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1 Introduction

Perhaps the most striking recent challenge to the representative agent models comes from
evidence about the term structure of risk premiums. Several papers have argued that the
patterns computed for “zero-coupon” assets across different investment horizons cannot be
replicated using workhorse models, such as long-run risk, habits, or disasters (Binsbergen
and Koijen, 2017, provide a comprehensive review). In an endowment economy, represen-
tative agent models have two basic components: an equilibrium-based pricing kernel that
prices all of the assets in the economy and an exogenously specified cash flow process for
a given asset. The evidence implicitly suggests which features these two components must
possess. In this paper, we develop a methodology that allows researchers to establish these
required features.

We start by introducing complementary evidence on the average buy-and-hold log excess
returns across different horizons of a diverse set of assets, namely, foreign-currency bonds,
inflation-protected bonds, and the dividend yields associated with equity dividend strips.
We find log excess returns attractive because, as we show, the change in their averages
with the horizon tracks the difference between the term spreads of two yield curves: one
associated with U.S. dollar (USD) bonds and the other corresponding to the other individual
assets. Because the foreign-currency, inflation-protected, and equity dividend assets are
claims to different cash flows, the recovered term structures of their average log excess
returns have disparate levels and shapes.

What determines the level and shape of the term structure for a given asset? We follow the
approach of Alvarez and Jermann (2005), Backus, Chernov, and Zin (2014), and Bansal and
Lehmann (1997) in articulating the key modeling points. These authors connect the average
level of excess returns to the entropy of the pricing kernel or, equivalently, to the largest risk
premium in a given economy. The entropy of the USD pricing kernel has to be sufficiently
large to be consistent with the magnitudes of the observed returns. Next, the changes in the
entropy of the pricing kernel associated with changes in an investment horizon, known as
horizon dependence, should be moving one for one with how the yield term spreads change
with the horizon. These changes are small, and this, in general, imposes a limit on how
large the entropy can be.

We can apply the same logic to the average log excess returns by suitably redefining the
pricing kernel. We define the transformed pricing kernel as the product of the USD pricing
kernel and the growth rate of the cash flows of a given asset. This type of pricing kernel
is often referred to as the foreign pricing kernel in the context of currencies and the real
pricing kernel in the context of inflation, although it does not have any special moniker in
the context of equity dividends. Given the empirical slopes of the term structures, each of
these transformed pricing kernels should have a large entropy and small horizon dependency.
As with the pricing kernel itself, it is convenient to separate the consideration of the shape
of the term structure of the log excess returns from the consideration of the level of the term
structure. Because this term structure is driven by the differences between the U.S. curves



and asset-specific yields, we can infer an empirically plausible specification of the cash flow
dynamics for each asset by comparing the transformed pricing kernel to the nominal one.

As it turns out, it is difficult to match the cash flow dynamics capable of replicating the
term structure pattern in the excess returns with the level of one-period excess returns.
We characterize this tension between shapes and levels quantitatively using an affine term
structure model. The U.S. nominal term structure allows us to fix an empirically plausible
model of the nominal pricing kernel. We follow the logic of term structure models in
identifying the transformed pricing kernels that correspond to the yield curves for each of
the other assets. We establish that the cross-sectional differences in the shapes of the yield
curves for these assets are driven by the cross-sectional differences between the levels of
persistence of the expected cash flows and by the difference between their persistence and
the persistence of the U.S. nominal pricing kernel. In practice, this means that the expected
cash flow growth should be affected by at least two state variables. One is common across
all assets, including the U.S. nominal term structure, while the other is asset-specific and
has a different level of persistence.

Turning next to the levels of the term structures, we find that the observed one-period
excess returns are too high; that is, the entropy is too low in the calibrated model. We
argue that the affine term structure models that are used to describe the shape of the yield
curve have to be augmented with non-normal innovations, which are frequently modeled via
jumps. For non-normal innovations to the cash flows to affect the level of excess returns,
the pricing kernel and the cash flow growth process should have coincident jumps.

The shape of the yield curve imposes an important constraint on the dynamics of this
additional shock. To maintain the empirically plausible horizon dependence of log excess
returns, this joint jump must be iid, that is, neither the probability of a jump occurring
nor the conditional distribution of the jump sizes can have persistent components. This
separation between horizon dependence and the level of the yield curve allows us to calibrate
the jump distribution separately by matching the average and variance of the one-period
risk premiums of the corresponding assets.

In log-normal environments, log risk premiums are captured by the covariance of the log
pricing kernel and log cash flows. When both the pricing kernel and the cash flow process
have non-normal innovations, covariance is no longer a sufficient statistic for the comovement
between the two. Building on the entropy research, we introduce the concept of coentropy
as a measure of dependence that directly generalizes the computation of log risk premiums
to non-normal environments.

Coentropy is equal to an infinite sum of the joint cumulants of the log pricing kernel and
log cash flows, with the first joint cumulant being the covariance. This concept is useful for
computing risk premiums in our models. Furthermore, the interpretation of coentropy as
an infinite sum of joint cumulants allows us to highlight the role of non-normal innovations
in generating realistic risk premiums.

2



Indeed, we show that our proposed extension to the affine term structure model successfully
matches the one-period risk premiums. Quantitatively, a modest non-normality, i.e., small
cumulants of shocks to the cash flow growth process, translates into large risk premiums.
This happens because the cash-flow cumulants interact with large cumulants of the non-
normal innovations to the pricing kernel.

We introduce a model of an endowment economy featuring a representative agent with
recursive preferences to illustrate how the modeling insights of the affine model manifest
themselves in an equilibrium setting. The model shows which features need to be incor-
porated in the equilibrium models to satisfy the empirical targets presented by the term
structure evidence.

We highlight three important modeling components. First, unlike the literature that models
the variance of consumption growth as either an AR(1) or ARG(1) (square-root) process,
we assume that the volatility of the consumption growth is an AR(1) process. This feature
allows the generation of upward sloping nominal and real yield curves. Second, the con-
sumption growth features an iid jump similar to the one in Barro (2006). This is important
for resolving the highlighted tension between matching the shapes of the yield curves and
levels of the risk premiums. Third, the expected cash flow growth depends on two state
variables. One of the state variables also affects the expected consumption growth, which
is the traditional, albeit less persistent, “long-run risk” component of consumption growth.
The other state variable is asset-specific as in our affine model.

Related literature

Our work is primarily motivated by two strands of recent literature. First, there is grow-
ing evidence, both non-parametric and model-based, on the risk premium patterns of zero-
coupon securities across different horizons. A partial list of the research in this area includes
Belo, Collin-Dufresne, and Goldstein (2015), Binsbergen, Brandt, and Koijen (2012), Bins-
bergen, Hueskes, Koijen, and Vrugt (2012), Dahlquist and Hasseltoft (2013, 2014), Dew-
Becker, Giglio, Le, and Rodriguez (2015), Giglio, Maggiori, and Stroebel (2015), Hansen,
Heaton and Li (2008), Hasler and Marfe (2015), Lustig, Stathopolous, and Verdelhan (2014),
and Zviadadze (2013). We complement this body of research by offering evidence on the
log excess returns, which are cousins of risk premiums. This switch allows us to connect
evidence across the different horizons in a more transparent way. We also differ from the
literature in that we use the evidence to establish features that a successful asset-pricing
model should possess instead of estimating and testing specific models.

Second, an important stream of theoretical literature, exemplified by Alvarez and Jermann
(2005), Hansen (2012), Hansen, Heaton, and Li (2008), and Hansen and Scheinkman (2009),
analyzes the interaction of cash flows and the pricing kernel at the infinite horizon. Our
approach has a deep connection to these papers, which we highlight in the main text.
The main difference is that we rely on the existing evidence at intermediate horizons to
characterize the transition in the risk premiums across these horizons.
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Our paper is also connected to earlier research seeking to understand the value premium in
the cross-section of equities, such as Hansen, Heaton, and Li (2008), Lettau and Wachter
(2007), and Santos and Veronesi (2010). The evidence on zero-coupon assets was not
available at that time, so these papers confront a different set of facts that do not have an
explicit horizon dependence, which forces them to make different modeling choices.

The work of Lettau and Wachter (2011), who reach across different types of assets by
modelling the aggregate stock market, cross-section of equities, and the yield curve via an
affine pricing kernel, is particularly close to our paper. Because of limited data availability,
they focus on different moments than we do. Moreover, cross-sectional differences in cash-
flows arise from the additivity constraint on individual firms, whereas we do not explore
this mechanism at all in this paper. Because we do not study individual firms, our model of
cross-sectional differences in cash flows arises from the different exposures to the common
component and from the asset-specific cash-flow components. Finally, we emphasize the
tension in the term structure of zero-coupon asset returns and their one-period counterparts.
We argue that the only way to resolve this tension is to allow for a non-normal shock to
the pricing kernel and cash flows.

In this last respect, our paper is related to the literature on the impact of jumps on asset
prices dating back to Merton (1976). More recent work, such as Backus, Chernov, and
Martin (2011), Barro (2006), Longstaff and Piazzesi (2004), Rietz (1988), and Wachter
(2013), has focused on the ability of jumps to explain the asset risk premiums. Our approach
differs from this body of literature because it emphasizes that the jump component is not
only helpful but must also be present in our asset-pricing models. Moreover, this component
must be iid to resolve the tension between the relatively flat term structures of returns and
relatively high one-period risk premiums. Finally, we introduce the concept of coentropy,
which is helpful in characterizing the log risk premiums and expected log excess returns in
the presence of jumps.

2 Evidence

We focus on the properties of the observed term structures of prices and returns, so it is
helpful to begin with the data. Consider a cash flow process dt with growth rate gt,t+n =
dt+n/dt over n periods. We are interested in the “zero-coupon” claims to gt,t+n with a price
denoted by p̂nt . In the special case of a claim to the cash flow of one U.S. dollar, the price
is denoted by pnt . We define a yield on such an asset as ŷnt = −n−1 log p̂nt . Examples include
nominal risk-free bonds with gt,t+n = 1 (we reserve the special notation ynt ≡ n−1 log rnt,t+n
for a yield or, equivalently, an n−period holding period return on a U.S. nominal bond);
foreign bonds if dt is an exchange rate; inflation-linked bonds if dt is the price level; and
equities if dt is a dividend.

Returns are connected to yields. Consider the hold-to-maturity n−period log return

log rt,t+n = log(gt,t+n/p̂
n
t ) = log gt,t+n + nŷnt .
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We can thus express the term spread between the average per-period returns as

n−1E log rt,t+n − E log rt,t+1 = E(ŷnt − ŷ1
t ).

Define the per-period excess holding return as

log rxt,t+n = n−1(log rt,t+n − log rnt,t+n). (1)

Therefore, the average difference between the one- and n-period excess returns is equal to
the difference between the average term spreads:

E(log rxt,t+n − log rxt,t+1) = E(ŷnt − ŷ1
t )− E(ynt − y1

t ). (2)

This connection between yields and excess returns simplifies the ordinarily difficult task
of reliably computing the holding period returns over long horizons. The number of non-
overlapping data points available decreases when computing the historical average of realized
returns. In contrast, yields are available in every period, so the number of available data
points does not change with the horizon n and does not require observations of the cash
flows. We only need to compute the average excess return for n = 1 and then propagate it
across horizons using the yields.

We report the summary statistics for the one-period excess returns for a number of examples
in Table 1. We choose assets for which zero-coupon approximations exist, namely the
various bonds and dividend strips. This exercise is meant to be illustrative, so we do
not exhaustively analyze all possible assets (see Giglio and Kelly, 2015, and Binsbergen
and Koijen, 2017, for a more comprehensive list). Based on data availability, we select one
quarter as one period. We observe a large cross-sectional dispersion in the returns of around
1.36 percent per quarter or about 5.5 percent per year. Departures of excess returns from
normality are evident despite the relatively low frequency, with the skewness of the returns
ranging from -0.5 (Australian dollars) to 0.75 (S&P dividends).

Table 2 reports the yield curves and the departures of the term spreads from those of the
U.S. term structure. The U.S. dollar term structure starts low, on average, reflecting the
low average returns on short-term default-free dollar bonds. The mean yields increase with
maturity, and the mean spread between one-quarter and 40-quarter yields is about 2 percent
annually.

Assets with cash flows also have term structures, although they typically have less market
depth at long maturities than bonds. In general, they differ in both the starting point (the
one-period return on a spot contract) and in how they vary with maturity. Some assets
have steeper yield curves, some are flatter, and some have different shapes.

In Figure 1, we plot the term spreads of the U.S. Treasury yield, ynt −y1
t , and the differences

between the mean term spreads on a number of other assets and U.S. Treasury yields,
E(ŷnt − ŷ1

t )−E(ynt − y1
t ). Because the latter is equal to the average difference between one-
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and n-period excess returns, excess returns decline with the horizon in all of the examples
with the exception of the dividend strips. Moreover, the cross-sectional spread in the excess
returns widens as the horizon increases. The additional spread is about 1 percent higher
annually than the one-quarter excess returns.

In summary, the evidence points to large cross-sectional differences in excess returns. Be-
cause short-term excess returns are non-normal, part of the returns may come from the
compensation for the tail risk. The differences in returns increase with the horizon, sug-
gesting that the persistence of asset yields is different from the persistence of interest rates.

3 Term structures of prices and returns

We now model the term structures of asset prices and returns. We do this by showing how
the concepts of entropy and horizon dependence can help translate the evidence on excess
returns into the language of term structure modeling. In particular, we highlight the tension
between a model’s ability to fit how risk premiums change with the horizon vs how large
the risk premiums are over one period.

3.1 Term structure of zero-coupon bonds

Returns and risk premiums follow from the no-arbitrage theorem. There exists a positive
pricing kernel m that satisfies

Et
(
mt,t+1rt,t+1

)
= 1 (3)

for all returns r. An asset pricing model is then a stochastic process for m and r. We
want to characterize what the asset prices tell us about these stochastic processes. In this
section, we start with a process for m.

The equality (3) implies a bound on the expected log excess returns:

E(log rt,t+1 − log r1
t,t+1) ≤ E[logEtmt,t+1 − Et logmt,t+1] ≡ E[Lt(mt,t+1)]. (4)

We refer to the inequality as the entropy bound , to Lt as conditional entropy, and to its
unconditional expectation as entropy (see Alvarez and Jermann (2005, proof of Proposition
2), Backus, Chernov, and Martin (2011, Section I.C), Backus, Chernov, and Zin (2014,
Sections I.C and I.D), and Bansal and Lehmann (1997, Section 2.3)). Thus, entropy is
the highest possible expected excess return that an asset can generate in an economy that
features the pricing kernel mt,t+1.

To facilitate computation, we express entropy in terms of the cumulant generating function
(cgf) of log x. The cgf of log x, if it exists, is the log of its moment-generating function,

kt(s; log xt+1) = logEt
(
es log xt+1

)
. (5)
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Conditional entropy is therefore

Lt(xt+1) ≡ logEtxt+1 − Et log xt+1 = kt(1; log xt+1)− Et log xt+1.

Example 1 (“two-horizon” price of risk). Consider the following model of the pricing kernel:

logmt,t+1 = log β + a0wt+1 + a1wt. (6)

with {wt} iid standard normal. Although this model has valuation implications for horizons
beyond two, the information about one- and two-horizon assets is sufficient to identify its
properties. The price of risk a0 is constant in this model.

Conditional entropy,

Lt(mt,t+1) = a2
0/2,

is the maximum risk premium regardless of the state. So, the entropy, E[Lt(mt,t+1)], is the
same. The model can generate high risk premiums via large values of a0. Although one
could be tempted to choose a high a value as desired, the issue is whether discipline can be
imposed on the choice of this value.

One source of such discipline is the yield curve. In an arbitrage-free setting, the bond prices
inherit their properties from the pricing kernel. Pricing has a simple recursive structure.
Applying the pricing relation (3) to the bond prices gives us

pnt = Et
(
mt,t+1p

n−1
t+1

)
= Etmt,t+n, (7)

where mt,t+n = mt,t+1mt+1,t+2 · · ·mt+n−1,t+n.

The dynamics of the pricing kernel are reflected in what Backus, Chernov, and Zin (2014)
call horizon dependence, which is the relation between the n−period entropy Lm(n),

Lm(n) ≡ n−1E[Lt(mt,t+n)] = n−1E[logEtmt,t+n]− E logmt,t+1. (8)

and the time horizon represented by the function

Hm(n) = Lm(n)− Lm(1).

Backus, Chernov, and Zin (2014) show that horizon dependence is connected to bond yields
via

Hm(n) = −E(ynt − y1
t ). (9)

In the iid case, Hm(n) = 0, and the yield curve is flat or, equivalently, the entropy does
not change with n. Bond yields are then the same at all maturities and are constant over
time. If the mean yield curve slopes upwards, then Hm(n) is negative and slopes downward,
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reflecting the dynamics in the pricing kernel. One important implication of this result is
that the iid components of m will affect the level of the yield curve but not its shape.

These concepts relate to the work of Alvarez and Jermann (2005), Hansen (2012), Hansen,
Heaton, and Li (2008), and Hansen and Scheinkman (2009) when the horizon n is pushed
to infinity. The connection is detailed in Appendix A. The major difference is that by
considering the intermediate n, we are able to connect the theory to data.

Example 1 (“two-horizon” price of risk, continued). Using the cgf definition (5), the guess-
and-verify approach, and the law of iterated expectations, we obtain the cgf of the n−period
pricing kernel:

kt(s; logmt,t+n) = Cn(s) + sa1wt,

where the constant is Cn(s) = ns log β + (n − 1)s2(a0 + a1)2/2 + s2a2
0/2. Thus, the (log)

bond prices are

log pnt = kt(1; logmt,t+n) = n log β + (n− 1)(a0 + a1)2/2 + a2
0/2 + a1wt. (10)

The one-period yield is

y1
t = − log p1

t = − log β − a2
0/2− a1wt. (11)

The horizon dependence is

Hm(n) = (1− 1/n)[(a0 + a1)2 − a2
0]/2. (12)

The pricing kernel becomes iid when a1 = 0. Consistent with the earlier observation, the
horizon dependence is constant across horizons in this case. That is, a1 affects the slope of
the yield curve in this model. Also, a1 is pinned down by the volatility of the one-period
interest rate (11). Thus, the quantity that is helpful in generating the large one-period
risk premium, a0, is constrained by the value of a1 and the need to fit the term spreads,
−Hm(n), or, equivalently, by how the largest n-period risk premium differs from the one-
period premium.

To demonstrate this, we put some numbers on the parameters. We use the properties of the
U.S. nominal Treasury data described in Tables 1 and 2 for calibration. We focus on one-
and two-period bonds only because of the two-horizon structure of the pricing kernel. At a
quarterly frequency, the short rate y1

t in equation (11) has a standard deviation of 0.0084.
Thus, we set the absolute value of a1 to this value. The mean of the two-quarter yield
spread y2 − y1 is 0.0004; equivalently, the two-period horizon dependence in equation (12)
is −0.0004. We reproduce this value by setting a0 = −0.0994. This value of a0 corresponds
to the maximum risk premium of 2 percent per year (a2

0/2 · 400).

This low magnitude of the maximum risk premium reflects the tension between fitting the
yield curve and generating large one-period risk premiums within the same pricing kernel.
We tackle the question of how to resolve this tension in section 5.
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To conclude this section, we contrast the result (9) with Hansen and Jagannathan’s (1991)
characterization of the pricing kernel via the bound

Et(rt,t+1 − r1
t,t+1)/Vart(rt,t+1 − r1

t,t+1)1/2 ≤ Vart(mt,t+1)1/2/Et(mt,t+1). (13)

We extend this to an n−period case by characterizing the mean and variance of the pricing
kernel via the cgf:

Etmt,t+n = ekt(1;logmt,t+n),

Vartmt,t+n = Etm
2
t,t+n − (Etmt,t+n)2 = ekt(2;logmt,t+n) − e2kt(1;logmt,t+n).

The n-period bound is then

Vart(mt,t+n)1/2/Et(mt,t+n) =
(
ekt(2;logmt,t+n)−2kt(1;logmt,t+n) − 1

)1/2

=
(
e(n−1)(a0+a1)2+a20 − 1

)1/2
,

where the last line corresponds to the simple model from our example. The term in the
exponent is a positive constant that gives us a nonlinear relation between the maximum
Sharpe ratio and maturity n, even in the iid case.

Thus, the entropy conveys the term structure effects in a more intuitive fashion. Figure
2 compares the Sharpe ratios with the entropies for the iid and non-iid cases at different
horizons. The dashed lines show the departures from iid for the “two-horizon” model, which
are evident in the case of entropy. This is why the evidence in section 2 is presented in
terms of log excess returns rather than Sharpe ratios.

3.2 Term structures of other assets

Bonds are simple assets in the sense that their cash flows are known. All of the action
in valuation comes from the pricing kernel. When we introduce uncertain cash flows, the
pricing reflects the interaction between the pricing kernel and the cash flows. Nevertheless,
we can think about the term structures of these other assets in a similar way. Our approach
mirrors that of Hansen and Scheinkman (2009, Sections 3.5 and 4.4).

The pricing relation (3) gives us

p̂nt = Et
(
mt,t+1gt,t+1p̂

n−1
t+1

)
= Et

(
m̂t,t+1p̂

n−1
t+1

)
= Etm̂t,t+n, (14)

where m̂t,t+1 = mt,t+1gt,t+1 is the transformed pricing kernel, m̂t,t+n =
m̂t,t+1m̂t+1,t+2 · · · m̂t+n−1,t+n, and p̂0

t = 1. This has the same form as the bond pricing
equation (7), with m̂ replacing m.

Example 2 (cash flows). We complement the pricing kernel of example 1 by adding a
process for cash flow growth,

log gt,t+1 = log γ + b0wt+1 + b1wt. (15)
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The transformed pricing kernel is then

log m̂t,t+1 = log β + log γ + (a0 + b0)wt+1 + (a1 + b1)wt ≡ log β̂ + â0wt+1 + â1wt.

Our focus is on the differences between the two term structures, specifically those docu-
mented in section 2 in the mean excess returns and in the slopes and shapes of the mean
yield curves. Combining equation (2) with the definition of horizon dependence, we see that
the term difference in the log excess return on an asset is equal to

E(log rxt,t+n − log rxt,t+1) = Hm(n)−Hm̂(n).

The term spread of the U.S. nominal yield curve tells us about the properties of the nominal
pricing kernel m via its horizon dependence Hm(n), while the term difference in the log
excess returns tells us about the properties of the cash flow process g because the differences
in g are the only source of the differences in Hm(n)−Hm̂(n).

Example 2 (cash flows, continued). We need bond prices to compute horizon dependence.
When the pricing kernel is m̂, the expression is the same as (10), but with “hats” over the
appropriate parameters. In particular, the one-period yield is

ŷ1
t = − log β̂ − â2

0/2− â1wt.

Therefore, the horizon dependence is

Hm̂(n) = (1− 1/n)[(â0 + â1)2 − â2
0]/2. (16)

Thus, the average term spreads in the log excess returns are determined by the properties
of the cash flow growth process. Cross-sectional differences in the term spreads are driven
by cross-sectional differences in the cash flows. In our simple model, these are manifested
by b0 and b1.

As an illustration, we use the evidence on S&P 500 dividend futures (S&P) and the British
Pound (GBP) described in Tables 1 and 2. In the former case, the cash flow growth process
(15) represents the equity index dividend growth, and in the latter case, it is the currency
depreciation rate. The calibration proceeds similarly to the nominal U.S. yield curve. The
short interest rate ŷ1

t corresponds to the dividend yield on a one-period S&P strip and to the
yield on a one-period U.K. bond. Their respective volatilities are 0.0402 and 0.0105. These
values determine â1 for each of the assets. The horizon dependence Hm̂(2) is −0.0016 and
−0.0005, implying values of −0.0997 and −0.1005 for â0,, respectively. These coefficients
imply b0 = −0.0003 and b1 = 0.0318 for S&P, and b0 = −0.0011 and b1 = 0.0021 for GBP.
This simple example indicates the potential cross-sectional differences between the cash
flows that are implied by the respective term structures of their respective asset prices.
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3.3 One-period returns

We have already shown that there is tension between the fit of the model to the term
structure of nominal yields and the implied largest risk premium. We can highlight this
tension further by computing the one-period expected log excess returns for different assets.

From equation (1), the one-period log excess return is

log rxt,t+1 = log gt,t+1 + ŷ1
t − y1

t . (17)

In our example, its expectation is

E log rxt,t+1 = log γ − log β̂ − â2
0/2 + log β + a2

0/2 = (a2
0 − â2

0)/2 = −b20/2− a0b0.

In the case of our two asset classes, S&P and GBP, this expression implies −0.29 · 10−4

and −1.09 · 10−4, respectively. Consistent with our observation about the relatively small
maximum risk premium in this model, the absolute values of these quantities are much
smaller than those of their sample counterparts reported in Table 1.

It could be argued that the observed tension between the term spreads and one-period
premiums stems from an overly simple model of the pricing kernel and cash flows. It may
very well be that specific values are due to model misspecification. However, consider the
general implications. The loading on the shock wt+1 in the pricing kernel, a0 in this model,
controls the one-period risk premium in any model. The loading has to be large because
some of the one-period risk premiums are large. In contrast, the term spreads, which are
controlled by the same loading on wt+1, are an order of magnitude smaller than these
one-period risk premiums. We confirm these observations and explore a resolution of this
tension in a more realistic model in the next section.

4 Interpreting term structure evidence using an affine model

One of the implications of our discussion is that the term spreads in the log excess returns can
be viewed as the term spreads in yields of bonds corresponding to the suitably transformed
pricing kernel, m̂. Thus, the tools developed in the term structure literature can be used
to model the behavior of the risk premiums on a cross-section of assets. As is the case with
the U.S. nominal pricing kernel m, we want our models to deliver a large entropy of m̂ and
changes in entropy that are consistent with the yield curve corresponding to m̂. Because
cross-sectional differences in m̂ are solely due to cross-sectional differences in g, considering
different transformed pricing kernels together with the U.S. nominal pricing kernel will help
us to identify the properties of the cash flows. We present an affine term structure model
that captures these features.

11



4.1 The model

Consider a simplified version of the model in Koijen, Lustig, and Van Nieuwerburgh (2015,
Appendix), which we refer to as the KLV model. Specifically, we complement the (essen-
tially) affine model of the pricing kernel in Duffee (2002) by adding a process for cash flow
growth:

logmt,t+1 = log β + θ>mxt − λ2
t /2 + λtwt+1,

log gt,t+1 = log γ + θ>g xt + η0wt+1,

xt+1 = Φxt + Iwt+1,

where xt = (x1t, x2t)
>, λt = λ0 + λ1x1t, θm = (θm1, 0)>, Φ = diag(ϕ1, ϕ2), I is the identity

matrix, and {wt} is iid standard normal. This model is intentionally restricted compared
to the most general identifiable two-factor affine model (e.g., the risk premium depends on
one state only, and only one disturbance drives the dynamics of the state). Our goal is to
present the simplest model that highlights the features necessary to capture the evidence.

Note that if λ1 = 0, the pricing kernel can be re-written as

logmt,t+1 = log β − λ2
0/2 + a0wt+1 + a1wt + a2wt−1 + . . . ,

where a0 = λ0, a1 = θm1, aj = aj−1ϕ1, and j ≥ 2. We recover the model of example 1 with
ϕ1 = 0. Thus, our simple model misses two important features: the time-variation in risk
premiums and persistent state variables.

The conditional entropy of the pricing kernel,

Lt(mt,t+1) = (λ0 + λ1x1t)
2/2,

is the maximum risk premium in state x1t. The entropy is its mean:

Lm(1) = [λ2
0 + λ2

1/(1− ϕ1)2]/2.

Thus, the model has two avenues for generating high risk premiums. The first is the large
values of the coefficients λ0 and λ1, which control the exposure to the state affecting the
volatility of m. The second is the high persistence ϕ1 of the state. Horizon dependence
imposes discipline on the choice of their values, as we demonstrate below.

The bond prices satisfy log pnt = An +Bnxt with

Bn = θ>m(I + Φ∗ + Φ∗2 + · · ·+ Φ∗n−1) = θ>m(I − Φ∗)−1(I − Φ∗n),

An = n log β + λ0

n−1∑
j=0

B>j e+ 1/2
n−1∑
j=0

(B>j e)
2, e> = (1, 1),

where

Φ∗ =

(
ϕ1 + λ1 0
λ1 ϕ2

)
12



is the matrix of persistence coefficients under the risk-neutral measure. These expressions
are obtained by using the guess for the log bond price and applying the law of iterated
expectations to (7). The result is standard in the affine term structure literature.

In particular, the one-period yield is

y1
t = − log p1

t = − log β − θm1x1t. (18)

The horizon dependence is

Hm(n) = n−1An −A1 = n−1

λ0

n−1∑
j=0

B>j e+ 1/2

n−1∑
j=0

(B>j e)
2

 . (19)

The quantities that are helpful in generating the large one-period risk premiums (λ0, λ1)
and ϕ1 are constrained by the need to fit the n-period term spreads or, equivalently, by
how the largest n-period risk premium differs from the one-period premium (recall that Bn
depends on λ1).

The transformed pricing kernel has the same form

log m̂t,t+1 = logmt,t+1 + log gt,t+1 ≡ log β̂ + θ̂>mxt − λ̂2
t /2 + λ̂twt+1 (20)

with suitably redefined parameters: log β̂ = log β + log γ + λ0η0 + η2
0/2, θ̂

>
m = (θm1 + θg1 +

η0λ1, θg2), λ̂t = λ̂0 + λ1x1t, and λ̂0 = λ0 + η0. The expression for horizon dependence when
the pricing kernel is m̂ is the same but with parameters with a “hat”:

Hm̂(n) = n−1

λ̂0

n−1∑
j=0

B̂>j e+ 1/2
n−1∑
j=0

(B̂>j e)
2

 , (21)

B̂n = θ̂>m(I − Φ∗)−1(I − Φ∗n).

Thus, the horizon dependence of the log excess returns is determined by the differences
between the impacts of the state variables xt on the nominal pricing kernel and the trans-
formed pricing kernel (θm and θ̂m, respectively) and by the differences between the loadings
on the shocks common to the nominal and transformed pricing kernels (λ0 and λ̂0). These
differences, −(θg1 + η0λ1, θg2)>, and η0, respectively, are determined by the properties of
the cash flow growth process, that is, by the exposure of its conditional mean to the state
variables and by its exposure to the shock.

As a next step, we relate this model to data.
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4.2 U.S. dollar bonds

We use the properties of the U.S. nominal Treasury data described in Tables 1 and 2 to
calibrate the pricing kernel m. At a quarterly frequency, the short rate y1

t in equation
(18) has a standard deviation of 0.0084 and an autocorrelation of 0.9487. The mean of the
40-quarter (10-year) yield spread y40−y1 is 0.0045; equivalently, the horizon dependence in
equation (19) is −0.0045. We reproduce each of these features by choosing the parameter
values θm1 = 0.0026, ϕ1 = 0.9487, and λ0 = −0.1225. The parameter controlling the time
variation in the risk premium is set to match the curvature of the yield curve. Typically, this
results in Φ∗11 ≡ ϕ∗1 being very close to 1. We set it to 0.9999, implying that λ1 = 0.0512.
All of these values are summarized in Panel A of Table 3. The level of the term structure
can then be set by adjusting log β.

It is important to clarify the roles of the various parameters. Here, θm1 and ϕ1 control the
variance and autocorrelation of the short rate and λ0 controls the slope of the mean yield
curve. The different signs of θm1 and λ0 produce the upward slope in the mean yield curve.
The difference in the absolute values of λ0 and θm1 (the former is roughly two orders of
magnitude greater) implies a large entropy and small horizon dependence.

4.3 Other term structures

We complement the analysis in section 4.2 by characterizing the empirical properties of cash
flow growth g. We keep the parameter values we used earlier for U.S. bonds, (θm, ϕ1, λ0, λ1),
and choose others, (θg, ϕ2, η0), to mimic the behavior of the cash flow of interest. Thus,
the first set of parameters is common to all assets, while the second is asset-specific. We
suppress an asset-specific notation for simplicity.

4.3.1 Foreign currency bonds

There is an extensive set of markets for bonds denominated in foreign currencies, which
are linked by a similarly extensive set of currency markets. The term structure of a foreign
sovereign yield curve depends on the interaction of the dollar pricing kernel and the depre-
ciation rate of the dollar relative to a specific foreign currency, with the depreciation rate
corresponding to the growth rate of the cash flow in this setting.

For symmetry between the interest rates in the U.S. and other countries and for simplicity
of calibration, we assume that θg1 = −θm1 − λ1η0 (so that θ̂m1 = 0 in (20)). Then the
one-period yield is

ŷ1
t = − log β̂ − θg2x2t.

Thus, the asset-specific parameters ϕ2, and θg2 are calibrated by analogy with U.S. nominal
bonds using serial correlation and the variance of the one-period yields. The term spread
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of the foreign curve can then be used to back out λ̂0 = λ0 + η0 from equation (21). Because
we already know λ0 from the U.S. curve, we can determine η0. Panel B of Table 3 lists the
calibrated values.

We observe a dramatic difference in the persistence of the cash-flow specific shock, ϕ2, across
the different countries. The volatility θg2 and the risk premium contribution η0 retain the
same qualitative features as their U.S. counterparts in that they have different signs and the
former is much smaller than the latter. Quantitatively, we observe cross-sectional variations
in both parameters.

The literature views foreign exchange rates as being close to a random walk. In our model,
this means θg2 = 0 and θg1 = 0. These values imply that B̂n1 = (1 + η0λ1/θm1)Bn1 and

B̂n2 = Bn2 = 0. The foreign term spread is (approximately) a scaled version of the U.S.
term spread, contradicting the term structure evidence. Thus, the information captured
in the term structure of the sovereign bonds provides additional information that may be
useful in modeling the one-period dynamics of exchange rates.

Another implication of the calibrated model is that in contrast to many theoretical models
of exchange rates, the “domestic” and “foreign” pricing kernels are asymmetric. We use
quotation marks because we simply express the same projection of the pricing kernel in
different units. Thus, depending on the setup of the general equilibrium model, the marginal
rates of substitution of domestic and foreign economic agents could still be symmetric.

4.3.2 Inflation-linked bonds

Conceptually, the analysis of inflation-linked bonds is similar to that of foreign bonds.
Exchange rates and foreign bonds tell us about the transitions between domestic and foreign
economies, while the price level (CPI) and TIPS tell us about transition between the real
and nominal economy. Therefore, we use the same model and the same calibration strategy
in this case. We maintain the same U.S. nominal pricing kernel, so the calibration of cash
flow growth, or inflation in this case, is the only novel part relative to the previous section.

Assuming that θ̂m1 = 0 would be too restrictive in this case because of the extremely low
volatility of returns associated with trading TIPS at quarterly frequency. Table 1 shows
that the volatility of returns to holding TIPS is two orders of magnitude smaller than those
of foreign bonds, and Table 2 shows that the difference in the term spreads of TIPS and
U.S. nominal bonds is in the middle of the range for the spreads of foreign bonds. These
quantities create tension between the dual role of η0, which controls both the cross section
(term spreads of bonds) and the time series (conditional volatility of cash flow growth and,
therefore, returns).

Thus, we reconsider the calibration strategy of cash flow growth in the case of inflation by
relaxing the zero constraint on θ̂m1. In this case, the real short interest rate is equal to a
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linear combination of two AR(1) processes; that is, it is an ARMA(2,1):

ŷ1
t = constant− (θ̂m1 + θ̂m2)st, (22)

st = (ϕ1 + ϕ2)st−1 − ϕ1ϕ2st−2 + wt − (θ̂m1ϕ2 + θ̂m2ϕ1)(θ̂m1 + θ̂m2)−1wt−1.

See Appendix B.

First, we can calibrate θ̂m and ϕ2 by matching the variance and first- and second-order
autocorrelations of ŷ1

t . As a second step, we can calibrate η0 using Hm̂(40). Finally, we can
calibrate θg1 because θ̂m1 = θm1 + θg1 + η0λ1. All of the required expressions are provided
in Appendix B.

The results are reported in the first line of Table 3B. We see that the persistence of x2t is
much lower than in the currency examples. This is natural because we rely on two factors
to model the real short interest rate.

4.3.3 Equity

Dividend strips have recently attracted interest in the literature because the term structure
of the associated Sharpe ratios seems to offer prima facie evidence against the major asset
pricing models. Although we study excess log returns instead of Sharpe ratios, a comparison
of equations (4) and (13) clearly demonstrates that these objects are related.

We make best use of the available data by mixing two-quarter strip prices from Binsbergen,
Brandt, and Koijen (2012) with summary statistics for ŷnt − ynt , n ≥ 4 quarters from
Binsbergen, Hueskes, Koijen, and Vrugt (2013) and making a number of bold assumptions
(see the description in Table 2 and Appendix C). All of this evidence is worth revisiting as
more data become available.

Our calibrated model shares the qualitative traits of those matched to bond prices in the
preceding sections. Quantitatively, we observe a dramatic drop in persistence ϕ2. We note
the cross-sectional variation in ϕ2 appears earlier, but the equity model is the lowest (ex-
cluding the CPI model that features a two-factor structure of the relevant short interest
rate). Most of the representative agent models that have been confronted with the Sharpe
ratio evidence feature exogenously specified cash flows with persistence connected to that
of expected consumption growth and, therefore, the real pricing kernel. Our results suggest
that different levels of persistence of cash flows and the pricing kernel must be explored
before the final opinion on the equilibrium component of these models can be expressed.

5 One-period risk premiums

The discussion in the previous section shows that evidence on the behavior of average
excess returns can be translated across different horizons into the language of term structure
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modeling. Given the remarkable success of the no-arbitrage modeling of zero coupon yield
curves, it is not surprising that we can model the yield curves for other assets by suitably
redefining the pricing kernel.

This approach circumvents two issues. First, the term structure approach focuses on the
differences in excess returns along the maturity curve (“slope” in the term structure litera-
ture) and does not address the question of the level of excess returns. If the term structure
model successfully captures the horizon dependence of returns, we can recast the question
of the level of excess returns in terms of the one-period excess return, that is, in terms
of log rxt,t+1. The second concern with the term structure approach is whether the same
dynamic behavior can be generated in an equilibrium model. In this section, we focus on
the question of the level of the term structure.

5.1 Term structure implications for one-period returns

From equation (1), the one-period log excess return is

log rxt,t+1 = log gt,t+1 + ŷ1
t − y1

t .

In the log-normal environment of the models that we have discussed, the expected log excess
return is given by

Et log rxt,t+1 = −vart(log rxt,t+1)/2− covt(logmt,t+1, log rxt,t+1)

= −vart(log gt,t+1)/2− covt(logmt,t+1, log gt,t+1). (23)

Equation (23) implies for the KLV model:

Et log rxt,t+1 = −η2
0/2− (λ0 + λ1x1t)η0.

Conditional expectations are not observable, so the theoretical counterpart to average excess
returns is

E log rxt,t+1 = −η2
0/2− λ0η0.

Here, we consider what the model that was calibrated to match the term structure evidence
implies for one-period excess returns. The first column of Table 3C reports the calculated
values, which depart dramatically from their data counterparts displayed in Table 1. Thus,
the KLV model does a good job in matching the term structure of excess returns but not
their level.

In the language of entropy, the presented model can match the horizon dependences as-
sociated with the various assets but not the one-period entropies of the respective pricing
kernels. In fact, the message is more refined because one-period entropy is related to the
unobserved maximal risk premium. Here, we show that the observed risk premiums on
specific assets that cannot be matched exceed this model-based maximal risk premium.

Thus, we reach the same conclusion as in the simple two-horizon example. In the remainder
of this section, we discuss the possible extensions of the model to rectify this shortcoming.
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5.2 Proposed extension I: normal shocks

As noted earlier, an iid component of the pricing kernel has identical implications for horizon
dependence regardless of the horizon. Thus, adding an iid component to the pricing kernel is
the only avenue that will allow the one-period risk premium to be changed without affecting
the implications for the term spreads.

We start by adding a normal iid shock to the KLV model:

logmt,t+1 = log β + θ>mxt − λ2
t /2 + λtwt+1 + λ2εt+1,

log gt,t+1 = log γ + θ>g xt + η0wt+1 + η2εt+1.

We calibrate (λ2, η2) to match the expected excess returns

E log rxt,t+1 = −η2
0/2− η2

2/2− λ0η0 − λ2η2.

The expected excess return gives us one target for two parameters. To calibrate both
parameters, we also use the unconditional variance of excess returns

var log rxt,t+1 = η2
0[1 + λ2

1(1− ϕ2
1)−1] + η2

2.

Thus, the variance of the excess returns implies η2; then, given η2, the expected excess
returns imply λ2.

Table 3C reports the calculated values in the second and third columns. Both parameters
have indeterminate signs, so we report their absolute values. The inferred values of λ2 are
dramatically different across the different assets. In fact, the values have to be the same
because λ2 reflects the exposure of the U.S. nominal pricing kernel to the shock ε. Thus, a
normal shock is not capable of capturing the levels of the risk premiums. The statistics in
Table 1 also indicate that the observed one period excess returns are non-normal, further
suggesting that a non-normal shock is needed.

5.3 Coentropy

Before we proceed with a non-normal extension of the KLV model, we introduce the concept
of coentropy and its properties. This will be helpful for developing a non-normal counterpart
to the risk premium formula in (23) and for understanding the role of non-normality in
generating realistic risk premiums.

We define the coentropy of two positive random variables x1 and x2 as the difference between
the entropy of their product and the sum of their entropies:

C(x1, x2) = L(x1x2)− [L(x1) + L(x2)]. (24)

Coentropy captures a notion of dependence of two variables. If x1 and x2 are independent,
then L(x1x2) = L(x1) +L(x2) and C(x1, x2) = 0. If x1 = ax2 for a > 0, then the coentropy
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is positive. If x1 = a/x2, then L(x1x2) = L(a) = 0 and the coentropy is negative. Coentropy
is also invariant to noise. Consider a positive random variable y independent of x1 and x2

or, in other words, noise. Then, C(x1y, x2) = C(x1, x2y) = C(x1, x2).

As with entropy, we can express coentropy in terms of cgfs. The cgf of log x = (log x1, log x2)
is k(s1, s2) = logE(es1 log x1+s2 log x2). The cgfs of the components are k(s1, 0) and k(0, s2).
The coentropy is therefore

C(x1, x2) = k(1, 1)− k(1, 0)− k(0, 1). (25)

The connection to the joint cgf can be made more explicit by representing it as a sum of
joint cumulants, κi,j

k(s1, s2) =

∞∑
j=1

j∑
p=0

κj−p,p

j!

j!

p!(j − p)!
sj−p1 sp2,

This representation defines joint cumulants as the respective partial derivatives of the cgf
evaluated at zero:

κi,j =
∂i+jk(0, 0)

∂si1∂s
j
2

.

Joint cumulants are close relatives of co-moments:

mean1 = κ1,0

mean2 = κ0,1

variance1 = κ2,0

variance2 = κ0,2

covariance = κ1,1

Coentropy can be expressed in terms of joint cumulants:

C(x1, x2) =
∞∑
j=2

j−1∑
p=1

κj−p,p

p!(j − p)!

= κ1,1︸︷︷︸
(log)normal term

+κ2,1/2! + κ1,2/2! + · · ·︸ ︷︷ ︸
high-order joint cumulants

(26)

Intuitively, coentropy focuses on the joint distribution of the two variables by removing all
of the terms pertaining to the respective marginal distributions.

Expression (26) suggests that coentropy could deviate from covariance in a non-normal case.
Consider a Poisson mixture of normals. Jumps j are Poisson with intensity ω. Conditional
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on j jumps, log x ∼ N (jµ, j∆), where the matrix ∆ has the elements δij . The cgf is

k(s) = ω
(
es
>µ+s>∆s/2 − 1

)
. The entropies are

L(xi) = ω
(
eµi+δii/2 − 1

)
− ωµi

L(x1x2) = ω
(
e(µ1+µ2)+(δ11+δ22+2δ12)/2 − 1

)
− ω(µ1 + µ2).

The coentropy is therefore

C(x1, x2) = ω
(
e(µ1+µ2)+(δ11+δ22+2δ12)/2 − eµ1+δ11/2 − eµ2+δ22/2 + 1

)
.

In contrast, the covariance is cov(log x1, log x2) = ω(µ1µ2 + δ12). We show in Appendix
D that coentropy also differs from the other concepts of dependence introduced in the
literature.

A numerical example illustrates this point. Let ω = µ1 = 1 and ∆ = 0 (a 2-by-2 matrix of
zeros). If µ2 = 1, C(x1, x1) > cov(x1, x2), but if µ2 = −1, the inequality goes the other way
because the odd high-order cumulants change signs. Similarly, it is not difficult to construct
examples in which the covariance and coentropy have opposite signs.

Another numerical example shows how different they can be. Let µ1 = µ2 = −0.5 and

∆ = δ

[
1 ρ
ρ 1

]
.

We set ρ = 0 and δ = 1/ω. We then vary ω to identify what happens to the covariance and
coentropy. We see in Figure 3 that the two can be very different. When the jump intensity
ω is low, the coentropy exceeds the covariance, but as the jump intensity increases, the
coentropy becomes smaller than the covariance between the two processes.

5.4 Proposed extension II: Poisson shocks

We introduce jumps into the KLV model so that the new pricing kernel and cash flow growth
specification is

logmt,t+1 = log β + θ>mxt − λ2
t /2 + λtwt+1 + λ2z

m
t+1, (27)

log gt,t+1 = log γ + θ>g xt + η0wt+1 + η2z
g
t+1, (28)

where zmt and zgt are compound Poisson processes with the same arrival rate of ω and jump
size distributions of N (µm, δ

2
m) and N (µg, δ

2
g), respectively. For the jumps to cash flow

growth to be priced, the jump processes zmt and zgt must have coincident jumps. Thus, the
only difference between the non-normal innovations to the pricing kernel and the cash flow
is in the jump size.
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In this case, the expression for expected excess returns (23) no longer applies. However, the
main asset valuation equation (3) still applies, and we use it to derive a generalization of
(23) to non-normal settings. Taking the logs of (3), we obtain

0 = logEt(mt,t+1rt,t+1) = Lt(mt,t+1rt,t+1) + Et logmt,t+1 + Et log rt,t+1

= Lt(mt,t+1rt,t+1)− Ltmt,t+1 − Ltrt,t+1 + logEtmt,t+1 + logEtrt,t+1.

This equation implies that the (log) risk premium is

logEtrt,t+1 − log r1
t,t+1 = −Ct(mt,t+1, rt,t+1),

and the expected (log) excess return is

Et log rt,t+1 − log r1
t,t+1 = Ltmt,t+1 − Lt(mt,t+1, rt,t+1) = −Ltrt,t+1 − Ct(mt,t+1, rt,t+1).

Here, Ct(x1t+1, x2t+1) is the conditional version of the definition in (24).

The last equation implies that in the case of zero-coupon claims,

Et log rxt,t+1 = −Ltgt,t+1 − Ct(mt,t+1, gt,t+1).

As in the normal examples, we have unconditional expectations, so it is helpful to intro-
duce the additional notation Cmg(n) = n−1ECt(mt,t+n, gt,t+n). The definition of coentropy
implies

Cmg(n)− Cmg(1) = Hm̂(n)−Hm(n)−Hg(n). (29)

Although the horizon dependence is not affected by the addition of the Poisson iid shock,
the entropy of the pricing kernel is affected:

Lm(1) = λ2
0/2 + λ2

1(1− ϕ2
1)−1/2− ωλ2µm + ω

(
eλ2µm+λ22δ

2
m/2 − 1

)
.

Thus, it is easy to compute the n−period entropy via Lm(n) = Lm(1) + Hm(n), where
Hm(n) is exactly the same as in (19). The one-period coentropy is

Cmg(1) = λ0η0 + kz(λ2, η2)− kz(λ2, 0)− kz(0, η2) (30)

with

kz(s1, s2) = ω(es1µm+s2µg+(s21δ
2
m+s22δ

2
g)/2 − 1). (31)

Equation (29) implies the n−period coentropy.

Although Cmg(n) is affected by the jump components for any n, the change in coentropy
across horizons is not – a result of the jump components being iid. Thus, Cmg(n)− Cmg(1)
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is affected only by the differences in the covariances between logm and log g at different
horizons.

To calibrate the jump parameters, we normalize the jump loadings λ2 and η2 to 1 because
they are not identified separately from the jump volatilities δm and δg, respectively. We
borrow the parameters that control the jumps in the pricing kernel from the CI2 model of
Backus, Chernov, and Zin (2014): ω = 0.01/4, µm = −10 · (−0.15) = 1.5, δ2

m = (−10 ·
0.15)2 = 1.52. These parameter values represent a milder version of the Barro (2006)
disaster calibration, as we discuss in the context of a consumption-based model in the next
section.

We can use information about cash flows or, equivalently, about one-period excess returns,
to infer the asset-specific η2, and µg. The one-period excess (log) returns are

log rxt,t+1 = log gt,t+1 + ŷ1
t − y1

t

= −λ0η0 − η2
0/2− kz(λ2, η2) + kz(λ2, 0)− λ1η0x1t + η0wt+1 + η2z

g
t+1.

Thus,

E log rxt,t+1 = −η2
0/2− λ0η0 − kz(λ2, η2) + kz(λ2, 0) + ωη2µg

and

var log rxt,t+1 = η2
0[1 + λ2

1(1− ϕ2
1)−1] + η2

2ω(µ2
g + δ2

g).

Table 3B reports the results of the calibration procedure. As discussed in the example of
a bivariate Poisson process, the non-normality of the pricing kernel and cash flow growth
manifests itself in large differences between coentropy and covariance, as reported in Table
3C. These substantial deviations of coentropy from covariance highlight the ability of models
with non-normal innovations to generate large expected returns and large cross-sectional
differences between them.

As a reality check, we verify whether the calibrated processes for cash flows, log g, resemble
the data. We focus on two basic summary statistics: variance and serial correlation (the
mean can be mechanically matched by adjusting log γ). We use the model to compute
the population values of these two statistics at the calibrated parameters. Further, we
simulate 100,000 artificial histories of the respective cash flow growth rates, which allows
us to compute the finite-sample distribution of the same two statistics. Table 4 compares
these theoretical results with empirical values and indicates that they are sufficiently close
to the data.

A second reality check is to use the calibrated model of equity to see what it implies for the
equity premium. The value of an equity claim is an infinite sum of zero-coupon claims, so
the model-implied premium should be consistent with the one in the data. In Appendix E,
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we explain how we solve this for the equity premium in our model and demonstrate that
the premium is indeed matched.

We want to highlight how the non-normalities featured in our model affect the coentropy
and, therefore, the risk premiums via the joint cumulants of the pricing kernel and cash
flows. Because the (log) normal component, λ0η0, of coentropy in (30) is standard and
well-explored in the literature, we focus on the effect the jumps have on coentropy using
the decomposition in equation (26).

The joint cgf associated with jumps in our model (27)-(28) is provided in equation (31).
The cumulants corresponding to the marginal distributions have the following well-known
form:

κ1,0 = ωµm, κ0,1 = ωµg,
κ2,0 = ω(µ2

m + δ2
m), κ0,2 = ω(µ2

g + δ2
g),

κ3,0 = ωµm(µ2
m + 3δ2

m), κ0,3 = ωµg(µ
2
g + 3δ2

g),

κ4,0 = ω(µ4
m + 6µ2

mδ
2
m + 3δ4

m), κ0,4 = ω(µ4
g + 6µ2

gδ
2
g + 3δ4

g),

and so on. Because the jump size distributions of the two variables are independent of each
other, the joint cumulants have a particularly transparent representation:

κi,j = ω−1κi,0κ0,j . (32)

This expression clarifies how joint cumulants contribute to generating risk premiums. The
non-normalities present in both variables and reflected in the magnitudes of the respective
cumulants reinforce each other multiplicatively in the joint cumulants. Further, because the
first term, κi,0, reflects the properties of the pricing kernel, the cross-sectional differences
in the risk premiums are determined by the marginal cumulants of the cash flow process.

The question is which of the joint cumulants matter quantitatively in the model presented
here. The property (32) allows us to obtain a simple interpretation of coentropy. The high-
order cumulants of the log pricing kernel are very large—larger than 10 for i > 2. Regardless
of the asset, the cumulants of the cash flows are relatively small. Thus, it is helpful to use
the log scale to compare the quantitative effects of the two. On the log scale, each joint
cumulant is simply a sum of the two log marginal cumulants, up to a constant.

To illustrate the quantitative effect of coentropy, consider the case of GBP. The first row of
Figure 4 displays the log marginal cumulants. Each log joint cumulant with an index (i, j)
is equal to the sum of the two marginals with indexes i and j, as displayed in panel C of
the figure. We see that the log joint cumulants corresponding to a large i are dominated by
the properties of the pricing kernel, and vice versa for large j.

Panel C ignores the fact that the contributions of joint cumulants to coentropy are divided
by i!j!, so the effects of the higher-order terms on risk premiums and coentropy should be
diminished. Figure 4D demonstrates how fast this occurs for GBP by showing the joint
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cumulants (not logs) scaled by the factorials. We see that the quantitative effect of high-
order joint cumulants decreases quickly. The cash flow matters for j = 1, 2, while the effect
of the pricing kernel starts to decline at i = 4 but is still visible at i = 10.

Figure 5 displays the contribution of the joint cumulants to coentropy for all of the other
assets. Qualitatively, the implications are the same in that the non-normalities in the pricing
kernel matter much more than those of the cash flows. Obviously, if the cash flows have no
non-normalities, the joint cumulants will be equal to zero. Thus, despite being small, the
non-normal shocks in the cash flows play an important role for the risk premiums.

6 The representative agent with recursive preferences

We have demonstrated that the evidence on risk premiums can be represented with affine
term structure models that feature different levels of persistence of the pricing kernel and
cash flows to capture the term differences in the risk premiums and an iid jump component
to capture the level of premiums. These insights are important because they highlight the
features that a pricing kernel and cash flows should possess to match the empirical evidence.
However, this analysis does not address the question of whether the evidence is consistent
with an equilibrium model.

We would like to emphasize the reasons for considering an equilibrium model. It is not our
intent to offer an improvement of the existing models. We merely want to demonstrate how
certain features of the data translate into required features in a model. We have already
highlighted such features in the affine framework. The issue is whether the restrictions
imposed by the economic theory affect the model’s ability to produce quantitatively realistic
results. Although we argue that the resulting model is reasonable according to basic metrics,
we leave it to our readers to pursue this formulation or its extensions in their research.

We focus on an endowment economy with a representative agent. Because such an economy
delivers implications for the real pricing kernel, we focus on whether we can generate some-
thing similar to the real affine pricing kernel implied by the combination of the nominal
pricing kernel and the growth process for CPI (inflation). To recap, we have

log m̂t,t+1 = (log β + log γ + λ0η0 + η2
0/2) + (θm1 + θg1 + η0λ1)x1t + θg2x2t

− (λ0 + η0 + λ1x1t)
2/2 + (λ0 + η0 + λ1x1t)wt+1 + λ2z

m
t+1 + η2z

g
t+1

≡ log β̂ + θ̂>mxt − λ̂2
t /2 + λ̂twt+1 + ẑmt+1, (33)

where jumps ẑmt+1 arrive at rate ω with jump sizes N (µ̂m, δ̂
2
m) with µ̂m = λ2µm + η2µg and

δ̂2
m = λ2

2δ
2
m + η2

2δ
2
g . We conduct a reverse-engineering exercise in which the specification of

consumption growth is motivated by the objective of having a similar functional form of
the consumption-based real pricing kernel.
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6.1 Equilibrum real pricing kernel

We assume that there is a representative agent with recursive preferences, as developed by
Kreps and Porteus (1978), Epstein and Zin (1989), and Weill (1989), among many others.
The benefit of this specification is that a log-linear approximation of the agent’s value
function leads to a (restricted) affine pricing kernel. Thus, the insights that we have gained
from the no-arbitrage case have the best chance of being successfully translated into an
equilibrium setting.

We define utility with the time aggregator,

Ut = [(1− β)cρt + βµt(Ut+1)ρ]1/ρ, (34)

and certainty equivalent function,

µt(Ut+1) = [EtU
α
t+1]1/α,

where ct is the aggregate consumption. In standard terminology, ρ < 1 captures the time
preference (with intertemporal elasticity of substitution 1/(1− ρ)) and α < 1 captures the
risk aversion (with coefficient of relative risk aversion 1− α).

The time aggregator and certainty equivalent functions are homogeneous of degree one,
which allows us to scale everything by the current consumption. If we define scaled utility
as ut = Ut/ct, equation (34) becomes

ut = [(1− β) + βµt(g
c
t+1ut+1)ρ]1/ρ, (35)

where gct,t+1 = ct+1/ct is consumption growth. This relation serves as the recursive utility
analog of a classical Bellman equation.

With this utility function, the real pricing kernel is

m̂t,t+1 = β(gct,t+1)ρ−1[gct,t+1ut+1/µt(g
c
t,t+1ut+1)]α−ρ. (36)

The primary input to the pricing kernels of these models is a consumption growth process.
We assume that

log gct,t+1 = gc + θ>c xt + (σ0 + σ1x1t)wt+1 + zct+1, (37)

where jumps arrive at the rate of ω and the jump sizes are distributed as N (µc, δ
2
c ). The

factors xt are as the same as in the KLV model.

This specification has two novel features that arise directly from the functional form of the
affine pricing kernel. First, the conditional volatility of the consumption growth is captured
by a normally distributed variable. Because the sign of the volatility is not determined, it is
appropriate to use such a specification. Commonly used specifications use either a normal
variable for the variance of consumption growth or model the variance via the square-root
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or ARG processes. We propose our specification to match the essentially affine form of the
affine m̂t,t+1. It could be a useful alternative in future applications. Second, the expected
consumption growth follows an ARMA(2,1) process instead of the commonly used AR(1)
process.

We derive the pricing implications from a loglinear approximation of (35):

log ut ≈ u0 + u1 logµt(g
c
t,t+1ut+1) (38)

around the point logµt = E(logµt). This approximation is exact when ρ = 0, in which case
u0 = 0 and u1 = β.

We guess a value function of the form

log ut+1 = u+ a1x1t+1 + a2x
2
1t+1 + bx2t+1.

We verify this guess and derive the values of a1, a2, and b in Appendix F.1. Then equation
(36) implies the real pricing kernel

log m̂t+1 = m̂+ [(ρ− 1)θc1 − (α− ρ)α(σ0 + a1 + b)(σ1 + 2a2ϕ1)(1− 2αa2)−1]x1t

+ (ρ− 1)θc2x2t − (α− ρ)α(σ1 + 2a2ϕ1)2(1− 2αa2)−1x2
1t/2

+ [(α− 1)σ0 + (α− ρ)(a1 + b) + ((α− 1)σ1 + (α− ρ)2a2ϕ1)x1t]wt+1

+ (α− ρ)a2w
2
t+1 + (α− 1)zct+1, (39)

where m̂ is a constant whose explicit expression as a function of the model parameters is
omitted.

We calibrate the model to match the properties of the affine pricing kernel (33), see Ap-
pendix F.2. The calibrated preference parameters and parameters controlling the dynamics
of consumption are listed in Panel D of Table 3. Table 4 shows that the model-implied posi-
tive serial correlation of consumption growth is similar to the empirical one. Yet in contrast
to the traditional implementations of the long-run risk paradigm, the real yield curve is
upward-sloping. This property arises from the specification of the consumption volatility.
Intuitively, x1t, which affects the conditional volatility of the pricing kernel in line 3 of (39),
acts similarly to a habit or a preference shock (e.g., Creal and Wu, 2016; Wachter, 2006).
The technical details of how this works are provided in Appendix F.3. Thus, our model of
consumption growth transcends the specific objective of matching the affine pricing kernel
and could be useful in other equilibrium setups.

The serial correlation of the expected consumption growth can be computed using the
formulas in Appendix B and is equal to 0.6786. This number is much lower than is typically
used in the long-run risk literature. Implicitly, this number is determined by the shape of
the real yield curve. As a result, the normal component of the model will not be able
to generate risk premiums of realistic magnitudes. Here, jumps in consumption help in
matching the levels of the risk premiums. The calibrated jump parameters are consistent
with a modest version of the Barro (2006) disaster model in that jumps take place once in
a hundred years, and the average jump in consumption is -15%, with a volatility of 15%.
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6.2 Nominal pricing kernel and other assets

To obtain the nominal pricing kernel in our endowment economy, we assume an exogenous
process of inflation as in Bansal and Shaliastovich (2013), Piazzesi and Schneider (2006),
and Wachter (2006). Specifically, we use the process specified and calibrated in sections
4.3.2 and 5.4. Given that our consumption-based real pricing kernel is quite close to the
affine one, the nominal pricing kernel will be (nearly) matched by construction. Following
the same logic, we can match the transformed pricing kernels associated with currencies
and equities using the calibrated cash flows (28).

Given that the state variables x1t and x2t control the expected consumption growth in
the recursive model, we can reinterpret the cash flow model in the context of what is
typically used in endowment economies. The Bansal and Yaron (2004) specification expects
consumption growth to be determined by a single AR(1) factor, and an asset’s expected cash
flow growth has a different exposure to this factor. Our model has two AR(1) factors, and the
exposure to both changes as we move from expected consumption growth to expected cash
flow growth. Put differently, we can write expected consumption growth as an ARMA(2,1)
process, while expected cash flow growth cannot be written as a different exposure to the
same ARMA(2,1) process, because both the exposure to common shocks and the process
change. These two departures from the traditional specifications are helpful in matching
the observed patterns of average multi-horizon returns.

7 Concluding remarks

We focus on how risk is priced in the cross-section of assets and across investment horizons.
Empirically, we link the average log holding period returns on a given asset in excess of U.S.
interest rates to the difference between the yield curve corresponding to this asset (dividend
yield, foreign yield, or real yield) and the U.S. yield curve. The cross-sectional dispersion
of one-period excess returns is very large and continues to increase with the horizon. For a
given asset, excess log returns decline with the horizon, but the rate of decline is different
in the cross-section.

Theoretically, we introduce the concept of coentropy, which serves as a generalized measure
of covariance in the non-normal, multi-period world. Coentropy of the pricing kernel and
cash flows is closely related to the documented cross-sectional differences in yields. Thus,
these differences in yields must reflect the differences in cash flows. We show that to capture
the documented patterns in excess log returns, an asset-pricing model has to feature iid ex-
treme outcomes, a persistent component, and cross-sectional variation in the persistence of
cash flows. A model of the representative agent with recursive preferences and consumption
that features disasters and persistent variation in its expected value is capable of capturing
the evidence.
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A Long horizons

We use the term long horizon to refer to the behavior of asset prices and entropy as the
time horizon approaches infinity. Hansen and Scheinkman (2008) echo the Perron-Frobenius
theorem and consider the problem of finding a positive dominant eigenvalue ν and associated
positive eigenfunction vt satisfying

Et
(
mt,t+1vt+1

)
= νvt. (40)

If such a pair exists, we can construct the Alvarez-Jermann (2005) decomposition mt,t+1 =
m1
t,t+1m

2
t,t+1 with

m1
t,t+1 = mt,t+1vt+1/(νvt)

m2
t,t+1 = νvt/vt+1.

By construction Et(m
1
t,t+1) = 1, hence Hansen and Scheinkman (2009) refer to it as a

martingale component of the pricing kernel. Qin and Linetsky (2015) demonstrate how this
decomposition works in non Markovian environments.

Given such an eigenvalue-eigenfunction pair, the long yield converges to − log ν. The long
bond one-period return is not constant, but its expected value also converges: r∞t,t+1 =

limn→∞ r
n
t,t+1 = 1/m2

t,t+1 = vt+1/(νvt), so that E(log r∞) = − log ν. See Alvarez and
Jermann (2005, Section 3).

The special case m1
t,t+1 = 1 has gotten a lot of recent attention; see, for example, the review

in Borovicka, Hansen, and Scheinkman (2016). The pricing kernel becomes mt,t+1 = m2
t,t+1.

Since the long bond return is its inverse, the long bond is the high return asset. Realistic
or not, it’s an interesting special case. In logs, the pricing kernel becomes

logmt,t+1 = log ν + log vt − log vt+1.

The log pricing kernel is the first difference of a stationary object, namely v, plus a constant.
In a sense, it’s been over differenced.

Example 1 (“two-horizon” price of risk, continued). We guess an eigenvector of the form
log vt = c0wt + c1wt−1. If we substitute into (40) we find:

c0 = a1, c1 = 0, log ν = log β + (a0 + a1)2/2.

Horizon dependence is

Hm(∞) = log ν − E logmt,t+1 = log ν − log β = (a0 + a1)2/2.

If a1 = −a0, then m1
t,t+1 = 1, and Hm(∞) = 0.
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Moving on to other assets, we introduce two equation analogous to (40). One is for cashflow
growth:

Et(gt,t+1ut+1) = ξut

leading to a decompistion gt,t+1 = ξg1
t,t+1ut/ut+1. The other is for transformed pricing

kernel:

Et
(
m̂t,t+1v̂t+1

)
= ν̂v̂t. (41)

leading to a decomposition m̂t,t+1 = ν̂m̂1
t,t+1v̂t/v̂t+1.

The decompositions are related to each other via:

ν̂m̂1
t,t+1v̂t/v̂t+1 = m̂t,t+1 ≡ mt,t+1gt,t+1 = νξm1

t,t+1g
1
t,t+1(vtut)/(vt+1ut+1). (42)

There’s not, in general, a close relation between ν̂, ν, and ξ, but there is in some special
cases. One special case is a stationary cash flow, which leads to the martingale component
g1
t,t+1 = 1 as in the example above. In this case, the simplified equation (42) implies that

the value νξ and function vtut solve equation (41). Therefore, ν̂ = νξ, the martingale
components coincide, m̂1

t,t+1 = m1
t,t+1, and long-horizon excess returns are equal to zero:

E log rxt,t+n → 0, as n→∞. (43)

The reverse is also true: if m̂1
t,t+1 = m1

t,t+1, it must be the case that g1
t,t+1 = 1. Indeed, in

this case equation (42) implies that the level of g1
t,t+1(vtut)/(vt+1ut+1) must be stationary

because v̂t is. Because vt and ut are stationary as well, the martingale g1
t,t+1 must be a

constant (we can normalize it to one w.l.o.g.).

Example 2 (cash flows, continued). The Perron-Frobenius theory implies log ut = d0wt +
d1wt−1 with

d0 = b1, d1 = 0, log ξ = log γ + (b0 + b1)2/2.

and log v̂t = ĉ0wt + ĉ1wt−1 with

ĉ0 = â1, ĉ1 = 0, log ν̂ = log β̂ + (â0 + â1)2/2.

If If b1 = −b0, then cash flow is stationary, log ξ = log γ, and log ν̂ = log β + log γ + (a0 +
a1)2/2 = log ν + log ξ.

Another special case is one in which the “price-dividend” ratio p̂ is constant, see the October
2005 version of Hansen, Heaton, and Li (2008), section 3.2. Consider a factorization of the
dividend dt into a growth component d∗t and a stationary component st, so that dt = d∗t · st,
and g∗t,t+1 ≡ d∗t+1/d

∗
t (if g∗t,t+1 is a constant, then g1

t,t+1 = 1.) Because st is stationary,
the two transformed pricing kernels m̂t,t+1 and m∗t,t+1 ≡ mt,t+1g

∗
t,t+1 will have the same

eigenvalue ν̂. The eigenfunctions will be v̂t and v̂t · st, respectively. Thus, if a dividend is
such that its v̂t = 1, or, equivalently, st equals the eigenfunction associated with m∗t,t+1,
then p̂ is constant.
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B Details of the inflation model

First we show that a sum of two AR(1) processes is an ARMA(2,1). Consider

st =
θ̂m1

θ̂m1 + θ̂m2

x1t +
θ̂m2

θ̂m1 + θ̂m2

x2t.

Then

(1− ϕ1L)(1− ϕ2L)st =
θ̂m1

θ̂m1 + θ̂m2

(1− ϕ2L)wt +
θ̂m2

θ̂m1 + θ̂m2

(1− ϕ1L)wt

=

(
1−

(
θ̂m1

θ̂m1 + θ̂m2

ϕ2 +
θ̂m2

θ̂m1 + θ̂m2

ϕ1

)
L

)
wt.

So

st = φ1st−1 + φ2st−2 + wt + θ1wt−1 (44)

with

φ1 = ϕ1 + ϕ2, φ2 = −ϕ1ϕ2, θ1 = −

(
θ̂m1

θ̂m1 + θ̂m2

ϕ2 +
θ̂m2

θ̂m1 + θ̂m2

ϕ1

)
.

The first step of calibration requires the knowledge of the unconditional moments of
ARMA(2,1). Denote variance by v0 and autocovariances by vj . Then multiply st−j on
both side of (44) and take expectation:

vj = φ1vj−1 + φ2vj−2 + Ewtst−j + θ1Ewt−1st−j .

We are interested in j = 0, 1, 2. We use v−i = vi; Ewt−ist−j = 0 if j > i, and Ewt−ist−j =
ψi−j , if j ≤ i where ψj is a coefficient in the MA representation of st. As a result we get
the following linear system of equations in the variables of interest:

v0 = φ1v1 + φ2v2 + 1 + θ1(φ1 + θ1),

v1 = φ1v0 + φ2v1 + θ1,

v2 = φ1v1 + φ2v0.

The solution is:

v0 = D−1(1 + 2θ1φ1 − θ2
1(φ2 − 1)− φ2),

v1 = D−1(φ1 + θ2
1φ1 + θ1(1 + φ2

1 − φ2
2)),

v2 = D−1(φ2 + φ2
1 − φ2

2 + θ2
1(φ2 + φ2

1 − φ2
2) + θ1φ1(1 + φ2

1 + 2φ2 − φ2
2)),

D = ((φ2 − 1)2 − φ2
1)(1 + φ2).

Having obtained these moments, we can construct serial autocorrelations of ŷ1
t = constant−

(θ̂m1 + θ̂m2)st: v1/v0, and v2/v0, and its variance: v0(θ̂m1 + θ̂m2)2.
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C Details of the dividend strips

Dividend strips are forward contracts on annual dividends paid out n years from now. So,
assuming a time step of one quarter, these are not zero-coupon claims. The issue is how
to summarize the data and to value these contracts in a setup where one quarter is the
shortest time step.

Suppose dt+1 is a one-quarter dividend that is paid out at time t + 1. The corresponding
(log) growth rate is log gt,t+1 = log(dt+1/dt). One-year dividend is

d
(m)
t =

m∑
i=1

dt−m+i, m = 4.

A k−year forward contract specifies at date t the exchange of its price, or strike, for d
(m)
t+km

at date t + n, n = km. Denote its price by Qnt . Binsbergen, Hueskes, Koijen, and Vrugt

(2013) report summary statistics for k−1[log d
(m)
t −logQnt ]. Specifically, they report averages

that are estimates of k−1[E log d
(m)
t −E logQnt ]. This section establishes how is this object

related to E log rxt,t+n in our paper.

Consider a claim to g
(m)
t,t+n ≡ d

(m)
t+km/d

(m)
t with a price denoted by p̂nt . The corresponding

yield, as before, is ŷnt = −n−1 log p̂nt . By no-arbitrage, pnt q
n
t = p̂nt , with qnt = Qnt /d

(m)
t , and

pnt is a price of a U.S. nominal zero-coupon bond that pays $1 at time t+ n.

Then,

k−1E[log d
(m)
t − logQnt ] = k−1E[− log p̂nt + log pnt ] = mE[ŷnt − ynt ].

Now consider return on the claim to g
(m)
t,t+n :

log rxt,t+n = n−1[log g
(m)
t,t+n − log p̂nt − log rnt,t+n]

= n−1[

n∑
j=1

log g
(m)
t+j−1,t+j ] + ŷnt − ynt .

Therefore,

E(log rxt,t+n − log rxt,t+1) = E(ŷnt − ynt )− E(ŷ1
t − y1

t )

+ n−1
n∑
j=1

E[log g
(m)
t+j−1,t+j − log g

(m)
t,t+1]

= E(ŷnt − ŷ1
t )− E(ynt − y1

t ).
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So, the Binsbergen, Hueskes, Koijen, and Vrugt (2013) statistic allows computing average
term spread in excess returns.

We need to clarify what ŷ1
t is because the smallest n = 4 in Binsbergen, Hueskes, Koijen,

and Vrugt (2013). We will use the results from Binsbergen, Brandt, and Koijen (2012)

to approximate this quantity. One-period asset yield corresponds to a claim to g
(m)
t,t+1 ≡

d
(m)
t+1/d

(m)
t . Its price is

p̂1
t = Et(mt,t+1g

(m)
t,t+1) = (d

(m)
t )−1Et(mt,t+1d

(m)
t+1)

= (d
(m)
t )−1

m−1∑
i=1

dt−m+1+i + (d
(m)
t )−1Et(mt,t+1dt+1).

Prices of six-month contracts, that is, claims to g
(m)
t,t+2 are:

p̂2
t = Et[mt,t+2g

(m)
t,t+2] = (d

(m)
t )−1Et[mt,t+2

m∑
i=0

dt−m+2+i]

= (d
(m)
t )−1[

m−2∑
i=1

dt−m+2+i + Et(mt,t+1dt+1) + Et(mt,t+2dt+2)].

Binsbergen, Brandt, and Koijen (2012) report P 2
t = Et(mt,t+1dt+1) +Et(mt,t+2dt+2). If we

assume that Et(mt,t+1dt+1) ≈ 1.02Et(mt,t+2dt+2) (the one-period price is just a bit higher
than the two-period price) then we can obtain an estimate of ŷ1

t :

ŷ1
t = − log p̂1

t ≈ log d
(m)
t − log(dt−2 + dt−1 + dt + P 2

t · 0.495).

The reported shape of the corresponding curve does not materially depend on reasonable
variations in the approximating assumption.

The issue with theoretical valuation of these securities is that they are not literally zero-
coupon. Therefore, computation of yields would involve taking logs of sums of variables,
which is not convenient. For this reason, we will exploit the persistence of dividends. That
is, annual dividend divided by 4 (quarterly average) should not be too much different from
the quarterly dividend. Figure 6 confirms this intuition. As a result, our theoretical model
will treat dividend strips as if they were claims on quarterly dividends.

D Copula, mutual information, and coentropy

Consider two random variables x1 and x2 with a joint pdf p(x1, x2) and marginals p1(x1) and
p2(x2). The corresponding marginal cdf’s are P1(x1) and P2(x2). Sklar’s theorem enables
one to decompose p using copula “density” c:

p(x1, x2) = c(P1(x1), P2(x2)) · p1(x1) · p2(x2).
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(The general result is P (x1, x2) = Cop(P1(x1), P2(x2)), where Cop is copula.)

Mutual information is

I(x1, x2) ≡ E log
p(x1, x2)

p1(x1) · p2(x2)
= E log c(P1(x1), P2(x2)).

Coentropy:

C(x1, x2) ≡ L(x1x2)− L(x1)− L(x2)

= logE(x1x2)− E log(x1x2)− (logEx1 − E log x1 + logEx2 − E log x2)

= −E log
x1x2

E(x1x2)
+ E log

x1

E(x1)
+ E log

x2

E(x2)
.

To relate coentropy to mutual information and copula, define new probabilities: p̃(x1, x2) =
p(x1, x2)x1x2/E(x1x2), and −j denotes “not j”. We have the following marginals

p̃j(xj) =

∫
p̃(x1, x2)dx−j =

∫
p(x1, x2)x1x2/E(x1x2)dx−j

= xjpj(xj)/E(x1x2)

∫
p(x−j |xj)x−jdx−j = xjpj(xj)E(x−j |xj)/E(x1x2)

= pj(xj)xj/E(xj).

Therefore,

C(x1, x2) = −E log p̃/p+ E log p̃1/p1 + E log p̃2/p2 = −E log
p̃/p

p̃1/p1 · p̃2/p2

= −E log
p̃

p̃1 · p̃2
+ E log

p

p1 · p2

= −E log c̃(P̃1(x1), P̃2(x2)) + E log c(P1(x1), P2(x2))

= −E log c̃/c.

In words, coentropy is the difference between mutual informations corresponding to two
different joint probabilities. Consider a specific example when the new probability is defined
by p̃(m, g) = p(m, g)mg/E(mg). Then the first marginal, p̃1 is the risk-adjusted probability.

Chabi-Yo and Colacito (2013) introduce a concept of coentropy. It is different from coen-
tropy in this paper despite the same name. Expanding on their definition, we obtain:

K(x1, x2) ≡ 1− L(x2)

L(x1x2) + L(x1)
=
L(x1x2) + L(x1)− L(x2)

L(x1x2) + L(x1)
=

C(x1, x2) + 2L(x1)

C(x1, x2) + 2L(x1) + L(x2)
.

In their notation, x1 = x and x2 = y/x. We have relabeled the variables to match our use
with theirs: x1 ultimately becomes m, and x2 is g.
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E The equity premium

The main objective of this section is to establish equity premium in the KLV model that
was calibrated to match returns on dividend strips. We exploit the Campbell-Shiller loglin-
earaization

log rt,t+1 = log gt,t+1 − log pdt + κ log pdt+1,

where pdt = p̂t/dt is the price-to-dividend ratio, and κ = E(pdt)/(1 + E(pdt)).

Then (3) implies

1 = Ete
logmt,t+1+log gt,t+1−log pdt+κ log pdt+1 ,

or, equivalently,

log pdt = logEte
log m̂t,t+1+κ log pdt+1 .

Guess log pdt = A + Bxt, and solve for A and B by plugging the guess into the valuation
equation. We obtain:

A = (1− κ)−1[log β̂ + λ̂0κB
>e+ (κB>e)2/2 + kz(λ2, η2)],

B = θ̂>(I − κΦ∗)−1.

The risk free rate in the presence of jumps is

y1
t = − logEte

logmt,t+1 = − log β − kz(λ2, 0)− θm1x1t.

Therefore, excess log returns are

log rxt,t+1 = log gt,t+1 −A−Bxt + κA+ κBxt+1 + log β + kz(λ2, 0) + θm1x1t

and expected excess returns are

E log rxt,t+1 = log γ + ωη2µg − [log β̂ + λ̂0κB
>e+ (κB>e)2/2 + kz(λ2, η2)] + log β + kz(λ2, 0)

= −λ0η0 − η2
0/2− λ̂0κB

>e− (κB>e)2/2 + kz(λ2, 0) + ωη2µg − kz(λ2, η2).

Given the calibrated parameters for zero-coupon equity claim and a commonly used value of
κ = 0.963, the implied equity premium is 0.0033, or 1.33% per year. While this appears to
be on the low end of the customary equity premium estimates (the Shiller dataset implies
4% with a standard error of 1.65%), the number is close to average realized log excess
returns on S&P 500 of 1.34% during 1996-2011. This is the period that was effectively used
for calibration of equity cash flow growth as it is the sample corresponding to data from
Binsbergen, Brandt, and Koijen (2012) and Binsbergen, Hueskes, Koijen, and Vrugt (2013).
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F The recursive utility pricing kernel

F.1 Derivation

We derive the pricing kernel for a representative agent model with recursive utility, loglinear
consumption growth dynamics, stochastic volatility, and jumps with constant intensity.

We guess a value function of the form

log ut+1 = u+ a1x1t+1 + a2x
2
1t+1 + bx2t+1

= u+ a1ϕ1x1t + a2ϕ
2
1x

2
1t + bϕ2x2t + (a1 + b+ 2a2ϕ1x1t)wt+1 + a2w

2
t+1.

Then

log(gt,t+1ut+1) = g + u+ (θc1 + a1ϕ1)x1t + (θc2 + bϕ2)x2t + a2ϕ
2
1x

2
1t

+ [σ0 + a1 + b+ (σ1 + 2a2ϕ1)x1t]wt+1 + a2w
2
t+1 + zct+1.

Therefore, using the identity

logEte
α1wt+1+α2w2

t+1 = −1

2
[log(1− 2α2)− α2

1(1− 2α2)−1],

we obtain

logµt(gt,t+1ut+1) = g + u− 1

2α
log(1− 2αa2) +

α

2
(σ0 + a1 + b)2(1− 2αa2)−1 + α−1ω(eαµc+α2δ2c/2 − 1)

+ [θc1 + a1ϕ1 + α(σ0 + a1 + b)(σ1 + 2a2ϕ1)(1− 2αa2)−1]x1t + [θc2 + bϕ2]x2t

+ [a2ϕ
2
1 + 0.5α(σ1 + 2a2ϕ1)2(1− 2αa2)−1]x2

1t.

Lining up terms in expression (38), we get b = u1θc2(1− u1ϕ2)−1, and

a1 = u1(θc1 + α(σ0 + b)(σ1 + 2a2ϕ1)(1− 2αa2)−1)(1− u1(ϕ1 + α(σ1 + 2a2ϕ1)(1− 2αa2)−1))−1,

while a2 is the negative root of

a2 = u1(a2ϕ
2
1 + 0.5α(σ1 + 2a2ϕ1)2(1− 2αa2)−1).

We select the negative root because in this case a2 → 0 when σ1 → 0.

Then equation (36) implies the real pricing kernel in (39).
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F.2 Matching the affine real pricing kernel

We introduce the following shorthand notation for the various elements of the real pricing
kernel (39):

log m̂t+1 = m̂+ [(ρ− 1)θc1 − (α− ρ)α(σ0 + a1 + b)(σ1 + 2a2ϕ1)(1− 2αa2)−1]x1t

+ (ρ− 1)θc2x2t − (α− ρ)α(σ1 + 2a2ϕ1)2(1− 2αa2)−1x2
1t/2

+ [(α− 1)σ0 + (α− ρ)(a1 + b) + ((α− 1)σ1 + (α− ρ)2a2ϕ1)x1t]wt+1

+ (α− ρ)a2w
2
t+1 + (α− 1)zct+1,

≡ m̂+ θrec1 x1t + θrec2 x2t − ϑrecx2
1t/2 + (λrec0 + λrec1 x1t)wt+1

+ λrec2 w2
t+1 + zrect+1. (45)

Observe that both the affine, (33), and the recursive, (45), pricing kernels can be written
as

log m̂t+1 = −ŷ1
t − convexity + v

1/2
t wt+1 + v2w

2
t+1 + ẑmt+1,

where ŷ1
t is given in (22) in the affine case and

ŷ1
t = constant− (θrec1 + λrec0 λrec1 )x1t − θrec2 x2t + (ϑrec − [λrec1 ]2)x2

1t/2

in the recursive case; the convexity, ignoring constants, is λ̂0λ̂1x1t+λ̂
2
1x

2
1t/2 and λrec0 λrec1 x1t+

[λrec1 ]2x2
1t/2. The volatility of the pricing kernel, v

1/2
t , is λ̂0+λ̂0x1t and λrec0 +λrec1 x1t. Finally,

v2 is zero in the affine case and λrec2 in the recursive case.

The convexity term in (45) does not offset the quadratic term in the interest rate completely,
as it does in (33). Moreover, the structural model features the squared shock w2

t+1 in the
pricing kernel, and such a term is absent from the affine pricing kernel. Thus, we will not
be able to construct a perfect equilibrium counterpart to our affine model. However, this
is not our goal, as we simply want to obtain a model that is quantitatively consistent with
the highlighted features of the data, and we use an affine model to guide this search.

We focus on calibrating the parameters controlling consumption growth θ1c, θ2c, σ0, and
σ1 to match the linear components of the interest rates and conditional volatilities of the
pricing kernels. The jump parameters have an intuitive one-to-one mapping. In addition,
θc2 = θ̂m2(ρ − 1)−1, µc = µ̂m(α − 1)−1, δc = δ̂m(α − 1)−1, while θc1, σ0, and σ1 solve a
nonlinear system of equations:

θ̂m1 = θrec1 + λrec0 λrec1 ,

λ̂0 = λrec0 ,

λ̂1 = λrec1 .

We select α = −9 and ρ = 1/3, which are ubiquitous in the literature.
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F.3 Understanding implications for the real yield curve

In this appendix, we follow the approach of Backus, Chernov, and Zin (2014) and focus
on the serial covariance of the real pricing kernel, which governs the slope of the real yield
curve. Note that we can represent the consumption growth process in (37) as:

log gct,t+1 = gc + γ(B)wt+1 + σ̄twt+1,

where σ̄t = σ1x1t is the demeaned conditional volatility of consumption growth. We omit
the iid jumps here because they have no implications for the shape of the yield curve.

The term γ(B) =
∑∞

j=0B
jγj is a lag polynomial that captures the serial dependence of

consumption growth. In the specific case of our model, it arises from the ARMA(2,1)
structure of the expected consumption growth process; the first three elements of the lag
polynomial in our model are γ0 = σ0, γ1 = θc1 + θc2, γ2 = (θc1 + θc2)(φ1 + θ1), with
φ1 = ϕ1 +ϕ2 and θ1 = −(θc1ϕ2 + θc2ϕ1)(θc1 + θc2)−1 as in appendix B. The lag polynomial
notation γ(B) is more general than our particular model. We use this notation to emphasize
that the specifics of expected consumption growth are not important for our discussion here.

Finally, notice that, in our model, the time-varying component of volatility is additive.
Instead, in the standard ARG(1) and AR(1) specifications of variance, volatility is multi-
plicative, and the consumption growth process is represented as:

log gct,t+1 = gc + γ(B)σtwt+1,

where σt is the volatility.

Following the same notation, the real pricing kernel (39) can be re-written as:

log m̂t+1 = constant + [(ρ− 1)γ(B) + (α− ρ)γ(u1)]wt+1

− (α− ρ)αγ(u1)(σ1 + 2a2ϕ1)(1− 2αa2)−1ν(B)Bwt+1

+ [(α− 1)σ1 + (α− ρ)2a2ϕ1]σtwt+1 + . . . ,

where γ(u1) =
∑∞

j=0 u
j
1γj , lower dots represent the omitted quadratic terms, and ν(B) is a

lag polynomial that arises from the AR(1) structure of x1t and whose first three elements
equal to ν0 = 1, ν1 = ϕ1, ν2 = ϕ2

1. The last two lines of this expression represent components
of the pricing kernel associated with time-varying volatility of consumption growth: if
σ1 = 0, then a2 = 0, and these terms vanish.

The first line in this expression represents the pricing kernel corresponding to Bansal and
Yaron (2004), Model I – time-varying expected consumption growth with constant volatility.
As pointed out by Backus, Chernov, and Zin (2014), extensions to Model I using ARG(1)
or AR(1) processes to capture the volatility dynamics do not help in changing the sign of
the term spread. In contrast, the linear specification of volatility, reflected in the second
line of the recursive pricing kernel expression, offers additional flexibility in generating
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serial covariance of the linear part of the pricing kernel. For instance, the leading term
(ρ − 1)γ0 + (α − ρ)γ(u1) is unaltered, but the second one changes from (ρ − 1)γ1 to (ρ −
1)γ1− (α− ρ)αγ(u1)(σ1 + 2a2ϕ1)(1− 2αa2)−1ν0. Using the calibrated parameters in Table
3D, we see that indeed the extra term changes the sign of the serial covariance of the pricing
kernel as compared to the traditional specifications of variance. Thus, serial covariance of
the pricing kernel becomes negative and the slope of the real curve becomes positive.
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Table 1. Properties of excess dollar returns. Entries are sample moments of quarterly
observations of (quarterly) log excess returns: log r−log r1, where r is a (gross) return
and r1 is the (gross) return on a three-month bond. All of these returns are measured
in dollars. Sample periods: U.S. TIPS, 1971-2014 (source: Gurkaynak, Sack, and
Wright, 2010; Chernov and Mueller, 2012); U.S. nominal bonds, 1971-2014 (source:
Gurkaynak, Sack, and Wright, 2007; FRED); Australian nominal bonds, 1987-2014
(source: Reserve Bank of Australia; Wright, 2011); UK nominal bonds, 1979-2014
(source: Bank of England); German nominal bonds, 1973-2014 (source: Bundesbank;
Wright, 2011); exchange rate to the USD (source: FRED; EUR was complemented by
DM, which was converted using the official EUR/DM rate); S&P 500 dividend strips,
1996-2009 (source: Binsbergen, Brandt, and Koijen, 2012). The shortest maturity
available for dividend strips is two quarters, so we extrapolate to one quarter as
described in Appendix C.

Standard Excess Entropy,
Asset Mean Deviation Skewness Kurtosis L(rx)

Inflation-protected bonds (TIPS)
CPI 0.0022 0.0078 0.1785 0.8223 0.00002
Currencies
AUD 0.0108 0.0677 −0.5134 0.7206 0.0016
EUR (Germany) −0.0015 0.0614 0.2748 0.6517 0.0018
GBP −0.0008 0.0607 −0.0816 1.4681 0.0015
Equity
S&P 500 div fut −0.0159 0.0270 0.7491 0.6273 0.0004
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Table 2. Average curves. Entries are means of yields on various assets of various
maturities. All of these yields are expressed in decimals, on a quarterly basis. The
second line shows the difference in term spreads relative to the U.S. nominal curve.
A term spread is defined as the difference between an n−quarter yield and a one-
quarter yield. Sample periods: U.S. nominal bonds, 1971-2014 (source: Gurkaynak,
Sack, and Wright, 2007; FRED); U.S. TIPS, 1971-2014 (source: Gurkaynak, Sack,
and Wright, 2010; Chernov and Mueller, 2012); Australian nominal bonds, 1987-2014
(source: Reserve Bank of Australia; Wright, 2011); UK nominal bonds, 1979-2014
(source: Bank of England); German nominal bonds, 1973-2014 (source: Bundesbank;
Wright, 2011); 2-quarter S&P 500 dividend strips, 1996-2009 (source: Binsbergen,
Brandt, and Koijen, 2012); annual S&P 500 dividend futures, 2002-2011 (source:
Binsbergen, Hueskes, Koijen, and Vrugt, 2013). Dividend strip/futures prices are not
available at the one-quarter horizon, so we extrapolate to one quarter as described in
Appendix C.

Asset or Maturity, quarters
Country 1 2 4 8 12 20 24 28 40

U.S. 0.0124 0.0128 0.0138 0.0144 0.0149 0.0157 0.0160 0.0163 0.0169
U.S. TIPS 0.0042 0.0043 0.0043 0.0045 0.0047 0.0052 0.0056 0.0063

−0.0003 −0.0013 −0.0017 −0.0020 −0.0023 −0.0025 −0.0024
Australia 0.0165 0.0164 0.0161 0.0164 0.0170 0.0177

−0.0003 −0.0021 −0.0024 −0.0029 −0.0040
Germany 0.0120 0.0118 0.0118 0.0124 0.0130 0.0139 0.0142 0.0145 0.0151

−0.0006 −0.0015 −0.0015 −0.0014 −0.0014 −0.0014 −0.0014 −0.0014
UK 0.0168 0.0173 0.0166 0.0168 0.0170 0.0175 0.0177 0.0178 0.0181

0.0002 −0.0016 −0.0020 −0.0022 −0.0026 −0.0028 −0.0032 −0.0035
S&P 500 −0.0072 −0.0056 −0.0001 0.0018 0.0024 0.0035 0.0043 0.0048

0.0013 0.0061 0.0077 0.0078 0.0081 0.0084 0.0086
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Table 3. Calibrated parameters. Entries are the model parameters expressed in
quarterly terms. With the exception of CPI, θg1 in Panel B is a derived parameter.
The first column of Panel C displays expected log excess returns implied by the model
in Example 2. The subsequent two columns display the loadings of cash flows and
the pricing kernel, respectively, on a normal shock in the extension of this model
in section 5.2. The last two columns highlight differences in covariance and entropy
implied by the final model featuring jumps.

Panel A. Common parameters
(U.S. nominal economy)

ϕ1 θm1 λ0 λ1 ω µm δm

0.9487 0.0026 −0.1225 0.0512 0.0025 1.5000 1.5000

Panel B. Asset-specific parameters

Asset ϕ2 θg1 θg2 η0 µg δg

Inflation-protected bonds (TIPS)
CPI 0.2240 -0.0016 0.0016 0.0077 −0.0438 0.0200
Currencies
AUD 0.9404 −0.0058 0.0029 0.0642 −0.1728 0.0173
EUR 0.8356 −0.0039 0.0045 0.0254 −0.4365 1.0268
GBP 0.9664 −0.0056 0.0027 0.0587 0.1765 0.0589
Equity
S&P 500 0.6846 −0.0014 0.0292 −0.0225 −0.0799 0.3736

Panel C. Some derived quantities

Asset E log rxt,t+1 |η2| |λ2| covmg Cmg(1)

Inflation-protected bonds (TIPS)
CPI 0.0013 0.0004 3.3067 −0.0001 −0.0023
Currencies
AUD 0.0058 0.0188 0.2749 −0.0079 −0.0129
EUR 0.0028 0.0557 0.0491 0.0007 −0.0001
GBP 0.0055 0.0123 0.5014 −0.0069 −0.0009
Equity
S&P 500 -0.0030 0.0145 0.8834 0.0042 0.0024

Panel D. Parameters from the representative agent model

Consumption Preferences
θc1 θc2 σ0 σ1 µc δc α ρ

0.0009 −0.0025 −0.0085 −0.0045 −0.1456 0.1500 −9 1/3



Table 4. Variance and serial correlation of cash flows. The Data module reports
summary statistics and the corresponding standard errors in parentheses in the sec-
ond line. The Model module reports population values at the calibrated parameters
in the first line. The second line report in parentheses the 2.5th and 97.5th percentiles
of the distribution of the respective statistics computed from 100,000 artificial histo-
ries of log g simulated from the model at calibrated parameters. We use annual data
on dividends expressed in quarterly units. The reason is that dividends are highly
seasonal and lumpy, as highlighted in Garlappi, Skoulakis, and Xue (2015). As a
result, the Shiller (1989) annual data are an accurate representation of annual divi-
dends, but it is oversmoothing at higher frequencies. In order to match the annual
data with the quarterly model, we simulate annual dividends. Consumption data are
from quarterly NIPA tables from 1947 to 2014. Variance of consumption growth is
matched by construction, so we do not report its sampling characteristics to empha-
size this.

Data Model
Asset Var×102 AR(1) Var×102 AR(1)

Inflation-protected bonds (TIPS)
CPI 0.0078 0.5889 0.0084 0.2202

(0.0008) (0.0625) (0.0062, 0.0123) (0.0520, 0.3848)
Currencies
AUD 0.3132 0.0598 0.44309 −0.0191

(0.0422) (0.0950) (0.3224, 0.5577) (−0.2018, 0.1625)
EUR 0.3748 0.0015 0.3763 0.0655

(0.0410) (0.0788) (0.0562, 2.9027) (−0.0726, 0.2490)
GBP 0.3126 0.1271 0.3604 −0.0278

(0.0370) (0.0828) (0.2784, 0.4586) (−0.1886, 0.1328)
Equity
S&P 500 0.3829 0.2599 0.2947 0.1097

(0.0459) (0.0812) (0.1981, 0.4033) (−0.0819, 0.2961)
Macro
Cons. growth 0.0004 0.0877 0.0004 0.0487

– (0.0600) – (−0.0941, 0.2081)
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Figure 1. Average U.S. curve and excess returns. The black solid line shows average
U.S. nominal term spreads, E(ynt − y1

t ) at different maturities n. The remaining
lines represent the term spread in average excess returns, E(log rxt,t+n − log rxt,t+1),
measured by differences of average term spreads on several assets relative to U.S.
Treasuries, E(ŷnt − ŷ1

t )− E(ynt − y1
t ). Data sources are the same as in Table 2.
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Figure 2. HJ bound and entopy in the two-horizon model. The figure compares how
the HJ bound (purple lines) and entropy, nLm(n), (blue lines) change with horizon
in the benchmark iid case (solid lines) and in the two-horizon model (dashed lines).
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Figure 3. Coentropy and covariance. The figure compares coentropy and covariance
for the Poisson mixture of bivariate normals described at the end of section 5.3. As
we vary ω, we adjust δ to hold the variance constant.
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Figure 4. Ingridients of coentropy, a case of GBP. The figure displays marginal
cumulants of the jump component of the pricing kernel and the GBP depreciation
rate in panels (A) and (B), respectively. Panels (C) and (D) show how they combine
to contribute to coentropy. In contrast to plots in other panels that are depicted
on the log scale, the plot in panel (D) is in levels. Further, in contrast to panel
(C), it accounts for factorials that strongly discount contribution of high order joint
cumulants to coentropy.
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Figure 5. Coentropy. The figure compares contribution of joint cumulants to coen-
tropies of different assets.

(A) AUD

10987

PK

65432110
9

8
7

6
5

CF

4
3

2
1

#10-4

-8

-6

-4

-2

0

(B) EUR

10987

PK

65432110
9

8
7

6
5

CF

4
3

2
1

#10-3

-2

-1

0

1

2

3

(C) CPI

10987

PK

65432110
9

8
7

6
5

CF

4
3

2
1

#10-4

0

-1

-2

(D) S&P 500

10987

PK

65432110
9

8
7

6
5

CF

4
3

2
1

#10-4

-4

-2

0

2

4

50



Figure 6. S&P 500 dividends. The figure displays quarterly dividends (black solid
line) and quarterly average of annual dividends (red dashed line). The sample corre-
sponds to the availability of short-term dividend prices in Binsbergen, Brandt, and
Koijen (2012).
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