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1 Introduction

The gap between econometric theory and practice makes it challenging to assess the

reliability of empirical findings in economics and political science (Leamer, 1974, 1978,

1983; Lovell, 1983; Glaeser, 2006). This is due to a combination of researchers’ degree of

freedom and publication bias. As a result, the probability of Type I error in published

research is believed to be larger than the commonly accepted five percent. For ex-

ample, Gerber and Malhotra (2008) and Brodeur et al. (forthcoming) report that there

is a bunching of p-values just below the 0.05 threshold in top economics and politi-

cal science journals. This is consistent with researchers and editor unconsciously or

consciously selecting outcome variables, regression methods, estimation samples, and

control variables to deliver significant results.1

A number of reforms of the reviewing process have been proposed to decrease the

risk that spurious findings are published and cited (Green, Humphreys and Smith,

2013). The common objective is to encourage researchers to transparently select which

statistical tests to implement before accessing the data on which they will be run. A

prominent example is the introduction of pre-analysis plans (PAPs).2 Such plans are

written – and possibly shared with the research community – before any analysis is car-

ried out. This reduces the risk that researchers select hypotheses that can be rejected

with the available data (Casey, Glennerster and Miguel, 2012; Olken, 2015). Some re-

searchers are more skeptical and argue that the profession should encourage replica-

tions instead (Coffman and Niederle, 2015). The profession has also insisted on the

need to correct for multiple comparisons. While filing a PAP may offer some pro-

tection in lab and field experiments, it offers no protection in the case of analysis of

observational data.

In this paper we discuss a related – and possibly complementary – method that can
1This behavior isn’t confined to economics and political science, however. As reported by Shea (2013),

Dirk Smeesters, a social psychologist at Erasmus University Rotterdam, whose own university publicly
announced that it had "no confidence in the scientific integrity" of three of his articles, stated that "many
authors knowingly omit data to achieve significance, without stating this".

2Building on J-PAL Hypothesis Registry, The American Economic Association has recently set-up a
RCT registry. To-date the American Political Science Association hasn’t followed suit but the E-GAP
(Experiments in Governance and Politics) network allows researchers to register both experimental and
observational studies.
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be applied to both new and existing datasets. The process involves sending the data

to an independent third party who randomly generates two non-overlapping subsets

of the data. Researchers only have access to one subset – called the training dataset

– while the third party keeps the second one – called the testing dataset. Researchers

are free to analyze the training dataset and can adapt ideas from seminar audiences,

editors and referees and incorporate them into the analysis. Once the paper has been

accepted for publication it is akin to a detailed pre-analysis plans that fully specifies

the regressions to be estimated on the testing sample. The analysis is implemented,

unchanged, on the testing dataset, and these results are the ones that are published.3

An important feature of the method is that only a subset of hypotheses tested on the

training sample - potentially those that are rejected on that sample - are carried over to

the testing sample.4 As we correct for multiple testing, this compensates for the loss

of power due to smaller sample sizes. Importantly, this method can be combined with

a PAP as a researcher could register a number of hypotheses in a PAP and carry out

more exploratory analyses with the proposed method. In addition, the method can be

applied by researchers using existing data. In those situations a PAP might not be as

credible.

The proposed method offers three methodological benefits: increased ability to

learn from the data and to test hypotheses that researches did not think about when

they started their project – an issue that is not addressed by PAPs; reduced type I er-

rors, as in PAPs; and reduced the risk of publication bias. The main potential cost of

split samples is loss of power. First, the method allows researchers to test hypotheses

that they did not think about before starting their analysis: researchers can refine their

research plans based on initial findings, interactions with seminar audiences, and re-

3In the recent field of genoeconomics, researchers often attempt to replicate their findings by testing
whether the identified genes are correlated with the outcomes of interest on another sample (Benjamin
et al., 2011). Other researchers have used a related method and construct a genetic score on a sub-
sample and check its predictive accuracy on the remaining sample (Benjamin et al., 2012). In both cases,
no third-party is involved and researchers have control over the choice of the other sample and over the
split between the training and the testing sample.

4In practice, we do not recommend a purely mechanical approach with all hypotheses rejected on
the training set tested on the testing set. Rather, researchers are expected to select a subset of those
hypotheses. This should be guided by both economic theory and additional robustness tests.
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quests from referees and editors.5 Second, it reduces the risk of Type I error because

researchers fully specify the regressions they want to estimate before having access to

the dataset on which hypotheses will be tested. This reduces the risk of focusing on

specifications where a spurious null happens to be rejected. Third, the method reduces

the risk of publication bias because journal editors decide whether to publish a paper

before seeing the final results.6 This last benefit could also be achieved by PAPs if jour-

nal editors were willing to accept a paper on the basis of the quality of PAP design

alone.

To capture these features in a simple way, we imagine a situation in which the

researcher wishes to test multiple hypotheses, without strong a priori information on

which hypotheses are most relevant. In such a situation, it is common for researchers to

adjust for multiple testing. We present results from simulations quantifying the trade-

off between reduced type I error and loss of power, compared to a situation where

the researcher test hypotheses on the full sample. In both cases we adjust for multiple

testing. We show that the loss of power from using split samples instead of the full

sample is lowest when the total number of tests is large – that is, when the researcher

most wishes to learn from the data. In this case, multiple comparison adjustments

can induce a large reduction in power when using the full sample. The split sample

approach allows the researcher to curtail the number of tests carried on the testing

sample, and this compensates for the loss of power due to smaller sample size. This

is because researchers decide on the few hypotheses to test based on initial work with

the data which limits the loss of power associated with multiple testing adjustments.

We also provide guidance on the optimal way of splitting the full sample into training

and testing subsamples.

Results presented in the paper indicate that in a large number of relevant empirical

settings, the loss of power associated with the split sample is manageable. Economi-

5One could argue that additional hypotheses can be addressed in future research. But given the cost
of collecting additional data and the long publication lag in economics, this would unnecessarily delay
the availability of evidence.

6Franco, Malhotra and Simonovits (2014) take advantage of an NSF-sponsored program to quantify
publication bias. They show that strong results are much more likely to be published. This effect is
partially explained by the fact that researchers do not write up null findings (Franco, Malhotra and
Simonovits, 2014), and partly by the fact that editors and referees are reluctant to publish null results.

4



cally significant effect size (above 0.2 standard deviation) can be detected with power

comfortably above 80 percent as soon as sample size is above 3,000. For a smaller effect

size (e.g., 0.1 standard deviation), a sample of 10,000 observations or more is required.

In addition, we provide evidence that the split sample approach is more likely than a

PAP approach to identify a null hypothesis that should be rejected. When using a PAP,

researchers often keep the number of tested hypotheses small to counteract the loss of

power due to multiple testing. Our proposed method allows researchers to test a large

number of null hypotheses with only a small loss in power.

Results further suggest that the method increases the likelihood that relevant hy-

potheses are tested. Indeed, due to the expected loss in power associated with multiple

testing adjustments researchers often limit the number of hypotheses included a PAP.

In those situations, researchers are unable to learn from observations made during

data collection and field experimentation. For effect sizes of .3 , we show that as long

as there is a small likelihood that the relevant hypothesis isn’t included in the PAP, the

split sample approach will deliver more power as soon as sample size is above 2,000.

We argue that the method is especially relevant as the profession is entering the age

of big data (Einav and Levin, 2014). Researchers now have access to large datasets from

both the public and private sectors and are increasingly able to run experiments on a

large number of subjects. Those datasets often contain a large number of potential out-

come and control variables which creates great opportunities for exploring previously

untestable hypotheses. It appears important to develop methods that deliver credible

results (Athey and Imbens, 2015; Belloni, Chernozhukov and Hansen, 2014).

It is important to note that there are other ways through which spurious results can

be published, but dealing with them is beyond the scope of this paper. The method

would still deliver biased estimates if researchers use unreliable data, or faulty code

and software. For example, Bell and Miller (forthcoming) could replicate Rauchhaus

(2009)’s findings in STATA but not in R, which they attribute to a problem in STATA.

More perniciously, some researchers have been caught fabricating data. In line with

current practice, we argue that the best way to deal with those issues is to ask re-

searchers to make their code and data publicly available after publication. This would

5



increase the likelihood that potential mistakes are quickly identified.

The remainder of the paper is organised as follows. In Section 2, we present a

canonical setup often encountered in empirical work. The proposed method is de-

scribed in Section 3. Results on power and the family-wise error rates are discussed in

Section 4. Section 5 highlights three additional benefits: the method allows researchers

to learn from the data, controls referee degrees of freedom and helps editors decide

whether to publish null results. Section 6 concludes.

2 The Problem

In this section, we discuss current empirical practices and why they might lead to the

publication of spurious findings. We also describe how researchers currently attempt

to deal with those issues.

2.1 Canonical set-up

We consider the following canonical setup. Researcher A is interested in estimating the

effect of an exogenous treatment T (with T = 1 for half of the observations and T = 0

otherwise). She has access to a sample S of size N that includes a set of m potential

outcome variables (yk)k=1,...,m. The m outcome variables can either capture different

concepts, related concepts, or different ways of measuring the same concept. For ex-

ample, the researcher may have access to firm data on firms’ hiring practices, number

of employees, value-added, profits, etc. Unsure of which aspects of firm performance

is affected by treatment, the researcher runs regressions of the form:

yk = a + bkT + u (1)

The researcher then runs a series of tests Hk
0 : bk = 0. Some of these null hypotheses are

true, some are non-true. The researcher faces a multiple comparison problem: without

adequate adjustments, the probability that a true null hypothesis is rejected is higher

than the level a at which each individual test is carried out. The set-up, adapted from
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Benjamini and Hochberg (1995), is summarised in Table 1.

Table 1: Set-up

Declared Declared Total
Non-significant Significant

True null hypotheses U V m0
Non-true null hypotheses T S m � m0
Total m-R R m

The researcher is concerned about Type I errors and wants to find ways to control

the Family Wise Error Rate (FWER).

Definition 1 The Family Wise Error Rate is the probability of rejecting at least one true null

hypothesis. In the notation of Table 1, it is equal to Pr(V > 0).

The most basic way to keep the FWER in check is to make Bonferroni adjustments:

instead of rejecting H0 if the p-value is smaller than a, reject if it is smaller than a/m.

Let Rk be a variable indicating whether hypothesis k was rejected. It is straightforward

to show that the adjustment controls the FWER:

P(V > 0)  P(R > 0) = P(
m[

k=1
Rk) 

m

Â
k=1

P(Rk) = m ⇤ a

m
= a

The adjustment is only valid if all null hypotheses are true (m = m0) and all tests

are independent. It is well known that this correction tends to be very conservative and

can lead to serious loss of power. In addition, the method is only valid if the researcher

can keep track of all tests she performed. If for example, the researcher ran m0 tests and

attempt to control the FWER as if only m tests had been carried out (with m < m0), the

reported FWER will understimate the actual FWER.

Let a be the significance level used to test Hk
0 and let dk be the standardized ef-

fect size for the m � m0 non-true null hypotheses. In this convenient set-up we can

use standard power calculations formula (see McConnell and Vera-Hernández (2015)).

Power, denoted as 1 � b, is the probability of rejecting the null hypothesis when the
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alternative is correct. Under our assumptions, it is given by:

1 � bk = F(dk

r
N
4
� Z1� a

2
) (2)

where F is the cumulative distribution function for the standard normal distribution.

The detailed calculations are available in the Appendix. If the researcher carries out

Bonferonni corrections, power becomes:

1 � b
Bon f
k = F(dk

r
N
4
� Z1� a

2m
) (3)

Comparing the two formulas directly shows that Bonferonni corrections lead to a loss

of statistical power. This loss is increasing in m, the number of tests that are carried

out.

Since the probability of rejecting each true null hypotheses is a, the probability of

rejecting at least one is given by:

FWER = 1 � (1 � a)m0 (4)

where m0 is the (unknown) number of true null hypotheses. It is important to note that

the FWER is not a function of sample size or effect size. If the researcher carries out

Bonferonni corrections, the FWER becomes:

FWERBon f = 1 � (1 � a

m
)m0 (5)

Researchers are now using alternative p-values adjustments to correct for multiple

testing (e.g. the methods proposed by Benjamini and Hochberg (1995) and Benjamini,

Krieger and Yekutieli (2006)) and we will consider those approaches in the simulations.

2.2 Pre-Analysis Plan

Before having access to the data, the researcher can prepare and register a pre-analysis

plan (Coffman and Niederle, 2015; Olken, 2015). Such a plan lists the hypotheses to
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be tested and describes how they will be tested, including which variables to include,

how they will be included, and how researchers intend to deal with the multiple com-

parison problems.

This approach is appealing but it has some drawbacks. First, following a PAP to

the letter does not allow researchers to learn from the data, and this can slow down the

pace of new discoveries. Indeed, PAPs can only cover hypotheses that the researcher

could think of before carrying out their experiment. There often are other testable hy-

potheses that the researcher did not think of beforehand. A number of social scientists

have recently argued that some of their most important findings were the direct re-

sult of time spent with the data (Laitin, 2013; Gelman, 2014). For example, Simonsohn

(cited by Laitin (2013)) argues that: "I also think of science as a process of discovery . . .

Every paper I have [written] has some really interesting robustness, extensions, follow-ups that

I would have never thought about at the beginning." Similarly, Gelman (2014) states that

"Many of my most important applied results were interactions that my colleagues and I noticed

only after spending a lot of time with our data."

Second, unless pre-analysis plans fully specify the regressions to be estimated, it

still leaves some room for data mining. As a result, Humphreys, Sanchez de la Sierra

and van der Windt (2013) argue that researchers should write a mock report with fake

data. This forces researchers to make all decisions regarding the analysis (including

micro-decisions such as the precise way of defining all variables) before having access

to the dataset on which the regressions will be estimated. The methodology is then

applied to the real data.

Third, it is difficult to credibly implement PAPs in observational studies because it

is difficult to guarantee that the researcher has not run the regressions before register-

ing the PAP. This concern is especially acute in situations where the data have already

been used by other researchers. PAPs are better suited for analysis of experimental

data.

Fourth, unless editors are willing to unconditionally accept papers based on a de-

tailed pre-analysis plan, there is always room for what Pepinsky (2013) refers to as

referee degree of freedom, i.e., the referees (and editor) may require the researcher to con-
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duct analysis that was not in the PAP.

Fifth, PAP forces researchers to divulge their research design with other, possibly

competing researchers at an early stage of the research process. Given the long publi-

cation lags in economics, this opens the door to abuse.7

Finally, as long as the decision to publish results is based on whether or not some

null hypothesis is rejected, there remains a risk that, even if all research follows a PAP,

many published findings are spurious. To illustrate, imagine m researchers, each with

access to data on treatment T and one of the outcome variables (yk)k=1,...,m. Each of

these m researchers registers a PAP to estimate the effect of T on a single yk. All tests

for which the null is rejected are then published. Ioannidis (2005) argues that since

there are many more true null hypotheses than false ones, as long as m is sufficiently

large there will be more cases of Type I error than of cases where the null is correctly

rejected.

3 The Method

We now describe the split sample approach in details.8 As above, we assume that

researcher A is interested in estimating the effect of T on a list of possible outcomes

(yk)k=1,...,m. There is some uncertainty regarding which particular hypotheses to test

and how to best test them. The research project proceeds as follows:

• Step 1: Guided by theory and existing evidence, researcher A puts together a

sample S including a number of variables that broadly captures the general set of

hypotheses that she wants to test. The researcher also includes variables used to

test for potential heterogeneous effects.

• Step 2: The data is then sent to a third-party B who randomly generates two non-

overlapping subsets. If the researcher is interested in studying particular sub-
7A number of researchers have opted to gate their PAP to address those concerns.
8Our method differ from earlier efforts to use split-sample in applied econometrics. Researchers

focused on pre-testing bias; more specifically of how the potential bias arising from dropping regressors
based on the associated t-statistics in both OLS and IV estimation (e.g. Angrist and Krueger (1995)).
Researchers were concerned about the determinants of a single outcome variables. We are concerned
about how one treatment variable affects a large number of potential outcome variables.
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groups the sample should be stratified accordingly. The first sub-sample (training

sample) is sent back to A. The third-party keeps the second one (testing sample).

All relevant IDs are scrambled during the process so that A is unable to ‘reverse

engineer’ the randomization.

• Step 3: A runs regressions, presents the results at seminars and conferences, and

refines the methodology based on feedback received.

• Step 4: The paper is submitted to a journal, referees make their comments and A

amends her analysis in response, possibly several times.

The discovery process described by steps 3 and 4 identifies a final subset J of

the m outcome variables such that each of these outcome variables is significant

at the a level in the training set, conditional on a choice of estimator, control

variables, and standard error correction. We call this the final methodology for

analysis. According to our simulations discussed in the next Section, in most

contexts J ⌧ m which compensates somewhat for the loss of power due to lower

sample size when correcting for multiple testing.

• Step 5: The editor accepts the paper conditional on the agreed upon final method-

ology for analysis. A then secures the testing sample from B and applies the

agreed upon methodology to it. The published version of the paper only includes

the results obtained from the testing sample.

We argue that editors might be less reluctant to accept a paper based on results

from the training set than a PAP design. Indeed, it contains more information

about the results and, in the case of a RCT, about the quality of its implementa-

tion. The strength of the main results and associated robustness checks on the

training sample provide some information as to whether they will hold on the

testing sample. In addition, one can make a case that precisely estimated zeroes

should be published (as opposed to underpowered studies) and results from the

training set provide useful information on the study’s statistical power. We dis-

cuss this in more details in Section 5.3.
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Importantly, even in cases where the editor requires to see the results on the test-

ing sample before accepting the paper, the authors could register a PAP contain-

ing all relevant details before running the regressions on the testing sample. If

the editor declines to publish the paper after seeing the results, this would allow

authors to have a record of a pre-registered design when they submit the paper

to the next journal.

We think of Steps 3 and 4 as a way for researchers to refine their research plan.

The methodology that is accepted in Step 5 is akin to a detailed pre-analysis plans that

fully specifies the regressions to be estimated on the testing sample. As researchers can

adapt ideas from seminar audiences, editors and referees and incorporate them into the

analysis, there is room in the analysis plan to incorporate interesting hypotheses that

A would not have tested otherwise.

More formally, the process looks as follows. Researcher A puts together a sample

S that includes N observations and a set of m + 1 variables: Ti and (yk)k=1,...,m. A

third party B then randomly splits the dataset into two sub samples S1 and S2 such

that: S = S1 [ S2 and S1 \ S2 = ∆. At first, the researcher does not have access to

S2. The researcher starts with a set of specific hypotheses to test. Feedback from other

researchers is then used to help A finalize a list of hypotheses to test. This list can

be represented most generally as a series of J triplets consisting of: (1) a set of out-

come variables (zj)j=1,...,J which we allow to be transformations of the original data

(yk)k=1,...,m such that 8j we have zj
i = f (y1

i , . . . , ym
i );

9 (2) an estimation method (e.g., es-

timator, control variables); and (3) a set of rules that define the estimation sample (e.g.,

excluded outliers). Once the J triplets are agreed with an editor, the associated regres-

sions are estimated on S2 and this is the set of results that are published. The method’s

key feature is that, given that the training and testing samples are independent, the

probability of type I error in the two samples are independent.

9In the simplest case, the (zj)j=1,...,J are simply the subset of the (yk)k=1,...,m variables that are signifi-
cant at the a level.
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4 The Split Sample Approach, Power and Family-Wise

Error Rate

4.1 Set-up

We now illustrate the method for the canonical setup described above. We compute

power and FWER under the full sample approach and the proposed split sample ap-

proach. In both cases, we present results both with and without Bonferonni adjust-

ments. We show the sensitivity of power and FWER to variation in the following pa-

rameters: the sample size (N); the standardized effect size (d); the number of tested

hypotheses (m); the number of tested null hypotheses that are true (m0); and the share

of the total sample that is allocated to the training set (s).

Throughout we assume that the researcher starts with m possible null hypotheses.

Of these, a subset J are found to be significant at the a level in the training set and

interesting. This subset determines the list of tests estimated on the testing set. To

illustrate, let m = 20 and imagine that, in the training sample, treatment is significant

at the a = 5% level for seven of these 20 outcome variables. Then we only regress

treatment on these seven outcome variables in the testing sample. It is this shrinking

of the set of hypotheses that delivers power while keeping FWER low, as we now

demonstrate.

Split sample without Bonferonni correction We start by showing how the formula

introduced in Section 2 can be adjusted to compute power and the FWER with the

split sample methodology. For a null hypothesis to be considered to be rejected, it is

necessary that it be rejected first on the training sample, and then again on the testing

sample. As a result, power is given by:

1 � b
Split
k = F

 
dk

r
sN
4

� Z1� a
2

!
F

 
dk

r
(1 � s)N

4
� Z1� a

2

!
(6)

Split sample with Bonferonni correction With Bonferonni correction, the calcula-

tions are as above except that we need to account for the number of tests carried out
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on the testing sample. Power is the expected value of the following random variable:

1 � b
Split/Bon f
k = F

 
dk

r
sN
4

� Z1� a
2

!
F

 
dk

r
(1 � s)N

4
� Z1� a

2B

!
(7)

where B is the number of tests carried out on the testing sample. It distributed accord-

ing to:

B(m0, a) + B

 
m � m0, F

 
dk

r
sN
4

� Z1� a
2

!!
(8)

where B(n, p) is a binomial distribution with n trials and p probability of success in

each trial. The number of tests conducted on the testing sample is the sum of two

terms: the number of true null hypotheses that are incorrectly rejected on the training

sample; and the number of non-true null hypotheses that are correctly rejected on the

training sample. To obtain an approximation of expected power, we take 10,000 draws

of the distribution B using (8), compute power (7) for each iteration, and then take the

average over all 10,000 iterations.

4.2 Results

We now present the results from applying the above formulas and simulation method

to various parameter values. To capture the idea that there are many more true null

hypotheses than false ones, we organize the simulations around the assumption that,

out of 100 possible null hypotheses, only one is non-true, i.e., should be rejected.

Hence, unless stated otherwise, the results presented below are based on m = 100

and m0 = 99. Given these parameter values, the majority of the results found signifi-

cant are spurious. For instance, if a = 5%, there will on average be five false rejections

and, provided that power is high enough, one true rejection in the training sample. For

now we use a 50-50 split between the training and testing samples, i.e., we set s = 0.5.

We organize our simulations around four stylized testing scenarios: (1) testing all

100 null hypotheses on the full sample without correction; (2) testing all 100 null hy-

potheses on the full sample with Bonferonni corrections; (3) testing all 100 null hy-
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potheses on the training sample, and only testing on the training sample those null

hypotheses that were significant in the training sample; and (4) proceeding as in (3)

but adding Bonferroni corrections to the testing sample results.

We start by investigating the effect of sample size on the power to detect a true effect

of size 0.2. In other words, we compute the likelihood of rejecting the null hypothesis

when this hypothesis is false and the true effect is 0.2. Figure 1 plots power under the

four scenarios for sample sizes varying between 500 to 10,000. Even with Bonferonni

corrections, power under the split sample approach is well above 0.8 for the kind of

sample sizes of 3,000 or more that are commonly encountered in empirical work. As

expected, the Bonferonni corrections lead to a loss in power. But this loss of lower is

less with the split sample approach than with the full sample approach. This makes

sense because the split sample approach reduces the number of tests that are carried

out on the testing sample.

Figures 2 and 3 plot similar results for different effect sizes of 0.1 and 0.3. Larger,

but still relatively common, sample sizes are required to have power above 0.8 with

smaller expected effect sizes (Figure 2). For example, with a small expected effect size

of 0.1, raising power above 0.8 under the split sample approach requires sample sizes

of 10,000 or more. When the expected effect size is 0.3, power under the split sample

approach reaches 0.8 as soon as sample size is above 1,500.

So far we have set m = 100 and m0 = 99. Next, we simulate what happens to

power when we vary the total number of hypotheses that are being tested (m) and the

number of non-true hypotheses (m0). The effect size that we are trying to detect is 0.2,

as in Figure 1. Figure 4 shows our simulation results for scenario (4) – the split sam-

ple approach with Bonferroni correction applied to the testing sample results. Results

show that power is a decreasing function of m and m0. This is because the Bonferroni

correction becomes more stringent as m or m0 increase.

Having shown that the split sample approach need not have a prohibitive cost in

terms of loss of power, we now turn to its advantages in terms of minimizing the risk

of false rejection. In Table 2 we compare the FWER under our four scenarios. Recall

that the FWER is the probability of rejecting at least one true null hypothesis. We start
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by observing that, for m = 100 and m0 = 99, the FWER is close to 1 when we test

all 100 null hypotheses on the full sample without Bonferroni corrections. Even with-

out Bonferroni correction, moving from the full sample approach to the split sample

approach result in a massive reduction in the FWER from 0.994 to 0.219. This improve-

ment is due solely to the reduction in the number of hypothesis tests that are carried

out on the testing sample. If we add Bonferroni corrections, the FWER falls below 5%

with or without split sample. The formal similarity between the two approaches is

misleading, however. For the FWER to be truly below 5% in the full sample approach,

the researcher must credibly track and report all the tests they run. We argue that this

is unlikely to be the case in most empirical applications (Gelman, 2013). In contrast,

the split sample approach does not suffer from this type of under-reporting bias.

We also investigate whether it is optimal to split the sample 50-50 between train-

ing and testing sets. We continue to focus on scenario (4) – sample split with Bon-

ferroni corrections – and we simulate power under alternative sample splitting rules,

i.e., 30/70 and 70/30. The results, displayed in Figure A.2, indicate that, across all

considered sample sizes, a 50/50 split delivers the best power.

Next, we investigate whether power in the split sample approach with Bonferroni

correction depends on the threshold level of significance used to select hypotheses in

the training sample. So far we have assumed that this threshold is the same in the

training and testing samples, i.e., a = 0.05. We now compare this situation to using a

threshold of 0.1 when selecting hypotheses on the training sample. Three effect sizes

are considered: 0.1, 0.2 and 0.3. We find that, for all three effect sizes, power appears

to be marginally larger with a 0.05 threshold than a 0.1 threshold. This is because

applying a less restrictive threshold to the training sample increases the number of true

null hypotheses that are rejected, and thus the number of hypotheses that are tested on

the testing sample. A larger number of hypotheses means that a stronger Bonferroni

correction is required on the testing sample, and this is what drives the loss of power.
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4.3 Extensions

Clustered samples. Up to now we have assumed that researchers have access to an

unclustered sample (or that inter-cluster correlation is sufficiently low to be ignored).

In a number of settings this assumption is likely to be violated and we now report

results from simulations with clustered sample. In a sample with c clusters and an

intra-cluster correlation coefficient of r power is given by:

1 � bClustered
k = F(dk

s
N

4 ⇤ (1 + (c � 1)r)
� Z1� a

2
) (9)

We can easily adjust the formula to obtain power both for the full sample approach

and the split sample approach with Bonferonni corrections. As before, we run 10,000

simulations. We compute power for sample sizes varying from 500 to 10,000 with 20

observations per clusters. We assume that r is either .05 or .1. Results are available in

Figure A.3. As expected power is lower than what it is with an unclustered sample. For

example, with r = .05 power is above .8 with the split sample approach for samples

of 5,000 observations and more. If r = 1, sample sizes of about 8,000 are required for

power to be above .8.

Alternative p-values adjustments. Up to now we have assumed that researchers are

interested in controlling the FWER and thus rely on Bonferonni corrections. In some

contexts researchers are interested in controlling the False Discovery Rate (FDR) in-

stead.

Definition 2 The False Discovery Rate is the expected proportion of errors among the rejected

hypotheses. In the notation of Table 1, it is equal to E(Q); where Q = V
R if R > 0 and Q = 0

if R = 0.

The concept, introduced Benjamini and Hochberg (1995), captures the idea that, in

a number of relevant cases, it is acceptable to reject true null hypotheses as long as such

rejections constitute a small share of total rejections. The intuition is that the decision-

maker would reach the same conclusion regardless of whether or not those true null

hypotheses are rejected.

17



Benjamini and Hochberg (1995) proposed a method to control the FDR. The BH

method proceeds as follows:

1. Carry out the m tests and get the associated p-values p1, . . . , pm

2. Rank the p-values from smallest to largest p(1), . . . , p(m)

3. Get k = Max{i|p(i)  i
m q}. q is the level at which the researcher would like to

control the FDR.

4. Reject all H(i) for i  k

Benjamini and Yekutieli (2001) show that the method is conservative as it controls

the FDR at level m0
m q. The proof relies on the fact that while for true null hypotheses

the p-values are uniformly distributed over [0, 1], they tend to be bunched towards 0

for non-true null hypotheses. As a result, when observing two p-values the hypothesis

associated with the smallest one is more likely to be non-true. Simulations presented

in Benjamini and Hochberg (1995) indicate that power is significantly larger than for

methods that control the FWER. Benjamini, Krieger and Yekutieli (2006) extend the

method to a two-stage procedure where the first stage is used to get an estimate of m0.

The sharpened q-values are obtained as follows:

1. Apply the BH procedure at level q0
= q/(1 + q). Let c be the number of hypothe-

ses rejected. If c = 0, stop; otherwise, continue to step 2.

2. Let m̂0 = M � c

3. Apply the BH procedure at level q⇤ = q0m/m̂0

We run simulations computing q-values for m = 100, m0 = 90, d = .2 and sample

sizes varying from 500 to 5,000 in 100 increments. We assume that half of the obser-

vations are allocated to the training set. For both the full sample and the split sample

approach we compute power as the share of the 10,000 iterations for which the q-value

is below .05. Results are available in Figure A.4. As expected under both the full sam-

ple and the split sample approaches, power is higher when using sharpened q-values
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than when using Bonferonni corrections. In addition, power under the split sample

approach is now above .8 as soon as sample sizes are larger than 2,000 observations.

5 Additional Benefits from the Split Sample Approach

5.1 Researchers’ Ability to Learn

The split sample approach has one important additional benefit: it allows the researcher

to test a large number of hypotheses with little loss in power. When using a PAP with

full sample analysis, the researcher is often induced to select a short list of tested hy-

potheses in order avoid the loss of power due to Bonferroni corrections. This short list

typically includes hypotheses that the researcher a priori believes are most likely to be

rejected. This means that many hypotheses (e.g., outcome variables) are excluded from

the PAP, thereby preventing the researcher from learning from observations made dur-

ing data collection and field experimentation. Because our method reduces the loss of

power due to multiple testing, it allows researchers to learn from the data and to test

hypotheses that they did not think about when they started the project.

To illustrate, let’s imagine that the researcher has a dataset with 100 potential out-

come variables but decided to only include 10 of them in the PAP. We keep other as-

sumptions unchanged. In particular, we continue to assume that the null hypothesis

should only be rejected for one of the 100 potential outcome variables. The question is

whether this hypothesis is included in the shortlist or not. If it is, the shortlist approach

yields correct inference. But if it is left out, the researcher might wrongly declare that

the treatment has no effect. We now show that under a variety of settings the split

sample approach reduces that risk.

Let y be the likelihood that the one hypothesis to be rejected is included in the

shortlist of 10 tests. Once Bonferonni adjustments are taken into account, power under

the full sample is given by:

PowerPAP = y ⇤ F(dk

r
N
4
� Z1� a

2⇤10
) (10)
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Power under the split sample approach with Bonferonni corrections is given as before

by equation (7). Using these two formulas, we can compute the value y⇤ at which

the two methods yield similar power. In Figure 5, we plot the value of y⇤ for various

effect sizes (.1, .2 and .3). For all values of y below the curve, the split sample approach

delivers more power. In a large number of cases, y needs to be close to one for the

full sample approach with a PAP to be superior (or equivalent) to the split sample

approach. For example, for effect sizes of .3 as soon as sample size is above 2,000, y

needs to be one for the two approaches to yield similar results. Even with an effect size

of .1 and a sample size of 7,000, y needs to be above .6 for the full sample approach

with a PAP to dominate. This set of results thus confirms that the split sample approach

increases researchers’ ability to learn from the data.

5.2 Controlling Referee Degrees of Freedom

In economics and political science referees and editors take a very active role in defin-

ing the paper’s methodology. They often suggest alternative estimation strategies, al-

ternative outcome variables and alternative sub-group analyses. In particular they are

often interested in seeing evidence of mechanisms (e.g., does the variable of interest af-

fect a related concept?). By design, those additional analyses can’t be incorporated in a

PAP and so they are subject to potential criticism of data mining due to what Pepinsky

(2013) refers to as referee degree of freedom.

Once researchers have been invited to revise and resubmit a paper, they will revise

the paper and attempt to find a variable Y that can be considered to proxy for the

related concept introduced by the referees and for which they can reject the null. The

issue is whether the additional hypothesis that the referee wants the researchers to

explore is true (in the sense that it should not be rejected). Let’s call f that likelihood

and g the likelihood that the researchers find a Y for which they can reject the null.

Under the full sample approach, the probability that an error is made is then f ⇤ g.

Under the split sample approach, the probability that an error is made is 0.05 ⇤ g. So

as soon as f is larger than 0.05 the split sample approach leads to fewer type I errors

than a PAP once the editorial process has been taken into account.
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5.3 Helping Editors Decide Whether to Publish Null Results

The split sample protocol proposed in this paper can assist editors decide which results

to publish – and in particular whether to publish so-called ‘null results’.

There are essentially two types of null results: situations in which the null hypoth-

esis cannot be rejected, but the alternative hypothesis cannot be rejected either; and

situations in which the alternative hypothesis can be rejected, in some sense clarified

below. The first situation arises when the standard error of the estimated coefficient bk

is large (relative to bbk). The second situation arises when the estimated bk is close to the

null hypothesis and its standard error is small. In the first situation, the data are unin-

formative about the hypothesis of interest and inference is inconclusive. In the second

situation, the data are informative about the range of likely values of bk and inference

is conclusive. We discuss how the split sample approach can be relied on to improve

publication decisions.

Let us begin with the situation in which the estimated bk is close to zero and its

standard error is small. Formally, let the researcher set a relevant effect size dk such

that, if |bk|  dk, the magnitude of the effect of treatment on the outcome variable is

regarded as economically negligible – i.e., a ‘true zero’. This hypothesis (H0 : |bk| >

dk) can be tested by verifying whether the a-sized confidence interval of bbk (i.e., [bbk ±

z1�a/2 ⇤ bsek]) lies entirely within the interval [�dk, dk]. Indeed, in this case researchers

can reject both H�
0 : bk = �dk (or any value less than �dk) and H+

0 : bk = dk (or any

value above dk) – and hence can conclude that the true bk is either zero or close enough

to zero to be ignored.

The split sample approach can be applied to this alternative hypothesis as well.

The training sample is used to identify the k relevant outcome variables for which

H0 : |bk| > dk is rejected. The testing sample is then used to confirm that this inference

is not a false positive. The same logic applies as for testing bk = 0, except that here

the object of inference is to identify k outcome variables on which treatment has no

(economically relevant) effect.

We now discuss what happens if either type of result obtained on the training sam-

ple is not confirmed on the testing sample. Should the editor accept the results for

21



publication? The tendency of editors in economics is to reject papers with results that

are not significantly different from zero. The implicit justification is that non-significant

results are due to insufficient power – and hence are uninformative. The downside of

this approach is publication bias: because studies that find no effect are not published

(i.e., end up in the ‘file drawer’) – or are only published in less well-ranked journals

– the profession overweighs studies that document an effect and, so doing, draws bi-

ased inference from meta analysis (Ferguson and Brannick, 2012; Franco, Malhotra and

Simonovits, 2014; Simonsohn and Nelson, forthcoming).

The split sample approach that we propose protects against publication bias in sev-

eral ways. First, by only reporting inference results on outcome variables that are sig-

nificant in the testing sample, the method offers protection against publishing under-

powered results: as we have documented earlier, a large sample is required to confirm

a significant effect on the testing sample. Second, sufficient power is required to obtain

false positives on the training sample. The training sample hurdle thus offers some

protection against publishing insignificant results due to lack of power. More impor-

tantly, the training sample provides a consistent estimator of the variance of the error

term u for each outcome variable k. This allows the researchers to calculate power on

the testing sample, and thus enables the editor to judge whether power is sufficient

to detect an economic relevant effect on the testing sample. Finally, by committing to

publish the testing sample results before observing these results – but after calculating

power on the testing sample – the editor adopts a strategy that will lead to high pow-

ered null results being published while, at the same time, documenting occurences of

false positives. In line with Vivalt (2015) and the studies cited earlier, we believe that

both of these features will, over time, help improve inference achieved over multiple

studies.

6 Conclusion

In this paper we contribute to the nascent literature on ways to increase the likelihood

that published findings are true. We investigate the effectiveness of a method that
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can be applied to both new and existing datasets. The method relies on a third-party

randomly splitting the data in two non-overlapping subsets. Researchers use the first

half to refine their research plan, present their findings during seminars and conference

and submit them to journals. Once the paper is accepted, the precise research plan is

then implemented on the second half and this is the set of results that are published.

We find that for a large number of empirically-relevant settings, the loss in statisti-

cal power associated with the split sample approach is manageable and we strongly en-

courage researchers to adopt the approach. This is especially true for quasi-experiments

and observational relying on large datasets. For experiments, If researchers have strong

prior that some hypotheses are true, they could set up a PAP for this subset of hypothe-

ses. They could then use the split sample approach to test other, more exploratory

hypotheses.

We believe that either journals or a professional association should set up and main-

tain an online platform where researchers can upload their dataset and have someone

carry out the split sample. Importantly, the method can still be implemented by re-

searchers working with proprietary data, e.g., researchers can send their anonymized

dataset with garbled variable names to the third party.
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Table 2: Family Wise Error Rate

Full Sample Split Sample
m m0 Bonferonni Corrections:

No Yes No Yes
10 9 0.370 0.044 0.022 0.018
100 90 0.990 0.044 0.202 0.016
100 99 0.994 0.048 0.219 0.048
1,000 900 1 0.044 0.895 0.016
1,000 990 1 0.048 0.916 0.041
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Figure 1: Comparing Power : Full Sample vs. Split Sample [Effect size = .2]
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Figure 5: Value of y at which the full sample approach with a PAP and the split sample
approach yields the same power.
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