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ABSTRACT
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and private resources can be misguided if we base decisions on false discovery. This study explores
one especially pernicious influence on false positives—multiple hypothesis testing (MHT). While
MHT potentially affects all types of empirical work, we consider three common scenarios where MHT
influences inference within experimental economics: jointly identifying treatment effects for a set
of outcomes, estimating heterogeneous treatment effects through subgroup analysis, and conducting
hypothesis testing for multiple treatment conditions. Building upon the work of Romano and Wolf
(2010), we present a correction procedure that incorporates the three scenarios, and illustrate the improvement
in power by comparing our results with those obtained by the classic studies due to Bonferroni (1935)
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“What was observed by us in the third place is the nature or matter of the Milky Way itself,

which, with the aid of the spyglass, may be observed so well that all the disputes that for so many

generations have vexed philosophers are destroyed by visible certainty, and we are liberated from

wordy arguments.” - Galileo Galilei (1610)

“In general, we look for a new law by the following process. First, we guess it (audience laughter),

no, don’t laugh, that’s really true. Then we compute the consequences of the guess, to see what,

if this is right, if this law we guess is right, to see what it would imply and then we compare

the computation results to nature, or we say compare to experiment or experience, compare it

directly with observations to see if it works.

If it disagrees with the experiment, it’s wrong. In that simple statement is the key to science.

It doesn’t make any difference how beautiful your guess is, it doesn’t matter how smart you are

who made the guess, or what his name is. . . If it disagrees with experiment, it’s wrong. That’s

all there is to it.” - Richard Feyman’s lectures

1 Introduction

As the world continually provides deeper and more informative data, decision-makers are increasingly relying

on the scientific approach to inform their decisions. In those cases where false discovery drives resource

allocation and future streams of thought, the private and social costs can be quite high. Consider drug

trials. In 2011, the success rate of Phase 2 trials was 18 percent and in 2006 that rate was 28 percent

(Arrowsmith, 2011a). The same trend for Phase 3 trials was 50 percent in 2011 and 80 percent in 2001

(Arrowsmith, 2011b). These failed trials are quite expensive with the cost of running one ranging from $5 to

$25 million depending on the number of patients involved. Examples abound for individuals as well: a recent

study due to Ong and Mandl (2015) estimates that, just for U.S. women aged 40-59, we spend $4 billion

a year on unnecessary medical costs due to mammograms that generate false alarms, and on unnecessary

treatment of tumors.

The stakes are raised considerably when empirical methods are further used to test the foundations of

theoretical models. In these cases, whether the theory is rejected critically affects future research directions,

potentially leading to profound paradigmatic changes. This is especially true when initial results are difficult

to overturn because the culture of the field is to “file drawer” results at odds with received findings or when

failed replications are difficult to publish.
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In this study, we consider one key reason for false positives—multiple hypothesis testing (MHT). MHT

refers to any instance in which a family of hypotheses is carried out simultaneously and the analyst must

decide which hypotheses to reject. Within the broad class of empiricism, there are three common scenarios

that involve MHT. The first is when the analyst jointly identifies treatment effects for a set of outcomes. In

such cases, theory provides several dependent variables that are potentially affected by treatment, and the

analyst explores each in turn. As an example, consider the Perry Pre-School intervention, which was carried

out from 1962-67, and provided pre-school education to three and four year old African American children

living in poverty. By now, the outcomes measured run in the dozens and range from educational attainment

to social outcomes, such as crime rates (see, e.g., Heckman et al., 2011). While this is but one example, the

problem is ubiquitous. Anderson (2008) reports that 84% of experimental papers published from 2004 to

2006 in a set of social sciences fields jointly test five or more outcomes, and 61% have ten or more outcomes

simultaneously tested. Yet, only 7% of these papers conduct any multiplicity correction.

Second, in many cases the analyst is interested in whether the treatment has heterogeneous effects. For

instance, it might be the case that the intervention affects Hispanics differently than African Americans, or

women differently than men. One set of studies in this spirit is the work on gender and competition (see,

e.g., Gneezy et al., 2003; Niederle and Vesterlund, 2007; Flory et al., 2014). In this case, the researcher

begins by testing for an overall treatment effect, then explores whether the treatment affects men differently

than women (or perhaps explores effects across different subgroups, such as old and young (see, e.g., Sutter

and Glätzle-Rützler, 2014; Flory et al., 2015 )).

In this way, subgroup analysis is a key contribution of the study. How pervasive is this particular problem?

Fink et al. (2011) review all field-experiment based articles published in premier economics journals and find

that 76% of the 34 articles that they study involve subgroup analysis, and 29% estimate treatment effects for

ten or more subgroups. Yet, few of them properly correct for MHT in their subsequent statistical analyses.

Third, hypothesis testing is often conducted for multiple treatment groups. In particular, the third

scenario may typically include two cases - assessing treatment effects for multiple treatment conditions and

making all pairwise comparisons across multiple treatment conditions and a control condition. In testing

any single hypothesis, we typically conduct a t-test where the Type I error rate is set at α. That is, for

each single hypothesis, the probability of rejecting the null hypothesis when it is true is α. When multiple

hypotheses are considered together, however, the probability that at least some Type I errors are committed

would often increase dramatically with the number of hypotheses. For instance, consider the case in which

N null hypotheses being tested at the same time and all the null hypotheses are true. If all the tests are

mutually independent, then the probability of at least one true null hypothesis being rejected would equal

2



to 1− (1− α)N . Setting α = 0.05, the chance of rejecting at least one true hypothesis would be 0.226 for 5

hypotheses, 0.401 for 10 hypotheses, and 0.994 for 100 hypotheses.

If an experimental economist focuses on a particular hypothesis, then the conventional approaches such

as a t-test would still be valid. However, one often needs to consider multiple hypotheses simultaneously and

search for any rejection from a group of tests. Without taking into account the statistical inference problem

arising from multiple testing, experimentalists would be quite likely to undertake a substantially large false

discovery risk and draw ungrounded conclusions. This third case presents itself in nearly every experiment

that is published today.

The multiple testing issue is well known in the econometric theory field (e.g. Romano and Wolf, 2005a,b;

Romano and Shaikh, 2006b; Romano et al., 2008b) and the biostatistics literature (e.g. Hochberg, 1988;

O’Brien, 1984; Marcus et al., 1976). MHT has also been pervasive in the experimental economics community.

Indeed, a growing body of literature in experimental economics has begun to address the multiple testing

problem. In some of the previous literature, adjustments for multiple testing have been made when making

inferences for only multiple outcomes (e.g. Anderson, 2008; Casey et al., 2012; Heckman et al., 2011; Kling

et al., 2007), only multiple subgroups (e.g. Lee and Shaikh, 2014), and for both multiple outcomes and

subgroups (e.g. Heckman et al. 2010).

Nevertheless, the potential solutions have yet to be systematically discussed. The goal of our study is to

fill this gap, and provide the necessary code for others to easily use our approach. To achieve control of the

familywise error rate in finite samples, Romano and Wolf (2005a) develop a stepdown procedure for multiple

testing based upon permutation and randomization tests under the monotonicity assumption of estimated

critical values.1 However, multiple testing involving multiple treatment conditions may result in violation

of the monotonicity assumption so that this finite-sample procedure may not be valid.2 Similarly, Romano

and Wolf (2005a) introduce asymptotically valid procedures based upon bootstrap and subsampling meth-

ods. Building upon previous work, Romano and Wolf (2010) demonstrate how to construct asymptotically

balanced procedures by choosing appropriate test statistics so that all marginal probabilities of rejecting any

true null hypothesis are approximately equal.

In this paper, we exploit results on bootstrap multiple testing procedures discussed in Romano and

Wolf (2010), and construct a asymptotically balanced testing procedure that incorporates the three common

scenarios for multiple testing in experimental economics. Under weak assumptions, the resulting testing
1See, e.g., Heckman et al. 2011; Lee and Shaikh 2014, for applications of this testing procedure.
2As discussed in Romano and Wolf (2005a), a simple solution would be to use the maximum of the critical values of all

the subset hypotheses. However, this approach can be computationally prohibitive. Furthermore, the above modification may
result in a dramatic decline in power due to larger critical values so that the resulting procedure may be inferior to classical
multiple testing procedures - like Bonferroni (1935) and Holm (1979) - in terms of power.
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procedure asymptotically controls the familywise error rate – the probability of even one false rejection.

The methodology that we introduce differs from classical multiple testing procedures , such as Bonferroni

(1935) and Holm (1979), in that it incorporates information about the joint dependence structure of the test

statistics when determining which null hypotheses to reject. This leads to important gains in power.

We showcase our approach by applying it to various hypotheses of interest using data originally presented

in Karlan and List (2007). The Karlan and List (2007) study explored the economics of charity by mea-

suring, amongst other things, the effectiveness of a matching grant on charitable giving. We illustrate the

improvement in power by comparing our results with those obtained by Bonferroni and Holm. Notably, we

also demonstrate that further improvements could be made by exploiting transitivity and imposing smaller

critical values when there are multiple treatment conditions.

The remainder of our study proceeds as follows. Section 2 describes our setup and notation. Section

3 introduces the stepwise multiple testing procedure. Section 4 demonstrates various applications of our

methodology to the large-scale natural field experiment discussed in Karlan and List (2007). Section 5

concludes.

2 Setup and Notation

For k ∈ K, let Yi,k denote the (observed) kth outcome of interest for the ith unit, Di denote treatment status

for the ith unit, and Zi denote observed, baseline covariates for the ith unit. Further denote by D and Z

the supports of Di and Zi, respectively. For d ∈ D, let Yi,k(d) be the kth potential outcome for the ith unit

if treatment status were (possibly counterfactually) set equal to d. As usual, the kth observed outcome and

kth potential outcome are related to treatment status by the relationship

Yi,k =
∑
d∈D

Yi,k(d)I{Di = d} .

It is useful to introduce the shorthand notation Yi = (Yi,k : k ∈ K) and Yi(d) = (Yi,k(d) : k ∈ K). We assume

that ((Yi(d) : d ∈ D), Di, Zi), i = 1, . . . , n are i.i.d. with distribution Q ∈ Ω, where our requirements on Ω

are specified below. It follows that the observed data (Yi, Di, Zi), i = 1, . . . , n are i.i.d. with distribution

P = P (Q). Denote by P̂n the empirical distribution of the observed data.

The family of null hypotheses of interest is indexed by

s ∈ S ⊆ {(d, d′, z, k) : d ∈ D, d′ ∈ D, z ∈ Z, k ∈ K} .
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For each s ∈ S, define

ωs = {Q ∈ Ω : EQ[Yi,k(d)− Yi,k(d′)|Zi = z] = 0} .

Using this notation, the family of null hypotheses of interest is given by

Hs : Q ∈ ωs for s ∈ S . (1)

In other words, the sth null hypothesis specifies that the average effect of treatment d on the kth outcome

of interest for the subpopulation where Zi = z equals the average effect of treatment d′ on the kth outcome

of interest for the subpopulation where Zi = z. For later use, let

S0(Q) = {s ∈ S : Q ∈ ωs} .

Our goal is to construct a procedure for testing these null hypotheses in a way that ensures asymptotic

control of the familywise error rate uniformly over Q ∈ Ω. More precisely, we require for each Q ∈ Ω that

lim sup
n→∞

FWERQ ≤ α (2)

for a pre-specified value of α ∈ (0, 1), where

FWERQ = Q{reject any Hs with s ∈ S0(Q)} .

We additionally require that the testing procedure is “balanced” in that for each Q ∈ Ω,

lim
n→∞

Q{reject Hs} = lim
n→∞

Q{reject Hs′} for any s and s′ in S0(Q) . (3)

We now describe our main requirements on ΩQ. The assumptions make use of the notation

µk|d,z(Q) = EQ[Yi,k(d)|Di = d, Zi = z]

σ2
k|d,z(Q) = VarQ[Yi,k(d)|Di = d, Zi = z] .

Assumption 2.1 For each Q ∈ Ω,

(Yi(d) : d ∈ D) ⊥⊥ Di|Zi

under Q.
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Assumption 2.2 For each Q ∈ Ω, k ∈ K, d ∈ D and z ∈ Z,

0 < σ2
k|d,z(Q) = VarQ[Yi,k(d)|Di = d, Zi = z] <∞ .

Assumption 2.3 For each Q ∈ Ω, there is ε > 0 such that

Q{Di = d, Zi = z} > ε (4)

for all d ∈ D and z ∈ Z.

Assumption 2.1 simply requires that treatment status was randomly assigned. Assumption 2.2 is a mild

non-degeneracy requirement. Assumption 2.3 simply requires that both Di and Zi are discrete random

variables (with finite supports).

Remark 2.1 Note that we have assumed in particular that treatment status Di, i = 1, . . . , n is i.i.d. While

this assumption accommodates situations in which treatment status is assigned according to simple random

sampling, it does not accommodate more complicated treatment assignment rules, such as those in which

treatment status is assigned in order to “balance” baseline covariates among the subsets of individuals with

different treatment status. For a discussion of such treatment assignment rules and the implications for

inference about the average treatment effect, see Bugni et al. (2015).

Remark 2.2 When S is very large, requiring control of the familywise error rate may significantly limit the

ability to detect genuinely false null hypotheses. For this reason, it may be desirable in such situations to

relax control of the familywise error rate in favor of generalized error rates that penalize false rejections less

severely. Examples of such error rates include : the m-familywise error rate, defined to be the probability of

m or more false rejections; the tail probability of the false discovery proportion, defined to be the fraction

of false rejections (understood to be zero if there are no rejections at all); and the false discovery rate,

defined to be the expected value of false discovery proportion. Control of the m-familywise error rate and

the tail probability of the false discovery proportion using resampling are discussed in Romano et al. (2008b),

Romano and Wolf (2010). For procedures based only on (multiplicity-unadjusted) p-values, see Lehmann

and Romano (2005), Romano and Shaikh (2006a), and Romano and Shaikh (2006b). For resampling-based

control of the false discovery rate, see Romano et al. (2008a).
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3 A Stepwise Multiple Testing Procedure

In this section, we describe a stepwise multiple testing procedure for testing (1) in a way that satisfies (2)

and (3) for any Q ∈ Ω. In order to do so, we first require some additional notation. To this end, first define

the “unbalanced” test statistic for Hs,

Ts,n =
√
n

∣∣∣∣∣∣ 1

nd,z

∑
1≤i≤n:Di=d,Zi=z

Yi,k −
1

nd′,z

∑
1≤i≤n:Di=d′,Zi=z

Yi,k

∣∣∣∣∣∣ , (5)

and its re-centered version

T̃s,n(P ) =
√
n

∣∣∣∣∣∣ 1

nd,z

∑
1≤i≤n:Di=d,Zi=z

(Yi,k − µ̃k|d,z(P ))− 1

nd′,z

∑
1≤i≤n:Di=d′,Zi=z

(Yi,k − µ̃k|d′,z(P ))

∣∣∣∣∣∣ , (6)

where

µ̃k|d,z(P ) = EP [Yi,k|Di = d, Zi = z] .

Next, for s ∈ S, define

Jn(x, s, P ) = P
{
T̃s,n(P ) ≤ x

}
.

In order to achieve “balance,” rather than reject Hs for large values of Tn,s, we reject Hs for large values of

Jn(Ts,n, s, P̂n) . (7)

Note that (7) is simply one minus a (multiplicity-unadjusted) bootstrap p-value for testing Hs based on Ts,n.

Finally, for S ′ ⊆ S, let

Ln(x,S ′, P ) = P

{
max
s∈S′

Jn(T̃s,n(P ), s, P ) ≤ x
}
.

Using this notation, we may describe our proposed stepwise multiple testing procedure as follows:

Algorithm 3.1

Step 0. Set S1 = S.

...

Step j. If Sj = ∅ or

max
s∈Sj

Jn(Ts,n, s, P̂n) ≤ L−1
n (1− α,Sj , P̂n) ,

7



then stop. Otherwise, reject any Hs with Jn(Ts,n, s, P̂n) > L−1
n (1− α,Sj , P̂n), set

Sj+1 = {s ∈ Sj : Jn(Ts,n, s, P̂n) ≤ L−1
n (1− α,Sj , P̂n)} ,

and continue to the next step.

...

The following theorem describes the asymptotic behavior of our proposed multiple testing procedure.

Theorem 3.1 Consider the procedure for testing (1) given by Algorithm 3.1. Under Assumptions 2.1 – 2.3,

Algorithm 3.1 satisfies (2) and (3) for any Q ∈ Ω.

Remark 3.1 If S = s, i.e., S is a singleton, then the familywise error rate is simply the usual probability

of a Type I error. Hence, Algorithm 3.1 provides asymptotic control of the probability of a Type I error. In

this case, Algorithm 3.1 is equivalent to the usual bootstrap test of Hs, i.e., the test that rejects Hs whenever

Ts,n > J−1
n (1− α, s, P̂n).

Remark 3.2 As noted above, p̂s,n = 1−Jn(Ts,n, s, P̂n) may be interpreted as a bootstrap p-value for testing

Hs. Indeed, for any Q ∈ ωs, it is possible to show that

lim sup
n→∞

Q{p̂s,n ≤ u} ≤ u

for any 0 < u < 1. A crude solution to the multiplicity problem would therefore be to apply a Bonferroni or

Holm correction to these p-values. Such an approach would indeed satisfy (2), as desired, but implicitly relies

upon a “least favorable” dependence structure among the p-values. To the extent that the true dependence

structure differs from this “least favorable” one, improvements may be possible. Algorithm 3.1 uses the

bootstrap to incorporate implicitly information about the dependence structure when deciding which null

hypotheses to reject. In fact, Algorithm 3.1 will always reject at least as many null hypotheses as these

procedures.

Remark 3.3 Implementation of Algorithm 3.1 typically requires approximating the quantities Jn(x, s, P̂n)

and Ln(x,S ′, P̂n) using simulation. As noted by Romano and Wolf (2010), doing so does not require nested

bootstrap simulations. To explain further, for b = 1, . . . , B, draw a sample of size n from P̂n and denote by
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T̃ ∗,bs,n(P̂n) the quantity T̃s,n(P ) using the bth resample and P̂n as an estimate of P . Then, Jn(x, s, P̂n) may

be approximated as

Ĵn(x, s, P̂n) =
1

B

∑
1≤b≤B

I{T̃ ∗,bs,n(P̂n) ≤ x}

and Ln(x,S ′, P̂n) may be approximated as

L̂n(x,S ′, P̂n) =
1

B

∑
1≤b≤B

I{Ĵn(T ∗,bs,n(P̂n), s, P̂n) ≤ x} .

In particular, the same set of bootstrap resamples may be used in the two approximations.

Remark 3.4 In terms of higher-order asymptotic properties, it is often desirable to studentize, i.e., to

replace Ts,n and T̃s,n(P ), respectively, with

T stud
s,n =

Ts,n√
n ·
(
σ̃2
k|d,z(P̂n)

nd,z
+

σ̃2
k|d′,z(P̂n)

nd′,z

)
T̃ stud
s,n (P ) =

T̃s,n(P )√
n ·
(
σ̃2
k|d,z(P̂n)

nd,z
+

σ̃2
k|d′,z(P̂n)

nd′,z

) ,

where

σ̃2
k|d,z(P ) = VarP [Yi,k|Di = d, Zi = z] .

Theorem 3.1 continues to hold with these changes.

Remark 3.5 In some cases, it may be of interest to consider one-sided null hypotheses, e.g., H−s : P ∈ ω−s ,

where

ω−s = {Q ∈ Ω : EQ[Yi,k(d)− Yi,k(d′)|Zi = z] ≤ 0} (8)

In this case, it suffices simply to replace Tsn and T̃sn(P ), respectively, with T−s,n and T̃−s,n(P ), which are,

respectively, defined as in (5) and (6), but without the absolute values. An analogous modification can be

made for null hypotheses H+
s : P ∈ ω+

s , where ω+
s is defined as in (8), but with the inequality reversed.

Remark 3.6 Note that a multiplicity-adjusted p-value for Hs, p̂adj
s,n, may be computed simply as the smallest

value of α for which Hs is rejected in Algorithm 3.1.

Remark 3.7 It is possible to improve Algorithm 3.1 by exploiting transitivity (i.e., µk|d,z(Q) = µk|d′,z(Q)
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and µk|d′,z(Q) = µk|d′′,z(Q) implies that µk|d,z(Q) = µk|d′′,z(Q)). To this end, for S ′ ⊆ S, define

S(S ′) = {S ′′ ⊆ S ′ : ∃ Q ∈ Ω s.t. S ′′ = S0(Q)}

and replace L−1
n (1− α,Sj , P̂n) in Algorithm 3.1 with

max
S̃∈S(Sj)

L−1
n (1− α, S̃, P̂n) .

With this modification to Algorithm 3.1, Theorem 3.1 remains valid. Note that this modification is only

non-trivial when there are more than two treatments and may be computationally prohibitive when there

are more than a few treatments.

Remark 3.8 Note that we only require that the familywise error rate is asymptotically no greater than α

for each Q ∈ Ω. By appropriately strengthening the assumptions of Theorem 3.1, it is possible to show that

Algorithm 3.1 satisfies

lim sup
n→∞

sup
Q∈Ω

FWERQ ≤ α .

In particular, it suffices to replace Assumption 2.2 with a mild uniform integrability requirement and require

in Assumption 2.3 that there exists ε > 0 for which (4) holds for all Q ∈ Ω, d ∈ D and z ∈ Z. Relevant

results for establishing this claim can be found in Romano et al. (2012), Bhattacharya et al. (2012), and

Machado et al. (2013).

4 Empirical Applications

In this section, we apply our testing methodology to the large-scale natural field experiment presented in

Karlan and List (2007). As a quick summary, using direct mail solicitations targeted to previous donors of a

nonprofit organization, Karlan and List (2007) focus on the effectiveness of a matching grant on charitable

giving. Their sample includes all 50,083 individuals who had given to the organization at least once since

1991. These individuals were randomly assigned to two groups: a treatment “match” group (33,396, or 67

percent of the sample) and a control group (16,687 subjects, or 33 percent of the sample). The specifics of

the match offer were then randomized along three dimensions: the price ratio of the match, the maximum

size of the matching gift across all donations, and the example donation amount suggested to the donor.

Each of these sub-treatments (price ratio, maximum size of match, and example amount) was assigned

with equal probability. There were three treatments for the price ratio of the match, $1:$1, $2:$1, and $3:$1.
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An $X:$1 ratio means that for every dollar the individual donates, the matching donor also contributes

$X; hence, the charity receives $X+1 (subject to the maximum amount across all donations). There were

four treatments for the maximum matching grant amount: $25,000, $50,000, $100,000, and unstated. The

organization also offered three individual-specific suggested amounts equal to the individual’s highest previous

contribution, 1.25 times the highest previous contribution, and 1.50 times the highest previous contribution,

respectively.

In the following subsections, we discuss four common scenarios of multiple hypothesis testing in experi-

mental economics that manifest themselves in the Karlan and List (2007) data. First, we consider the MHT

issue of jointly identifying treatment effects for a set of outcomes. Second, we show how to use our procedure

to identify heterogeneous treatment effects through subgroup analysis. Third, we apply our methodology to

settings with multiple treatment conditions. In particular, we consider two cases - assessing treatment effects

for multiple treatment conditions, and making all pairwise comparisons across multiple treatment conditions

and a control condition.

Notably, we demonstrate that further improvements can be made by exploiting transitivity when making

all pairwise comparisons across multiple treatment conditions and a control condition. Lastly, we apply our

testing procedure to the general MHT issue in experimental economics with multiple outcomes, multiple

subgroups, and multiple treatments all at once. Among all four scenarios, we consider the studentized test

statistics described in Remark 3.4 and compare our results with those obtained by the classic studies of

Bonferroni and Holm.3

4.1 Multiple Outcomes

We simultaneously assess the effects of the “match” treatment for the four outcome variables: response rate,

dollars given not including match, dollars given including match, and amount change. Table 1 displays

for each of the four outcomes of interest, the following five quantities: column 2 displays the difference

in means between the treated and the untreated subjects for the four outcomes. Column 3 displays a

(multiplicity-unadjusted) p-value computed using Remark 3.1; column 4 displays a (multiplicity-adjusted)

p-value computed using Theorem 3.1. Column 5 displays a (multiplicity-adjusted) p-value obtained by

applying a Bonferroni adjustment to the p-values in column 3; column 6 displays a (multiplicity-adjusted)

p-value obtained by applying a Holm adjustment to the p-values in column 3.

In column 3, the single testing procedure indicates that the “match” treatment has a significant effect
3While all the following empirical results are based upon our MATLAB code, our Stata code generates very similar results.

Our Stata and Matlab code can be found here: https://github.com/seidelj/mht.
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Table 1: Multiple Outcomes
Outcome DI p-values

Unadj. Multiplicity Adj.
Remark 3.1 Thm. 3.1 Bonf. Holm

Response Rate 0.0042 0.0003*** 0.0003*** 0.0013*** 0.0013***
Dollars Given Not Including Match 0.1536 0.0500* 0.0967* 0.2000 0.1000

Dollars Given Including Match 1.9340 0.0003*** 0.0003*** 0.0013*** 0.0010***
Amount Change 6.3306 0.7200 0.7200 1.0000 0.7200

Table 1: Note: DI refers to “difference in means.” * and *** indicate the corresponding p-values less than
10% and 1%, respectively.

on response rate, dollars given not including match, and dollars given including match. However, by taking

into account the multiplicity of the comparisons, column 4 suggests that the effect of the “match” treatment

on dollars given not including match becomes only marginally significant at the 0.10 significance level.

Importantly, the p-values from Theorem 3.1 are an improvement upon those obtained by applying Bonfer-

roni or Holm adjustments because of the incorporation of information about the joint dependence structure

of the test statistics when determining which null hypotheses to reject. This feature is evident in Table 1,

as the p-values in column 4 are always weakly smaller than the p-values in columns 5 and 6.

4.2 Multiple Subgroups

In this subsection, we demonstrate how to apply Remark 3.1 and Theorem 3.1 to identify heterogeneous

treatment effects for multiple subgroups. We consider four subgroups contained in Karlan and List (2007):

red county in a red state, blue county in a red state, red county in a blue state, and blue county in a blue

state. We focus on the outcome variable response rate. Table 2 displays for each of the four subgroups of

interest, the five quantities similar to those in Table 1.

Compared to the single testing procedure shown in column 3, column 4 indicates that after accounting

for multiple testing the “match” treatment has an effect among a smaller number of subgroups. In particular,

single hypothesis testing in column 3 indicates that the “match” treatment has a significant effect on response

rate among the subgroups “Red County in a Red State” and “Blue County in a Red State.” After taking into

account the multiplicity issue, column 4 suggests that the treatment effect for the subgroup “Blue County in

a Red State” becomes insignificant. Importantly, the procedure described in Theorem 3.1 is more powerful

than the Bonferroni and Holm procedures, as the p-values in column 4 are always smaller than the p-values

in columns 5 and 6.4

4105 out of the 50,083 individuals in our dataset do not have complete subgroup information. In Sections 4.2 and 4.4, we
regard these 105 individuals as a subgroup of no interest for our analysis.
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Table 2: Multiple Subgroups
Subgroup DI p-values

Unadj. Multiplicity Adj.
Remark 3.1 Thm. 3.1 Bonf. Holm

Red County in a Red State 0.0095 0.0003*** 0.0003*** 0.0013*** 0.0013***
Blue County in a Red State 0.0070 0.0503* 0.1427 0.2013 0.1510
Red County in a Blue State 0.0016 0.4560 0.7017 1.0000 0.9120
Blue County in a Blue State 0.0000 0.9920 0.9920 1.0000 0.9920

Table 2: Note: DI refers to “difference in means.” * and *** indicate the corresponding p-values less than
10% and 1%, respectively.

Table 3: Multiple Treatments (Comparing Multiple Treatments with a Control)
Treatment/Control Groups DI p-values

Unadj. Multiplicity Adj.
Remark 3.1 Thm. 3.1 Bonf. Holm

Control vs 1:1 0.1234 0.2627 0.2627 0.7880 0.2627
Control vs 2:1 0.2129 0.0477** 0.1297 0.1430 0.1430
Control vs 3:1 0.1245 0.2060 0.3537 0.6180 0.4120

Table 3: Note: DI refers to “difference in means.” ** indicates the corresponding p-values less than 5%.

4.3 Multiple Treatments

In this empirical example, we apply our testing methodology to the multiple testing issue with multiple

treatment conditions. We focus on the three treatments on matching-ratio dimension: 1:1, 2:1, and 3:1.

We consider “dollars given not including match” as our outcome of interest. In particular, we address two

typical scenarios in experimental economics: assessing treatment effects for multiple treatments, and making

all pairwise comparisons across multiple treatments and a control condition.

For each of the three treatment effects, Table 3 displays the five quantities as described previously. By

applying Remark 3.1, single testing in column 3 suggests that the match ratio 2:1 has a significant effect

on the outcome “dollars given not including match.” Nonetheless, as shown in column 4, the treatment

effect vanishes after applying Theorem 3.1 to this multiple testing problem. Again, the empirical results

confirm that the p-values from Theorem 3.1 improve upon those obtained by applying the Bonferroni or

Holm procedure.

For each of the six pairwise comparisons among the treatment and control groups, Table 4 presents

the corresponding five quantities as well as the p-values from Remark 3.7. Unlike all the other empirical

applications, Remark 3.7 becomes non-trivial under this scenario. As shown in column 4, the treatment

effect based on the pairwise comparison between the control and the match ratio 2:1 becomes negligible after

accounting for the multiple testing issue.
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Table 4: Multiple Treatments (All Pairwise Comparisons across Multiple Treatments and a Control)
Treatment/Control Groups DI p-values

Unadj. Multiplicity Adj.
Remark 3.1 Thm. 3.1 Remark 3.7 Bonf. Holm

Control vs 1:1 0.1234 0.2627 0.5810 0.4973 1.0000 1.0000
Control vs 2:1 0.2129 0.0477** 0.1930 0.1930 0.2860 0.2860
Control vs 3:1 0.1245 0.2060 0.5533 0.4167 1.0000 1.0000

1:1 vs 2:1 0.0895 0.4627 0.7467 0.7467 1.0000 1.0000
1:1 vs 3:1 0.0011 0.9920 0.9920 0.9920 1.0000 0.9920
2:1 vs 3:1 0.0883 0.4633 0.6963 0.4633 1.0000 0.9267

Table 4: Note: DI refers to “difference in means.” ** indicates the corresponding p-values less than 5%.

Notice that the (multiplicity-adjusted) p-values in columns 4, 5, and 6 of Table 3 are always smaller than

their counterparts in Table 4, suggesting that the multiple testing problem would often become more severe

with a larger number of hypotheses. Among all of the multiplicity adjustments considered in Table 4, the

procedure described in Remark 3.7 appears to be the most powerful approach. In particular, Remark 3.7

may improve upon Theorem 3.1 by exploiting transitivity and imposing smaller critical values when there

are multiple treatment conditions.

4.4 Multiple Outcomes, Subgroups, and Treatments

More often than not, experimentalists wish to conduct hypothesis testing that involves multiple outcomes,

multiple subgroups, and multiple treatments simultaneously (as in Karlan and List (2007)). In this sub-

section, we simultaneously consider the four outcome variables described in Section 4.1, the four subgroups

described in Section 4.2, and the three treatment conditions described in Section 4.3. For each outcome and

subgroup, we compare all of the treatments to the control group.

For each of the 48 hypotheses, Table 5 displays the corresponding five quantities. Similar to our previous

discussion, after accounting for MHT we find that many of the treatment effects are no longer significant.

Given such a large number of hypotheses, we can see that ignoring the multiplicity of the comparisons being

made would deflate the p-values by a considerable margin. For instance, single testing by applying Remark

3.1 suggests that the null hypothesis for “response rate,” “red county in a red state,” and “control vs 1:1”

could be rejected at the 0.05 significance level with the p-value being 0.0217. Yet, by taking multiple testing

into account, Theorem 3.1 yields a much larger p-value of 0.4597. Without accounting for multiple testing,

21 null hypotheses are rejected at p < 0.10 level. In contrast, Theorem 3.1 indicates that with multiplicity

adjustment, only 13 null hypotheses are rejected. Notice that Theorem 3.1 always gives weakly smaller

p-values than the Bonferroni and Holm procedures. For some of the hypotheses, Theorem 3.1 generates

strictly smaller p-values than the other two procedures.
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Table 5: Multiple Outcomes, Subgroups, and Treatments
Outcome Subgroup Treatment/Control Groups DI p-values

Unadj. Multiplicity Adj.
Remark 3.1 Thm. 3.1 Bonf. Holm

Response Rate Red County in a Red State Control vs 1:1 0.0079 0.0217** 0.4597 1.0000 0.7367
Response Rate Red County in a Red State Control vs 2:1 0.0100 0.0017*** 0.0453** 0.0800* 0.0650*
Response Rate Red County in a Red State Control vs 3:1 0.0107 0.0017*** 0.0443** 0.0800* 0.0633*
Response Rate Blue County in a Red State Control vs 1:1 0.0024 0.5973 1.0000 1.0000 1.0000
Response Rate Blue County in a Red State Control vs 2:1 0.0080 0.0987* 0.8997 1.0000 1.0000
Response Rate Blue County in a Red State Control vs 3:1 0.0108 0.0247** 0.4950 1.0000 0.8140
Response Rate Red County in a Blue State Control vs 1:1 0.0003 0.9060 0.9990 1.0000 1.0000
Response Rate Red County in a Blue State Control vs 2:1 0.0010 0.7190 1.0000 1.0000 1.0000
Response Rate Red County in a Blue State Control vs 3:1 0.0034 0.2290 0.9953 1.0000 1.0000
Response Rate Blue County in a Blue State Control vs 1:1 0.0006 0.8667 1.0000 1.0000 1.0000
Response Rate Blue County in a Blue State Control vs 2:1 0.0026 0.5033 1.0000 1.0000 1.0000
Response Rate Blue County in a Blue State Control vs 3:1 0.0032 0.3740 1.0000 1.0000 1.0000

Dollars Given Not Including Match Red County in a Red State Control vs 1:1 0.4260 0.0903* 0.9027 1.0000 1.0000
Dollars Given Not Including Match Red County in a Red State Control vs 2:1 0.4097 0.0557* 0.7813 1.0000 1.0000
Dollars Given Not Including Match Red County in a Red State Control vs 3:1 0.3214 0.0710* 0.8483 1.0000 1.0000
Dollars Given Not Including Match Blue County in a Red State Control vs 1:1 0.0374 0.8950 1.0000 1.0000 1.0000
Dollars Given Not Including Match Blue County in a Red State Control vs 2:1 0.4325 0.1853 0.9853 1.0000 1.0000
Dollars Given Not Including Match Blue County in a Red State Control vs 3:1 0.5728 0.0933* 0.8983 1.0000 1.0000
Dollars Given Not Including Match Red County in a Blue State Control vs 1:1 0.0256 0.8683 1.0000 1.0000 1.0000
Dollars Given Not Including Match Red County in a Blue State Control vs 2:1 0.0928 0.5893 1.0000 1.0000 1.0000
Dollars Given Not Including Match Red County in a Blue State Control vs 3:1 0.0243 0.8847 1.0000 1.0000 1.0000
Dollars Given Not Including Match Blue County in a Blue State Control vs 1:1 0.0074 0.9747 0.9747 1.0000 0.9747
Dollars Given Not Including Match Blue County in a Blue State Control vs 2:1 0.0380 0.8650 1.0000 1.0000 1.0000
Dollars Given Not Including Match Blue County in a Blue State Control vs 3:1 0.2173 0.2847 0.9997 1.0000 1.0000

Dollars Given Including Match Red County in a Red State Control vs 1:1 1.0782 0.0020*** 0.0533* 0.0960* 0.0720*
Dollars Given Including Match Red County in a Red State Control vs 2:1 2.1238 0.0007*** 0.0123** 0.0320** 0.0273**
Dollars Given Including Match Red County in a Red State Control vs 3:1 2.9206 0.0003*** 0.0003*** 0.0160** 0.0160**
Dollars Given Including Match Blue County in a Red State Control vs 1:1 0.7996 0.0043*** 0.1173 0.2080 0.1517
Dollars Given Including Match Blue County in a Red State Control vs 2:1 2.3892 0.0017*** 0.0437** 0.0800* 0.0617*
Dollars Given Including Match Blue County in a Red State Control vs 3:1 4.0048 0.0013*** 0.0347** 0.0640* 0.0533*
Dollars Given Including Match Red County in a Blue State Control vs 1:1 0.7993 0.0003*** 0.0003*** 0.0160** 0.0157**
Dollars Given Including Match Red County in a Blue State Control vs 2:1 1.8355 0.0003*** 0.0003*** 0.0160** 0.0153**
Dollars Given Including Match Red County in a Blue State Control vs 3:1 2.5479 0.0003*** 0.0003*** 0.0160** 0.0150**
Dollars Given Including Match Blue County in a Blue State Control vs 1:1 1.0042 0.0003*** 0.0003*** 0.0160** 0.0147**
Dollars Given Including Match Blue County in a Blue State Control vs 2:1 2.0991 0.0003*** 0.0003*** 0.0160** 0.0143**
Dollars Given Including Match Blue County in a Blue State Control vs 3:1 2.3830 0.0003*** 0.0003*** 0.0160** 0.0140**

Amount Change Red County in a Red State Control vs 1:1 1.8253 0.1310 0.9497 1.0000 1.0000
Amount Change Red County in a Red State Control vs 2:1 0.5491 0.6443 1.0000 1.0000 1.0000
Amount Change Red County in a Red State Control vs 3:1 0.0681 0.9593 0.9987 1.0000 1.0000
Amount Change Blue County in a Red State Control vs 1:1 92.3221 0.4410 1.0000 1.0000 1.0000
Amount Change Blue County in a Red State Control vs 2:1 93.7227 0.4410 1.0000 1.0000 1.0000
Amount Change Blue County in a Red State Control vs 3:1 94.2640 0.4410 1.0000 1.0000 1.0000
Amount Change Red County in a Blue State Control vs 1:1 51.9652 0.4530 1.0000 1.0000 1.0000
Amount Change Red County in a Blue State Control vs 2:1 0.4450 0.6817 1.0000 1.0000 1.0000
Amount Change Red County in a Blue State Control vs 3:1 1.1372 0.2593 0.9973 1.0000 1.0000
Amount Change Blue County in a Blue State Control vs 1:1 0.9294 0.4617 1.0000 1.0000 1.0000
Amount Change Blue County in a Blue State Control vs 2:1 0.2938 0.8277 1.0000 1.0000 1.0000
Amount Change Blue County in a Blue State Control vs 3:1 0.5147 0.6577 1.0000 1.0000 1.0000

Table 5: Note: DI refers to “difference in means.” *, **, and *** indicate the corresponding p-values less
than 10%, 5%, and 1%, respectively.
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5 Conclusion

As the ‘credibility crises’ begins to take shape and gain momentum in the empirical sciences, policymakers

and academics are increasingly taking note of the assumptions underlying appropriate inference. For exam-

ple, in the biological and human sciences as well as within economics it has been claimed that there is a

‘reproducibility crisis’, whereby established results fail to be replicated (Jennions and Moller, 2002; Ioannidis,

2005; Nosek et al., 2012; Bettis, 2012; and in economics, Maniadis et al., 2014). One reason for these failed

replications is false positives, whereby many ungrounded conclusions are drawn due to a large false discovery

rate. As modern societies gradually demand evidence based policies and make decisions based on science,

the scientific community is relied on more heavily to provide sound advice.

In this paper, we consider three common threats to appropriate inference that involve multiple hypothesis

testing within the field of experimental economics: jointly identifying treatment effects for a set of outcomes,

estimating heterogeneous treatment effects through subgroup analysis, and conducting hypothesis testing

for multiple treatment groups. These three core areas present themselves in nearly every empirical exercise

that we are aware, and are particularly acute problems within experimental economics.

Building on stepwise multiple testing procedures discussed in Romano and Wolf (2010), we introduce a

testing procedure that may be applied to any combination of these three common scenarios. The testing

procedure incorporates information about the joint dependence structure of the test statistics so that it

improves upon the classical multiple testing procedures such as Bonferroni and Holm. Furthermore, the

testing procedure is asymptotically balanced in the sense that all marginal probabilities of rejecting any true

null hypothesis are approximately equal.

Notably, we also demonstrate that further improvements could be made by exploiting transitivity and

imposing smaller critical values when there are multiple treatment conditions. We highlight our methodology

by exploring various plausible hypotheses of interest in the original Karlan and List (2007) data set. These

data are interesting in their own right, as they help us to understand the economics of charity, which

represents an important area of study in its own right.

In sum, as could be anticipated, we find that a smaller number of hypotheses are rejected when com-

pared to results that do not adjust for multiple testing. Furthermore, and importantly from a methodological

perspective, the p-values for all hypotheses by applying the testing procedure that we construct are always

weakly smaller than the corresponding p-values from the classic studies due to Bonferroni and Holm. This

result suggests the considerable power of our approach. Lastly, we show empirically that exploiting tran-

sitivity yields further improvements in power. In this way, our framework should have broad appeal to

16



empiricists, and more narrowly experimental economists.
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A Appendix

A.1 Proof of Theorem 3.1

First note that under Assumption 2.1, Q ∈ ωs if and only if P ∈ ω̃s, where

ω̃s = {P (Q) : Q ∈ Ω, EP [Yi,k|Di = d, Zi = z] = EP [Yi,k|Di = d′, Zi = z]} .

The proof of this result now follows by verifying the conditions of Corollary 5.1 in Romano and Wolf (2010).

In particular, we verify Assumptions B.1 – B.4 in Romano and Wolf (2010).

In order to verify Assumption B.1 in Romano and Wolf (2010), let

T ∗s,n(P ) =
√
n

 1

nd,z

∑
1≤i≤n:Di=d,Zi=z

(Yi,k − µ̃k|d,z(P ))− 1

nd′,z

∑
1≤i≤n:Di=d′,Zi=z

(Yi,k − µ̃k|d′,z(P ))

 ,

and note that

T ∗n(P ) = (T ∗s,n(P ) : s ∈ S) = f(An(P ), Bn) ,

where

An(P ) =
1√
n

∑
1≤i≤n

An,i(P ) ,

with An,i(P ) equal to the 2|S|-dimensional vector formed by stacking vertically for s ∈ S the terms

 (Yi,k − µ̃k|d,z(P ))I{Di = d, Zi = z}

(Yi,k − µ̃k|d′,z(P ))I{Di = d′, Zi = z}

 , (9)

and Bn is the 2|S|-dimensional vector formed by stacking vertically for s ∈ S the terms

 1
1
n

∑
1≤i≤n I{Di=d,Zi=z}

− 1
1
n

∑
1≤i≤n I{Di=d′,Zi=z}

 . (10)

and f : R2|S| ×R2|S| → R2|S| is the function of An(P ) and Bn whose sth argument for s ∈ S is given by

the inner product of the sth pair of terms in An(P ) and the sth pair of terms in Bn, i.e., the inner product

of (9) and (10). The weak law of large numbers and central limit theorem imply that

Bn
P→ B(P ) ,
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where B(P ) is is the 2|S|-dimensional vector formed by stacking vertically for s ∈ S the terms

 1
P{Di=d,Zi=z}

− 1
P{Di=d′,Zi=z}

 .

Next, note that EP [An,i(P )] = 0. Assumption 2.3 and the central limit theorem therefore imply that

An(P )
d→ N(0, VA(P ))

for an appropriate choice of VA(P ). In particular, the diagonal elements of VA(P ) are of the form

σ̃2
k|d,z(P )P{Di = d, Zi = z} .

The continuous mapping theorem thus implies that

T ∗n(P )
d→ N(0, V (P ))

for an appropriate variance matrix V (P ). In particular, the sth diagonal element of V (P ) is given by

σ̃2
k|d,z(P )

P{Di = d, Zi = z}
+

σ̃2
k|d′,z(P )

P{Di = d′, Zi = z}
. (11)

In order to verify Assumptions B.2–B.3 in Romano and Wolf (2010), it suffices to note that (11) is strictly

greater than zero under our assumptions. Note that it is not required that V (P ) be non-singular for these

assumptions to be satisfied.

In order to verify Assumption B.4 in Romano and Wolf (2010), we first argue that

T ∗n(Pn)
d→ N(0, V (P )) (12)

under Pn for an appropriate sequence of distributions Pn for (Yi, Di, Zi). To this end, assume that

(a) Pn
d→ P .

(b) µ̃k|d,z(Pn)→ µ̃k|d,z(P ).

(c) Bn
Pn→ B(P ).

(d) VarPn
[An,i(Pn)]→ VarP [An,i(P )].
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Under (a) and (b), it follows that An,i(Pn)
d→ An,i(P ) under Pn. By arguing as in Theorem 15.4.3 in

Lehmann and Romano (2006) and using (d), it follows from the Lindeberg-Feller central limit theorem that

An(Pn)
d→ N(0, VA(P ))

under Pn. It thus follows from (c) and the continuous mapping theorem that (12) holds under Pn. Assump-

tion B.4 in Romano and Wolf (2010) now follows simply by nothing that the Glivenko-Cantelli theorem,

strong law of large numbers and continuous mapping theorem ensure that P̂n satisfies (a) – (d) with proba-

bility one under P .
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