance, they are held periodically at fixed intervals. We use
our model to analyze political negotiations with periodically repeated elections, and show
that congruence plays a central role also in this context. Most importantly, we show that
congruence (or political capital) is highest immediately after the election, but it gradually
declines over the election cycle. As time passes, longer-run factors such as the upcoming
election also start to affect the agreement shares. As the next election draws closer, the
players reach what might be called “compromise outcomes.”The party in power is forced
to leave a sizeable share of the surplus to the other party. Intuitively, the party without the
power has a credible threat to delay the agreement until the next election, which enables it
to extract some surplus. As the election draws even closer, the threat becomes real due to
optimism and the election effect, which induces disagreement until after the election.
Our final analysis concerns political negotiations in which a stronger election– that re-

sets the bargaining power with a higher probability– periodically alternates with a weaker
election. We view this setting as capturing (in reduced form) some important features of
the political cycle in the US. In one application, the stronger election can be thought of
as the four-year elections that feature presidential and congressional elections, whereas the
weaker election captures the midterm elections that feature only congressional elections. In
another application, the stronger election captures an election in which the incumbent pres-
ident cannot run for the offi ce due to a binding two-term limit, whereas the weaker election
is one in which the incumbent can rerun. The latter election is arguably associated with
less optimism because the incumbent is generally thought to have an advantage in elections,
which reduces the chance of a close election (see Section 3).
With alternating elections, we find that there is a longer period of delay before the

stronger election compared to the weaker election. Moreover, political capital (or congruence)
is also higher in the aftermath of the stronger election. Intuitively, the stronger election
constitutes a greater change in durability, which leads to more severe gridlock in its run-up
and a greater political capital in its aftermath. In the context of presidential elections with
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term limits, this result suggest a lame duck effect: we predict that presidents that cannot
be reelected are associated with lower political capital– or more compromise– as well as a
longer period of delay before the next presidential election. We test the latter prediction by
extending Mayhew’s (1991) analysis of legislative gridlock. The US Congresses that convene
before presidential elections with a binding term limit seem to enact fewer important laws–
consistent with our lame duck effect– but the result is not statistically significant due to
small sample size.

Literature Review Existing bargaining models that build upon Rubinstein (1982) specify
an explicit bargaining protocol, e.g., who makes an offer and when. Several papers, such
as Yildiz (2003, 2004a) and Ali (2006), assume optimistic beliefs about the protocol. In
these models, the bargaining power is implicitly determined by the protocol. Moreover, the
implied bargaining power is often highly nondurable. For example, in Rubinstein’s (1982)
alternating-offer model, the bargaining power shifts from one side to other every period.
This is also the case in the setups for the main results of Yildiz (2003) and Ali (2006), where
the bargaining power is assumed to be serially independent. Our methodological innovation
is to start with a bargaining model with an explicit bargaining power process, defined in real
time, and allow players to hold optimistic beliefs about it. This allows us to model durability
of bargaining power transparently and study the impact of durability in equilibrium.
It turns out that durability is a necessary ingredient for obtaining high congruence, and

ultimately, for robust bargaining delays with optimism. We show that assuming serially in-
dependent (and thus, nondurable) bargaining power as in Yildiz (2003) leads to congruence
that is bounded from above by the cost of one-period delay. Intuitively, without any impact
on the future bargaining power, the current bargaining power can only affect the allocation
of the current gain from trade, which is the cost of delaying agreement until the next pe-
riod. This one-period cost is typically low except for one extreme scenario: a deterministic
deadline. In this case, the cost of delaying agreement beyond the deadline is equal to the
whole pie, which yields a high congruence of one at the deadline. Under optimism, this
may lead to long delays as in the example above, which is similar to a two-period example
in Yildiz (2003). In particular, one can obtain a deadline effect for deterministic deadlines
using models with nondurable bargaining power. Nonetheless, that is a singular case. In all
other cases, including cases that involve stochastic deadlines, the one-period cost of delay
is vanishingly small in the continuous-time limit in which we allow the players negotiate
frequently. Therefore, there cannot be any delay in the continuous-time limit. In particular,
the deadline effect obtained in models with nondurable bargaining power is highly fragile,
and disappears if the deadline is stochastic. This is problematic because stochastic deadlines
appear to be common in practice (see Footnote 4 in Section 3).
A strand of literature focuses on the role of learning in generating bargaining delays

(see, for instance, Yildiz (2004a), Thanassoulis (2010), Galasso (2012)). For instance, Yildiz
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(2004a) shows that, when players learn about their future bargaining power, optimism leads
to delay because each optimistic player i waits for information in the hopes that information
vindicates i and persuades the other party j to agree to i’s terms. Such a persuasion motive
plays an implicit yet important role in our election effect. Intuitively, the election reveals to
the parties their future bargaining powers, which in turn ensures that they reach agreement
with high congruence. On the other hand, persuasion does not play an apparent role in our
deadline effect. There, the parties reach agreement with high congruence in view of the high
time discounting due to the deadline, even if they continue to disagree about the evolution of
their bargaining powers. Thus, our durability effect provides a distinct mechanism for delay,
which in some special cases (such as the election effect) can be mapped into the persuasion
effect from the previous literature.
Our election effect is related to a political science literature that analyzes the sources of

gridlock in legislative politics (see Binder (2003) for a review). In recent and parallel work,
Ortner (2013) formalizes an alternative mechanism for gridlock before elections based on
the idea that the terms of an agreement might affect the parties’prospects in the upcoming
election. This “electoral concerns hypothesis” is complementary to our election effect with
some differences that we discuss in Section 4.3 (see Remark 4). A key distinction is that
electoral concerns can play a role only when the negotiated issue is visible and salient for
voters’decisions, while optimism can cause a gridlock regardless of such visibility. Going
beyond gridlock, we also analyze the nature of agreement outcomes in political negotiations.
Our notion of political capital, as well as our results about its evolution over typical election
cycles, appear to be new.

Outline Section 2 introduces our bargaining model and characterizes the equilibrium. This
section also provides a closed form solution for a baseline scenario, which illustrates that
congruence is increasing in effective durability. Section 3 establishes the durability effect,
and obtains the deadline effect as its corollary. This section also establishes the comparative
statics of the deadline effect. Section 4 is devoted to elections, establishing election effect, the
related comparative statics, and the results about the periodic elections. Section 5 analyzes
the more general determinants of delay in our framework. Section 6 discusses the extensions
of our results to general bargaining processes. Section 7 concludes. The appendix contains
the omitted proofs and some extensions of our baseline analysis.

2 Model and Equilibrium

In this section, we introduce our model and characterize its unique equilibrium. To simplify
the exposition, we focus on a tractable and parsimonious bargaining power process. In our
working paper, we analyze more general bargaining power processes and obtain the analogues
of many of our results. We discuss these generalizations in Section 6.
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2.1 Model

Consider two risk-neutral players, i ∈ {1, 2}, who negotiate over a continuum of times,
t ∈ R+ = [0,∞), in order to pick some x ∈ [0, 1]. The players can strike a deal only at times
on a grid T = {0, 1/n, 2/n, .., }, where n = 2m is a large integer. If the players strike a deal at
time t, then they respectively receive the payoffs, u1 (x) = x and u2 (x) = 1−x, at that time.
We assume that the players discount the future payoffs at a common, time-varying discount
rate r (t), which is bounded away from zero and ∞. We use the time-varying discount rate
to capture stochastic deadlines (see Section 3). We also define the discount factor between
times t and s as δt,s = e−

∫ s
t r(s̃)ds̃. The expected payoff of player i at time t from reaching an

agreement at time s is simply δt,sui (x).
Our key object is a player’s bargaining power, denoted by πit. As in the standard bar-

gaining literature, we define the bargaining power as the probability that player i makes
a take-it-or-leave-it offer in a sequential bargaining game. We take the bargaining power
(π1

t , 1− π2
t )t∈R+

as an exogenously given continuous-time stochastic process, and explore
how it translates into actual bargaining outcomes in equilibrium. Formally, at each time
t ∈ T , player i is recognized as the proposer with probability πit. The recognized player
offers some x ∈ [0, 1]. If the other player accepts the offer, then the game ends, picking
x. Otherwise, the game continues to the next period. We investigate the subgame perfect
equilibrium of this game.
As usual, the model with take-it-or-leave-it offers provides a convenient approach to

capture bargaining strength. However, we interpret the bargaining power more broadly as
capturing the fundamental factors that affect how players split a given amount of surplus.
In fact, as we will see, the bargaining power in our model is exactly equal to the fraction of
the surplus from agreement a player gets (in addition to her continuation value from delay).
We focus on bargaining power processes that satisfy certain reasonable properties. We

assume that, at any time t, players know the current realization of the bargaining power,
(π1

t , 1− π2
t ). Importantly, we also assume that the bargaining power is somewhat durable.

More specifically, the bargaining power remains constant at its current level until some
important event that affects the bargaining power occurs. These two assumptions ensure
that there is considerable discipline on players’short-run beliefs.
Formally, consider a Poisson process with time-varying arrival rate λ (t), which is assumed

to be piecewise continuous. At each arrival, a new pair (π1, 1− π1) of bargaining powers is
drawn from a fixed distribution (independently from earlier values of the bargaining power
and the deadline). The bargaining powers remain constant as (π1

t , π
2
t ) = (π1, 1− π1) until

the next arrival. The players agree about the arrival process for simplicity (common λ (t)),
but they might disagree about how an arrival will affect their bargaining powers. Let H i

denote the distribution of πi according to player i. We write π̄i =
∫
πdH i (π) for the expected

value of bargaining power πit upon arrival according to i.
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To explore the effects of optimism, we assume

y ≡ π̄1 + π̄2 − 1 > 0.

Note that the expected value of π1
t upon arrival is π̄

1 according to player 1 while it is only
1 − π̄2 according to player 2. Hence, ȳ = π̄1 − (1− π2) is a measure of long-run optimism.
It captures the amount by which a player over-estimates her own bargaining power upon
arrival with respect to the other player. We define optimism at time t about time s ≥ t

analogously as
yt,s = E1

t

[
π1
s

]
+ E2

t

[
π2
s

]
− 1. (1)

Here, Ei
t [πis] denotes a player’s expectation about his bargaining power at a future date

s ≥ t. In this setup, this is a weighted average of her current bargaining power, πit, and the
long-run expectation, π̄i. In particular,

Ei
t

[
πis
]

= (1− Λt,s) π
i
t + Λt,sπ̄

i (2)

where
Λt,s = 1− e−

∫ s
t λ(t′)dt′ (3)

denotes the probability of an arrival over the interval [t, s]. Combining (1) and (2), the
players’optimism can also be written as

yt,s = Λt,sy. (4)

Eqs. (2-4) illustrate the key features of our model. Players have a perpetual tendency to
be optimistic (y > 0). However, this tendency is countered by the current realities (πit), and
the rate at which these realities change (Λt,s). Observe that the players’beliefs about the
short run largely reflect the current bargaining power– especially if the important events do
not happen very frequently. As the players consider the more distant future, their beliefs are
disconnected from the current bargaining power. Their optimism increases and eventually
approaches y. These features of the model are consistent with recent survey evidence from
Case, Shiller, and Thompson (2012)– albeit from a very different context. They find that
homebuyers in the US are typically informed and not very optimistic about their home
price changes over the next year, but they are quite optimistic that the price will increase
considerably over the next ten years.
Our model has some extreme features that do not play an important role beyond providing

analytical tractability. For instance, the assumption that the bargaining power is completely
reset upon arrival is unrealistic. In our working paper, we extend our main results to general
bargaining processes (see Section 6). The key feature of our model is that the bargaining
power is known to be somewhat durable. The durability rate in this model, which we define
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for more general processes in our working paper, turns out to be 1/λ (t)– the inverse of the
rate at which important events occur. Observe from (2) that the players’beliefs depend
on the current and the future values of the durability rate, [1/λ (t)]∞t′=t. These values are
largely unrestricted in our model (except that λ (t) is deterministic and piecewise continuous).
Hence, although simplified in some dimensions, the model is suffi ciently rich to capture
various economically interesting scenarios, which we explore in subsequent sections.

Remark 1 (Relationship with Existing Bargaining Models). If the grid of negotiation times
T is fixed, then our game is a random-proposer model (Binmore 1987; Merlo and Wilson
1995). The closest model is provided by Yildiz (2003), who also allows the players to have
subjective beliefs about the recognition to make an offer. The first distinguishing property of
our model is that the probability πit is publicly observable. In the existing models, the players
only observe the proposer (or the state that deterministically determines the proposer).
These models can be captured in our general framework (discussed in Section 6) by taking
πit ∈ {0, 1}.1 More importantly, we take the bargaining power as a function of the real time,
independently of how frequently players come together to negotiate. In fact we will often
focus on the solution in the continuous time limit as n→∞. This approach is particularly
useful to model the durability of the bargaining power. In Section 5, we show that durability
plays an important role in generating bargaining delays. In contrast, in existing models, the
bargaining power varies with n, often leading to a highly non-durable bargaining power as
n→∞. For example, the main results in Yildiz (2003) assume that the recognition process
is serially independent, so that players do not learn about future bargaining power from the
current one. This can be thought of as a special (limit) case of our model in which πit ∈ {0, 1}
and Λt,s = 1 for each t, s ≥ t (i.e. durability rate 1/λ (t) is zero everywhere in continuous
time.2

2.2 Characterization of Equilibrium

Let the random variable V i
t denote the continuation value of player i at time t after π

1
t is

revealed but before the proposer at time t is recognized. By individual rationality, V i
t is

restricted to be in [0, 1]. Given a subsequent negotiation time s ∈ T , we define

Wt,s ≡ δt,s
(
E1
t

[
V 1
s

]
+ E2

t

[
V 2
s

])
(5)

1Since the bargaining power in these models is defined only implicitly, alternative interpretations might
sometimes be more appropriate. For example, the typical random proposer model can be thought of as
another special case of our model in which πit = πi, that is, player i makes an offer with known probability
πi in every period. Yildiz (2004a) assumes that πi in the previous example is unknown and players hold
optimistic beliefs about it. This model can be interpreted as players having a durable and unobservable
bargaining power, about which they obtain public signals as they observe who makes an offer.

2Yildiz (2003) allows the new bargaining powers to be drawn from a different distribution, while we fix
that distribution. This difference is not relevant for our comparisons in Section 5.
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as the sum of players’perceived payoffs from delaying agreement (or waiting) until time
s. Note that Wt,t+1/n captures players’total perceived payoff from waiting until the next
negotiation time. Hence, 1 −Wt,t+1/n captures players’perceived surplus from agreeing at
time t.
First suppose Wt,t+1/n < 1, so that the surplus at time t is positive. Then, it is easy

to check that the players reach an agreement with the proposer receiving the full surplus.
Hence, player i’s expected payoff before the proposer is recognized is

V i
t = πit

(
1−Wt,t+1/n

)
+ δt,t+1/nE

i
t

[
V i
t+1/n

]
.

In particular, players split the surplus according to their bargaining powers, π1
t and π

2
t .

Next suppose the surplus is negative, that is, Wt,t+1/n > 1. In this case, there cannot
be an agreement that satisfies both players’expectations, as the sum of their continuation
values from delay exceeds 1. Hence, there will be disagreement at such t regardless of the
proposer. Player i’s continuation value is

V i
t = δt,t+1/nE

i
t

[
V i
t+1/n

]
.

Finally, if Wt,t+1/n = 1, then the surplus is zero and the players are indifferent to agree.
In general, the equilibrium is obtained by combining the three cases, yielding a unique

subgame-perfect Nash equilibrium up to the indifference in the last case. Our next result
characterizes the equilibrium further using our specification of the bargaining power process.
We write δt = δt,t+1/n for the one period discount rate, Λt = Λt,t+1/n for the one period arrival
probability [cf. (3)], Wt = Wt,t+1/n for the players’perceived total payoff from waiting for
one period [cf. (5)].

Proposition 1 (Characterization and Uniqueness of Equilibrium). In any subgame-perfect
Nash equilibrium, the continuation value of any player i ∈ {1, 2} at any time t ∈ T is

V i
t = Ktπ

i
t + (St −Kt)

π̄i

1 + y
∀i, t (6)

where the deterministic weights Kt and St are the unique solutions to the difference equations

Kt = max {1−Wt, 0}+ δt (1− Λt)Kt+1/n, (7)

St = max {1,Wt} , (8)

Wt = δt
(
St+1/n + ΛtyKt+1/n

)
. (9)

At any time t, the players agree if Wt < 1 and disagree if Wt > 1.

The proposition establishes several properties of equilibrium. First, there exists a unique
equilibrium payoff vector. Second, the expected payoff of a player i can be decomposed into
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a combination of her current bargaining power, πit, and her expected long-run bargaining
power, πi, as in (6). We refer to the weight on the current bargaining power, Kt, as the
congruence, as this determines the extent to which a player’s bargaining power at time t
translates into her expected payoff. In political negotiations, congruence can also be thought
of as political capital : the extent to which a player that has high current bargaining power
also receives a high payoff from bargaining (see Section 4). We have written the weight on
the long-run bargaining power as (St −Kt) / (1 + ȳ), which ensures V 1

t + V 2
t = St. We refer

to St as the size of the pie, that is, the sum of players’(expected) payoffs.
Third, the functions Kt and St are the unique solutions to the difference equations (7-9).

The size of the pie, St, is the maximum value of agreement and disagreement outcomes. To
understand the determinants of Kt, note that solving the equations forward yields:

Kt =
∑

{s∈T |s≥t}

max {1−Ws, 0} δt,s (1− Λt,s) . (10)

That is, the congruence is a discounted sum of the gains from agreement, max {1−Ws, 0},
because the bargaining power translates those gains into actual payoffs. The contribution
of the future gains depend not only on the discount factor, δt,s, but also on the probability
that the current bargaining power will remain unchanged, 1−Λt,s. The effects of the events
after a change in bargaining power are captured by the other term, St −Kt.
Finally, equation (9) characterizes the value of waiting– and thus, the players’agreement

decisions– in terms of the functions Kt and St. The value of waiting depends on the size of
the surplus in the next period, as well as the optimism, Λty, and the congruence, Kt+1/n.
Intuitively, waiting is more valuable if optimism about the bargaining power is large and the
bargaining power will translate into a greater payoff in the next period.
Note that (7-9) represents a deterministic system of equations. That is, although the

continuation values and equilibrium shares are stochastic (as they depend on the realizations
of πit), the functions Kt, St, and Wt are deterministic. In particular, whether there is agree-
ment (i.e., Wt < 1) or disagreement (i.e., Wt > 1) at any instant is deterministic. Hence,
the settlement date is known at the beginning of the game.
We next study the solution to the deterministic the difference equations (7-9). We will

analyze cases in which the piecewise continuous functions r and λ might be stationary, or
might change over time in view of the arrival of deadlines or various elections. We solve
the equilibrium corresponding to these cases in discrete time, that is, for a fixed n with the
corresponding grid T = {0, 1/n, 2/n, .., }. However, to simplify the exposition in the main
text, we often describe the equilibrium variables such as Kt in the continuous time limit,
that is, as n→∞ (when the limit exists).
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2.3 Equilibrium in a Stationary Environment

We start by analyzing a baseline specification in which r (t) and λ (t) are constant.

Stationary Model. Suppose r (t) = r0 and λ (t) = λ0 for each t, where r0 and λ0 are
positive constants that capture the baseline levels of the discount rate and the arrival rate.

This case is useful to illustrate how a combination of durability and time discounting
leads to high congruence. To state the result, we define the effective durability rate as the
product of the instantaneous durability rate with the discount rate:

ρ (t) = 1/λ (t)× r (t) . (11)

We let ρ0 = r0/λ0 denote the baseline level of the effective durability rate. We also define
the stationary congruence as a function of the effective durability rate:

k (ρ) ≡ ρ

ρ+ 1 + y
. (12)

Proposition 2 (Stationarity). Consider the Stationary Model. Players reach agreement at
each time. In the continuous-time limit, the congruence is limn→∞Kt = k (ρ0).

Proof. We conjecture that there is agreement at all dates: Wt < 1 and St = 1 for each t.
Using (9), the one period gain from agreement can be written as

1−Wt = 1− δt
(
1 + ΛtȳKt+1/n

)
.

Substituting this into (7), and rearranging terms, we obtain

Kt = 1− δt + δ̂Kt+1/n

where
δ̂ = δt (1− Λt (1 + ȳ)) . (13)

Since the environment is stationary, Kt = Kt+1 ≡ Kstat, yielding

Kt = Kstat =
1− δt
1− δ̂

→ k
(
ρ0
)
. (14)

It is easy to verify that Wt = δt (1 + ΛtȳK
stat) < 1.

The result shows that the players in the stationary model reach agreement immediately.
This is perhaps surprising since a naive view could posit that a suffi ciently high level of
optimism, y, could lead to disagreement. Intuitively, if there were disagreement at some
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time, there would be disagreement at all times since the environment is stationary and the
solution is deterministic. Since the players cannot disagree forever, there is agreement at
all times. Optimism affects the agreement shares, as illustrated by (12), but it need not
generate delays (see Section 5 for an extension in which there are delays with stationarity).
The result also implies that higher effective durability increases congruence. In partic-

ular, the function k (·) is increasing [cf. (12)]. Thus, with greater effective durability, the
agreement shares reflect relatively more the current bargaining power. This leaves less room
for long-run factors, including the players’ optimism [cf. (6)]. In fact, as ρ0 → ∞, the
congruence approaches one and optimism has no impact on agreement shares.
To obtain an intuition, note that Eq. (14) can be equivalently written as a sum:

Kstat =
∑
s≥t

(1− δs) δ̂
n(s−t)

(15)

(since δs = δt for each s). That is, the congruence (over an agreement region) can be
viewed as a sum of the “frictionless”gains from agreement that would obtain in the absence
of disagreement, 1 − δs. The effect of optimism is now captured as a reduction of the
discounting term, δ̂ = δt (1− Λt (1 + ȳ)) < δt (1− Λt). Intuitively, the earlier representation
in (10) accounted for optimism as a drag on the (endogenous) gains from agreement, whereas
the new representation pushes the effect into discounting. This representation is useful and
enables us to obtain a closed form solution.
Eq. (15) illustrates that a rapidly arriving deadline, captured by high r0 and low δs,

leads to high congruence because it increases the gains from agreement in the short run.
Optimism cannot overturn this outcome since the parties cannot be optimistic about the
short run (by assumption). High durability, captured by high λ0 and low Λt, leads to a very
similar outcome for a slightly different reason. In this case, the gain from agreement in any
time interval can be relatively small. However, since the bargaining power is durable, the
discounting in the sum largely reflects time discounting or deadlines (δ̂ ' δt). The discounted
sum of these small gains translates into high congruence. Optimism cannot overturn this
outcome because it is disciplined by high durability.
There is, in fact, a deeper connection between the disciplining roles of deadlines and

durability. To see this, consider the change of variable, t = ∆/r0, where ∆ captures the
payoff relevant distance of time t from time 0 (since e−r

0t = e−∆). The continuous time limit
of Eq. (15) can then be written as:

lim
n→∞

Kstat =

∫ ∞
0

e−∆(1+(1+ȳ)/ρ0)d∆.

Thus, when written in terms of the payoff relevant distance, the congruence becomes a
function of the single variable, ρ0 = r0/λ0, as opposed to two separate variables, r0 and
λ0. Intuitively, in view of the relation, t = ∆/r0, a high discount rate, r0, shortens the
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Figure 1: The effective durability rate in Section 3.

time intervals over which players face equivalent trade-offs. Over short time intervals, the
bargaining power cannot change very much even if the bargaining power is not very durable.
Hence, the case in which r0 is high is mathematically equivalent to a hypothetical case in
which r0 is lower and the durability rate, 1/λ0, is proportionally higher. This point applies
more generally beyond the stationary environment. The continuous time payoffs in our
model often depend on the effective durability rate, ρ (t) = r (t) /λ (t).

3 Durability and Deadline Effects

In this section, we present our main result on the durability effect, and obtain a robust
deadline effect as its corollary. We establish these results using the following special case of
our model.

Increasing Durability Model: Imagine that the arrival and the discount rates λ (t) and
r (t) are stationary at their baseline levels up to some negotiation time t∗ ∈ T . They change
at t∗ and remain stationary at a new level after t∗. That is,

λ (t) =

{
λ1 if t ≥ t∗

λ0 otherwise
r (t) =

{
r1 if t ≥ t∗

r0 otherwise
ρ (t) =

{
ρ1 if t ≥ t∗

ρ0 otherwise
.

(16)
Suppose ρ1 > ρ0 so that the effective durability rate ρ1 = r1/λ1 after t∗ is higher than the
effective durability rate ρ0 = r0/λ0 before t∗ as in Figure 1. We further assume

yk
(
ρ1
)
> ρ0. (17)

It can be checked from (12) that ρ > k (ρ) y for each ρ. Thus, condition (17) requires
ρ1 to be suffi ciently larger than ρ0. The increase in effective durability can be driven by an
increase in the discount rate, r (t), or the durability rate, 1/λ (t). As we formalize below,
the increase in r (t) captures the arrival of a stochastic deadline. The increase in 1/λ (t)

can capture several other applications. For example, a pending reform, such as a labor law
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or tort reform, might increase the durability of the bargaining power of individual parties
in related negotiations, such as wage negotiations or pre-trial negotiations. The players’
bargaining power is less durable before the law is enacted– since there could be last minute
changes in the law– and it arguably becomes more durable after the law is enacted– since
it takes time to enact a new law.
Our next result shows that these types of increase in effective durability induces delays.

To state the result, we define the following function:

w (∆, K, η) = e−∆
(

1 +
(

1− e−∆/ρ0

η
)
Kȳ
)
. (18)

To understand this function, imagine that the congruence at some later negotiation time t∗

is given by K. Consider an earlier negotiation time, t∗ − ∆/r0,which has payoff relevant
distance ∆ from t∗ (since e−r

0(t∗−t) = e−∆). Imagine that the probability that the bargaining
power remains unchanged between these times is given by e−∆/ρ0

η. Here, e−∆/ρ0
captures the

effect of arrivals due to the baseline specification, and η ≤ 1 captures the effect of additional
arrivals (if any) beyond the baseline specification. Then, w (∆, K, η) captures the value
of waiting from time t∗ − ∆/r0 until time t∗.3 The players are willing to wait as long as
w (∆, K, η) > 1. Our next result shows that players choose to wait in the run-up to time t∗.

Proposition 3 (Durability Effect). Consider the Increasing Durability Model. There exists
a negotiation time t̄ ≤ t∗, such that players agree at each t < t̄, disagree at each t ∈ [t̄, t∗),
and agree at t∗ and thereafter. In the continuous time limit, limn→∞ t̄ = max

(
0, t∗ − ∆̄/r0

)
,

where ∆̄ > 0 denotes the unique positive solution to w
(
∆̄, k (ρ1) , 1

)
= 1.

The result implies that the disagreement threshold, t̄, is strictly below t∗ as long as n is
suffi ciently large. Hence, if the effective durability increases to ρ1 from ρ0 at some t∗, then
there is a strict period of inactivity prior to t∗ during which the players must disagree in
equilibrium. In the continuous time limit, the payoff relevant length of the disagreement
period is given by ∆̄ that equates the value of waiting to 1.

Durability Effect As a special case, suppose the discount rate is constant, r0 = r1 = r̂,
but the durability rate 1/λ increases suffi ciently at time t∗, so that condition (17) holds.
Then, Proposition 3 implies that there is a period of disagreement before t∗, establishing the
durability effect.

Deadline Effect As another special case, suppose a deadline arrives starting at time t∗

with a constant hazard rate α > 0, so that the probability of deadline arriving before time

3To derive this expression, note that the representation in (6) implies, E1
t

[
V 1
t∗
]

+ E1
t

[
V 1
t∗
]

= St∗ +

Kt∗
(
E1
t

[
π1
t∗
]

+ E1
t

[
π1
t∗
]
− 1
)

= St∗ + yt,t∗Ks. Hence, by (5), we have Wt,t∗ = δt,t∗ (St∗ + yt,t∗Kt∗). We
then obtain Wt,t∗ = w (∆,K, η) by substituting δt,t∗ = e−∆, St∗ = 1, Kt∗ = K, and yt,t∗ = Λt,t∗ ȳ =(

1− e−∆/ρ0η
)
ȳ.
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t ≥ t∗ is 1 − e−α(t−t∗). If the deadline arrives at t, and players have not agreed before time
t, then negotiations end at time t with each player receiving 0. Then, the discount rate is

r (t) =

{
r̂ + α if t ≥ t∗

r̂ otherwise
(19)

where r̂ is the baseline discount rate. The corresponding effective durability rates are given
by ρ0 = r̂/λ0 and ρ1 = (r̂ + α) /λ1. Suppose the deadline arrival rate α is suffi ciently large
(and the baseline effective durability rate ρ0 is not too large) so that condition (17) holds.
Then, Proposition 3 implies the players wait for t∗ to reach an agreement, establishing the
deadline effect.4

We describe a sketch of the proof for Proposition 3 (completed in the appendix). Note
that the environment becomes stationary at t∗ with effective durability rate ρ1. Hence,
Proposition 2 applies starting at t∗ after replacing ρ with ρ1. In particular, players reach
agreement at time t∗ with congruence in the continuous time limit given by k (ρ1). Next
note that the value of waiting at time t∗−∆/r0 until time t∗ is given by w (∆, k (ρ1) , 1). By
(18), this expression can be approximated around ∆ = 0 as

w
(
∆, k

(
ρ1
)
, 1
)
' 1 +

(
k (ρ1) y

ρ0
− 1

)
∆.

Under condition (17), w (∆) > 1 for suffi ciently small ∆. This suggests that, in the contin-
uous time limit, there is a period of delay before t∗. The length of delay is characterized by
solving w (∆, K (ρ1) , 1) = 1. The appendix shows that a similar argument also applies for
any finite n.
Intuitively, the low effective durability prior to t∗ implies there is little discipline on

beliefs at time t, so that players can be optimistic about their bargaining powers at time t∗.
In contrast, the high effective durability following t∗ implies there is high congruence at t∗.
The combination of undisciplined optimism before time t∗ and the increase in congruence
at time t∗ makes waiting valuable, and induces players to delay agreement. Note also that
the increase in the effective durability rate ρ = r/λ can come from either an increase in the
durability rate 1/λ or from an increase in the deadline arrival rate α. Hence, durability and
deadline effects are two sides of the same coin.
How costly are the delays generated by deadline or durability effects? To get a sense of

magnitudes, consider the payoff relevant length of the delay region, ∆̄. The total cost of
delaying the agreement until time t∗, as opposed to agreeing at time t = t∗ − ∆̄/r, is given

4Bargaining deadlines in practice are often uncertain, captured by a stochastic deadline. For example, in
the recent US debt ceiling negotiations, the deadline can be thought of as the time at which the Treasury
will reach the statutory debt limit. In practice, this time is quite uncertain since the Federal government
expenses are not entirely predictable. For another example, in legal negotiations, such as plea bargaining,
the deadline can be thought of as the time at which the court will reach a judgement, an uncertain deadline.
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by 1− e−∆̄. Using (18) and Proposition 3, the total cost is bounded from above:

1− e−∆̄ ≤ ȳ

1 + ȳ
. (20)

There are parameters under which the upper bound is attained (e.g., λ0 ∼= 0 and k (ρ1) ∼= 1).
Hence, the cost of delay, measured as a fraction of the total pie, is in the same ballpark
as players’ optimism about their long-run bargaining power, ȳ. When parties are highly
optimistic, so that ȳ = 1, the cost can be as large as half of the total pie.
Proposition 3 has several testable implications. For instance, we have noted that the

enactment of a major law, such as a labor reform, might increase the durability of the
bargaining power in negotiations among individual parties affected by the law, such as wage
negotiations between firms and their workers. Proposition 3 would then predict that pending
major laws induces gridlock in related negotiations among individual parties. Intuitively,
before the law is enacted, the parties can be optimistic about the exact terms that will be
implemented. After the law is enacted, the terms are set for the near future, which would
lead to durable bargaining power and high congruence. The combination of optimism before
the enactment and durability after the enactment induces delay.
Another testable implication of Proposition 3 is the deadline effect. We next analyze

when the deadline effect more prominent and obtain additional predictions. Recall that ∆̄

is the solution to the equation w (∆, k (ρ1) , 1) = 1. Our analysis in the appendix shows that
the solution, ∆̄, is increasing in any change that increases the value of waiting evaluated at
the (pre-change) length of delay, w

(
∆̄, k (ρ1) , 1

)
. Our next result combines this observation

with Eq. (18) to establish the comparative statics.

Proposition 4. Given the deadline described in (19), the length of delay, ∆̄, is

1. decreasing in the durability rate before the deadline arrival 1/λ0, and increasing in the
durability rate during deadline arrival 1/λ1,

2. increasing in the deadline arrival rate α,

3. increasing in players’long-run optimism y,

4. decreasing in the discount rate r̂ provided that the deadline is suffi ciently firm (i.e., α
is suffi ciently high).

The first part shows that the durability rate before and during the deadline arrival period
have different effects on delays. Intuitively, greater durability during the deadline arrival
period increases congruence, which in turn exacerbates delays. In contrast, greater durability
before the deadline arrival disciplines optimism and mitigates delays.
The second part suggests that there might be a silver lining to setting an uncertain or

soft deadline in negotiations. An uncertain deadline, which we capture with low α, leads to
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lower congruence at time t∗, k (ρ1) (recall that ρ1 = (r̂ + α) /λ1). Lower congruence might
be interpreted as more compromise by the player that has the higher bargaining power.
Depending on the context, this effect might be desirable in itself. Moreover, low congruence
at time t∗ also induces a shorter delay, because the players’ optimism about bargaining
powers at time t∗ translates relatively less into optimism about payoffs.
The third part links optimism to delays. Optimism has a direct effect that tends to

increase the value of waiting. However, optimism after time t∗ also has an indirect effect
that tends to reduce this value by reducing the congruence k (ρ1). Eq. (18) illustrates that
the net effect is governed by the product k (ρ1) y. In our model, the net effect is positive (see
(12)), which implies that optimism leads to longer and costlier delays.
The last part considers the effect of the discount rate r̂, which captures players’ cost

of delay. Higher cost of delay generates a direct effect that tends to reduce the value of
waiting. However, higher r̂ also generates an indirect effect that tends to increase this value
via greater congruence, k (ρ1) (recall that ρ1 = (r̂ + α) /λ1). The net effect is in general
ambiguous. If the deadline were deterministic, the indirect effect would be absent because
k (ρ1) would be equal to 1 regardless of r̂. Likewise, as long as the deadline is suffi ciently
firm, the direct effect dominates, and greater r̂ leads to shorter and less costly delays.

Remark 2 (Other Models of the Deadline Effect). Several theoretical papers establish a dead-
line effect using ingredients and mechanisms that are quite different than in our paper. Spier
(1992) shows that, in a pre-trial negotiation with incomplete information, the settlement
probability will be a U-shaped function of time, consistent with the deadline effect. Re-
cently, Fanning (2013) obtains deadline effect in the incomplete-information model of Abreu
and Gul (2000). He shows that, when the deadlines are stochastic as in our paper, the hazard
rate of settlement is an affi ne function of the hazard rate of the deadline– as a consequence
of the indifference condition in the war of attrition. A similar U-shaped function arises in a
recent paper by Wasserman and Yildiz (2016) due to learning motives under optimism. Ma
and Manove (1993) develop a model in which delay is not costly and a player can wait as
much as she wants before making an offer. They show that the player waits until the deadline
and makes a last minute take-it-or-leave it offer. Roth, Murnighan, and Schoumaker (1988)
informally discuss a possible explanation based on the idea that there is no cost of delay
except for a cost at the end due to a slight uncertainty about the deadline.

4 Political Negotiations

In this section, we use variations in the durability rate λ (t) to establish our results about
political negotiations. We start with a baseline setting with a single election, which is useful
to illustrate the basic election effect and its comparative statics. We then consider a richer
setting in which elections are periodically held, and characterize the bargaining outcomes
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Figure 2: Effective durability rate for a single election.

over the election cycle. We also analyze the outcomes when a stronger election periodically
alternates with a weaker election.

4.1 Election Effect

Single Election Model: Suppose the discount rate is constant at a baseline rate, r (t) = r0,
throughout. Imagine the arrival rate λ (t) is constant everywhere except for a short period
of “election date”at which it increases. That is,

λ (t) =

{
λ0 + λE

ε(n)
if t∗ − ε (n) < t < t∗

λ0 otherwise
, (21)

where t∗ ∈ T is a negotiation time, λE > 0 is a constant, and ε (n) is a parameter that
only depends on the negotiation frequency. Note that the effective durability rate starts at
ρ0 = r0/λ0, dips down to ρ1 = r0/

(
λ0 + λE

ε

)
over a period of (t∗ − ε (n) , t∗) and switches

back to the original level as in Figure 2. The parameter ε (n) > 0 captures the length of
the election period. We assume that the election takes place over a short time. Formally,
ε (n) < 1/n for each n so that the election starts after the negotiation time t∗ − 1/n and
ends before the subsequent negotiation time t∗; this assumption is made for expositional
simplicity.
The election model is meant to capture political negotiations for which the baseline

durability rate is likely to be relatively high. In this context, the arrival rate λ0 reflects major
events that might influence the public opinion (and ultimately affect the parties’bargaining
strength) such as political scandals, terrorist attacks, mass protests, or international conflict.
In contrast, the higher arrival rate λ0 + λE

ε
reflects the impact of (one or more) elections

in which many political offi ces are contested and can change hands. Our normalization
ensures that the probability that bargaining power changes due to the election is given by
1− e−λE . Note that this expression is independent of the length of the election, ε (n), and it
is increasing in the parameter, λE. We refer to λE as the strength of the election, and use it
to capture various comparative statics (see Section 4.3).
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How do upcoming elections affect the dynamics of negotiation? Observe that the main
impact of elections comes from the fact that elections lower the overall durability and thereby
increases the room for optimism. Indeed, at any negotiation time, t < t∗, the probability
that the bargaining powers remain unchanged until t∗ is e−λ

0(t∗−t)e−λ
E
. Hence, the overall

optimism about the bargaining power at t∗ is yt,t∗ =
(

1− e−λ0(t∗−t)e−λ
E
)
ȳ. Thus, the

election lowers the discipline on optimism. Indeed, note that yt,t∗ ≥
(

1− e−λE
)
y > 0 for

each negotiation time t < t∗. That is, players have significant optimism regardless of how
soon the upcoming election will take place. Our next result establishes that this leads to
delays in the run-up to the election.

Proposition 5 (Election Effect). Consider the Single Election Model. There exists a nego-
tiation time, t̄ < t∗, such that players agree at each t < t̄, disagree at each t ∈ [t̄, t∗), and
agree at t∗ and thereafter. In the continuous time limit, limn→∞ t̄ = max

{
0, t∗ − ∆̄/r0

}
,

where ∆̄ > 0 denotes the unique positive solution to w
(

∆̄, k (ρ0) , e−λ
E
)

= 1.

A dip in durability due to an election generates a delay prior to the election, illustrating
the election effect. The sketch proof of Proposition 5 is similar to the proof of Proposition 3.
The congruence at t∗ is k (ρ0) by Proposition 2. The survival probability of the bargaining
power during the election is given by e−λ

E
. Thus, the value of waiting from a time prior to

the election, t = t∗ −∆/r0, until time t∗ is now given by, w (∆, k (ρ0) , η), where η = e−λ
E
.

Evaluating this expression at ∆ = 0, we obtain [cf. Eq. (18)]

w
(

0, k
(
ρ0
)
, e−λ

E
)

= 1 +
(

1− e−λE
)
yk
(
ρ0
)
> 1.

Hence, there is a period of delay before the election. The length of delay is characterized by
solving w

(
∆, k (ρ0) , e−λ

E
)

= 1.
Intuitively, the players are optimistic about their likelihood of “winning” the election.

More specifically, they both believe the bargaining power will be reset during the election to
a new value that is on average in their favor. Hence, there is little discipline on the players’
optimism in the run-up to an election. In addition, there is some (typically, high) congruence
after the election in view of durability, k (ρ0) > 0. It follows that the players disagree before
the election in the hope that they will get a better deal after the election.
Hence, similar to the durability and deadline effects, the election effect also stems from

an increase of effective durability. The election effect further illustrates the discipline on
optimism at a prior time is determined by the “weakest link”of effective durability following
that time. In particular, note that there is little discipline at time t < t∗ for beliefs at time
t∗ despite the fact that the bargaining power is quite durable over most of the interval [t, t∗].
Put differently, if there is a period of transience, such as an election, durability in the rest
of that period does not create much discipline.
We next establish comparative statics for the payoff relevant length of the delay region,

20



∆̄, which also captures the cost of delay, 1 − e−∆̄. When the baseline bargaining power is
highly durable, i.e., when ρ0 →∞, the cost of delay has a closed form solution:

1− e−∆̄ =
(1− e−λE)y

1 + (1− e−λE)y
.

As in deadline and durability effects, the cost due to the election effect can be as large as half
of the total pie. Moreover, the cost is increasing in the players’optimism due to the election,
(1 − e−λE)y. Our result establishes these and other comparative statics more generally. As
before, the delay is increasing in any change that increases the value of waiting evaluated at
the (pre-change) length of delay, w

(
∆̄, k (ρ1) , e−λ

E
)
.

Proposition 6. The length of delay ∆̄ before an election is increasing in the strength of the
election λE, players’long-run optimism, y, and the baseline durability rate, 1/λ0.

This proposition establishes three results. First, a stronger election, in which the bargain-
ing power changes with greater probability, induces longer and costlier delays. Intuitively,
a stronger election implies a greater drop in durability, which facilitates greater optimism
about post-election bargaining powers. This result generates several testable implications
that we discuss further in Section 4.3. Second, optimism increases the length of delay, as in
the deadline effect. Third, a greater baseline durability rate also increases the length of delay.
To understand this result, note that greater 1/λ0 affects the length of disagreement in two
ways. First, it lowers optimism before the election (through the e−∆/ρ0

term in (18)), thereby
shortening the delay. More importantly, it increases the rate k (ρ0) at which post-election
bargaining powers translate into agreement shares, increasing the delay. The proof in the
appendix shows that the latter effect dominates. High 1/λ0 could be thought of as capturing
politically stable democracies in which most of the important changes to bargaining power
happen during elections– as opposed to unstable political settings in which the bargaining
power can also change considerably in non-election times. Under this interpretation, the
third part suggests the election effect is more prominent in politically stable democracies.

Remark 3 (Popularity with Voters and Endogenous Optimism). Our baseline model assumes
that the arrival during an election resets the bargaining power to a new level drawn from a
fixed distribution. Consequently, the optimism about the bargaining power after the election
depends only on the strength of the election, λE, and the optimism parameter, ȳ. This
specification is tractable, but it does not speak to some important features of elections in
practice. In Appendix A, we analyze a richer model that provides many intuitive comparative
statics. Specifically, we assume that the election resets the bargaining power as

π1
t∗ = G (Zt∗)

where Zt is a publicly observable Brownian motion, representing the relative popularity of
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player 1, and G is a symmetric S-shaped function, capturing the idea that results are more
sensitive to the vote shares in close elections. We assume that the players are optimistic
about the drift, by taking µi as the drift of Zt according to i and assuming that µ1 > µ2.
We show that there is delay prior to election at some t close to t∗ if and only if(

1− e−λE
)
G′ (Zt)

(
µ1 − µ2

)
(t∗ − t) > r (t∗ − t) . (22)

Here, the left side is the parties’optimism about post-election bargaining powers, yt,t∗. Note
that yt,t∗ depends on the parties’optimism about the drifts in popularity and the time left
until the election, as well as how popularity translates into bargaining power. The right side
is the cost of delay, which depends on the discount rate and the time left until the election.
Condition (22) leads to a key observation: the players delay agreement when the election
is suffi ciently close (|Zt| < Z̄ for some Z̄), but they reach immediate agreement otherwise.
Intuitively, since G (·) is an S-shaped function, optimism is decreasing in the absolute value
of the relative popularity, |Zt|. There is greater optimism about the bargaining power when
the election results are expected to be close (|Zt| near zero) and no optimism when a landslide
is expected (i.e., |Zt| is large), verifying common sense.

This analysis has an important implication for comparing elections with and without an
incumbent candidate in the race. Empirically, incumbents tend to have an advantage in the
election (see, for instance, Mayhew (2008)). We show that the incumbency advantage makes
elections less likely to be close and reduces the likelihood of delay. In Section 4.3, we capture
the incumbency advantage in our baseline model (in reduced form) by assuming that an
election with an incumbent is relatively weak (low λE). Note that a weaker election in our
baseline model, like greater incumbency advantage, leads to a weaker election effect.

4.2 Periodic Elections

In Section 4.1, we focused on a single election for simplicity. In practice, elections are often
held periodically at fixed time intervals. For instance, the US presidential elections are held
every four years. We next extend our baseline election model to analyze the bargaining
outcomes over a typical election cycle.

Periodic Election Model: Fix r (t) = r0 for all t and consider the arrival rate:

λ (t) =

{
λ0 + λE

ε(n)
if t ∈ (kt∗ − ε (n) , kt∗)

λ0 if t ∈ [(k − 1) t∗, kt∗ − ε (n)]
, for k ∈ {1, 2, . . .} . (23)

Here, t∗ ∈ T denotes a negotiation time, which implies that kt∗ ∈ T is also negotiation time
for each k ∈ {1, 2, ...}. Elections are now held periodically slightly before these negotiation
times. Thus, the effective durability periodically dips to a low level ρ1 = r0/

(
λ0 + λE

ε(n)

)
, as
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Figure 3: Effective durability rate for periodic elections.

illustrated in Figure 3. We continue to assume ε (n) < 1/n for each n.
To characterize the equilibrium with periodic elections, we define

K0 (∆) =
1− e−(r0t∗−∆)/k(ρ0)

1− e−(r0t∗−∆)/k(ρ0)e−(1+1/ρ0)∆e−λ
E k (ρ0) .

As we will see, K0 (∆) describes the congruence as a function of the length of delay before
elections.

Proposition 7 (Periodic Elections). Consider the Periodic Election Model. The equilibrium
behavior is periodic with cycle t∗. There exists a negotiation time t̄ ∈ (0, t∗], such that players
agree at each t ∈ [0, t̄) and disagree at each t ∈ [t̄, t∗). Over the agreement region, t ∈ [0, t̄),
Kt is strictly decreasing in t. In the continuous time limit, limn→∞ t̄ = t∗ − ∆̄r0, and
limn→∞K0 = K0

(
∆̄
)
, where ∆̄ is the unique positive solution to w

(
∆̄,K0

(
∆̄
)
, e−λ

E
)

= 1.

The result characterizes the equilibrium with periodic elections. The players disagree in
the run-up to every election, and agree immediately after the election, consistent with the
election effect. As before, the length of delay is characterized by setting the value of waiting
equal to 1. The congruence after an election, K0, is jointly determined with the length of
delay. The new result is that the congruence, Kt, is strictly decreasing over the range of the
election cycle on which there is agreement. Recall that we referred to Kt in this context as
a form of political capital: the extent to which the party that “won”the last election can
implement outcomes that it prefers (controlling for its bargaining power). The result says
that political capital is highest immediately after the election, and it gradually declines as
the next election approaches.
We present a sketch proof for Proposition 7 (formalized in the appendix), which is useful

to understand the intuition. Recall from (15) that, over an agreement region, the congruence
can be described as a discounted sum in which the effect of optimism is captured by the
discounting term δ̂ = δt (1− Λt (1 + ȳ)). Using similar steps, we obtain for each t ∈ [0, t̄):

Kt =
∑
s∈[t,t̄)

(1− δs) δ̂
n(s−t)

+ δ̂
n(t̄−t)

Kt̄

= Kstat
(

1− δ̂n(t̄−t))
+ δ̂

n(t̄−t)
Kt̄. (24)
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Figure 4: The equilibrium values of Kt and St with periodic elections for a particular para-
meterization.

Here, Kstat = 1−δt
1−δ̂ describes the congruence that would obtain in the stationary model (see

(14)). In the present model with elections, the congruence is a weighted average of Kstat and
the congruence at the disagreement threshold, Kt̄. The latter term incorporates the effect
of the upcoming elections. In fact, applying (7) over the disagreement region, we obtain

Kt̄ = e−(r0+λ0)(t∗−t̄)e−λ
E

K0. (25)

That is, Kt̄ is lowered by the arrivals due to the election (captured by e−λ
E
< 1) as well

the delay caused by the election (captured by e−(r0+λ0)(t∗−t̄) < 1). Combining (24) and (25),
K0 can be solved in closed form. Doing so reveals that K0 < Kstat

t , which in turn implies
Kt̄ < Kstat

t . Hence, the sum in (24) is a weighted average of two terms, with the weight
on the larger term declining as t approaches t̄. This establishes that Kt is declining over
the agreement range. The proof in the appendix completes the argument and derives the
continuous time limit of the solution.
Intuitively, relative to the stationary model, periodic elections reduce the congruence at

agreement times through two effects. First, an upcoming election reduces durability, which
lowers Kt. If the bargaining power will change soon, then its current level is less relevant for
payoffs. Second, an upcoming election also induces disagreement, which further lowers Kt

at agreement times. Even though the players currently reach agreement, if they will soon
start to disagree, then the current bargaining power matters less for payoffs. These effects
imply that the congruence is highest immediately after an election, and it declines as the
next election looms closer.
Figure 4 plots the equilibrium for a particular parameterization. At the beginning of the

cycle, political capital (or congruence) is highest. The player that wins the election is able
to implement the outcomes in its favor. As time passes, the political capital is depleted,
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and players start to reach agreement outcomes that could be thought of a “compromise.”
In a compromise outcome, the agreement shares reflect long-run factors [cf. (6)] relatively
more than the identity of the player who won the last election. The winner is forced into
the compromise because the other player has a credible threat to delay the agreement until
after the next election. As the election draws even closer, the threat becomes real (due to
optimism) and the agreement is actually delayed. Hence, Proposition 7 adds to our list of
testable predictions by establishing that the nature of the bargaining outcomes systematically
change over the election cycle, with the outcomes first steering towards agreement with
compromise, before they eventually feature disagreement.

4.3 Alternating Elections

In the above model, we assumed that all elections have the same strength. In practice, there
are also systematic variations in the strength of periodically repeated elections. In the US,
the Congressional elections take place every two years, and the presidential elections take
place every four years. Hence, the political cycle is one in which the four-year joint elections
alternate with the midterm elections that feature only congressional elections. The latter
elections are arguably weaker, and have a smaller impact on the parties’bargaining powers.
A similar variation in strength also applies to the alternating US presidential elections.

By law, the president is not allowed to be reelected more than two times. This suggests
a longer (eight year) political “supercycle” in which the presidential election in which the
incumbent cannot run for the offi ce, alternates alongside with a presidential election in which
the incumbent can also run.5 The latter elections arguably represent a smaller drop in dura-
bility because the bargaining power associated with the president’s offi ce will not change in
case the incumbent wins the election. As we argued in Section 3, these elections are also
associated with less optimism (and less gridlock) on average in view of the incumbent’s popu-
larity advantage in the election. We capture both features by assuming that the presidential
election with an incumbent is weaker (smaller λE) than an election without one.
We next extend our model to analyze the bargaining outcomes over alternating elections

with heterogeneous strength.

Alternating Election Model: Fix r (t) = r0 for all t and consider the arrival rate:

λ (t) =


λ0 + λE,odd

ε(n)
if t ∈ (kt∗ − ε (n) , kt∗) and k is odd

λ0 + λE,even

ε(n)
if t ∈ (kt∗ − ε (n) , kt∗) and k is even

λ0 if t ∈ [(k − 1) t∗, kt∗ − ε (n)]

, for k ∈ {1, 2, . . . } . (26)

5This mapping is not perfect as it assumes that the incumbent presidents always stay for two full terms.
We could make the mapping more realistic by introducing stochasticity into the alternation process. We
work with the deterministic specification for tractability.
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Figure 5: Effective durability rate for alternating elections.

In particular, there are now two types of elections, with strengths respectively given by λE,odd

and λE,even. The elections alternate over time with a fixed time distance. Without loss of
generality, we assume that λE,odd < λE,even, so that the elections that take place in even
periods are stronger. This implies that the effective durabilities during the elections also
satisfy ρ0,even < ρ0,odd < ρ0. Thus, the effective durability dips more in even periods relative
to the level it falls in odd periods, as illustrated in Figure 5.
We assume the parameters satisfy two additional conditions:

k
(
ρ0
)
y ≤ er

0t∗ − 1, (27)

e−λ
E,even ≤ y/ (1 + y) . (28)

Condition (27) says that the distance between the two elections is suffi ciently large. This
ensures that delay before an election does not extend beyond the other election. Condition
(28) says that the stronger of the two elections is suffi ciently strong. This condition does not
play an important role beyond facilitating analytical tractability.6 For simplicity, we also
focus on the cases with large n, that is, n > n̄ where n̄ is characterized in the appendix.

Proposition 8 (Alternating Elections). In the Alternating Election Model, the equilibrium
behavior is periodic with cycle 2t∗. There exist t̄odd ∈ (0, t∗] and t̄even ∈ (t∗, 2t∗], such that
players agree on the intervals, [0, t̄odd) and [t∗, t∗ + t̄even), and disagree at remaining times.
Moreover, the solution features t∗ − t̄odd < 2t∗ − t̄even and Kt∗ < K0.

This result characterizes the equilibrium with alternating elections with heterogeneous
strength. The players disagree in the run-up to either election, and agree immediately after
the election. Moreover, the stronger (even) elections feature a longer delay in their run-
up and greater congruence in their aftermath. Figure 6 illustrates the equilibrium for a
particular parameterization. Note that there is a longer period of disagreement before the
stronger election compared to the weaker election. Moreover, the congruence (or the political
capital) is also greater after the stronger election.

6In our numerical simulations, these comparative statics continue to hold even if we drop condition (28).
See the proof of Lemma 4 in the online appendix for a detailed explanation of the role this condition plays
in our our analysis.
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Figure 6: The equilibrium values of Kt and St with two alternating elections for a particular
parameterization. The second election is stronger (λE,even > λE,odd).

The comparative statics for delay can be understood from Proposition 6 (first part),
which illustrates in a single election context that a stronger election leads to greater optimism
and longer delay. With alternating elections, there are additional subtleties regarding the
endogenous determination of congruence, but these do not undo the basic effect identified
in Proposition 6. To understand the comparative statics for congruence, consider the limit,
λE,odd ' 0, so that there is effectively only the strong election held with a period of 2t∗.
In this hypothetical scenario, Proposition 7 would apply and imply that the congruence at
the beginning of the election cycle is greater than the congruence in the middle, K0 > Kt∗.
Proposition 8 says that the presence of a weaker election in the middle does not undo this
comparison. The congruence after the strong election (or at the beginning of the “strong
election cycle”) is greater than the congruence after the weaker election (or at the beginning
of the “weak election cycle”).
Proposition 8 generates various testable implications regarding the length of disagreement

before various elections, as well as the terms of the agreement after elections. For instance,
when applied to the political cycle with alternating midterm and four-year elections, the
result predicts that there will be more gridlock in the run-up to the four-year elections
compared to the midterm elections. The result also predicts that the winner of the four-year
elections will have greater political capital than the winner of the midterm elections.
Likewise, when applied to the political supercycle with alternating presidential elections,

the result predicts that there will be more gridlock in the run-up to the presidential elections
in which the incumbent president cannot run due to the two-term limit. Moreover, the result
also predicts that the party that has the presidency will have more political capital when
the president is elected for the first time compared to when she is elected for a second time.
An incumbent president approaching the end of his/her term limit is sometimes referred to
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Figure 7: The average number of important laws enacted by the US Congresses between
1953-2012, as a function of the time within the 8-year presidential term. The capped lines
illustrate the 5% confidence intervals around the mean.

as a lame duck. Using these terminology, Proposition 8 implies that lame duck presidents
are associated with smaller political capital– or more compromise– in agreement outcomes,
as well as a greater likelihood of observing disagreement outcomes.
We next present preliminary evidence from legislative politics in the US that is consistent

with this lame duck effect. We categorize the 30 US Congresses between 1953-2012 based on
the time frame they fall within the maximum 8-year presidential term. More specifically, we
use “years 1-2”to label the US Congresses during the first two years of a first presidential
term, “years 5-6”to label the US Congresses during the first two years of a second presidential
term, and so on. We measure (the inverse of) legislative gridlock by the number of important
laws enacted by the Congress, as categorized by Mayhew (1991) (see the online appendix for
details of our data). Figure 7 illustrates that an average congress in years 3-4 of a presidency
enacted about 14% fewer laws than a congress in years 5-6, which suggests a positive yet
somewhat weak election effect during the first term. In contrast, an average congress in years
7-8 enacted 37% fewer important laws than a congress in years 1-2, which suggests a stronger
election effect during the second term– consistent with the lame duck effect. However, these
results are not statistically significant. This is expected, partly because we only have 30 data
points in total divided across four categories, and partly because there are many more factors
excluded from our analysis that might also affect legislative gridlock (see Binder (2003) for
a review). We therefore view our findings as preliminary evidence, which should be subject
to closer empirical scrutiny as the relevant data becomes available.

Remark 4 (Comparison with Electoral Concerns). The parties’concerns with their perfor-
mance in the upcoming election provide an alternative hypothesis for bargaining delays before
elections. In recent work, Ortner (2013) formalizes and theoretically analyzes this “electoral
concerns hypothesis.”In Ortner’s model, the terms of agreement can affect the parties’rel-
ative popularity, and thereby, their probability of winning the next election. The winner
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of the election receives a nontransferable benefit, which introduces electoral concerns into
negotiations. Ortner shows that electoral concerns can lead to a delay only if they conflict
with the parties’desired policies. Specifically, if implementing each party’s most favorable
policy would also increase the popularity of that party (perhaps because the parties and
their potential voters share similar preferences), then the parties find a way to compromise
and reach immediate agreement. On the other hand, if one of the parties faces a trade-off,
then electoral concerns can lead to delays. For example, if the majority party would have
to sacrifice its popularity with voters by passing its favorite policy, then the party might
prefer to postpone the bill until the post-election period. A second example arises when
a particular party loses its popularity with voters because of bargaining delays, regardless
of how the delay arises. In that case, the other party may obstruct agreement in order to
improve its popularity.
We view the electoral concerns hypothesis as mainly complementary to our election effect,

with two main differences. First, our mechanism for gridlock arguably applies more broadly
because it requires fewer assumptions than the key assumption, optimism. In contrast,
electoral concerns apply only if the negotiated issue is suffi ciently visible and salient for
voters. For instance, such concerns might be invoked to investigate delays in appointing
a judge to the supreme court. However, they are unlikely to be relevant for less salient
issues such as the appellate court appointments. Even for the salient issues, however, the
electoral concerns do not immediately ensure delay. As Ortner’s (2013) analysis illustrates,
delay requires additional and somewhat subtle conditions.7 Second, we make several testable
predictions regarding the strength of the election effect, some of which do not necessarily
follow from electoral concerns. For instance, our election effect causes more gridlock when
there is a lame duck president– as weakly corroborated by our empirical analysis above. In
contrast, one can plausibly envision that a lame duck president is concerned more with his
own legacy than the results of the next election, which could create less gridlock through the
electoral concerns channel. In addition to these differences regarding gridlock, our analysis
also characterizes how the agreement outcomes evolve over typical political cycles.

5 What Causes Delay?

One of our main contributions is to provide a new mechanism for delay, the durability
effect, which provides the deadline and election effects as its special cases. In this section,
we inspect the more general determinants of delay in our framework. We show that some

7In the second example, gridlock is assumed to make one of the parties less popular relative to the other
party. While it is intuitive that gridlock will reduce the popularity of the parties, it is not clear that this will
benefit the other party– especially the one that obstructs the bills. It is more plausible that disillusioned
voters go to third parties or outside/anti-establishment candidates (as int he case of 2016 US presidential
elections). If this is the case, then one could expect electoral concerns to increase the parties’incentive to
reach an agreement.

29



durability of bargaining power is necessary to obtain robust bargaining delays with optimism.
We also illustrate that nonstationarity of the environment– while essential in our baseline
framework– is not necessary once we consider a natural generalization of the model.
In our model, delay before some future time t∗ is driven by a combination of optimism

about the time, yt,t∗ , and high congruence at the time, Kt∗. This induces the players to be
optimistic about their bargaining shares in the future, yt,t∗Kt∗, and induces them to wait.
An increase in durability at time t∗ ensures that both conditions are satisfied. Our next
result shows that some form of durability is also necessary to obtain delays. We capture
nondurability by assuming that the one-period arrival probability is equal to one, Λt = 1 for
each t, that is, the bargaining power is reset in every period [cf. (3)].

Proposition 9 (Immediate Agreement without Durability). Assume Λt = 1 for all t. Then,

Kt = max {1−Wt, 0} ≤ 1− δt (∀t) ,

and there is immediate agreement in the continuous-time limit (i.e. limn→∞ t
A
n = 0 where tAn

is the first time with agreement).

The first part of the result immediately follows from Proposition 1, which also ap-
plies in the limit case with non-durable bargaining power. The displayed equality is
obtained by substituting Λt = 1 in (7). The inequality is obtained by noting that
Wt = δt

(
St+1/n + ΛtȳKt+1/n

)
≥ δt. Intuitively, when the bargaining power is highly non-

durable and changes in every period, the current bargaining power can affect only the gain
from agreement in the current period. This gain is equal to the cost of waiting until the next
period, which is bounded from above by the loss due to one-period time discounting, 1− δt.
The one-period loss is vanishingly small in the continuous-time limit in which the parties can
frequently negotiate. This implies that the continuous-time limit features low congruence,
limn→∞Kt = 0 for each t, which in turn leads to the second part. Absent congruence, the
parties cannot be optimistic about their shares from bargaining at the agreement time, that
is, limn→∞ y0,tAn

KtAn
= 0, which leads to a vanishingly short period of delay, tAn . (Results with

vanishing delays has also been established by Ali (2006) and Ortner (2013) in other setups,
which implicitly assume non-durable bargaining power.)
Proposition 9 reinforces the key role that durability plays for our results on gridlock. It

also helps to differentiate our paper from the related literature on bargaining with optimism.
As discussed before, Yildiz (2003) analyzes delays with optimism under a special structure in
which the bargaining power is serially independent over time– and thus, highly non-durable.
This structure ensures that the players’optimism satisfies yt,s = y0,s for each t < s, that is,
the players’optimism about a future time s is the same at all earlier times. Yildiz (2003)
relates delays to a sudden drop in optimism about the future times. Specifically, if the
optimism changes smoothly throughout (y0,s − y0,s+1/n ≤ (1− δt) /δt for each s and t < s),
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then he shows that there is immediate agreement. Conversely, if there is a future time s = t∗

at which the optimism drops suffi ciently fast (y0,t∗−y0,t∗+1/n is suffi ciently large), then there
is a period of delay before t∗. Proposition 9 reveals that the delay obtained in Yildiz (2003)
is vanishingly short in the continuous-time limit. A drop in optimism at time t∗ is necessary
for delays, as emphasized in Yildiz (2003), but it is by itself not suffi cient. One also needs
high congruence at time t∗, which requires some form of durability. We further show that
high effective durability, combined with the observability of the bargaining power, provides
an intuitive structure– with various applications– that delivers high congruence.
One feature of our model is that there is immediate agreement under stationarity (see

Proposition 2). From here, it might be tempting to conclude that a nonstationary envi-
ronment is necessary for delays. This conclusion would be incorrect. In Appendix A, we
generalize the model to the case in which the durability rate can also be stochastic, λs (t),
where the state s ∈ S follows a Markov chain. We then present an example in which the
environment is stationary (all variables are time-independent), and yet there are delays in
some of the states. Specifically, we take S = {H,L} where H denotes a state with high
effective durability and L denotes a state with low effective durability, and establish a con-
dition under which the optimistic players disagree at state s = L and agree at state s = H.
The condition for the delay is more likely to hold when the effective durability in state H is
greater, and when the transition from state L to state H is more rapid. Intuitively, at the
low-durability state, the players wait for the bargaining power to become more durable in
order to reach an agreement. Thus, the example reinforces our earlier explanation that the
delay in our model– the durability effect– is driven by an increase in effective durability.
Nonstationarity does not play an important role beyond enabling us to capture the increase
in effective durability using a tractable model. The example also illustrates that the increase
in effective durability does not have to be deterministic but it should be expected by both
parties with suffi ciently high probability.

6 General Model

In our working paper, we allow bargaining power πt to be any stochastic process with piece-
wise continuous paths almost surely. We show that there (generally) exists a unique subgame-
perfect Nash equilibrium up to the indifference discussed in Section 2. Moreover, the contin-
uation value process V i

t is the unique solution to a system of stochastic difference equations.
Under the common-prior assumption, the solution is straightforward: V i

t is the discounted
average value of the future bargaining powers. Absent the common-prior assumption, the
equation system is in general not tractable. The special structure we consider in this paper
enables us to replace the stochastic difference equations with a more tractable and intuitive
system of deterministic difference equations (see Proposition 1).
While we cannot solve the general model in closed form, we are able to generalize the
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main results and insights. The key step is to introduce a notion of the durability of bargain-
ing power as a condition on the stochastic process πt. Our notion of durability requires each
player’s expectation of the future bargaining power to be Lipschitz-continuous in time. This
means that: (i) the expectation for nearby future times is almost the same as the current
bargaining power, (ii) and as one considers more distant times, the rate at which the expec-
tation changes is bounded from above. We define the inverse of this allowed rate of change
(or the Lipschitz constant) as the durability rate. The special structure we analyze in this
paper satisfies this general durability condition with the durability rate given by 1/λ (t).
With this definition, durability induces high congruence more generally. Specifically, we

show that, when the bargaining power is highly durable over a suffi ciently long time interval
(from today onwards), the players’ expected payoffs from bargaining reflect their current
bargaining powers– resulting in high congruence. Moreover, by slightly strengthening the
durability condition, we also show that the players reach agreement with high probability.
This generalizes the main insights from the stationary model (Proposition 2).
A more subtle insight from our analysis also applies more generally: What matters for

congruence and agreement is effective durability, which reflects a combination of durability
and time discounting (cf. (11)). Specifically, if the time discounting is suffi ciently large, e.g.,
in view of a deadline, then the above results hold even if the bargaining power is durable over
a short time interval (from today onwards). Even though the bargaining power might not
be durable in the strict sense of the word, it is suffi ciently durable in payoff-relevant terms,
which leads to similar bargaining outcomes. Thus, as in the stationary model, deadlines and
durability provide similar disciplining roles on beliefs and bargaining outcomes.
Armed with these results, our working paper also establishes the analogues of the dura-

bility, deadline, and election effects in the more general setup. If the optimism about time t∗

at a prior time t is suffi ciently high (compared to an inverse measure of the durability after
time t∗), then there is disagreement at t, generalizing the durability effect. We obtain the
deadline effect as a special case of this result after observing that the arrival of a deadline
starting at time t∗ increases the effective durability after time t∗ without affecting optimism
before time t∗. We also obtain the election effect as a special case after observing that elec-
tions schedules just before time t∗ allow for optimism about time t∗ at prior times without
affecting the effective durability after time t∗.

7 Conclusion

In this paper, we develop a tractable model of bargaining with optimism. The distinguishing
feature of our model is that the bargaining power is somewhat durable and changes only
due to important events (such as elections). Players know their current bargaining powers,
but they can be optimistic that events will shift the bargaining power in their favor. The
durability of bargaining power– the rate at which important events happen– provides a
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natural discipline on the player’s beliefs. We define congruence (in political negotiations,
political capital) as the extent to which a player’s current bargaining power translates into
expected payoffs from bargaining. We show that durability influences congruence and plays
an important role in understanding bargaining gridlock driven by optimism, as well as the
finer details of bargaining outcomes in political negotiations.
The model leads to a simple cost-benefit analysis of gridlock: the parties delay the

agreement if their optimism about the bargaining shares in the future is higher than cost of
waiting. The latter optimism is measured by the multiplication of optimism about bargaining
power and the congruence at the future date. The question of gridlock then turns into the
question of what causes high congruence. We show that some degree of durability is essential
to obtain high congruence and robust bargaining delays. We also establish a general durability
effect by which an increase in effective durability– a combination of durability and time
discounting– leads to high congruence and ex-ante delays. As applications of the durability
effect, we establish deadline and election effects by which an upcoming deadline or election
leads to ex-ante delays in bargaining. The deadline effect is more prominent when players
are more optimistic and when the deadline is less uncertain. For firm deadlines, the effect
is less prominent when players perceive a greater cost of delay. The election effect is more
prominent when the players are more optimistic, when the election is stronger (more likely to
shift the bargaining power), when the bargaining power is more durable during non-election
times (i.e., in more stable democracies), when the election is closer (in terms of the parties’
popularities), and when there is not an incumbent in the race.
Our analysis of political negotiations reveals that political capital (or congruence) changes

systematically over typical election cycles. With periodic elections, political capital is highest
in the immediate aftermath of the election. The parties agree and give a large share to the
party that just won the election. As the next election approaches, political capital declines.
The parties reach “compromise solutions,”giving some surplus to the party with low current
bargaining power, before they eventually start to disagree in view of the upcoming election.
We also analyze political cycles in which a stronger election that changes the bargaining
power with greater probability alternates with a weaker election. The stronger election leads
to a greater political capital in its aftermath, as well as a more severe gridlock in its run-up.
This result suggests that the four-year elections in the US are associated with more gridlock
compared to the midterm elections. The result also suggests a lame-duck effect: presidents
that are not eligible to be reelected are associated with less political capital and more gridlock,
relative to presidents that can be reelected. Our empirical analysis of legislative gridlock in
the US lends some preliminary support to the election and lame duck effects. We leave a
more complete empirical test of the predictions of our theory for future work.
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A Appendix: Extensions
This appendix contains the omitted extensions of our baseline model. Appendix B conatains the
omitted proofs. The online appendix contains the description of the data used in Section 4.3 and
the proofs of the lemmas used in Appendix B.

A.1 Election Model with Popularity and Endogenous Optimism
In our election model, the arrival during an election resets the bargaining power to a new level
drawn from a fixed distribution. Consequently, the optimism about the bargaining power after the
election depends on the probability of reset, 1− e−λE , which we interpreted as the strength of the
election, and optimism conditional on reset, ȳ. This specification is tractable and enables us to
obtain several results. However, it does not speak to some important features of elections in practice
such as the parties’relative popularities with voters, and how the elections map those popularities
into bargaining power. In this section, we sketch a richer model in which we explicitly account for
these features. The model illustrates that closer elections– in which the parties’popularity is close
to one another– are associated with greater optimism and a more prominent election effect. The
model also illustrates that the incumbency advantage reduces the severity of the election effect,
which motivates our reduced form modeling of the incumbency effect in the main text.

Consider the single-election model and set baseline arrival probability to zero, so that λ (t) =
λE/ε for t ∈ [t∗ − ε, t∗] and λ (t) = 0 otherwise, where ε is vanishingly small. Hence, the bargaining
power can change only at the election date. As before, the probability of reset during the election
is 1− e−λE . The difference is that, in case of a reset, the bargaining power is set according to

π1
t = G (Zt) .

Here, Zt is an adapted (observable) stochastic process, and G : R→ [0, 1] is an increasing function.
The process, Zt, captures the relative popularity of party 1 (compared to party 2). The baseline

model can be thought of as the extreme case in which Zt is iid. In this section, we suppose each
player i believes Zt follows a Brownian motion with variance σ2 and drift µi, that is,

dZt = µidt+ σdBt.

We capture optimism by assuming µ1 > µ2: that is, player 1 believes its relative popularity will
increase faster than (or decrease slower than) what player 2 believes.

The function G (·) maps popularity into relative bargaining power. The mapping depends in
part on how the election translates relative popularity into political offi ces. For instance, in the
US congressional elections, the seats (in the aggregate) are allocated according to a mapping that
is (roughly) linear in popularity. In contrast, in the US presidential elections, the presidency is
allocated according to a mapping that is (roughly) binary in popularity. In addition, the map-
ping G (·) also depends on how the political system translates the political offi ces into bargaining
strength. For instance, obtaining a majority of seats in the US House or the US Senate provides a
large advantage to the majority party. However, obtaining at least 40% of the seats in the Senate is
also important, since it allows the senators from the minority party to filibuster legislative action.

These considerations suggest that, for a variety of reasons, the function G (·) is steeper when the
parties are close in popularity (|Zt| ' 0) as opposed to when one party is more popular than another
(|Zt| high). Therefore, we takeG (·) to be an S-shaped function: that is, G′ (Zt) is single peaked with
maximum obtained at Zt = 0, and it also satisfies limZt→−∞G

′ (Zt) = limZt→∞G
′ (Zt) = 0. We

also assume the mapping is symmetric for the two parties, G (Zt) = −G (−Zt). Since π1
t = G (Zt)
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represents the bargaining power, this also implies G (0) = 1
2 . An example function that satisfies all

of these assumptions is G (Zt) = eZ/
(
eZ + 1

)
.

The rest of the model is unchanged. We next characterize the solution. After the election, the
parties reach agreement with Kt∗ = 1 (since the baseline durability rate is set to one). Thus, there
is disagreement at some time t < t∗ as long as

e−r(t
∗−t) (1 + yt,t∗ (Zt)) > 1 (29)

where yt,t∗ (Zt) is the level of optimism about the election date t∗ at time t, which depends now on
Zt as well as t and t∗. In particular,

yt,t∗ (Zt) =
(

1− e−λE
)
ȳt,t∗ (Zt)

where
ȳt,t∗ (Zt) = E1 [G (Zt∗) |Zt]− E2 [G (Zt∗) |Zt] .

In our baseline example, the analogous expression was yt,t∗ =
(
1− e−λE

)
ȳ. In this extension,

optimism depends on the strength of the election effect, as before, but it also depends on the
current level of popularity, Zt, as well as the current time, t.

We use Ito’s lemma to characterize the solution further. Note that party i believes the bargain-
ing power evolves according to the process

dG (Zt) =

(
µiG′ (Zt) +

1

2
σ2G′′ (Zt)

)
dt+ σG′ (Zt) dBt.

Since this is a nonlinear diffusion process, the party’s expectations for a future time t∗ does not have
a simple closed form solution. However, for times close to the election time, t ' t∗, the expectation
is approximately equal to G (Zt)+

(
µiG′ (Zt) + 1

2σ
2G′′ (Zt)

)
(t∗ − t). Thus, optimism shortly before

the election is approximately

yt,t∗ '
(

1− e−λE
)
G′ (Zt)

(
µ1 − µ2

)
(t∗ − t) . (30)

Note that, since G (·) is an S-shaped function, optimism is decreasing in the absolute value of the
relative popularity, |Zt|, and approaches 0 as |Zt| → ∞. Intuitively, there is greater optimism about
the bargaining power when the election results are expected to be close (|Zt| near zero) and no
optimism when a landslide is expected (i.e., |Zt| is large).

Combining Eqs. (29) and (30) (and using t∗ − t ' 0) provides condition (22) in the main text
that characterizes delay. If optimism is suffi ciently large, so that,

(
1− e−λE

) (
µ1 − µ2

)
> r/G′ (0),

then there is delay as long as

|Zt| < Z̄ ≡
(
G′
)−1

(
r

(1− e−λE ) (µ1 − µ2)

)
. (31)

That is, the players delay agreement when the election is suffi ciently close (|Zt| < Z̄) but they
reach immediate agreement otherwise. Hence, closer elections are associated with greater optimism
and a more prominent election effect. Note also that the cutoff level of popularity that induces
disagreement, Z̄, is increasing in the discount rate, r, and decreasing in the strength of the election,
λE , as well as the degree of optimism about the underlying process, µ1−µ2. Hence, the analogues of
the comparative statics in Proposition 3 also apply in this case. Unlike in the main text, however,
the disagreement period prior to the election is no longer deterministic. Whether there is an
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agreement depends on the evolution of relative popularity, Zt. As the election approaches, the
parties receive information about how close the election will be. Shortly before the election, they
might reach agreement or disagreement depending on the resolution of uncertainty.

Condition (31) can also be used to analyze the effect of an incumbent candidate on the incidence
of gridlock. To this end, suppose the unconditional (objective) distribution of the popularity on
the election eve is given by a Normal distribution, Zt ∼ N

(
ι, σ̄2

)
, with mean ι and variance σ̄2 > 0.

If player 1 (resp. player 2) is an incumbent, then we set ι > 0 (resp. ι < 0). This captures the
idea that the incumbent candidates often have an advantage in popularity. The case without an
incumbent is captured by ι = 0. Suppose also that the parties’optimism, µ1 − µ2, is the same
regardless of whether there is an incumbent in the race. Then, using (31), the likelihood of delay
with an incumbent can be written as

Pr
(
|Zt| < Z̄; ι

)
= Φ

(
Z̄ − ι
σ̄2

)
− Φ

(
−Z̄ − ι
σ̄2

)
,

where Φ (·) denotes the cdf for the standard normal distribution. The effect of the incumbency
advantage, ι, on delay is then given by

d

dι

(
Pr
(
|Zt| < Z̄; ι

))
=

1

σ̄2

(
φ

(
−Z̄ − ι
σ̄2

)
− φ

(
Z̄ − ι
σ̄2

))
, (32)

where φ (·) denotes the pdf for the standard normal distribution. This expression is negative when
ι > 0 and positive when ι < 0. Thus, the likelihood of delay is maximized when there is no
incumbent, ι = 0.

To understand this result, imagine raising the incumbency effect further for a party that already
has some incumbency advantage (ι > 0). This has two counteracting effects on the likelihood of
delay. On the one hand, it tends to mitigate delay by increasing the probability that the incumbent
will win by a suffi ciently large margin (Zt > Z̄). On the other hand, it tends to exacerbate delay
by reducing the probability that the incumbent will lose by a large margin (Zt < −Z̄). Eq. (32)
illustrates that the first effect dominates. This is intuitively because the incumbent is more likely
to win by a large margin than to lose by the same margin. Hence, the incumbency effect reduces
the likelihood of delay by increasing the chance of a landslide election on average (equivalently, by
reducing the chance of a close election). In the main text, we have captured this effect in reduced
form via a smaller probability of reset, 1− e−λE , which reduces the length of the delay by reducing
the average optimism about the election.

A.2 Stochastic Durability
In our model, the arrival rate, λ (t), is deterministic although it can vary with time. We next
describe an extension of the model in which the arrival rate can also be stochastic. We use the
extended model to show that the our main result, the durability effect, is not driven by the non-
stationarity of the environment per se, but instead by an increase in effective durability.

Suppose the arrival rate, λs (t), can depend on a state s ∈ S in addition to time. To be more
specific, suppose the arrival rate between the negotiation times t and t+ 1/n is still fixed but it is
given by the level, λs (t), that might depend on the state realization s ∈ S at time t. Thus, the one
period arrival rate is now given by,

Λs,t = 1− e−
∫ t+1/n
t λs(t′)dt′ .
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The state space, S, has finite elements and follows a Markov chain. We let ζs′|s denote the prob-
ability that the state at the next negotiation time, t + 1/n, is equal to s′ given state s at time t.
Our next result generalizes Proposition 1 to this case (the proof is omitted).

Proposition 10. For each time t ∈ T , state s ∈ S, and player i ∈ {1, 2}, the continuation value
of a player is given by,

V i
s,t = Ks,tπ

i
t + (Ss,t −Ks,t)

π̄i

1 + y
∀i, t, s,

where the weights Kt (s) and St (s) are the unique solutions to the difference equations

Ks,t = max {1−Ws,t, 0}+ δt (1− Λs,t)
∑
s′∈S

ζs′|sKs′,t+1/n,

Ss,t = max {1,Ws,t} ,
Ws,t = δt

∑
s′∈S

ζs′|s
(
Ss′,t+1/n + Λs,tyKs′,t+1/n

)
.

At any time t and state s, the players agree if Ws,t < 1 and disagree if Ws,t > 1.

The main difference in this case is that the difference equations that determine Ks,t andWs,t are
stochastic and reflect the potential future changes in durability. The analysis becomes particularly
tractable when the discount rate r is constant, and the durability rate can be written as only a
function of the state, λs (i.e., does not depend on time). In this case, the difference equations do
not depend on time, and thus, the solution can also be written as a function the state, Ks and Ws.
The following example characterizes the solution further for a special case.

Example 1. Suppose r is constant, λs depends only on the state s, and there are two possible states,
s ∈ {H,L}, with λH > λL. Thus, the effective durability ρH = r/λH at state H is higher than the
effective durability ρL = r/λL at state L. There is a positive probability of switching from state L
to state H, that is, ζ (H|L) = 1 − e−σ/n. Note that we have specified the probability in terms of
the switch rate, σ, which will enable us to take the continuous time limit. For simplicity, there is
zero probability of switching from state H to state L, that is, ζ (L|H) = 0.

Since state H is an absorbing state, Proposition 2 applies at this state. The parties reach
agreement with congruence KH = k (ρH). The sum of the expected payoffs is SH = 1. At state
L, the equilibrium is characterized by the difference equations in Proposition 10 after dropping the
time subscripts. We conjecture an equilibrium in which there is disagreement at this state (i.e.,
WL > 1). Then, the difference equation for congruence implies,

KL = δ (1− ΛL)
(
e−σ/nKL +

(
1− e−σ/n

)
KH

)
,

where δ = e−r/n and ΛL = 1− e−λL/n. Solving for KL and taking the limit, we obtain,

lim
n→∞

KL =
σ

r + σ + λL
k (ρH) .

The difference of the value of waiting implies,

WL = δe−σ/n (WL + ΛLyKL) + δ
(

1− e−σ/n
)

(1 + ΛLyKH) .

Here, we have used SL = WL and SH = 1. Substituting the expressions for KH and KL and taking
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the limit, we obtain,

lim
n→∞

WL =
σ

r + σ

(
1 +

λL
r + σ + λL

ȳk (ρH)

)
.

In the continuous-time limit, there is disagreement at state L (i.e., limn→∞WL > 1) if and only if,

ȳk (ρH) > ρL + (1 + ρL)
r

σ
. (33)

This verifies the conjecture and completes the characterization (for suffi ciently large n).

Note that the left side of Eq. (33) is increasing in the level of optimism, ȳ, and in the effective
durability at high-durability state, ρH . The right-hand side is increasing in the effective durability
in low-durability state, ρL, and in the ratio, r/σ. Hence, there is disagreement at state L as long as
ȳ and ρH are suffi ciently large and ρL and r/σ are suffi ciently low. Intuitively, at the low-durability
state, the players wait for the bargaining power to become more durable in order to reach an
agreement. In contrast, if the bargaining power were more durable at state L (i.e. If ρL ≥ ρH),
then players would also agree at state L.8 Thus, the delay in the example is caused by an expected
increase in durability.

The example provides an analogue of the durability effect established in Proposition 3 for
the case in which durability rate is stationary (or time-independent) but stochastic. Condition
(33) is the analogue of the condition (17), ȳk (ρH) > ρL, that was necessary and suffi cient in the
deterministic case. In this case, we have an additional term, (ρL + 1) r/σ, in the lower bound.
Intuitively, not only the durability at state H should be suffi ciently higher than at state L, but
there should also be suffi ciently fast transition to state H (high σ).

Importantly, the example illustrates that non-stationarity of the environment per se is not
essential to obtain bargaining delays. The delay in Proposition 3 is caused by an expected increase
in the effective durability at time t∗. Note also that, unlike in Proposition 3, the delay in this
example can be arbitrarily long depending on the realization of uncertainty.

B Appendix: Proofs
Proof of Proposition 1. Combining the agreement and the disagreement cases described in
Section 2.2, the players’payoffs are characterized as the solution to the difference equation

V i
t = πit max

{
0, 1−Wt,t+1/n

}
+ δt,t+1/nE

i
t

[
V i
t+1/n

]
. (34)

We claim that the payoffs described by Eqs. (6-8) solve this difference equation at all times. Since
V is the limit of the solutions to the models truncated at finite dates t̄, it suffi ces to prove the
claim for the truncated problem. Thus, consider the truncated model with a firm deadline at t̄.
We prove the claim by induction. Since V i

t
= πi

t
and δt̄ = 0, Eq. (6-8) holds at t = t̄ with Kt = 1,

St = 1, and Wt = 0. Towards an induction, assume the equations hold for time t + 1/n onwards,

8This follows by observing the inequalities,

ρL + (1 + ρL) r/σ > ρL > ȳk (ρL) ≥ ȳk (ρH) .
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and consider time t. Then, the expected payoff of i from waiting is

Eit

[
V i
t+1/n

]
= Kt+1/nE

i
t

[
πit+1/n

]
+
St+1/n −Kt+1/n

1 + y
π̄i

= Kt+1/n (1− Λt)π
i
t +

(
Kt+1/nΛt +

St+1/n −Kt+1/n

1 + y

)
π̄i.

Plugging this expression into (5), we obtain (9) for time t. Plugging the same expression into (34),
we also obtain

V i
t = max {1−Wt, 0}πit + δtE

i
t

[
V i
t+1/n

]
=

(
max {1−Wt, 0}+ δt (1− Λt)Kt+1/n

)
πit + δt

(
Kt+1/nΛt (1 + y) + St+1/n −Kt+1/n

) π̄i

1 + y
.

Hence, V i
t is also a weighted average of π

i
t and

π̄i

1+y . We obtain (7) and (8) by setting the weights
equal to Kt and St −Kt, respectively.

We define the variables
δ0 = e−r

0/n and Λ0 = 1− e−λ0/n, (35)

to denote the one period discount rate and the arrival rate when r (t) and λ (t) are constant at their
baseline levels r0 and λ0. Given some δt and Λt, we also define the effective durability in discrete
time as,

ρ̄ (δt,Λt) =
1− δt
δtΛt

. (36)

Here,ρ̄ (δt,Λt) is the discrete time analogue of the effective durability, ρ (t), which plays a central
role in the analysis. It can be checked that

lim
n→∞

ρ̄
(
δ0,Λ0

)
= ρ0. (37)

It can also be checked that
ρ̄
(
δ0,Λ0

)
> ρ0. (38)

Hence, the effective durability rate is always higher in discrete time, and approaches
its continuous time counterpart from above. Recall also from (18) that w (∆,K, η) =

e−∆
(

1 +
(

1− e−∆/ρ0
η
)
Kȳ
)
. In the online appendix, we prove the following lemma, establish-

ing useful properties of the function w (·,K, η) for our subsequent proofs.

Lemma 1. Suppose η = 1 and Kȳ > ρ0, or η < 1 and K > 0.
(i) There exists a unique solution to the equation w

(
∆̄,K, η

)
= 1.

(ii) At the solution ∆ = ∆̄, w is strictly decreasing in ∆; w (∆,K, η) > 1 is for each ∆ ∈
(
0, ∆̄

)
,

and w (∆,K, η) < 1 for each ∆ > ∆̄.

Proof of Proposition 3. Note that the environment becomes stationary at t∗ with effective
durability rate ρ1. Hence, Proposition 2 applies starting at t∗ after replacing ρ0 with ρ1. As we
show in the proof of Proposition 2 (for fixed n), players reach agreement at time t∗ (and thereafter)
with congruence Kt∗ = k(ρ̄(δ1,Λ1)), where δ1 = e−r

1/n and Λ1 = 1− e−λ1/n.
Next consider a negotiation time t = t∗ −∆/r0 < t∗. Using (4) and (6), the value of waiting
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until time t∗ can be written as

Wt,t∗ = e−∆ (1 + yt,t∗Kt∗) = w(∆,Kt∗ , 1).

Recall also that Kt∗ = k(ρ̄(δ1,Λ1)) > k
(
ρ1
)
since ρ̄

(
δ1,Λ1

)
> ρ1 [cf. (38)]. Combining this

observation with condition (17), we also have Kt∗y > ρ0. Then, Lemma 1 implies that there is a
unique positive solution, ∆̃n > 0, to the equation, w(∆,Kt∗ , 1) = 1.

Let t̃ = t∗− ∆̃n/r
0 denote the time corresponding to delay, ∆̃n. We define t̄ = t∗−∆̄n/r

0 ∈ T as
the first negotiation time that is weakly greater than t̃. Lemma 1 (part (ii)) also implies thatWt,t∗ =
w(∆,Kt∗ , 1) ≥ 1 for each t ∈ [t̄, t∗). Hence, there is disagreement at times t ∈ [t̄, t∗)∩ T . Note also
that t̄ − 1/n < t̃. Then, Lemma 1 (part (ii)) also implies that Wt̄−1/n = w(∆̄ + r0/n,Kt∗ , 1) < 1.
Hence, there is agreement at time t̄− 1/n.

It remains to characterize the continuous time limit. First recall that limn→∞ Kt∗ =

k(ρ̄(δ1,Λ1)) = k
(
ρ1
)
. Next note that the sequence

{
∆̃n

}
n
has a convergent subsequence (since it

lies in a compact set). Let ∆̄ denote the limit of an arbitrary convergent subsequence. Then,
taking the limit of the equation w(∆̃n, k(ρ̄(δ1,Λ1)), 1) = 1 over this subsequence, we obtain
the equation w(∆̄, k

(
ρ1
)
, 1) = 1. Lemma 1 implies that there is a unique positive solution,

∆̄ > 0, to this equation. Since all convergent subsequences have the same limit, we obtain
limn→∞ ∆̃n = ∆̄. Recall that we defined t̄ as the first negotiation time that weakly exceeds t̃.

This implies t̄ = max
(

0, t∗ − ∆̃nr
0 + fn

(
t∗ − ∆̃nr

0
))

, where fn
(
t̃
)
is an “error function”which

satisfies fn
(
t̃
)
< 1/n for each t̃ ∈ R. Taking the limit, we obtain limn→∞ t̄ = max

(
0, t∗ − ∆̄/r0

)
,

completing the proof.

Proof of Proposition 4. By Lemma 1, ∆̄ is increasing in any change that increases the value
of waiting evaluated at the solution, w

(
∆̄, k

(
ρ1
)
, 1
)
. Substituting ρ0 = r̂/λ0 and ρ1 = (r̂ + α) /λ1

into (18), we obtain

w
(
∆, k

(
ρ1
)
, 1
)

= e−∆
(

1 +
(

1− e−∆λ0/r̂
)
k
(
(r̂ + α) /λ1

)
y
)
≡ f (∆, r̂) .

Here, the second equality defines the function f (∆, r̂). Then, the first two parts follow because
f
(
∆̄, r̂

)
is decreasing in 1/λ0, and increasing in 1/λ1 and α (since k

(
ρ1
)
is increasing in ρ1).

The third part also follows after observing that k
(
ρ1
)
ȳ is increasing in ȳ. It remains to prove

the last part. By the Implicit Function Theorem, we have, d∆̄
dr̂ = −

(
∂w
∂∆ |∆=∆̄

)−1 ∂f
∂r̂ |∆=∆̄. Since

∂w
∂∆ |∆=∆̄ < 0, the derivative has the same sign as

∂f

∂r̂
|∆=∆̄ = − 1

r̂2
λ0e−∆̄λ0/r̂e−∆̄k

(
ρ1
)
y +

(
1− e−∆̄λ0/r̂

)
y
dk
(
ρ1
)

dρ1

dρ1

dr
.

As α → ∞, we have k
(
ρ1
)
→ 1 and

dk(ρ1)
dρ1 → 0. Hence, the first term on the right hand side

remains strictly negative whereas the second term approaches zero. Let ᾱ <∞ suffi ciently large so
that ∂f

dr̂ |∆=∆̄ < 0 for each α > ᾱ. Then, we also have d∆̄
dr̂ < 0 for each α > ᾱ.

Proof of Proposition 5. The proof closely parallels the proof of Proposition 3 with minor
differences. In this case, the environment becomes stationary at t∗ with effective durability rate
ρ0. Hence, the players agree at each time t∗ (and thereafter) with Kt∗ = k(ρ̄(δ0,Λ0)) > k

(
ρ0
)
.
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Consider a negotiation time t = t∗ −∆/r0 < t∗. The value of waiting is now given by

Wt,t∗ = e−∆
(

1 +
(

1− e−∆/ρ0
η
)
Kt∗

)
= w(∆,Kt∗ , η),

where we use the notation η = e−λ
E
to describe the survival probability corresponding to the

election. Since η < 1 and Kt∗ > 0, Lemma 1 implies there is a unique positive solution, ∆̄n > 0,
to the equation w(∆,Kt∗ , η) = 1. Let t̄ = t∗ − ∆̄n/r

0. Then, the same steps as in the proof
of Proposition 3 yield disagreement at each t ∈ [t̄, t∗) ∩ T and agreement at t̄ − 1/n. We also
obtain limn→∞ t̄ = max

(
0, t∗ − ∆̄/r0

)
, where ∆̄ denotes the unique solution to the equation

w(∆, k
(
ρ0
)
, η) = 1.

Proof of Proposition 6. Now, ∆̄ is increasing in any change that increases

w
(

∆, k
(
ρ0
)
, e−λ

E
)

= e−∆
(

1 +
(

1− e−∆ρ0
e−λ

E
)
k
(
ρ0
)
y
)
.

Then, ∆̄ is increasing in λE and ȳ because w
(

∆, k
(
ρ0
)
, e−λ

E
)
is increasing in λE and ȳ; recall

that k
(
ρ0
)
y is increasing in ȳ. To show that ∆̄ is increasing in 1/λ0, we will show that d∆̄

dρ0 > 0;

recall that ρ0 = r0/λ0. By the Implicit Function Theorem, d∆̄
dρ0 = −

(
∂w
∂∆ |∆=∆̄

)−1 ∂w
(

∆̄,k(ρ0),e−λ
E
)

∂ρ0 .

By Lemma 1, we have ∂w
∂∆ |∆=∆̄ < 0, and we show in the online appendix that

∂w
(

∆̄, k
(
ρ0
)
, e−λ

E
)

∂ρ0
= e−∆̄ȳ∆̄

k
(
ρ0
)

(ρ0)2

(
e∆̄ − 1

∆̄

1 + ȳ

ȳ
− e−∆̄/ρ0

η

)
> 0. (39)

Therefore, d∆̄
dρ0 > 0, completing the proof.

The following lemmas facilitate subsequent proofs. The first lemma provides an upper bound
for congruence in the election models analyzed in Sections 4.2 and 4.3. The second lemma is an
analogue of Lemma 1 in this context. The proofs of the lemmas are relegated to the online appendix.

Lemma 2. Suppose δt = δ0 and Λt ≥ Λ0 for each t ∈ T . Then, Kt ∈
[
0, k

(
ρ̄
(
δ0,Λ0

))]
for each

t ∈ T .

Lemma 3. Consider the function f (∆) ≡ w (∆,K (∆) , η) where η < 1 and K (·) is a function
that satisfies K ′ (∆) < 0 for each ∆ ∈ [0,∆max] and K (∆µax) = 0. Then, the equation f (∆) = 1
has a unique solution over the range [0,∆max]. Moreover, ∆̄ ∈ (0,∆max).

Proof of Proposition 7. The equilibrium is periodic since otherwise we could construct mul-
tiple equilibria, violating the uniqueness result. We next define the threshold time, t̄. If there is no
agreement date (with Wt < 1), we let t̄ = 0. Otherwise, we let t̄− 1/n ∈ T be the last agreement
time (Wt̄−1/n < 1) within [0, t∗). By definition, there is disagreement (Wt ≥ 1) over the range
t ∈ [t̄, t∗) (which could be empty).

We next claim that there is agreement (Wt < 1) over the interval [0, t̄). If t̄ = 0, then the
interval is empty and the statement is true. Suppose t̄ > 0 and consider t ∈ [0, t̄) ∩ T . We prove
the claim by backward induction. Note that there is agreement at time t̄− 1/n. Suppose there is
agreement at some t+ 1/n ∈ [0, t̄)∩T and consider the prior negotiation time. Using Eq. (9) along
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with St+1/n = 1 (since there is agreement), we obtain

Wt = δ0
(
1 + Λ0ȳKt+1/n

)
≤ δ0

(
1 + Λ0ȳk

(
ρ̄
(
δ0,Λ0

)))
< 1.

Here, the first inequality follows from Lemma 2, which applies to this model and implies Kt+1/n ≤
k
(
ρ̄
(
δ0,Λ0

))
. The second inequality follows after substituting k

(
ρ̄
(
δ0,Λ0

))
= 1−δ0

1−δ0+δ0Λ0(1+ȳ)
[cf.

(14)]. Hence, there is also agreement at time t, completing the proof of the claim.
We next characterize the congruence levels. We use the notation η = e−λ

E ∈ (0, 1). Since there
is disagreement over the range [t̄, t∗), Eq. (7) implies

Kt̄ = e−(r0+λ0)(t∗−t̄)ηKt∗ = e−(r0+λ0)(t∗−t̄)ηK0.

This expression implies in particular that t̄ > 0. Next consider an agreement time t ∈ [0, t̄).
Substituting Wt = δ0

(
1 + Λ0ȳKt+1/n

)
into (7), we obtain

Kt = 1− δ0 + δ0
(
1− Λ0 (1 + ȳ)

)
Kt+1/n = 1− δ0 + δ̂Kt+1/n,

where δ̂ = δ0
(
1− Λ0 (1 + ȳ)

)
(see (13)). Solving the difference equation forward, for each t ∈ [0, t̄),

we obtain

Kt =
1− δ0

1− δ̂

(
1− δ̂n(t̄−t))

+ δ̂
n(t̄−t)

Kt̄ = k
(
ρ̄
(
δ0,Λ0

)) (
1− δ̂n(t̄−t))

+ δ̂
n(t̄−t)

Kt̄. (40)

Here, the second equality substitutes k
(
ρ̄
(
δ0,Λ0

))
= 1−δ0

1−δ̂ . This establishes Eq. (24) in the main
text. Substituting for Kt̄, we obtain

Kt =
(

1− δ̂n(t̄−t))
k
(
ρ̄
(
δ0,Λ0

))
+ δ̂

n(t̄−t)
e−(r0+λ0)(t∗−t̄)ηK0

for each t ∈ [0, t̄). Applying this expression for t = 0, we obtain

K0 =
1− δ̂nt̄

1− δ̂nt̄e−(r0+λ0)(t∗−t̄)η
k
(
ρ̄
(
δ0,Λ0

))
.

Note that K0 < k
(
ρ̄
(
δ0,Λ0

))
since η < 1. This in turn implies Kt̄ = e−(r0+λ0)(t∗−t̄)ηK0 <

k
(
ρ̄
(
δ0,Λ0

))
. Hence, by (40), Kt is strictly decreasing in t over the agreement range [0, t̄).

Let ∆̄n = r0 (t∗ − t̄) denote the payoff relevant distance of the threshold time, t̄. Since there is
disagreement over the range [t̄, t∗) and agreement at t̄− 1/n, we have Wt̄,t∗ ≥ 1 > Wt̄−1/n,t∗ . Using
Wt,t∗ = w

(
r0 (t∗ − t) ,K0,n, η

)
, the threshold, ∆̄n, satisfies

w
(
∆̄n,K0,n, η

)
≥ 1 > w

(
∆̄n + r0/n,K0,n, η

)
. (41)

From the above analysis, K0,n can also be written as a function of ∆̄n:

K0,n =
1− δ̂n(t

∗−∆̄n/r0)

1− δ̂n(t
∗−∆̄n/r0)

e−(1+1/ρ0)∆̄nη
k
(
ρ̄
(
δ0,Λ0

))
. (42)

The equilibrium for any finite n is characterized as the solution to Eqs. (41− 42).
It remains to characterize the continuous time limit. Note that the sequence

{
K0,n, ∆̄n

}
n
is
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bounded (since K0,n ∈ [0, 1] and ∆̄n ∈
[
0, t∗r0

]
). Thus, it has at least one limit point denoted

by
(
K (0) , ∆̄

)
. Taking the limit of Eqs. (41) and (42), and using limn→∞ δ̂

n
= e−(r0+λ0(1+y)) =

e−r
0/k(ρ0), we obtain the system

w
(
∆̄,K (0) , η

)
= 1, (43)

K (0) =
1− e−(r0t∗−∆̄)/k(ρ0)

1− e−(r0t∗−∆̄)/k(ρ0)e−(1+1/ρ0)∆̄e−λ
E
k (ρ0) .

By Lemma 3, this system has a unique and interior solution, ∆̄ ∈ (0,∆max). Since there is a unique
limit point, we conclude that limn→∞

{
∆̄n

}
n

= ∆̄ and limn→∞K0,n = K0

(
∆̄
)
. This also implies

limn→∞ t̄ = t∗ − ∆̄/r0, completing the proof.

The following lemma facilitates the subsequent proof. The lemma establishes the uniqueness
and the comparative statics of the solution to an equation system, which is the analogue of the
system in (43) for the case of alternating elections. The equation system of interest can be written
as F

(
x̄|ηodd, ηeven

)
= 0 where F

(
·|ηodd, ηeven

)
: X → R4 is a vector valued function over the

domain

X =
{

x =
(
K0,∆

odd,Kt∗ ,∆
even

)
∈ R4 | K0,Kt∗ ∈

[
0, k

(
ρ0
)]
,∆odd,∆even ∈

[
0, t∗r0

]}
.

The components of the function F
(
·|ηodd, ηeven

)
are defined by

F1 (x) = K0 − ksum
(

∆odd,Kt∗ , η
odd
)

(44)

F2 (x) = 1− w
(

∆odd,Kt∗ , η
odd
)

F3 (x) = K (t∗)− ksum (∆even,K0, η
even)

F4 (x) = 1− w (∆even,K0, η
even) .

where

ksum
(
∆,Knext, η

)
=
(

1− e−(r0t∗−∆)/k(ρ0)
)
k
(
ρ0
)

+ e−(r0t∗−∆)/k(ρ0)e−(1+1/ρ0)∆̄ηKnext. (45)

Lemma 4. Suppose condition (27) holds. Then:
(i) For each ηodd, ηeven ∈ (0, 1), the system F

(
x̄|ηodd, ηeven

)
= 0 has a unique solution over X,

which is also interior, that is, K (0) ,K (t∗) ∈ (0, 1) and ∆̄odd, ∆̄even ∈
(
0, t∗r0

)
.

(ii) Suppose, in addition, that condition (28) holds and ηodd > ηeven. Then, the solution satisfies
∆̄even > ∆̄odd and K (0) > K (t∗).

The proof is relegated to the online appendix. We briefly explain the proof since the analysis is
not trivial. The first part relies on the Poincare-Hopf Index Theorem. We show that the Jacobean
matrix evaluated at any interior solution, ∂F

∂x |x=x̄, has a positive determinant. Moreover, the
vector valued function F points “outwards”on the boundary of its domain, X. In view of these
observations, the Poincare-Hopf Theorem implies that there is a unique solution.

The second part of the lemma uses the Implicit Function Theorem (together with tedious
algebra) to characterize how the solution changes in the inverse strength of the odd election dx̄

dηodd
.
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In particular, we show

dK (0)

dηodd
> 0,

d∆
odd

dηodd
< 0,

dK (t∗)

dηodd
< 0, and

d∆
even

dηodd
> 0.

That is, reducing the strength of the odd election (increasing ηodd = e−λ
odd
) decreases ∆

odd
and

K (t∗), and increases K (0) and ∆
even

. We also observe that if the two elections were equally
strong, then the model would be the same as the periodic election model and the solution would
be symmetric, that is, K (0) |η̃odd=ηeven = K (t∗) |η̃odd=ηeven and ∆

odd|η̃odd=ηeven = ∆
even|η̃odd=ηeven .

Combining these observations implies that, when ηodd > ηeven, the odd election (which is the weaker

election) is associated with a smaller delay in its run-up, ∆
odd

< ∆̄even, and a smaller congruence
in its aftermath, K (t∗) < K (0).

Proof of Proposition 8. We let ηodd = e−λ
E,odd

, ηeven = e−λ
E,even ∈ (0, 1) denote the survival

probabilities with respect to odd and even elections. In this case, the uniqueness of the solution
implies that the outcomes are periodic with cycle 2t∗. We define the thresholds t̄odd and t̄even

similar to the proof of Proposition 7. If there is no agreement date (with Wt < 1) over [0, t∗), then
we let t̄odd = 0. Otherwise, we let t̄odd − 1/n be the last agreement date over [0, t∗). Note that in
both cases, there is disagreement over the range, [t̄odd, t∗) (which could be empty). We define t̄even

symmetrically over the range, [t∗, 2t∗).
With these definitions in place, the same steps as in the proof of Proposition 7 imply that

there is agreement over the intervals [0, t̄) and [t∗, 2t∗) (which could be empty). Moreover, the
congruences at election times satisfy

K0 =

(
1− δ̂nt̄

odd
)
k (ρ̄ (δ,Λ)) + δ̂

nt̄odd

e−(r0+λ0)(t∗−t̄)ηoddKt∗ , (46)

Kt∗ =
(

1− δ̂n(t̄even−t∗))
k (ρ̄ (δ,Λ)) + δ̂

n(t̄even−t∗)
e−(r0+λ0)(2t∗−t̄even)ηevenK0.

These equations also imply that t̄odd > 0 or t̄even > t∗ (since otherwise there would be a
contradiction). We next establish more strongly that, if n is suffi ciently large, then t̄odd > 0
and t̄even > t∗. That is, there is an agreement date on each election cycle. To establish this,
first recall that limn→∞ k

(
ρ̄
(
δ0,Λ0

))
= k

(
ρ0
)
(see (37)). Recall also that condition (27) implies

1 + k
(
ρ0
)
y < er

0t∗ . Then, there exists a suffi ciently large n̄int such that, for each n, the discrete
time analogue of the same condition also holds, 1 + k

(
ρ̄
(
δ0,Λ0

))
y < er

0t∗ . Next let n > n̄int and
suppose, to reach a contradiction, that t̄odd = 0. Then, there is disagreement on the interval, [0, t∗),

and we have W0,t∗ = w
(
r0t∗,Kt∗ , η

odd
)
≥ 1. Using (18) and

(
1− e−∆/ρ0

ηodd
)
< 1, this implies

er
0t∗ < 1 + Kt∗ ȳ. By Lemma 2, we also have Kt∗ ≤ k

(
ρ̄
(
δ0,Λ0

))
. This yields a contradiction to

the condition, 1 + k
(
ρ̄
(
δ0,Λ0

))
y < er

0t∗ , proving that t̄odd > 0. The same steps also imply that
t̄even > t∗.

Since t̄odd > 0, there is agreement at time t̄odd − 1/n and disagreement over the range, [t̄, t∗).
Likewise, there is agreement at time t̄even − 1/n and disagreement over the range, [t̄even, 2t∗). In
view these observations, the thresholds are characterized by the system
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w
(

∆̄odd
n ,K0, η

)
≥ 1 > w

(
∆̄odd
n + r0/n,K0, η

)
(47)

w
(
∆̄even
n ,Kt∗ , η

)
≥ 1 > w

(
∆̄even
n + r0/n,Kt∗ , η

)
.

Here, ∆̄odd
n = r0

(
t∗ − t̄odd

)
and ∆̄even

n = r0 (2t∗ − t̄even) denote the payoff relevant distances for
delay as before. The equilibrium for any finite n is characterized by Eqs. (46− 47).

As before, we also characterize the continuous time limit. Taking the limit as n→∞, any limit
point of the sequence

{
Kodd

0,n , ∆̄
odd
n ,Keven

t∗,n , ∆̄
even
n

}
n
solves the following system:

K (0) = ksum
(

∆̄odd,K (t∗) , ηodd
)

K (t∗) = ksum
(
∆̄even,K (0) , ηeven

)
w
(

∆̄odd,K (t∗) , ηodd
)

= 1

w
(
∆̄even,K (0) , ηeven

)
= 1.

Here, ksum (·) denotes the function defined in (45). Thus, the equation system in the continuous time
limit is given by F

(
x̄|ηodd, ηeven

)
= 0 where F

(
·|ηodd, ηeven

)
is the vector valued function defined

in (44). By the first part of Lemma 4, there is a unique and interior solution, K (0) ,K (t∗) ∈ (0, 1)
and ∆̄odd, ∆̄even ∈

(
0, t∗r0

)
. Since there is a unique limit point, we conclude that

lim
n→∞

K0,n = K (0) , lim
n→∞

{
∆̄odd
n

}
n

= ∆̄odd, lim
n→∞

Kt∗,n = K (t∗) , lim
n→∞

{
∆̄even
n

}
n

= ∆̄even. (48)

Next consider the comparative statics. By the second part of Lemma 4, the solution to the
continuous time limit also satisfies ∆̄even > ∆̄odd and K (0) > K (t∗). In view of (48), there exists
n̄ > n̄int such that the discrete time solution also satisfies the same inequalities, ∆̄even

n > ∆̄odd
n and

K0,n > Kt∗,n, for each n > n̄. These inequalities also imply t̄even − t∗ < t̄odd, which completes the
proof of the proposition for each n > n̄.

Proof of Proposition 9. The first part is proven in the main text. To prove the second part,
observe that the value of waiting for agreement time tAn at time 0 is

W0,tAn
= δ0,tAn

(
StAn + Λ0,tAn

ȳKtAn

)
= δ0,tAn

(
1 + ȳKtAn

)
≤ δ0,tAn

(
1 + ȳ

(
1− δtAn

))
.

Here, the first equality is by substituting (6) to definition (5). The next equality is by StAn =
Λ0,tAn

= 1, and the inequality is by the first part. Since W0,tAn
≥ 1 in equilibrium, we have

δ0,tAn
≥ 1/

(
1 + ȳ

(
1− δtAn

))
. When r is bounded, the right-hand limits to 1. Hence, δ0,tAn

limits to

1, and tAn limits to 0.
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Online Appendix for “Durability, Deadline, and
Election Effects”
Alp Simsek and Muhamet Yildiz

A Description of the Data Used in Section 4.3
Our data for gridlock comes from Mayhew (1991), who constructed a list of enactments of important
laws in the US since 1947. The major measurement challenge here is to identify the important laws
among the numerous laws that the congresses regularly pass. Mayhew constructs two separate
lists– which he refers to as “sweeps”– that uses two related but distinct principles to establish
importance. Sweep One is based on the contemporary judgement of journalists, who appraised
the laws as they were passed. Sweep Two is based on the retrospective judgements by policy
specialists– who assigned importance to the laws in the more recent writings. The second list has
the advantage that importance is arguably best judged with hindsight, but the first list has the
advantage of being available for a longer period of time. Mayhew also provides a master list that
combines these two lists by taking a union (as opposed to the intersection). In his own empirical
analysis, Mayhew uses this master list. Mayhew also argues that the master list provides a cleaner
measurement than alternative ways of combining the two sweeps.9

Following Mayhew, we have also used the master list in our analysis. We have obtained the
extended data set that covers the years between 1947 and 2012 from Mayhew’s website.10 We have
linked this data with information on the US presidential elections and term limits. Specifically,
we have coded each US Congress according to whether it corresponds to “years 1-2”, “years 3-4”,
“years 5-6”, or “years 7-8”of a presidency. There are some exceptions in the data, which we have
addressed as follows:

• The two-term limit for the US presidents was established in the post-war years by a consti-
tutional amendment. The amendment passed the Congress in 1947, and it was ratified in
1951. During this period, Harry Truman was the president. As the sitting president, he was
exempted from the limit. Thus, there was some uncertainty about whether he would rerun
in 1952. Truman decided not to run in 1952, and a new president (Eisenhower) took offi ce
in 1953. In view of these observations, we have started our analysis in 1953 (that is, we have
excluded the congresses between 1947-1952).

• John F. Kennedy was assassinated in 1963. The vice president, Lyndon Johnson, took the
offi ce. We have coded the Kennedy-Johnson presidency in years 1963-1964 as “years 3-4”to
ensure consistency with the electoral cycle.

• Lyndon Johnson won the election in 1964 and extended his presidency. We have coded
Lyndon Johnson’s presidency of 1965-1968 as “years 1-2”and “years 3-4,”since Johnson was
eligible to be reelected in 1968.

• During his second term as president, Richard Nixon resigned from the offi ce on August 9,
1974. The vice president, Gerald Ford, took the offi ce. We have coded the Nixon—Ford
presidency in years 1973-1974 as “years 5-6”. That is, we treated these years as if Nixon was
the president throughout, because Ford took offi ce towards the end of this period.

9See Mayhew, D. R. (1993), “Reply: Let’s Stick with the Longer List,”Polity, p.485-488.
10http://davidmayhew.commons.yale.edu/datasets-divided-we-govern/
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• We have coded Ford’s presidency of 1975-1976 as “years 3-4” since Ford was eligible to be
reelected in 1976 (but not in 1980 had he won the election in 1976).

B Omitted Proofs
Proof of Lemma 1. We first claim that ∂w∂∆ |∆=∆̄ < 0 for each ∆̄ > 0 that solves w

(
∆̄,K, η

)
= 1.

Note that the sign of ∂w∂∆ is the same as the sign of ∂ logw
∂∆ . The latter derivative can be calculated

as

∂ logw

∂∆
= −1 +

(
e−∆/ρ0

/ρ0
)
ηKȳ

1 +
(
1− e−∆/ρ0η

)
Kȳ

.

When evaluated at a solution, the derivative becomes

∂ logw

∂∆
|∆=∆̄ = −1 +

e−∆̄/ρ0
/ρ0

1− e−∆̄/ρ0η
η
e∆̄ − 1

e∆̄

< −1 +
1

e∆̄/ρ0 − 1

1

ρ0

(
1− e−∆̄

)
< −1 + ρ0 × 1

ρ0
× 1 = 0,

proving the claim. Here, the first line uses w
(
∆̄,K, η

)
= 1 to substitute for Kȳ; the second line uses

η ≤ 1 and rearranges terms; and the third line uses the inequalities 1

e∆/ρ
0−1

< ρ0 and 1− e−∆ < 1.

Since ∂w
∂∆ |∆=∆̄ < 0 at each solution, the function, w (·,K, η), crosses the horizontal line w = 1

always from above. This implies that the equation, w
(
∆̄,K, η

)
= 1, has at most one positive

solution. To show that a solution exists, note that lim∆→∞w (∆,K, η) = 0. Hence, the solution
exists (and is unique) as long as w (∆,K, η) > 1 for suffi ciently small ∆ > 0. We next show
that this is the case as long as the parametric conditions in the statement of the lemma hold.
First consider the case, η = 1 and Kȳ > ρ0. A Taylor approximation of the function w (∆,K, η)
around ∆ = 0 gives, w (K,∆, 1) ' 1 + Kȳ

ρ0 ∆. Since Kȳ > ρ0, this implies w (∆,K, η) > 1 for
suffi ciently small ∆ > 0. Next consider the case, η < 1 and K > 0. In this case, we have,
w (K, 0, η) = 1 + (1− η)Kȳ > 1. This also implies w (∆,K, η) > 1 for suffi ciently small ∆ > 0,
and completes the proof of the first part.

Since ∂w
∂∆ |∆=∆̄ < 0 and the solution is unique, we also have that w (∆,K, η) > 1 for each ∆ < ∆̄,

and w (∆,K, η) < 1 for each ∆ > ∆̄, proving the second part.

Proof of Lemma 2. The nonnegativity of Kt follows from (10). To establish the upper bound,
first consider some time t with disagreement (Wt ≥ 1). In this case, (7) implies

Kt ≤ δt (1− Λt)Kt+1/n.

Next consider some time t with agreement. In this case, we have Wt = δt
(
St+1 + ΛtyKt+1/n

)
< 1.

Plugging this into Eq. (7), we obtain.

Kt = 1− δt
(
St+1 + ΛtyKt+1/n

)
+ δt (1− Λt)Kt+1/n

≤ 1− δt + δt (1− Λt (1 + ȳ))Kt+1/n.
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Combining the two cases, we obtain the inequality,

Kt ≤ max
(
δt (1− Λt)Kt+1/n, 1− δt + δt (1− Λt (1 + ȳ))Kt+1/n

)
,

≤ max
(
δ0
(
1− Λ0

)
Kt+1/n, 1− δ0 + δ0

(
1− Λ0 (1 + ȳ)

)
Kt+1/n

)
.

Here, the second line uses the assumptions, δt = δ0 and Λt ≥ Λ0. This inequality can be equivalently
rewritten as,

Kt+1/n ≥ min

(
Kt

δ0 (1− Λ0)
, f (Kt)

)
where f (Kt) =

Kt −
(
1− δ0

)
δ0 (1− Λ0 (1 + ȳ))

(49)

Note also that, using (14), we have,

f (Kt)


< Kt, if Kt < k

(
ρ̄
(
δ0,Λ0

))
= Kt, if Kt = k

(
ρ̄
(
δ0,Λ0

))
> Kt, if Kt > k

(
ρ̄
(
δ0,Λ0

)) .

Next, to reach a contradiction, suppose Kt > k
(
ρ̄
(
δ0,Λ0

))
for some t. Since f (Kt) > Kt and

Kt
δ0(1−Λ0)

> Kt, the inequality (49) implies Kt+1/n > Kt. Hence, {Kt̃}
∞
t̃=t is an increasing sequence.

Since it is also bounded from above (by one), it has a limit point denoted by K∗. Applying the
inequality (49) in the limit, we obtain K∗ ≥ f (K∗). This in turn implies K∗ ≤ k

(
ρ̄
(
δ0,Λ0

))
, and

yields a contradiction to the assumption that Kt > k
(
ρ̄
(
δ0,Λ0

))
.

Proof of Lemma 3. Note that ∂w(∆,K(∆),η)
∂K = e−∆

(
1− e−∆/ρ0

η
)
ȳ > 0 for each ∆ ≥ 0. Next

note that,

f ′ (∆) =
∂w (∆,K (∆) , η)

∂∆
+
∂w (∆,K (∆) , η)

∂K
K ′ (∆) .

Hence, the second term in the derivative is always negative. In view of the proof of Lemma 3, we
also have that ∂w(∆,K(∆),η)

∂∆ |∆=∆̄ < 0 for each ∆̄ > 0 that satisfies w
(
∆̄,K

(
∆̄
)
, η
)

= 1. It follows
that f ′

(
∆̄
)
< 1 for each ∆̄ > 0 such that f

(
∆̄
)

= 1. This in turn implies that there can be
at most one positive solution to the equation, f

(
∆̄
)

= 1. The result that there is a unique and
interior solution, ∆̄ ∈ (0,∆max), follows after observing that f (0) = 1 + (1− η) K (0) ȳ > 1 (since
K (0) > 0) and that f (∆max) = e−∆max

< 1 (since K (∆max) = 0).

We next prove Lemma 4. Recall that this lemma concerns the solution to the system,
F
(
x̄|ηodd, ηeven

)
= 0, where F

(
·|ηodd, ηeven

)
: X → R4 is a vector valued function over the do-

main,

X =
{

x =
(
K0,∆

odd,Kt∗ ,∆
even

)
∈ R4 | K0,Kt∗ ∈

[
0, k

(
ρ0
)]
,∆odd,∆even ∈

[
0, t∗r0

]}
,

3



The components of the function F
(
·|ηodd, ηeven

)
are defined by,

F1 (x) = K0 − ksum
(

∆odd,Kt∗ , η
odd
)

F2 (x) = 1− w
(

∆odd,Kt∗ , η
odd
)

F3 (x) = K (t∗)− ksum (∆even,K0, η
even)

F4 (x) = 1− w (∆even,K0, η
even) .

where

ksum
(
∆,Knext, η

)
=
(

1− e−(r0t∗−∆)/k(ρ0)
)
k
(
ρ0
)

+ e−(r0t∗−∆)/k(ρ0)e−(1+1/ρ0)∆̄ηKnext.

The proof of Lemma 4 relies on the properties of the Jacobean matrix of F evaluated at a
solution x̄ =

(
K0,∆

odd,Kt∗ ,∆
even

)
. This can be written as,

∂F

∂x
|x=x̄ =


1 −

(
∂ksum

∂∆

)odd − (∂ksum∂K

)odd
0

0 −
(
∂w
∂∆

)odd −
(
∂w
∂K

)odd
0

−
(
∂ksum

∂K

)even
0 1 −

(
∂ksum

∂∆

)even
−
(
∂w
∂K

)even
0 0 −

(
∂w
∂∆

)even
 . (50)

Here,
(
∂ksum

∂∆

)odd
,
(
∂w
∂∆

)odd
and

(
∂ksum

∂∆

)even
,
(
∂w
∂∆

)even
denote the derivatives of the functions

ksum (·) , w (·) evaluated respectively at the vectors
(
∆̄odd,K (t∗) , ηodd

)
and

(
∆̄even,K (0) , ηeven

)
.

Before we prove Lemma 4, we state and prove another lemma that establishes various properties
of these partial derivatives as well as the Jacobean matrix ∂F

∂x |x=x̄. To state the result, we define
the following auxiliary variables,

ζj ≡
(
∂w

∂∆

)j (∂ksum
∂K

)j
−
(
∂w

∂K

)j (∂ksum
∂∆

)j
for j ∈ {odd, even} .

Lemma 5. Suppose the derivatives are evaluated at some x̄ ∈X that satisfies F
(
x̄|ηodd, ηeven

)
= 0.

(i) For each, j ∈ {odd, even}, we have,(
∂ksum

∂K

)j
∈ (0, 1) ,

(
∂ksum

∂∆

)j
< 0,

(
∂w

∂∆

)j
< 0,

(
∂w

∂K

)j
> 0

and
(
∂ksum

∂ηodd

)odd
> 0,

(
∂w

∂ηodd

)odd
< 0.

(ii) ∂F
∂x |x=x̄ is nonsingular with det

(
∂F
∂x

)
> 0.

(iii) If parameters satisfy ηeven ≤ y
1+y , then ζ

even > 0.

The first part establishes the signs of the partial derivatives of ksum (·) and w (·). The second
part establishes the nonsingularity of the Jacobean matrix and characterizes the sign of its deter-
minant. The last part characterizes the sign of the auxiliary variable, ζeven, under condition (28).
As we will see, the second part is useful to establish the uniqueness of the solution (to prove the
first part of Lemma 4), whereas the first and the third parts are useful to establish comparative
statics (to prove the second part of Lemma 4).
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Proof of Lemma 5. Without loss of generality, consider the case j = odd. The results for
j = even follow from a symmetric analysis.
Part (i). First consider the partial derivatives of the function ksum (·). Note that,(

∂ksum

∂K

)odd
= e−(r0t∗−∆̄odd)/k(ρ0)e−(1+1/ρ0)∆

odd

ηodd,

which implies
(
∂ksum

∂K

)odd ∈ (0, 1). Note also that(
∂ksum

∂∆

)odd
= −e−

(
r0t∗−∆

odd
)
/k(ρ0)

[
1− e−(1+1/ρ0)∆

odd yηoddK (t∗)

ρ0

]
.

Hence,
(
∂ksum

∂∆

)odd
< 0 if and only if the term in the brackets is positive. This term can be rewritten

as,

1− ηodd

ρ0
e−∆

odd
/ρ0
(
e−∆

odd

yK (t∗)
)

= 1− 1

ρ0

1− e−∆
odd

e∆
odd

/ρ0/ηodd − 1

> 1− 1

ρ0

1− e−∆
odd

e
∆
odd

ρ0 − 1

> 1− 1

ρ0
ρ0 = 0.

Here, the first line substitutes for e−∆̄odd
K (t∗) y from w

(
∆̄odd,K (t∗) , ηodd

)
= 1 [cf. (18)]. The

second line uses the inequality ηodd < 1 as well as the inequality 1−e−∆
odd

e∆
odd

/ρ0−1
< ρ0. This proves that(

∂ksum

∂∆

)odd
< 0.

Next consider the partial derivatives of the function w (·). Note that,(
∂w

∂K

)odd
=
(

1− ηodde−∆̄odd/ρ0
)
e−∆̄odd

y,

which implies
(
∂w
∂K

)odd
> 0. Next note that(

∂w

∂∆

)odd
= −e−∆̄odd −

(
1− ηodde−∆̄odd/ρ0

)
e−∆̄odd

K (t∗) y +
ηodd

ρ0
e−∆̄odd/ρ0

e−∆̄odd
K (t∗) y

= −
[
1− e−(1+1/ρ0)∆̄odd ηoddyK (t∗)

ρ0

]
,

where the second line uses w
(
∆̄odd,K (t∗) , ηodd

)
= 1. We have established earlier that the bracketed

term is positive, which implies
(
∂w
∂∆

)odd
< 0.

Finally, note that the partial derivatives with respect to ηodd satisfy,(
∂ksum

∂ηodd

)odd
= e−(r0t∗−∆̄odd)/k(ρ0)e−(1+1/ρ0)∆

odd

K (t∗) > 0

and
(

∂w

∂ηodd

)odd
= −e−(1+1/ρ0)∆̄odd

K (t∗) y < 0.
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Part (ii). The determinant of the Jacobean matrix in (50) can be calculated as,

det

(
∂F

∂x

)
=

(
∂w

∂∆

)even(∂w
∂∆

)odd
− ζevenζodd.

We claim that ∣∣ζj∣∣ < ∣∣∣∣∣
(
∂w

∂∆

)j∣∣∣∣∣ for each j ∈ {odd, even} ,
which in turn implies det

(
∂F
∂x

)
> 0.

To prove the claim, suppose j = odd (the other case is symmetric). After substituting the
expressions from part (i) and rearranging terms, we obtain

ζodd =

(
∂w

∂∆

)odd(∂ksum
∂K

)odd
−
(
∂w

∂K

)odd(∂ksum
∂∆

)odd
(51)

= e−(r0t∗−∆̄odd)/k(ρ0)
[
1− e−(1+1/ρ0)∆̄odd ηoddyK (t∗)

ρ0

]
e−∆̄odd

(
y − (1 + y) ηodde−∆̄odd/ρ0

)
=

(
−
(
∂w

∂∆

)odd)
e−(r0t∗−∆̄odd)/k(ρ0)e−∆̄odd

(
y − (1 + y) ηodde−∆̄odd/ρ0

)
.

Here, the last line substitutes back the definition of
(
∂w
∂∆

)odd
. Note that(

y − (1 + y) ηodde−∆̄odd/ρ0
)
≤ y < 1. Since ηodde−∆̄odd/ρ0

< 1, we also have(
y − (1 + y) ηodde−∆̄odd/ρ0

)
> y − (1 + y) = −1. Combining these observations implies∣∣∣y − (1 + y) ηodde−∆̄odd/ρ0

∣∣∣ < 1. Combining this inequality with the expression for ζodd shows that∣∣ζodd∣∣ < ∣∣∣( ∂w∂∆

)odd∣∣∣.
Part (iii). Redoing the calculation in (51) for j = even, we obtain,

ζeven =

(
−
(
∂w

∂∆

)even)
e−(r0t∗−∆̄even)/k(ρ0)e−∆̄even

(
y − (1 + y) ηevene−∆̄even/ρ0

)
. (52)

Suppose the additional regularity condition, ηeven ≤ y
1+y , holds. Using e

−∆̄even/ρ0
< 1, this also

implies y − (1 + y) ηevene−∆̄even/ρ0
> 0. This in turn implies ζeven > 0 and completes the proof of

the lemma.

Proof of Lemma 4. Part (i). We establish the uniqueness of the solution by applying the
Poincare-Hopf Index Theorem. To this end, we first show that the function F (when viewed
as a vector field) points “outwards” on the boundaries of the box-constrained region, X. More
specifically, we conjecture (and verify below) that the function satisfies,

F1 > 0 when K0 = k
(
ρ0
)

(53)

F1 ≤ 0 when K0 = 0, with strict inequality if ∆odd < t∗r0, (54)

F2 > 0 when ∆odd = t∗r0, (55)

and F2 < 0 when ∆odd = 0, with strict inequality if Kt∗ > 0. (56)
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We also claim that symmetric conditions hold for F3 and F4 (by appropriately modifying the
corresponding variables). Note that these conditions also rule out the boundary solutions to the
system, F = 0. The first two conditions rule out the boundary solutions for K0 except possibly
when ∆odd = t∗r0. The third condition rules out the boundary solution, ∆odd = t∗r0, eliminating
the remaining conditionality with respect to K0. The fourth condition rules out the boundary
condition, ∆odd = 0, except possibly when Kt∗ = 0. The analogous conditions for F3 and F4

rule out the boundary solutions for Kt∗ and ∆even, including Kt∗ = 0, eliminating the remaining
conditionality.

In view of the conditions (53)− (56), a standard Poincare-Hopf Index Theorem applies to the
vector valued function, F (see, for instance, Simsek, Ozdaglar, Acemoglu (2008)). In particular, if
∂F
∂x |x=x̄ is nonsingular for each solution, then we have,

1 =
∑

{x̄∈X | F(x̄|ηodd,ηeven)=0}
sign

(
det

(
∂F

∂x
|x=x̄

))
. (57)

Here, the left hand side is the Euler characteristic of the region X, which is equal to 1. The
right hand side is the sum of the indices of F at the solutions (which are all interior in view of the
boundary conditions). The index of a solution is equal to the sign of the Jacobean matrix evaluated
at the solution. By Lemma 5, the determinant is nonsingular with a strictly positive determinant,
det
(
∂F
∂x |x=x̄

)
> 0, at any solution x̄. Combining this with Eq. (57) implies that there is a unique

interior solution.
It remains to establish the boundary conditions (53)− (56). Using the definition of ksum (·) in

(10), together with the inequality, e−(1+1/ρ0)∆ηK < k
(
ρ0
)
(since η < 1 and K ≤ k

(
ρ0
)
), we have,

ksum (∆,K, η) <
(

1− e−(r0t∗−∆)/k(ρ0)
)
k
(
ρ0
)

+ e−(r0t∗−∆)/k(ρ0)k
(
ρ0
)

= k
(
ρ0
)
.

In particular, F1|K0=k(ρ0) = k
(
ρ0
)
− ksum < 0, proving (53). Note also that ksum (∆,K, η) ≥ 0,

where the equality holds only if ∆ = r0t∗ and K = 0. In particular, F1|K0=0 = −ksum ≤ 0 with
strict inequality if ∆odd < t∗r0, proving (54). Next using the definition of w (·) in (18), we have,

w
(
t∗r0,K, η

)
≤ w

(
t∗r0, k

(
ρ0
)
, 0
)
< 1.

Here, the first inequality follows since w (·) is increasing in K and decreasing in η, and the second
inequality follows from condition (27). This implies F2|∆odd=t∗r0 = 1 − w > 0, proving (55).
Finally, note also that w (0,K, η) = 1 + (1− η)Ky > 1, with strict inequality if K > 0. This
implies, F2|∆odd=t∗r0 = 1− w < 0 with strict inequality if Kt∗ > 0, proving (56). After relabeling,
symmetric conditions also hold for F3 and F4. This completes the proof of the uniqueness of the
solution.

Part (ii). To prove this part, we first establish the comparative statics of the solution with respect
to the parameter, ηodd = e−λ

E,odd
, which provides an inverse measure of the strength of the odd

election. Recall that ∂F
∂x |x=x̄ is nonsingular with a positive determinant (cf. Lemma 5). Then,

implicitly differentiating the equation, F = 0, we obtain,

dx̄

dηodd
=

(
∂F

∂x
|x=x̄

)−1(
− ∂F

∂ηodd
|x=x̄

)
. (58)

Recall also that the Jacobean matrix, ∂F∂x |x=x̄, is given by (50). Taking the inverse of this matrix,
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the first two columns of the Jacobean matrix multiplied by the determinant, det
(
∂F
∂x

) (
∂F
∂x

)−1
, is

given by, 
(
∂w
∂∆

)odd ( ∂w
∂∆

)even
(−1)

(
∂ksum

∂∆

)odd ( ∂w
∂∆

)even
−
(
∂w
∂K

)odd
ζeven −

(
∂w
∂∆

)even
+
(
∂ksum

∂K

)odd
ζeven(

∂w
∂∆

)odd
ζeven (−1)

(
∂ksum

∂∆

)odd
ζeven

(−1)
(
∂w
∂K

)even ( ∂w
∂∆

)odd (
∂w
∂K

)even (∂ksum
∂∆

)odd

 . (59)

From the third part of Lemma 5, ζeven is strictly positive. From the first part of the lemma, all
of the partial derivatives with respect to ∆ are strictly negative, and all of the partial derivatives
with respect to K are strictly positive. Thus, the signs of the entries of the columns in (59) can be
calculated as, 

+ −
− +
− +
+ −

 .
Note also that the partial derivative vector, − ∂F

∂ηodd
|x=x̄, can be calculated as,[(

∂ksum

∂ηodd

)odd
,

(
∂w

∂ηodd

)odd
, 0, 0

]′
. (60)

Using the first part of Lemma 5, the corresponding signs are given by,[
+ − 0 0

]′
.

Combining Eqs. (58) − (59), together with the calculated signs, we obtain the comparative
statics,

dK (0)

dηodd
> 0,

d∆
odd

dηodd
< 0,

dK (t∗)

dηodd
< 0, and

d∆
even

dηodd
> 0. (61)

Hence, reducing the strength of the odd election (increasing ηodd = e−λ
odd
) decreases ∆

odd
and

K (t∗), and increases K (0) and ∆
even

.
We next use these comparative statics to prove the result. Note that ηodd = e−λ

odd
> ηeven =

e−λ
even

since λeven > λodd. For each η̃odd ∈
[
ηeven, ηodd

]
, let X

(
η̃odd

)
denote the equilibrium

corresponding to survival probabilities η̃odd and ηeven. Using the Fundamental Theorem of Calculus,
we have,

X
(
ηodd

)
= X (ηeven) +

∫ ηodd

ηeven

dx

dηodd

∣∣∣∣
η̃odd=ηeven

dη̃odd.

Note that the comparative statics in Eq. (61) apply for each derivative term inside the integral.
Consequently, we have,

K (0) > K (0) |η̃odd=ηeven

∆
odd

< ∆
odd|η̃odd=ηeven

K (t∗) < K (t∗) |η̃odd=ηeven

∆
even

> ∆
even|η̃odd=ηeven

8



When η̃odd = ηeven, the elections are equally strong and the equilibrium is the same as in Proposition
7. In particular, we haveK (0) |η̃odd=ηeven = K (t∗) |η̃odd=ηeven and∆

odd|η̃odd=ηeven = ∆
even|η̃odd=ηeven .

Combining these observations, we obtain ∆
odd

< ∆
even

and K (0) > K (t∗), completing the proof
of Lemma 4.

We conclude by providing an intuition for the comparative statics in (61), which is also useful
to illustrate the role of the additional parametric condition (28). Intuitively, increasing the survival
probability during the odd election (or reducing its strength) decreases the length of delay before

this election, ∆
odd
. The shortening of the delay in the first election cycle also increases the initial

congruence, K (0). The increase inK (0) in turn increases the delay before the other election, ∆
even

.
The increase in delay in the other election cycle tends to reduce the initial congruence, K (t∗). On
the other hand, the increase in K (0) tends to increase K (t∗). Hence, there are counteracting
forces on K (t∗). The required parametric condition, ηeven ≤ y

1+y , ensures that the effect of K (0) is
relatively weak so that K (t∗) declines. This is captured by Eqs. (58)− (59), which illustrate that

sgn
(
dK(t∗)
dηodd

)
= −ζeven. The parametric condition ensures that ζeven is positive and thus dK(t∗)

dηodd

is negative (see Lemma 5). The decline in K (t∗) further contributes to the decline in ∆
odd

and

reinforces the initial effect on ∆
odd
.

Hence, the main role of the condition, ηeven ≤ y
1+y , concerns the knock-on effects of η

odd on
the K (t∗) of the previous election cycle (which is at time distance 2t∗). The condition ensures

that these knock-on effects influence ∆
odd

in the same way as the direct effect. The knock-on
effects are typically small, especially if the distance between the elections are large (Eq. (52) below
illustrates that ζeven is decreasing in t∗r0). Consequently, our comparative statics results typically
hold in numerical simulations even when the additional condition fails. We assume the condition
only because it provides analytical tractability and enables us to formally establish the comparative
statics.

Proof of (39). We compute

∂w
(

∆̄, k
(
ρ0
)
, e−λ

E
)

∂ρ0
= e−∆̄ȳ

(
− ∆̄

(ρ0)2 e
−∆̄/ρ0

ηk
(
ρ0
)

+
(

1− e−∆̄/ρ0
η
)
k′
(
ρ0
))

= e−∆̄ȳ

(
−∆̄

k
(
ρ0
)

(ρ0)2 e
−∆̄/ρ0

η +
e∆̄ − 1

k (ρ0) ȳ
k′
(
ρ0
))

.

Here, the second line uses w
(
∆̄, k

(
ρ0
)
, η
)

= 1 to substitute for the term,
(

1− e−∆̄/ρ0
η
)
. Next

note that k
(
ρ0
)

= ρ0/
(
1 + ρ0 + ȳ

)
implies k′

(
ρ0
)

= (1 + ȳ)

(
k(ρ0)
ρ0

)2

. After substituting this

expression and rearranging terms, we obtain (39). In (39), the inequality follows since e−∆̄/ρ0
η < 1

and e∆̄−1
∆̄
≥ 1.
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