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1 Introduction

This paper proposes a new approach to semiparametric identification of multinomial choice

models with fixed effects and a group (or panel) structure. We employ a traditional random

utility framework (McFadden 1974) where utility is additively separable between unobserv-

ables, which include a disturbance and choice-specific fixed effects, and an index function

of covariates and parameters. The key assumption is a group homogeneity condition on

the disturbances. We place no restrictions on the joint distribution of the disturbances

across choices. Under this specification, a novel within-group comparison leads to a set of

conditional moment inequalities that provide identifying information about the parameters

of the index functions. We then extend our framework to allow for set-valued covariates,

certain types of endogenous regressors, and the incorporation of parametric distributional

information on disturbances.

This work continues a substantial literature that has focused on extending nonlinear

econometric models to allow for fixed effects while relaxing parametric distributional as-

sumptions on disturbances. Manski (1987) applied his maximum score approach to the

binary choice model with fixed effects. Honore (1992) further developed Powell’s (1986)

trimmed least squares approach to estimate the censored regression model with fixed effects.

Abrevaya (1999) developed a new approach to estimation to allow for fixed effects in the

transformation model, and further extended Han’s (1987) generalized regression model to

include fixed effects in Abrevaya (2000).

The multinomial choice setup considered in the current work presents an additional com-

plexity relative to the models in this previous literature. In particular, the multinomial

choice model depends on multiple index functions of the covariates, where each index func-

tion corresponds to a choice-specific random utility. The main insight of our identification

strategy is that a comparison of the multiple index functions for any two within-group ob-

servations has observable implications on the relative likelihood of certain choice outcomes.

To motivate this approach and connect to the previous literature, we begin by applying this

idea to a general model with a single index function of the covariates, which we call the

weakly monotone transformation model. Under the group homogeneity assumption on dis-

turbances, the difference in outcome distributions from two within-group observations must

come from differences in the single index functions for each observation. Weak monotonicity

then implies that the difference in outcome distributions obeys a stochastic dominance rela-

tion which generates a set of moment inequalities. This derivation builds on the identification

argument for binary choice in Manski (1987).

Having established this stochastic dominance result in the weakly monotone transfor-
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mation model, we move to our main focus, the discrete choice random utility model with

choice-specific fixed effects. This random utility model has appeared in the econometrics

literature in many different guises. With panel data problems in mind, Chamberlain (1980)

uses an assumption of logistic disturbances to provide a novel conditional likelihood method

of identification and estimation. An alternative application is in the demand literature

where markets are the grouping device, the within group observations are consumers, and

the choice-specific fixed effects represent product level unobservables (e.g. Berry, Levinsohn,

and Pakes 2004). Markets are also used as a grouping device when analyzing firm decision

making (e.g. entry decisions) with the market-specific fixed effect representing unobserved

determinants of the market’s profitability (e.g. Pakes 2014).

The semiparametric version of the model considered here does not place parametric

restrictions on the disturbance distribution. The only restriction on the disturbances is a

group homogeneity assumption. To understand how this assumption is used consider two

observations in the same group and the differences of their observable index functions for

the different possible choices. Rank these differences from largest to smallest. We derive

inequalities showing that the choices corresponding to the largest index function differences

are more likely to be observed for the observation with the larger difference in indices. Such

inequalities apply to each subset of the highest ranked differences in choices. The derived

inequalities can be simply expressed as a set of conditional moment conditions satisfied by the

true value of the index function parameter. These within-group moment inequalities can be

seen as the analog to the within-group identification of continuous choice models and single-

index weakly monotone transformation models. Finally, the derived conditional moment

inequalities can be used for estimation and inference using methods developed in a recent

literature (e.g. Andrews and Shi 2013, Armstrong 2011, Chetverikov 2011, Chernozhukov,

Lee, and Rosen 2013, and Aradillas-López, Gandhi, and Quint 2013).

The main cost of the semiparametric flexibility in our model is that the conditional

moment inequalities will, in general, only partially identify the index function parameters.

On the other hand, there are several potential benefits to the semiparametric approach.

First, the index function differencing step circumvents the need to account for the fixed

effects (which may be correlated with the observed covariates). Hence this approach does

not suffer from an incidental parameter problem when group sizes are small and the number

of groups is large, as is often the case in panel data models.

Second, when working with multinomial choice applications we need not place any re-

strictions on the joint distribution of disturbances across choices. In particular, the marginal

distributions of the choice-specific disturbances can differ arbitrarily across choices and can

have bounded support or mass points. Perhaps more important, no restrictions are placed
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on either: (i) the covariance matrix of disturbances across choices (so the practitioner need

not worry about vestiges of independence of irrelevant alternatives or limits on cross price

elasticities), or (ii) their within-group (in panel data, across time) correlations. Though the

group structure is required to deal with the fixed effects, the groups can be as small as two

observations and the disturbance distribution can vary arbitrarily across groups.

Third, we show that straightforward modifications of our assumptions enable us to ana-

lyze models with certain forms of dependence of the disturbance distribution on the regres-

sors; i.e. discrete choice models with endogenous regressors. These extensions include the

analysis of models in which a lagged value of the dependent variable is a regressor. Since

choice-specific fixed effects are included, this extension of our model allows for both “state

dependence” and state-specific “heterogeneity”. Additionally, we modify our group homo-

geneity assumption to show how control variables can be incorporated to handle certain

kinds of conditional heteroskedasticity and other forms of regressor endogeneity.

Fourth, we explicitly allow for the situation where two or more choices have either the

same random utility with positive probability or the same value for the index functions.

We show in our extensions that this enables us to analyze discrete choice problems with

set-valued regressors (which includes estimation problems with generated regressors).

Finally, the semiparametric estimator can be computed without calculating orthant prob-

abilities. This lessens the computational burden of obtaining estimates, especially in choice

models with rich disturbance distributions.

After analyzing the semiparametric problem we move to the case where the distribution of

disturbances is known up to a finite dimensional parameter vector. No other restrictions are

imposed on this distribution. In particular the group homogeneity assumption is not needed

for the inequalities we derive for the parametric case. If the group homogeneity assumption

is relevant the comparison between the parametric and semiparametric estimator should

provide an indication of whether the parametric assumption is appropriate for the problem

at hand.

Multinomial discrete choice estimation is extensively used in almost all fields that em-

pirically analyze the determinants of agents’ choices. Applications have typically employed

parametric forms of the multinomial model. Manski (1975) introduced a semiparametric,

maximum score approach to point identification and estimation for multinomial choice with-

out choice-specific fixed effects. Assuming independent and identical distributions of the

unobservable components of the different choices, Manski uses differences in the observable,

parametric component of random utility across choices for identification. Using Manski’s

identification approach, Fox (2007) shows that exchangeability of the unobservable compo-

nent across choices is sufficient for identification, and Yan (2013) obtains the limiting dis-
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tribution for a smoothed version of the multinomial maximum score estimator. Lee (1995)

provides an alternative semiparametric approach to multinomial choice for models without

choice-specific fixed effects using an assumption of an i.i.d. distribution of disturbances across

agents. Rather than imposing conditions on the joint distribution of the disturbances across

choices our approach requires that the joint distribution of the choice-specific unobservables

does not differ across observations in a group, but leaves the distribution of disturbances

across choices unrestricted. The different assumptions are likely to be useful in different

applications.

The paper is structured as follows. Section 2 illustrates the application of our approach

to a large class of single index models. Section 3 begins with notation for the standard

random utility model for multinomial choice with fixed effects. We then present and discuss

our assumptions on the disturbance vector, and conclude with a derivation of the moment

inequalities implied by those assumptions. In section 4, extensions of the basic framework to

set-valued and endogenous regressors are considered. Section 5 analyzes the case where the

disturbance distribution is indexed by a finite-dimensional parameter vector. The conclusion

summarizes and notes implications for identification and estimation of other features of the

model, such as marginal effects.

2 Weakly Monotone Transformation Model

To fix ideas, we begin by introducing the basic intuition behind our identification strategy

in a weakly monotone transformation model. The model is a more general version of the

generalized regression model introduced in Han (1987) and Abrevaya (2000). As we note

below, there are many classic papers focusing on identification and semiparametric estima-

tion of a variety of special cases of the model we describe. We are able to consider a quite

general version of this model because we are not concerned with achieving point identifica-

tion. Our interest in the following sections is a multinomial choice model, where the point

identification arguments from special cases of the weakly monotone transformation model do

not carry over. The advantage of starting with the weakly monotone transformation model

is that it provides a familiar setting where the principal idea behind our partial identifica-

tion approach can be made transparent without the complication of multiple index functions

present in the multinomial choice setup.

We assume that the data has a group structure and let i = 1, . . . , n index different

“groups” of observations, and t = 1, . . . , Ti index the different observations within a group

i. This includes the traditional panel data situation where where (i, t) indexes individuals
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and time respectively.

The weakly monotone transformation model is:

yi,t = φ
(
g(xi,t, β0), λi, εi,t

)
(1)

where yi,t is an observed scalar outcome variable, xi,t is an observed vector of covariates, λi is

the (unobserved) fixed effect for group i, and εi,t is an unobserved disturbance. The defining

characteristic of this model is that φ is assumed to be weakly monotone increasing in its first

argument, g(xi,t, β0). We assume g is a known function that specifies a parametric, scalar

index in the observed covariates. Typically, g will simply be chosen to have a linear form,

g(xi,t, β0) = x′i,tβ0. Interest centers on the parameter, β0, of this index function. The func-

tion φ(·) can be unknown, and the dimension of unobserved variables (λi, εi,t) is unrestricted.

Examples

Generalized Regression with Fixed Effects. A close relative of the model (1) is Abrevaya’s

(2000) fixed effects version of Han’s (1987) generalized regression model. Abrevaya’s model

is: yi,t = D ◦ F (x′i,tβ0, λi, εi,t), where D is weakly increasing and known and F is strictly

increasing in its first and last arguments. The disturbance εi,t is scalar. The generalized

regression model can be considered a special case of the weakly monotone transformation

model given in (1).

Binary Choice with Fixed Effects. Manski (1987) introduced maximum score estimation for

the model yi,t = 1{x′i,tβ0 + λi + εi,t ≥ 0}, where 1{A} is an indicator function for event A.

Censored Regression with Fixed Effects. Honore (1992) extended Powell’s (1986) censored

regression model to include fixed effects: yi,t = max{0, x′i,tβ0 + λi + εi,t}.

The only stochastic restriction we will consider is the following group homogeneity as-

sumption.

Assumption M Given the conditioning set (xi,s, xi,t, λi), for any s 6= t, the conditional

distributions of εi,s and εi,t are the same:

εi,s
∣∣xi,s, xi,t, λi ∼ εi,t

∣∣xi,s, xi,t, λi.
Assumption M places no restrictions on the joint distribution of xi,s (or xi,t) and λi,

so that arbitrary correlation between the fixed effects and the covariates is allowed. An

equivalent restatement of Assumption M is (λi, εi,s)
∣∣xi,s, xi,t ∼ (λi, εi,t)

∣∣xi,s, xi,t. From this
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equivalence, it is evident that the fixed effect could simply be absorbed into the notation of

the disturbance, e.g. ui,t = (λi, εi,t).
1 However, we will maintain the current notation to be

clear about the inclusion of a fixed effect.

Manski (1987) includes an identical assumption to Assumption M. That paper, and

others cited above, go on to provide sufficient conditions for identifying the parameter β0

in different special cases of the model in equation (1). We suffice with the implications of

Assumption M, weak monotonicity of φ in its first argument, and the assumption that g is

known up to the parameter, β0. In particular since yi,t = φ(g(xi,t, β0), λi, εi,t) and similarly

for yi,s, Assumption M implies that the only difference between the conditional distributions

of yi,t and yi,s must come from differences in g(xi,t, β0) and g(xi,s, β0). The weak monotonicity

of φ, then yields a stochastic dominance result. We formalize this argument as follows. Fix

i and suppose g(xi,s, β0) ≥ g(xi,t, β0). Then for y ∈ R,

Pr(yi,s ≥ y |xi,s, xi,t, λi) = Pr(φ(g(xi,s, β0), λi, εi,s) ≥ y |xi,s, xi,t, λi)

≥ Pr(φ(g(xi,t, β0), λi, εi,s) ≥ y |xi,s, xi,t, λi) since g(xi,s, β0) ≥ g(xi,t, β0)

= Pr(φ(g(xi,t, β0), λi, εi,t) ≥ y |xi,s, xi,t, λi) by Assumption M

= Pr(yi,t ≥ y |xi,s, xi,t, λi).

This gives us our first proposition.

Proposition 1 Under Assumption M, two observations from the same group i with g(xi,s, β0) ≥
g(xi,t, β0) generated by the weakly monotone transformation model (1) must satisfy the first-

order stochastic dominance2 relation

Pr(yi,s ≥ y |xi,s, xi,t, λi) ≥ Pr(yi,t ≥ y |xi,s, xi,t, λi)

for all y ∈ R.

One could turn this result into a conditional moment inequality that would define an

identified set containing β0. Our focus, however, is on the fact that this stochastic dominance

1 Indeed in the monotone transform model all we require is that the function φ(·) be weakly separable in
(i) the index of covariates and parameters and (ii) a function of (λi, εi,t). We could also allow both φ and g
to vary with i. The transformation φ could differ with i in unknown ways as long as weak monotonicity is
maintained. The index function g could also take on a different form for each group i, but each group form
would need to be known.

2First-order stochastic dominance can be defined to include the condition that the probability inequality
is strict for some value of y . In this sense, the conclusion of the proposition is a weak first-order stochastic
dominance condition.

7



relationship is based only on the group homogeneity assumption and weak monotonicity.

In particular no differencing was needed and hence this within-group variation result was

achieved without the usual linearity assumptions. That is, the index function g is allowed

to be nonlinear in form and the fixed effect is not required to be additive.

The next section extends the use of the group homogeneity assumption to multinomial

choice to obtain a set of stochastic dominance conditions. In multinomial choice, the outcome

is a function of separate covariate index functions, fixed effects, and disturbance terms for

each choice. Group homogeneity will, again, ensure that the differences in the conditional

distributions of two outcomes from the same group will be determined by differences in

the covariate index functions. However, with multiple covariate index functions a useful

dominance condition will require additional structure beyond the weak monotonicity used

in the single index model above.

3 Conditional Moment Inequalities for Multinomial Choice

As in section 2, the data will be assumed to have a group structure, where i indexes the

groups and t indexes observations within a group. There are a number of familiar multi-

nomial choice applications with this group structure. In panel data applications in Labor

and Public Finance, i typically indexes individuals, and t indexes time periods, though al-

ternative groupings can also be relevant (an example from the study of hospital choice has

i indexing illness categories and t indexing the individuals in these categories, see Ho and

Pakes (forthcoming)). In Industrial Organization and Marketing applications, i would typ-

ically index markets and t would index either the different consumers in those markets (in

demand analysis) or the firms that compete in them (in the analysis of a firm’s choice of

controls).

Observation (i, t) faces a number of choices. Each choice d has an associated random

utility, Ud,i,t, and the observed choice, yi,t, maximizes the random utility over choices. Take

the number of choices to be D and number these choices so that d = 1, . . . ,D . We consider

the case of unordered response, where the numbering associated with each choice is arbitrary.3

We could allow the set of choices to vary in an arbitrary way over i (as would be needed in

most applications where i indexes markets) and obtain the same results as we present below,

but to simplify the exposition we suffice with a constant choice set.

3Inequalities for models with ordered responses are considered in Pakes, Porter, Ho, and Ishii (forthcom-
ing).
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Given covariates xi,t for observation (i, t), the random utility for choice d takes the form

Ud,i,t = gd(xi,t, θ0) + fd(λd,i, εd,i,t), (2)

where gd(xi,t, θ0) is a choice-specific function of observed characteristics, xi,t. The term

λd,i denotes choice-specific effects which account for unobserved characteristics of choice d

that do not vary across t. The term εd,i,t represents any remaining unobserved, idiosyncratic

determinants of the random utility. Notice that we require the index function to be additively

separable here (we compare this to the weakly monotone transformation which does not have

this requirement below). The literature we are aware of further restricts the fd(·) in equation

(2) to be additively separable in its arguments, that is

fd(λd,i, εd,i,t) = λd,i + εd,i,t, (3)

so we maintain this also, though it is not necessary for any of the results below.4

The observed choice, yi,t, for agent (i, t) maximizes the random utility over choices:

yi,t ∈ argmax
d
Ud,i,t. (4)

where the argmax function generates the set of choices that maximize random utility. If a

single choice is the unique maximizer of random utility, then equation (4) determines the

observed choice for (i, t). If there are multiple utility maximizing choices, then the argmax

is a set consisting of the choices with maximal utility, and the agent can choose any element

of the argmax set. The choices in this argmax set all have the same random utility value.

We refer to the case where different choices have the same random utility as “ties”. Note

that in the case of ties, the model in (4) remains agnostic about the mapping from the

argmax set of choices to the observed choice, yi,t. In particular, when we deal with the case

of ties below we will not need to consider how the observed choice is selected from this group.

It is this fact that enables us to generalize our model to account for set-valued regressors.

However, because the case of ties is not essential to understanding the moment inequalities

we derive, we start by assuming that the observed choice uniquely maximizes random utility.

The setup thus far is a standard random utility formulation of multinomial choice except

that, as in Chamberlain (1980), we have allowed for a choice-specific group fixed effect. The

covariates xi,t will need to vary by t to distinguish the index function from the fixed effect.

The index function gd(xi,t, θ0) is general enough to allow for the usual linear multinomial

4Strictly speaking, this further restriction on the unobservables entails no loss of generality. As noted in
section 2, the fixed effect could be absorbed into the disturbance without loss of generality under the group
homogeneity assumption.
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logit functional form, xi,t
′θ0,d, where the parameter is partitioned by choice, and the usual

conditional logit form, xd,i,t
′θ0, where the covariates differ by choice. The main parameter of

interest will be θ0.

Our key stochastic assumption is a generalization of Assumption M to allow for the

multiple disturbances and multiple fixed effects corresponding to the multinomial choices.

Notationally we let εi,t = (ε1,i,t, . . . , εD ,i,t)
′ and λi = (λ1,i, . . . , λD ,i)

′.

Assumption 1 Given the conditioning set (xi,s, xi,t, λi), for any s 6= t, the conditional

distributions of εi,s and εi,t are the same:

εi,s
∣∣xi,s, xi,t, λi ∼ εi,t

∣∣xi,s, xi,t, λi.
As in section 2, Assumption 1 is a group homogeneity assumption on the disturbances.

No parametric distributional restrictions are placed on the distribution of εi,t (see section 5).

Indeed, the distribution of these disturbances can have bounded or unbounded support and

can have both mass points and continuous components. Perhaps more importantly the

marginal distribution of the disturbances is allowed to vary arbitrarily across choices (d),

and there are no restrictions on the covariance matrix of disturbances across choices. As a

result, neither independence of irrelevant alternatives, nor any other limitation on the sub-

stitutability of different choices induced by the covariance structure of disturbances (such as

the limited substitutability property discussed in Berry and Pakes 2007) is a source of con-

cern. As a result, this specification nests both the familiar panel data model with individual

choice-specific fixed effects and i.i.d. disturbances, a special case of which is Chamberlain’s

(1980) conditional logit model, and many differentiated product demand models for micro

data (e.g. Berry, Levinsohn, and Pakes 2004).

We also note that the familiar panel data model assumption of strict exogeneity, that is

εi,s
∣∣xi,1, . . . , xi,Ti , λi ∼ εi,t

∣∣xi,1, . . . , xi,Ti , λi,
is a special case of Assumption 1. Variants of strict exogeneity have long been used for iden-

tification of linear and nonlinear panel models, see Chamberlain (1982), Honore (1992), and

Chernozhukov, Fernández-Val, Hahn, and Newey (2013). Additionally note that Assump-

tion 1 does not restrict the covariances of the joint distribution of (εi,s, εi,t); all we require is

that the marginal distributions of the two disturbance vectors be the same. So in the panel

data context the disturbances for the different choices can be freely correlated across time.

We come back to the issues of serial correlation and strict exogenity in our extensions, where

we consider modifying Assumption 1 in different ways.
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Assumption 1 does restrict the relationship between the disturbances and the covariates.

For instance, heteroskedasticity would need to take a specific form where the heteroskedas-

ticity in εi,t is the same as εi,s even when xi,t 6= xi,s. For example, if the heteroskedasticity in

both εi,t and εi,s depended on xi,t+xi,s, then Assumption 1 would not be violated. One of our

extensions (section 3.3) will allow some relaxation of this assumption when the heteroskedas-

ticity takes on a known form. Of course, independence of disturbances and covariates across

different s and t would suffice to satisfy Assumption 1.

By restricting the conditional joint distribution of the disturbances across the random

utility choices to be the same for observations in group i, Assumption 1 enables us to learn

about the relative response probabilities by comparing the observable components of random

utilities across t for that group i. This within-group comparison does not depend on the

joint distribution of disturbances across choices in any way. Moreover, though estimation

and inference can combine the information on θ from different groups, the distribution of

disturbances is allowed to vary in an arbitrary way across those groups.

3.1 Illustrative Moment Inequality

Given the random utility framework above along with Assumption 1, we can derive a set

of moment inequality conditions that can be taken to data for inference on the parameter

θ0. We begin with a single conditional moment inequality that makes both the assumptions

and logic underlying our conditional moment inequality analysis transparent. Following this

derivation, we show how an extension of this logic leads to the complete set of conditional

moment inequalities we use.

To simplify notation for this section of the paper, we eliminate the group i index with the

understanding that all variables below are associated with the same group. We also assume

that the probability of random utility “ties” is zero. That is, Pr(Uc,t = Ud,t) = 0 for all

c 6= d. We will explicitly include the case where ties can occur with any probability when

our complete set of moment inequalities is derived below.

The probability that the choice by t, denoted by yt, is equal to d is given by

Pr(yt = d|Ωt) = Pr
(
λd + εd,t ≥ max

c6=d

{[
gc(xt, θ0)− gd(xt, θ0)

]
+ λc + εc,t

} ∣∣∣∣Ωt

)
, (5)

where Ωt can be any conditioning set. This probability involves the difference of the index

functions across the choices. Since we have assumed that the probability of “ties” is zero,

the inequality in the above probability statement could be expressed equivalently as a strict

inequality.
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To establish the intuition behind our moment inequality conditions, consider the index

function differences inside the probability in (5) above. In particular, suppose that if we

compare the expression inside the square brackets in (5) for observations s and t, we find

that for all c 6= d

gc(xt, θ0)− gd(xt, θ0) > gc(xs, θ0)− gd(xs, θ0). (6)

That is, choice d maximizes the difference between observations s and t in the structural (or

parameterized) determinants of the utility of the available choices when the structural part

of the utility function is evaluated at θ = θ0.

Then, taking the conditioning set in (5) to match the conditioning set in Assumption 1,

we obtain

Pr(ys = d|xs, xt, λ) ≥ Pr(yt = d|xs, xt, λ)

due to Assumption 1 and the observation that s and t share the same choice-specific fixed

effects as members of the same group.

Notice that the inequality in (6) can be checked by the analyst for any θ. Also, this

condition can be re-arranged so that equation (6) holds for all c 6= d if and only if

gd(xs, θ0)− gd(xt, θ0) > gc(xs, θ0)− gc(xt, θ0). (7)

Consequently

d = argmaxc

(
gc(xs, θ0)− gc(xt, θ0)

)
⇒ Pr(ys = d|xs, xt, λ) ≥ Pr(yt = d|xs, xt, λ). (8)

Moreover since (8) holds for every observation couple within each group it will hold for

averages across couples in different groups even if there are only two members in each group

and the disturbance distribution and choice-specific fixed effect vary arbitrarily across groups.

It is these facts that underlie our moment inequality estimators.

Equation (7) considers the differences in the covariate index between t and s and labels the

choice corresponding to the maximum difference d. So, the corresponding stochastic ordering

on the conditional outcome probabilities in (8) is only dependent on the magnitude of the

covariate index differences. In particular this ordering does not depend on the disturbances,

and hence does not induce a selection problem. This is where the additive separability

of gd(xt, θ0) in the random utility from (λd, εt) is used in our derivations. In the single

covariate index case of section 2, only weak monotonicity in the covariate index was used

and separability was not needed. In contrast, with multiple covariate indices for multinomial

choice, the magnitude of covariate index changes is needed to establish which outcome can

be stochastically ordered.
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3.2 Ties

Before deriving the complete set of moment inequalities, we reintroduce the possibility of

random utility ties. We note, however, that allowing for ties is not essential to the main

argument that leads to our conditional moment inequalites. So a reader who does not want

to focus on the added detail that accompanies our treatment of ties can skip this subsection.

For that reader, we specialize our moment inequality result to the case without ties in the

next subsection.

There are two main reasons for allowing random utility ties in our framework. The

generality of Assumption 1 allows for the distributions of disturbances and covariates to

include mass points, which then implies that ties in random utility could occur with positive

probability. Often discrete choice models will include assumptions that force the probability

of random utility ties to be zero. In contrast, our framework allows for ties and yet imposes

no structure on the relationship of the observed choice to the set of utility maximizing choices.

That is, we place no restrictions on the rule that selects the observed choice from among

the equally-valued utility-maximizing choices. Second, as we will show in the extensions to

our basic result, allowing for ties enables us to apply our findings to cases where there are

set-valued regressors. As noted there, the set-valued regressor results allows us to handle

several problems which appear quite frequently in applications of discrete choice modeling.

As above, we will forgo the i subscript and note that every variable stated below corre-

sponds to a given group i. Consider the choice problem for t. If the random utility for a

choice d is the unique maximizer of random utilities, then d is clearly the choice: yt = d. If

the random utility for choice d is one of multiple maximizers, then d is among the possible

choices that could be observed. So, letting Ut = {U1,t, . . . , UD ,t},

{Ut : Ud,t > max
c6=d

Uc,t} ⊆ {Ut : yt = d} ⊆ {Ut : Ud,t ≥ max
c6=d

Uc,t}. (9)

The first set of Ut vectors generate choice d as the unique maximizer of random utility (so

this condition is sufficient for d to be chosen), and the last set of Ut vectors generate choice d

being among the set of possible maximizers (this condition is necessary for d to be chosen).

The set relations come from noting that if d is the unique maximizer then yt takes the value

of d. On the other hand, if yt takes the value of d, then d must be included in the set of

random utility maximizing choices. In the special case where “ties” cannot occur, there is a

unique maximizer, and the three sets are identical.

When random utilities are handled in this way, the choice model is formally incomplete

(Tamer 2003). In particular, the distribution of random utilities (as determined by the distri-

bution of covariates, fixed effects, and disturbances) need not fully determine the probability
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of choices. As noted by Tamer (2003) in a multiple agent context, even when there is not

a uniquely determined choice or outcome, the necessary conditions for a choice to be made

may still lead to inequalities on the probabilities of various choices that then provide infor-

mation on the unknown parameters. The results below show that this can also occur in a

standard discrete choice problem, and, when incompleteness is allowed, the set relationships

in equation (9) imply conditional moment inequalities that do not depend on the distribution

for the disturbance vector.5

In addition to random utility ties, there is another source of potential “ties”. Notice that

in equations (6) - (8), we consider the case where there is a unique choice that maximizes

the index function differences. More generally, we will now also allow for the possibility

that index function differences could be equal for different choices. Ties of this kind could

come from discreteness in the covariates, or, when evaluating the index function differences

at various values of θ, one could consider a parameter value that equates index differences.

3.3 Implied Moment Inequalities

The probability inequality in (8) is based on the choice that maximizes the difference of

index functions. We can push this logic further to obtain similarly motivated inequalities

based on a rank ordering of the index function differences across the choices. For a pair of

decisions s and t, start by ordering the difference of index functions by choice. Without ties,

there’s a unique value of the difference gd(xs, θ)− gd(xt, θ) for each d. Allowing for ties, let

K(xs, xt, θ) denote the number of distinct values of the difference gd(xs, θ)− gd(xt, θ) among

the choices d = 1, . . . ,D . So, 1 ≤ K(xs, xt, θ) ≤ D , and, when we order the index function

differences, there are K(xs, xt, θ) distinct rank values.

Given a value of θ, let the choices corresponding to the minimum difference of index

functions be denoted

D(1)(xs, xt, θ) = arg min
c∈{1,...,D}

[
gc(xs, θ)− gc(xt, θ)

]
.

The set of choices with the largest index function differences will be denoted

D(K(xs,xt,θ))(xs, xt, θ) = arg max
c∈{1,...,D}

[
gc(xs, θ)− gc(xt, θ)

]
.

D(1)(xs, xt, θ) will contain a single choice if there is a unique minimizer of the index function

differences at θ and multiple choices if there are a set of minimizers. Since all the choices

5An alternative way to handle ties would be to assume a known selection mechanism in the case of ties,
analogous to an equilibrium selection mechanism in the games considered by Tamer (2003).
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contained in D(1)(xs, xt, θ) have the same index function difference, we refer to each such set

of choices as an equivalence set of choices.

These ordered equivalence sets are formally defined as follows. Suppose w, v ∈ {1, . . . , K(xs, xt, θ)}.
For any c, d ∈ D(w)(xs, xt, θ), gc(xs, θ) − gc(xt, θ) = gd(xs, θ) − gd(xt, θ). If v < w, then for

any c ∈ D(v)(xs, xt, θ) and d ∈ D(w)(xs, xt, θ),

gc(xs, θ)− gc(xt, θ) < gd(xs, θ)− gd(xt, θ), (10)

so that there is a strict inequality between index differences for choices in different equivalence

classes. At times it will be convenient to use more compact notation, and let Ks,t(θ) ≡
K(xs, xt, θ) while Ks,t ≡ Ks,t(θ0). Similarly, we let D

(w)
s,t (θ) ≡ D(w)(xs, xt, θ) and D

(w)
s,t ≡

D
(w)
s,t (θ0).

The choices have now been partitioned into index function difference equivalence sets.

The ranks of these equivalence sets generate the desired results on relative conditional prob-

abilities. For instance, we can directly extend the result in (8) to conclude that

D
(Ks,t)
s,t = arg max

c∈{1,...,D}

(
gc(xs, θ0)− gc(xt, θ0)

)
implies

Pr
(
ys ∈ D(Ks,t)

s,t

∣∣xs, xt, λ) ≥ Pr
(
yt ∈ D(Ks,t)

s,t

∣∣xs, xt, λ) , (11)

and now the inequality allows for random utility ties. By accounting for ties in the random

utilities, the distribution of εi,t is allowed to have mass points or have bounded support.

Similarly, the distribution of xi,t is also unrestricted.

To obtain the inequality (11), we first extend the set relations given in (9) to subsets of

D . Let D denote any non-empty set of choices. We will use the following relationships

⋃
d∈D

{
Ut : Ud,s > max

c 6∈D
Uc,s

}
⊆ {Ut : yt ∈ D} ⊆

⋃
d∈D

{
Ut : Ud,t ≥ max

c 6∈D
Uc,t

}
. (12)

We now derive the probability inequality in (11) for the highest ranked equivalence set.

Since the derivation will also suffice for additional cases to be introduced below, we let

D = D
(Ks,t)
s,t and Ωs,t = {xs, xt, λ}. Then we can re-define D and Ωs,t to cover other cases of
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interest. Finally, we have

Pr (ys ∈ D|Ωs,t) ≥ Pr

(⋃
d∈D

{
Us : Ud,s > max

c 6∈D
Uc,s

} ∣∣∣∣Ωs,t

)
(13)

= Pr

(⋃
d∈D

{
λd + εd,s > max

c 6∈D

([
gc(xs, θ0)− gd(xs, θ0)

]
+ λc + εc,s

)} ∣∣∣∣Ωs,t

)

≥ Pr

(⋃
d∈D

{
λd + εd,s ≥ max

c 6∈D

([
gc(xt, θ0)− gd(xt, θ0)

]
+ λc + εc,s

)} ∣∣∣∣Ωs,t

)

= Pr

(⋃
d∈D

{
λd + εd,t ≥ max

c 6∈D

([
gc(xt, θ0)− gd(xt, θ0)

]
+ λc + εc,t

)} ∣∣∣∣Ωs,t

)

= Pr

(⋃
d∈D

{
Ut : Ud,t ≥ max

c 6∈D
Uc,t

} ∣∣∣∣Ωs,t

)
≥ Pr (yt ∈ D|Ωs,t) .

The first and last inequalities follow by the set inclusions in (12). The second equality follows

by Assumption 1. Note that the second inequality is a weak inequality but it uses the fact that

for d ∈ D(Ks,t) and c 6∈ D(Ks,t), equation (10) gives the strict inequality gc(xt, θ0)−gd(xt, θ0) >

gc(xs, θ0)− gd(xs, θ0).
To obtain the probability inequality in (13), a comparison of random utilities is made

between choices in D(Ks,t) and in the complementary set D(Ks,t−1)∪ . . .∪D(1). An analogous

set of comparisons can be made after redefining

D ≡ D(Ks,t) ∪ . . . ∪D(Ks,t−w),

and the complementary set of choices becomes

D(Ks,t−w−1) ∪ . . . ∪D(1), for w = 0, . . . ,D − 2.

In fact, setting D = D(Ks,t) ∪ . . . ∪D(Ks,t−w), then the derivation in (13) yields

Pr
(
ys ∈ D(Ks,t) ∪ . . . ∪D(Ks,t−w)|Ωs,t

)
≥ Pr

(
yt ∈ D(Ks,t) ∪ . . . ∪D(Ks,t−w)|Ωs,t

)
for any for w = 0, . . . ,D − 2.

This set of probability inequalities leads directly to a set of corresponding conditional

moment inequalities which are stated formally in the proposition below. Define the moment
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functions

mw(ys, yt, xs, xt, θ) = 1

{
yt ∈

w⋃
r=0

{D(K(xs,xt,θ)−r)(xs, xt, θ)}

}
−1

{
ys ∈

w⋃
r=0

{D(K(xs,xt,θ)−r)(xs, xt, θ)}

}

for w = 0, . . . , K(xs, xt, θ)− 2, and reintroduce the i subscript to be clear about the depen-

dence on the group structure.

Proposition 2 For any set of observations (i, t)Tit=1 making choices by maximizing (2), if

Assumption 1 is satisfied then, for s 6= t,

0 ≤ E
[
mw(yi,s, yi,t, xi,s, xi,t, θ0)

∣∣ xi,s, xi,t]
for w = 0, 1, . . . , K(xi,s, xi,t, θ0)− 2, a.s. (xi,s, xi,t).

The proposition is obtained by first conditioning on (xi,s, xi,t, λi) and then integrating

out with respect to the distribution of λi conditional on (xi,s, xi,t) in order to formulate

the inequalities in terms of observable conditioning sets. The usefulness of these moment

inequalities in applications will come from corresponding inequalities for their empirical

analogues evaluated at values of θ. Note that these moment inequalities may be consistent

with other values of θ (as well as with θ0), a point which we discuss further below.

Notice that when xi,s = xi,t, all choices are in the same equivalence class regardless

of value of θ, and hence the moment functions are identically zero for all θ. Similarly, if

yi,s = yi,t then mw(yi,s, yi,t, xi,s, xi,t, θ) = 0 for all w and θ. In either of these cases, this pair

of observations would not provide information about the true value θ0 through an empirical

analog of a moment inequality derived from Proposition 2.

Now consider the case where yi,s 6= yi,t and xi,s 6= xi,t, and assume that as θ changes

so does the ordering of at least some of the index differences gd(xi,s, θ) − gd(xi,t, θ). For

simplicity, consider the case where there are no ties in the index function differences, so that

there is a unique choice associated with each rank. For a fixed θ, the number of possible

non-zero conditional moment functions is equal to the difference in ranks of the choices

corresponding to yi,s and yi,t. If the rank of yi,s for a particular value of θ is larger than the

rank of yi,t, then all these possible non-zero conditional moment functions are positive (and

equal to one). This combination of observations and θ provides evidence that is consistent

with the moment inequalities in Proposition 2. If, on the other hand, the rank of yi,t is

greater than yi,s, these possible non-zero conditional moment functions will be negative,

providing evidence against this θ being the true value of the parameter. In this case the
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larger the difference in ranks, the greater the number of negative conditional moments, and

the greater the evidence against that parameter value.

It might also be instructive to compare using the complete set of conditional moment in-

equalities in Proposition 2 to what would happen if we focused only on the single conditional

moment inequality generated by the highest ranked index difference. The single conditional

moment inequality from only considering the largest index difference is the “illustrative mo-

ment inequality” of section 3.1 given in (8). This single conditional moment inequality is

equivalent to using only the first conditional moment, m0, in Proposition 2. Now consider

the information about θ0 contained in a pair of observations when the analysis only employs

this one moment. The conditional moment function, m0, would only be non-zero if exactly

one of yi,s or yi,t corresponds to the highest ranked choice for a given θ (so if the second

ranked difference were chosen we would not use the information in that comparison even if

the second ranked difference was very close in value to the first ranked difference for that θ).

When there are a large number of choices, a non-zero conditional “m0” moment function is

unlikely to occur, regardless of the θ value at which it is evaluated. By using the conditional

moment inequalities for the full range of choice rankings, we are able to glean considerably

more information about θ0 from each individual pair of observations.

Limits and Incidental Parameters. When considering the asymptotic properties of es-

timation and inference procedures for this problem, the limits could be taken as either n, Ti,

or both grow large. When the appropriate limit has n growing large the model has the usual

fixed effects “incidental parameter” problem. This problem is circumvented by our method

of within-group differencing of the index functions, which exploits the separability of the

fixed effects and covariate index functions in the random utility specification. Chamberlain

(1980) considers the same problem in a conditional logit model, and uses the form of the

conditional likelihood to eliminate additive fixed effects. The main difference between the

two frameworks is that we allow for a free joint distribution of choice-specific disturbances

but must suffice with partial (instead of point) identification. Examples with a large number

of individuals (n) observed over a short time period (Ti) are familiar from panel data appli-

cations. An extreme case of Ti large and n small occurs when the data is cross sectional and

is considered a single group. Then n = 1 and the λ are choice specific constants. Consumer

demand models are often similar in that there frequently are many observations per market

(Ti) but only a small number of markets (n). Cases where Ti and n are of approximately

equal size often occur in marketing problems when samples are drawn from a large number

of cities, and in game theoretic equilibrium problems in I.O. where the number of agents and

the number of markets are often of a similar magnitude. To formally analyze the limiting
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properties of particular estimators, one would need to specify the dependence structure as

the sample grows in either (or both) dimension(s). We leave that development to future

research and application of these methods.

Identified Set. If Θ0,n is defined as the set of parameters that satisfy the conditional

moment inequalities in Proposition 2,

Θ0,n =

θ ∈ Θ :
n⋂
i=1

Ti⋂
s,t=1
s<t

K(xi,s,xi,t,θ)−2⋂
w=0

E
[
mw(yi,s, yi,t, xi,s, xi,t, θ)

∣∣ xi,s, xi,t] ≥ 0 a.s. {(xi,s, xi,t)}

 ,

then the content of the proposition is that θ0 ∈ Θ0,n.

We have stated Proposition 2 and defined Θ0,n to hold almost surely over the covariates.

We could have made the same statements conditional on the covariate values in the sample.

Conditioning only on the observed values would have a repeated sampling interpretation

over these values, and justifies examining the structure of Θ0,n without making additional

assumptions on the data generating process.6 Either way the implied Θ0,n is a finite sample

object that can change with sample size. Note that ∀n, Θ0,n+1 ⊆ Θ0,n, so any limit of the

identified set will be a subset of Θ0,n and yet will still contain θ0.

A sufficient condition for a value of θ to be in Θ0,n is that, with probability one, θ and

θ0 generate exactly the same ranking of index function differences.7 Though this condition

is sufficient to insure θ ∈ Θ0,n, it is not necessary. That is, there can be a θ which does

not preserve the same index function difference rankings as θ0 that is in Θ0,n. For example,

assume that when evaluated at θ = θ0, da is the choice that was ranked highest (maximal)

when we consider the differences in the choice indexes between observations (i, s) and (i, t),

and let db be the second highest ranked difference. Now consider a θ∗ 6= θ0 which reverses

6Under the almost sure definition of Θ0,n if the observable random variables are identically distributed
across i, then the intersection over i in the definition above is redundant or unnecessary. Similarly if the
random variables are identically distributed across t for each group i then the intersection over s and t
subscripts is redundant. That is, the set would be well defined for a single pair s < t. An alternative
definition would be to first set

Θ0,i,s,t =

θ ∈ Θ :

K(xi,s,xi,t,θ)−2⋂
w=0

E
[
mw(yi,s, yi,t, xi,s, xi,t, θ)

∣∣ xi,s, xi,t] ≥ 0 a.s. (xi,s, xi,t)


and then consider the identified set defined by the intersection of these sets across i and t. The distinction
from the definition above would come from the support set of the joint distribution of the conditioning sets
(xi,s, xi,t). In particular, Θ0,n ⊆ ∩ni=1 ∩

Ti
s,t=1
s<t

Θ0,i,s,t.

7Since applying an affine transformation to all choice-specific index functions within any group will leave
these ranks unchanged our ability to differentiate between different θ values will, at best, be up to an affine
transform of the index functions (as is true in linear parametric discrete choice models).
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these two rankings but leaves all other rankings unchanged. Provided the probability of db

for observation (i, s) is higher than the probability of db for individual (i, t), the identified set

will include that θ∗. On the other hand, failure of this kind of probability inequality when

index function difference rankings differ at any (xi,t, xi,s) with positive measure will ensure

that θ∗ /∈ Θ0,n.

Proposition 2 and Manski (1987) Proposition 2 can be considered an extension of

the Manski (1987) approach for panel binary choice to multinomial choice problems with a

general index function. To demonstrate the subtle differences between the current work and

Manski (1987), we specialize Proposition 2 to the linear binary choice case (i.e. D = 2 and,

less important to the argument, gd(x, θ) = xd
′θ), which was the case considered in Manski

(1987). Then Proposition 2 becomes

(x2,i,s − x2,i,t)′θ0 > (x1,i,s − x1,i,t)′θ0 ⇒ Pr(yi,s = 2|xi,s, xi,t) ≥ Pr(yi,t = 2|xi,s, xi,t). (14)

Manski (1987) also assumes that the support of ε2,i,t− ε1,i,t |xi,s, xi,t, λi is the real line. With

the binary analog of Assumption 1 and this additional assumption, Manski (1987) obtains

the stronger conclusion that

(x2,i,s − x2,i,t)′θ0 > (x1,i,s − x1,i,t)′θ0 ⇔ Pr(yi,s = 2|xi,s, xi,t) > Pr(yi,t = 2|xi,s, xi,t)

and (15)

(x2,i,s − x2,i,t)′θ0 = (x1,i,s − x1,i,t)′θ0 ⇔ Pr(yi,s = 2|xi,s, xi,t) = Pr(yi,t = 2|xi,s, xi,t).

Recall that the general result from the current paper (equation (14)) provides a sufficient

condition for the difference in probabilities to be non-negative. The result in equation (15)

provides necessary and sufficient conditions for the sign of the difference in probabilities.

Manski (1987) shows that these necessary and sufficient conditions lead to a straightforward

argument for point identification. For multinomial choice, our result states, for instance,

that if d is the choice corresponding to the highest ranked index difference, then Pr(ys =

d|xs, xt) ≥ Pr(yt = d|xs, xt). However, if there is a choice a, such that Pr(ys = a|xs, xt) ≥
Pr(yt = a|xs, xt), then clearly choice a need not correspond to the largest index function

difference. In fact, in general, there will be many such choices a (with Pr(ys = a|xs, xt) ≥
Pr(yt = a|xs, xt)) and all of these choices cannot simultaneously correspond to the largest

index function difference. As a result, it is not necessary for d to be the highest ranked choice

to have Pr(ys = d|xs, xt) ≥ Pr(yt = d|xs, xt).
The other minor difference between the approach in this paper and Manski (1987) is in
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the treatment of ties. Manski (1987) makes a fairly standard binary choice assumption that

yi,t = 2 if U2,i,t ≥ U1,i,t. Implicitly, this assumption provides a particular selection rule to

deal with ties (random utility ties necessarily lead to observing choice 2). The results of this

paper do not require specification of a selection rule for ties, a point which is integral to the

extensions in the next section.

Computation and Estimation A computational advantage of basing estimation on mo-

ments derived from Proposition 2 is that it would not require the estimation of choice prob-

abilities at different parameter values. This is typically the computationally costly step in

estimating multinomial choice models with parametric distributions of disturbances. The

estimation algorithms for the models with an assumed parametric disturbance distribution

base their objective functions on the difference between the observed outcomes and the

model’s predicted probabilities at different values of θ ∈ Θ. In parametric problems, those

predicted probabilities are especially computationally burdensome when (i) there are many

choices; and/or (ii) the joint distribution of disturbances has a rich pattern of dependence

across choices. In contrast, ranking the index function differences is a straightforward calcu-

lation involving only a sort (or ranking) algorithm, and the degree of computational difficulty

has no relationship at all to the covariance structure of the disturbances from the choices.

Of course the rankings are inherently discontinuous in θ and this may impose an ad-

ditional computational burden on the search algorithm (a problem related to that which

occurs often in moment inequality models, and in parametric discrete choice problems which

use frequency simulators).8 Indeed, since the empirical analog of the moments we use are

straightforward to calculate, the main computational cost of our approach will be in finding

the estimate of the identified set and characterizing the aspects of its distribution needed

for inference. The computational burden of these steps is likely to vary directly with the

dimension of the parameter space. For a discussion of these issues, see Bar and Molinari

(2013).

The literature on inference on θ0 based on conditional moment inequalities is new and

developing. Andrews and Shi (2013) proposes a method of generating a set of unconditional

moment inequalities that provide asymptotically equivalent inference to the conditional mo-

ment inequalities. In principle, generating unconditional moments from the conditional

moments requires choosing positive functions of the conditioning variables as “instruments.”

Andrews and Shi (2013) show how to make these choices systematically to generate the

desired equivalence. We note that there are some natural positive instrument functions for

8We leave open the question of whether one could do better with smoothed rankings, as in Yan (2013)
for future research.
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use based on equation (10). In particular, the difference of the index functions are already

ranked for each θ.9 Other methods for conditional moment inequality inference could also be

employed (see, for e.g., Armstrong 2011, Chetverikov 2011, Chernozhukov, Lee, and Rosen

2013, and Aradillas-López, Gandhi, and Quint 2013).

4 Extensions

We now extend the framework for developing conditional moment inequalities for partial

identification that was presented in the previous section. The extensions we consider enable

the analysis of discrete choice models with: (i) some forms of dependence of the disturbance

distribution on the regressors (or of “endogeneity”), and (ii) set-valued regressors.

4.1 Covariate Dependent Disturbance Distributions

This section considers modifications to Assumption 1 that allow us to accommodate different

forms of endogeneity into our analysis of multinomial choice. We focus on two familiar

cases which, in reverse order, are: (i) conditional heteroscedasticity, where we consider a

generalization of Assumption 1, and (ii) regressors which depend on lagged values of the

disturbance terms, where we need more restrictions on the conditional distribution of the

disturbance term than those given in Assumption 1. This latter case includes models which

have (one or more) lagged dependent variables as regressors. Since we continue to allow

for choice-specific fixed effects, when there are lagged dependent variables the additional

restrictions allow us to analyze panel data discrete choice models with both unobserved

heterogeneity in preferences and state dependence, a problem which has been salient in

analyzing several empirical issues.

4.1.1 Lagged Dependent Variables.

We modify the random utility model (2) to explicitly allow for dependence on the previous

period’s choice,10 or on yi,t−1, so

Ud,i,t = gd(xi,t, yi,t−1, θ0) + fd(λd,i, εd,i,t). (16)

9For example, a natural choice for an instrument to interact with the difference in indicator functions
leading to mw(ys, yt, xs, xt, θ) would be gc(xs, θ) − gc(xt, θ) − [gd(xs, θ) − gd(xt, θ)] where c ∈ D(Ks,t(θ))(θ)
and d ∈ D(Ks,t(θ)−w)(θ).

10Here we refer to “periods” rather than “observations” as lagged dependent variable models typically
have t denoting time.
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A familiar special case, which has appeared repeatedly in the literature, is

Ud,i,t = gd(xi,t, θ0) + {yi,t−1 = d}γ0 + λd,i + εd,i,t,

where γ0 captures “state dependence” and the {λd,i} capture state specific “heterogeneity.”11

The issue of separating the impact of state dependence from that of heterogeneity has

been discussed extensively in the econometrics literature (e.g. Heckman 1981) as it has been

central to analyzing several empirical issues. Perhaps the oldest of these is the determination

of unemployment durations (see the review by Kiefer (1998) and the more recent empirical

work in Kroft, Lange, and Notowidigdo (2013)). More recently the same problem has been

a focus of panel data demand models in which there is a need to separate the impact of

“switching costs” from that of unobserved heterogeneity (see, for example, Handel (2013)’s

analysis of the choice of health insurance plans).

The model in equation (16) implies that yi,t−1 will depend on past values of the distur-

bance vector. As a result, if the lagged dependent variable yi,t−1 is included in the condi-

tioning set of Assumption 1, then that group homogeneity assumption will, in general, be

violated. This violation would, in turn, invalidate the proof of Proposition 2 given in (13).

To separate the influence of a lagged dependent variable and the fixed effect on current

outcomes, we strengthen our group homogeneity assumption to rule out dependence across

time in the joint distribution of εi,1, . . . , εi,Ti . Let Ji,t denote the history of covariates and

disturbances through period t for i: Ji,t ≡ {xi,t, xi,t−1, . . . , εi,t, εi,t−1, . . .}. We could include

the fixed effect λi in the definition of the set Ji,t, but we will keep it separate to be clear

about its influence.

Assumption L For any t, the disturbance εi,t is: (i) conditionally independent of current

covariates xi,t and the history Ji,t−1, and (ii) stationary across time, or

εi,t|xi,t,Ji,t−1, λi ∼ εi,t|λi ∼ εi,1|λi. ♠

The content of Assumption L is that: (i) all the dependence over time in the unobservable

determinants of the value of the various choices is picked up by the choice-specific fixed

effects (λi), and (ii) conditional on the fixed effects, the distribution of εi,t is constant over

time. Notice, however, that xi,t+τ for τ > 0 can depend on εi,t; that is the other covariates

can be endogenous in the same way that lagged choices are. In this sense, Assumption L

is weaker than the strict exogeneity assumption discussed in Section 3 (a point we return

11Generalizations of the random utility model that allow for more than one lagged value of the choice to
enter the index function, or for different lagged choices to enter the utility function of a given choice with
different coefficients, can be analyzed analogously.
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to below). Moreover, as before, Assumption L places no restrictions on the correlation of

disturbances across choices.

We now modify the argument in (13) to accommodate Assumption L. As in section 3.3,

index function differences can be ordered across choices. The only additional wrinkle is that

these index functions now explicitly depend on a lagged dependent variable. We could for-

mally re-define the choice equivalence sets for the lagged dependent case, but there should be

no confusion in simply adopting the previous notation. Let D represent a choice equivalence

set based on index function differences, as stated prior to (13), and suppose s > t. Then

Pr (ys ∈ D|xs,Js−1, λ) ≥ Pr

(⋃
d∈D

{
Us : Ud,s > max

c 6∈D
Uc,s

} ∣∣∣∣xs,Js−1, λ
)

(17)

= Pr

(⋃
d∈D

{
λd + εd,s > max

c 6∈D

([
gc(xs, ys−1, θ0)− gd(xs, ys−1, θ0)

]
+ λc + εc,s

)} ∣∣∣∣xs,Js−1, λ
)

≥ Pr

(⋃
d∈D

{
λd + εd,t ≥ max

c 6∈D

([
gc(xt, yt−1, θ0)− gd(xt, yt−1, θ0)

]
+ λc + εc,t

)} ∣∣∣∣xt,Jt−1, λ
)

= Pr

(⋃
d∈D

{
Ut : Ud,t ≥ max

c 6∈D
Uc,t

} ∣∣∣∣xt,Jt−1, λ
)

≥ Pr (yt ∈ D|xt,Jt−1, λ) ,

where the second inequality follows by Assumption L.

There is an important distinction between the arguments in (13) and (17). Notice that the

conditioning set never changes in (13), and hence the implied conditional moment inequali-

ties are just equivalent restatements of the derived conditional probability inequalities. How-

ever, (17) shows Pr (ys ∈ D|xs,Js−1, λ) ≥ Pr (yt ∈ D|xt,Jt−1, λ), where the conditioning set

changes along with the outcome variable. To form the proposition that underlies our estima-

tors we need to restate this inequality in terms of the expectation of a difference of indicator

functions conditional on a single conditioning set. We are able to obtain such a result due to

the particular structure of the two information sets, specifically {xt,Jt−1, λ} ⊂ {xs,Js−1, λ}.
This structure allows application of the law of iterated expectations to obtain a conditional

moment inequality based on the earliest (smallest) information set. More formally we have

the following proposition.12

12Note that the multinomial choice lagged dependent variable case includes the special case of binary
choice with lagged dependent variables (and fixed effects). When the index function gd takes a linear form,
one can show that modifications of Manski (1987)’s assumptions (to include the lagged dependent variable)
enable point identification of the parameter vector.
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Proposition 2′ For any individual (i, t) making choices by maximizing (16), if Assump-

tion L is satisfied and s > t, then

0 ≤ E
[
mw(yi,s, yi,s−1, yi,t, yi,t−1, xi,s, xi,t, θ0)

∣∣ xi,t, xi,t−1, . . . , yi,t−1, yi,t−2, . . . ]
for w = 0, 1, . . . , Ks,t(θ0)− 2, a.s. (xi,t, xi,t−1, . . . , yi,t−1, yi,t−2, . . .). ♠

The conditioning set in the conclusion of Proposition 2′ is important because it is the basis

for the construction of instruments used for estimation and inference. Under Assumption L,

xt and lags are appropriate instruments, but xs may not be a valid instrument (or any xt+τ

with τ > 0). In applications where it is appropriate to strengthen Assumption L to a form

that includes strict exogeneity with respect to the covariates:

εi,t|xi,Ti , xi,Ti−1, . . . , xi,t,Ji,t−1, λi ∼ εi,t|λi ∼ εi,1|λi,

then we could strengthen Proposition 2′ to include in its conditioning set the leads and lags

of the x’s, so that both xi,s and xi,t would be available as instruments. Of course the cost

of maintaining the strengthened assumption is that it does not allow the other covariates to

be endogenous in the sense that the lagged values of the choice are.

4.1.2 Conditional Heteroskedasticity.

This section weakens Assumption 1 by assuming that group homogeneity holds only for a

particular observable subset of the data. We illustrate with a particular conditional het-

eroskedasticity example of the form εd,i,t = ε∗d,i,tσd(vi,t), where vi,t is observed and the func-

tional form of σd can be unknown. Any dependence of the distribution of vi,t on xi,t will

typically violate Assumption 1. Note that this violation will occur even if ε∗d,i,t is independent

of the (xi,t, vi,t) couple. On the other hand if we only compare observations which have the

same value of vi,t, the distribution of the disturbance will not differ between these observa-

tions, which suffices to generate the desired conditional moment inequalities. More formally

consider the following alternative to Assumption 1.

Assumption H For any fixed v in the support of vi,s and vi,t,

εi,s|xi,s, xi,t, λi, vi,s = vi,t = v ∼ εi,t|xi,s, xi,t, λi, vi,s = vi,t = v.

This assumption augments the conditioning set of Assumption 1 to also include a common

value v for the two observations. Under Assumption H, the distribution of the disturbance

vector is identical whenever vi,s = vi,t. As a result we can derive conditional probability
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inequalities between the two observations exactly as in (13) with the conditioning set altered

to Ωs,t = {xi,s, xi,t, λi, vi,s = vi,t = v}. This leads to the following proposition.

Proposition 2′′ For any individual i making choices by maximizing (2), if Assumption H

is satisfied then, for s 6= t and any fixed v in the support of vi,s and vi,t,

0 ≤ E
[
mw(yi,s, yi,t, xi,s, xi,t, θ0)

∣∣ xi,s, xi,t, vi,s = vi,t = v
]

for w = 0, 1, . . . , K(xi,s, xi,t, θ0)− 2, a.s. (xi,s, xi,t, vi,s = vi,t = v).

Proposition 2′′ was motivated with a conditional heteroscedasticity example. When vi,t

is correlated with xi,t, conditional heteroskedasticity is just a particular form of dependence

between regressors and disturbances. Other cases of dependence between regressors and

disturbances can be handled by Proposition 2′′. Suppose there is a concern about “endo-

geneity” creating a violation of Assumption 1, e.g. some correlation between one or more

disturbances and the regressors creating a failure of group homogeneity. Provided that a

“control variable” v is available satisfying Assumption H, then Proposition 2′′ can be used to

partially identify the model’s parameters. The control variable must have the property that

once we condition on it, the entire distribution of εi,t conditional on (xi,t, xi,s, vi,s = vi,t = v)

is identical to that of εi,s. However given a control variable with this property, conditioning

on it will control for the endogeneity and allow for meaningful comparisons of corresponding

choice probabilities. This illustrates the value of having variables beyond the covariates of

the index function included in the conditioning set for the group homogeneity assumption.

A few further points about this proposition are worth noting. The choice equivalence

sets in this proposition are the same as in Proposition 2, and hence determined only by

(xi,s, xi,t) (and not by the value of vi,s and vi,t). Still, the conditioning set includes the fixed

value of v and so instrument functions will generally depend on v. Also the conclusion in

this proposition depends on finding a pair of agents (i, s) and (i, t) with the same fixed

values of vi,s and vi,t. If the vi,t distribution is discrete then one could implement such a

condition directly. If vi,t is continuously distributed then some smoothness in the conditional

expectations would generally be needed to make use of this conditional moment inequality

for inference or estimation. Finally, though in the case of conditional heteroskedasticity, the

control variables vi,t might be observed directly, in other cases the control variables are likely

to be determined in a first stage (typically using some instruments). If the control variable

had to be estimated in a first stage, then one might further need to consider a version of the

generated regressor approach mentioned in the next section.
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4.2 Set-Valued Regressors

We consider the situation where one or more of the regressors that enter into random utility

are not directly observed by the econometrician. Instead, the econometrician observes a set

or region that is known to include the regressor value. Two familiar examples are cases

where the regressor is: (i) income (or wealth) and all the econometrician knows is that the

income of each observation lies in particular intervals; and (ii) the distance from home to

a service (or retail) outlet when the home location is only observed as a zip code (with

known geographic boundaries). As noted below an analogous construction to the one we

provide here can be used for inference when there is a set that is known to contain the true

value of the regressors with arbitrarily large probability (as is often the case when there are

“generated regressors”, or regressors whose values depend upon an estimated parameter).

There is a substantial applied and econometric literature dealing with interval-valued

regressors. Manski and Tamer (2002) review some of that literature and provide bounds on

a regression function under a monotonicity assumption with respect to the interval-observed

variable. We consider multinomial choice (so the set-valued regressors could contribute to

several index functions). We also allow for more than one covariate to be observed by interval

or region, and do not impose monotonicity of the index functions. Of course, additional

structure of some form (e.g. montonicity, or knowledge of the underlying distribution of the

set-valued regressor, see Pollmann 2014) might provide more identifying power than our less

restrictive framework.

As before, we simplify the notation by subsuming the index i for this discussion. For

a given agent t, suppose that instead of observing the covariate xt, our observables (say

xot ) only tell us that the covariate xt is contained in a set Xt with probability one. In our

examples xot would contain the endpoints of the intervals containing the true value of income,

or the zip code of the agent’s home. We will take that approach here and assume there is a

mapping X from the observed random variables to the set that contains the true covariate,

Xt = X (xot ).
13 Some dimensions of Xt can be singletons (the dimensions of xt that are

observed without error) and some dimensions will be sets (intervals in the income example,

but more complicated sets in the zip code example). Strictly speaking, Xt need not even

take the form of a Cartesian product of sets and singletons.

Since we have Xs and Xt for observations s and t, once we fix θ we can compare the

difference of index functions for any pair of choices by considering all the possible values

of the covariates in Xs and Xt. Specifically, for a pair of choices d and c, we can check

if the smallest value of gd(zs, θ) − gc(zs, θ) for zs ∈ Xs is greater than the largest value of

13This formulation allows us to avoid introducing set-valued random variables. Molchanov (2005) provides
a rigorous treatment of random sets that could alternatively be employed.
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gd(zt, θ)− gc(zt, θ) for zt ∈ Xt. If this statement about choices d and c is true, then it must

hold that gd(xs, θ) − gd(xt, θ) > gc(xs, θ) − gc(xt, θ), where xs and xt are the true values of

the covariate for agents s and t.

In section 2, we used a pairwise comparison of index function differences to define equiv-

alence sets of choices that could be ordered. This led to choice probability inequalities that

were formed from unions of these equivalence sets. The probability inequalities (equation

(13)) were of the form Pr(ys ∈ D |Ωs,t) ≥ Pr(yt ∈ D |Ωs,t) when gd(xs, θ0) − gc(xs, θ0) >

gd(xt, θ0) − gc(xt, θ0) for all d ∈ D and c 6∈ D. We now extend this approach to allow for

set-valued regressors.

Start with the sets Xs and Xt for observations s and t. For a given value of the parameter

θ, we want to find a set of choices D that insure that

gd(xs, θ)− gc(xs, θ) > gd(xt, θ)− gc(xt, θ) (18)

for all d ∈ D and c 6∈ D. This is equivalent to finding D such that

0 < min
d∈D,
c6∈D

(
gd(xs, θ)− gc(xs, θ)− [gd(xt, θ)− gc(xt, θ)]

)
.

Since the true regressors are not observed, we can ensure that this condition holds by checking

that it holds for every pair of possible regressor values in the sets Xs and Xt. That is, suppose

D is a set of choices satisfying

0 < inf
zs∈Xs,
zt∈Xt

min
d∈D,
c6∈D

(
gd(zs, θ)− gd(zt, θ)− [gc(zs, θ)− gc(zt, θ)]

)
. (19)

This condition insures that for the true (xs, xt), the index function difference for choices in D

is larger than the index function difference for choices in the complement of D. In particular,

when (19) holds for θ = θ0, then gd(xs, θ0) − gc(xs, θ0) > gd(xt, θ0) − gc(xt, θ0) for d ∈ D,

c 6∈ D, which is sufficient for generating a moment inequality for the partitioned choices.

Suppose there are K(Xs,Xt, θ) partitions of the choice set into two groups satisfying

the condition in (19) for the set D above. Denote these partitions by Dk(Xs,Xt, θ), for

k = 1, . . . , K(Xs,Xt, θ). So each Dk(Xs,Xt, θ) partitions the choice set into two mutually

exclusive and exhaustive sets of choices, {c ∈ Dk(Xs,Xt, θ)}, and {c /∈ Dk(Xs,Xt, θ)}. Since

these partitions are constructed in a manner that ensures that the index function difference in

(18) holds at the true covariate value, these partitions are a subset of the partitions available

when the true covariate values are observed (the case considered in section 2). As a result

we could order these partitions so that Dk(Xs,Xt, θ) ⊂ Dk+1(Xs,Xt, θ), just as we did above.
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One way to construct these partitions for a given (Xs,Xt, θ) is to first look at each choice

separately as a candidate for D and see if equation (19) is satisfied for any of them. Say

(19) holds for some choice da. Next search for a partition consisting of two choices. When

looking for a pair of choices that satisfy equation (19), one can restrict attention to just the

pairs that include da as one of the elements. Regardless of whether a two-choice partition is

found, one can next move to three-choice sets (that include da as an element). Similarly if

we had not found a singleton partition, we would next search over all couples and continue

from there.

A simple example might illustrate both the details involved in constructing the partitions,

and the loss of information caused by not observing the value of the regressor. Consider a

region which is divided into zip codes by passing vertical and horizontal lines through a

map to form squares of equal size. Each axis is partitoned into intervals. Let h index the

position of the interval on the east-west axis, and l indexes its position on the north-south

axis. Distance is measured by the Euclidean distance between locations. Zip code A has

location (h = x, l = l1) and zipcode B has (h = x + 2, l = l1). Relative to zip code A,

observations in zip code B have shorter distances to travel to any outlet in zip codes indexed

by (x + τ, l) for τ > 2 and all l, and a longer distance to travel to outlets in zip codes with

τ < 0 and all l. However, we will not be able to order distances for outlets in zip codes

(h = x + 1, l) and any l. Of course, even if we cannot order distances, we may still be able

to order differences in utilities from going to different outlets for a given θ because of the

differences in non-distance features of the outlets. Whether we can or not will depend on the

precise form of the utility function and the location of the outlet (which is generally known).

We now use the partitions of choices given above to define moment inequalities,

mXk (ys, yt,Xs,Xt, θ) = 1{yt ∈ Dk(Xs,Xt, θ)} − 1{ys ∈ Dk(Xs,Xt, θ)}.

To derive the expectation of this moment (or equivalently the corresponding difference of

probabilities), we formally specify the relationship (i) between X and the true value of the

covariate, and (ii) between X and the disturbances underlying the random utility for each

choice. We will assume that the disturbance distribution is conditionally independent of the

observable variables given the (possibly unobserved) true covariates and fixed effects (see

Manski and Tamer (2002) for a similar conditional mean version of this assumption).

Assumption 2 Assume that for any (s, t),

a) (xi,s, xi,t) ∈
(
X (xoi,s),X (xoi,t)

)
with probability one; and

b) εi,t
∣∣xi,s, xi,t, λi, xoi,s, xoi,t ∼ εi,t

∣∣xi,s, xi,t, λi.
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Assumption 2 can be used to derive conditional moment inequalities for the set-valued

covariate case analogous to the inequalities given in Proposition 2. These conditional moment

inequalities can be derived by the argument provided in (13). The equality in that argument

that is said to follow “by Assumption 1” will now follow by Assumptions 1 and 2. This

argument leads to the following proposition.

Proposition 3 For any group of observations (indexed by i) who make choices by maximiz-

ing (2), if Assumptions 1 and 2 hold, then

0 ≤ E
[
mXk (yi,s, yt,X (xoi,s),X (xoi,t), θ0)

∣∣xoi,s, xoi,t]
for k = 1, . . . , K(Xi,s,Xi,t, θ0), a.s. (xoi,s, x

o
i,t).

The implications of Proposition 3 are similar to those discussed after Proposition 2. Also,

note that since the inequalities in Proposition 3 are conditional on (xoi,t, x
o
i,s), positive valued

functions of these variables can be used as “instruments” to form unconditional moment

conditions.

It is also worth noting that if part a) of Assumption 2 held uniformly over all observa-

tions with a fixed probability,14 then the inequalities in Proposition 3 would hold with that

same probability. This finding would enable inference for the generated regressor case when

uniform confidence sets for the true covariate values can be constructed from the generated

regressors.

5 Finite-Dimensional Disturbance Distributions

Proposition 2 provides identifying conditional moment inequalities for the semiparametric

multinomial choice model with fixed effects. In particular, the focus in the above sections

has been on the case where no parametric distributional assumptions are made on the dis-

turbances. The conditional moment inequalities of Proposition 2 do not appear to readily

allow for the incorporation of parametric distribution information on the disturbances. In

this section, we consider the multinomial choice model with fixed effects as specified before

in equations (2) to (4) when the researcher is willing to make parametric assumptions on the

distribution of disturbances.

14That is, Pr
(
∩i,s6=t

{
(xi,s, xi,t) ∈

(
X (xoi,s),X (xoi,t)

)})
≥ 1− α.
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Our interest centers on the case where the number of observations per group is small rel-

ative to the number of groups. This is the case generating an incidental parameter problem

when asymptotic approximations are considered. In the contrasting case where the number

of observations per group is large, then the likelihood corresponding to the parametric dis-

turbance distribution can be used directly for identification. This case appears frequently

in the demand literature, see Berry, Levinsohn, and Pakes (1995) and the literature that

followed.15

Under an i.i.d. logistic assumption on disturbances, Chamberlain (1980) develops a con-

ditional likelihood method of identification and estimation. Though we will also assume

a parametric distribution for the disturbance, we will not require that it be i.i.d. logistic.

Moreover, we do not require that the parametric distributional assumption on disturbances

satisfies the group homogeneity assumption, i.e. our Assumption 1, so that the conditional

moment inequalities of Proposition 2 do not necessarily hold if the parametric distribu-

tional assumption violates group homogeneity. For example, our parametric distributional

assumption could allow for and specify some form of within group heteroskedasticity.

Of course, if one specifies a parametric disturbance distribution that maintains the group

homogeneity assumption, then the conditional moment inequalities of Proposition 2 could

be used to augment the information available on θ0 (or to form a specification test of the

parametric assumption). We note that the parametric information is likely to be particularly

useful when D , or the cardinality of the choice set, is large. When D is large, the use of

Assumption 1 and the inequalities in Proposition 2 alone might be expected to be relatively

uninformative as the D-dimensional disturbance distribution underlying the observed choices

is left entirely free.

The following assumption of a parametric disturbance distribution replaces Assumption

1.

Assumption 3 Given the conditioning set (xi,s, xi,t), for any s 6= t, the conditional joint

distribution of εi,s and εi,t is given by F (εi,s, εi,t|xi,s, xi,t, γ0), where γ0 ∈ RK.

Assumption 3 will often be derived from a specification of the joint (conditional) distribu-

tion of (εi,1, . . . , εi,Ti). We note that any parametric distribution will do here. In particular,

we do not require conditions that this specification satisfy any restrictions on either the joint

distribution of the disturbances across choices in a given period, or on the joint distribution

of the disturbance vector for given choices across periods.

Again we omit the index i for notational convenience. Consider the case where different

choices are made by the two observations s and t; that is where ys = c and yt = d for c 6= d.

15In particular, see ?), for the case where N is small relative to the size of the choice set, and Berry,
Gandhi, and Haile (2013) for the case when some (but not many) couples of goods are complements.
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If ys = c and yt = d then

gc(xs, θ0)− gd(xs, θ0) + λc − λd + εc,s − εd,s ≥ 0 ≥ gc(xt, θ0)− gd(xt, θ0) + λc − λd + εc,t − εd,t.

Rearranging allows us to eliminate the fixed effects and write

(εc,s − εd,s)− (εc,t − εd,t) ≥
(
gd(xs, θ0)− gd(xt, θ0)

)
−
(
gc(xs, θ0)− gc(xt, θ0)

)
. (20)

In contrast to Assumption 1, the conditioning set in Assumption 3, and hence the parametric

distribution of disturbances specified there, does not depend on the fixed effects. As a result

we can directly compute the probability of an (εs, εt) combination satisfying the inequality

above for any given value of the parameter vector. Let that probability be denoted

pc,ds,t (xs, xt, θ, γ) =∫
1
{

(εc,s − εd,s)− (εc,t − εd,t) ≥
(
gd(xs, θ)− gd(xt, θ)

)
−
(
gc(xs, θ)− gc(xt, θ)

)}
dF (εs, εt|xs, xt, γ)

Since we have shown that the event in (20) holds whenever ys = c and yt = d, when we

evaluate pc,ds,t (xs, xt, θ, γ) at (θ0, γ0), this computed probability must be at least as large as

the probability that the event (ys = c, yt = d) occurs. So if, for choices c 6= d, we define,

mc,d
F (ys, yt, xs, xt, θ, γ) ≡ pc,ds,t (xs, xt, θ, γ)− 1{ys = c, yt = d},

we have the following proposition.

Proposition 4 For any set of observations (i, t)Tit=1 making choices by maximizing (2), if

Assumption 3 is satisfied then, for s 6= t,

0 ≤ E
[
mc,d
F (yi,s, yi,t, xi,s, xi,t, θ0, γ0)

∣∣ xi,s, xi,t]
for all c 6= d, a.s. (xi,s, xi,t).

Proposition 4 yields D(D−1) conditional moment inequalities for each (s, t). Each group

(our i index) has Ti(Ti−1)/2 observation pair comparisons each of which can be used to form

a sample analogue of these inequalities. The probability pc,ds,t (xs, xt, θ, γ) could possibly be

computed directly based on the parametric distribution in Assumption 3, or approximated

through simulation. The simulation approximation does not require simulation of orthant

probabilities, it simply requires draws from the distribution of a pair of choice disturbances.

Of course it is this difference between the pairwise disturbance probability pc,ds,t (xs, xt, θ0, γ0)
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and the corresponding orthant probability, or Pr(ys = c, yt = d|xs, xt), that accounts for

the slackness in the conditional moment inequality in Proposition 4 and leads to partial

identification of the parameters. On the other hand, computing Pr(ys = c, yt = d|xs, xt)
from the model would seem to require a specification for the distribution of the group’s

choice specific fixed effects (λi) conditional on (xi,s, xi,t). Proposition 4 allows us to avoid

such a specification, and simply approximate Pr(ys = c, yt = d|xs, xt) directly from the data.

As above, conditional moment inequality methods can be used for estimation and infer-

ence. When N is the appropriate limiting dimension and observations in different groups

are independent, then pc,ds,t (xs, xt, θ, γ) can be approximated by a single simulation draw if

the expectation in Proposition 4 is estimated by a sample average over groups. Finally, note

that the extensions in sections 4.1 and 4.2 can be developed for the parametric case as well.

6 Conclusion

We have provided a new approach to identification for multinomial choice models. Our fo-

cus has been on models which allow for choice-specific fixed effects with a group (or panel)

structure and a nonparametric distribution of disturbances only restricted to satisfy a group

homogeneity assumption. The utility for each choice is assumed to be additively separable in

(i) a function of the choice-specific fixed effect and a disturbance, and (ii) an index function

of covariates and parameters. We show that this structure generates moment inequalities

which can be used to generate set estimators for the parameter vector. The main modeling

advantages of our approach are that parametric distributional assumptions on the distur-

bance across choices are not needed, and we allow choice-specific fixed effects that can differ

arbitrarily across groups. The framework can also account for set-valued regressors, and

certain forms of endogeneity.

The main disadvantage of our approach is that, in general, it only leads to partial iden-

tification. On the other hand, our semiparametric approach does not require estimation

of orthant probabilities, and, as a result, is relatively easy to use. So, one might think of

using it to generate relatively assumption free information on θ0 which can be used to check

whether any added structure is appropriate. Section 5 of the paper is helpful in this con-

text. It considers the same random utility multinomial choice setting with fixed effects, but

assumes the disturbance distribution is known up to a parameter vector which needs to be

estimated. The parametric distribution need not satisfy the group homogeneity assumption

we use in our semiparametric analysis but, if it does, the parametric model is nested in our

semiparametric model. The parametric model generalizes the assumptions previously used

in estimation of panel data models with group and choice-specific fixed effects (see Chamber-

33



lain 1980) by allowing the specification of parametric distribution to be unrestricted across

choices and across time periods for a given choice. However, as in the semiparmetric case, the

assumption of a parametric distribution for the disturbances will, in general, only generate

partial identification of the parameters of interest.

Our results point to a number of avenues of future research. Throughout we have focused

on obtaining information on θ0. Typically the focus of empirical studies is not on θ0 per se

but rather on different implications of its value. For instance, in panel data discrete choice

settings, one might be interested in conditional quantile or average structural effects, as

in Chernozhukov, Fernández-Val, Hahn, and Newey (2013). In such cases, our conditional

moment inequalities provide information on θ0 that can be established in an initial step

and used to improve the estimation of the various marginal effects by narrowing the range

parameter values that have to be considered. In the analysis of demand systems one will

often be interested in own and cross price elasticities, or the consumer surplus generated

by changes in product characteristics (Berry, Levinsohn, and Pakes 2004). We leave the

question of the extent to which our results can be incorporated into the analysis of these

and other issues for future research.
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