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“False facts are highly injurious to the progress of science, for they often endure

long; but false views, if supported by some evidence, do little harm, for everyone takes

a salutary pleasure in proving their falseness; and when this is done, one path towards

error is closed and the road to truth is often at the same time opened.” - Charles

Darwin, Descent of Man, Vol 2, Chapter 2, 1871.

1 Introduction

There are two distinct approaches in empirical labor economics. The first approach addresses the

indentification problem that arises when individuals self-select into different observed treatments or

choices by either explicitly randomizing treatments/choices in the context of an experiment (Char-

ness and Kuhn (2011) and List and Rasul (2011)), or through the use of a natural experiment

that allows for an instrumental variables strategy (Angrist et al. (1996) and Angrist and Krueger

(1999)). The second approach uses structural models that assume individuals make utility max-

imizing decisions within a well defined environment, and then proceeds to measure the value of

the unknown parameters. A classic example of this is the well known Roy (1951) model, where

we know that the model can only be identified under strong assumptions (Heckman and Honore

(1990)).

In this paper I review some recent work that combines these perspectives to provide a way to

extend the scope of randomization to environments where randomized control trials are not possible,

either due to the problem of constructing an adequate subject pool, or because the number of cases

to be considered is simply too large. The fact that randomized trials are limited by their costs has

long been recognized. Fisher (1936) was the early leader in the field, with early work tackling the

problem of improving agricultural production in developed (Yates (1933); Bose and Mahalanobis

(1938)) and developing countries (Bose and Mahalanobis (1938)). Such experiments can take many

years, and thus it was understood early on that one could could not rely only upon experimental

methods. For example, Mahalanobis (1944) provides a wonderful discussion of the survey techniques

he developed to supplement experimental studies of Indian agriculture.

The rise of experimental economics may be attributed to the combination of many new game

theoretic ideas developed in recent decades, combined with the fact they these ideas could be

explored at a relatively low cost using college students as subjects. Moreover, there was an increased

awareness of some of the stringent conditions needed to ensure the causal identification of an

intervention (Holland (1986) and Imbens and Rubin (2011)). Thus we have also seen a large

increase in the use of field experiments that measure the effect of treatment using using realistic

interventions.1 These experiments increase the external validity of the results relative to laboratory

experiments. However, they are limited in both the size of the monetary rewards than can be used,

1See for example List and Rasul (2011) and Banerjee and Duflo (2009).
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and the period of time over which it is feasible to run a field experiment. As a consequence, Deaton

(2010) has observed that many questions of interest and importance cannot be studied with purely

experimental techniques.

One of these areas is expert decision making, particular by physicians. Medical decision making

is a particularly interesting case because RCTs (randomized control trials) are widely used to

explore the efficacy of medical treatments.2 The next section briefly reviews the Rubin/Holland

potential outcomes framework and shows that it has performed rather poorly in determining the

appropriate intervention for the treatment of depression.3 This is a nice example for a number

of reasons. First, the treatment of depression with medication is a multi-billion industry, funded

in large part by health insurance. For example, in 2013 Abilify (Aripiprazole) was the top selling

drug in the United States. It was initially approved for the treatment of schizophrenia, but is now

used “off label” for a wide variety psychiatric conditions. In the absence of good clinical guidance,

there may be a potentially large miss-allocation of resources (see Frank and McGuire (2000)).

Second, subjects who face a high risk of suicide are, for ethical reasons, barred from participating

in these studies for the treatment of depression, yet they are one of the prime beneficiaries of good

treatment. Third, measuring the outcome of an intervention is difficult. In the case of depression

one uses a survey instrument that may or may not be related to outcomes such as suicidality and

labor market performance. Fourth, the response to the intervention is very heterogeneous. In the

case of SSRIs (Selective serotonin reuptake inhibitors), the effect can vary from feeling slightly

better to increased suicide risk. The challenge is to be able to predict for a given patient the likely

consequence of treatment given his or her characteristics.

The heterogeneity in response presents a particular challenge. When a drug, such as say an

antibiotic, is expected to be relatively safe, then the goal of an RCT is to measure it’s effectiveness.

With a large number of individuals one can obtain a good measure of the average treatment effect.

The difficulty arises where there is heterogeneity in the sign of the treatment effect - it harms some

individuals and not others. In that case if one ignores the heterogeneity, then the treatment effect

from a trial might be zero, even though the drug is very effective (or dangerous) for some individuals.

When the variability in patient characteristics is large, then conducting trials for patient types is

simply impossible.

Ultimately, the goal of measuring the treatment effect is to make a better decision. Section 3

discusses the two contrasting approaches to evaluating decisions. As an example, consider data for

the following scenario. Patient i with observed characteristics xi seeks treatment from physician

j, who then decides upon treatment choice, di = 0, or di = 1. The consequence is outcome, u0i
or u1i , depending upon the choice di. The conditional average treatment effect (CATE) is τ (x) =

E
{
u1i − u0i |xi = x

}
. As Holland (1986) emphasises, the pair

{
u0i , u

1
i

}
are potential outcomes only

2Angrist and Pischke (2010) on page 24 state that “This point has long been understood in medicine, where
clinical evidence of therapeutic effectiveness has for centuries run ahead of the theoretical understanding of disease.”

3This point is not new. See Ludwig et al. (2009).
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- in practice we only observe udii , and not u
d′i
i , when d′i 6= di. Notice that we can view randomized

trials and perfect experts as two extreme ways to learn from data. RCTs are data sets where the

decisions are by construction free of randomness, and hence with enough data we can construct

estimates of the CATE τ (x), which in turn can be used to optimally treat a patient by seting

di = 1 iff τ (xi) ≥ 0.

In constrast, suppose we have a perfect decision maker who set di = 1 iff u1i ≥ u0. Like

the Roy model, since we only observed the optimal choice, without additional assumptions the

counterfactual return is not observed, and hence the CATE cannot be estimated. However, the

data is very informative. In fact, one goals of the literature on pattern recognition (Devroye et al.

(1996)) is to take such data and build a decision function d∗ (x). In fact, as Devroye et al. (1996)

discusses in Section 6.7, one needs less data to construct d∗ (x) from a perfect decision maker than

to construction the CATE using regression techniques. In other words, if the goal is simply to get

the best decisions, then having data with good decisions is more useful.

Section 4 discusses the human capital approach that combines both ideas. The starting points

are the two contrasting views of experts (Kahneman and Klein (2009)). An expert is an individual

who can make high quality decisions very quickly. For example, something as common place as

driving requires the ability to process and react in real time to a complex stream of information.

Even if one is not an “expert driver”, driving requires an amazing combination of skills. In the

context of medical decision making, the first step in our procedure is to suppose that physicians

are experts, hence there is a positive relationship between their decision and whether or not the

patient is better off getting treatment. Using machine learning 101 (the logistic regression - see

Hastie et al. (2009)), we can use the full data set to determine the probability that a patient with

characteristics x gets treatment, given by η (x) = E {di|x}.
The probability η (x) is the familiar propensity score. However, the interpretation here is quite

different than in the econometrics literature, where it has been controversial.4 The difficulty with

estimating the CATE when the feature space X is high dimensional is that it is not clear how to

create groups within which the treatment effect is relatively constant. Here we are using experts to

effect a dimension reduction that then allows one to apply the results from Rosenbaum and Rubin

(1983). In Section 4 I show that one can provide a simple, decision theoretic model to justify this

approach.

The second step entails estimating the CATE as a function of the propensity score. Here we are

relying upon the second feature of expert decision making. Given that the acquisition of human

capital is expensive, this implies that decision making is imperfect. Within the context of the simple

model, the choice of action conditional upon the propensity score is assumed to be noisy. It is quite

common to suppose that physician practice style is represented by a one dimensional fixed effect

(e.g. Chandra and Staiger (2007)). In the context of this model, we characterize physician decision

4See Smith and Todd (2005) and the rejoiners.
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making as two dimensional, where one dimension is the sensitivity of decision to the propensity

score, which in turn can be interpreted as decision making skill.

In Section 5 I discuss two papers that use this approach to study the decision making skill

of physicians treating heart attacks and assisting in childbirth. In that data we have physician

identities, and hence we can directly test whether or not there is variation is decision making

skill. In Currie and MacLeod (2017) we do indeed find that physicians who exhibit less sensitivity

to patient conditions have worst outcomes on average, consistent with the hypothesis of poorer

information. In Currie et al. (2016) we have a quite a different result. There we find that the

CATE does not change sign with the propensity score - namely the evidence is consistent with the

hypothesis that heart attack patients are always better off with the most invasive procedures. In

that case variation in treatment is associated with non-medical characteristics of the patient.

The final section of the paper has some concluding remarks, and suggestions for future research.

2 The Rubin/Holland Model5

In this section I review the well known Rubin-Holland model outlined by Holland (1986), and ex-

plicitly link it to optimal decision making.6 The question is how to use evidence from an experiment

or observational data to make better decisions. I will reiterate the basic point in Holland (1986)

that measuring a causal effect requires making some untestable assumptions. In practice these

assumptions are typically implicit, rather than explicit, which in turn can lead to overly strong

claims in some cases (see Deaton (2010)).

We begin with a universe of individuals whose characteristics are described by a compact set

X ⊂ <n. For example, this might be all persons in a country in the year 2000, or all individuals who

had a fever last year. Individuals may also be firms or countries, though for the current discussion

we can think of them as a collection of persons denoted by:

U = {i ∈ P |xi ∈ X} ,

where xi is the characteristic of individual i, and P denotes the universe of all possible individuals.

Here I deviate slightly from Holland where the primitive is typically the set P . The reason is that

the external validity of any experiment is defined by the set of persons for whom the results are

valid. These individuals are typically not listed, but described by features such as race or where

they live. Notice that this formulation includes as the special case in which each person is a unique

point in X.

5Xuan Li did the background research on the effects of the psychiatric drugs. After the paper was accepted, we
learned of the more comprehensive study by Cipriani et al. (2016) that comes to similar conclusions.

6See Imbens and Rubin (2011) for a comprehensive review of the approach and the historical background. See
also Freedman (2006).
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For each person i, we would like to know for each choice di ∈ {1, 0}, the set of potential outcomes:

{(
xi, u

1
i , u

0
i

)
|i ∈ U

}
,

where u1i , u
0
i are the outcomes for choices 1 and 0 respectively. These are potential outcomes because

the choice is made at a given date, with payoffs realized in the future, and hence for each unit we

can at best observe u1i or u0i , but not both. I maintain throughout the stable unit treatment value

assumption (STUVA) - the decision for unit j 6= i does not affect the potential outcomes for unit

i. The average treatment effect (ATE ) of choice 1 is given by:

τATE = E
{
u1i − u0i |i ∈ U

}
.

This is the parameter estimated with a randomized control trial (Imbens and Rubin (2011)). One

procedure to measure ATE is as follows. Randomly select from U - the set of individuals that

match the criteria in set X - 2n individuals, who are randomly assigned to group 1 - U1 and group

0 - U0. This generates data, Data (n) =
{
xi, u

di
i |i ∈ UA ∪ UB

}
, where di = 1 if i ∈ U1 and di = 0 if

i ∈ U0. The point here is that Data(n) cannot contain both potential outcomes for the same unit,

but it can be used to compute an estimate of average treatment effect:

τ̂ATE (Data(n)) =
1

n

∑
i∈U1

u1i −
∑
i∈U0

u0i

 .

When the assignment is random (xi |= di), then we have the well known result:

Proposition 1. If units are randomly assigned to choices 1 and 0, and the stable unit treatment

value assumption is satisfied, then the average treatment effect satisfies:

τATE = E
{
τ̂ATE (Data(n))

}
= limn→∞τ̂

ATE (Data (n)) .

Proof. We follow Deaton (2010). First:

E
{
τ̂ATE (Data(n))

}
=

1

n

∑
i∈U1

E{u1i |di = 1} −
∑
i∈U0

E{u0i |di = 1}

 .

= E
{
u1i |di = 1

}
− E

{
u0i |di = 0

}
= limn→∞τ̂

ATE (Data (n))
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Next observe that:

E
{
τ̂ATE (Data(n))

}
= E

{
u1i |di = 1

}
− E

{
u0i |di = 0

}
,

= E
{
u1i |di = 1

}
− E

{
u0i |di = 1

}
,

= E
{
u0i |di = 1

}
− E

{
u0i |di = 0

}
.

Observe that by SUTVA and random assignment, we have that the final line is zero. Random

assignment also implies that the expected value of a potential outcome (observed or not) is not

affected by the assignment. Hence we have:

limn→∞τ̂
ATE (Data (n)) = E

{
u1i |di = 1

}
− E

{
u0i |di = 1

}
,

= E
{
u1i − u0i |di = 1

}
,

= E
{
u1i − u0i |i ∈ U

}
,

= τATE .

Though quite simple, this result nicely illustrates the power of RCTs - under the appropriate

assumptions they allow for the measurement of the average treatment effect for a population. There

is a large literature on constructing bounds to τATE given finite data from an RCT. Our concern

here is not with the implementation details for an RCT, but with the problem of making decisions

using observational data.

The first condition, τATE = E
{
τ̂ATE (Data(n))

}
, is called the ignorability condition. It means

that regardless of the sample size, the mean is an unbiased estimate of the treatment effect. How-

ever, this is no longer true for selected sub-samples, particularly sub-samples chosen as a function

of xi. The literature on estimating treatment effects has for the most part focused upon the prob-

lem of inferring τATE as a function of different assignment mechanisms. In many cases, as both

Deaton (2010) and Heckman (2010) observe, one may also be interested in the treatment effect for

sub-populations of X.

For example, consider the problem of choosing a drug for the treatment of depression. In order

for a company to sell a drug they have patented, it must go through trials with human subjects.

Successful drugs provide a great deal of revenue to companies during the life of the patent, as we

can see in Table 2. Thus they have a large financial incentive to have a successful trial and use the

results of the trial to direct physicians on how to use a new drug.

We can view trials as have having three outcomes, ui ∈ {V, 0,−L}, where V > 0 is to feel well,

0 is to be depressed, and −L < 0 is to commit suicide. The target populations are individuals who

are currently depressed, denoted by XD. The goal of treatment is to obtain the outcome ui = V .
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The difficulty is that in order to get approval to use human subjects one cannot enroll patients into

the study that are at high risk of suicide, but rather the subset of patients that are depressed, but

not at risk of suicide:

X̄D =
{
x ∈ XD|Pr [ui = −L|xi = x] ' 0

}
.

It is worth highlighting the fact that the drugs in Table 2 may elevate the risk of suicide for

adolescents, but by construction these subjects are excluded from these trials. Yet, once approved,

psychiatrists are free to prescribe these drugs as they wish, including prescribing them to adolescents

(which is very common).

Second, one needs an instrument to measure the outcome of the trial. Since the trials are over

relatively short periods, these outcome measures are at best proxies for the long term outcome

(such as death by suicide). Such instruments are performance scores denoted by yi. Again, one can

only measure the outcome of the chosen treatment and not both potential outcomes. The extended

Rubin/Holland model is concerned with measuring both the performance scores and the outcomes:

{
xi,
{
y1i , y

0
i

}
,
{
u1i , u

0
i

}}
i∈U .

In the case of depression, drug researchers use the Montgomery-Asberg Depression Rating Scale

(MADRS), Hamilton Rating Scale for Depression (HAMD), or Children’s Depression Rating Scale-

Revised (CDRS-R) to produce a score before and after treatment, yi and ydii .7

We then set:

∆Scoretreat = y1i − yi,

∆Scoreplacebo = y0i − yi.

The average treatment effect is then defined by:

Relative Score Reduction (RSR) =
ˆ∆Scoretreat − ˆ∆Scoreplacebo

ˆ∆Scoreplacebo
,

where the hat refers to the population means. The results from a number of studies looking at

Lexapro and Zoloft are reported in Tables 3 and 4.8 The average treatment effect is reported in

the column RSR. The RRR column is computed in the same way using the fraction of individuals

whose depression rate is reduced by 40%-60%.

The decision to prescribe a drug is based upon the trials such as the ones in Tables 2 and 3.

7See Cusin et al. (2010)
8Studies looking at Lexapro are: Lepola et al. (2003), Wade et al. (2002), Burke et al. (2002), Pigott et al. (2007),

Azorin et al. (2003), Bech et al. (2004), Ninan et al. (2003), Llorca et al. (2005), Ventura et al. (2006), Findling et al.
(2013), Emslie et al. (2009), Wagner et al. (2006).Studies of Zoloft include Ventura et al. (2006), Stahl (2000), Fabre
et al. (1995), Olie et al. (1997), Schneider et al. (2003), Wagner et al. (2003), Donnelly et al. (2006), March et al.
(1998).
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In general the point estimates are all positive. This leads practitioners to prescribe the medication

because they believe that credible RCTs suggest that they work. Yet, as Ludwig et al. (2009)

observe, these results lack external validity because individuals at risk of suicide must, for ethical

reasons, be excluded from the studies.9

Moreover, the outcome of these trials is an index whose value does not have an obvious economic

interpretation. That is to say, there is no obvious weighting rule that, for example, includes the loss

in value due to completed suicides; hence the average treatment effect may not reflect the optimal

choice. We also know that SSRIs may have significant side effects, and hence any treatment effect

should include values associated with illness caused by the drug.10

The American Psychiatric Association looked at the question of how treatment affects suicide

rates. The results for different age groups are shown in Table 5. As one can see, the success of

treatment for younger patients is definitely mixed. In particular, for younger patients these drugs

may increase the risk of suicide, and they are now packaged with “black box” warnings to this

effect. Given that by age 25 suicide has already claimed individuals, the positive effect at that age

may be due in part to the selection effect of suicide!

Table 4: Suicidality from a Meta-study of RCTs by American Psychiatric Association
Age Range Drug-Placebo Difference in Cases of Suicidality /1000 Patients

<18 14 additional cases
18-24 5 additional cases
25-64 1 additional case
>=65 6 fewer cases

Notes: Results are from RCTs on all andidepressants for patients with MDD, Obsesive Compulsive
Disorder (OCD), or other psychiatic disorders.

Currently, it is very difficult to determine whether a patient with certain characteristics x ∈ X
will benefit from treatment. The question then is how to use these results to guide decision making

in practice. For simplicitly, suppose that individuals are one of three types. For type A, given

by x ∈ XA treatment with the drug cures the depression with certainty, resulting in the payoff

V . Similarly, for a type B person, x ∈ XB, treatment has no effect, while for type C, x ∈ XC ,

the result is suicide and a lost of −L. Let pt, t ∈ {A,B,C} be the population probabilities for

each type. Under the hypothesis that the physicians cannot tell which type they face, then the

appropriate criteria for treatment is the average treatment effect:

τATE = pAV − pBL.
9Ludwig et al. (2009) use observational data and the fact that variation in the way the drugs are priced and

distributed affects the level of SSRI usage. Using population level measures of suicide rates, they find that an
increase in the class of selective serotonin re-uptake inhibitors of 1 pill per capita (12% of 2000 sales levels) reduces
suicide by 5%.

10For the FDA warnings on Zoloft and Lexapro go to http://www.fda.gov/Drugs/DrugSafety and search for the
drug specific information.
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This example illustrates the challenge one faces when using an RCT to evaluate treatment.

First, neither the benefit (V ) nor the cost (L) from the potential outcomes can be directly measured.

Hence, techniques such as those in Hirano et al. (2003), used to obtain efficient estimates of the

average treatment effect cannot be used. Second, there is the obvious sample selection problem

because individuals are restricted to have characteristics in XA ∪XB, those not at immediate risk

from suicide.

An alternative approach focuses upon evaluating decision rules rather than the treatment effect.

Specifically, can we identify the set of characteristics X+ such that τ (xi) > 0,∀xi ∈ X+. This in

turn determines a decision rule that improves upon a rule based upon the ATE by allowing choice

to vary with observed characteristics. We now turn to this question.

3 The Evaluation of Decision Rules

The evaluation of drugs for the treatment of depression illustrates some of the challenges one faces

when using randomized trials to address a substantive issue. In addition to the fundamental problem

of causal inference (Holland (1986)), due to the impossibility of observing both potential outcomes

for the same unit, it is typically also the case that one cannot directly measure the outcome of

interest. For example, in the case of depression, one only observes a proxy for the person’s mental

state. In terms of policy it is not obvious how to agregate such measures over a large population

for purposes of providing general therauptic advice, such as the recommendation of an SSRI as the

first drug to try for treatment.

An alternative approach would be to focus upon decision rules rather than the treatment effect.

In this section I briefly discuss the evaluation of decision rules and how they compare to measures

of the treatment effect. If we expect treatment have the same sign for the full population, say we

want to know the average effect of a vaccine that will be delivered to the whole propulation, then

it makes sense to use evidence from a sample of the whole population to obtain a more precise

estimate of the effect (as in Hirano et al. (2003)). Heckman (2010) notes in passing one may also be

interested in the voting criteria.11 Under this rule we ask what fraction of the population would be

better off from treatment. He mentions that this approach is used in political economy, and does

not discuss it further. It turns out that this is also the approach used in the pattern recognition and

machine learning literatures to evaluate the quality of the decision rules12 Moreover, as Devroye

et al. (1996) observe (sec 6.7), measuring decisions is easier than measuring treatment effects.

More precisely, given a unit i ∈ U , we can define two random variables that are unobserved,

but can be used to define the performance of a decision rule. The realized treatment effect:

τi = u1i − u0i ,
11Ibid, page 364.
12See Devroye et al. (1996) and Hastie et al. (2009).
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and the best treatment choice:

di =

1, if τi ≥ 0,

0, if not.

Neither of these variables can be directly observed at the time choice is made. What we have are

the observe characteristics of the individual, xi, from which we can define the two parameters that

are potentially estimable from data. The first the conditional average treatment effect:

τ (x) = E {τi|i ∈ U, xi = x} , (1)

and the probability that treatment is effective:

η (x) = E {di|i ∈ U, xi = x} . (2)

Ultimately, given that the characteristics of the unit i, conditional upon xi, are observed before

treatment, then we are interested in using data, either from an RCT or observational data, to

choose a decision function:

d : X → {0, 1} .

In the learning literature the norm is to evaluate decision functions using a loss relative to the best

that can be obtained. There are two criteria one can use. The first, is the “economic” critera that

supposes that the treatment effect is measured with transferable utility. In that case the welfare

loss of a decision function is measured by:

WL (d) = E {max {τi,−τi} |i ∈ U} −
ˆ
x
τ (x) (2d (x)− 1) dµ (x) . (3)

The welfare lost is the diference between the maximum welfare if one chooses the most effect

treatment for each individual, less the conditional treatment effect for each x ∈ X determined by

the decision rule. Where µ(x) is the distribution over characteristics. Clearly, WL (d) ≥ 0 for all

decision rules. The second criteria is the Bayes Risk defined by:

L (d) = Pr {d (xi) 6= di|i ∈ U} (4)

It measures the frequency with which a decision rule varies from the best rule, as opposed to a rule

that takes into account the implicit cost of deviating from the optimal choice.

Associated with each rule are natual optimal decision rules. For the welfare loss we have:

13



Proposition 2. For every measureable decision rule d (.) we have WL (d) ≥WL
(
dcate

)
where:

dcate (x) =

1, if τ (x) ≥ 0,

0, if not.

The result follows immediately from an inspection of (3). Thus, if we are able to estimate the

CATE τ (x), then a decision rule based upon this will provide the lowest expected loss relative

to the theoretical maximum. In particular, if the sign of τ (x) changes over the set X, then the

optimal rule should vary with x, and decision making based solely upon the average treatment

effect cannot be optimal. In the case of the Bayes risk criteria we have:

Proposition 3. For every measureable decision rule d (.) we have L (d) ≥ L
(
dB
)
, where dB is the

optimal Bayes rule defined by:

dB (x) =

1, if η (x) ≥ 1/2,

0, if not.

This result follows from Theorem 2.2 in Devroye et al. (1996). In this case, if the probability

that treatment 1 is optimal is greater than 1/2, then the optimal Bayes rule is to choose 1. This

exactly Heckman (2010)’s voting rule. One chooses the decision that is more frequently correct,

or,stated another way, is the majority of equally probable events select 1. There are some cases in

which the criteria lead to the same choice. The first of these is when conditional upon x there is

always an optimal choice:

Proposition 4. Suppose L
(
dB
)

= 0 and τi is bounded then WL
(
dB
)

= 0 and the optimal CATE

rule and Bayes differ at most on a set of measure zero.

If L
(
dB
)

= 0 then this implies that almost everywhere η (x) ∈ {0, 1}, and hence there is best

decision for almost every x ∈ X. From this it follows that WL
(
dB
)

= 0.

This result is useful because when we are in a situation where there is clearly a correct choice

for each x ∈ X, then the size of the treatment effect is not relevant for setting the decision rule,

only the sign is relevant. For example, this provides some guidance regarding the use of proxy

variables in an RCT. If a drug helps relieves depression if and only if the patient has a better

Montgomery-Asberg Depression Rating (MADRS) or Hamilton Rating (HAMD), then the results

from an RCT for SSRIs can be used in clinical practice to recommend treatment, even though the

value of treatment is deficult to measure.

In many cases there is no clear, unambiguously correct choice. This can occur when there are

unobserved factors that affect the CATE, but they are not contained in the vector of observed person

characteristics, xi. Even so, there is a case in which the optimal rule based upon the treatment

effect and the Bayes optimal rule imply the same optimal choice.. Suppose that the distribution of
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τi is symmetric around it’s expected value τ (x) for all xi = x ∈ X, and Pr {τi = τ (xi)} = 0 (there

is no mass at τ (x)). Then Pr {τi < τ (x)} = Pr {τi > τ (x)} = 1/2, and we have that τ (x) ≥ 0 if

and only if η (x) ≥ 1/2. Thus:

Proposition 5. Suppose that the treatment effect τi is symmetrically distributed around τ (x), with

no mass at τ (x), then the optimal CATE rule (dCATE) and the optimal Bayes rule (dB) are the

same almost everywhere.

Finally, the two approaches represent contrasting approaches on how to learn from data. Notice

that while we can never directly observe the treatment effect τi, we can observe decisions made

by agents, and the consequence of these decsions, either udii or ydii . Randomized control trials

represent one extreme, where the decision di is explicitly randomized so that we sufficient data we

can estimate τ (x) from observations of outcomes. In that case the decision rule itself contains no

information.

In contrast, consider the other extreme case in which the optimal Bayes risk is zero - L
(
dB
)

= 0,

and we have data from perfect expert decision makers who choose di = 1 iff τ (x) ≥ 0. In that case

we never observe the counterfactual inefficient choice, and hence have no information concerning

the treatment effect. However, we are in a situation in which we can learn the decision rule. In this

case, as Macleod (2016) discusses, with enough observations it is possible to estimate the optimal

decision rule for all x ∈ X, even though measuring the treatment effect is impossible.

The traditional approach in empirical labor economics is to view any correlation between the

treatment effect and choice as creating a threat to identification (Angrist and Krueger (1999)). It is

worth highlighting the point that the large literature on pattern recognition and machine learning

takes exactly the opposite view. The more tightly connected choice is to the optimal treatment,

the lower the Bayes risk, which in turn improves the ability of algorithms to learn the best choices

from training data. In the next section I discuss some recent work that combines these viewpoints

and illustrates how we can use a mixed approach to learning on how to improve observed decision

making in medicine.

4 The Human Capital Approach to Inference

This section outlines what I call the human capital approach to inference. The goal is to provide

a way to lever expert knowledge, or human capital, to estimate a version of the CATE that in

turn can lead to improvements in decision making. The standard approach to identify CATE

is knowledge of the environment that allows one to put some structure upon the assignment to

treatment groups. The instrumental variables approach, such as Angrist et al. (1996), assumes

that there is some shock in the environment that creates a random assignment. Vytlacil (2002)

and Heckman (2010) observe that the Roy model can be interpreted as a valid estimate of the

returns to changing sectors by viewing moving costs between sectors as an exogenous shock that is
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independent of the treatment effect. Athey and Imbens (2015) discuss the use of machine learning

techniques to measure the CATE, but still rely upon the exogeneity of the treatment effect (as in

Theorem 1).

Here I begin with an environment with many heterogeneous units, and at least two (but not

an infinite number of) agents who carry out the assignment to treatments. The precise context we

have in mind is a physician j ∈ J treating patient i ∈ Uj with condition xi. The set Uj indexes

the patients for physician j, with the feature that Uj ∩ Uj′ = ∅ whenever j 6= j′ and ∪j∈JUj = U .

Matters are much easier if we suppose that the distribution of xi for i ∈ Uj is given by µ for all

j ∈ J . This is a strong assumption, and we defer discussion of it to the end. The job of the

physician j is to choose treatment dij ∈ {0, 1} as a function of the observable conditions of patient

i, given by xi ∈ X, where X is a finite set.13 In the spirit of the SUTVA, I assume that physicians

treat “in a bubble.”14 Namely, their treatment decisions are fixed when they leave medical school.

For the current discussion - Epstein and Nicholson (2009) provide some direct evidence in support

of this assumption.

The problem is made more complex by that fact that the number of possible conditions repre-

sented in the set X is potentially large. The purpose of medical school is to teach students the best

way to treat patients as a function of x ∈ X, so that they make decisions that are close to optimal,

which we suppose is given by d∗ (x).

When we say that this decision making ability is human capital, this has two implications. The

first is that it is expensive to acquire. As I point out in Macleod (2016), this implies that decision

making is imperfect, but increasing with experience and the innate ability of the individuals. Even

highly skilled individuals make mistakes. These errors create random assignment from which we

can determine the treatment effect. The second implication is that even though physicians make

errors, they are not random. Millions of individuals are treated by physicians each year with the

expectation that treatment by a physician is better than the alternative.

This implies that the allocation to a treatment is non-random. We can exploit this fact and

use a basic machine learning algorithm to organize the data before attempting to exploit error

to measure the CATE. More precisely, let us suppose that Agent j ∈ J has an unbiased noisy

observation of the CATE (1):

τij (x) = τ (x)− εij , (5)

where εij ∼ N
(

0, σ2j

)
, where σ2j > 0 is constant for each doctor. A smaller variance σ2j corresponds

to more diagnostic skill. I am assuming that the treatment effect is on a log scale, so that τ and

yi take values from (−∞,∞). If training were perfect and homogeneous, then we would suppose

that σ2j ' 0. We begin with the hypothesis that the quality of decision making among the j ∈ J
13Not only does this simplify the analysis, but is also true in practice since any information reporting system by

construction has only a finite number of possible x variables.
14This is a direct quote from a physician, who said that after medical school his decision making was independent

of other physicians’ decisions.
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Agents varies with the variance σ2j . There is quite a bit of evidence that this is the case. In the

case of physicians, there is a large amount of variation in practice styles that cannot be explained

by the condition of the patient, an observation that is often used to explain the high cost of health

care in the U.S., along with the under-provision of care in other cases (Song et al. (2010)).

Let us suppose that we have a data set given by:

Data =
{{

xi, u
dij
i |i ∈ Uj

}
|j ∈ J

}
, (6)

= {Dataj |j ∈ J} .

With this data we would like to answer two questions. First, do physicians vary in quality of

decision making? Second, what are the features of the better doctors? In particular, we would

like to offer specific guidance on how their decisions might change to improve outcomes. We begin

with the pattern recognition or matching learning approach to thinking about a decision. Consider

physician j. Their job is to divide patients into two groups, X1
j and X0

j , and then carry out the

decision:

dj (xi) =

1, xi ∈ X1
j ,

0, xi ∈ X0
j .

What one learns in medical school are patient conditions that determine the sets X1
j and X0

j -

the problem of pattern recognition is to take the observed data to reconstruct these sets. The

assumption that a doctor observes a noisy signal of the treatment effect dramatically complicates

the problem. Given the learning process (5), then the set of conditions where dj (x) = 1 is given by

conditions x ∈ X1 such that the physician believes the best course of action is to treat. This set

includes x if there is a chance that τij (x) > 0. Since εij is Normally distributed, then it’s support

is unbounded and we have:

X1
j = {x ∈ X|for some i, τij (x) = τ (x)− εij ≥ 0} ,

= X with prob 1, as #U →∞.

In other words with a noisy signal there is always a chance a physician might recommends di = 1

and X1
i = X0

i = X! Hence, for each x ∈ X the probability of treatment is in (0, 1).

The human capital approach to inference used here relies on a few assumptions. First let us

suppose that for a randomly selected individual the probability of using physician j is ρj . Suppose

that for this individual the CATE is τ , then the probability of getting treatment 1 is:

e (τ) = Pr [di = 1|τ ] ,

=
∑
j∈J

ρjF

(
τ

σj

)
. (7)
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The assumption that decision making is imperfect implies that σj > 0, and hence:

e′ (τ) =
∑
j∈J

ρjf

(
τ

σj

)
/σj > 0. (8)

This implies a 1-to-1 relationship between the probability of treatment and the treatment effect

τ . This function is the familiar propensity score. Since the score is strictly increasing with τ , then

it becomes a balancing score in the sense of Rosenbaum and Rubin (1983), because conditioning

upon e allows for a consistent estimation of τ (x). The first step is to construct the population

propensity score as a function of the data:

η (x) = E [di|xi = x] .

This is connected to the propensity score via η (x) = e (τ (x)). We have:

Proposition 6. Suppose that the SUTVA is satisfied, e′ (τ) > 0 for all τ ∈ <, η (x) = E {di|xi = x}
and η̄ = η(x̄), then if:

τ̄ = E
{
u1i |di = 1, η (xi) = η̄

}
− E

{
u0i |di = 0, η (xi) = η̄

}
,

it follows that η (xi) = e (τ̄) for all xi ∈ {x|η (x) = η̄} and τ̄ = τ (xi), the CATE at xi.

Proof. Under the SUTVA the propensity score is a balancing score, and from theorem 4, Rosenbaum

and Rubin (1983), τ̄ is the CATE at e (τ̄). The fact that e′ > 0 implies that it is unique, and hence

CATE = τ̄ .

We are making two key assumptions. First, the probability of treatment increases as a function

of τ for each physician, but it is not perfectly correlated. This is the essence of the human capital

approach - we suppose that doctors on average respond correctly to patient condition. Second we

have assumed the allocation of patients to doctors is independent of the treatment effect. This is

not strictly necessary since e′ (τ) is strictly positive. All that is necessary is that the proportions

do not change too quickly with τ .

We can perform some additional robustness checks. In this setup we are assuming that the

physicians are making errors conditional upon the information they have in xi. If that is true,

then if we compare two physicians, and σ2j > σ2j′ , when j′ is a better doctor, her propensity score

rises more quickly. With sufficient data we estimate ηj (x) = η
(
x, σ2j

)
≡ F

(
τ(x)
σj

)
, the Agent’s

probability of treatment, by restricting the sample to a single agent j. The expected performance
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of Agent j is given by:

Qj
(
σ2j
)

=

ˆ
x∈X

ηj (x) τ (x)− (1− ηj (x)) τ (x) dµ (x)

=

ˆ
x∈X

τ (x) (1− 2ηj (x)) dµ (x)

A simple computation implies:

Proposition 7. The Agent-specific propensity scores and performance satisfy:

∂ηj (x)

∂σj
< 0, iff τ (x) > 0,

∂Qj

(
σ2j

)
∂σj

< 0.

These results follow immediately from differentiating the respective expressions. Since ηj (x) =

1/2 iff τ (x) = 0, this implies that for ηj (x) > 1/2, increasing the quality of information (lower σj)

results in a higher probability of treatment, with the opposite occurring for ηj (x) < 1/2. Thus the

quality of information has an ambiguous effect upon choice. In contrast, increasing the the quality

of information (lower σj) always increases total performance.

What we have done is provide some structure to the well known propensity score model that

allows us to interpret a propensity score as a decision rather than a self-selected treatment. The

result relies upon two features of human capital:

1. Agents j ∈ J are skilled in the sense that the propensity score to treat should rise with the

treatment effect.

2. Human capital is expensive to acquire, and hence decision making is imperfect, which in turn

implies that conditional upon the propensity score we are observing both potential outcomes.

5 Example: Medical Decision Making

A common approach to the estimating a treatment effect involves the creation of well defined groups,

within which assignment to treatment and control are independent of individual characteristics.

In contrast, here it is assumed that agents are making decisions to treat based upon their own

perception of the efficacy of treatment. If their decisions are error free, then we would observe a

great deal of homogeneity in their decisions. Moreover, if choice is perfect, then it is impossible to

estimate the treatment effect because we only observe the optimal choice, not the counter-factual.

However, the fact that experts do make mistakes creates heterogeneity in treatment that we can

use to estimate the treatment effect. In this section I discuss two papers that apply these ideas to

physician decision making.
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In both cases it is assumed the physician decides whether or not to treat a patient with an

invasive procedure. In the case of heart attack patients this is angioplasty or catheterization, while

in the case of birth it is the choice between a natural delivery or a C-section. We begin by estimating

η (x), the population level probability that a patient with characteristics xi is treated intensively.15

This can be viewed as a classic problem in machine learning. Given Data, can we predict what

will happen to a patient with characteristics xi? As it turns out, the standard logit model is a very

good machine learning model:16

η̂ (x) = Pr [di = 1|xi = x] = F (Γx) , (9)

where di = 1 indicates an invasive procedure, F is the logit function, and Γ is a vector of parameter

estimates. We then divide patients into two groups - high and low appropriateness for an invasive

procedure:

UH =
{
i ∈ U |η̂ (xi) ≥ pH

}
,

UL =
{
i ∈ U |η̂ (xi) ≤ pL

}
,

where pH and pL are chosen to create approximately three groups of individuals of equal size. In

general, the index η̂ (x) provides a way to rank patients along one dimension based upon how they

are treated in the market.

The next issue is whether or not there is variation in the decisions made by the doctors. We

estimate this by defining an index for patient condition s (x) ∈ (−∞,∞) by:

η̂ (x) = F (s (x)) .

For each physician we estimate the individual behavior for i ∈ Uj via:

η̂j (x) = Pr [di = 1|xi = x] = F (αjt + βjts (x)) , (10)

where {αjt, βjt} is a physician’s practice style at date t. If a physician behaved exactly the same

as his or her colleagues, then the estimated values should not be significantly different from {0, 1}.
In order to evaluate the effect of practice style upon the patient we construct a measure of

15In the case of a heart attack patient, an invasive procedure is either angioplasty or catheterization (ICD codes
00.66, 36.0.., 37.22 or 37.23). For delivery of a child, a C-section is the invasive procedure.

16See Chapter 4, Hastie et al. (2009).
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performance using observed outcomes for the each patient in the high and low categories:

ûHj =
1

nHj

∑
i∈Uj∩UH

ui, (11)

ûLj =
1

nLj

∑
i∈Uj∩UL

ui, (12)

where nlj = |Uj ∩ U l| is the number of patients served by physician j in population U l, l ∈ {L,H}.
We then ask, do these measures vary systematically with physician practice style? Notice that an

increase in αj leads to more invasive procedures for all patients, while an increase in βj leads to

fewer invasive procedures for low risk patients and more invasive procedures for high risk patients.

Let us now turn to the two applications.

5.1 Heart Attack Treatment

Currie et al. (2016) use hospital discharge data from all heart attack patients in Florida from

1994 until 2014. The question we ask is whether or not there is variation in physician decision

making quality, and whether or not this is related to outcomes. We restrict the sample to heart

attack patients who arrive at a hospital through the emergency room (ER) and are treated by a

cardiologist. The result is a sample with 658,553 patients (U) treated by 2,929 cardiologists (J) at

149 hospitals. The set of patient characteristics (X) is listed in the first column of Table 5.

The index (9) is estimated using the data from teaching hospitals. This helps ensure that the

index is based upon a group of skilled physicians. The patients for whom an invasive procedure

is appropriate (UH) are those with η̂ (xi) ≥ .66, while the low appropriateness patients (UL) are

those with η̂ (xi) ≤ .34, The mean values of xik for each group are listed in columns 3 and 4 of

Table 5.

Next, for each physician j ∈ J , equation (10) is estimated. The first question we address is

whether or not there is evidence that providers deviate significantly from the behavior of physicians

in accredited hospitals. These results are presented in Table 6. We can see that there is significant

deviation from the mean behavior in the market. About 13% of the physicians are less sensitive to

patient conditions than the market mean, while 2% are more sensitive. The variation in the fixed

effect is greater, with about 22% of the sample with a propensity to treat invasively regardless of

the patient condition.

From these results we learn that there is no a consensus on how to treat these patients. This

variation implies that by comparing the outcomes between physicians j ∈ J we can learn what

treatment styles are more effective because patient with similar characteristics are receiving differ-

ent treatments. Table 7 presents the results from how variation in practice affects various outcomes

for high and low appropriateness patients (versions of equations [11] and [12]). What is interest-

ing is that more aggressive physicians get better outcomes. Also, low responsiveness physicians
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get worse outcomes for the high appropriateness patients, while having better outcomes for low

appropriateness patients.

Taken together, these results suggest that when judged from a purely medical point of view,

a more aggressive treatment of heart attack patients leads to better outcomes. In general we

find that U.S. trained physicians are less responsive and more aggressive, consistent with getting

better medical outcomes. What is interesting is that physicians from top U.S. schools, while more

aggressive, are also more responsive. As one can see from Table 5, one of the most important

factors signaling aggressiveness is the age of the patient. Thus, it would seem that even though

invasive procedures improve medical outcomes, for some patients, particularly older patients, some

physicians are choosing to be less aggressive. This is consistent with them taking into account

factors other than the treatment effect of an intervention.

5.2 Caesarean Sections

There is a great deal of concern that C-section rates at American hospitals are too high. In order to

help mothers make better decisions, Consumer Reports (2015) provides advice on hospital choice,

and recommends low C-section hospitals. Implicitly, they are making two assumptions. The first

is that doctors at low-C-section hospitals have uniformly low C-section rates. However, while it is

mechanically true that choosing a hospital with a low C-section rate results in a lower expected rate

for the mother, Epstein and Nicholson (2009) find little relationship on C-section rates between

physicians at the same hospital.

Second, the C-section rate recommendations that are used to evaluate physicians and hospitals

assume that it is for a low risk pregnancy. Implicitly it is assumed that physicians will perform a

C-section whenever it is medically necessary. Two questions remain. First, how should a mother

decide if she is low risk or not? Normally, it is the job of the physician to do this, not the mother.

Second, after a physician has been chosen and a preliminary evaluation has been carried out, there

is the issue of the quality of decision making in real time during the labor and delivery process.

We already have strong evidence that physicians respond to financial incentives (Chandra et al.

(2012)). In the specific case of C-sections, Currie and MacLeod (2008) find that obstetricians are

responsive to changes in medical liability - in particular, when legal liability increases, obstetricians

reduce their C-section rates for the marginal cases. This result is consistent with Johnson and

Rehavi (2016) who find that when the mother is a physician, then she has a lower C-section rate

and gets a better outcome. Yet, as Chandra et al. (2012) observe, incentives alone cannot explain

all variation in practice style. Holding incentives fixed, a natural question is the extent to which

there is variation in the way physicians make decisions, and does this variation lead to variation in

outcomes?

Currie and MacLeod (2017) address this question using the human capital approach described

above. They explore the quality of decision making using information from 1.1 million births
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in New Jersey from 1997 to 2004. We are able to match these births to 71 hospitals and 5,273

birth attendants. Since only physicians carry out C-sections we remove the 603 midwives from the

sample. For each delivery we have a rich set of X measures. These are listed in Table 8, along

with the estimated coefficients for equation (9). We run the model for the full sample, as well as a

sample of “good physicians” - those in the bottom 25th percentile of having any adverse outcomes.

One can see that the rankings are very similar, with a correlation of .99.

What this ranking does is show that physicians rank xi ∈ X from different patients in the same

way. We also know there has been a secular increase in C-section rates over time. The relationship

between our index and the observed C-section rate is illustrated in Figure 1. We can see that there

is a strongly positive correlation between our measure of risk of C-section with observed C-section

rates. Also, the Figure documents the upward shift in C-section rates for all mothers, with the

largest increase occurring in the 0.5 to 0.9 region. Given the changes over time, we allow estimated

physician practice style to vary with time.

Figure 1: Shifts in Probability of a C-Section Over Time

Source: Figure 1, Currie and MacLeod (2017).

The next question is whether physicians vary systematically in the way they treat patients.

In Currie and MacLeod (2017) we provide a formal model of physician decisions that provides a

structural interpretation of equation (10). Specifically, physicians who are better at diagnosis have

a higher βjt. This is the case under the hypothesis that the index we construct accurately ranks

patients, and that physicians make errors in their evaluation of patient condition. We will be able

to check this hypothesis by seeing if variation in βjt is associated with variation in outcomes, as
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predicted by Proposition 4. An alternative hypothesis is that the physicians have better information

than we have as outside observers. In that case we would expect the reverse – an increase in βjt

implies less private information, and hence worse outcomes. As we shall see, the data rejects this

alternative hypothesis.

In addition, we measure procedural skill by calculating the rate of any bad outcomes among

very low-risk births and the rate of bad outcomes among high-risk births for each doctor, and then

take the difference between them. Taking the difference in the incidence of bad outcomes between

these two groups is suggested by the model, in which it is the difference in skill in procedure C

and in procedure N that affects the physician’s choice. The rate of bad outcomes in each group

proxies for surgical skill because the vast majority of high-risk women get C-sections and most very

low-risk women do not. At the same time, because the very high-risk and very low-risk groups

are defined only in terms of underlying medical risk factors, the measure is not contaminated by

the endogeneity of the actual choice of C-section within these risk categories. This measure also

exhibits considerable variation between doctors with a mean of -0.0493 (given that bad outcomes

are more frequent in high risk cases than in low risk cases) and a standard deviation of 0.0646. The

first percentile of this variable is -0.25, while the 99th percentile is 0.079. Again, we normalize this

measure by calculating a Z-score for ease of interpretation.

The effects of decision making skill (from the estimated βjt in equation 10) and our measure

of procedural skill are presented in Table 9. The top part of the table reports the results of skill

upon C-section rates. The formal model supposes that the distribution of outcome variables x is

the same for all doctors. We control for this by also doing the analysis at the market level. In that

case we are identifying market level variation in diagnostic skill to control for patient self-selection

to physicians. The TSLS results refers to these two-stage least squares estimates that control for

selection of patients to physicians at the market level. Notice that an increase in decision making

skills leads to higher C-sections for the high risk patients, while it reduces the rate for low risk

patients. More importantly, the effect of decision making skill has a zero average effect. This is

important because most of the public policy concern has been with the high C-section rates, and

not upon the quality of decision making.

The effect of decision making quality of the physician is reported in the lower part of the table.

Notice that performance increases for both the high-risk and the low-risk groups. In other words,

an increase in C-section rates for the high risk patients results in better outcomes. This effect

is different than procedural skill, which mainly affects the level of C-sections via the αj term in

physician quality. We can see this because an increase in procedural skill increases the C-section

rate for both high and low risk patients. However, in the lower panel we see that outcomes improve

for both risk categories.

Our earlier work, Currie and MacLeod (2008), found strong and consistent effects of tort reform

upon outcomes, consistent with the hypothesis that a C-section is not risk free, and that physicians

24



respond to financial incentives. These results are consistent with a long literature in health eco-

nomics illustrating the relationship between financial incentives and procedure choice (e.g. Gruber

and Owings (1996)). However, for the better physicians, the effect of these reforms were close to

zero, consistent with our hypothesis that there are variations in physician quality, and that the

better physicians are not affected by tort law (nor should they be - in the U.S. medical liability is

a negligence regime, and hence only negligent physicians should respond to changes in the law).

More importantly, these results illustrate the role that diagnosis plays in determining patient

outcomes, and that there is not a one size fits all approach for determining C-sections. We find that

for low risk mothers the C-section rate is too high relative to the medically optimal level, while for

high risk mothers it is too low. Currie and MacLeod (2013) conclude by observing:

Taking the model to data on C-sections, the most common surgical procedure per-

formed in the U.S., we show that improving diagnostic skills from the 25th to the 75th

percentile of the observed distribution would reduce C-section rates by 11.7% among

the low risk, and increase them by 3.8% among the high risk. Since in our application

there are many more low risk women than high risk women, improving diagnosis would

reduce overall C-section rates without depriving high risk women of necessary care.

Moreover, we show that an increase in diagnostic skill would improve health outcomes

for both high risk and low risk women, while improvements in surgical skill have much

larger effects on high risk women. These results are consistent with the hypothesis that

improving diagnosis through methods such as checklists, computer assisted diagnosis,

and collaborative decision making could reduce unnecessary procedure use and improve

health outcomes.

6 Conclusions

The paper outlines a human capital approach to measuring the treatment effect of choice in situa-

tions where it is not possible or practical to carry out trials of sufficient precision. I begin with a

discussion of randomized control trials of drugs for treating depression. This example illustrates dif-

ficulty on measuring a consistent relationship between patient characteristics and outcomes. Thus,

it is not surprising that Frank and McGuire (2000) find that the problems with health delivery

for physical illness are all magnified when it comes to mental health. This is also consistent with

the recent results of Dickstein (2012), who finds that prescription behavior by psychiatrists is very

sensitive to the reimbursement rates offered by insurance plans. This points to a need for a better

understanding of how to design treatment as a function of patient observables.

The rest of the essay discusses a human capital approach to this problem. It is built upon two

generic features of human capital. First, the fact that experts have a great deal of training/human

capital implies that their decisions can be used to to organize individuals into groups that as a
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group should have similar treatment needs. Here simple machine learning techniques can used to

estimate a propensity score for each group - the likelihood that individals in a group receive an

intensive treatment by the average expert.

Second, even though experts are skilled, they necessarily make mistakes. This is consistent with

the fact that human capital is expensive to acquire - at some point it is not worthwhile or possible to

increase decision making skill. As emphasized by the Rubin/Holland potential outcomes approach,

such errors are essential if we are to measure the size of a treatment effect. Under the hypothesis

that conditional upon the propensity score, errors are uncorrelated with patient characteristics,

then one can consistently estimate the treatment effect. This provides a “structural” interpretation

propensity score estmators (Rosenbaum and Rubin (1983) and Hirano et al. (2003)).

The analysis also illustrates the point that when optimal decisions vary with the characteristics

of the units, then the average treatment effect is not necessarily very useful (even if well measured)

because it averages over a group of units where the treatment effect is both positive and negative.

In the case of heart attack patients, Currie et al. (2016) find that the optimal choice from a medical

point of view is to provide all patients with an invasive procedure. However, our results identify some

systematic heterogeneity in treatment across patients. Physicians from better hospitals tend to be

more responsive – namely, they are less likely to do an invasive procedure for low appropriateness

patients, which in practice corresponds to older patients (see Table A1 in Currie et al. (2016) (could

also say see Table 5)). This is consistent with the hypothesis that these physicians are sensitive to

other factors than simply medical necessity when making their decisions.

In the case of child birth, Currie et al. (2016) find that there is a great deal of heterogeneity

in the decision to perform a C-section. It is widely believed that some of this heterogeneity is due

to financial incentives that may explain the high C-section rates in the United States.17 We found

this to be the case for low risk births. However, in the case of high risk births our results impy that

the C-section rate is too low. When we average over the two groups, and take into account the

number of women at risk, we find that the mean C-section rate in New Jersey is too low relative

to the medically optimal rate.

Much more work is needed to explore the robustness of these results. However, the case of

C-sections does illustrate an important public policy issue where more work is needed to link

measured treatment effects to policy recommendation, a point that Heckman and Smith (1995)

and Dehejia (2005) have already emphasized in the case of program evaluation. The finding in

Currie et al. (2016) that average C-section rates are too low in New Jersey is consistent with recent

work by Molina et al. (2015) who look at C-section rates world wide. They find that the WHO

guidelines of 10%-15% C-section rates are too low, and that 19% may be a more appropriate norm.

However, as D’Alton and Hehir (2015) point out in their discussion of this paper, whether or not

to have a C-section should be based upon high quality information. Not only should the C-section

17See Gruber and Owings (1996) and Consumer Reports (2015).
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incidence vary with the characteristics of the mother, it should also vary with the characteristics

of the physicians and characteristics of the hospital where child delivery is occurring.

These examples provide concrete illustrations of what Deaton (2010) calls the well known “het-

erogeneity problem.” The contribution of the human capital approach is to provide one way to

combine structure with randomization, as recommended by Heckman (2010). Decision making by

the expert provides structure to organizing patients into groups in a way that is analogous to the

propensity score method of Rosenbaum and Rubin (1983). Once we condition upon best practice as

perceived by the expert, then one can identify the conditional treatment effect under the hypothesis

that even experts make mistakes. We can exploit the variation in error rates between experts to

learn what strategies works best.

It is worth emphasizing that the approach here is a bit different from the typical machine learning

strategy. For example, supervised learning of an algorithm begins with a training set produced by

experts to “teach” the algorithm about what are the best decisions in certain situations. Once

trained, one can test the algorithm out of sample (see Athey and Imbens (2015) for an explicit

application of these ideas to estimating the conditional average treatment effect).

The approach suggested here combines the wisdom of experts to characterize sub-populations

with the fact that experts do make mistakes (Kahneman and Klein (2009)). Rather than sample

only the best decision makers, the human capital approach suggests using a large sample with

many decision makers to generate variation in decisions over sub-populations of the treatment

unit. This allows us to estimate the conditional average treatment effect for finer sub-populations

than would be possible with structured randomized control trials. Within the medical community

there has been a great deal of attention paid to improving decisions and reducing errors. One of

the recognized challenges is to systematically collect more high quality data that would allow the

type of the analysis suggested here.18
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Table 5: Patient Characteristics (X)

Appropriateness for Surgery: All Low High

Female 0.40 0.53 0.27
Age 69.91 80.69 59.65
White 0.79 0.83 0.76
Black 0.08 0.07 0.10
Hispanic 0.10 0.08 0.11
Medicaid 0.04 0.02 0.06
Medicare 0.66 0.88 0.38
Private Insurance 0.21 0.07 0.39
Self Pay or Other 0.09 0.03 0.17
Morbidity Index 0.45 -1.33 2.02
Subsequent AMI 0.05 0.12 0.003
#Diagnoses 8.20 8.98 7.16
Arrhythmia 0.26 0.32 0.20
Hypertension 0.43 0.33 0.56
Congestive Heart Failure 0.32 0.51 0.11
Peripheral Vascular Disease 0.05 0.05 0.04
Dementia 0.03 0.09 0.00
Cerebral Vascular Disease 0.07 0.14 0.01
COPD 0.16 0.20 0.09
Lupus 0.02 0.03 0.01
Ulcer 0.01 0.01 0.00
Liver Disease 0.02 0.03 0.00
Cancer 0.06 0.10 0.02
Diabetes 0.21 0.18 0.22
Kidney Disease 0.15 0.28 0.03
HIV 0.003 0.004 0.002

N 658,553 217,323 223,853

Source: Table 2, Currie et al. (2016).

Table 6: Fraction of Estimated Provider Coefficients that are Significantly Different than β = 1
and α = 0.

Beta<1 Beta=1 Beta>1 Total

Alpha<0 0.028 0.138 0.010 0.176
Alpha=0 0.069 0.527 0.0096 0.606
Alpha>0 0.041 0.177 0.0007 0.219

Total 0.138 0.842 0.020
N= 658,553 patients.

Source: Table 5b, Currie et al. (2016).
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Table 8: Estimation of η (x).

All Doctors Good Doctors Only
Marginal Marginal

Coeff. S.E. Effect Coeff. S.E. Effect

Age<20 -0.337 0.013 -0.075 -0.428 0.029 -0.095
Age >=25&<30 0.262 0.008 0.058 0.311 0.018 0.069
Age >=30&<35 0.434 0.008 0.096 0.483 0.017 0.107
Age >=35 0.739 0.009 0.164 0.840 0.018 0.186
2nd Birth -1.347 0.007 -0.298 -1.448 0.015 -0.321
3rd Birth -1.645 0.009 -0.364 -1.787 0.019 -0.396
4th or Higher Birth -2.140 0.012 -0.474 -2.317 0.027 -0.513
Previous C-section 3.660 0.008 0.810 3.885 0.018 0.860
Previous Large Infant 0.139 0.029 0.031 0.293 0.065 0.065
Previous Preterm -0.293 0.025 -0.065 -0.311 0.061 -0.069
Multiple Birth 2.879 0.014 0.638 3.278 0.032 0.726
Breech 3.353 0.016 0.742 3.810 0.040 0.844
Placenta Previa 3.811 0.054 0.844 3.843 0.116 0.851
Abruptio Placenta 2.048 0.030 0.454 2.196 0.072 0.486
Cord Prolapse 1.761 0.047 0.390 1.668 0.100 0.369
Uterine Bleeding 0.026 0.035 0.006 0.259 0.099 0.057
Eclampsia 1.486 0.096 0.329 1.047 0.230 0.232
Chronic Hypertension 0.745 0.025 0.165 0.754 0.060 0.167
Pregnancy Hypertension 0.639 0.013 0.142 0.696 0.029 0.154
Chronic Lung Condition 0.064 0.014 0.014 0.110 0.032 0.024
Cardiac Condition -0.121 0.020 -0.027 -0.175 0.042 -0.039
Diabetes 0.558 0.011 0.124 0.547 0.025 0.121
Anemia 0.131 0.018 0.029 0.203 0.043 0.045
Hemoglobinopathy 0.116 0.047 0.026 0.067 0.092 0.015
Herpes 0.461 0.024 0.102 0.558 0.049 0.124
Other STD 0.052 0.017 0.012 0.064 0.039 0.014
Hydramnios 0.616 0.018 0.136 0.645 0.042 0.143
Incompetent Cervix 0.043 0.035 0.010 -0.119 0.093 -0.026
Renal Disease -0.024 0.031 -0.005 -0.057 0.067 -0.013
Rh Sensitivity -0.045 0.040 -0.010 -0.082 0.109 -0.018
Other Risk Factor 0.276 0.006 0.061 0.210 0.013 0.047
Constant -1.414 0.007 -0.313 -1.374 0.015 -0.304

# Observations 1169654 262174
Pseudo R2 0.32 0.322

Notes: Source, Table 1, Currie and MacLeod (2017)The model also included indicators for missing
age, parity, and risk factors. The correlation between rho estimated using the two different models
is .99.
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Table 9: Effect of Physician Decision Making and Surgical Skill on P(C-section) and Health Out-
comes

OLS OLS OLS TSLS TSLS TSLS
C-section Risk: All Low High All Low High

Dep. Var: C-Section

Decision Making 0.004 -0.011 0.018 0.000 -0.016 0.019
(0.002) (0.002) (0.002) (0.006) (0.005) (0.008)

Procedural Skill Difference 0.003 0.003 0.003 0.020 0.017 0.030
(0.002) (0.001) (0.002) (0.010) (0.008) (0.011)

R-sq/Chi-sq. 0.410 0.044 0.321 710797 15293 62526

Dep. Var: Any Bad Outcome

Decision Making -0.008 -0.007 -0.009 -0.013 -0.013 -0.013
(0.002) (0.001) (0.002) (0.006) (0.007) (0.006)

Procedural Skill Difference -0.017 -0.008 -0.027 -0.058 -0.047 -0.072
(0.002) (0.002) (0.002) (0.006) (0.007) (0.006)

R-sq/Chi-sq. 0.020 0.016 0.023 6750 13635 1695
# Observations 968748 469170 499578 968748 469170 499578

Notes: Source - Table 4, Currie and MacLeod (2017). Standard errors clustered at the 3-digit
zip code level. Regressions also include market price, estimated C-section risk, indicators for
African-American, Hispanics, race missing, education (less than high school, high school, some
college, missing), married, married missing, Medicaid, Medicaid missing, teen mom, 25-34, 35 plus,
smoking, smoking missing, male child, parity 2, parity 3, parity 4 plus, parity missing, month and
year of birth indicators, indicators for 3-digit zip code, and an indicator for whether the birth was
on a week day. R-squared shown for OLS and Chi-squared shown for TSLS.
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