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1 Introduction.

It will be helpful if I start out with background on some recent methodological
developments in empirical Industrial Organization, concentrating on those ei-
ther I have been more closely associated with. I start with an overview of what
we have been trying to do and then move on to how far we have gotten. This
will bring us naturally to the analysis of market dynamics; the main topic of the
paper.

Broadly speaking the goal has been to develop and apply tools that enable us
to better analyze market outcomes. The common thread in the recent develop-
ments is a focus on incorporating the institutional background into our empirical
models that is needed to make sense of the data used in analyzing the issues of
interest. These are typically the causes of historical events, or the likely re-
sponses to environmental and policy changes. In large part this was a response
to prior developments in Industrial Organization theory which used simplified
structures to illustrate how different phenomena could occur. The empirical lit-
erature was trying to use data and institutional knowledge to narrow the set of
possible responses to environmental or policy changes (or the interpretations of
past responses to such changes). The field was moving from a description of
responses that could occur, to those that were “likely” to occur given what the
data could tell us about appropriate functional forms, behavioral assumptions,
and environmental conditions.

In pretty much every setting this required incorporating

• heterogeneity of various forms into our empirical models,

and, when analyzing market responses

• using equilibrium conditions to solve for variables that firms could change
in response to the environmental change of interest.

The difficulties encountered in incorporating sufficient heterogeneity and/or
using equilibrium conditions differed between what was generally labeled as
“static” and “dynamic” models. For clarity I will use the textbook distinction
between these two: (i) static models solve for profits conditional on state vari-
ables, and (ii) dynamics analyzes the evolution of those state variables (and
through that the evolution of market structure). By state variables here I mean:
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the characteristics of the products marketed, the determinants of costs, the dis-
tribution of consumer characteristics, the ownership structure, and any regula-
tory or other rules the agents must abide by. I begin with a brief review of
the approach we have taken with static models, as that will make it easier to
understand how the dynamic literature evolved.

Static Models. The empirical methodology for the static analysis typically re-
lied on earlier work by our game theory colleagues for the analytic frameworks
we used. The assumptions we took from our theory colleagues included the
following:

• Each agent’s actions affect all agents’ payoffs, and

• At the “equilibrium” or “rest point”
(i) agents have “consistent” perceptions1, and
(ii) each agent does the best they can conditional on their perceptions of
competitors’ and nature’s behavior.

Our contribution was the development of an ability to incorporate heterogeneity
into the analysis and then adapt the framework to the richness of different real
world institutions. This was greatly facilitated by progress in our computational
abilities, and the related increased availability of data and econometric method-
ology. Of particular importance were econometric developments which enabled
the use of semi-parametric (see Powell, 1994) and simulation (see McFadden,
1989, and Pakes and Pollard, 1989) techniques. The increased data, computing
power and econometric techniques enabled the framework to be applied to a
variety of industries using much weaker assumptions than had been used in the
theory literature.

Indeed I would make the claim that the tools developed for the analysis
of market allocations conditional on the state “variables” of the problem have
passed a “market test” for success in an abundance of situations. I come to the
conclusion for three reasons.

• First these tools have been incorporated into applied work in virtually all
of economics that deals with market allocation when productivity and/or
demand is part of the analysis.

1Though the form in which the consistency condition was required to hold differed across applications.
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• The tools are now used by public agencies, consultancies and to some
extent by firms.

• The tools do surprisingly well, both in fit and in providing a deeper under-
standing of empirical phenomena.

For examples of the last point I note that empirical analysis of equilibrium
pricing equations in retail markets that followed Berry, Levinsohn and Pakes
(1995) both; (i) typically fit exceptionally well for a behavioral equation and
(ii) generated markups which were in accord with other sources of information
on markups. Similarly the productivity analysis that followed Olley and Pakes
(1996) was able to separate out and analyze changes in aggregate productivity
attributable to: (i) increases in productivity at the firm level and (ii) increases
resulting from a reallocating output among differentially productive firms.

I do not want to leave the impression that there is nothing left to be done
in the analysis of equilibrium conditional on state variables. There have been
several recent advances which have enhanced our ability to use static analy-
sis to analyze important problems. This includes; (i) the explicit incorpora-
tion of adverse selection and moral hazard into the analysis of insurance and
capital markets (for e.g. Einav, Jenkins, and Levin, 2012), (ii) the analysis of
upstream contracts in vertical markets characterized by bargaining (see Craw-
ford and Yurukoglu, 2013). and (iii) the explicit incorporation of fixed (and
other non-convex) costs into the analysis of when a good will be marketed (see
Pakes, Porter, Ho and Ishii, 2015).

Dynamic Models. Empirical work on dynamic models proceeded in a similar
way to the way we proceeded in static analysis; we took the analytic framework
from our theory colleagues and tried to incorporate the institutions that seemed
necessary to analyze actual markets. The initial frameworks by our theory col-
leagues made assumptions which ensured that the

1. state variables evolve as a Markov process,

2. and the equilibrium was some form of Markov Perfection (no agent has an
incentive to deviate at any value of the state variables).

In these models firms chose ”dynamic controls” ; investments that determine the
likely evolution of their state variables. Implicit in the second condition above
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is that players’ have perceptions of the controls’ likely impact on the evolution
of the state variables (their own and those of their competitors) and through that
on their current and future profits, and that these perceptions are consistent with
actual behavior (by nature, as well as by their competitors). The standard refer-
ences here are Maskin and Tirole (1988a and b) for the equilibrium notion and
Ericson and Pakes (1995) for the framework brought to applied work. Though,
as we will see, there were a number of ways that this framework was successful,
it has not had nearly the impact on empirical work that the static framework has,
and I want to explore why2.

2 The Assumptions of the Dynamic Framework.

We start by examining the two assumptions above in the context of symmetric
information Markov Perfect models, the first dynamic models to be brought to
data.

The Markov Assumption. Except in situations involving active experimen-
tation and learning (where policies are transient), applied work is likely to
stick with the assumption that states evolve as a (controlled) time homogeneous
Markov process of finite order. There are a number of reasons for this. First the
Markov assumption is convenient and fits the data well in the sense that condi-
tioning on a few past states (maybe more than one period in the past) is often all
one needs to predict the controls. Second we can bound the gains from unilat-
eral deviations from the Markov assumption (see Ifrach, Weintraub, 2014), and
have conditions which insure those deviations can be made arbitrarily small by
letting the length of the kept history grow (see White and Scherer, 1994).

Finally, but perhaps most importantly, realism suggests information access
and retention conditions as well as computational constraints limit the variables
agents actually use in determining their strategies. I come back to this below, as
precisely how we limit the memory has implications for the difference between
the conditions empirical work can be expected to impose and those most theory
models abide by.

2There are, of course, some structural dynamic papers that are justifiably well known, see for example Benkard
(2004), Collard-Wexler (2013), and Kalouptsidi (2014).
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Perfection. The type of rationality built into Markov Perfection is more ques-
tionable. It has clearly been put to good use by our theory colleagues, who
have used it to explore possible dynamic outcomes in a structured way. It has
also been put to good use as a guide to choosing covariates for empirical work
which needed to condition on the impacts of dynamic phenomena (e.g. condi-
tioning on the selection induced by exit in the analysis of productivity in Olley
and Pakes, 1996). However it has been less successful as an explicit empiri-
cal model of agents choices that then combine to form the dynamic response
of markets to changes in their environment. This because for many industries
it became unwieldly when confronted with the task of incorporating the insti-
tutional background needed for an analysis of dynamic outcomes that many
of us (including the relevant decision makers) would be willing to trust. The
“unwieldlyness” resulted from the dimension of the state space that seemed to
be needed (this included at least Maskin and Tirole’s, 1988, “payoff relevant”
states, or the determinants of the demand and cost functions of each competitor),
and the complexity of computing equilibrium policies. The difficulties with the
Markov Perfect assumption became evident when we tried to use the Markov
Perfect notions to structure

• the estimation of parameters, or to

• compute the fixed points that defined the equilibria or rest points of the
system.

The initial computation of equilibrium policies in Pakes and McGuire (1994)
discretized the state space and used a “synchronous” iterative procedure. The
information in memory allowed the analyst to calculate policies and value func-
tions for each possible state. An iteration circled through each state in turn and
updated first their policies to maximize the expected discounted value of fu-
ture net cash flow given the competitors’ policies and the current firm’s value
function from the last iteration (i.e. it used “greedy” policies given the infor-
mation in memory), and then updated the values the new policies implied. The
test for equilibrium consisted of computing a metric in the difference between
the values at successive iterations. If the metric was small enough we were
close enough to a fixed point, and the fixed point satisfied all of the equilibrium
conditions. The computational burden of this exercise varied directly with the
cardinality of the discretized state space which grew (either exponentially or
geometrically, depending on the problem) in the number of state variables.
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At least if one were to use standard estimation techniques, estimation was
even more computationally demanding, as it required a “nested fixed point” al-
gorithm. For example a likelihood based estimation technique would require
that the researcher compute equilibrium policies for each value of the parame-
ter vector that the search algorithm tried in the process of finding the maximum
to the likelihood. The actual number of equilibria that would need to be calcu-
lated before finding the maximum would depend on the problem but could be
expected to be in the thousands.

The profession’s initial response to the difficulties we encountered in using
the Markov Perfect assumptions to structure empirical work was to keep the
equilibrium notion and develop techniques to make it easier to circumvent the
estimation and computational problems that the equilibrium notion generated.
There were a number of useful contribution in this regard. Perhaps the most
important of them were:

• The development of estimation techniques that circumvent the problem of
repeatedly computing equilibria when estimating dynamic models (that do
not require a nested fixed point algorithm). These used non-parametric
estimates of the policy functions (Bajari, Benkard, and Levin, 2007), or
the transition probabilities (Pakes, Ostrovsky, and Berry, 2007), instead of
the fixed point calculation, to obtain the continuation values generated by
any particular value of the parameter vector.

• The use of approximations and functional forms for primitives which en-
abled us to compute equilibria quicker and/or with less memory require-
ments. There were a number of procedures used; Judd’s (1998) book
explained how to use deterministic approximation techniques, Pakes and
McGuire (2001) showed how to use stochastic algorithms to alleviate the
computational burden, and Doraszelski and Judd (2011) showed how the
use of continuous time could simplify computation of continuation values.

As will be discussed in several places below many of the ideas underlying
these developments are helpful in different contexts. Of particular interest to
this paper, the new computational approaches led to an expansion of compu-
tational dynamic theory which illuminated several important applied problems.
Examples include; the relationship of collusion to consumer welfare (Fersht-
man and Pakes, 2000), the multiplicity of possible equilibria in models with

6



learning by doing (Besanko, Doraszelski, Kryukov and Satterthwaite, 2010),
and dynamic market responses to merger policy (Mermelstein, Nocke, Satterth-
waite, and Whinston 2014). On the other hand these examples just sharpened
the need for empirical work as the results they generated raised new, and po-
tentially important, possible outcomes from the use of different policies and we
needed to determine when these outcomes were relevant. That empirical work
remained hampered by the complexity of the analysis that seemed to be required
were we to adequately approximate the institutional environment; at least if we
continued to use the standard Markov Perfect notions.

2.1 The Behavioral Implications of Markov Perfection.

I want to emphasize the fact that the complexity of Markov Perfection not only
limits our ability to do dynamic analysis of market outcomes, it also leads to
a question of whether some other notion of equilibria will better approximate
agents’ behavior. That is the fact that Markov Perfect framework becomes un-
wieldly when confronted by the complexity of real world institutions, both lim-
its our ability do empirical analysis of market dynamics and raises the question
of whether some other notion of equilibria will better approximate agents’ be-
havior. One relevant question then is, if we abandon Markov Perfection can we
both

• better approximate agents’ behavior and,

• enlarge the set of dynamic questions we are able to analyze?

It is helpful to start by examining why the complexity issue arises. When we
try to incorporate what seems to be essential institutional background into our
analysis we find that agents are required to both: (i) access a large amount of
information (all state variables), and (ii) either compute or learn an unrealistic
number of strategies (one for each information set). To see just how demanding
this is consider markets where consumer, as well as producer, choices have a
dynamic component. This includes pretty much all markets for durable, experi-
ence and network goods - that is it includes much of the economy.

In a symmetric information Markov Perfect equilibrium of, say, a durable
good market, both consumers and producers would hold in memory at the very
least; (i) the Cartesian product of the current distribution of holdings of the good
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across households crossed with household characteristics, and (ii) each firm’s
cost functions both for the production of existing products and for the develop-
ment of new products. Consumers would hold this information in memory, form
a perception of the likely product characteristics and prices of future offerings,
and compute the solution to a sequential single agent dynamic programming
problem to determine their choices. Firms would use the same state variables,
take consumers decisions as given, and compute their equilibrium pricing and
product development strategies. Since these strategies would not generally be
consistent with the consumer’s perceptions of those strategies that determined
the consumers’ decisions, the strategies would then have to be communicated
back to consumers who would then have to recompute their value functions and
choices based on the updated firm strategies. This process would need to be
repeated until we found a “doubly nested” fixed point to the behavior of the
agents; until we found strategies where consumers do the best they can given
correct perceptions of what producers would do and producers do the best they
can given correct perceptions on what each consumer would do. It is hard to
believe that this is as good an approximation to actual behavior as the social
sciences can come up with.

A Theory “Fix”. One alternative to assuming agents know all the informa-
tion that would be required in a symmetric information Markov Perfect equi-
librium is to assume agents only have access to a subset of the state variables.
Since agents presumably know their own characteristics and these tend to be
persistent, a realistic model would then need to allow for asymmetric informa-
tion. In that case use of the “perfectness” notion would lead us to a “Bayesian”
Markov Perfect solution. Though this will likely reduce information access and
retention conditions, it causes a substantial increase in the burden of computing
optimal strategies (by either the agents or the analyst). The additional burden
results from the need to compute posteriors, as well as optimal policies; and the
requirement that they be consistent with one another and hence with equilibrium
strategies. The resulting computational burden would make it all but impossible
to actually compute optimal policies (likely for many years to come). Of course
there is the possibility that agents might learn these policies, or at least policies
which maintain some of the logical features of Bayesian Perfect policies, from
combining data on past behavior with market outcomes.
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Learning Equilibrium Policies. Given its importance in justifying the use of
equilibrium policies, there is surprisingly little empirical work on certain as-
pects of the learning process. There are at least three objects the firm need to
accumulate information on; the primitives, the likely behavior of their com-
petitors, and market outcomes given primitives, competitor behavior, and their
own policies. There has been empirical work on learning about primitives3, but
very little empirical (in contrast to lab experimental or theoretical) evidence on
how firms formulate their perceptions about either their competitors’ behavior,
or about the impact of their own strategies given primitives and the actions of
competitors.

An ongoing study by U. Doraszelski, G. Lewis and myself (2014) delves into
these questions. We study the British Electric Utility market for frequency re-
sponse. Frequency response gives the Independent System Operator (a firm by
the name of “National Grid”) the ability to keep the frequency of the electricity
network within regulated safety bounds. Until November 2005 frequency re-
sponse was obtained by fiat through a regulation that required all units to allow
National Grid to take control of a certain portion of their generating capacity.
Starting in November 2005 a monthly auction market for frequency response
replaced the regulatory requirement. We have data on bids, acceptances, and
auxiliary information on this market from November 2005 until 2012. Note
that when this market started the participants had no information available on
either competitors’ past bids, or about the response of price and quantities to the
firms’ own bids conditional on the competitors’ bids. However they had dealt
with the exogenous demand and supply characteristics of this market (monthly
variation in demand, prices of fuel,...) for some time.

The results from that study which we are reasonably confident about and
have relevance for this paper are that; (i) the bids do eventually converge to
what looks like an equilibrium, (ii) after an initial stage where the learning
process was too complex for our simple models to approximate adequately, bids
for this good converge (and since the good is nearly homogeneous, there is a
consequent dramatic fall in the inter-firm variance in bids), and (iii) the many
smaller changes in the environment thereafter do not seem to lead to further
experimentation. Unfortunately I have little to say about modeling periods of
active experimentation as seems to have occurred in the period just after this

3See, for e.g. Crawford and Shum (2005), or for a recent contribution and a review of earlier work see Covert
(2014).
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market was formed. However I will come back to the issue of learning models
that do not involve experimentation below.

I now turn to a notion of equilibrium equilibrium that is less demanding
than Markov Perfect for both the agents, and the analyst, to use. As we shall see
many of the computational and estimation ideas that were developed for Markov
Perfect models can be used with the new equilibrium notion, but new issues do
arise. In particular, as is explained below, the notion of equilibrium that we pro-
pose admits a greater multiplicity than standard Markov Perfect models allow,
so we will consider realistic ways of restricting the equilibria analyzed. The
last section of the paper uses a computed example of our equilibria to explore
computational issues that are associated with it.

3 Less Demanding Notions of Equilibria.

I begin by considering conditions that would be natural candidates for “rest
points” to a dynamic system. I then consider a notion of equilibrium that sat-
isfies those, and only those, conditions. The next subsection introduces an al-
gorithm designed to compute policies that satisfy these equilibrium conditions.
The algorithm can be interpreted as a learning process. So the computational
algorithm could be used to model the response to a change in the industry’s
institutions, but only changes where it is reasonable to model responses to the
change with a simple reinforcement learning process. In particular, I do not
consider changes that lead to active experimentation.

Focusing on the equilibrium, or the rest point, makes the job of this subsec-
tion much easier. This because strategies at a rest point likely satisfy a Nash
condition of some sort; else someone has an incentive to deviate. However it
still leaves open the question of the form and purview of the Nash condition.
The conditions that I believe are natural and should be integrated into our mod-
eling approach are that

1. agents perceive that they are doing the best they can conditional on the
information that they condition their actions on, and that

2. if the information set that they condition on has been visited repeatedly,
these perceptions are consistent with what they have observed in the past.
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Notice that I am not assuming that agents form their perceptions in any “ratio-
nal” (or other) way; just that they are consistent with what they have observed
in the past, at least at conditioning sets that are observed repeatedly. Nor am I
assuming that agents form perceptions of likely outcomes conditional on all in-
formation that they have access to. The caveat that the perceptions must only be
consistent with past play at conditioning sets that are observed repeatedly allows
firms to experiment when a new situation arises. It also implicitly assumes that
at least some of the conditioning information sets are visited repeatedly; an as-
sumption consistent with the finite state Markov assumption that was discussed
above and which I will come back to below.

I view these as minimal conditions. It might be reasonable to assume more
than this, for example that agents know and/or explore properties of outcomes
of states not visited repeatedly. Alternatively it might the case that there is data
on the industry of interest and the data indicate that behavior can be restricted
further. I come back to both these possibilities after a more formal consideration
of the implications of the two assumptions just listed.

Formalizing the implications of our two assumptions. Denote the informa-
tion set of firm i in period t by Ji,t. Ji,t will contain both public (ξt) and private
(ωi,t) information, so Ji,t = {ξt, ωi,t}. The private information is often infor-
mation on production costs or investment activity (and/or its outcomes). The
public information varies considerably with the structure of the market. It can
contain publicly observed exogenous processes (e.g. information on factor price
and demand movements), past publicly observed choices made by participants
(e.g. past prices), and whatever has been revealed over time on past values of
ωi,t.

Firms chose their ”controls” as a function of the information at their disposal,
or Ji,t. Typically potential entrants will chose whether or not to enter and in-
cumbents will chose whether to remain active and if they do remain active, how
much to invest (in capital, R&D, advertising, . . .). Denote the policy chosen by
firm i in period t by mi,t ∈ M, and for simplicity assume that the number of
feasible actions, or #M, is finite (one can deal with continuous values of the
control as do Ericson and Pakes (1995); see Fershtman and Pakes (2012)).

Also for simplicity assume we are investigating a game in which firms invest
in their own privately observed state (ωi,t) and the outcomes depend only on its
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own investment choices (not on the choices of its competitors)4. In these games
the evolution of the firm’s own state is determined by a family of distributions
which determine the likelihood of the firm’s state in the next period conditional
on its current state and the amount it invests, or

Pω ≡ {P (·|ω,m); ω ∈ Ωω,m ∈M}. (1)

We assume the number of possible elements in Ωω or its cardinality (which will
be denoted by #Ω) is finite (though one can often derive this from primitives,
see Ericson and Pakes, 1995).

The firm’s choice variables evolve as a function of Ji,t, and conditional
on those choices, the private state evolves as a (controlled) Markov process.
This implies that provided the public information evolves as a Markov pro-
cess, the evolution of Ji,t is Markov. In our computational example (section
3), which is about maintenance decisions of electric utility generators, firms
observe whether their competitors bid into the auction in each period (so the
bids are public information), but the underlying cost ”state” of the generator
is private information and it evolves stochastically. Here I am simply going to
assume that the public information, ξt, evolves as a Markov process on Ωξ and
that #Ωξ is finite.

In many cases (including our example) the finite state Markov assumption
is not obvious. To derive it from primitives we would have to either put re-
strictions on the nature of the game (see the discussion in Fershtman and Pakes
(2012)), or invoke ”bounded rationality” type assumptions. I will come back
to a more detailed discussion of this assumption below. This because the finite
state Markov chain assumption is an assumption I need, and one that can be
inconsistent with more demanding notions of equilibrium. For what is coming
next one can either assume it was derived from a series of detailed assumptions,
or just view it as an adequate approximation to the process generating the data.

Equation (1) and our assumption on the evolution of public information, im-
4Though the outcomes could depend on the exogenous processes with just notational changes. This assumption,

which generates games which are often referred to as capital accumulation games, is not necessary for either the
definition of equilibrium, or the computational and estimation algorithms introduced below. Moreover, though it
simplifies presentation considerably, there are many I.O. applications where it would be inappropriate. Consider,
for example, a repeated procurement auction for, say timber, where the participants own lumber yards. Their state
variable would include the fraction of their processing capacity that their current timber supply can satisfy. The
control would be the bid, and the bids of others would then be a determinant of the evolution of their own state.
For an analysis of these situations using the notion of equilibrium proposed here see Asker, Fershtman, Jeon, and
Pakes (in process).
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ply that Ji,t evolves as a finite state Markov process, on say J , and that #J is
finite. Since agents choices and states are determined by their information sets,
the “state” of the industry, which we label as st, is determined by the collection
of information sets of the firms within it

st = {J1,t, . . . , Jnt,t} ∈ S.

If we assume that there are never more than a finite number of firms ever ac-
tive (another assumption that can be derived from primitives, (see Ericson and
Pakes, 1995), the cardinality of S , or #S, is also finite. This implies that any
set of policies will insure that st will wander into a recurrent subset of S , say
R ⊂ S , in finite time, and after that st+τ ∈ R with probability one forever
(Freedman, 1971). The industry states that are in R, and the transition proba-
bilities among them, will be determined by the appropriate primitives and be-
havioral assumptions for the industry being studied.

For applied work, it is important to keep in mind from that in this framework
agents are not assumed to either know st or to be able to calculate policies
for each of its possible realizations. Agent’s policies (the exit and investment
decisions of incumbents, and the entry and investment decisions of potentials
entrants) are functions of their Ji,t ∈ J which is lower dimensional then st ∈ S.

Back to our behavioral assumptions. Our first assumption is that agents
chose the policy (the m ∈ M) that maximizes its own perception of the ex-
pected discounted value of future net cash flow. So we need notation for the
agent’s perceptions of the expected discounted value of future net cash flow that
would result from the actions it could chose. The perception of the discounted
value from the choice policy m at state Ji will be denoted

W (m|Ji), ∀m ∈M & ∀Ji ∈ J .

Our second assumption is that at least for Ji that are visited repeatedly, that
is for Ji which is a component of an s ∈ R, the agents’ perceptions of these
values are consistent with what they observe. So we have to consider what
agents observe. When they are at Ji in period t they know the associated public
information (our ξt) and observe the subsequent public information, or ξt+1.
So provided they visit this state repeatedly they can compute the distribution
of ξt+1 given ξt. Assuming it is a capital accumulation game and that they
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know the actual physical relationship between investment and the probability
distribution of outcomes (our Pω), they can also construct the distribution of
of ωt+1 conditional on ωt and m. Together this gives them the distribution of
their next period’s state, say J ′i , conditional on Ji and m. Letting a superscript e
denote an empirical distributions (adjusted for the impacts of different m), the
conditional distributions are computed in the traditional way, that is by{

pe(J
′

i|Ji,m) ≡ pe(J
′

i , Ji,m)

pe(Ji,m)

}
J
′
i ,Ji

.

A firm at Ji which choses policy m will also observe the profits it gets as a
result of its choice. For simplicity we will assume that the profits are additively
separable in m, as would occur for example if profits were a function of all
observed firms’ prices and m was an additive investment cost. Then once the
firm observes the profits it obtains after choosing m it can calculate the profits
it would have earned from choosing any m ∈ M. The empirical distribution
of the profits it earns from playing m then allows the firm to form an average
profit from playing any m at Ji. We denote those average profits by

πe(Ji|m) ∀m ∈M & ∀Ji ∈ J .

Note that the profits that are realized at Ji when playing m depend on the
policies of (in our example the prices chosen by) its competitors. These in
turn depend on its competitors states. In reality there will be a distribution of
competitors states, say J−i, when the agent is at Ji, say{

pe(J−i|Ji) ≡
pe(J−i, Ji)

pe(Ji)

}
J−i,Ji

,

so in reality the actual expected profits of a firm who plays m at Ji is

πe(Ji|m) =
∑
J−i

π(Ji, J−i)p
e(J−i|Ji)−m.

Given this notation, our two equilibrium conditions can be formalized as
follows.

• If m∗(Ji) is policy chosen at Ji, our first equilibrium condition (i.e. that
each agent choses an action which maximizes its perception of its expected
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discounted value) is written as

W (m∗(Ji)|Ji) ≥ W (m|Ji), ∀m ∈M & ∀Ji ∈ J . (2)

Note that this is an equation on optimal choices of the agent, but provided
the agent can learn the {W (·|·)} (see below) the agent can make that choice
without any information on the choices made by its competitors (the choice
becomes analogous to that of an agent playing against nature).

• The second equilibrium condition is that for states that are visited repeat-
edly (are in R) these perceptions are consistent with observed outcomes.
Since W (m|Ji) is the perception of the expected discounted value of fu-
ture net cash flows, we require that ∀m and ∀Ji which is a component of
an s ∈ R, W (m|Ji) to equal the average profit plus the discounted aver-
age continuation value where the distribution of future states needed for
the continuation value is the empirical distribution of those states, that is

W (m|Ji) = πe(m|Ji) + β
∑
J
′
i

W (m∗(J
′

i)|J
′

i)p
e(J

′

i|Ji). (3)

Restricted Experience Based Equilibrium (or REBE). The conditions in
equations (2) and (3) above are the conditions of a REBE as defined in Fersht-
man and Pakes (2012)5.There also is related earlier work on ”self-confirming”
equilibrium (see Fudenberg and Levine, 1983) which is similar in spirit but dif-
fers in the conditions it imposes.

A Bayesian Perfect equilibrium satisfies the conditions of a REBE, but so
do weaker notions of equilibrium. In particular the REBE does not restrict
evaluations of states outside of the recurrent class to be consistent with the out-
comes that play at those points would generate. As a result the REBE notion
of equilibrium admits greater multiplicity than does Bayesian Perfect notions
of equilibrium. We return to the multiplicity issue after explaining how to com-
pute a REBE, as once one has the computational procedure clearly in mind, the
multiplicity issue and ways of mitigating it can be explained in a transparent
way.

5In games where the agent can only use past data to calculate {πe(Ji|m)} form = m∗(Ji) and/or pe(J ′i |Ji,m)
for m = m∗(J)i, Fershtman and Pakes (2012) consider weakening the second condition to only require equation
(3) to hold at m = m∗(Ji). They call the equilibrium that results from the weaker notion an EBE (without the
restricted adjective).
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The Equilibrium Conditions and Applied Work. We already noted that
agents are not assumed to compute policies on (or even know) all of st; they
only need policies conditional on Ji. Now note that there is nothing in our equi-
librium conditions that forbids Ji from containing less variables then the deci-
sion maker has at its disposal. For example, if agents do not have the capacity
to either store too much history or to form differing perceptions of expected
discounted values for information sets that detail too much history, one might
think it is reasonable to restrict policies to be functions of a subset of the infor-
mation available to the decision maker. This subset may be defined by a length
of the history, or a coarser partition of information from a given history. We
come back to the question of how the analyst might determine the information
sets that agents’ policies condition on below.

The second point to note is related. There is nothing in these conditions that
ensures that the policies we calculate onR satisfy all the equilibrium conditions
typically assumed in the game theoretic literature. In particular it may well be
the case that even if all its competitors formulated their policies as functions of
a particular set of state variables, a particular firm could do better by formu-
lating policies based on a larger set. For example in a model with asymmetric
information it is often the case that because all past history may be relevant for
predicting the competitors’ state, all past history will be helpful in determin-
ing current policies. Absent finite dimensional sufficient statistics (which for
games are hard to find) this would violate the finite state Markov assumption
on the evolution of public information. We still, however, could truncate the
history and compute optimal policies for all agents conditional on the truncated
history, and this would generate a Markov process with policies that satisfy our
conditions (2) and (3).

Fershtman and Pakes (2012) discuss this in more detail and consider alterna-
tive ways to ensure REBE policies are the best an agent can do conditional on
all agents forming policies as functions of the same underlying state space, and
Section 3 uses one of these for comparisons6. However I view the less restric-
tive nature of our conditions as an advantage of our “equilibrium” notion, as it
allows agents to have limited memory and/or ability to make computations, and

6The example focuses on particular restrictions on the formation of policies, but there are many other ways of
restricting policies which would generate Markov chains with similar properties. Indeed the papers I am aware of
that compute “approximations” to Markov Perfect equilibria can be reinterpreted in this fashion; see for example
Benkard et. al. 2008, and Ifrach and Weintraub, 2014, and the literature cited in those articles.
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still imposes an appealing sense of rationality on the decision making process.
Moreover in empirical work restrictions on the policy functions may be testable
(see section 2.2 below)

3.1 Computational Algorithm.

The computational algorithm is a “reinforcement learning” algorithm7, similar
to the algorithm introduced in Pakes and McGuire (2001). I begin by focusing
on computational issues and consider the algorithm’s behavioral interpretation
thereafter.

From a computational point of view one of the algorithm’s attractive fea-
tures is that increases in the number of variables that policies can be a function
of (which we will refer to as ”state” variables below) does not (necessarily) in-
crease the computational burden in an exponential (or even geometric) way8.
Traditionally the burden of computing equilibria scales with both (i) the num-
ber of states at which policies must be computed, and with (ii) the number of
states we must integrate over in order to obtain continuation values. Depending
on the details of the problem, both grow either geometrically or exponentially
with the number of state variables, generating what is sometimes referred to as
a ”curse of dimensionality”. The algorithm described below is designed to get
around both these problems.

The algorithm is iterative and iterations will be indexed by a superscript k. It
is also “asynchronous”, that is each iteration only updates a single point in the
state space. Thus an iteration has associated with it a location (a point in the
state space), and certain objects in memory. The iterative procedure is defined
by procedures for updating the location and the memory.

The location, say Lk = (Jk1 , . . . J
k
n(k)) ∈ S is defined as the information

sets of agents that are active at that iteration. The objects in memory, say
Mk, include; (i) a set of perceptions of the discounted value of taking ac-
tion m at location J or Wk ≡ {W k(m|Ji),∀m ∈ M and ∀J ∈ J }, (ii) a
set consisting of the expected profits when taking action m at location J or
Πk ≡ {πk(m|Ji),∀m ∈ M and ∀J ∈ J }, and (iii) a number of times each J
has been visited prior to the current iteration, which we denote by hk. So the

7For an introduction to reinforcement learning, see Sutton and Barto, 1998.
8The number of state variables in a problem is typically the number of firms that can be simultaneously active

times the the number of state variables of each firm.
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algorithm must update (Lk,Wk,Πk, hk).
Exactly how we structure and update the memory will determine the size of

memory constraint and the compute time. Here I suffice with a structure that is
easy to explain (the most efficient structure is likely to vary with the properties
of the model and the computational facilities available). Also for clarity I work
with a model with a specific specification for public and private information. I
will assume that the private information, or ω, are payoff relevant states (e.g.
costs of production), and the public information that is observed at any state is
a function of agents’ controls, or b(m(J)) (in the electric utility example com-
puted below all agents see whether a generator is bid into the market, but only
the owner of the generator sees whether maintenance is done on the generators
not bid into the market). In addition the agent is assumed to know the primitive
profit function, i.e. π(·, b(m−i)), which can be used to compute counterfactual
profits for any set of competitors’ controls (any set of b(m−i)); i.e. agents can
compute π(·,m, b(m−i)) for m 6= m∗i .

Updating the location. The {W k(m|Ji,k)}m in memory represent the agent’s
perceptions of the expected discounted value of future net cash flow that would
result from choosing each m ∈ M. The agent choses that value of m that
maximizes these discounted values (it choses the “greedy” policies). That is for
each agent we chose

m∗i,k = arg max
m∈M

W k(m|Ji,k).

Next we take pseudo random draws on outcomes from the family of condi-
tional probabilities in equation (1), conditional on m∗i,k and ωi,k ∈ Ji,k, that is
from P (·|ωi,k,m∗i,k). The outcomes from those draws determine ωi,k+1 which,
together with the current bids of all agents (which is the additional public infor-
mation), determine the {Ji,k+1} and hence the new location Lk+1.

Updating the memory. Updating the number of visits is done in the obvious
way. I now describe the update of perceptions, or of (Πk,Wk). I do so in a
way that accentuates the “learning” interpretation of the algorithm. Since we
are using an asynchronous algorithm each iteration only updates the memory
associated with the initial location of that iteration.
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We assume the agent forms, for each hypothetical choice m ∈ M, an ex
post perception of what its profits and value would have been given the ob-
served choices made by other agents (i.e. b(m−i,k)). Its profits would have
been found by evaluating the profit function at the alternative feasible policies
conditional on its private state and its competitors choice of policies, that is
π(ωi,k,m, b(m−i,k)). Similarly the value would have been those profits plus the
continuation values that would have emanated from the alternative choices

V k+1(Ji,k,m) = π(ωi,k,m, b(m−i,k)) + max
m̃∈M

βW k(m̃|Ji,k+1(m)), (4)

where Jk+1
i (m) is what the k + 1 information would have been had the agent

played m and the competitors played their actual play. In the example this
would require computing their returns from a counterfactual bid given the bids
of the other agents.

The agent knows that b(m−i,k) is only one of the possible actions its competi-
tors might take when it is at Ji,k, as the actual action will depend on its competi-
tors’ private information, which the agent does not have access to. So it treats
V k+1(Ji,k,m) as a random draw from the possible realizations of W (m|Ji,k),
and updates W k(m|Ji,k) by averaging this realization with those that had been
generated from those prior iterations at which the agents’ state was Ji,k. For-
mally

W k+1(m|Ji,k) =
1

hk(Ji,k) + 1
V k+1(Ji,k,m) +

hk(Ji,k)

hk(Ji,k) + 1
W k(m|Ji,k),

or equivalently

W k+1(m|Ji,k)−W k(m|Ji,k) =
1

hk(Ji,k) + 1
[V k+1(Ji,k,m)−W k(m|Ji,k)].

An analogous formula is used to update expected profits, i.e. for forming
{πk(m|Ji,k)}, i.e.

πk+1(m|Ji,k) =
1

hk(Ji,k) + 1
π(m|Ji,k, b(m(J−i,k))) +

hk(Ji,k)

hk(Ji,k) + 1
πk(m|Ji,k).

This is a simple form of stochastic integration (see Robbins and Monro,
1951). There are more efficient choices of weights for the averaging, as the
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earlier iterations contain less relevant information then the later iterations, but I
do not pursue that further here9.

Properties of the Algorithm. Before moving to computational properties
note that the algorithm has the interpretive advantage that it can be viewed as
a learning process. That is agents (not only the analyst) could use the algo-
rithm, or something very close to it, to learn equilibrium policies. This could
be important for empirical work as it makes the algorithm a candidate tool for
analyzing how agents might change their policies in reaction to a perturbation
in their environment10.

We now consider computational properties of the algorithm. First note that
if we had equilibrium valuations we would tend to stay there; i.e. if ∗ designates
equilibrium

E[V ∗(Ji,m
∗)|W ∗] = W ∗(m∗|Ji),

so there is a sense in which the equilibrium is a rest point to the system of
stochastic difference equations. I do not know of a proof of convergence of rein-
forcement learning algorithms for (non zero-sum) games. However we provide
a computationally convenient test for convergence below, and my experience is
that the randomness in the outcomes of the algorithm together with the aver-
aging over past outcomes that it uses typically is enough to overcome cycling
problems that seem to be the most frequent (if not the only) manifestation of
non-convergence.

As noted algorithms for computing equilibria to dynamic games have two
characteristics which generate computational burdens which increases rapidly
as the number of state variables increase (and hence can generate a “curse of
dimensionality”). One is the increase of the number of points at which values
and policies need to be calculated. In the algorithm just described the only states
for which policies and values are updated repeatedly are the points in R. The
number of points inR, or #R need not increase in any particular way, indeed it

9Except to note that the simple weights used here do satisfy Robbins and Monro’s, 1951, conditions for con-
vergence (the limit of the sum of the weights is infinite, while the limit of the sum of the squared weights is finite).
Though those criteria do not ensure convergence in game theoretic situations, all applications I am aware of chose
weights that satisfy them.

10Note, however, that were our algorithm to be used as tool for analyzing how agents react to a change in
their environment one would have to clarify what information each agent has at its disposal when it updates its
perceptions and modify the algorithm accordingly. I.e. in the algorithm described above we use all the information
generated by the outcomes to all agents to update the perceptions of each agent, and this may not be possible in an
actual application.
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need not increase at all, with the dimension of the state space. In the problems
I have analyzed #R does increase with the dimension of the state space, but at
most in a linear (rather than geometric or exponential) way (see the discussion
in section 3).

The second source of the “curse of dimensionality” as we increase the num-
ber of state variables is the increase in the burden of computing the sum over
possible future values needed to compute the continuation values at every point
updated at each iteration. In this algorithm the update of continuation values is
done as a sum of two numbers regardless of the number of state variables. Of
course our estimate of continuation values involves simulation error while ex-
plicit integration does not. The simulation error is reduced by repeated visits to
the point. The advantage of the simulation procedure is that the number of times
a point must be visited to obtain a given level of precision in the continuation
values does not depend on the dimension of the state space.

A computational burden of our algorithm that is not present in say, the Pakes
and McGuire (1994) algorithm, is that after finding a new location, the rein-
forcement learning algorithm has to search for the memory associated with that
location. In traditional synchronous algorithms one simply cycles through the
possible locations in a fixed order. The memory and search constraints typi-
cally only become problematic for problems in which the cardinality of R is
quite large, and when they are problematic one can augment our algorithm to
use functional form approximations such as those used in the “TD Learning”
stochastic approximation literature (see Sutton and Barto, 1998).

Convergence and Testing. Though the algorithm does not necessarily con-
verge, Fershtman and Pakes (2012) provide a test for convergence whose com-
putational burden is both small and independent of the dimension of the state
space. To execute the test we first obtain a consistent estimate of R. We then
compute a weighted sum of squares of the percentage difference between; (i)
the actual expected discounted values from the alternative feasible policies and
(ii) our estimates of W , at the points inR. The weights are equal to the fraction
of times the points in R would be visited were those policies followed over a
long period of time (it is an L2

(
P (R)

)
norm of the difference at the different

points inR, where P (R) is notation for the invariant measure onR).
First note that any fixed estimate of W , say W̃ , generates policies which
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define a finite state Markov process for {st}11. To obtain a candidate for a
recurrent class generated by those policies, say R(W̃), start at any s, say s0,
and use the policies that W̃ imply to simulate a sample path, say {st}T1+T2t=1 . Let
R(T1, T2, ·) be the set of states visited at least once between t = T1 and t = T2.
This discards the points that are only visited during the first T1 iterations of the
algorithm, and keeps those that are visited between T1 and T2. Formally one
can show that if (T1, T2) → (∞,∞) in a way which insures T2 − T1 → ∞,
R(T1, T2, ·) will converge to a recurrent class generated by the policies implied
by W̃ . An operational way of checking whether any finite (T1, T2) couple were
large enough is to continue simulating from T2 to T3, where say T3 − T2 ≈
T2−T1. Now check to see if the points visited between T2 and T3 are contained
inR(T1, T2, ·).

Note that the policies we associate with W̃ are optimal by construction; i.e.
m∗(Ji) is chosen to maximize {W̃ (m|JI)}m∈M. This brings us to our last equi-
librium condition, the requirement that W̃ is consistent with the actual outcomes
from play for points inR; i.e. we need to check whether

W̃ (m|Ji) = π̃(m|Ji) +β
∑
J
′
i

W̃ (m∗(J
′

i)|J
′

i)p
e(J

′

i|Ji), ∀m ∈M,&Ji ⊂ s ∈ R,

where π̃(m|Ji) is the algorithm’s estimate of expected profits.
In principle we could check this condition by direct summation, but that

would be computationally burdensome (indeed it would bring the curse of di-
mensionality back into play). So we now show how to use simulated sample
paths to check it. Start at an s0 ∈ R and use the policies generated by W̃ to
forward simulate. At each Ji visited compute perceived values; i.e. compute
V k+1(·) as in equation (4). Since we are simulating a recurrent process on its
recurrent class the simulation run will visit each Ji inR repeatedly. Keep track
of the average and the sample variance of the simulated perceived values at each
point, say (

µ̂
(
W̃ (m(Ji)|Ji)

)
, σ̂2
(
W̃ (m(Ji)|Ji)

))
.

Let E(·) take expectations over the simulated random draws and, for exposi-
tional simplicity, omit the index i. Then note that we can compute Tm,J , where

11Formally we could gather the implied transition probabilities into the Markov matrix,Q(s′, s|W̃) and describe
our first step as finding a candidate for aR that is generated by Q(s′, s|W̃).
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Tm,J ≡ E

(
µ̂(W̃m,J)− W̃m,J

W̃m,J

)2

= E

(
µ̂(W̃m,J)− E[µ̂(W̃m,J)]

W̃m,J

)2

+

(
E
[
µ̂(W̃m,J)

]
− W̃m,J

W̃m,J

)2

.

= %V ar(µ̂(W̃m,J)) + %Bias2(µ̂(W̃m,J)).

Tm,J is the percentage mean square error in our estimate of the expected dis-
counted value of taking action m when at state J ; i.e. it is the sum of the
percentage bias and the percentage variance of the estimate.

Let TJ ≡M−1∑
m∈M Tm,J , where M = #M. TJ is the average percentage

mean square error in the evaluation of the actions that can be taken when at J .
TJ is observed, as is fJ , the fraction of visits to J . As the number of simulation
draws grows the law of large numbers implies that we can obtain a consistent
estimate of the contribution of the variance in the sample paths to TJ . That is∑
J

fJ
1

M

∑
m∈M

(
σ̂2(W̃m,J)

W̃ 2
m,J

)
−
∑
J

fJ
1

M

∑
m∈M

(
µ̂(W̃m,J)− E[µ̂(W̃m,J)]

W̃m,J

)2

→a.s. 0.

Consequently if

Bias(WR) ≡
∑
J

fJTJ −
∑
l

fJ
1

M

∑
m∈M

(
σ̂2(W̃m,J)

W̃ 2
m,J

)
,

then

Bias(WR)→a.s.

∑
J

fJ
1

M

∑
m∈M

(
E
[
µ̂(W̃m,J)

]
− W̃m,J

W̃m,J

)2

,

an L2(PR) norm in the percentage bias, where PR is the invariant measure
associated with (R, W̃ ).

If Bias(WR) is zero and R is a recurrent class then all of our equilibrium
conditions are satisfied. Notice that this test statistic has an easy interpretation;
it is the percentage difference between our estimate of, and the actual expected
discounted value of, the net cash flow from the policies that can be undertaken
from points in the recurrent class. The test is integrated into the computational
algorithm by calling it after every fixed number of iterations, and stopping the
algorithm when the estimate of Bias(WR) is sufficiently small.
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3.2 Empirical Challenges and Estimation.

I am going to assume the static profit function is known, as there has been a
large literature devoted to empirically analyzing its components (see, for e.g.,
the first two sections of Ackerberg et. al., 2007, and the literature cited there).
The empirical researcher will still need to determine Ji and possibly estimate
“dynamic” parameters (parameters that are not determinants of the static profit
function).

Determining Ji. In most empirical work the authors simply assume knowl-
edge of Ji, or of the arguments of the policy functions. However given that part
of our motivation is to reduce the complexity of the problem by limiting the
content of Ji, some discussion of how to determine Ji is in order.

The first thing to note is that what we need to find out is the determinants of
the dynamic controls (investment, entry, and exit in our example). In particular
it may well be the case that decision makers do not condition on all the infor-
mation available to them in making these decisions; possibly because making
predictions for too fine a partition of the state space is too complicated. As
a result specifying a Ji which includes all the information that we know the
decision maker has access to may not be necessary or even appropriate.

This suggests two, hopefully reinforcing, methods of determining Ji. The
first is an empirical analysis of the determinants of the dynamic controls. The
second, which may not always be possible, is to ask decision makers from the
industry what their decisions on the dynamic controls depend upon (see for e.g.
Wollmann 2015). There are likely to be two sources of error or disturbances in
our predictions for the dynamic controls: (i) a ”structural” disturbance which
results from a determinant of the agent’s choice that we do not observe and
(ii) a disturbance due to measurement error. Ideally the structural error would
be independently distributed over time. and the measurement error component
should not be correlated with variables which are thought to be correctly mea-
sured. As a result a test of whether the disturbance we obtain from our predic-
tions for the controls satisfies these ideal conditions is that they be uncorrelated
(actually independent) of past values of correctly measured variables. If their is
indication that the disturbance has a noticeable correlation with past values of
correctly measured variables, one should allow for a serially correlated unob-
served state variables (see below for further discussion).
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Estimating Dynamic Parameters. The estimates needed will be obtained
from firm or establishment level data (depending on the parameters being es-
timated). As a result they will often be based on data sets of similar size as the
data sets used in estimating “static” models. These are frequently large enough
to obtain reasonably precise parameter estimates (see section 1).

Typically many of the dynamic parameters can be estimated by careful anal-
ysis of the relationship between observables without using any of the constructs
that need to be computed from the equilibrium to the dynamic model (such as
expected discounted values). For example if investment (our control, or m) is
observed and directed at improving a measure of a stock of some form (our ω),
and the stock is either observable or can be backed out of the profit function
analysis, the parameters of P (·|m,ω) can be estimated directly from the rela-
tionship between ω’s in adjacent periods and m. However there often are some
parameters that can only be estimated through their relationship to perceived
discounted values (sunk and fixed costs often have this feature). Also, where
possible, more efficient estimators of dynamic parameters that can be estimated
without using discounted values can be obtained by using these values.

There is a review of the literature on estimating parameters using the impli-
cations of the dynamic model in the third section of Ackerberg et. al. (2007).
That review focuses on symmetric information Markov Perfect models and em-
phasizes the tradeoff between statistical efficiency (in the sense of lower asymp-
totic variance of an estimated parameter), and computational efficiency (or the
computational burden of the estimator), in the choice of estimators. It assumes
the state variables of the problem are known to the analyst and provides details
on estimators which use them but avoid nested fixed point algorithms12. These
estimators are all two-step estimators. The first step obtains non-parametric
estimates of either: (i) the probabilities of various actions (the “dynamic” con-
trols) as functions of the state variables of the model (typically this includes
the probability of entry and exit and a distribution for investment policies; see
Bajari Benkard and Levin 2007), or (ii) direct estimates of the Markov transi-
tion matrix for the state variables derived from those policies (Pakes Ostrovsky
and Berry, 2007). The second step then uses the transitions implied by the non-
parametric estimates and the profit function to compute the discounted value of
alternative actions conditional on the parameter of interest. It then finds that

12Nested fixed point estimators are estimators that require the analyst to compute a new equilibrium every time
one evaluates a different parameter vector in the estimation algorithm; see Rust,1994.
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value for the parameter vector that makes the prediction for the optimal value
of the control as close as possible to the choices actually made for that control.

For example given the profit function, the evolution of the state variables, and
the probabilities of exit at each state, we can compute the expected discounted
value of an entrant in any period. If the model is correct and we observe entry
the expected discounted value generated by entering should have been higher
than the sunk cost of entry, whereas if we do not observe entry this expected
discounted value should be lower than those costs. Since the average of the
realized discounted values should approximate the average of the expected dis-
counted values, the average of the discounted values in the periods when we do,
and when we do not, observe entry can be used to estimate bounds on the sunk
cost of entry. At the cost of a slight increase in computational burden, one can
incorporate heterogeneity in sunk costs and use point (instead of set) estima-
tors in these models (see Ackerberg, Benkard, Berry and Pakes, 2007). Given
Ji estimators for Markov Perfect models with asymmetric information can be
computed in analogous ways.

In addition I now describe a “perturbation” estimator, similar to the Euler
equation estimator for single agent dynamic problems proposed by Hansen and
Singleton (1982). This estimator does not require the first step non-parametric
estimator, and can be used for estimation in models with asymmetric infor-
mation (these estimators are not available for symmetric information Markov
Perfect models, see below). The perturbation estimator uses the inequality con-
dition for equilibrium policies (i.e. that W (m∗|Ji) ≥ W (m|Ji)) to generate
(set) estimators of parameters. As in the literature on estimating parameters
from symmetric information dynamic models, we assume that information on
the equilibrium values of controls chosen on the recurrent states are available
from past play.

Recall that Ji contains both public and private information. Let J1 have
the same public but different private information than J2. If a firm is at J1

it knows it could have played m∗(J2) and its competitors would respond by
playing on the equilibrium path from J2.13 If J2 is in the recurrent class we
will have data on what competitors would have done were the agent to have
chosen m∗(J2). Provided that choice results in outcomes inR, we can simulate

13It is the fact that data would not tell us the response to off the equilibrium path behavior for symmetric
information Markov Perfect models that makes the perturbation technique inappropriate for estimating parameters
based on those models.
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a sample path from J2 using only observed data on equilibrium play in R. The
Markov property insures that the simulated path starting from the deviation to
m∗(J2) will intersect the actual observed sample path at a random stopping time
with probability one. From that time forward the two paths would generate the
same profits. So the difference in discounted net cash flow from the sequence
starting at the actual m∗(J1) and the sequence starting from the deviation (i.e.
from m∗(J2)) is just the difference in discounted returns from the period of the
deviation to the time when the paths meet; a difference that we can calculate.
Since the initial choice of m∗(J1) was optimal, the conditional expectation of
this difference in discounted profits between the simulated and actual path from
the period of the deviation to the random stopping time, should, when evaluated
at the true parameter vector, be positive. This yields moment inequalities for
estimation as in Pakes, Porter, Ho and Ishii (2015), or the alternatives noted in
Pakes (2010).

As noted it may well be important to integrate serially correlated unobserv-
ables into these estimation routines. Integrating serially correlated unobserv-
ables into these procedures can raise additional issues; particularly if the choice
set is discrete. There has been recent work on discrete choice models that allow
for serially correlated unobservables (see Arcidiano and Miller, 2011, and Pakes
and Porter, 2014), but it has yet to be used in problems that involve estimating
parameters that determine market dynamics.

3.3 Multiplicity of Equilibrium Policies.

We noted in section 2.1, that REBE conditions admit more equilibria than
Bayesian Perfect conditions. To see why partition the points in R into “in-
terior” and “boundary” points14. Points in R at which there are feasible (but
inoptimal) strategies which can lead outside of R are boundary points. Interior
points are points that can only transit to other points in R no matter which of
the feasible policies are chosen.

Our conditions only ensure that perceptions of outcomes are consistent with
the results from actual play at interior points. Perceptions of outcomes for fea-
sible (but non-optimal) policies at boundary points need not be tied down by
actual outcomes. As a result differing perceptions of discounted values at points
outside of the recurrent class can support different equilibria. This is a major

14This partitioning is introduced in Pakes and McGuire, 2001.
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reason for the existence of REBE which are not Bayesian Perfect15.
One can mitigate the multiplicity problem by adding either empirical infor-

mation or by strengthening the behavioral assumptions. Without going into de-
tails we note that in an empirical application the data will contain information on
which equilibria has been played. For example if Ji and m∗ are observable we
will know policies for states inR. This in turn implies inequalities on the equi-
librium {W (m|·)} which should rule out some equilibria. Moreover if profits
are observed or estimated they can be used, together the transition probabilities,
to directly compute estimators of {W (m|·)} by simulating sample paths. This
may well eliminate other equilibria16.

These sources of information will be less helpful in two important cases; (i)
when attempting to analyze counterfactuals (as we often want to do when exam-
ining the impacts of policy or environmental changes)17, or when (ii) computing
equilibria in cases where we are willing to specify primitives but do not have
historical data. In these and other cases where we need to augment whatever
empirical information is available on the choice of equilibria, it may be rea-
sonable to invoke stronger behavioral assumptions. One possibility is to invoke
learning rules, like the one in our algorithm, and simulate equilibria using one
or more such rules. This is likely to be more helpful in analyzing counterfactual
perturbations to a known environment, as then there is a natural initial condition
to start the learning process from (the current state of the industry). A second
possibility is to impose additional restrictions on the equilibrium concept per
se. I turn to this possibility now.

In many cases prior knowledge or past experimentation will endow agents
with realistic perceptions of the value of states outside, but close to, the re-
current class. In these cases we will want to impose conditions that ensure

15There are other reasons for differences between REBE and Bayes Nash equilibria. For example, as noted
above we do not assume that agents necessarily base their decisions on all the information they either have, or
could have, access to. Also typically Bayes Nash Equilibria are defined in terms of consistency of perceived
probability distributions with actual actions, whereas we are defining the equilibria in terms of consistency of
perceived expected values with actual realized values. There can be different probability distributions that lead to
the same expectation. Assuming agents wish to maximize expected discounted value they should be indifferent
between two distributions with the same expectations, so I do not see this difference as substantive.

16However I know of no formal work which provides details on the extent to which the information in a particular
data set limits the set of equilibria that could have generated it.

17Assuming historical data is available, there are at two different cases here; one is a counterfactual which
changes the underlying state space, and one that does not. If the state space is unchanged and one assumes that the
counterfactual does not change the equilibrium selection mechanism, it would be possible to use historical data to
guide the choice of the counterfactual equilibrium.
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that the equilibria we compute are consistent with this knowledge. To accom-
modate this possibility, Asker, Fershtman, Jeon, and Pakes (2014) propose an
additional condition on equilibrium play that insures that agents’ perceptions
of the outcomes from all feasible actions from points in the recurrent class are
consistent with the outcomes that those actions would generate. They label the
new condition ”boundary consistency” and provide a computational simple test
to determine whether the boundary consistency condition is satisfied for a given
set of policies. We now formalize that condition.

Let B(Ji|W) be the set of actions at Ji which is a component of s ∈ R
which could generate outcomes which are not in the recurrent class (so Ji is a
boundary point), and B(W) = ∪Ji∈RB(Ji|W) be the set of all possible such
actions. Then the “Boundary Consistency” is formulated as follows.

Boundary consistency. Let τ index future periods, and consider a fixed esti-
mate ofW , say W̃ . Then W̃ generates boundary consistent policies if ∀(m, J) ∈
B(W̃)

E

[
π(mi, Ji, J−i,0)+

∞∑
τ=1

δτπ
(
m(Ji,τ),m(J−i,τ)

)∣∣∣mi = m, Ji = J, W̃

]
≤ W̃ (m∗|J),

where E[·|Ji, W̃ ] takes expectations over the current states of competitor’s and
future states of all firms conditional on Ji = J and mi = m using the policies
generated by W̃ . ♠

The boundary consistency condition insures that the policies chosen at the bound-
ary points yield higher discounted values than those of other feasible actions if
competitors follow the policies in memory at all states (including the states not
in the recurrent class but that communicate with a boundary point if some fea-
sible policy is taken).

The test for boundary consistency uses the fact that we haveW estimates in
memory for points outside of R. It uses theseW to determine policies at those
points and then simulate sample paths from each (m, Ji) inB(W̃). The null hy-
pothesis states that the value of all sample paths from feasible but non-optimal
policies are less than the value of sample paths from optimal play from the same
state. Asker, Fershtman, Jeon, and Pakes (2014), show how to formulate a test
of this null18. The test should rule out equilibria that are supported by percep-

18The test statistic is formed by taking a weighted average of the positive parts of the difference between the
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tions of play outside ofR that are unrealistic in the sense that they do not accord
with the profits to be earned in those locations. The accuracy of the estimates
of the sample paths from boundary points will depend on the components of
W that are not associated with points in R. However they are connected to R
through feasible play, and hence may well have been explored by agents and by
the computational algorithm we use to compute equilibria.

Ergodicity. There is another type of multiplicity that may be encountered as
there may be multiple recurrent classes for a given equilibrium policy vector.
A sufficient condition for the policies to generate an ergodic process (a process
with a unique recurrent class) is that there is a single state which can be reached
from all states (Freedman, 1971). Ericson and Pakes (1995) use this condition
together with assumptions on primitives to prove ergodicity for a certain class
of Markov Perfect models. However, in our notation those conditions would
be a function ofW on all of S, and our estimates of the W at points not in R
are imprecise (which would make it difficult to determine if those conditions are
satisfied). Moreover there are cases of interest where multiple separate recurrent
classes are likely (see Besanko, Doraszelski, and Kryukov, 2014). Of course
data on (or even qualitative knowledge of) the industry structure should help us
pick out which (if there are many) recurrent class is appropriate for the problem
at hand.

4 Computational Results from an Example.

It is easiest to explain the computational issues in the context of an example, so
most of my focus will be on the example in Fershtman and Pakes (2012) which
is concerned with the maintenance decisions of electric utility generators.

The restructuring of electricity markets has focused attention on the design
of markets for electricity generation. One issue in this literature is whether
the market design would allow generators to make super-normal profits during
periods of high demand. In particular the worry is that the twin facts that cur-

estimated value of feasible play and of optimal play of the states in B(W), normalized by the variance of that
difference. Since this is a statistic formed from moment inequalities (in contrast to moment equalities) the distri-
bution of this statistic does not have a pivotal form and so needs to be simulated. However the critical values for
it are relatively easy to simulate and are compared to the actual value of the test statistic to determine whether to
accept the null (for details see Asker, Fershtman, Jeon, and Pakes 2014).
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rently electricity is not storable and has extremely inelastic demand might lead
to sharp price increases in periods of high demand.

The analysis of the sources of price increases during periods of high de-
mand typically conditions on whether or not generators are bid into or withheld
from the market. Generators have to go down for maintenance periodically.
Since the benefits from incurring maintenance costs today depend on the re-
turns from bidding the generator in the future, and the latter depend on what the
firms’ competitors bid at future dates, an equilibrium framework for analyzing
maintenance decisions requires a dynamic game with strategic interaction. The
Fershtman-Pakes paper provides a simple example of a REBE to a game that
endogenizes maintenance decisions.

Details of the model. The model has two firms. Firm ”S” has three small
generators with low start up costs and high marginal costs (they represent “gas
fired” generators), and firm ”L” has two large generators with high start up
costs and low marginal costs (they represent “coal fired” generators); see Table
1 below. Each generator can bid supply functions into an independent system
operator (the ISO). The ISO sums the bid functions, and then intersects the
resultant supply curve with demand (which varies by day of the week) to deter-
mine a price. That price is paid to all electricity bid in at any price below it (this
is a uniform price auction). The generators have constant marginal cost until
the capacity listed in Table 1 after which marginal costs are increasing. Each
generator also has a productivity (our ω) which is a private information state
variable, and decays stochastically with use. The demand curve is inelastic.
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Table 1: Model Details

Parameter Firm L Firm S
Number of Generators 2 3
Range of ω 0-4 0-4
MC @ ω = (0, 1, 2, 3)∗ (20,60,80,100) (50,100,130,170)
Capacity at Const MC 25 15
Costs of Maintenance 5,000 2,000

∗MC is constant at this cost until capacity and then goes up linearly. At ω = 4 the generator shuts
down.

Each period the firm choses among three actions for each of its generators.
It can

• bid the generator into the market, which we denote by m = 2,

• withhold the generator from the market and use the period to do mainte-
nance on the generator, our m = 1, or

• withhold the generator from the market and do not do any maintenance our
m = 0.

If the generator is bid in we assume, for simplicity, that it always bids in the
same supply curve: so the firm’s bid function is b(mi) : mi → {0, bi}ni where bi
is the fixed bid schedule for the generators of firm i, and firm i has ni generators.
Firms do not see whether their competitors do maintenance but they do see their
competitor’s bids. So mi is not in the public information but b(mi) is.

The cost of producing electricity on each firm’s generators is private infor-
mation; it is a function of the productivity of the generator (our ω ∈ Ω) and the
quantity of electricity the generator produces (qi,t). So the cost function, our
ci(ωi,t, qi,t), is increasing in both its arguments. ω increases stochastically with
use, but reverts to a starting value if the firm does maintenance. Formally

• mi,r,t = 0 implies ωi,r,t+1 = ωi,r,t,

• mi,r,t = 1 implies ωi,r,t+1 = ωi,r where ω is the restart state, and

• mi,r,t = 2 implies ωi,r,t+1 = ωi,r,t+ηi,r,t where η is a random ”productivity
shock” with P (η) > 0 for η ∈ {0, 1}.

32



If d is demand on that day, f is maintenance cost (our “investment”), the
price, or p, is determined by the function, p = p(b(mi), b(m−i), d), and q =
q(b(mi), b(m−i), d) is the allocated quantity vector. Realized profits for firm i

is the sum of its profits from its generators (indexed by r) minus the cost of
maintenance, or

πi(ωi,mi, b(m−i), d) ≡
∑
r

ptqi,r,t −
∑
r

ci(ωi,r,t, qi,r,t)− fi
∑
r

{mi,r,t = 1}.

In this game b(m) is the only signal sent in each period. b(m−i,t−1) is a
signal on ω−i,t−1 which is unobserved to i and is a determinant of b(m−i,t) (and
so πi,t).

4.1 Conceptual Issues and Their Computational Analogues.

We assumed “a priori” that the state space was finite. As noted above without
further restrictions models with asymmetric information will generally have to
have policies that depend on all past history in order to insure the equilibrium is
perfect (to ensure that if my competitors’ condition on a particular public history
of play, I can do no better than to condition on that same public history)19. We
noted a number of different rationals for restricting the history that agents can
condition their play on. Perhaps most telling among them is that agents have
limited memory and/or ability to make computations, and as a result do not
have the capacity to either store too long a history, and/or to form differing
perceptions of expected discounted values for information sets that detail too
much history. Additionally it might be the case that the finite state space is rich
enough to adequately approximate an infinite state space, so there is very little to
gain by incorporating more detailed information sets. The example investigates
this latter possibility in the context of the model just described (see also the
discussion in Ifrach and Weintraub, 2014).

To determine whether or not we have an adequate approximation to a per-
fect equilibrium we first need to compute a perfect equilibrium which we can
compare to. Fershtman and Pakes (2012) prove that one way to ensure that

19To see this in the current model note that whether firm 1 bids in during a particular period depends on whether
it thinks firm 2 will bid in since if firm 2 does not bid in the price firm 1 receives for its electricity will be higher.
Firm 1’s perception of whether firm 2 bids in will depend on the last time firm 2 did not bid in (as this is the only
time it could have done maintenance). If we go back to the period of when firm 2 did not bid in, its decision at that
time depended on whether it thought firm 1 would bid in, which depended on the time before that at which firm 1
bid in, and so on. This recursion on the importance of past information set can go on indefinitely.

33



there is a perfect equilibrium with a finite state space is to assume that there is
full revelation of information every T periods. The policies generated by this
equilibrium condition only on the information revealed in the revelation period,
the public information that has accumulated since revelation, and the current
private information.

They then compute policies that are functions of: (i) same variables but with
revelation occurring at different T , and (ii) coarser partitions of the information
set than that used to form perfect equilibrium policies. The policies from (i) are
perfect equilibrium policies (just different equilibria for each different T ). The
policies from the calculations in (ii) are not perfect “equilibrium” policies, but
do satisfy the conditions in equations (2) and (3) for the restricted information
sets. Fershtman and Pakes (2012) then compare statistics of interest that result
from simulations using the different policies.

Table 2 presents summary statistics from calculating equilibria assuming dif-
ferent T . It is clear from the table that, at least in this problem, the policies
from the T = 5 equilibria generate results which are very similar to those
from T = 6, but the polices from the T = 3 equilibria (or even those from
T = 4) generate results which do not adequately approximate the results from
the T = 6 equilibria. This suggests that conditioning on a sufficiently long
history (in our case T=5) will generate policies that are sufficiently close ap-
proximations to the results from policies based on yet longer histories (though
I have not made any attempt to formally prove this supposition).

Table 2: Periodic Full Revelation With Different T

T=3 T=4 T=5 T=6
Summary Statistics.
Consumer Surplus (×10−3) 58,000+ 550 572 581 580
Profit B (×10−3) 393 389 384 383
Profit S (×10−3) 334 324 322 324
Maintenance Cost B (×10−3) 25.9 21.6 20.2 19.4
Maintenance Cost S (×10−3) 12.1 11.8 11.8 11.8
Production Cost B (×10−3) 230.2 235.3 235.1 234.3
Production Cost S (×10−3) 230.4 226.9 228.1 229.2

F
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Tables 3 and 4 present results from two coarser partitions of information sets
than the full information set for the T = 5 model. In the columns labeled “Finite
History T ” the results are from a model where there is no revelation of private
information and the competitors only keep track of the information publicly
revealed in the last T=5 periods. In the columns labeled “Finite History G” the
results are from a model where the agents only keep track of the last time each
of its competitor’s generators was not bid in.

Table 3: Cardinality ofR and Compute Times

Finite History Equilibrium
G T (Full Revelation).

Cardinality of Recurrent Class.
1. Firm B (×106) 5650 38,202 67,258
2. Firm S (×106) 5519 47,304 137,489

Compute Times per 100 Million Iterations (hours; includes test).
3. Hours 3:04 11:08 17:14
Hours (100 Million) /Size of Recurrent Class (in thousands).
4 = 3/(1+2) .26 .130 .083

Table 3 gives the size of the recurrent class and compute times for the three
models. Recall that the only points that are visited repeatedly in the algorithm
are in the recurrent class. Table 3 provides both the number of such points and
the compute time per 100 million iterations of the algorithm. There are two
findings to keep in mind; the size of the recurrent class depends on the fineness
of the partition of the information sets, and the compute time per million itera-
tions varies directly with the size of the recurrent class. More precisely compute
times per a hundred million iterations are increasing and concave in the number
of points in the recurrent class. A similar result was found in Pakes and McGuire
(2001) who used an analogous algorithm to compute a sequence of symmetric
information equilibria with increasing market sizes and hence increases in the
cardinality of the underlying state space20.The relationship between compute
times and the size of the recurrent class is largely the result of the time it takes

20For example the maximum number of firms active on recurrent points, an endogenous variable which increased
with market size, varied from five to ten in those calculations.
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to search for the data in memory associated with a new location; a point I come
back to below.

Table 4 compares results of interest generated by policies that are a function
of coarser partitions of the information then the information set which generates
policies which are ”perfect” on the recurrent class. It shows that the partitioning
implicit in Finite History T is rich enough to give us an accurate picture of the
implications of equilibrium play, while that in Finite History G is not. That is
we do not seem to need the partition implicit in the full information set, but we
do need a partition of that information set that is “rich enough” to provide an ad-
equate approximation to equilibrium play. Of course the conditioning variables
that generate such an approximation is likely to vary from problem to problem.

Table 4: Three Asymmetric Information Models

Finite History Equilibrium
G T (Full Revelation)

Summary Statistics.
Consumer Surplus (×10−3) 58,000+ 270 580 581.5
Profit B (×10−3) 414 384.7 384.5
Profit S (×10−3) 439 323.5 322.8
Maintenance Cost B (×10−3) 28.5 20.0 20.2
Maintenance Cost S (×10−3) 18.0 11.7 11.8
Production Cost B (×10−3) 226.8 235.5 235.1
Production Cost S (×10−3) 254.6 228.4 228.1

The results in Tables 3 and 4 are of both analytic and behavioral interest.
They suggest three conjectures: (i) the monotonicity of the compute times in
the size of the recurrent class, (ii) the coarser the partition of the state space the
smaller the recurrent class, and (iii) coarser partitions that are sufficiently rich
can provide adequate approximations to optimal policies. Taken together these
well may help explain why the decision makers themselves might partition the
information available to them in less detailed ways then they could. It also
further emphasizes the question of whether we can investigate the issue of the
appropriate conditioning set empirically (a task not attempted in Fershtman and
Pakes, 2012).
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Computational Methods and Burdens. There are many computational is-
sues left to be explored. Two that seemed important determinants of compute
time in the work I have been involved in are; (i) the way information is stored,
and (ii) the relationship between initial conditions and the computational burden
of the algorithm. For storage we have found that storing the public information
with a tree structure and the private information with a hash table conditional
on public information worked better than using only one or the other of these
two possibilities.

Not surprisingly, we have found that if one starts with high enough values
for the initial conditions of the algorithm, that is for the components ofW and
Π, the algorithm’s iterations will explore almost all possible sample paths21.
As a result the equilibrium which it eventually generates will typically satisfy
the “boundary consistency” condition given in section 2.3. This tends to insure
we are not supporting the equilibrium by misperceptions of values at boundary
points (though ultimately whether actual equilibria are supported by such mis-
perceptions is an empirical question). On the other hand the higher the initial
conditions the longer the compute times before the test in section 2.1 is likely
to be satisfied. Further in any given application we can now test whether use
of smaller starting values result in an equilibrium which is boundary consistent
by using the testing procedure discussed in Asker et. al. (2014). That is we
can determine whether any set of policies are supported by unrealistic beliefs
on outcomes outside of the recurrent class.

This suggest a number of possibilities for reducing the computational bur-
den. For example it may be efficient to use functional form approximations (at
least for points outside of the recurrent class) as has been explored in the opera-
tions research literature (see Sutton and Barto, 1998). Alternatively, the results
above indicate that it might be helpful to start out by computing policies that
satisfy the test in section 2.1 with a coarse partition of the information set. A
second step would use those policies as starting values for computing policies
for the full (or a finer partition of) the information set.

21For the results we discuss below we set πE,k=0
i (mi, Ji) = πi(mi,m−i = 0, d, ωi), and W k=0(ηi,mi|Ji) =

πi(mi,m−i = 0, d, ωi + ηi(mi))/(1− β). They are based on 500 million iterations and generated an L2(P(R))
norm (i.e., a weighted R2) over .99995. The L2(P(R)) ≥ .99 at about 200 and flattened out to the minimum
between 250 and 350 million (depending on the run).

37



5 Conclusion.

This paper is meant as a contribution to the development of empirical models
for the dynamics of market interactions. It argues for a more realistic framework
for that analysis. A framework that does not require agents to; either acquire
and retain excessive amounts of information, or compute or learn excessively
complicated strategies. What we do require is that agents do not make consis-
tent errors conditional on the information they do compute their policies as a
function of. The hope is that this weakening of the traditional restrictions of
equilibrium play enables both a better approximation to agents behavior and an
analytically more convenient framework for the analyst to use in empirically
analyzing that behavior.
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