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income effect (of higher wages) that slightly outweighs the substitution effect on hours. We also 
show that our proposed preference class is the only one consistent with the stated facts. The class 
can be viewed as an enlargement of the well-known “balanced-growth preferences” that dominate 
the macroeconomic literature and that demand constant (as opposed to falling) hours in the long 
run. The postwar U.S. experience, over which hours have shown no net decrease and which is the 
main argument for the use of “balanced-growth preferences”, is thus a striking exception more 
than a representative feature of modern economies.
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1 Introduction

The purpose of this paper is to propose a choice- and technology-based theory for the

long-run behavior of the main macroeconomic aggregates. Such a theory—standard

balanced-growth theory, specifying preferences and production possibilities along

with a market mechanism to be consistent with the data—already exists, but what

we argue here is that it needs to be changed. A change is required because of data

on hours worked that we document at some length: over a longer perspective—going

back a hundred years and more—and looking across many countries, hours worked

are falling at a remarkably steady rate: at a little less than half a percentage point

per year. Figure 1 illustrates this for a collection of countries.1 This finding turns
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Figure 1: Average yearly hours worked per capita 1870–1998

Source: Maddison (2001). The sample includes the following 25 countries: Austria, Belgium, Denmark, Finland, France, Germany,
Italy, Netherlands, Norway, Sweden, Switzerland, United Kingdom, Ireland, Spain, Australia, Canada, United States, Argentina,
Brazil, Chile, Colombia, Mexico, Peru, Venezuela, Japan. Regressing the log of hours worked on a country fixed effect and year gives
a slope coefficient of -0.00462 in the full sample (and -0.00398 for the period 1950–1998). Huberman and Minns (2007) provide similar
data.

out to contrast the data in the postwar U.S., where hours are overall well described

1 We document these facts in greater detail later in the paper using a number of different data
sets. The particular data set underlying Figure 1 uses extrapolation for the first data points,
except for the U.K., for which there are direct measures.
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as stationary, but going back further in time and looking across countries leads one

to view the recent U.S. data rather as an exception.

Since the persistent fall in hours worked is not consistent with the preferences

and technology used in the standard macroeconomic framework, we alter this frame-

work. Our alteration is very simple and, on a general level, obvious: to rationalize

decreasing hours worked we point to steadily increased productivity over very long

periods and preferences over consumption and leisure with the feature that income

effects on hours exceed substitution effects. As in the case of the standard setting,

we however also impose additional structure by summarizing the long-run data as

(roughly, at least) having been characterized by balanced growth. So on a balanced

growth path, our main economic aggregates—hours worked, output, consumption,

investment, and the stock of capital—all grow at constant rates. Characterizing the

data as fluctuations around such a path may be viewed as a poor approximation,

but here we nevertheless do maintain the position that such a characterization is

roughly accurate, at least for the last 150 years of data for many developed coun-

tries. Hence, we ask: is there a stable utility function such that consumers choose

a balanced growth path, with constant growth for consumption, and constant (neg-

ative) growth for hours, given that labor productivity grows at a constant rate?

We restrict ourselves to time additivity and constant discounting, in line with the

assumptions used to derive the standard preference framework. We also restrict

attention to the intensive margin of labor supply in our theoretical analysis. We

find that there indeed are preferences that do deliver the desired properties and our

main result is a complete characterization of the class of such preferences.

The modern macroeconomic literature is based on versions of a framework featur-

ing balanced growth with constant hours worked, to a large extent motivated with

reference to postwar U.S. data; see, e.g., Cooley and Prescott (1995). Our main

point here is not to take fundamental issue with this practice; in fact, our proposed

utility specification in some ways is quantitatively very similar to the preferences
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normally used. However, for some issues the distinction may be important. As for

discussion of hours historically, there is significant recognition in the macroeconomic

literature that from a longer-run perspective, hours worked have indeed fallen. For

example, several broadly used textbooks actually do point to significant decreases

over the longer horizon, often with concrete examples of how hard our grandpar-

ents worked; see, e.g., Barro’s (1984) book and Mankiw’s (2010) latest intermediate

text. In a discussion of some significant length, Mankiw actually reminds us of a very

well-known short text wherein John Maynard Keynes speculated that hours worked

would fall dramatically in the future—from the perspective he had back then (see

Keynes, 1930). Keynes thus imagined a 15-hour work week for his grandchildren,

in particular, supported by steadily rising productivity. As it turned out, Keynes

was wildly off quantitatively, but we would argue that he was right qualitatively (on

this issue. . . ). Finally, in his forthcoming chapter on growth facts, Jones (2015) also

points to the tension between the typical description of hours as stationary and the

actual historical data.2

From Keynes’s U.K. perspective, over the postwar period, and in contrast to

the U.S. experience, hours worked actually fell steadily until as recently as circa

1980, at which point they appear to have stabilized; we review the data in some

detail in Section 2 below. But perhaps more importantly, the picture that arises

from looking at a broader set of countries strengthens the case for falling, rather

than constant, hours, and going further back in time reinforces this conclusion.

With our eye-balling, at least, a reasonable approximation is actually even more

stringent: hours worked are falling at a rate that appears roughly constant over

longer periods (though, of course, with swings over business cycles, etc.). This rate

is slow—somewhere between 0.3% and 0.5% per year—so shorter-run data will not

2 Jones writes “A standard stylized fact in macroeconomics is that the fraction of the time spent
working shows no trend despite the large upward trend in wages. The next two figures show
that this stylized fact is not really true over the longer term, although the evidence is somewhat
nuanced”.
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suffice for detecting this trend, to the extent we are right; to halve the number of

hours worked at this rate requires around 175 years.

Turning back to the case of the U.S., over the last more than 150 years, thus, as

hours have fallen, output has grown at a remarkably steady rate, mainly interrupted

only by the Great Depression and World War II. Moreover, over this rather long

period, all the other macroeconomic balanced-growth facts also hold up very well;

we review these data briefly in Section 2.3. Thus, as output is growing at a steady

rate, hours are falling slowly at a steady rate. The interpretation of these facts that

we adopt here is that preferences for consumption and hours belong to the class

we define. This preference class is, in fact, very similar to that used ubiquitously

in the macroeconomic literature: that defined in King, Plosser, and Rebelo (1988).

King, Plosser, and Rebelo showed that the preferences they put forth, often referred

to as KPR or, perhaps more descriptively, balanced-growth preferences, were the

only ones consistent with an exact balanced growth path for all the macroeconomic

variables with the restriction to constant hours worked. The class of preferences

that we consider in the present paper is thus strictly larger in that it also allows

hours worked to change over time at a constant rate along a balanced path.

In compact terms, one can describe the period utility function under KPR as

a power function of cv(h), where c is consumption and h hours worked and v is

an arbitrary (decreasing) function. What we show in our main Theorem 1 is that

the broader class has the same form: period utility is a power function of cv(hc
ν

1−ν ),

where ν < 1 is the preference parameter that guides how fast hours shrink relative to

productivity. In terms of gross rates, if productivity grows at rate γ, then hours grow

at rate γ−ν , whereas consumption grows at γ1−ν . For ν > 0, the factor c
ν

1−ν captures

the stronger income effect: as consumption grows, there is an added “penalty” to

working (since v is decreasing). Our preference class obviously nests KPR: KPR

corresponds to ν = 0.

Interestingly, our class encompasses some utility functions that are often used
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in the literature (both in macroeconomics and in other fields). One is another

famous functional form of the same vintage as KPR: Greenwood, Hercowitz, and

Huffman’s (1988) proposed utility function, often referred to as GHH preferences.

The GHH class assumes a quasi-linear utility function where utility can be written

as a function of c minus an increasing (and convex) function of h. This formulation

implies that there is no income effect at all on hours worked. With a judicious

choice of v and a ν < 0 we obtain a frequently used case within the GHH class in

which the convex function of hours is restricted to be a power function (and the

Frisch elasticity is constant). Clearly, without an income effect, hours worked grow

under this formulation (so long as productivity grows). GHH preferences are often

used in applied contexts (see, e.g., Chetty et al., 2011) because they allow simple

comparative statics.

Another well-known case is the utility function proposed in MaCurdy (1981)

displaying a constant Frisch elasticity of labor supply and a constant intertemporal

elasticity of substitution, where the period utility function is additive in a power

function of c and a power function of h. However, unless the function of consumption

is logarithmic (a special case of the power function), these preferences are well-known

not to be consistent with constant hours worked. We show, again by a judicious

choice of v, that our preference class actually includes this case. That is, this

class of utility functions is consistent with balanced growth—if one admits that

hours can change over time along a balanced path. For shrinking hours, one needs

the curvature to be high enough (higher than log curvature), since otherwise the

marginal utility value of working an hour will grow: if productivity doubles, the

marginal utility of consumption must more than halve, because otherwise it will not

be optimal to lower hours.

Another example of how our broadening of the class of balanced-growth pref-

erences may be useful in applications involves curvature. In particular, under our

preferences the “consumption curvature”, or formally −ucc(c, h)c/uc(c, h), is an in-
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creasing (or decreasing) function of the hc
ν

1−ν composite. Under KPR preferences,

this curvature equal a constant: a preference parameter (usually labeled σ). So, in

particular, it is possible that the curvature under our preference specification moves

countercyclically, thus displaying higher consumption risk aversion in recessions than

in booms. In the cross-section, by the same token, richer households would then be

less averse to risk (in the relative sense) and choose riskier portfolios. We briefly dis-

cuss this and other possible applications (to growth and business cycles) in Section

8 of our paper.

The paper begins with a data section, Section 2, which looks at hours worked

over different time horizons and in different countries. We look at both the intensive

and the extensive margin and argue that although there have been noticeable move-

ments in the latter recently, over a longer horizon, essentially the entire fall in total

hours is accounted for by the former. Section 2 also briefly reviews the long-run

facts for aggregates, with a focus on the United States, in order to then motivate

our balanced-growth perspective. In Section 3, and to provide some background,

we first briefly discuss the preference class used in the macroeconomic literature to

match constant long-run hours and contrast it with a simple example that is actually

consistent with falling hours; a well-informed reader might want to skip this section.

The theory section of the paper is contained in Section 4 where we lay out the pre-

cise balanced-growth restrictions. The main theorem, Theorem 1, is then stated:

it states what kind of utility function is needed in order for households to choose

balanced-growth consumption and labor sequences. The proof of the theorem is in

the Appendix. However, the proof relies heavily on two lemmata—one characterizing

the implications of balanced-growth choices for the consumption-hours indifference

curves and one for consumption curvature—and we discuss those results in some de-

tail in the main text. The theory section also has a Theorem 2, which is straightfor-

ward, showing sufficiency of the stated preference class for balanced-growth choices.

Section 5 discusses a number of specific functional forms that are useful in applica-
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tions and comments on some of their properties. Section 6 comments on consumer

heterogeneity, a relevant issue since our theory relies on representative-consumer

analysis. This section also briefly discusses the cross-sectional wage-hours-wealth

data. Section 7 briefly discusses the U.S. postwar data from the perspective of our

theory: this data, with its stationary hours, is an exception historically and from an

international point of view, so what could explain it? Section 8 concludes.
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Figure 2: U.S. average annual hours per capita aged 15–64, 1950–2013

Notes: Source: GGDC Total Economy Database for total hours worked and OECD for the data on population aged 15–64. The
figure is comparable to the ones in Rogerson (2006). Regressing the logarithm of hours worked on time gives an insignificant slope
coefficient.

2 Hours worked over time and across countries

We now go over the hours data from various perspectives: across time and space.

2.1 Hours over time

Figure 2 is the main justification for the assumption of constant hours worked main-

tained in the macroeconomic literature. At least in postwar U.S. data this seems to
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be a good approximation.

What if we look at some other developed countries? Figure 3 shows hours worked

for other selected countries on a logarithmic scale. A horizontal line is no longer

a good approximation of the data. A country-fixed effect regression suggests that

hours fall at roughly 0.45% per year. To be sure, however, there is significant

heterogeneity; Canada, for example, has stationary hours quite like those in the

United States.
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Figure 3: Selected countries average annual hours per capita aged 15–64,
1950–2015

Notes: Source: GGDC Total Economy Database for total hours worked and OECD for the data on population aged 15–64. The
figure is comparable to the ones in Rogerson (2006). Regressing the logarithm of hours worked on time gives a slope coefficient of
-0.00455.

The overall falling hours in Figure 3 are not due to the selection of countries. A

complementary Figure C.1 in the Appendix C.1 shows the graph for all countries

with available data. Average hours are declining clearly in this unrestricted sample,

at roughly 0.34% per year. Hence in the cross-country data of the postwar period the

United States and Canada overall rather look like outliers. Interestingly, as Figure

C.2 in Appendix C.1 shows, a time-use survey shows decreasing hours worked even

for the postwar United States.
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From a longer-run perspective, hours worked in the U.S. have also clearly been

falling (see Figure 4). We also see that, abstracting from the very large deviations

from trend during Great Depression and World War II, hours have been falling at a

rather steady rate. Only the period 1980–2000 looks exceptional.
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Figure 4: Weekly U.S. hours worked per population aged 14+, 1900–2005

Notes: Source: Ramey and Francis (2009). Regressing the logarithm of hours worked on time gives slope coefficient of -0.00285.

Can the falling trend in hours worked be explained by demographics or the rise

in schooling? In Figure C.4 in Appendix C.1 we hold hours worked of different age

groups constant at their 2005 values and then check whether the observed changes in

the age structure can account for the falling hours. The effect implied by the demo-

graphic change is non-monotonic and overall very small.3 Furthermore, Ramey and

Francis (2009) also provide data on schooling (time attending school and studying

at home). As Figure C.5 in Appendix C.1 shows, average weekly hours of schooling

increased by less than two hours in total over the period 1900–2005 and cannot,

therefore, account for the drop in hours worked (hence: leisure has increased).

3 The baby boomers entering prime working age can partially explain the observed increase in
hours since the 1980s.
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The time trend in total hours worked can be split up into trends in participation

rates and trends in hours per worker; in our theory, we focus on the latter. Figure 5

shows that hours per employed in the U.S. declined at a remarkably constant rate,

including during the postwar period. This is indeed a remarkably robust fact over

time and across countries though the rate of decline differs across countries (see

Figure C.3 in Appendix C.1). Figure C.6 and C.7 in Appendix C.1 show this split

in hours per worker and the participation rate again for the U.S. in the postwar

period as well as over the last century. In other words: hours in the postwar U.S.

are only relatively stable because the participation rate increased steeply.
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Figure 5: U.S. weekly hours worked per worker in nonfarm establishments
1830–2015

Source: Average weekly hours data for 1830–80: Whaples (1990, Table 2.1). 1890-1970: Historical Statistics of the United States:
Colonial Times to 1970 (Series D765 and D803). 1970–2015: Statistical Abstract of the United States the number for nonfarm
establishments. This graph shows an updates series of the data in Greenwood and Vandenbroucke (2008). Regressing the log of hours
on a constant and year gives a slope coefficient of -0.00315 in the full sample (and -0.00208 for the years 1970–2015).

To sum up: over 100+ years, hours have been falling in all developed countries. In

the postwar data hours are still falling in most countries. In countries where they are

rather stable, like Canada or the U.S., they are stable only because the participation

rate increased quite dramatically. Hours per worker show a clear downward trend in
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all countries. Participation rates do not show a clear trend over time in developed

countries. Hence we conclude that, purely in terms of trend extrapolation, if the

participation rate does not increase further in the U.S., hours will continue to fall.

In fact, since the Great Recession, the participation rate fell, as did hours worked

per working-age population.

2.2 Hours worked in the cross-section of countries

In the cross-section of countries, our theory predicts that labor productivity (or

GDP per capita) should be negatively correlated with hours worked. Winston (1966)

establishes such a negative relationship in a sample of 18 countries and estimates the

elasticity of hours worked with respect to GDP per capita to be -0.107.4 Bick, Fuchs-

Schuendeln, and Lagakos (2015) document this negative correlation for a larger

sample that includes developing countries. Figure C.8 and Figure C.9 in Appendix

C.1 shows this negative correlation in the postwar data for the pooled sample and

the years 1955 and 2010 separately.

Finally, in Figure C.10 Appendix C.1 we focus on the 21 countries with data for

1955–2010 and look at the correlation in the growth rates in labor productivity and

hours worked over these 55 years. The figure shows again that hours fell for most

of the countries. Moreover, with the exception of South Korea, labor productivity

growth is clearly negatively related with the growth rate in hours worked.

2.3 The balanced-growth facts

Lastly, and for completeness, we now review the basic “stylized facts of growth” for

the United States. These data have been instrumental in guiding the technology

and preference specifications in macroeconomic theory.

4 With a labor productivity growth of 2.5 percent per year this slope coefficient suggests that
hours worked decrease at 0.26 percent per year.
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Figure 6: Balanced growth

Source: BEA and Maddison project.

Figure 6a and 6b show how output and consumption grew over the decades at

a very steady rate. Figure 6c and 6d show that the consumption-output ratio and

the capital-output ratio remained remarkably stable. (Figure C.11 in Appendix C.1

shows the capital-output ratio over an even longer time horizon and an additional

balanced-growth fact often imposed in the macroeconomic literature: constant fac-

tor income shares.) Our main take-away message from Figure 6 is that—in the

style of Kaldor (1961)—we would like to impose restrictions on our macroeconomic

framework such that it is consistent with these facts.
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3 Standard utility and a contrasting example

We now proceed to discuss whether the data we illustrated above can be rationalized

based on a stable utility function over consumption and leisure. To do this, we begin

in Section 3.1 by reminding the reader of the utility functions ordinarily used in

macroeconomic analyses when restricting attention to balanced growth paths with

constant hours. We thus present King, Plosser, and Rebelo’s (1988) formulation and

a parametric example which encompasses all the most commonly used functions.

Furthermore, we give an example in Section 3.2 that is outside this class and that

admits hours falling at a constant rate along a balanced growth path. We then

proceed with the general analysis in the following sections.

3.1 King, Plosser, and Rebelo (1988)

Consider time-additive preferences with a period utility function u(c, h), where c is

consumption and h hours worked. King, Plosser, and Rebelo (1988; KPR for short)

show that balanced growth with constant hours worked obtain if and only if u can

be written as

u(c, h) =











(c·v(h))1−σ−1
1−σ

if σ 6= 1

log(c) + log v(h), if σ = 1.

(1)

The KPR class, sometimes referred to as “balanced-growth preferences”, has dom-

inated the applied macroeconomic literature; in this literature, it is considered

paramount to use a framework that is consistent with a balanced growth path.

Within the KPR class, two special cases stand out. One is the Cobb-Douglas

case: u(c, h) = (c(1 − h)κ)1−σ/(1 − σ) for σ 6= 1 and (replacing the σ = 1 case)

u(c, h) = log(c)+κ log(1−h). The Cobb-Douglas case, which is obtained by setting

v(h) = (1 − h)κ in (1), restricts the elasticity of substitution between consumption

and leisure to be one. This case, furthermore, is part of the Gorman class, i.e., the

marginal propensities to consume and work are independent of wealth.
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The second frequently used case of KPR preferences is

u(c, h) = log (c)− ψ
h1+

1
θ

1 + 1
θ

, (2)

which is obtained by setting σ = 1 and v(h) = exp
(

−ψ h1+
1
θ

1+ 1
θ

)

. The parameter

θ > 0 is then the (constant) Frisch elasticity, i.e., the percentage change in hours

when the wage is changed by 1 percent, keeping the marginal utility of consumption

(or wealth) constant.

One can actually nest the two above cases as

u(c, h) =
c1−σ

(

1− ahb
)d

− 1

1− σ
, (3)

which, for future reference, typically will be parameterized using ψ, θ, and κ, as

a =
ψ(1− σ)

1 + 1
θ

, b = 1 +
1

θ
, and d = (1− σ)κ.

The functional form in (3) is obtained by setting v(h) =
(

1− ahb
) d

1−σ in (1).5 It is

straightforward to verify that the Cobb-Douglas case obtains when ψ = 1/(1−σ) and

θ → ∞. One can also show that the Frisch elasticity is constant when κ = σ/(1−σ),

which delivers

u(c, h) =
c1−σ

(

1− ψ(1− σ)h
1+1

θ

1+ 1
θ

)σ

− 1

1− σ
. (4)

With σ → 1, the the formulation in (4) reduces to (2) as a special case. These

two cases, (2) and (4), are considered in Trabandt and Uhlig (2011), who also show

that these are the only functional forms within KPR admitting a constant Frisch

elasticity.

5 We again assume that for σ = 1, the utility function is given by the limit, or formally
limσ→1 u(c, h).
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We will return to the “general special case” in (3) below in the context of falling

hours.

3.2 An example with falling hours

The KPR class does not admit hours falling at a constant rate. So suppose we look

at a case outside their class: the rather familiar function

u(c, h) =
c1−σ − 1

1− σ
− ψ

h1+
1
θ

1 + 1
θ

,

which was proposed in MaCurdy (1981). Notice that this case is a generalization—

allowing different consumption curvature than the log case—of the most commonly

used constant-Frisch formulation in KPR: (2). A consumer facing a wage rate wt at

time t would thus have an intratemporal first-order condition reading

wtc
−σ
t = ψh

1
θ

t .

Is this equation consistent with balanced growth, in particular with hours falling

at a constant rate? Suppose that wages grow at rate γ > 1 and that consumption

grows at rate γc, with hours growing at γh, all in gross terms. For the first-order

condition to hold at all points in time we then need that

γγ−σc = γ
1
θ

h .

On the type of balanced growth path considered in typical macroeconomic models,

we would have γ = γc, which is indeed consistent with this equation and then implies

that hours must grow at gross rate γh = γ(1−σ)θ. However, unless σ = 1 (logarithmic

curvature in consumption) this suggestion would not be consistent with the budget

or the aggregate (closed-economy) resource constraint as we would have wtht growing
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at a different rate than ct. Rather, for labor income and consumption to grow at the

same rate we need γγh = γc. Inserting this into the previous equation instead we

obtain γ1−σ = γ
1
θ
+σ

h , so that γh = γ
θ(1−σ)
1+θσ . We also see from this example that hours

will be falling over time if σ > 1. Consumption will thus grow at rate γc = γ
1+θ
1+θσ .

Turning to intertemporal considerations, the Euler equation here is a standard

one, since u(c, h) is additive; clearly, under a constant interest rate, it can be met

for a consumption path growing at a constant rate. Thus, we conclude that, at least

based on this utility function, it seems possible to rationalize falling hours worked

along a balanced growth path.

4 Theory

4.1 Balanced growth: technology and preferences

We now begin to set up our formal analysis. We will first state the balanced-

growth restrictions from the perspective of the aggregate resource constraint in a

closed economy. The workhorse macroeconomic framework has a final-good resource

constraint given by

Kt+1 = F (Kt, AthtLt) + (1− δ)Kt − Ltct, (5)

where capital letters refer to aggregates and lower-case letters per-capita values, and

F (Kt, AthtLt) is a neoclassical production function. Here, L is population, h is hours

worked per capita and δ the depreciation rate. Growth is of the labor-augmenting

kind, because of the Uzawa theorem.6 We thus assume constant exogenous technol-

6 Recently, Grossman, Helpman, Oberfield, and Sampson (2015) discusses an interesting exception
to the Uzawa theorem.
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ogy and population growth, i.e.,

At = A0γ
t, and Lt = L0η

t. (6)

Turning to preferences, we assume that they are additively separable over time with

a constant discount factor β. Quite importantly, and in line with the KPR setting,

the instantaneous utility, u(ct, ht), is assumed to be stationary. Then households

(whether infinitely or finitely lived) maximize

· · ·+ u(ct, ht) + βu(ct+1, ht+1) + . . . (7)

subject to a budget constraint

at+1 = (1 + rt)at + htwt − ct (8)

and, usually, a time constraint

ht + lt = 1, (9)

(where l denotes leisure per capita and both h and l are non-negative). In the

following, however, we will focus on interior solutions so this time constraint will

not be used actively.

A balanced-growth path for this economy is a time path along which K and

c grow at constant rates. Feasibility of such a path thus requires At+1

At

ht+1

ht

Lt+1

Lt
=

Lt+1

Lt

ct+1

ct
= Kt+1

Kt
(see (5)). Hence, since At+1

At
= γ and Lt+1

Lt
= η a balanced-growth

path implies a constant ht+1

ht
.

On a balanced growth path where labor productivity (alternatively, the real wage

per hour) changes at constant gross rate γ > 0, we need to have consumption grow

at the same rate as labor income. The derivations above led to gc = γgh, where

gc is the gross growth rate of consumption and gh that of hours worked. We thus
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seek preferences such that gc and gh are determined uniquely as a function of the

growth rate in (real) wages. Thus, we parameterize preferences with a constant ν so

that gc = γ1−ν and gh = γ−ν .7 A value of ν greater (smaller) than zero would then

correspond to the income effect of increasing productivity on hours being stronger

(weaker) than the substitution effect. The special case ν = 0 is of interest but we

will mainly focus on ν 6= 0; ν = 0 is the standard case, where hours will be constant

on a balanced growth path.

Thus, a balanced growth path is one where, for all t, ct = c0γ
(1−ν)t and ht =

h0γ
−νt, for some values c0 and h0. One can think of c0 as a free variable here,

determined by the economy’s, or the consumer’s, overall wealth, with h0 pinned

down by a labor-leisure choice given c0.

In the following we are interested in an interior solution of the consumption and

labor supply decision (i.e., ct > 0, 1 > ht > 0) that is consistent with a balanced

growth path: we confine attention to the intensive margin of labor supply.8 Such

an interior solution requires utility to be strictly increasing in consumption and

strictly decreasing in hours worked as well as some additional regularity conditions

we will comment on further below. Two first-order conditions are relevant for the

consumer’s optimization. The labor-leisure choice is characterized by

−
u2(ct, ht)

u1(ct, ht)
= wt,

where wt, the return from working one unit of time, grows in the long-run at rate γ:

wt = w0γ
t.9 On a balanced growth path we thus need this condition to hold for all t.

In our theorem below, we will also require that preferences admit a balanced growth

7 With ν ≥ 1 the theory would predict decreasing (or constant) consumption as the wage rate
increases; we rule this case out.

8 We comment on the extensive margin in Section 6 below.
9 In a decentralized equilibrium, this return denotes the individual wage rate including potential

taxes and transfers. Similarly, the return on saving we discuss below should be taken to be net
of taxes and transfers.
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path for all w0 > 0. That is, we are looking for preferences that imply first-order

conditions that admit a balanced path for consumption and hours at growth rates

γ1−ν and γ−ν , respectively, regardless of the (initial) level of the wage rate relative

to consumption.

The intertemporal (Euler) equation reads

u1(ct, ht)

u1(ct+1, ht+1)
= β(1 + rt+1),

where r is the return on saving and β > 0 the discount factor. If the economy

grows along a balanced path, then we would like this condition to hold for all t,

and we need the right-hand side to be equal to an appropriate constant, a constant

that moreover may depend on the rate of growth of consumption and hours. We

will denote this constant R and discuss its dependence on c, h, and γ below. In

the subsequent analysis, we will switch from sequence to functional notation. Thus

we leave out t subscripts and instead specify the balanced-growth conditions as a

requirement that the paths of all the variables start growing from arbitrary positive

values (save for those nonlinear restrictions relating the variables to each other that

are implied by the equilibrium conditions): they can be scaled arbitrarily.

4.2 Balanced growth using functional language

Proceeding toward our formal analysis, now note that our balanced-growth path

requirements on the utility function can be expressed as follows.

Assumption 1. The utility function u has the following properties: for any w > 0,

c > 0, and γ > 0, there exists an h > 0 and an R > 0 such that, for any λ > 0,

−
u2 (cλ

1−ν , hλ−ν)

u1 (cλ1−ν , hλ−ν)
= wλ, (10)
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and
u1 (cλ

1−ν , hλ−ν)

u1 (cλ1−νγ1−ν , hλ−νγ−ν)
= R, (11)

where ν < 1.

That is, we must be able to scale variables arbitrarily, but of course consistently

with the balanced rates, and still satisfy the two first-order conditions. The scaling

is accomplished using λ (for wages/productivity), λ1−ν (for consumption), and λ−ν

(for hours) in these conditions. Our main theorem below will thus characterize

the class of utility functions u consistent with these conditions. Our theorem will

not provide conditions on convexity of the associated maximization problem (of the

consumer, or a social planner); obviously, however, conditions must be added such

that the first-order conditions indeed characterize the solution. We briefly discuss

this issue in Section 4.3.5.

4.3 The main theorem

Our main theorem states what restrictions on the utility function are necessary for

generating balanced growth.

Theorem 1. If u(c, h) is twice continuously differentiable and satisfies Assumption

1, then (save for additive and multiplicative constants) it must be of the form

u(c, h) =

(

c · v
(

hc
ν

1−ν

))1−σ

− 1

1− σ
,

for σ 6= 1, or

u(c, h) = log(c) + log
(

v(hc
ν

1−ν )
)

,

where v is an arbitrary, twice continuously differentiable function.

The proof relies crucially on two lemmata, one characterizing the marginal rate of

substitution (MRS) function between c and h and one characterizing the curvature
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with respect to consumption: the relative risk aversion in consumption (RRAc)

function. The proof then uses these lemmata to derive the final characterization.

The proofs of the lemmata and of how to use them to complete the proof of the

theorem are contained in Appendix A.1. However, we will state and comment on

the lemmata, as they are of some independent interest, as well as on the overall

method of proof.

4.3.1 The consumption-hours indifference curves

We thus begin with the following lemma:

Lemma 1. If u(c, h) satisfies (10) for all λ > 0, and for an arbitrary c > 0 and w >

0, then its marginal rate of substitution (MRS) function, defined by u2(c, h)/u1(c, h),

must be of the form
u2(c, h)

u1(c, h)
= c

1
1−ν q(hc

ν
1−ν ), (12)

for an arbitrary function q.

This lemma characterizes the shape of the within-period indifference curves.

Notice here that, in the long run, hc
ν

1−ν will be constant so that the argument of q

will not change over time. The proof technique for Lemma 1 is very similar to that

for Euler’s theorem.

The indifference curves are illustrated with the following sequence of graphs. In

Figure 7, we see the KPR indifference curves to the left and a case with ν > 0 to

the right, with consumption and leisure on the axes.10 Clearly, with ν > 0, a higher

labor productivity implies more leisure: the income effect exceeds the substitution

effect.

These same preferences can equivalently be depicted with consumption and hours

on the axes, as in Figure 8. As in the previous figure, the KPR case is to the left

10 For simplicity, we abstract from non-labor income in Figure 7.
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1− h

c

l 1

(a) ν = 0

1− h

c

1

(b) ν > 0

Figure 7: The consumption-leisure trade-off, I

h

c

1

(a) ν = 0

h

c

1

(b) ν > 0

Figure 8: The consumption-leisure trade-off, II

and has constant hours worked, whereas in the right-hand side panel hours decline

with higher labor productivity.

Finally, Figure 9 takes the right-hand side graph from the previous figure and

puts it on the left. On the right, now, we see that same combination of points but

on log scales for both the axis. Here, the expansion path (dashed line) is linear, and

that is the defining characteristic of the indifference curves in Lemma 1: that is the

precise way in which the income and substitution effect have to be related in the



24

h

c

1

(a) in levels

log h

log c

(b) log scale

Figure 9: The consumption-leisure trade-off, III

class of utility functions that delivers balanced growth.11

4.3.2 Curvature

Next, let us characterize curvature of u with respect to c with Lemma 2.

Lemma 2. Under Assumption 1, the relative risk aversion in consumption (RRAc),

−cu11(c,h)
u1(c,h)

, must satisfy

−
cu11(c, h)

u1(c, h)
= p(hc

ν
1−ν )

for an arbitrary function p.

As for the previous lemma, let us point out that in the long run, i.e., along a

balanced-growth path, hc
ν

1−ν is constant. Thus, the RRAc will be constant. How-

ever, in general, its long-run level is endogenous, and over shorter time horizons, it

will not be constant.

The proof of the lemma is straightforward: it involves differentiation of the Euler

equation with respect to λ, the use of Lemma 1, and some manipulations.

11 The slope in Figure 9b is − 1−ν
ν

. For ν < 0, the substitution effect would be stronger and
hours/effort would increase as the wage rises; then the right-hand side panel of Figure 9 would
depict a straight line with a positive slope.
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The term relative risk aversion here is used for convenience; it is appropriate

only to the extent we consider a gamble where hours are not allowed to adjust. As

Swanson (2012) has shown, the appropriate risk aversion concept in typical applied

dynamic models with valued leisure is based on the value function.

4.3.3 The proof structure and some comments

The structure of the overall proof, based on the lemmata, is as follows. Our descrip-

tion is in two steps that are similar in nature. First, we use Lemma 2 to integrate

over c to obtain a candidate for u1; this can be accomplished straightforwardly since

the left-hand side of the lemma can be expressed as the derivative of log u1 with

respect to log c. Now note that integration with respect to one variable delivers an

unknown function (a “constant”) of the other variable. This function can then be

restricted by comparison with the characterization in Lemma 1 (a “cross-check”).

Second, after the first integration and cross-checking, with its implied restric-

tions, we integrate again with respect to c from the obtained u1 to deliver a candi-

date for u. Then, as in the previous step, another function of h appears and it too

needs to be cross-checked with Lemma 1 and thus further restricted. This, then,

completes the proof.

Notice that, although we were motivated by data displaying increasing productiv-

ity growth and falling hours, the proof does not assume γ > 1 or ν ≥ 0. Potentially,

the model could thus generate an increasing h at a constant rate as productivity

increases steadily, and we shall see an example of this below.

Furthermore, to our surprise, we did not see a full proof of the KPR result in

the literature.12 In particular, in the proofs we have looked at, the fact that the

RRAc is constant along a balanced path is taken to mean that this constant is

exogenous (i.e., given by a preference parameter σ and independent of h). This is a

12 We would be very grateful if someone could point us to a proof somewhere, because we may
well have missed it.
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correct presumption but nontrivial to prove, and it is dealt with in our proof in the

Appendix A.1.

4.3.4 Sufficiency

We now provide the converse of the theorem above: with the utility function in

the specified class, the first-order conditions for optimization will be consistent with

balanced growth.

Theorem 2. Assume that ν < 1. If u(c, h) is given by

u(c, h) =

(

c · v
(

hc
ν

1−ν

))1−σ

− 1

1− σ
,

for σ 6= 1, or

u(c, h) = log(c) + log
(

v(hc
ν

1−ν )
)

,

where v is an arbitrary, twice continuously differentiable function, then it satisfies

Assumption 1.

Since this proof is much less cumbersome than that for the main theorem, and

since it involves the manipulations necessary in applied work based on the preference

class we identify here, we include it in the main text.

Proof. Straightforward differentiation delivers

u1(c, h) =
1

c

(

1 +
ν

1− ν

v′(hc
ν

1−ν )

v(hc
ν

1−ν )
hc

ν
1−ν

)

(

c · v
(

hc
ν

1−ν

))1−σ

and

u2(c, h) =
1

h

v′(hc
ν

1−ν )

v(hc
ν

1−ν )
hc

ν
1−ν

(

c · v
(

hc
ν

1−ν

))1−σ

.
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Dividing the latter by the former we obtain

u2(c, h)

u1(c, h)
=
c

h

v′(hc
ν

1−ν )

v(hc
ν

1−ν )
hc

ν
1−ν

1 + ν
1−ν

v′(hc
ν

1−ν )

v(hc
ν

1−ν )
hc

ν
1−ν

.

By multiplying c by λ1−ν and h by λ−ν we obtain that this expression increases

by a factor λ. We have thus reproduced the first part of Assumption 1, i.e., the

intratemporal first-order condition on a balanced-growth path.

By evaluating u1(c, h)/u1(cγ
1−ν , hγ−ν), we obtain γσ(1−ν), i.e., an expression that

is independent of c and h and hence c and h can be scaled arbitrarily. By letting

R = γσ(1−ν) we therefore see that also the second condition of Assumption 1 is

verified.

�

4.3.5 Utility maximization under explicit constraints

Our two theorems together state necessary and sufficient conditions for our utility

function to be consistent with balanced growth as represented by an interior solution

given by the first-order conditions in Assumption 1. The theorems are thus designed

strictly to characterize preferences. Whether an exact balanced growth path exists,

as a competitive equilibrium or the solution to a planning problem, with preferences

in the defined class is a different, though of course closely related, question. The

answer depends on features of the constraints facing the consumer/planner. For

example, if the marginal product of capital is not high enough for the given produc-

tivity growth rate when the capital input is at zero, the balanced-growth version of

the Euler equation could not be satisfied. Moreover, to ensure sufficiency of a maxi-

mum based on the first-order conditions requires not only features of the constraints

but also additional assumptions on preferences. We now briefly and informally dis-

cuss some of the issues that come up when discussing the more general existence
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question. As a preview and summary, let us simply say that the main additional

restrictions are those normally assumed on constraints (such as non-emptiness, com-

pactness, and convexity) and preferences (such as monotonicity and concavity).

Let us begin by pointing out that the conditions in Assumption 1 formally arise

from a consumer maximizing utility subject to a budget constraint where prices (w,

including its scaled-up values, and R) are treated as exogenous. As such, it is rather

general and could straightforwardly be applied to models where market allocations

are not necessarily optimal (such as with taxes or an overlapping-generations struc-

ture). If one took a planner’s perspective, however, the same first-order conditions

would arise with w represented by a marginal product of labor and R by a marginal

product of capital net of depreciation. Both these would then be functions of en-

dogenous variables (capital and hours) but, on a balanced path, these would be

constant if the production function is homogeneous of degree one, and therefore it

is appropriate to regard them as arbitrary constants and hence our theorems can be

applied directly for a planning problem as well. However, whether appropriate such

constants exist for given technologies, and what they are, precisely requires some

additional discussion.

Since the constraints can differ depending on the specific application, we will not

present an additional theorem here but rather discuss three key issues—existence,

interiority, and sufficiency, each of which leads to potential pitfalls—and mention

some possible further restrictions on v. Starting with existence, as already alluded

to, one needs assumptions on technology to ensure that the first-order conditions

be met on balanced growth paths. Such assumptions are usually ensured with

Inada conditions, on production as well as preferences. To ensure existence of a

solution to a given maximization problem, one would typically make sure that the

utility function is continuous and the constraint set compact for an appropriately

chosen topological space. Here, a variety of standard regularity assumptions could

be invoked on our v and on the constraints.
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Turning to interiority, this is a presumption we have been working with through-

out. Clearly, for the first-order conditions to make sense we need utility to be

monotonic: (strictly) increasing in c and (strictly) decreasing in h. This is accom-

plished with the assumptions v(x) > − ν
1−ν

v′(x)x and v′(x) < 0 for all x.13 Moreover,

one needs to ascertain that corner solutions not apply; to rule such cases out, In-

ada conditions could again be used. E.g., to rule out zero hours for a consumer

maximizing utility, u2(c, 0) = 0 for all c > 0 would be useful; for a planner, an

additional possibility is to assume F2(K, 0) = ∞ for all K > 0. However, corner

solutions could be relevant and we do not want to argue generally that strong as-

sumptions on v be made to ensure Inada conditions. It seems reasonable that zero

hours are in fact chosen for some consumers (with high enough wealth/low enough

productivity); moreover, we would like to think of hours in time units and then

there is also a natural upper bound on hours, one that will be reached for a low

enough productivity/wealth level; such bounds may have been relevant historically,

in fact.14

Second, one needs conditions for first-order conditions to be sufficient. In a static

context of labor-leisure choice, first-order conditions together with quasi-concavity

of u(c, h) constitute a typical sufficiency condition. In a dynamic model, matters

are somewhat more complicated. Stokey and Lucas (1989, Theorem 4.15) show how

to prove sufficiency of the first-order conditions in an infinite horizon framework to-

gether with a transversality condition, provided that the “return function”, denoted

F (k, k′) there, is jointly concave in k and k′. Here, the return function involves h as

well and F (k, k′, h) then denotes u(c, h), where c has been replaced, using a resource

or budget constraint, by a concave function of (k, h, k′). The Stokey-Lucas proof

extends straightforwardly to the case where h is included, so long as one can show

that F is now concave in (k, h, k′). The assumption that u(c, h) is (strictly) concave

13 However, one would not want to rule out balanced growth paths where these assumptions are
met for some, but not all, values of x.

14 With an upper bound on working time, we also need to assume (γ − 1)ν ≥ 0.
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in (c, h) suffices here to obtain (strict) concavity of F . The transversality condition

is derived straightforwardly exactly as in Stokey and Lucas’s treatment. In sum,

given a v(x) that, jointly with constraint set, is such that u(c, h) becomes strictly

concave, standard analysis based on first-order conditions can be used.

Turning to examples, consider a price-taking consumer, i.e., a constraint in the

form of an affine constraint in the choice variables each period. Let us first point out

that the MaCurdy (1981) function then satisfies all the above conditions including,

to the extent σ > 1, an Inada condition for consumption. In Section 5.3.3 below we

look at another concrete special case—that where σ = 1—for which we are also able

to solve for full transitional dynamics in closed form under appropriate assumptions

on technology; there as well, monotonicity and concavity are verified, along with

the existence of a maximum. More generally, one can imagine many other specific

assumptions on v under which the same conditions go through. It is of course also

straightforward to produce assumptions on v such that monotonicity and concavity

are not met. More nontrivially, it is possible to find preferences for Assumption

1, monotonicity, and concavity are all met but that at the same time do not allow

falling, non-zero hours, because such a solution to the first-order conditions is not

consistent with the constraint.15

5 Utility functions for applied use

This section discusses the implementation of our proposed preference class in applied

contexts. This involves discussing the value of ν, special parametric forms, how the

utility functions used in the literature relates to the utility functions here, along

with some of their properties.

15 For a very simple, static example, suppose v(x) is a power function such that we can simply
write u(c, h) = −c−bhd, where b and d are positive constants. In this case, u is strictly increasing
in each of its arguments, and under a further assumption (d > b+ 1) it is also strictly concave.
One can show, for this case, that an interior choice for hours is only optimal if the consumer
has negative wealth.
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5.1 What is ν?

This question refers to the new element we add to standard preferences as repre-

sented by KPR’s balanced-growth function (note that by setting ν = 0 in Theorem

1 we obtain the KPR class in (1) above). The added element amounts to an en-

largement of the KPR preference class and is captured by the parameter ν, which

regulates the size of the additional income effect, i.e., that above and beyond the

income effect present in the KPR class. With ν > 0, hours fall when productivity

rises as the income effect dominates the substitution effect. Similarly, if ν < 0, hours

rise when productivity rises. In the data, as we have seen in Section 2, hours fall

as productivity rises, so the empirically relevant case is ν > 0. In fact, we can use

the time series data for an estimate of its value. Along a balanced growth path,

productivity grows at (gross) rate γ, hours fall at rate γ−ν , and consumption as well

as output grow at rate γ1−ν . Thus, with productivity and hours growing at, say,

2% and -0.4%, respectively (these numbers are rough averages), we would obtain

an estimate of ν from 0.996 = 1.02−ν . The result is a ν around 0.2. Thus, when

restricting the analysis to long-run facts, the class of preferences we propose is not

larger: it is different, thus necessitating a ν of 0.2 rather than ν = 0.

The value of ν is key for the long-run behavior of hours, but of course the form

of v can matter greatly for many other aspects of how much people choose to work:

it matters for the level of hours (and therefore output and other macroeconomic

aggregates), for transitional dynamics, for how hours respond to shocks of various

kinds. We now look at a number of special cases.

5.2 Parametric forms

The applied utility function in the KPR class that we suggest was given by (3). The

straightforward extension of this parametric class to ν 6= 0 is obtained by simply

writing, in place of h where it appears, hc
ν

1−ν . Thus we propose, as a rather flexible
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class for applied use,

u(c, h) =

c1−σ
[

1− a
(

hc
ν

1−ν

)b
]d

− 1

1− σ
, (13)

where we again have

a =
ψ(1− σ)

1 + 1
θ

, b = 1 +
1

θ
, and d = (1− σ)κ.

Formally, this function is obtained by selection of a particular functional form for

v: v(x) =
(

1− axb
) d

1−σ with x ≡ hc
ν

1−ν in Theorem 1. This parametrization can

straightforwardly be generalized further, e.g., by changing the functional form of the

squared brackets of x (say, by adding an additional x term to some different power).

However, as we show below, many interesting cases can indeed be viewed as special

cases of (13). We thus view it as a natural starting point.

5.2.1 Generalized log-log

A particularly simple case is the generalization of the standard log-log case to

u(c, h) = log(c) + κ log
(

1− φhc
ν

1−ν

)

.16 In Section 5.3.3 on transitional dynam-

ics below, we will explore this case in some more detail for the special case κ = 1.

As we will show there, the generalized log-log formulation we use here inherits the

analytical convenience of the standard log-log case when combined with a Cobb-

Douglas production technology and 100% depreciation.

16 This case is obtained by setting ψ = φ/(1− σ) and θ → ∞ and letting σ → 1.
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5.2.2 A case of the Greenwood-Hercowitz-Huffman (1988) preferences

With κ = 1 and θ = −ν in (13), where ν < 0 and ψ > 0, we obtain the quasi-linear

preferences

u (c, h) =



















(

c−ψ h
1− 1

ν

1− 1
ν

)1−σ

−1

1−σ
if σ 6= 1,

log
(

c− ψ h1−
1
ν

1− 1
ν

)

if σ = 1.

(14)

This is an often used case of the Greenwood-Hercowitz-Huffman (1988; GHH for

short) preferences.17 In this class, the Frisch elasticity is constant and equal to −ν.

These preferences are non-homothetic but they are part of the Gorman class. Pref-

erences (14) also imply a relative risk aversion in consumption, −ucc(c, h)c/uc(c, h),

which depends on hc
ν

1−ν . GHH preferences preclude any income effect on hours

worked. Clearly, with a substitution effect alone, GHH preferences imply increasing

hours as the wage rate increases. Consequently, we have ν < 0 and there is no

overlap with the KPR class. For concavity we need σ > 0. Note also that the pref-

erences (14) fulfill Assumption 1 only with 1 > ψ x−
1−ν
ν

1− 1
ν

and consequently additional

restrictions are required.

Quasi-linear preferences are widely used in the applied theory and labor litera-

tures, where the household problem is often assumed to be static and σ can be set to

zero without loss of generality. However, the quasi-linear formulation does preclude

income effects.

5.2.3 MaCurdy (1981)

With κ = 1/(1− σ) and ν = σ−1
σ+1/θ

in (13), for σ 6= 1, we obtain the case considered

by MaCurdy (1981) with

u(c, h) =
c1−σ − 1

1− σ
− ψ

h1+
1
θ

1 + 1
θ

, (15)

17 A straighter path to this function is to set v(x) = 1− ψ x
−

1−ν

ν

1− 1
ν

.
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with σ > 0, ψ > 0, and θ > 0.18 The attractiveness of this functional form is that

two important elasticities are controlled by two separate parameters: the intertem-

poral elasticity of substitution (IES) is constant and equal to 1/σ and the Frisch

elasticity is equal to θ; we will discuss these two elasticities more broadly below. As

is well known, with σ 6= 1, preferences of the form (15) are not part of the KPR

class. For this reason, as already discussed in subsection 3.1, a significant part of

the macroeconomic literature restricts itself to the case with a unitary IES by addi-

tionally setting σ = 1.19 Then the preferences become u(c, h) = log (c)−ψ h1+
1
θ

1+ 1
θ

and

are part of the KPR class.

Figure 10 below illustrates how σ and ν have to be restricted on a balanced path

with falling hours: ν > 0 requires σ > 1
1−ν

> 1. Thus, any point on the downward-

sloping curve is admissible (in the figure ν is set at a quantitatively reasonable

value).

5.2.4 Departing from time invariance or time separability

Our preferences rely on there being a stationary utility function u(c, h) characterizing

choice. It is not altogether uncommon in the literature that people use utility func-

tions that are either not stationary or not time-separable. As for non-stationarity,

the typical assumption is that some elements of the period utility function shift with

labor productivity: preferences change over time, in line with technology. Such func-

tions are often motivated by (but not derived from) some form of home-production

structure where the same productivity growth as in final-goods production occurs.20

18 One can also obtain this form directly by setting v(x) =
(

1 + ψν

(1−ν)x
(1−ν)(σ−1)

ν

)
1

1−σ

for σ 6= 1.
19 For instance, Shimer (2010) proposes this preference specification in chapter 1 of his textbook

and then writes “This formulation imposes that preferences are additively separable over time
and across states of the world. It also imposes that preferences are consistent with balanced
growth—doubling a household’s initial assets and its income in every state of the world doubles
its consumption but does not affect its labor supply. [. . . ] I maintain both of these assumptions
throughout this book.”

20 For a model of structural change between home and market production that generates long-run
changes in hours worked in the market place, see Ngai and Pissarides (2008).
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σ

θ

1

ν = 0

1
1−ν

ν = 0.2

θ = ν
(1−ν)(σ−1)−ν

Figure 10: Combinations of elasticities
The figure shows combinations of relative risk aversion in consumption σ and Frisch elasticity θ in the functional
form (15) that are consistent with (i) constant hours (ν = 0) and (ii) hours falling at rate γ−0.2. With two percent
productivity growth, i.e., γ = 1.02, and ν = 0.2 hours worked decline at roughly 0.4 percent per year.
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As an example, one can make (15) consistent with constant hours in the long run

by adding a time-varying term in front of ψ that is growing at the appropriate rate

(see, e.g., Mertens and Ravn, 2011). Such a formulation has been deemed useful

when one wants to consider free curvature in consumption and hours separately and

yet not violate the balanced-growth conditions. Similarly, by adding a term that

grows at the rate of technical change in front ψ, also the GHH case in (14) can be

made consistent with constant hours worked. A deeper foundation for this kind of

utility function is proposed by Hercowitz and Sampson (1991), who appeal to human

capital accumulation—which, from a home-production perspective, would raise the

disutility of work.

Reconciling constant hours worked in the long run with a small (or non-existent)

income effect has also attracted some attention in the macroeconomic literature,

since small income effects are sometimes appealing when it comes to fluctuations

around a balanced growth path. Hence, the literature has extended the KPR class

by giving up the assumption of time separability. A particularly well-known case is

Jaimovich and Rebelo (2009). Our analysis shows that even the GHH utility function

(14) is part of the general balanced-growth preferences specified in Theorem 1 but

of course, as discussed above, they would imply increasing hours worked as wages

grow. However, by adding a “habit” term Xt = cρtX
1−ρ
t−1 in front of h1−

1
ν to these

preferences, we can also obtain the preferences studied in Jaimovich and Rebelo

(2009).

The purpose here is not to take issue with preference formulations that depart

from time invariance or time separability. Relatedly, whether the additional terms

in such formulations ought to be exogenous to the individual (external) or controlled

by the individual (internal) is not a question we address here. It suffices to say that

the “tricks” that have been employed in the literature are still possible to employ

under our preference class. We will return briefly to the possibility of introducing

externalities in Section 6.2.
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5.3 Often-discussed features of utility

Within the proposed parametric class (13) there are many possible functions that are

all consistent with balanced growth under falling hours but which differ in important

properties. Some of these properties are now discussed. We begin with curvature,

then turn to the Frisch elasticity of labor supply, and finally discuss qualitatively

different transitional dynamics in two special cases of the model where we also make

assumptions on technology for sake of tractability.

5.3.1 Consumption curvature

The IES—the intertemporal elasticity of substitution of consumption—measures

a form of curvature in consumption and is a key object in some macroeconomic

analyses. In a time-additive setting without an hours choice, it is also one divided by

the coefficient of relative risk aversion, −u′′(c)c/u′(c). However, in a context where

leisure is valued, it is more difficult to define these concepts. A natural measure

of risk aversion would define a lottery over consumption and hours, or over wealth;

Swanson (2015) discusses this question in detail. Thus, what we defined as our

RRAc function above, −ucc(c, h)c/uc(c, h), is not the most natural measure of risk

aversion: it is defined as lotteries over consumption only, keeping h fixed. Turning

to its characterization, Lemma 2 shows that it is endogenous—it is a function of

hc
ν

1−ν—but it is constant along the balanced growth path.

Similarly, the definition of the IES, i.e., d log(ct+1/ct)/d log(1 + r), where r is

the net interest rate between t and t + 1, is more complicated when the utility

function includes hours worked. Along the lines of the definition above, one can

define a restricted IES notion keeping ht and ht+1 constant. When evaluated on the

balanced growth path one then obtains the IES 1/(−ucc(c, h)c/uc(c, h)), which again

is constant over time from Lemma 2, but a function of hc
ν

1−ν . Thus, one obtains one

divided by the curvature measure used above for the restricted notion of the RRAc.
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Here we first wish to re-emphasize the point just made: although the relative

risk aversion in consumption remains constant on a balanced growth path, it can be

endogenously determined. In contrast, in the standard KPR setting, the IES is not

only constant on a balanced growth path but exogenous. We have the following.

Proposition 1. Given the preferences specified in Theorem 1, with ν = 0, the

intertemporal elasticity of substitution is independent of c and h: it equals 1/σ.

With ν 6= 0, however, the intertemporal elasticity of substitution can, but will not

necessarily, depend on hc
ν

1−ν .

Proof. For the KPR class this is verified straightforwardly. For the case ν 6= 0, two

cases are dealt with in the text below: one where the IES is decreasing in hc
ν

1−ν and

one where it is constant and exogenous (and equal to 1/σ). �

For the MaCurdy formulation, it is straightforwardly verified that the RRAc

is exogenous and equals σ. However, under GHH, it is equally straightforwardly

verified, that the RRAc/IES is indeed endogenous. For many applications, perhaps

particularly in asset pricing, it may be interesting to consider preferences where

the RRAc is decreasing in the consumption-hours aggregate hc
ν

1−ν : in this case,

booms involve lower consumption curvature. One can imagine different functional-

form assumptions here but one is yet another special case of (13). Thus, first set

κ = 1/(1− σ) and we obtain

u(c, h) =
c1−σ − 1

1− σ
− ψ

h1+
1
θ

1 + 1
θ

c
ν

1−ν (1+
1
θ )+1−σ. (16)

This, clearly, is a slight extension of the MaCurdy case, allowing a variable RRAc.

Further, set 1 + 1
θ
= ǫ and 1−ν

ν
= ǫ. We then obtain the functional form

u(c, h) =
c1−σ

1− σ
− ψ

hǫc2−σ

ǫ
, (17)
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for ψ > 0, σ > 2 and ǫ > σ − 1. In this case, we have

RRAc = σ −
(σ − 2)ψ hǫc

ǫ

1 + (σ − 2)ψ hǫc
ǫ

, (18)

which is decreasing in x = hc
ν

1−ν = hc
1
ǫ .

5.3.2 The Frisch elasticity

The Frisch elasticity of labor supply is defined as the percentage change in hours

when the wage rate is changed by 1 percent, keeping the marginal utility of consump-

tion constant. It is a useful concept in the context of intertemporal substitution of

hours worked when there is a frictionless market for borrowing and lending: it relies

on the notion that whatever extra labor income is earned by working harder is in

part substituted toward other periods. This is captured by the requirement that the

marginal utility of consumption remain unchanged; it would change if the income

had to be consumed today.

The functional form we propose in Theorem 1 implies that the Frisch elasticity

is constant along the balanced growth path. To see this, note that we can write

u2(c, h) = c1−σ

h
z1(x), u11(c, h) = c−σ−1z2(x), u22(c, h) = c1−σ

h2
z3(x), and u12(c, h) =

c−σ

h
z4(x), where z1, z2, z3, and z4 are some functions of x = hc

ν
1−ν . Inserting

these expressions into the formula for the Frisch elasticity, u2(c,h)u11(c,h)
h[u22(c,h)u11(c,h)−u12(c,h)2]

,

one immediately sees that the Frisch elasticity only depends on x, which remains

constant along a balanced growth path. Note, however, that its balanced-growth

value will be endogenous and will in general depend on model parameters; in a

model with heterogeneous agents it would also differ across rich and poor, and so

on.

For the KPR formulation, as pointed out below, Trabandt and Uhlig (2011)

provide a theorem specifying for which subclass of KPR that the Frisch elasticity is

constant, i.e., independent of (c, h): it is constant under u(c, h) = log(c)−ψ h1+
1
θ

1+ 1
θ

and
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it is constant under u(c, h) = c1−σ

1−σ

(

1− κ(1− σ)h
1+1

θ

1+ 1
θ

)σ

(for σ 6= 1 and κ > 0), but

it is constant for no other function.21 Our formulation, for ν 6= 0, appears harder to

characterize fully in this regard, but it is clear that there are two additional cases

in which the Frisch elasticity is constant. One is our GHH formulation, for which

the Frisch elasticity is equal to −ν. Interestingly, although the Frisch elasticity

for any given function u(c, h) generally does not feature invariance with respect to

monotone transformations—the elasticity for u is different than that for f(u), where

f is monotone—it is actually invariant in the GHH case. The second case obtains

with the MaCurdy function. So far, we know of no other cases than these two.

5.3.3 Transitional dynamics: two simple examples

Under some additional conditions, as discussed in Section 4.3.5 above, the prefer-

ences in Theorem 1 guarantee the existence of a balanced growth path for any neo-

classical production function. Along this balanced growth path, the growth rates

of all the variables are completely characterized by the rate of technical change γ,

population growth η, as well as our new preference parameter ν. For transition

dynamics, it is useful to detrend any growing (or shrinking) variables with their re-

spective growth rates. Detrended capital—the only state variable in our one-sector

model—is k̂t ≡
Kt

ηtγ(1−ν)t , whereas we define detrended hours worked and consump-

tion as ĥt ≡ ht
γ−νt and ĉt ≡ ct

γ(1−ν)t , respectively. Thus, on the balanced path, k̂

is constant and this value, as usual, is determined jointly by the Euler equation,

which delivers k̂/ĥ as a function of preference and technology parameters, and the

first-order condition for hours, which involves k̂ and ĥ, where for each equation the

resource constraint has been used to eliminate the consumption variable. For given

model parameters the transitional dynamics can then be solved for numerically us-

ing standard methods, e.g., using linearization around the steady-state value k̂. It

21 Recall that we nest the former as a special case of the latter with our formulation of a parame-
terized KPR family in (3).
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is beyond the scope of the present analysis to fully explore how the preferences we

propose alter transition dynamics in well-known models. Rather, we will illustrate

different possibilities with two simple examples where the dynamics can be solved

for in closed form. In the first case, we will focus on preferences with σ = 1 and in

the second, we will examine the MaCurdy class. As we shall see, the transitional

dynamics for hours are qualitatively different in these two cases. Both cases involve

100% depreciation of capital, which does not appear restrictive to us since the focus

here is on growth and the time period can be chosen to be long enough that such

an assumption is not so unrealistic.

Cobb-Douglas production with σ = 1 So let us assume that σ = 1, that the

production function is Cobb-Douglas, i.e., Kα
t (γ

thtη
t)

1−α
, and that there is 100%

depreciation. Under these assumptions the first-order conditions for the planner’s

solution can be expressed (in terms of detrended variables) as

ηγ1−ν k̂t+1 = k̂αt ĥ
1−α
t − ĉt,

−(1− α)

(

k̂t

ĥt

)α

=
ĉt

ĥt

[ v′(xt)
v(xt)

xt

1 + ν
1−ν

v′(xt)
v(xt)

xt

]

,

ĉt+1

ĉt

1 + ν
1−ν

v′(xt)
v(xt)

xt

1 + ν
1−ν

v′(xt+1)
v(xt+1)

xt+1

=
βα

γ1−ν

(

ĥt+1

k̂t+1

)1−α

.

It is straightforward to guess, and verify, that a constant saving rate of αβη, i.e., ĉt =

(1− αβη)k̂αt ĥ
1−α
t , a constant xt ≡ x̄, and hours supply of ĥt =

(

x̄1−ν

(1−αβη)ν
k̂−ναt

) 1
1−να

,

satisfies these conditions with

−
1− α

1− αβη

[

v (x̄) +
ν

1− ν
v′(x̄)x̄

]

= v′ (x̄) x̄ (19)
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determining the solution for x̄.22 The speed of convergence −
∂ log(k̂t+1/k̂t)

∂ log k̂t
is given by

1−α
1−αν

and consequently strictly increasing in ν. Obviously, not any function v can be

used here, and the Appendix B.2 provides an example with a simple functional form

for v(x) such that (19) can be solved explicitly for x̄. Since the Frisch elasticity can

be written as a function of xt alone the closed-form solution also implies a constant

Frisch elasticity even along the transition.

The solution for hours just derived implies that if the initial capital stock is below

its balanced-growth level, hours worked will be above their balanced-growth level.

This illustration shows how transitional dynamics might be helpful for understanding

the high and steeply decreasing hours worked in France or Germany after World

War II resulting from a relatively low physical capital stock. Of course, the precise

shape of the transitional dynamics depend on the functional form of preferences and

technology, so the example here is only meant as an illustration and the dynamics

do not generalize; for example, below we construct a case where x adjusts over the

transition but where detrended hours are constant.

MaCurdy preferences with CES production Suppose preferences are c1−σ−1
1−σ

−

ψ h1+
1
θ

1+ 1
θ

, with σ 6= 1, and again let us focus on a planning problem. Here, a Cobb-

Douglas production function does not admit a closed-form solution. However, one

can show that the result in Koulovatianos and Mirman (2007) can be extended to

the MaCurdy case (and thus with endogenous hours): a closed-form solution with

a constant saving rate along the transition path obtains when σ/ε = 1, where ε

is the degree of substitutability between capital and hours in a CES production

function. Thus, a constant saving rate can be optimal for very high consumption

curvature and hence a low intertemporal consumption substitutability so long as

the production function features a correspondingly high elasticity of transformation

22 The closed-form solution also obtains in the presence of TFP variations, predictable or not.
Hours then respond to TFP but x and the saving rate are constant.
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across time. The case where σ = ε = 1 is well known here but the other cases

appear less well known.

Given that we can extend the result to to the MaCurdy preference class, how are

hours chosen in this case? It is straightforward to show, as is detailed in Appendix

B.2, that detrended hours, ĥ, are constant during transition. That is, unlike in the

case we looked at first, where the hours-consumption composite hc
ν

1−ν is constant

and hours are higher when the economy starts out with low capital, here detrended

hours remain constant whereas hc
ν

1−ν is moving monotonically. The saving rate out

of gross output remains constant along the transition and is equal to 1 − η(αβ)
1
σ .

Interestingly, with the CES production function factor shares change along the tran-

sition.23

6 Consumer heterogeneity and cross-sectional facts

We now comment briefly on two important concerns. One is that the analysis so

far has exclusively looked at a representative-agent economy, so a natural question

is whether our results are robust to introducing consumer heterogeneity of various

forms. Another concern has to do with the cross-sectional implications of our pref-

erence class: if income effects exceed substitution effects, it seems that high-wage

workers would work less than low-wage workers and perhaps make different portfolio

choices too. We therefore also discuss this aspect below.

6.1 Models of consumer heterogeneity

Our theory of labor supply in the long run, strictly speaking, holds only for a

representative-agent economy. Is it relevant, then, in cases when aggregation does

23 The closed-form solution with a constant saving rate also extends to a case where there are
additional time-varying (random or deterministic) Hicks- or Harrod-neutral technology terms.

Harrod-neutral technology movements then cause ĥ to deviate from its balanced-growth value,
whereas Hicks-neutral technology movements do not.



44

not hold? Whereas it is beyond the scope of the present paper to provide a full

answer to this question, let us still conjecture in the affirmative. More precisely, we

conjecture that in an environment with a stationary distribution of agents heteroge-

neous in assets, wages, utility-function parameters, etc., preferences in our class are

needed to match the aggregate growth facts (including aggregate hours shrinking at

a constant rate).

The reason for this conjecture is perhaps best explained with an example. So

consider the modern macro-style models of inequality: the Bewley-Huggett-Aiyagari

model. By now, this model has been extended and used in a vast variety of appli-

cations, with the common element being that there are incomplete markets for

household-specific idiosyncratic shocks of different kinds and implied differences in

wealth and consumption. Many of these models also consider substantial additional

heterogeneity, such as in preferences (see, e.g., the multiple-discount factor model

in Krusell and Smith, 1998), and yet others consider life-cycle versions with and

without bequest motives (see, e.g., Huggett, 1996).

These modern-macro models of inequality, then, do not display aggregation (at

the very least due to incomplete markets) and they are typically analyzed in steady

state. A key question, thus, is: for standard KPR preferences, and more generally

for the broader class of preferences considered here, do these models admit balanced

growth? The answer is yes. It is straightforward to transform variables and verify

this assertion, just like a representative-agent model would be rendered stationary

by variable transformation. Of course, growth makes a difference—the discount

rate(s), for example, would need to be transformed—so that some aspects of the

aggregate variables (such as the capital-output ratio) will depend on the rate of

growth, as will the moments of the stationary distribution of wealth. In Appendix

B.1, we formally prove this assertion for a typical Aiyagari model with preference

heterogeneity in discounting (and it should be clear from the analysis there that

many other sources of heterogeneity could be handled as well). Why does the trans-
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formation of variables work? It is straightforward to see that it is precisely because

the preferences are in the pre-specified class, and for this reason we conjecture that

it would not work outside of this class: balanced growth is, by definition, a set

of paths for the economy’s different variables that can be rendered constant by a

standard transformation.

Can life-cycle models with shrinking hours be accommodated? Though the model

in Appendix B.1 has infinitely-lived agents, it should be clear from the analysis there

that the answer is yes. However, in the context of life-cycle models, one is also led to

think about participation, and perhaps how participation changes as life expectancy

and productivity rises. The modeling above focuses entirely on the intensive margin;

what can then be said from a theoretical perspective on the extensive margin and

how it reacts to productivity growth? How does the extensive margin depend on

the form of the utility function? We have begun thinking about these issues, but

a full study must be conducted as a separate project. Let us therefore just make a

few observations. So suppose that hours are restricted to be either 0 or a positive,

exogenous amount h̄ (say, per month or week). Then, first of all, some features of

the utility function will not matter. To illustrate, consider the MaCurdy function.

Clearly, what matters for choice, then, is the difference between 0 and ψ h̄1+
1
θ

1+ 1
θ

. Hence,

the curvature (which contains ν, a key parameter in this paper) is unimportant

per se. Of course, if there are two possible choices for positive hours (say, half-

time and full-time), then curvature again becomes important. Second, suppose

one wants to derive the prediction that the participation rate decreases over time:

would this be possible for the utility function class we propose? In general, this may

be difficult, but suppose one imagines a planner allocating work to households in

the population, 0 or h̄, and suppose labor productivity is growing. Then if u(c, h)

is not additively separable, the efficient allocation involves different consumption

levels across working statuses. Moreover, in this case, it appears difficult to obtain

a balanced-growth equilibrium where the participation rate shrinks at a constant
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rate. However, if u(c, h) is additively separable—the MaCurdy case—it is, in fact

possible, so long as σ > 1. It is thus not possible with KPR preferences, which

require σ = 1. Having said all this, a more realistic model would have decentralized

markets with less than full insurance, etc., and the implications of such a model are

less obvious. One would ideally construct such a model with both an intensive and

an extensive margin.

6.2 Cross-sectional data

Another concern one might have from a perspective of heterogeneity is that the

model with an income effect that is larger than the substitution effect might be

inconsistent with what we know from cross-sectional data on households. In partic-

ular, there seems to be a view that consumers with higher wages work more, and

not less, as would be implied by our theory. Regarding portfolio choice, there are

potentially also implications for cross-sectional data that differ from those derived

under KPR preferences. We now make a sequence of remarks on this issue. None

of these remarks settles the issue entirely and, as in the case with the participation

margin, a fuller analysis is needed and such an analysis is outside the scope of the

present paper.

First, we are not entirely sure of what the data says. Ideally, one would want

a life-time, all-inclusive hours measure and then ceteris-paribus experiments where

a permanent wage is changed across households. Arguably, convincing such studies

are hard to come by. Interestingly, there is in fact a recently published study that

claims that the wage-hours correlation is negative, not positive. In particular, the

study of the intensive margin in Heathcote, Storesletten, and Violante (2014) reports

such a correlation, after taking out time dummies and age effects. We note in this

context that based on the consumer data they look at, Heathcote, Storesletten and

Violante (2014) actually use a MaCurdy preference formulation—thus, one in our

class—that implies an income effect that exceeds the substitution effect. In fact,
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with their estimates that implies ν = 0.184 > 0 and annual wage growth of 2

percent, the implied annual growth rate of hours worked over time is -0.365 percent,

so quite in line with the international/historical data. As for what the data says

about the extensive margin, it is well documented that the highly educated work

longer, but they also start working later. Thus, how life-time participation varies

with measures of permanent wage is also not clear.

If, however, the perception that high-skilled people work more, not less, is correct,

then we must point out that such a fact would be difficult to explain also with the

standard model, i.e., with KPR preferences: our generalization would merely make

the challenge slightly more difficult. There are studies in the literature that have

attempted to address this issue, using a combination of assumptions. One is that

the high wages that are observed—and are observed to be associated with higher

working hours—represent a temporary window of opportunity. For such a situation,

our preference class is consistent with a positive correlation. Another possibility is a

non-convexity of the budget set of consumers in the form of a wage rate that depends

on the amount of hours worked (see Erosa, Fuester and Kambourov, 2015). One

can easily imagine other channels. Suppose, for example, that people differ in their

“utility cost of effort”.24 Then those with high costs will work less and presumably,

when effort toward education and learning is factored in, also obtain lower wages.

Thus, a positive correlation between wage and hours would be generated in the

cross-section. Other elements of heterogeneity could, it seems, also deliver the same

qualitative result and it is an open question what amount of heterogeneity would

be necessary to turn a negative into a positive hours-wage correlation in the cross-

section.

Another avenue for explaining the cross-section is to short-circuit the income

24 A formulation of such heterogeneity is entertained in Bick et al. (2015), with a utilitarian planner
choosing who works and who does not at any point in time. This formulation would lead, in
reduced form, to a utility function of the kind log c−m(h), where c is per-capita consumption,
equalized across all agents, and h is total employment. Bick et al. combine this setting with a
Stone-Geary element in order to obtain decreasing hours during the transition.



48

effect on the individual level but maintain it on the aggregate level, through an

externality. This approach would be rather ad hoc but it would work as follows:

replace the c in hc
ν

1−ν in our setting with cξ c̄1−ξ, where c̄ is the average consumption

level in the economy. Then, if ξ = 0, on the individual level, the income effect

would equal the substitution effect. One can further weaken the income effect by

considering a ξ < 0, thus producing a positive hours-wage correlation in the cross-

section. Thus, taken together, there are many ways to generate a positive wage-hours

correlation, some explored in the literature and some not, and it remains to address

the balanced-growth facts with these theories. We believe that a full evaluation of

the cross-sectional aspects of the model requires much more work and that it is far

too early to dismiss KPR preferences (or those in our proposed class).

Regarding portfolio choice, a stylized fact appears to be that rich households hold

a larger share of their wealth in risky assets. This phenomenon does not allow itself

to be straightforwardly explained by a heterogeneous-agent version—thus extended

to include risk—of theory based on KPR preferences. For example, a theory based

on non-homothetic preferences is proposed by Wachter and Yogo (2010). Can the

preferences entertained in this paper help generate cross-sectional implications that

are in line with the data? To answer this question appears to be a research project

in itself but it is clear that at least consumption curvature will be endogenous in this

model and potentially decreasing in a wealth index, as discussed above. However,

the relevant risk-aversion measure in this model must be derived from the value

function, which is a function in wealth/cash on hand. We hope to explore attitudes

to risk from the perspective of the preferences proposed here in future work.

7 Hours worked in the postwar U.S.

Our data section emphasized the postwar U.S. experience with its rather stationary

hours as an exception rather than a rule, in an international and historical compari-
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son. Equipped with our theory, what can we say about possible explanations for the

exceptional behavior of the U.S. data? The purpose of the short present section is

not to provide an ambitious and full account of the observations but rather to sug-

gest some possibilities. In addition, there are a number of existing related studies.

For example, there is a clear connection with the debate on the comparison between

hours worked in Europe and in the U.S. initiated by Prescott (2004) and Rogerson

(2006, 2008). These authors argue that the gap in hours worked that opened up

over the postwar period reflects relative changes in tax rates: hours worked fell in

Europe (in relative terms) because of upward movements of tax rates in Europe

relative to those in the U.S.25

To contrast the U.S. experience with some of the more extreme European cases,

consider Figure 11 which displays the U.S. data on hours together with that for

Germany and France. Clearly, hours fell at a fast rate in these European economies,

indeed at a much faster rate than in the broader cross-section of countries we looked

at in the data section of the paper: the cross-country average is a rate of decline in

hours that lies in between that of the U.S. and those in Germany and France.

Turning to possible explanations for the U.S. experience, let us comment on

the Prescott-Rogerson argument first. Here, our model only calls for a slightly

different interpretation of the data. Whether income effects are slightly larger than

substitution effects or not, higher taxes and a larger transfer system would lower

hours worked and so if these policy variables diverged between two regions, one

would expect hours worked to diverge too. Moreover, since we do not argue for

income effects being much higher than the substitution effects, the quantitative

effects on the relative paths of hours in Europe and the U.S. would probably be

similar to those computed by Prescott and Rogerson. The only difference is that

25 Interestingly, Ohanian, Raffo, and Rogerson (2008), look at the developments in a number of
OECD countries, along with tax-rate data, and also point to falling hours. They interpret this
phenomenon as transitional and model it with Stone-Geary preferences as in the approach taken
by Bick et al. (2015).
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Figure 11: Hours worked in the U.S., Germany, and France, 1950–2013

Notes: Source: GGDC Total Economy Database for total hours worked and OECD for the data on population aged 15–64. The
figure is comparable to the ones in Rogerson (2006).

our perspective would suggest that stable hours, while productivity kept growing,

would in that case have required a fall in taxes and transfers. Indeed, the tax cuts

of the Reagan years represent such a phenomenon. Moreover, prior to the Reagan

tax cuts U.S. hours seemed to be falling, so the timing appears roughly consistent

with this argument.

Second, there has been demographic change, with the baby boom standing out

as a major factor. Figure C.4 in the appendix shows the implied movements of

aggregate U.S. hours due to demographics based on a mechanical view of labor

supply by age (using current hours per adult by age to project backwards). Clearly,

demographics account for a fall in labor supply after the 1950s and then a turnaround

only in the second half of the 1970s, and thus can be an important factor to take

into account.

Third, another potential factor comes from the observation that median wages
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have not grown much at all in the U.S., and per-capita hours are un-weighted by pro-

ductivity/wages. That is, if the vast majority of the population does not experience

wage growth, constant hours is of course consistent with our theory. Thus, the well-

documented increase in wage inequality from the late 1970s and onwards—which

coincides with the years within the postwar period with rising hours worked—is a

possible third factor.

A fourth factor is women’s increased labor-force participation. This feature of

the data may be explained by some form of discrimination, where women then

would formerly have been constrained and not able to work (at appropriate wages).

Another perspective is that technical change in household production lies behind the

change in female labor supply. Either way, aside from studying its roots, one would

need to simultaneously address the slight downward trend in male participation.

Overall, however, the participation dynamics at least mechanically account for some

of the changes in the aggregate hours data.

It is beyond the scope of the present paper to evaluate these different potential

explanations quantitatively; in fact, in a separate research project we have indeed

begun to address the exceptional behavior of the postwar U.S. hours data using

a structural model incorporating all these factors. Going forward, what should

one expect about U.S. labor supply (and that in other countries)? Our theory

simply says that, ceteris paribus, hours will fall at a modest rate to the extent the

historical record on growth in labor productivity continues. Assuming that there

will be continued productivity growth, then, could we expect counteracting factors

based on the discussion above? Demographic change will certainly play some role

but changes in the retirement behavior as a function of the projected increases in life

expectancy would need to be taken into account as well. The inequality trend could

continue, thus allowing average productivity growth but no median productivity

growth. Participation could change further, but there is a clear limit to the increased

participation rate of women: this is a clear transitional phenomenon by definition.
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Finally, for taxes to provide a balance against productivity growth, they would have

to keep falling.

8 Conclusions

We have presented an extension to the standard preference framework used to ac-

count for the balanced-growth facts. The new preference class admits that hours

worked fall at a constant rate when labor productivity grows at a constant rate,

as we have also documented the data to show across history and space. The new

preference class intuitively involves an income effect of productivity on hours worked

that exceeds the substitution effect.

We believe that our new preference class has potentially interesting implications

in a range of contexts. As for growth theory and growth empirics, note that on our

balanced path, the main macroeconomic aggregates (output, investment, consump-

tion) grow at the rate γ1−ν > 1 (ignoring population growth), i.e., at a rate lower

than productivity and in a way that is determined by the preference parameter ν.

Notice also that from a development perspective, falling hours worked is not a sign

of economic malfunctioning but rather the opposite: it is the natural outcome given

preferences and productivity growth, and it rather instead illustrates clearly how

output is an incomplete measure of welfare (see Jones and Klenow, 2015): leisure

grows. Interestingly, our theory says that growth theory probably should not ab-

stract from labor supply (which is typically set to “1” in models); rather, it seems

an important variable to model as it determines the growth of long-run output in

conjunction with the process of technical change.

Does our preference class have something to say about business-cycle analysis?

We cannot identify any immediate substantive implications, but it is clear that our

model can be amended with shocks and transformed to a stationary one that can be

analyzed just like in the RBC and NK literatures. The preference class consistent



53

with hours falling at a constant, but low, rate is a bit different than the standard

one. From the perspective of a particular case—the MaCurdy constant-Frisch elas-

ticity functional form—one can admit an arbitrarily low elasticity of intertemporal

substitution of consumption, though only if the Frisch elasticity is then also very

low.

Other areas where the new preference class may be interesting to entertain in-

clude asset pricing and public finance. For asset pricing—as we showed in the

paper—it is possible to have attitudes toward risk behave qualitatively differently,

and possibly more in line with data, than using standard balanced-growth pref-

erences. These same features would potentially also help explain portfolio-choice

patterns across wealth groups. For public finance, the sustainability of government

programs, such as social security, and debt service in the future depend greatly on

how hours worked will develop (along, of course, with the development of produc-

tivity).

We build the explanation for the secular drop in hours into preferences. What

about institutional factors? We take the view that over a long horizon, they must

be endogenous and thus must be responding to preferences. Moreover, the facts—

an approximately constant rate of decline in hours worked—are too stark not to

propose a “deep”, and time- and space-independent, explanation. Of course, we are

open to alternatives but our approach seems a reasonable place to start. What are,

then, alternative theories that could explain why hours fall? Could an alternative

theory explain the past without contradicting the constant-hours presumption of the

standard macroeconomic model? Other mechanisms for income effects dominating

substitution effects are possible, such as the Stone-Geary formulation proposed in

Bick et al. (2015), following Atkeson and Ogaki’s estimates (1996). Whether the

transition dynamics in such a model are slow enough to generate the long-term,

constant percent decline in hours observed in the data we look at here is an open

question.
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In sum, our present analysis should be viewed as one way to look at the long-run

data, and it should carefully be compared to others, especially since their impli-

cations for the future differ markedly. For example, the Stone-Geary formulation

implies that the future will see flat hours, independently of how future productivity

evolves, whereas the implications of the preferences we propose here suggest a tight

hours-productivity link. Our theory also has a number of other implications (over

the business cycle, for asset-pricing, growth, and so on) and suggests avenues for

follow-up research. We hope to address some of these applications in future work.
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Appendix A

A.1 Proofs

We now present the proofs of Lemma 1, Lemma 2 and Theorem 1.

We start by proving the two lemmata, characterizing the marginal rate of sub-

stitution (MRS) function between c and h and characterizing the curvature with

respect to consumption: the relative risk aversion in consumption (RRAc) function.

The proof of Theorem 1 then uses these lemmata to derive the final characteriza-

tion. Because the proofs will involve a large number of auxiliary functions that are

either functions of hc
ν

1−ν or of h, we economize somewhat on notation by sometimes

denoting hc
ν

1−ν by x and by systematically letting fi be a function of x whereas

mj is a function of h (where i and j are indices for the different functions we will

define). A sequence of constants will also appear; they are denoted Ak, accordingly,

from k = 1 and on.

Proof of Lemma 1

Proof. Because λ is arbitrary, we can set it in (10) so that cλ1−ν = 1. This delivers

−
u2(1, hc

ν
1−ν )

u1(1, hc
ν

1−ν )
= wc−

1
1−ν .

Evaluating (10) at λ = 1 we obtain −u2(c,h)
u1(c,h)

= w. Inserting this expression, we thus

obtain
u2(c, h)

u1(c, h)
= c

1
1−ν

u2(1, hc
ν

1−ν )

u1(1, hc
ν

1−ν )
. (A.1)

Now identifying q(x) as u2(1,x)
u1(1,x)

, where x = hc
ν

1−ν , gives the result in Lemma 1. �

It follows from Lemma 1 and u being twice continuously differentiable that q is

continuously differentiable.
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Proof of Lemma 2

Proof. The second first-order condition, (11), holds for all λ so it can be differen-

tiated with respect to λ and then evaluated at λ = 1 and divide by (11) again to

yield

(1−ν)cγ1−ν
u11 (cγ

1−ν , hγ−ν)

u1 (cγ1−ν , hγ−ν)
−νhγ−ν

u12 (cγ
1−ν , hγ−ν)

u1 (cγ1−ν , hγ−ν)
= (1−ν)c

u11 (c, h)

u1 (c, h)
−νh

u12 (c, h)

u1 (c, h)
.

(A.2)

This equation has to hold for all γ (and consequently one must adjust R, but R does

not appear in the equation). Moreover, it has to hold for all c and h; it has to hold

for all h because Assumption 1 allows any w and hence any h (given an arbitrary

c). Given this, by setting γ so that cγ1−ν = 1 we can state (A.2) as

(1− ν)
u11(1, hc

ν
1−ν )

u1(1, hc
ν

1−ν )
− νhc

ν
1−ν

u12(1, hc
ν

1−ν )

u1(1, hc
ν

1−ν )
= (1− ν)c

u11(c, h)

u1(c, h)
− νh

u12(c, h)

u1(c, h)
,

which holds for all c and h. We conclude that the right-hand side of equation (A.2)

only depends on hc
ν

1−ν , i.e., we can write

(1− ν)c
u11(c, h)

u1(c, h)
− νh

u12(c, h)

u1(c, h)
= f1(hc

ν
1−ν ), (A.3)

where f1 is then defined by the expression on the left-hand side of equation (A.2)

evaluated at cγ1−ν = 1. Differentiating (12) with respect to c gives

u12(c, h)u1(c, h)− u11(c, h)u2(c, h)

u1(c, h)2
=
c

ν
1−ν q(x)

1− ν
+
νc

1
1−ν v′1(x)hc

ν
1−ν

−1

1− ν
≡ c

ν
1−ν f2(x),

where we used the notation x = hc
ν

1−ν and the last equality simply defines a new

function f2. Then, again using the characterization of the MRS function to replace
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u2(c,h)
u1(c,h)

= c
1

1−ν q(hc
ν

1−ν ), we obtain

u12(c, h)

u1(c, h)
−
u11(c, h)

u1(c, h)
c

1
1−ν q(x) = c

ν
1−ν f2(x),

and hence

h
u12(c, h)

u1(c, h)
=
u11(c, h)

u1(c, h)
hc

1
1−ν q(x) + hc

ν
1−ν f2(x) = c

u11(c, h)

u1(c, h)
xq(x) + xf2(x).

This expression can be combined with equation (A.3) to conclude that −cu11(c,h)
u1(c,h)

must be a function only of x; we call this function p.26 �

Proof of Theorem 1

Proof. We will now combine the information in Lemmata 1 and 2 to complete our

proof of Theorem 1. We do this in two steps. First we analyze the case with ν 6= 0

and then the case with ν = 0. Note that the case with ν = 0 is already discussed in

King, Plosser and Rebelo (1988).

The strategy of the proof is very similar in the two cases. First, we integrate

the RRAc function in Lemma 2 with respect to c to obtain a functional form for

u1. As we integrate with respect to c, an unknown function of h appears. Then,

by differentiating the obtained function for u1 with respect to h we arrive at an

expression that can be compared to a restriction on u12
u1

found in the proof of Lemma

2. This comparison gives us some additional restrictions on the unknown function

of h. Thus, since the proof of Lemma 2 uses Lemma 1, we are in effect making sure

that the functional form we arrive at is consistent with both our lemmata. Having

arrived at a form for u1, we again integrate to deliver a candidate for u. Due to the

26 The function p(x) is thus defined by

−(1− ν)p(x) + ν (p(x)xq(x)− xf2(x)) = f1(x),

which straightforwardly offers a solution (that will depend on q, f1, and f2).
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integration a new unknown function of h again appears, but we can again restrict

this function by differentiating our candidate u with respect to h and comparing the

result to Lemma 1. This, then, delivers our final functional form.

Case with ν 6= 0: note that the characterization of the RRAc function in Lemma

2 can be restated as

∂ log u1(c, h)

∂ log(c)
= −p

(

exp

(

log(h) +
ν

1− ν
log(c)

))

.

This equation can be integrated straightforwardly with respect to log(c) to arrive at

u1(c, h) = f3(hc
ν

1−ν )m1(h), (A.4)

where f3 is a new function of x and m1 is an arbitrary function of h.27

Now observe that it follows from the proof of Lemma 2 that also hu12(c,h)
u1(c,h)

can

be written as a function of x alone: it equals −p(x)xq(x) + xf2(x). We use this

fact to further restrict the function m1. In particular, by taking derivatives in

equation (A.4) with respect to h, multiplying by h, and dividing by u1, we obtain

an expression for hu12(c,h)
u1(c,h)

that can be written as

f4(hc
ν

1−ν ) +
m′

1(h)h

m1(h)
,

where f4 is defined by f4(x) ≡ f ′
3(x)x/f3(x). For the consistency of these two

expressions for hu12(c,h)
u1(c,h)

—the one just stated, and the arbitrary function of x given

above (−p(x)xq(x)+xf2(x))—it must be that
m′

1(h)h

m1(h)
is a constant.28 Hence,m1(h) =

27 The integration delivers an expression for log u1(c, h) as a function of log x plus a function of
h. The latter function can only be a function of h since c was integrated over. The function of
log x can be rewritten as a function of x. Equation (A.4) is then obtained after raising e to the
left- and right-hand sides of this equation and f3 and m1 are defined accordingly.

28 If
m′

1(h)h
m1(h)

would depend on h, consistency could not be fulfilled for any given combination of c

and h.
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A1h
κ for some constants A1 and κ, i.e., it is isoelastic. Using this fact in (A.4) gives

u1(c, h) = f3(hc
ν

1−ν )A1h
κ. (A.5)

Since ν 6= 0, the expression on the right-hand side can equivalently be written

f5(h
1−ν
ν c)hκ, by defining f5(x) = A1f3(x

1−ν
ν ). Therefore, (A.5) can be easily inte-

grated with respect to c to deliver

u(c, h) = f6(hc
ν

1−ν )hκ−
1−ν
ν +m2(h), (A.6)

where f6 is the new function that results from the integration of f5 over c and m2 is

an arbitrary function of h (as the integration was over c). With the aim of further

restricting m2, we can express u2 as

u2(c, h) = u1(c, h)c
1

1−ν q(x) = f3(x)A1h
κc

1
1−ν q(x) = f7(hc

ν
1−ν )hκ−

1
ν , (A.7)

where we have used the characterization of the MRS function in Lemma 1, (A.5), and

finally the definition f7(x) ≡ f3(x)A1x
1
ν q(x). Thus, we can now check consistency

by taking the derivative of u with respect to h in (A.6) and comparing with (A.7).

The derivative becomes

(

κ−
1− ν

ν

)

f6(x)h
κ− 1

ν + c
ν

1−ν f ′
6(x)h

κ− 1−ν
ν +m′

2(h) ≡ f8(x)h
κ− 1

ν +m′
2(h),

where the equality comes from collecting terms and defining a new function f8

accordingly. For consistency, thus, this expression has to equal f7(x)h
κ− 1

ν for all

x and h. This is possible if and only if m′
2(h) = A2h

κ− 1
ν , where A2 is a con-

stant. Concentrating first on the case where κ − 1
ν

6= −1, we obtain m2(h) =
(

1 + κ− 1
ν

)−1
A2h

1+κ− 1
ν +A3 ≡ A4h

1+κ− 1
ν +A3. The constant A3 can be set arbitrar-

ily as it does not affect choice. The second term in (A.6) can thus be merged together
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with the first term using factorization and we can write u(c, h) as f9(x)h
1+κ− 1

ν +

A3, with f9(x) ≡ f6(x) + A4. Now note that h1+κ−
1
ν = x1+κ−

1
ν c−

ν
1−ν (1+κ−

1
ν ), so

that u(c, h) can be written as f9(x)x
1+κ− 1

ν c−
ν

1−ν (1+κ−
1
ν ) + A3. Now define v(x) ≡

(

(1− σ)f9(x)x
1+κ− 1

ν

) 1
1−σ

and σ ≡ κ ν
1−ν

and we conclude that we can write u(c, h) =

(c·v(x))1−σ−1
1−σ

(where A3 has been set to −1/(1− σ)).

In the special case where 1 + κ = 1/ν, we obtain from equation (A.6) that

u(c, h) = f6(hc
ν

1−ν ) +m2(h), but we also see from the arguments above that m2(h)

has to equal A2 log h + A5, where A5 is again an arbitrary constant. Since (given

ν 6= 0) we can write log(h) = log(x)− ν
1−ν

log(c), our candidate u can be rewritten

as u(c, h) = f6(x) − A2
ν

1−ν
log(c) + A2 log(x) + A5. The constant A5 can be set

to zero and we can write u(c, h) = −A2
ν

1−ν

[

log(c)− 1−ν
A2ν

f6(x)−
1−ν
ν

log(x)
]

. The

factorized constant can be normalized to −1 (as it does not affect choice), and we

can then define log v(x) ≡ f6(x) +
1−ν
ν

log(x), an arbitrary function; this concludes

the case 1 + κ = 1/ν. Hence we obtain the utility function

u(c, h) =











(

c·v(hc
ν

1−ν )
)1−σ

−1

1−σ
if σ 6= 1

log(c) + log v(hc
ν

1−ν ), if σ = 1.

Case with ν = 0: in this case we can rewrite the RRAc function in Lemma 2 as

∂ log u1(c, h)

∂ log(c)
= −p(h). (A.8)

We can integrate this equation with respect to log c to obtain

log u1(c, h) = −p(h) log(c) +m3(h), (A.9)

where m3 is an arbitrary function, given that we integrated over c. Differentiating
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with respect to h then gives

u12(c, h)

u1(c, h)
= −p′(h) log c+m′

3(h). (A.10)

From the proof of Lemma 2 we know that u12(c,h)
u1(c,h)

must be possible to write as a

function of h alone (recall that ν = 0). From this we conclude that we must have

p′(h) = 0, i.e., the only version of equation (A.9) that is possible is log u1(c, h) =

−σ log(c)+m3(h), where σ is a constant. Using this fact and raising e to both sides

of (A.9) then delivers

u1(c, h) = c−σm4(h), (A.11)

where m4(h) = exp (m3(h)). Integrating (A.11) with respect to c we can write

u(c, h) =











(c·v(h))1−σ−1
1−σ

+m5(h) if σ 6= 1

m4(h) log(c) + log v(h) if σ = 1;

(A.12)

here, in the first equation −1/(1− σ) +m5 is another function (of h) that appears

because of the integration over c and v(h) is defined from v(h)1−σ−1
1−σ

= m4(h), whereas

in the second equation log v(h) is the function that appears due to the integration.

We will now, along the lines of the case where ν 6= 0, show that m4 and m5 will

have to have very specific forms. We look at each in turn. So in the case with σ 6= 1,

combine (A.11) with Lemma 1 to write

u2(c, h) = c1−σq(h)m3(h). (A.13)

This can be contrasted with the result of differentiating (A.12) with respect to h,

an operation that yields

u2(c, h) = c1−σv(h)−σv′(h) +m′
5(h).



66

Since these last two equations both have to hold for all c and h, it must be that

m′
5(h) = 0, i.e., that m5(h) is a constant (which can be abstracted from).

Turning to the case where σ = 1, along the same lines we again derive two

expressions for u2 and check consistency. Combining (A.11) with Lemma 1 one

obtains that u2 cannot depend on c. Differentiating the second line of (A.12) with

respect to h, however, delivers a function of c unless m4(h) is a constant; as it does

not affect choice, we set this constant to 1.

This is our final characterization and we have now reproduced the statement in

our main theorem. In summary, in the σ 6= 1 case we obtain u(c, h) = (c·v(h))1−σ−1
1−σ

and in the σ = 1 case we obtain log(c) + log v(h). This completes the proof for the

case ν = 0. �
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Appendix B

B.1 A model with consumer heterogeneity

B.1.1 The Aiyagari model without growth

The consumer’s problem: for all (ω, ǫ, β),

V (ω, ǫ, β) = max
k′,h

u(ω + hǫw − k′, h) + βE[V (k′(1− δ + r), ǫ′, β′)|ǫ, β]

s.t. k′ ≥ k, h ∈ [0,∞). This leads to decision rules fk(ω, ǫ, β) and fh(ω, ǫ, β).

Labor income is ǫ ∈ {ǫ1, ǫ2, . . . , ǫI} and β ∈ {β1, β2, . . . , βJ}, with constant and

exogenous first-order Markov transition probabilities π(ǫ′, β′|ǫ, β).

We assume that the economy produces with a neoclassical production function

F (k̄, h̄) and the production factors earn their marginal products. Stationary equi-

librium: prices r and w, a value function V , decision rules fk and fh, and a sta-

tionary distribution Γ such that

1. fk(ω, ǫ, β) and fh(ω, ǫ, β) attain the maximum in the consumer’s problem for

all (ω, ǫ, β).

2. r = F1(k̄, h̄) and w = F2(k̄, h̄), where k̄ ≡ (
∑

ǫ,β

∫

ω
ωΓ(dω, ǫ, β))/(1 − δ + r)

and h̄ ≡
∑

ǫ,β

∫

ω
ǫfh(ω, ǫ, β)Γ(dω, ǫ, β).

3. Γ(B, ǫ, β) =
∑

ǫ̂,β̂ πǫ,β|ǫ̂,β̂
∫

ω:fk(ω,ǫ̂,β̂)∈B
Γ(dω, ǫ̂, β̂) for all Borel sets B and for all

(ǫ, β).
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B.1.2 The Aiyagari model with growth

The consumer’s problem: for all (ω, ǫ, β),

Vt(ω, ǫ, β) = max
k′,h

u(ω + hǫwt − k′, h) + βE[Vt+1(k
′(1− δ + r), ǫ′, β′)|ǫ, β]

s.t. k′ ≥ kgt+1, h ∈ [0,∞). Notice, here, that the borrowing constraint changes

over time (unless k = 0) and gets less and less stringent with k < 0. This leads to

decision rules fkt (ω, ǫ, β) and f
h
t (ω, ǫ, β).

Labor income and discount factors are as before. Now, however, note that wt =

γtw for all t.

A balanced-growth equilibrium: growth rates g and gh, prices r and wt, a

value function Vt, decision rules fkt and fht , and distributions Γt such that, for all t,

1. g = γgh.

2. fkt (ω, ǫ, β) and f
h
t (ω, ǫ, β) attain the maximum in the consumer’s problem for

all (ω, ǫ, β).

3. r = F1(k̄t, γ
th̄t) and wt = γtF2(k̄t, γ

th̄t), where k̄t ≡ (
∑

ǫ,β

∫

ω
ωΓt(dω, ǫ, β))/(1−

δ + r) and h̄t ≡
∑

ǫ,β

∫

ω
ǫfht (ω, ǫ, β)Γt(dω, ǫ, β).

4. Γt+1(B, ǫ, β) =
∑

ǫ̂,β̂ πǫ,β|ǫ̂,β̂
∫

ω:fkt (ω,ǫ̂,β̂)∈B
Γt(dω, ǫ̂, β̂) for all Borel sets B and for

all (ǫ, β).

5. fkt (ωg
t, ǫ, β) = gtfk0 (ω, ǫ, β), f

h
t (ωg

t, ǫ, β) = gthf
h
0 (ω, ǫ, β), and Γt(Bg

t, ǫ, β) =

Γ0(B, ǫ, β) for all ω, B, and (ǫ, β).

Note that due to growth, the distribution over ω will not be stationary. However,

as we will show below, once ω is detrended by the appropriate growth rate we obtain

a stationary distribution.
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B.1.3 Transforming the Aiyagari model with growth

Using the last condition of the balanced-growth equilibrium, note that in the third

condition we can write k̄t = (
∑

ǫ,β

∫

ω
ωΓ0(

dω
gt
, ǫ, β))/(1− δ + r), which is equivalent

to ˜̄kt ≡
k̄t
gt

= (
∑

ǫ,β

∫

ω̃
ω̃Γ0(dω̃, ǫ, β))/(1 − δ + r), where we have defined ω̃ = ω/gt.

Notice also that ˜̄kt =
˜̄k, i.e., a constant, in a balanced-growth equilibrium.

Similarly, we obtain h̄t =
∑

ǫ,β

∫

ω
ǫgthf

h
0 (

ω
gt
, ǫ, β)Γ0(

dω
gt
, ǫ, β), implying that ˜̄ht ≡

h̄t
gt
h

=
∑

ǫ,β

∫

ω̃
ǫfh0 (ω̃, ǫ, β)Γ0(dω̃, ǫ, β), which also is constant under balanced growth:

˜̄ht =
˜̄h.

Given g = γgh and that F1 and F2 are both homogeneous of degree 0, we now

see that the two firm first-order conditions can be expressed as

r = F1(
˜̄k, ˜̄h) and w0 = F2(

˜̄k, ˜̄h). (B.1)

Turning to the fourth equilibrium condition, using the (very) last condition stat-

ing that the distribution is (in an appropriate sense) constant on the balanced growth

path, we obtain

Γ0(B/g
t+1, ǫ, β) =

∑

ǫ̂,β̂

πǫ,β|ǫ̂,β̂

∫

ω̃:fk0 (ω̃,ǫ̂,β̂)g
t∈B

Γ0(dω̃, ǫ̂, β̂),

where we used the definition of ω̃. Defining B̃ = B/gt for any Borel set B, we obtain

Γ0(B̃/g, ǫ, β) =
∑

ǫ̂,β̂

πǫ,β|ǫ̂,β̂

∫

ω̃:fk0 (ω̃,ǫ̂,β̂)∈B̃

Γ0(dω̃, ǫ̂, β̂). (B.2)

Looking at consumer optimization under balanced growth, finally, we obtain

(after using the same kinds of definitions as above),

Vt(ω̃g
t, ǫ, β) = max

k̃′,h̃
u(ω̃gt+h̃gthǫw0γ

t−k̃′gt+1, h̃gth)+βE[Vt+1(k̃
′gt+1(1−δ+r), ǫ′, β′)|ǫ, β]
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s.t. k̃′gt+1 ≥ kgt+1, h̃gth ∈ [0,∞).

Now consider our instantaneous utility function of Theorem 1 for u and let

gh = γ−ν and g = γ1−ν . Then gt(1−σ) can be factorized out from u. Dividing both

sides of the equation by this quantity and defining Vt(ω̃g
t, ǫ, β) ≡ gt(1−σ)Ṽ (ω̃, ǫ, β),

we can write

Ṽ (ω̃, ǫ, β) = max
k̃′,h̃

u(ω̃ + h̃ǫw0 − k̃′g, h̃) + βg1−σE[Ṽ (k̃′(1− δ + r), ǫ′, β′)|ǫ, β] (B.3)

s.t. k̃′ ≥ k, h̃ ∈ [0,∞), with associated policy functions f̃kt (ω̃, ǫ, β) and f̃
h
t (ω̃, ǫ, β).

Now r, w0, Ṽ , f̃k, f̃h, and Γ0, determined by equations (B.1), (B.2), and (B.3),

define a stationary equilibrium. Three items differ compared to the formulation

above for the stationary equilibrium without growth: the discount factors in the

consumer’s problem are all multiplied by g1−σ, an additional gross “cost” of saving,

g, appears, and g also appears in the argument on the left-hand side of the equation

determining the stationary distribution.

B.2 Closed-form solutions for specific cases

B.2.1 Unitary elasticity and a constant xt

To illustrate transitional dynamics in hours worked, suppose we have v(x) = 1 −

φhc
ν

1−ν , with φ > 0 and 1/2 > ν ≥ 0, which gives the following utility function.29

u(c, h) = log(c) + log
(

1− φhc
ν

1−ν

)

. (B.4)

29 Note that with ν = 0 and φ = 1 we obtain the symmetric Cobb-Douglas function, which belongs
to the KPR class.
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Under the assumed parameter restrictions, the function (B.4) is increasing in c,

decreasing in h, and concave if 1−2ν > φ(1−ν)x, where x ≡ hc
ν

1−ν .30 Under Cobb-

Douglas technology and 100% depreciation, (19) can explicitly be solved to obtain

x̄ =
(1−α)(1−ν) 1

φ

1−α+(1−αβη)(1−ν)
. With xt = x̄, βη < 1, and ν < 1/2, concavity is ensured since

(1− 2ν)(1− α) + (1− ν)(1− αβη) > (1− α)(1− ν)2. We then obtain the following

closed-form solution for the detrended variables ĥt ≡ htγ
νt and ĉt ≡ ctγ

−(1−ν)t.

ĥt = (1− αβη)
−ν

1−αν

[

(1− α)(1− ν) 1
φ

(1− α) + (1− αβη)(1− ν)

]
1−ν
1−αν

k̂
−να
1−να

t (B.5)

and

ĉt = k̂
α(1−ν)
1−να

t (1− αβη)
1−ν
1−αν

[

(1− α)(1− ν) 1
φ

1− α + (1− αβη)(1− ν)

]
(1−ν)(1−α)

1−αν

. (B.6)

For the law of motion of the capital stock we obtain

k̂t+1 = k̂
α(1−ν)
1−αν

t

(

αβ

γ1−ν

)

(1− αβη)−ν
(1−α)
1−αν

[

(1− α)(1− ν) 1
φ

1− α + (1− αβη)(1− ν)

]
(1−ν)(1−α)

1−αν

.

(B.7)

Along the balanced growth path we have

k̂⋆ =

(

αβ

γ1−ν

)
1−να
1−α

(1− αβη)−ν

[

(1− α)(1− ν) 1
φ

1− α + (1− αβη)(1− ν)

]1−ν

, (B.8)

30 To see this, note that we have u1(c, h) =
1

c(1−ν)

[

1−ν−xφ
1−xφ

]

, which is strictly positive since (1 −

ν) ≥ 1−2ν
1−ν > xφ. Moreover, we have u2(c, h) = − 1

h

[

xφ

1−xφ

]

< 0. The second and cross-

derivatives are u11(c, h) = − 1
c2(1−ν)2

[

1− ν − ν(1−ν−xφ)
(1−xφ)2

]

, u22(c, h) = − 1
h2

[

xφ

1−xφ

]2

< 0, and

u12(c, h) = − 1
ch(1−ν)

νxφ

(1−xφ)2 ≤ 0, so that the Hessian becomes u11(c, h)u22(c, h) − u12(c, h)
2 =

φ2[(1−2ν)−(1−ν)xφ]

c
2 1−2ν

1−ν (1−ν)2(1−xφ)3
, which is strictly positive for 1− 2ν > (1− ν)xφ.
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ĥ⋆ =

(

αβ

γ1−ν

)
−να
1−α

(1− αβη)−ν

[

(1− α)(1− ν) 1
φ

1− α + (1− αβη)(1− ν)

]1−ν

, (B.9)

and

ĉ⋆ =

(

αβ

γ1−ν

)
α(1−ν)
1−α

[

(1− αβη)(1− α)(1− ν) 1
φ

1− α + (1− αβη)(1− ν)

]1−ν

. (B.10)

B.2.2 CES production and no transitional dynamics in hours

Suppose preferences are as in (15) and the production function is

F
[

Kt, γ
thtη

t
]

=
[

αK
ε−1
ε

t + (1− α)
(

γthtη
t
)

ε−1
ε

]
ε

ε−1

. (B.11)

With 100% depreciation, the transformed resource constraint reads

ηγ1−ν k̂t+1 =
[

αk̂
ε−1
ε

t + (1− α)ĥ
ε−1
ε

t

]
ε

ε−1

− ĉt,

and the first-order conditions read

(

ĉt+1

ĉt

)σ

=
βαk̂

− 1
ε

t+1

[

αk̂
ε−1
ε

t+1 + (1− α)ĥ
ε−1
ε

t+1

]
1

ε−1

γσ(1−ν)

and

(1− α)ĥ
− 1

ε

t

[

αk̂
ε−1
ε

t + (1− α)ĥ
ε−1
ε

t

]
1

ε−1

ĉ−σt = ψĥ
1
θ

t , (B.12)

where ν = σ−1
σ+1/θ

. When we further impose the restriction σ/ε = 1, it is easy to

guess and verify that these conditions are all fulfilled if

ĉt =
(

1− η(αβ)
1
σ

) [

αk̂1−σt + (1− α)ĥ1−σt

] 1
1−σ

(B.13)



73

and

ĥt =





1− α

ψ
(

1− η(αβ)
1
σ

)σ





θ
1+σθ

= ĥ∗. (B.14)

For the balanced-growth capital stock we then obtain

k̂∗ =
(1− α)

1
1−σ (αβ)

1
σ

[

γ
(1−σ)(1+θ)

θσ+1 − α(αβ)
1−σ
σ

] 1
1−σ





1− α

ψ
(

1− η(αβ)
1
σ

)σ





θ
1+σθ

. (B.15)

Additional references in the appendices

Piketty, T., and E. Saez (2003), “Income Inequality in the United States, 1913–

1998”, Quarterly Journal of Economics, 118(1), 1–41.

Piketty, T. (2014), Capital in the twenty-first century, Harvard University Press.
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Appendix C

C.1 Additional figures
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Figure C.1: Average annual hours per capita aged 15–64, 1950–2015

Notes: Source: GGDC Total Economy Database for total hours worked and OECD for the data on population aged 15–64. The
figure is comparable to the ones in Rogerson (2006). The sample includes 37 countries. Regressing the logarithm of hours worked on

time and country fixed effects gives a slope coefficient of -0.00336. The R2 of the regression is 0.64.
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Figure C.2: U.S. time used survey: Weekly hours worked

Notes: Source: ATUS, following the methodology in Aguiar and Hurst (2007). The sample contains all non-retired, non-student
individuals at age 21–65. For the years 1965–2003 the series is comparable to Aguiar and Hurst (2007) Table II and is updated until
2013 using the same methodology. Regressing the logarithm of hours worked on time gives a slope coefficient of -0.0024.
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Figure C.3: Hours worked per worker

Notes: The figure shows data for the following countries: Belgium, Denmark, France, Germany, Ireland, Italy, Netherlands, Spain,
Sweden, Switzerland, the U.K., Australia, Canada, and the U.S. The scale is logarithmic which suggests that hours fall at roughly
0.57 percent per year. Source: Huberman and Minns (2007).
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Figure C.4: Effect of demographics on hours worked, U.S. 1900–2005

Notes: The figure shows the implied average weekly hours worked per person aged 14+ over time by the variable demographical
composition of the society. The scale is logarithmic. Hours worked of each age bracket are held constant at their value in 2005 and
only the demographical composition is changing over time. The considered age brackets are 14–17; 18–24; 25–54; 55–64; and 65+.
The figure looks very similar for other baseline years than 2005. Source: Ramey and Francis (2009) and U.S. Census.
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Figure C.5: Hours of schooling

Notes: The figure on the left shows average weekly hours of schooling (time in class and homework) per population aged 14+. The
figure on the right shows average hours spent for work plus schooling per population aged 14+. The scale is logarithmic in both
figures. Regressing the logarithm of hours worked plus schooling on time gives a slope coefficient of -0.0018. Source: Ramey and
Francis (2009).
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(b) Participation rate

Figure C.6: Hours per worker and participation rate in the postwar U.S.

Notes: The scale is logarithmic in the figure on hours worked per worker. Regressing the logarithm of hours worked per worker on
time gives a slope coefficient of -0.002. Source: GGDC Total Economy Database for total hours worked and labor productivity and
OECD for the data on population aged 15–64.
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Figure C.7: Hours per worker and participation rate in the U.S.

Notes: The scale is logarithmic in the figure on hours worked per worker. Regressing the logarithm of hours worked per worker on
time gives a slope coefficient of -0.00418. Source: Ramey and Francis (2009).
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Figure C.8: Hours worked vs. labor productivity

Source: Source: GGDC Total Economy Database for total hours worked and labor productivity and OECD for the data on population
aged 15–64. Regressing the logarithm of hours worked on the logarithm of labor productivity and a country fixed effect gives a slope
coefficient of -0.13 and an R2 of 0.69.

10
00

15
00

20
00

2.5 5 10 20 40 2.5 5 10 20 40

1955 2010

A
ve

ra
ge

 a
nn

ua
l h

ou
rs

 p
er

 c
ap

ita

Labor productivity per hour worked in 1990 US$ (converted at Geary Khamis PPPs)

Figure C.9: Hours worked vs. labor productivity

Source: GGDC Total Economy Database for total hours worked and labor productivity and OECD for the data on population aged
15–64. The figure shows the scatter plot between labor productivity and hours worked for the years 1955 and 2010.
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Figure C.10: Changes in hours worked vs. labor productivity

Source: GGDC Total Economy Database for total hours worked and labor productivity and OECD for the data on population aged
15–64.
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The market value of slaves was about 1.5 years of U.S. national income around 1770 (as mush as land).  Sources and 

series: see piketty.pse.ens.fr/capital21c. 

Figure 4.10. Capital and slavery in the United States
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Figure C.11: Additional balanced-growth facts

Source: BEA; Piketty (2014) and updated series of Piketty and Saez (2003).
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