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perturbations to the version of our model which predicts that observed

consumption follows a random walk: (i) changing the production technology

specification which rationalizes the random walk result, and (ii) replacing

the assumption that agents' decision intervals coincide with the data sampling

interval with the assumption that agents make decisions on a continuous time

basis. We find substantially less evidence against the continuous time models

than against their discrete time counterparts. In fact neither of the two

continuous time models can be rejected at conventional significance levels.

The continuous time models outperform their discrete time counterparts

primarily because they explicitly account for the fact that the data used to

test the models are time averaged measures of the underlying unobserved

point—in—time variables. The net result is that they are better able to
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1. IntroductIon

Few subjects in macroeconomics have received as much attention as

the relationship between aggregate consumption and output. This attention

reflects, at least in part, the belief that an understanding of the structural

determinants of aggregate consumption is central to resolving many of the

outstanding issues in business cycle theory. During the past decade much of

the empirical literature on aggregate consumption has centered on Hall's

(1978) demonstration that, under certain conditions, the permanent income

hypothesis (PIN) implies that consumption is a random walk. Under this random

walk hypothesis (RWH) no variable apart from current consumption should be of

value in predicting future consumption.

In fact, a number of authors, including Flavin (1981) and Hayashi

(1982), report statistically significant correlations between the change in

consumption and lagged consumption and income. The response to these findings

has generally fallen into one of two categories. First, some researchers have

attributed the "excess sensitivity" of consumption to current and lagged

income to the presence of a substantial number of consumers who are liquidity

constrained. Under this interpretation, the PIN is fundamentally flawed as a

principle for organizing the aggregate time series data (see for example Hall

and Mislikin [1982] and Zeldes [1985]).

A second view of the empirical shortcomings of the RWH is that they

do not reflect the failure of the PIN per se. Instead they reflect the fail-

ure of the auxiliary assumptions required to derive the RWH from the PIH (see

for example Nelson [1985] or Mankiw and Shapiro [1985]). This view underlies

both intertemporal capital asset pricing models (see for example Hansen and

Singleton [1982, 1983], Dunn and Singleton (1986] and Eichenbaum and Hansen

[1986]) and real business cycle theories (see for example Kydland and Prescott
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[1982] and Long and Plosser [1983]) which abstract from liquidity constraints

and other market imperfections which would prevent consumers from optimally

adjusting consumption to permanent income. This view also underlies Lucas'

(1985) argument that the welfare gains associated with countercyclical govern-

ment policies would, at the very best, be small. Given the radically differ-

ent policy implications of the two types of responses it is not surprising

that the relationship between aggregate consumption and income continues to

command widespread interest.

This paper pursues the second of the two responses discussed

above. In particular we investigate, at a theoretical and empirical level,

whether there are simple and testable perturbations of the PIN as implemented

by Hall (1978) and Flavin (1981) which are consistent with the aggregate

consumption and output data. Our analysis is conducted within the confines of

a dynamic general equilibrium model of aggregate real output, investment,

hours of work and consumption. We investigate the quantitative importance of

two perturbations of the random walk version of our model: (i) changing the

production technology to a specification which no longer implies the RWH, and

(ii) replacing the assumption that agents' decision intervals coincide with

the data sampling interval with the assumption that agents make decisions on a

continuous time basis.

Our analysis uses a simple version of the Brook-Mirman growth model
r

in which the equilibrium law of motion for consumption and output takes the

form of a constrained vector ARMA. Consumers' preferences are defined over

consumption and leisure in a way that nests the specification considered by

Hall (1978) and Flavin (1981). We do not allow for shocks to preferences

although these easily could be incorporated into our analysis. Output is

produced using both labor and capital according to a Leontieff type production
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function in which the labor requirement per unit of capital is allowed to be

stochastic. When this labor requirement is nonstochastic our model satisfies

the RWH. When agents derive disutility from working and the labor requirement

per unit of capital is a non—trivial stochastic process, consumption does not

follow a random walk. Aggregate income will Granger cause the first differ-

ence of consumption and current and lagged changes in consumption will be of

value for predicting future changes in consumption. Consequently, this ver-

sion of our model can, in principle, explain Flavin's rejection of the RWH.

A second possible explanation of these rejections is the impact of

temporal aggregation bias. Sims (1971), Geweke (1978), and Marcet (1986) have

shown that temporal aggregation bias can induce spurious serial correlation

and Granger causality findings in observed data. Much of the empirical evi-

dence against different versions of the PIH consists of findings that the

first difference of aggregate consumption is serially correlated and is

Granger caused by a variety of other variables. If agents make economic

decisions at intervals of time that are finer than the data sampling interval

these serial correlation and Grange causality findings could be spurious in

the sense that they reflect only the effects of temporal aggregation bias.

In order to investigate this possibility we analyze the equilibrium

of the continuous time analogues to our two discrete time models. The models

are estimated using techniques developed by Hansen and Sargent (1980, 1981) to

estimate continuous time models from discrete time data. This strategy allows

us to directly address the possibility of temporal aggregation bias and to

explicitly account for the fact that consumption and income data are not

point-in—time sampled.

We report the results of estimating and testing four specific mod-

els. The first is a discrete time model in which the RWH holds by construe-



tion. This model serves a useful benchmark against which we can measure the

empirical performance of our other models. The second model is a discrete

time model in which the labor requirement per unit of capital is a serially

correlated random variable. Here the RWH does not hold. The last two models

we test are the continuous time analogues of the discrete time models.

Our main results can be summarized as follows. First, we find

strong evidence against both discrete time models. We attribute the rejection

of the discrete time random walk model to the counterfactual zero restrictions

which it imposes on the law of motion for consumption and output. In con-

trast, the discrete time stochastic labor requirement model can in principle

accommodate serial correlation in the first difference of observed consump-

tion. However, in practice the cross equation restrictions imposed by that

model do not permit a sufficient amount of serial persistence in the first

difference of observed consumption to significantly improve the fit of the

model.

Second, we find substantially less evidence against the continuous

time models than against their discrete time counterparts. In fact, using

standard likelihood ratio tests neither of the two continuous time models can

be rejected at conventional significance levels. This is very encouraging

given the simplicity of the models and the extensive cross equation restric-

tions implied by our theory. Using more informal diagnostics we argue that

the continuous time models outperform the discrete time models primarily

because they explicitly correct for the fact that the data used to test the

models are time averaged measures of the underlying unobserved point-in—time

variables. The net result is that the continuous time models are better able

to accommodate the degree of serial correlation in the first difference of ob-

served consumption.
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The remainder of this paper is organized as follows. In section 2

we present the discrete time versions of our model. Empirical results for the

discrete time models are presented in section 3. In section U we present the

continuous time analogue to the models discussed in section 2. Empirical

results for the continuous time models are discussed in section 5. Section 6

concludes the paper.

2. The Discrete Tine Version of the Model.

This section is divided into three subsections. In subsection 2.A

we present the discrete time version of our model. In addition we report the

implied equilibrium laws of motion for economy-wide consumption, capital

accumulation and output without being explicit about the stochastic structure

of the shocks to agents' production technologies. Subsections 2.8 and 2.C

describe two alternative specifications of the technology shocks. The first

is designed to imply the random walk hypothesis studied by Hall and Flavin.

We cafl this the Discrete Time Random Walk (DRW) model. The second makes the

capital-labor ratio stochastic. Under this assumption consumption is not a

random walk. We refer to this version of the model as the Discrete Time

Stochastic Labor Requirement (DSLR) model.

2. P. A Discrete Time Model of Consumption and Output

Preferences

A representative consumer ranks alternative streams of consumption

and leisure according to the preference specification,

(2.1) E0
B — ct_bt _athtt:O

where 0 < B < 1 is the subjective discount rate, bt denotes the consumer's

bliss point for consumption at time t, c denotes consumption at time t, ht
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denotes the number of hours worked at time t, is the marginal disutility of

work in period t and is the expectations operator conditioned on the infor-

mation set I, t � 0. Throughout this paper we assume that be and are

deterministic functions of time.iJ"

Technology

There is a technology that converts time t consumption goods and

labor effort into time t + 1 consumption goods. This technology is given by

(2.2) = min{k 1,t 1ht 1 + e.

Here, denotes economy—wide average output, kti is the average capital

steak at the end of time t-1 and hti is the average number of hours worked at

time t - 1. We think of the variable et either as the average endowment of

consumption at time t or as an aggregate shock to the production function at

time t which affects only the average productivity of labor and capital. The

variable -rti/Z represents the labor requirement per unit of capital in the

Leontieff type production function.

The economy—wide resource constraint is given by:i.V

(2.3) c + kt
—

(1_d)kt 1

where d is the rate at which a unit of capital depreciates, 0 S d < 1 and

d. We impose the condition

(2)4) 3[Z+(1—d)] 1, where 6 Z + 1 — d.

Condition (2)4) results in a unit autoregressive root in the consumption

process, which is a necessary (but not sufficient) condition for the RWH.

Condition (2.1$) is related to a similar restriction imposed by Hall (1978),

Flavin (1981), Hansen (1986), and Sargent (1986).
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As in Hansen (1986) and Sargent (1986), we do not impose a nonnega—

tivity constraint on the aggregate capital stock. Imposition of this con-

straint makes it difficult if not impossible to solve the model analyti-

cally. Instead we follow Hansen (1986) in imposing the requirement that-"

(2.5) Bol 8t14 < .

Condition (2.5) implies Bl/2tk + 0 almost surely as t + so that (2.5)

restricts the limiting behavior of the capital stock.

The Competitive Equilibrium

To determine the competitive equilibrium of this economy, we utilize

the result that, in the absence of externalities, competitive equilibria are

Pareto optimal. For our model, the relevant Pareto problem consists of choos-

ing contingency plans for ct, ht, and kt, as a function of the information set

to maximize (2.1) subject to (2.2) and (2.3). The set I is composed of

all variables date t and earlier, but cannot be specified precisely until we

describe the stochastic structure of the exogenous shocks.

It is convenient to derive the equilibrium decision rules subject to

the restriction that capital and labor are always fully utilized:

(2.6) for all t.

In Appendix A we discuss conditions under which this restriction is non—bind-

ing.

Substituting (2.6) into (2.2) and (2.3), we obtain

(2.7) ct = 5kti — kt + e.
Substituting (2.6) and (2.7) into (2.1), and defining Mt Za/t, we see that

the representative consumer' s problem is to maximize
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(2.8) E0Bt{_

by choice of a contingency plan for kt subject to (2.5).

Before describing the solution, we introduce a useful notational

device borrowed from Hansen (1986):

(2.9) x E (1_a)EtisJxt+j.

(2.10) -

Definitions (2.9) and (2.10) apply to any random variable Xt for which the

indicated conditional expectation exists. Below, we refer to objects like

as the "permanent" value of xt and to , as the innovation to the permanent

value of

In Appendix B, we show that the equilibrium laws of motion for kt

and ct are: -

(2.11) kt — kti (e_e) — (bt_b) —
sHt/(1_a).

(2.12) e + (bt_bt) +(s/(1_3))H +

Since net output, is equal to consumption plus net investment, we see that

(2.13) c — r — e + — + 8R/( 1—u).

Relation (2.11) implies that investment increases when the current

value of the productivity shock exceeds its permanent value and decreases when

the utility associated with a given amount of consumption is unusually high

(bt>bt). In addition, net investment depends negatively on Hptt reflecting

the utility cost of the labor input needed to make additions to the capital

stock productive in the future.
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Relation (2.12) implies that consumption increases when the utility

associated with consumption is unusually high (bt)bt) and depends positively

on permanent endowment income and the capital stock. In addition consumption

depends positively on Hot. This is because high values of H signify a low

opportunity cost of consuming goods at time t as opposed to combining them

with labor in order to produce future consumption goods. According to (2.13)

unusually high levels of utility associated with consumption, high levels of

Hpt or unusually low levels of endowment income (e<e) cause consumption to

exceed current period income.

We now formally define the random walk hypothesis:

Definition: We say that consumption satisfies the random walk hypothesis

(EVIl) if and only if

(2.lq). Etict c1 + t
where f is a deterministic, but possibly trivial, function of time.

From relations (2.11) and (2.12) we see that

(2.15)
tot "et

— + £bt + (s/M—aflhlH ,
—

Since bt is by assumption deterministic, the RWH will be satisfied if and only

if Mt is deterministic.. Since a is by assumption deterministic, we conclude

that RWH will hold if and only if the time t labor requirement per unit of

capital, t, is deterministic.

It is worth contrasting our derivation of the RWH with the deriva-

tion in Hall (1978). While both derivations impose strong restrictions on the

underlying economic model there is at least one important difference. Hall

derives the RW}l by restricting directly the stochastic structure of the risk
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free real interest rate, rt, which he assumes to be constant. In contrast the

risk free real rate of interest in our analysis is stochastic even under those

circumstances for which the RWH is satisfied. To see this recall that bt — Ct

is the marginal utility of time t consumption. Consequently, the representa-

tive consumer's intertemporal Euler equation for one period risk free consump-

tion loans can be written as: (bt_ce) BrE(b1_c1). Rewriting (2.15),

applying the conditional expectation operator to evaluate

(b_c) + Ht and solving for rt we obtain&.V

(2.16) r

It follows that rt will be stochastic as long as the ratio of Fit to the mar-

ginal utility of consumption is a nontrivial random variable. This condition

will be satisfied even if Ht is deterministic (so that the RWH is satisfied)

provided that. et is stochastic. Thus a constant risk free real interest is

neither a necessary nor a sufficient condition for the RWH to hold.

In summary, our model has the following four key characteristics.

First, the model nests, as a special case, the benchmark random walk model

considered by Hall (1978) and Flavin (1981). Second, the random walk property

of consumption depends sensitively on the stochastic structure of the unob-

served shocks to technology. Third, in our model, the RWH does not require

that the risk free real interest rate be constant. Fourth, our model implies

that when the shocks to technology, et and Fit, are covariance stationary

processes, consumption minus output is a covariance stationary process (see

relation [2.13]).

It is important to note that our model, like the models in Hall

(1978), Flavin (1981), and Campbell (1986), delivers relationships in terms of

the levels, not the log levels, of the variables of interest. Because of
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this, property four applies to levels, as opposed to log levels, of consump-

tion and output, and is clearly counterfactual for post war U.S. data. In

order to avoid this implication we parameterize the law of motion of the

shocks to technology, bt and a. so as to imply that consumption and output

grow at the same geometric rate over time. While the parameterizations that

we adopt are very restrictive, they do have an important compensating advan-

tage: they imply that the models of sections 2.8 and 2.C apply to consumption

and output data which have been detrended assuming a common geometric trend.

This result has two useful consequences. First, it allows us to reinterpret

property four so that it is no longer counterfactual. Secondly, it allows us

to accommodate growth in an internally consistent manner while preserving the

applicability of a set of econometric tools developed for nongrowing time

series processes.

2.3 Parametertzing the Discrete Time Random Walk Model (DRW)

This subsection describes a set of assumptions on the technology

shocks that are consistent with the RWH. lie then display the resulting re-

duced forms for consumption and output.

Throughout sections 2.8 and 2.C we assume that bt bibt and

,2t where • > 1, b > 0 and a > 0. By allowing bt to grow over time we are

able to avoid the implication that consumers become satiated. The fact that a

grows at the geometric rate •2 implies, in conjunction with the other assump-

tions in our model, that neither leisure nor labor's share of net output

exhibit any trend. In order for the representative consumer's problem to be

well defined we require that as2 1.

Recall that our model satisfies the RWH if and only if is deter-

ministtc. Accordingly we assume that
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(2.17) FIt r Ht, 0 < H < b(-1).

The lower bound on H guarantees that the drift in the marginal utility of

consumption, Fit, is positive. The upper bound on H ensures that the drift in

consumption, Abt — Ht_i, is positive. We suppose that

(2.18) e e, +

where elt and e2t are in I, and

(2.19) (1_L)e1 = eist + T11/(1_aL), i = 1, 2 •(e1+e2) < b(-1) - H.

The condition on e1 + e2 guarantees that the deterministic component of sav-

ings, — c, is positive. Let xt [1t'2t]' The vector is white

noise, orthogonal to i {k_1_5,h_1_5,et_1_5:s0}, and satisfies

(2.20) Extx v2t,

where V is a two by two positive definite symmetric matrix of constants. In

addition we assume that a1 s a2, and lad 1, i 1, 2. The reason for

assuming that the endowment process is the sum of two stochastic processes,

the realizations of which are separately observed by agents, is to guarantee

that the bivariate consumption and income process is of full spectral rank.

According to our specification all deterministic terms and inno-

vation standard deviations in the DRW model grow at the rate •. Thus, it is
not surprising that we can "detrend" Ac and ct — 3't by to obtain a sta-

tionary stochastic process. Define,

(2.21) c y $ty, n $r1jt, i 1, 2

and
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(2.22) q' [c—y,c—s1c_1].

Relations (2.13), (2.15), and (2.17) — (2.19) imply that q has the con-

strained VAR(2) representation:

(2.23) A($1L)q T +

where,

(2.2k) a(L) A0 + A1L
+

A2L2, A0 I,

.-(a1+a2) $a1a2 a1a2
0

1_ , ',—
0 0 0 0

Ba1 @a2 nttI(l_ais)

1 1

ELXtXLI Vd.

In (2.23) T is a two dimensional column of positive constants and In (2.214) Vd

is a two by two positive definite symmetric matrix of constants.

Notice that the second rows of A1 and A2 are identically equal to

zero. This reflects two basic properties of the DRW model. First, the fact

that the (2,1) elements of A1 and A2 equal to zero implies that s_tact is not

Granger caused by s_tcct_yt). Second, the fact that the (2,2) element of A(z)

is equal to zero implies that lagged values of $6c should not be useful for

predicting s_tact. These two properties summarize the implicatIon of the DRW

model that ct is a random walk with potentially time varying drift.
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2.C The Discrete Time Stochastic Labor Requirement Model (DSLR).

This section describes a parameterization of our model in which

consumption does not satisfy the RWH. In particular, this specification

implies that $Act is correlated with lagged values of itself and lagged

values of s_t(ct_y). Here, we allow Fit to be stochastic by adding an AR(1)

random variable to (2.17):

(2.25)
Fit

Fist + et/(1_fL) < 1, 0 < H K b(4,—1).

Since Fit r condition (2.25) implies that the labor requirement per unit

of capital is stochastic. Also, we replace (2.18) - (2.19) by

(2.26) (1_L)e ett + ne/fl_aL), Se � b(5-1) - H, Ia! < 1.

Let xt = [€ The vector is white noise, orthogonal to I

and satisfies

(2.27) EXtX vo2t,

where V is a two by two positive definite symmetric matrix of constants.

Relations (2.13), (2.15), and (2.25) — (2.27) imply that q has the

VAR( 2) representation:

(2.28) A($L)q T +

where,

(2.29) A(L) A0 + A1L + A2L2, A,3 r

sa2 - I -ea(a-f) -a(a-f) 0

A1
1

/(1—xa)
1

1(1—As)

— f —a(1—fs) —a(8 —f) 0
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sa 1

1 1

and

and

E(XtILI

In (2.28) T is a two dimensional vector of positive constants and in (2.29) Vd

is a two by two positive definite symmetric matrix of constants.

Relations (2.28) and (2.29) display the basic properties of the DSLR

model. First, the fact the (2,1) elements of A1 and A2 are not equal to zero

implies that •Ac is Grange caused by •t(c_y). Second, the fact that

ethe (2,2) element of A1 is not equal to zero implies that s_(t1)act should

be useful for predicting $Ac. Both these results reflect the fact that, in

the DSLR model, c does not satisfy the RWH.

3. irica]. Results for the Discrete Time Models

In this section we report the results of' estimating the DRW model of'

section 2.B and the DSLR model of section 2.C. In subsection 3.A we briefly

describe our estimation methodology. In subsection 3.8 we report our empiri-

cal results.

3. A Estimation Strategy

In section 2 we derived the implications of our model for the vec-

tor which is defined in terms of detrended aggregate consumption and de-

trended net output, y (see (2.22]). Unfortunately the data on aggregate

depreciation is not particularly reliable. In addition there is little reason

to believe that our model of depreciation is consistent with the model of

depreciation used by the Department of Commerce to construct NNP from GNP
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data. Consequently, we implement our model using data on GNP rather than

NNP. In order to do this we exploit relations (223) and (2.28) to derive the

implications of our model for the analogue to the vector defined in terms

of gross, rather than net, output. Not surprisingly, this mapping involves

the depreciation rate d, which we view as a structural parameter to be esti-

mated.

Recall that we denote gross output by j. Relations (2.2) and (2.3)

imply:

(3.1) c — _(1ct_(1_d)k1].

Let denote detrended gross output:

(3.2)

and define

(3.3)

It follows thatLi!

(3.k) H(.L)a

where

1-z 0
(3.5) 11(z)

1 — (1—d)z 0 1-(1—d)z

By substituting (3.1$) into (2.23) and (2.28), we obtain the implications of

the DRW and DSLR models respectively for , which involves consumption and

gross output. Specifically, the DRW model implies:

(3.6) A((1L)H((1L)t T +

and the DSLR model implies
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(3.7) A(t1L)H(O1L)t T +

Both discrete time models imply that is a constrained ARMA(3,1) representa-

tion. The assumptions which we have imposed on the structural parameters of

our model are sufficient to guarantee that the roots of A(01z), A($1z), and

defined in (2.211), (2.29), and (3.5), lie outside the unit circle.

It follows that is a covariance stationary stochastic process with condi-

tionally homoscedastic disturbancEs. Since < 1 both the DRW and DLSR

model imply that ct and yt have unconditional growth rates equal to •. When d

0, (3.6) collapses to (2.23) and (3.7) collapses to (2.28). This is because

with d:0 depreciation is identically equal to zero, so gross output equals net

output and q

We now describe the procedure used to estimate systems (3.6) and

(3.7). Define,

(3.8) E.

Suppose that we have a sample on for t 1, 2, ..., T. Let Q

[1'2 ..,Q.' and define

(3.9) A E[QQ'].

The normal log likelihood function of Q is given by

(3.10) = —.Slog [2w] —.Slog det AT —.5Q'A_/'Q.

The theoretical spectral density of the Q(t) process is given by

(3.11) Z(w)

when the data is generated by the DRW model, and is given by,

(3.11)' Z(w) =
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when the data is generated by the DSLR model. In (3.11) and (3.11)', w is

defined over the interval (0,27r). Let I(Wj) be the periodogram of the

process at frequency = 2irj/T, j 1, 2, ..., T. Based on results in Hannan

(1970), Hansen and Sargent (1981a) suggest approximating the log likelihood

function (3.10) by

(3.12) -.Slog[2w] -.5Elos{det(Z(w)]}-.5tr[Z(wY1I(wiI.

Our estimates of the structural parameters of the DRW and DSLE models are the

argmax of when Z(w) is given by (3.11) and (3.11)' respectively. Since we

fix the value of s and • a priori, the free parameters of the DRW model are

a1, a2, d, and the three independent elements of Vd. In the case of the DSLR

model the free parameters are a, f, d, and the three independent elements of

We used as a measure of consumption real quarterly expenditures on

nondurable consumption goods and services, plus the imputed rental value of

the stock of consumer durables, plus real government consumption expendi-

tures. All of these measures except the last two were taken from the Survey

of Current Business. A measure of the imputed rental value of consumer dura-

bles was obtained from the data base documented in Brayton and Manskopf

(1985). Government consumption was measured by real government purchases of

goods and services minus real government (federal, state, and local) invest-

ment. A measure of government investment was provided to us by John Musgrave

of the Bureau of Economic Analysis.LiE' Output was measured by real quarterly

GNF plus the imputed quarterly rental value of the stock of consumer dura—

bles. All series cover the period 1950:2 — 1985:3 and are expressed in per

capita terms.



— 19 —

3 . B Empirical Results

When d > 0, both the DRW and DSLR models lead to constrained inf 1-

nite ordered vector autoregressive representations for the stochastic process

Given the results of section 2 it is not surprising that when d is close

to zero, these infinite ordered VAR's are well approximated, in a sense to be

made precise below, by finite ordered VARs. As it turns out, these finite

ordered VARs are more revealing for diagnostic purposes than the corresponding

ARMA representations. It is therefore useful to consider the statistical

properties of the data as summarized by the unconstrained VAR's for and the

vector stochastic process, Z, consisting of demeaned and detrended aggregate

consumption and gross output.

To determine the appropriate lag lengths of the unconstrained VARs,

we estimated VARs of lag length 1 through 6 and performed likelihood ratio

tests sequentially. Our results, displayed in Table 3.1, indicate that for

both t and the second lag is significantly different from zero. On the

other hand the hypotheses that lags 3, U, 5, and 6 are zero cannot be rejected

at the five percent significance level.

Using the second order VAR for we examined the Granger causality

patterns in the data and tested the hypothesis that 41_t6ct is a white noise

stochastic process. The results, which are reported in Table 3.2, provide

useful diagnostic devices for evaluating the empirical performance of the DRW

and DSLR models. The hypothesis that 4,_tact does not Granger cause

•_t(ct_yt) can be rejected at the ten percent significance level, but not at

the V ive percent level. The hypothesis that •_t(ct_yt) does not Granger cause

4,_tact cannot be rejected at the ten percent significance level. On the other

hand the null hypothesis that •Ac is serially uncorrelated is decisively

rejected. This last result is consistent with results in Flavin (1981) and
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Nelson (1985) indicating that the first difference of consumption can be

predicted from past information. There is, however, an important difference

between our results and those obtained by Flavin (1981). In implementing her

model, Flavin imposes, a priori, the restriction that the first difference of

consumption does not depend on its own lagged values. At least for our mea-

sure of consumption, this restriction is counterfactual. When such a restric-

tion is imposed, lagged output plays a useful role in predicting the first

difference of consumption primarily because it is proxying for lagged values

of the first difference of consumption.

We now report the results of estimating the DRW and DSLR models. In

implementing these models we set the parameters a and • equal to .990 and exp

[.0056], respectively.LP This value of implies a quarterly per capita

growth rate in consumption and income of approximately 1/2 percent. Given

this value of $, we can form a time series on . By using the sample mean

of as a proxy for Et we can then form atime series on

The left hand column of Table 3.3 reports the results for the DRW

model. The parameters a1 and a2, which are the AR coefficients in the laws of

motion for the two endowment shocks, are not globally identified, since we can

simply reverse the labels on these two parameters and obtain precisely the

same value of f1. Notice that the estimated depreciation rate is small and

insignificant. The estimates for the DSLR model are reported in the right

hand column of Table 3.3. Here, the depreciation rate is estimated to be

approximately seven percent per quarter. While the estimated standard error a

of d is fairly large the hypothesis that d 0 can be rejected at the ten per-

cent significance level (but not at the five percent level).

We adopt two methods for assessing the overall performance of the

DRW and DSLR models: (1) a formal statistical test of the overidentifying
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restrictions imposed by the models, and (2) an informal comparison of the

constrained VAR's implied by the models with the unconstrained VAR representa-

tion of the data. Our formal statistical test is based on the fact that all

of the models in this paper are nested within scalar autoregressive vector

moving average (SARMA) representations for Qt. Beth the DEW and DSLR models

imply a constrained SARMA(3,3) representation for However, the con-

tinuous time models of section U imply a constrained SARMA(3,U) representation

for In order to allow all of the structural models to be nested within a

common unconstrained specification we use the SARMA(3,U) as our unconstrained

model. It should be noted, however, that the zero restrictions implicit in

the lower order SARNA specifications cannot be rejected at conventional sig-

nificance levels. This can be seen from Table 3.14, where we report goodness

of fit tests for SARMA (p,q), (p 2, 3; q = 1, 2, 3, 14) models of the data.

Let denote twice the difference between the maximized value

of for the unconstrained SARMA specification minus the maximized value

of for the constrained SARMA specification. Then T is asymptotically

distributed as a CM—square random variable with degrees of freedom equal to

the number of restrictions imposed in the constrained specification. The test

statistic.JT can be multiplied by an adjustment factor suggested by Whittle

(1953), Lissitz (1972), and Sims (1980) designed to correct for small sample

bias.ii" We denote the resulting test statistic by T•
The values of and for both discrete time models are reported

in Table 3.3. The DEW model is easily rejected at the one percent signifi-

cance level.L.ñ" The DSLR model is rejected at the five percent significance

level, but not at the one percent level, when compared to the unconstrained

SARMA(3,U). However, this last result reflects in part the overparameteriza—

tion of our unconstrained specification. When the DSLR model is compared to
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an unconstrained SARMA(3,3) the unadjusted T statistic is 30.36, with proba-

bility value of .998. The adjusted T statistic is 28.75, which has a proba-

bility value of .996. Thus, when compared to a more parsimoneously parameter-

ized alternative, the DSLR model is also rejected at the one percent level.

The fact that we reject the random walk model is not very surprising

given our rejection of the hypothesis that s_tAct is a white noise process.

However rejection of the white noise hypothesis cannot be viewed as evidence

against the DSLR model. In order to more fully understand the empirical

shortcomings of both these models, we now compare the constrained VAR repre-

sentations for and Z implied by the structural models with the corre-

sponding unconstrained VARs. Tables 3.5 and 3.6 display the unconstrained

VAR(2) and constrained VAR5 implied by the DEW and DSLR models for and Z

respectively. The constrained ¶JARs must be truncated because both structural

models imply. infinite ordered VARs for and Z. We use the truncation rule

of not reporting matrix coefficients whose maximal element are smaller than

.02 in absolute value. In all cases this results in truncation after the

second lag.

First consider our results for the DEW model. For both Q(t) and

1(t) the major discrepancy between the constrained and unconstrained repre-

sentations appears to be in the second row of coefficients matrices. Specifi-

cally, the DRW model imposes the restriction that all coefficients in the

equation for •tAct are zero and that all coefficients after lag 1 in the

equation for c are zero. In contrast the unconstrained estimate of the

coefficient on •âc1 in the equation for stA (see Table 3.5) is

.313, and the unconstrained estimate of the coefficient on c2 in the equa-

tion for c (see Table 3.6) is -0.321. In both cases the unconstrained point

estimates are more than three standard deviations away from zero. We conclude
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that the DRW model falls because the zero restrictions that it imposes are

simply Incompatible with the data.

In contrast, the DSLR model does not impose any zero restrictions a

priori. Unlike the DRW model, it can in principle accommodate serial persis-

tence in i_tact and any pattern of Granger causality between the elements of

and Z. However in practice it seems that the cross equation restrictions

imposed by the DSLR model prevent it from fitting the degree of serial corre-

lation observed in This can be seen by comparing the VAR implied by

the DSLR model, reported at the bottom of Table 3.5, with the corresponding

unconstrained VAR(2). Notice that the first row of the coefficient matrices

in the constrained VAR closely resembles the corresponding row ii the uncon-

strained VAR. This suggests that the DSLR model fits the •t(c_y) process

fairly well. However, the (2,2) element of the coefficient matrix on the

first lagged value in the constrained VAR is .026, more than three standard

deviations from the unconstrained estimate of .313. A similar story emerges

froth Table 3.6. There, the (2,2) element of the coefficient matrix on the

second lagged value is .008 in the constrained VAR, more than three standard

deviations smaller than the absolute value of the unconstrained point esti-

mate. This suggests that the cross equation restrictions imposed by the DSLR

model do not allow the model to simultaneously fit the s_t(ct_yt) process and

allow a sufficient degree of serial correlation in the i_tact process.

In slinnary, our results indicate substantial evidence against both

versions of the models discussed in section 2. We attribute the empirical

shortcomings of both models to their inability to accommodate the degree of

serial persistence in the quasi first difference of consumption. In the DRW

model, this failure is due to the zero restrictions which constrain the quasi

first difference of consumption to be white noise, while in the DSLR model

this failure is due to the nature of the cross equation restrictions.
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Z4 The Continuous Time Version of the Model.

This section formulates continuous time versions of our random walk

(CRW) and stochastic labor requirement (CSLR) models. In section 3 we pre-

sented evidence detailing the empirical shortcomings of the DRW and DSLR

models. There are, however, a priori reasons for believing that reformulating

the models in continuous time may improve their empirical performance.

We have argued that the most important evidence against the DEW

model is the fact that •Ac is positively autocorrelated. A possible expla.

nation is that this autocorrelation does not reflect the failure of the RWH

per se, but the failure of one of the maintained assumptibns of the DEW model,

namely that the decision interval of private agents coincides with the data

sampling interval. This explanation is suggested by Working's (1960) observa-

tion that the first difference of a time averaged and sampled continuous time

random walk process is positively autocorrelated. In particular, Working

showed that when • = 1, this process has a univariate MACi) representation

with MA coefficient .268. Christiano and Marshall (1986) show that, after

rounding to three digits, Working's result is also valid for the case 0

exp(.00456). One simple test of the ?OfltifluOtl$ time random walk hypothesis,

which does not require that we specify the underlying shocks to the model, is

to see whether our measure of consumption has such a statistical representa-

tion. To this end we estimated univariate MAR representations of the

process of lag lengths 1 through 14 and performed likelihood ratio tests se-

quentially. The hypothesis that lag lengths 2, 3, and 14 are zero cannot be

rejected at even the fifty percent significance level. Moreover, the point

estimate of the MA coefficient in the MALI) representation is .284 with stan-

dard error .08. Consequently, this test yields almost no evidence against the

continuous time random walk hypothesis.
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Temporal aggregation also has potentially important implications for

the dynamic correlations between consumption and income. For example the

results of Sims (1971), Geweke (1978), and Marcet (1986) imply that unit

averaged sampled lagged income may Granger cause the first difference of unit

averaged sampled consumption even if the derivative of continuous time con-

sumption is uncorrelated with lagged income.

We also expect the empirical performance of the CSLR model to differ

from that of the DSLR model. Recall that we attributed the empirical short-

comings of the DSLR model to the empirical implausibility of the cross equa-

tion restrictions imposed by that model. However, Hansen, and Sargent (1981,

1983) and Christiano (1981;, 1985), among others, have noted that temporal

aggregation bias can lead to spurious rejection of cross equation constraints

in dynamic rational expectations models.

The remainder of this section is organized as follows. In subsec-

tion k.A we present the continuous time analogue to the discrete time model of

section 2. In subsection 4.S we present the continuous time random walk (CRW)

model. In subsection LC we present the continuous time stochastic labor

requirement (CSLR) model.

4.A The Model and Its Equilibrium Decision Rules

In this subsection we present the continuous time analogue of the

discrete time model of consumption and output discussed in section 2. Our

notation is the same as that used in sections 2 and 3 except that all random

variables are assumed to evolve in continuous rather than discrete time. In

addition, we adopt the convention of placing the time index of a continuous

time random variable in parentheses.
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The preferences of the representative consumer are given by:

(4.1) E0f e_'t{_ (c(t)—b(t))2-c(t)h(t)}dt,

where b(t) b exp(et), a(t) a exp(2et), r, b, a, e > 0, and r -2e > 0. In

(4.1) b(t) is the representative consumer's time t bliss point for consump-

tion, a(t) measures the disutility of work at time t, c(t) is consumption at

time t and h(t) is hours worked at time t.

As before, there is an aggregate technology that converts capital,

k(t), and labor effort into consumption goods:iJ"

(14.2) (t) = min{k(t),t(t)h(t)} + e(t).

Here, r(t) represents the (possibly) stochastic labor requirement per unit of

capital, > 0 is a parameter in the production function, and e(t) is an

aggregate shock to the time t production function. We impose the continuous

time analogue to condition (2.14).

(14.3) r 6, where & — d.

In (4.3), d > 0 is the depreciation rate on capital.

The economy-wide resource constraint is given by

(14.14) j(t) c(t) + Dk(t) + dk(t),

where 0 denotes the time derivative operator.

The representative consumer's problem is to maximize (I.1) over

contingency plans for setting Dc(t), Dk(t), Dh(t), and Dy(t) as a function of

1(t), subject to (4.2) and (4.14) and the constraint

(145) E0 fe_htk(t)2dt K
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The set 1(t) is composed of all model variables dated t and earlier, but

cannot be specified precisely until we describe the stochastic structure of

the exogenous shocks. We assume that

(14.6) Zk(t) t(t)h(t):

Relations (14.2), (14.14), and (14.6) imply

(4.7) c(t) ak(t) — Dk(t) + e(t).

Substituting (14.6) and (11.7) into (14.1) we see that the representative con-

sumer's problem is to maximize:

(14.8) E f Ct't{_ f[sk(t)—Dk(t)+e(t)—b(t)]2—H(t)k(t)}dt00

by choice of a contingency plan for Dk(t). In (14.8), 11(t)

Notice that, as in the discrete time model, the principle of certainty equiva-

lence applies to the representative consumer's problem.

It is convenient to define

(14.9) x (t) = 6 f etEtx(t+t)dt,p 0

for any x process such that (4.9) converges. In Appendix C we show that the

equilibrium laws of motion for Dk(t) and c(t) can be written as

(14.10) Dk(t) = e(t) — e(t) + b(t) — b(t) — 11(t)/6

c(t) = e(t) + b(t) — b(t) + 6k(t) + H(t)/6.

As before we let y(t) denote net output: y(t) c(t) + Dk(t). Then

(11.11) c(t) - y(t) e(t) - e(t) + [b(t)-b(t)I + H(t)/6

and
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(4.12) Dc(t) (t) — (t) + Db(t) + (t)18 — H(t)

where p (t) is the change in the value of x(t) due to a disturbance in x(t)

that is unpredictable on the basis of I(t-v), for all t > 0. (See Appendix C

for a more careful discussion of this point.) Relations (14.11) and (4.12) are

analogous to their discrete time counterparts, (2.13) and (2.15), so that the

intuition underlying our results for the discrete time economy remains valid.

4. B The Continuous Time Random Walk Model (CRW).

In this subsection we display a set of restrictions on the technol-

ogy shocks that give rise to the continuous time RWH. We then display the

resulting reduced form representations for consumption and output.

Given our assumptions on the b(t) process,. relation (4.12) implies

that c(t) is a random walk with deterministic drift if, and only if, H(t) is

deterministic. Accordingly, we assume

(14.13) H(t) H exp(et),

where H > 0. The shock to endowment income is assumed to satisfy,

(4.14) e(t) e1(t) + e2(t),

where

ri.(t)

De.(t)
1

+ e1 exp(et),1

(ai+D)

where ai > 0, i 1, 2, and a1 is not equal to a2. Let x(t)

[n1(t) n2(t)J'. The vector x(t) is the continuous time linear least squares

innovation to the joint [e1(t)e2(t)] process and satisfies,

(14.16) E[x(t)x(t—u)'l exp(2et)(u)V,
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where (u) is the Dirac delta generalized function and V is a two by two

positive definite symmetric matrix of constants. Thus, e(t) is the sum of two

stochastic processes whose first derivatives are AR(1) continuous time sto-

chastic processes.

Substituting (14.13) — (14.15) into (14.12), we see that

(4.17) Dc(t) n1(t)/(a1i.6) + 112(t)/(a2+6) + T1exp(et)

where Tci is a positive scalar constant. According to (14.17), the derivative

of consumption is a serially uncorrelated continuous time which noise pro-

cess. While Dc(t) is not a physically realizable process, its average over

any discrete interval of time is physically realizable.

Substituting (14.13) — (14.15) into (4.11) we obtain,

(14.18) c(t) — y(t) De1(t)/(a1+6) ÷ De2(t)/(a2÷6) + Tc2exP(et)

where is a positive scalar. We define the vector

q*(t) [c*(t)_y*(t),(D+e)c*(t)]t,

where c'(t) ezp(—et]c(t), y'(t) exp[—otly(t). Relations (4.15), (4.17),

and (14.18) imply that q'(t) has a continuous time VAR(2) representation:

(4.19) A0(D÷e)qt(t) X(t) + Tc

where

(4.2O) Ac(D)
I + AD +

AC2D2,

(a1i.a2)/(a1a2) —1/(a1a2) 1/(a1a2)
0

Ami , A,,,:
0 0 0 0

1/a1 1/a2 nt(t)/(a1+6)
X(t)

1 1
ii(t)/(a2+6)
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n(t) exp[—et}ri.(t), i 1, 2,

and

E[X(t)X(t—u)'I (u)V.

In (4.19) T0 is a two dimensional vector of positive constants and in (4.20)

is a two by two positive definite symmetric matrix of constants. An impli-

cation of (11.19) and (11.20) is that c(t) satisfies the continuous time random

walk hypothesis. This does not imply that the quasi first difference of unit

averaged, sampled geometrically detrended consumption will satisfy the dis-

crete time random walk hypothesis.

11 .C The Continuous Time Stochastic Labor Requirement Model (CSLR)

In this subsection we display the continuous time analogue to the

discrete time model of section 2.C. Our specification of b(t) and a(t) is the

same as that given in section LLB. However, we abandon the assumption that

the labor requirement per unit of capital is nonstochastic. Instead, we

assume

(4.21) (f÷D)H(t) r H exp(et) +

where E[c(t)e(t—u)'] 2 exp(2et)(u)ci2 and a2 ) 0. The shock to endowment

income, e(t), is assumed to satisfy

(4.22) De(t) n(t)/[a+D1 + e exp(et)

where E[n(t)n(t—u)1 exp(2et)(u)a2 and 2 � 0. Let x(t) [s(t)ri(t)1. The

vector x(t) is the continuous time linear least squares innovation to the

Joint [H(t),e(t)I process and satisfies

(4.23) E[x(t)x(t—u)'] exp(2et)(u)V
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where V is a two by two positive definite symmetric matrix of constants.

Substituting (4.21) — (4.22) into (14.11) and (4.12) we obtain

(4.24) c(t) — y(t) De(t)/(a+6) + 6H(t)/(f+6) ÷ T01 ezp(et)

Dc(t) n(t)/(a÷4) + [D—616xt)/(f÷6) + Tc2 exp(et)

where T01 and T2 are positive scalar constants. Relations (4.21) - (4.24)

imply that q*(t) has the continuous time VAR(2) representation:

(4.25) A0(D+e)q*(t) 1(t) + T0

where

(4.26) A(D) I + AD + A02D2,

a+f6/a f/a—I 1-f/a 0

A01 = /f(a+6), A02
—a(f+6) f÷6 —(f+tS) 0

1/a1 1/f n*(t)/(a+tS)

1(t) =
1 —6/f ae'(t)/(f+d)

= exp(—etln(t), s'(t) = exp(—et]c(t),

and

E(X(t)X(t—u)'] = (u)V0.
In (4.25) T0 is a two dimensional vector of positive constants and in (4.26)

V0 is a two by two dimensional positive definite symmetric matrix of con-

stants. Relations (4.25) and (4.26) imply that c(t) does not satisfy the

continuous time RWH.

5. irical Results for the Continuous Time Models

In this section we report the results of estimating the CR11 model of

section 4.B and the CSL.R model of section 4.C. In subsection 5.A we briefly
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describe our estimation method. Empirical results are reported in subsection

5.3.

5.A Estimation Strategy

In section Il we derived the constrained continuous time VAR repre-

sentations for q'(t) implied by the CRW and CSLR models [see (l4.19)(14.2O) and

(LI.25)_(1L26) respectively]. In order to proceed with estimation we must

deduce the implications of these VARs for the probability law of the vector of

observable variables, which we denote by a(t). We define (t) to be the 2x1

continuous time stochastic process whose first element is the difference

between detrended quarterly averaged consumption and gross output, and whose

second element is the detrended first difference of quarterly averaged con-

sumption. The vectors q*(t) and.a(t) differ in two important respects.

First, q*(t) involves a measure of detrended NNP, whereas (t) involves a

measure of detrended GNP. Second, q*(t) represents point in time measured

variables, whereas (t) represents variables which have been averaged over the

discrete data sapling interval.

Our strategy for obtaining the probability law for (t) is to derive

the linear mapping relating q*(t) and (t), and then to use this expression to

substitute out for q'(t) in terms of (t) in (14.19) and (14.25). We proceed by

first obtaining the linear mapping between undetrended q'(t) and undetrended

a(t). Let z(t) denote the undetrended, point-in-time sampled data underlying

a(t), i.e., z(t) [c(t)4(t),Dc(t)]'. Let (t) denote the undetrended,

averaged data underlying a(t), ie., (t) exp(et](t). Formally,

1 1

J [c(t—r)—(t—t)Jcir .1 (c(t-r)—(t—r)]dw
o 0

(5.1) (t)
1 1 1

I [c(t—r)—c(t—1—t)]dr f[ f Dc(t—t-u)dujdt
o 00
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Here we have used the tact that f Dc(t-w)dp r c(t) - c(t-1).' In operator

notation

(5.2) i(t) = G(D)z(t),

where

1 0

(5.3) G(O) [(1—C0)/D]
0

Let q(t) denote the undetrended value of q*(t), i.e., q(t) exp(et)

q*(t) (c(t)—y(t),Dc(t)]. In operator notation, the link between q(t) and

z(t) is given bylk'

(5.14) q(t) H(D)z(t)

where

D 0
(5.5) H(D) =

D
1

d+
0 D+d

Substituting (5)4) into (5.2), we obtain

(5.6) q(t) H(D)G(DYd(t)

which provides a mapping between the continuous time processes q(t) and i(t)

i.e., between undetrended q*(t) and undetrended (t). Finally, the link

between (t) and q*(t) is obtained by multiplying both sides of (5.6) by

exp(—et):

(5.6) q*(t) H(D÷e)G(D+eY1(t).

We substitute (5.6) into (14.19) and (U.25) to obtain the time series

representations for (t) implied by the CRW and CSLR models, respectively:

(5.7) A(D÷e)H(D+e)G(D+er'(t) X(t) + Tc
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(5.8) A0(D+e)N(D+e)G(D+eY1(t) 1(t) + T0.

These are the continuous time analogues of (3.6) and (3.7). An important

difference between the two sets of representations is G(D+8Y1, which appears

in (5.7) and (5.8), but has no analogue in (3.6) and (3.7). This reflects the

fact that time averaging of the data is taken into account in the continuous

time models, but not in the discrete time models.

We now describe the procedure used to estimate systems (5.7) and

(5.8). Define

(5.9) Q(t) (t) —

Suppose we have a sample on Q(t), t = 1, 2, 3, ..., T. Our estimation crite-

rion is the frequency domain approximation to the Gaussian density function

described in subsection 3.A. As before, we denote the periodogram of the data

by I(w) w3 2rJ/T, j 1, 2, ..., T, while Z(w) denotes the theoretical

spectral density of the discrete process {Q(t), t integer} at frequency u

implied by (5.7) or (5.8).

The matrix function Z(w) is derived as follows. Using results in

Phillips (1958) it can be shown that the spectral density of fQ(t), t real}

generated by (5.7), is given by:

(5.10) Z°(w) JIJ(iw+e)Ac(iw+eY1vc[Ac(_iw+e)' J1$(—iw+O)'

for -c w S —, where ip(s) G(s)H(sr1. The corresponding spectral density

generated by (5.8) is:

(5.11) Z0(w)

Hannan [1970, p. US] shows that the following "folding operator" links Z(ua)

and

(5.12) Z(w) zc(W+2Tk).
-e
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Equations (5.10) or (5.11) and (5.12) provide a computationally feasible

algorithm for obtaining 1(w) for a given w from [4,,A,v0] or [b,A,V0]. Because

this algorithm is relatively slow, we used an alternative method based on a

partial, fractions decomposition of Z (see Durbin [1961], Hannan [1970, pp.

405—407] and Hansen and Sargent (1981]).

The preceding estimation strategy assumes that the values of 8

and E(t) are known. We proceded as in the discrete time case, by replacing

E(t) by its sample mean and setting a to .oo4s68.LV

We conclude this subsection by noting that an implication of results

in Christiano and Marshall (1986), is that both the CRW and CSLR models give

rise to constrained SARX4A(3,4) representations for

5.8 Eipirical Results

Our estimates of the CRW and CSLR models are reported in Table

5.1. The parameter r is set equal to .0098, which implies an annual discount

rate of four percenti.LW According to both the unadjusted and adjusted

likelihood ratio statistics and T respectively) neither the CRW nor the

.CSLR model, can be rejected, at the five percent significance level. This is

to be contrasted withour findings that the DRW model can be rejected at close

to the one percent level. Thus for both models there is some evidence that

the continuous time formulations are in greater conformity with the data than

their discrete time counterparts.

The large number of parameters in the unconstrained SARMA used to

construct the likelihood ratio tests raises questions regarding the power of

our specification tests. Since the SARMA(3,U) is the most parsimoniously

parameterized unconstrained model that nests the continuous time structural

models, we cannot formally compare the performance of these models with a more

tightly parameterized alternative. However, the point estimates reported in
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Table 5.1 suggest a way of reformulating the continuous time models, so that

they are nested in an unconstrained SARMA(2,3). The point estimates of a2 and

a are extremely large so that the e2(t) and e(t) processes are virtually

indistinguishable from continuous time random walksi-J" It follows that in

the SARMA(3,k) representations implied by both the CRW and CSL.R models, the MA

matrix coefficient in the fourth lag and the AR coefficient on the third lag

are approximately zero.1.â" Hence we can compute likelihood ratio statistics

by comparing the likelihood values given in Table 5.2 with the value obtained

for the unconstrained SARMA(2,3) (reported in Table 3.5). The resulting test

statistics, which are distributed asymptotically with 12 degrees of freedom,

are given below. (Probability values are in parentheses.)

CRW Model CSLR Model

22.74 22.20
(.970) (.965)

21.61 21.10
(.958) (.951)

According to these results, neither model is rejected at the three percent

significance level.

The dimensions along which the CR14 model appears to be in greater

conformity with the data than the DRW model can be seen by comparing their

reduced forms to each other and to the unconstrained VAR(2). In Tables 5.2

and 5.3 we report the constrained VARs for and Z implied by our estimates

of the CRW model. These VAR5 are in principle infinite ordered, so we use the

truncation rule of not reporting matrix coefficients whose maximal element are

smaller than .02 in absolute value. Comparing Tables 3.5 and 5.2 we see that

the DR%4 and CRW models capture the dynamics in •_t(ct_yt) about equally

well. However the CRW and DRW models differ substantially in their implica-
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tions for By construction the DRW model implies that is uncor—

related with lagged values of both sac and 6t(ct_yt). While the CRW model

embodies this restriction for the continuous time point-in—time sampled data,

it does not imply this restriction for the actual measured, discrete time

data. This follows for two reasons. First, as Working (1960) showed, a time

averaged random walk is serially cprrelated. Second, results in Sims (1971)

imply that the cross dynamics between •Ac and •t(c_y) will be distorted

by time averaging. For example, time averaged measures of (t(c_y) should

Granger cause 4iAc even if this is not the case for continuous point-in-time

sampled measures of sAc and *_t(ct_yt).

Our evidence suggests that the effect discussed by Working (1g60) is

the major factor accounting for the improved fit of the CRW model relative to

the DRW model. In particular, this effect accounts for the coefficient 0.27

that appears on the first own lag of s_tact in the constrained VAR. This is

within one standard error of the point estimate (.313) of the corresponding

coefficient in the unconstrained VAR. Moreover the first own lag on $tact in

the unconstrained VAR is more than three standard deviations away from zero.

Taken together these observations suggest that the change in the value of the

coefficient of once lagged s_tact on s_tact from 0 in the DRW model to 0.27 in

the CRW model has a substantial effect on the likelihood ratio statistic.

A similar picture emerges from examining the constrained VAR for

reported in Table 5.3. Comparing this representation with the unconstrained

VAR(2) for in Table 3.6, we see that the value of the coefficient on the

own second lag of c implied by the CRW model is -.357, which is within a half

standard deviation of the unconstrained estimate of -.321. In contrast, the

DEW model constrains this coefficient to equal zero, a value which is more

than three standard deviations away from the corresponding point estimate.
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The effect of time averaging discussed by Sims (1971) is also pre-

sent. This can be seen by the nonzero values of the coefficients on lagged

values of t(c_y) in the second row of the VAR in Table 5.2 corresponding

the CR14 model. However, when we compare these point estimates to the corre-

sponding entries in the unconstrained VAR we see that this effect may be

harmful with regards to the overall fit of the CR14 model. This is because the

sign on •_(t_l)(c 1 in the equation of the constrained VAR is

positive, in contrast to the negative sign of the corresponding term in the

unconstrained VAR. Since the latter coefficient is not precisely estimated,

this effect is not sufficiently important to negate the favorable impact of

the effects suggested by Working (1960).

The dimensions along which the CSLR model outperforms the DSLR model

can also be seen by comparing their reduced forms to each other and to the

unconstrained VARs. The constrained VAR(2)s implied by the. DSLR model for

and are reported in Tables 3.5 and 3.6. The corresponding 'JARs implied by

the CSLR model are reported in Tables 5.2 and 5.3. Because the constrained

VAR's are in principle infinite ordered we again use the truncation rule of'

not reporting matrices whose maximal element is smaller than .02 in absolute

value. Comparing Tables 3.5 and 5.2 we see that the DSLR and CSLR models do

not differ in any substantial way regarding the dynamics of

However they do differ substantially in their implications for vAc. In

section 3.B we attributed the rejection of the DSLR model to the failure of

the cross equation restrictions. In particular, the DSLR model succeeds in

fitting the •t(c_y) process fairly well, but is prevented by the cross

equation restrictions from matching the serial correlation properties of

In the VAR corresponding to the CSLR model the coefficient on

—(t—1) . —t . .
Ac1 in the Ac equation is approximately .27. In contrast the
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value of corresponding coefficient in the DSLR model is approximately .03.

Similarly, in the VAR implied by the CSLR model for Z, the coefficient on

in the equation is .3140 (within one half standard deviation

of the unconstrained point estimate) while the corresponding coefficient in

the DSLR model is .008. Thus, the principal difference between the DSLR and

CSLR models is that the latter model is able to handle substantially more

serial correlation in s_tact. This difference is presumably attributable in

part to the effects of' temporal averaging discussed by Working (1960) but

could also be due in part to the effects of temporal aggregation on cross

equation restrictions discussed by Hansen and Sargent (1981, 1983).

In summary we find that the CRW and CSLR models appear to be empiri-

cally more plausible than the DRW and DSLR models, respectively. In our view

the evidence against the CRW model and the CSLR model is far from overwhelm-

ing. This is surprising given the simplicity and parsimonious parameteriza-

tion of both these models. In both instances the impact of moving to a con-

tinuous time model is an enhanced ability to mimic the serial correlation

properties of the quasi first difference of consumption.

6. Conclusion

This paper develops and tests models of consumption and output which

are consistent with the fact that measured aggregate consumption does not

behave as a random walk. It is not particularly challenging to develop theo-

ries which can explain this fact in principle. The random walk hypothesis is

clearly a special case of the permanent income hypothesis. However, as much

of the recent literature on the macroeconomics of consumption reveals, it is

quite challenging to develop e.pirically plausible models of the comovements

in aggregate consumption and output.
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We investigated two possible reasons why the change in consumption

fails to behave like a white noise. The first possibility is that exogenous

shocks to the economic system generate serial persistence in the first differ-

ence of consumption. We modeled this shock as a stochastic perturbaticn to

the amount of labor required to make capital productive. As it turns out,

there is a great deal of evidence against this version of our model when it is

implemented under the assumption that agents' decision intervals coincide with

the data sampling interval. However, there is surprisingly little evidence

against the continuous time version of this model.

The second possibility is that the RWFI holds in the (unobserved)

continuous consumption process, .iith serial persistence in measured consump-

tion being an artifact of temporal aggregation. Our results indicate that

when temporal aggregation bias is taken into account, the fit of the random

walk model improves substantially. This suggests that the random walk hypoth-

esis may yet be a useful way to conceptualize the relation between aggregate

consumption and output.

While both of the continuous time models that we tested outperform

their discrete time counterparts, it is very difficult, at least on the basis

of aggregate consumption and output data, to distinguish between the two

continuous time models. However the CR14 model does have a number of implica-

tions which we did not test in this paper but which call its plausibility into

question. One such implication is that the capital—labor ratio is determin-

istic. This implication is obviously counterfactual. While this could be

remedied by allowing for measurement error, we regard the CLSR model as a more

promising starting point for future research.

A different set of implications which were not explored in this

paper concern the equilibrium wage rate and real interest rate. Unlike the
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quantity variables, our models imply that these price processes are nonlinear

functions of the state variables in the system. Consequently, deriving the

laws of motion for measured wages and interest rates that are Implied by our

continuous time models involves technical difficulties not encountered in this

paper. Nonetheless, we believe that our results for the consumption and

output are sufficiently encouraging to warrant an empirical investigation of

the model's implications for relative prices.
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Footnotes

i-i/In Christiano, Eichenbaum, and Marshall (1986), it is shown that

if the econometrician uses only consumption and output data then the DSLR

model is observationally equivalent to a model in which bt is stochastic but

the labor requirement per unit of capital is deterministic.

a formulation which allows for positive population growth.

The expression on the left hand side of (2.3) must be replaced by Ct .+ kt
— [(1_d)/n]k 1'

where n denotes the gross growth rate of the population.

i.'Hansen's (1986) model sets at E 0.

iJVmjs terminology is slightly unconventional since 81 is not the

gross rate interest in our model economy.

&.1With positive population growth the right hand side of (2.17)

must be scaled up by n, the gross growth rate in the population.

1—i"Equation (3A) can be seen as follows:

* - c — y
--

c - s1c1
-

c -

(1-1L)
_[k*_(1_d)ik* 1}t

H(qr L)q
-

where the last equality follows from (3.1) and (3.2) and
ø_tkt.

LVour measure of government investment is a revised and updated

version of the measure discussed in Musgrave (1980).

obtained this value of t by regressing log o and log on a

linear time trend subject to the restrictions that the growth rates in con—
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sumption and output are equal. When we did not impose this restriction, we

found that the growth rates in consumption and output were exp[.004582] and

exp[.004606], respectively.

id/mat t is predicted to be SARMA(3,3) is proved in Christiano,

Lichenbaum, and Marshall (1986).

L.Vwhittle's (1953) correction for small sample bias is as fol-

lows: Let N equal the total number of parameters under the alternative hy-

pothesis (excluding the covariance matrix of the observables), K number of

equations, and T = number of observations. Then JTO_N/) where J.1. is

the unadjusted likelihood ratio statistic and is the adjusted likelihood

ratio statistic. When the unconstrained alternative is a SARMA(3,4), N:19,

14=2, and T:1141, ° '½ =

LYwhen compared with the SARMA(3,3), the DRW model is rejected

even more strongly. In that test the unadjusted '½ statistic is 35.149 (prQba—

bility value .9996) and the adjusted '½ statistic is 33.59 (probability value

.9992).

LiiEquation (14.2) differs from (2.2) in the timing of the produc-

tive inputs. (4.2) results as a limiting case of (2.2) if we rewrite the

latter as it: min{ ,ttht}+ et and let —0 from above.

J/Treating measured consumption and income as unit integrals of

the underlying instantaneous quantities is a rough approximation to the meth-

ods used by the Department of Convnerce to gather data.

VIn deriving (5.3) we use the fact that
1 1

.f x(t—r)dt = .f e'xtwt = [(l_e_D)iDJx(t).
0 0
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c(t) — y(t) —Dk(t) —(D+d)k(t)
q(t) 11(D) H(D)(t)

Dc(t) Dc(t) Dc(t)

where the last equality follows from (IA) and (5.2).

relationship between B and 4 is 4 e0.

.WThe particular SARMA representation corresponding to a given

continuous time model is characterized by a third order scalar polynomial,

the two by two fourth order matrix polynomial, Cd(.), and the two by

two positive semidefinite matrix which satisfy:

Z(w)

Here, we impose the normalizations cd(o) I,det[Cd(z)] 0 implies Izi 1,

and Ed(0) 1. The algorithm we used to calculate Ed, cd, and is the one

described in Rozanov (1967, chapter I, section 10). Thus both continuous time

models are nested within the SARMA specification:

Ed(L)Qt Cd(L)Xt,

where is the serially uncorrelated innovation in Q(t), with variance

and

Ed(L) 1 + EL + EL2 +

cd(L) I + CL + CL2 + CL3 + 4Lk.

.ñ'The relationship between B in the discrete formulations and r in

the continuous formulations is 8 er.

the reported point estimates imply that e2(t) and e(t)

behave essentially as continuous time random walks can be seen from the fol-

lowing argument. If x(t) is a continuous time first order autoregression:
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x(t) e(t)/(a+D), c(t) continuous time white noise, then x(t) has an exponen-

tially declining impulse response function:

x(t) f ete(t_T)dt.

Therefore, the impulse response function for De2(t) is e_28t and for De(t)

is e_l2t. These functions decline so steeply that past impulses have negligi-

ble effect on current values of 0e2(t) and De(t).

the SAEMA(3,#) implied by the CRW model, the MA matrix coef-

ficient on the fourth lag consists entirely of zeroes and the AR coefficient

on the third lag equals 0.9 x In the case of the CSLR model, the MA

matrix coefficient on the fourth lag has no element greater than 3 x in

absolute value and the AR coefficient on the third lag is -7 x iC6.
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Table 3.1

Sequential Likelihood Ratio Tests for VAR Lag Length

VARs Tested Degrees
Freedom

Likelihood Ratio StatisticTM

For tTMTM For

VAR(1) against
VAR(2)

4 12.60

(.987)
21.72
(.999)

VAR(2) against
VAR(3)

4 6.085
(.807)

5.231
(.756)

VAR(3) against
VAR(4)

4 3.807
(.567)

6.944
(.861)

VAR(4) against
VAR(S)

4 5.246
(.730)

2.838
(.415)

VAR(S) against
VAR(6)

U 6.587
(.838)

5.977
(.799)

TMReported likelihood ratio statistic is twice the difference between the log

likelihood of the VAR(n) and the VAR(n—1), for n r 2, . .., 6. Probability
values in parentheses.

—t — —t
is demeaned Es (c—y),i, ac].

is demeaned E.tit,,_tct].
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Table 3.2

Mull Hypothesis Degrees
Freedom

J

•_tAc does not
t

cause •—t(0j)

Granger 2 5.08
(.921)

,_t(ct4t) does

—t
cause Q

not Granger 2 0.81;

(.343)

is white noise 4 24.98
(.9999)

is the likelihood ratio statistic comparing an unrestricted VAR(2) with a

VAR(2) estimated subject to the restrictions imposed by the stated null by—

.pothesis. Probability values of test statistics in parentheses.
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Table 3.3

The Discrete Time The Discretra Time Stochastic
Random Walk Model Labor Requirement Model

Parameter Point Estilnate* Parameter Point Estimate

a1 0.212
(.094)

.
f .915

(.024)

a2 .849
(.072)

a .215
(.085)

d .007
(.062)

d .066
(.035)

Estimated Covariance
Matrix** of

Estimated Covariance
Matrix** of

887.85 —712.78
(404.39) (372.08)

656.25 —1495.49

(156.99) (135.81)

-712.78 651.48
(342.14)

. -495.49 442.58
(118.17)

C1,
—8'49.00 . tT - 846.41$

37.26
(.998)

.

T 32.14
(.990)

34.75
(.996)

T r 29.97
(.982)

*Standapd errors in parentheses.
-

** and Vt are the innovations in the SARMA representations implied by the

DRW model and the DSLR model respectively.

as defined in footnote 3.5. Probability value of and in parenthe-
ses.
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Table 3.4

Diagnostics For SARMA (p,q): p 1, 2; q = 1, 1, 2, 3, 4

q LT* T JT*** Degrees of Freedom

2 1 -837.33 13.92
(.620)

12.98
(.551)

13

2 2 -83'4.66 8.58
(.523)

8.00
(.466)

9

2 3 -831.88 3.02
(.303)

•

2.82
(.272)

5

2 4 —830.70 0.66
(.583)

0.62
(.569)

1

3 1 —836.79 12.8k

(.619)
11.97
(.552)

12

3

3

2

3

—834.53

—831.26

8.32
(.597)

1.78

(.224)

7.76
(.543)

1.66

(.202)

8

4

3 4 —830.37 .

*Value of the log likelihood function.

**Likeljhood ratio statistic testing the SARMA(p,q) (p = 2, 3; q 1, 2, 3, 4)

specification against the SARMA(3,k) specification. Figures in parentheses

refer to probability value.

***Likelihood ratio statistic corrected for small sample bias using Whittle's

(1953) procedure (see footnote 3.5).
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Table 3.5

Comparison of VAR(2) Representations for

Unconstrained VAR(2)

1.070 —.136 —.20k —.206
(.08k) (.132) (.08k) (.130)

+ **
—.07k .313

-
.065 .125

—

(.055) (.085) (.05'4) (.085)

217.02 —0.867

Extxt'
—0.867 92.7k

Constrained Model (Truncated) Implied
by the Discrete Random Walk Model

1.063 —.178 —.179

+Xt
0 0

-
0

2k8.10 111.78LXX:
t t

—lk.78 113.77

Constrained VAR(2) (Truncated) Implied by the
Discrete Stochastic Labor Requirement Model

1.166 —.189 —.201 0

S 1 + 5 2 +
—.120 .026

—
.03k 0

-

261.1k —18.64

ExtIt
_18.624 107.85

*Q is demeaned E4_t(c)*_tAcj

is the disturbance term in the unconstrained VAR(2)
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Table 3.6

Comparison of VAR(2) Representations for

Unconstrained VAR( 2)

1.175 .359 —.270 —.293
(.101) (.193) (.100) (.182)

Z Z + Z
.099 1.193 —Ok6 —.321

t-2 t

(.053) (.101) (.053) (.093)

320.78 9U.95

911.95 87.63

Constrained Model (Truncated) Implied by the
Discrete Random Walk Model

1.063 .110 —.179 .002
=

1
+

2
+

0 .ggS 0 0

391.113 128.55
EXZXZI =t

128.55 113.77

Constrained VAR(2) (Truncated) Implied by the
Discrete Stochastic Labor Requirement Model

1.286 —.076 —.235 .021

z + z
.120 .901 —.03* .008

t—2 t

=
'406.3 126.5

t
126.5 107.9

is demeaned

is the disturbance in the unconstrained VAR(2).
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Table 5.1

The Continuous Time
Random Walk Model

The Continuous Time Stochastic
Labor Requirement Model

Parameter Point Estimate' Parameter Point Estimate

a1 .152
(.060)

f .089

(.035)

a2 27.57
(81.81)

a 11.75
(11.29)

d .0032
(.058)

d .058
(.0142)

Estimated Covariance
Matrix **

W0

Estimated Covariance
Matrix**

'488.51 —521.63 659.82 1483.60

—521.63 719.52 '483.60 #65.28

= -8143.249 -8'42.982

25.76
(.942)

JT** 25.22
(.9314)

214.02

(.911)
JT*** 23.52

(.900)

'Standard errors in parentheses.

is the covariance matrix of the vector [n7(t)/(a1+6),ii(t)/(a2+6)]. w

is the covariance matrix of the vector In'(t)/(a+6),c6c'(t)/(f+6)1.

***probability value of .L1. and in parentheses.
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Table 5.2

Comparison of VAR(2) Representations for

Truncated VAR Implied by the Continuous
Time Random Walk Model

1.126 -.033 —.300 .018

Qt: t2
.011 .270

—
—.016 -.073

-

.080 -.007 -.021 .003
+

.008 .019
-

-.003 —.005
-

255.87 -17.93
EX

ct C
—17.93 101.52

Truncated VAR Implied by the Continuous Time
Stochastic Labor Requirement Model

1.2111 —.072 —.343 .038

Qt:
-.078 .277

—
—.010 -.075

—

.096 —.016 —.02k .006
+ Qtu+xct**

.007 .020
-

-.001 -.005 -
-

268.25 —22.90
=

—22.90 100.13

-
E[QtIQt ;s = 1,2,... under the null hypothesis of the CRW

model].

X0t
— ;s = 1,2,... under the null hypothesis of the CSLR

model].
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Table 5.3

Comparison of VAR(2) Representations for

Truncated VAR Implied by the Continuous
Time Random Walk Model

1.111! .184 —.285 —.107
Z 1

—.113 1.277 .016
t—2

.073 .044 —.018 -.016
+ Z + 2

—.008 .099
t3

.003 —.027
t-4 at

393.25 119.45
EX2 f
at at

119.45 101.52

Truncated VAR Implied by the Continuous Time
Stochastic Labor Requirement Model

1.318 .025 —.353 —.108
2 + 2

.078 1.194
—

—.010 —.340
—

.089 .060 -.026 —.021
2+ 1 + 1 +1 **

-.007 .102 t-3 —.001 —.024
t14 at

4114.18 123.03

EX2t?t'a C
123.03 100.13

— E[ZtIZt;s 1,2,3,... under the null hypothesis of the CRW

model 1.

r — E[ZtIZts;s 1,2,3,..., under the null hypothesis of the CSLR

model].
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Appendix A

Our derivation of the decision rules in section 2 assumes that

capital and labor are never underutilized under the optimal plan (see equation

(2.6]). This appendix discusses conditions under which this restriction is

not binding.

The fact that labor is never underutilized follows trivially from

the fact that kt and ht are chosen after is observed and that > 0.

Thus, Zkt ttht for all t. Deriving conditions on the distribution of the

shock terms and parameters which guarantee that capital is always fully uti-

lized is much more difficult. This problem is analogous to the problem of

deriving the conditions which guarantee that nonnegativity constraints on

endogenous variables in linear quadratic models are not binding. Instead, we

provide conditions that make capital under-utilization very unlikely. The

following Proposition is useful for this purpose.

Proposition 1:

Suppose we have a unique interior maximum to (2.1) subject to (2.3)

and (2.5). Then

(A.1) Zkt ttht
for all t

is equivalent with

(A.2) < E(b+1_c+1) ( (b_c)/(B(1_d)] for all t.

Proof

First we prove that (A.2) implies (A.1). If (&.2) is true, then any

plan that does not satisfy (1.1) is suboptimal. To see this, consider a plan

for which ikt ) rtht for some t. Consider the following two feasible devia—
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tions from this plan: (i) increase ht by the amount dht > 0, and consume the

proceeds, rtdht, in period t + 1, and (ii) decrease kt by dkt < 0, i.e.,

increase ct by —dkt, and increase by —(1—d)dkt. The change in utility

associated with Ci) is _atdht + BEt(bt+i_ct+i)ttdht, which is positive by

(A.2). The change in utility associated with (ii) is _(bt_ct)dkt +

sEt(bt+i_ct+i)(1_d)dk. This is also positive by (A.2). We conclude that if

(4.2) is true and an interior optimum exists, then it must satisfy (A.1).

Next we show that (Li) implies (4.2). First, a > 0 implies that

if (4.1) is true, then ZLc ttht. By the assumption of a unique interior

maximum, utility must fall upon reversing strategy Ci) with dht < 0, or re-

versing strategy (ii) with dkt > 0. These imply the left and right inequali-

ties, respectively, in (4.2). Q.E.D.

Proposition 1 informs us that (4.2) is necessary and sufficient to

rule out capital underutilization on the optimal path. While we cannot guar-

antee (4.2) with probability 1 in the stochastic version of the model, a

suitable choice of initial conditions and constant terms will make it highly

unlikely that (4.2) is violated, for sufficiently small shocks. For example,

in the DRW model, a sufficient condition for (4.2) is that > 0 for all t,

where

(4.3) b0 — c0
— H/(b—1) + U1 + U2 + ... + ut

-
e0 + (1-o)k1 - (i)(1) H +

u1
+

u2 + ... + ut

for all t. Here, Ut E e , Also, the second equality in (4.3) uses (2.12)

t p
and bt r $ b. In the deterministic version of the model (i.e., ut0), the

condition > 0 is satisfied for large enough b and k_1, and small enough

H. We can make the probability of B ( 0 arbitrarily small in the stochastic

version of the model by making the variance of the shocks sufficiently close

to zero.
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We now show that B > 0 guarantees (A.2) in the DRW model. By

recursively solving (2.15), wesee that

(LU) bt — Bt +

Also, it is easy to verify that 84 ( 1 implies

(L5) •/(—1) > ii(sZ).

By (2.15) and (LU),

(A.6) Et(b+i_ct+i) — n/(a) — + — Ht/(8Z)

Bt +

Also,

(A.7) (bt_ct)/[a(l_d)] — Et(bt+i—ct÷i)

f1/(s(1_d)]_1}Bt + [s/(s1)]{i/[ss(1_d)1_1}H.

Combining (A.6) and (A.7), and using (A.5), we obtain (A.2), if Bt > 0.
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Appendix B

Derivation of (2.11) and (2.12)

The social planner chooses a contingency plan for capital to maxi-

mize (2.8) subject to (2.5). The resulting stochastic Euler equation is:

E{[1_68Lj[1_6Ljkt} a E{[1_68L][et_btJ_H}

or, since 68 a 1,

(3.1) Et{(1_C11[1_6L]lct}

Note that we can rewrite the characteristic polynomial of (B.1) as

[1—z1][1—6z] a {&—zI[i—z].

The condition 68 a 1 implies that constraint (2.5) is binding (see Hansen

[1986]), so (3.1) can be solved by applying the forward operator [6-L
]

to

both sides of the equation, yielding:

— kti = Etj[6_L]1(1_L](e_b)_[6_L]'H}

1

a

Rearranging terms,

(3.2) — r ÷ e — bt — sEt8JHtj.
Rewriting (3.2) using the notation defined in (2.9) results in (2.11). Equa-

tion (2.12) is obtained by substituting for kt in (2.7), using (2.11).
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Appendix C

Derivation of Decision Rules for the Continuous Time Model

This appendix provides an informal derivation of the decision rules,

(14.10) — (14.12) for the continuous time planning problem, (14.8), and the

identity, (14.7). Proceeding as in Hansen and Sargent (1980) we can show that

the Euler equation for the social planner's problem is

(C.1) D(D—6)k(t) D[e(t)—b(t)1 + H(t).

The unique solution to this problem which satisfies (14.5) is

(C.2) Dk(t) e(t) — b(t) —
6Et I eGt{e(t+t)_b(t+t)}dT

0

—
6Et f e&TH(tn)dr.

0

This is easily shown to equal the first equation in (14.10) after the defini-

tion (4.9) is taken into account. The second equation in (4.10) is obtained

by subStituting the first into (4.7). Equation (4.11) is just the sum of the

two equations in (4.10).

To derive (4.12), we first present some preliminary results regard-

ing x(t). Suppose the fundamental representation for x(t) is x(t)

C(D)e(t). Here, C(s) = 0 implies Real(s) s 0 and the poles of C(s) lie in the

closure of the left side of the complex plane (see Sargent [1982] for a dis-

cussion of the link between these conditions and E(t) being fundamental for

x(t)). Then,

(C.3). x(t) = _6Et D — 6
x(t) =

D
c(t)

— C(D) — C(s)——6

by a formula due to Hansen and Sargent (1980). Multiply both sides of (C.3)

by D - 6 and rearrange, to obtain
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(C.#) (D—s)x(t) + óx(t) r 6C(6)c(t).

We identify u, (t) with 6C(6)e(t). To see why, first write,

(C.5) x(t) r C(D)c(t) .1 c(t)c(t—t)dt,
0

where the function 0(t), r 0 is uniquely defined by

(C.6) C(s) f c(t)e_Stdt, Real(s) > 0.

Equation (C.5) defines c as the impulse response function of x(t) to s(t).

Consider the effect of a disturbance in x(t) that is uncorrelated

with I(t—r), t > 0. This arises from a pulse in c(t), which leads to a revi-

sion in the forecast of x(t÷r) in •the amount c(t)c(t) t 0. The permanent

value of this revision is oC(6)s(t). Thus the effect of the pulse in e(t) is

to disturb x(t) by 6C(6)€(t), which is why we identify 6C(6)c(t) with

(t). We conclude that

(C.7) (D—6)x (t) + ox(t) (t).
p

p

From (11.10),

(C.8) Dc(t) r De(t) + Db(t) — Db(t) + oDk(t) + DH(t)/6.

Equation (4.12) Is obtained by first substituting the first equation in (11.10)

into (C.3) and then making use of (C.7).
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